

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Juni 1976

KFK 2306

Institut für Material- und Festkörperforschung Projekt Schneller Brüter

BR 2-Kapsel-Versuchsgruppe Mol-8C — Zerstörungsfreie Nachuntersuchung —

P. Weimar, H. Steiner, H. van den Boorn

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2306

Institut für Material- und Festkörperforschung Projekt Schneller Brüter

BR 2-Kapsel-Versuchsgruppe M o 1 - 8 C

- Zerstörungsfreie Nachuntersuchung -

- P. Weimar
- H. Steiner
- H. van den Boorn

Gesellschaft für Kernforschung mbH., Karlsruhe

VORBEMERKUNG

Der in dem vorliegenden Bericht dargestellte Bestrahlungsversuch basiert auf der Zusammenarbeit mehrerer Arbeitsgruppen im Kernforschungszentrum Karlsruhe. Die vielfältige Mühe und Sorgfalt aller Beteiligten sei ausdrücklich anerkannt. Die Autoren danken an dieser Stelle weiterhin allen, die unmittelbar zur Abfassung der Dokumentation beitrugen, insbesondere Herrn F. Bauer für die Ausarbeitung der Diagramme und Abbildungen und Frau W. Ratzel für die Reinschrift des Manuskriptes sowie die redaktionelle Hilfe.

Mai 1976

P. Weimar, H.van den Boorn, H.Steiner

K U R Z F A S S U N G

Im Rahmen der Karlsruher Bestrahlungsexperimente zur Entwicklung eines Schnell-Brüter-Brennelements setzt die Versuchsgruppe (Vg) Mol 8C die bereits mit Vg Mol 8B begonnene Serie der Oxidbestrahlungen im epithermischen Fluß mit kontinuierlicher Messung des Spaltgas-Druckaufbaus fort. Das Experiment umfaßt 10 Brennstäbe (520 mm aktive Länge), die einzeln in NaK-Kapseln im epithermischen Fluß im BR2 bestrahlt wurden. Der Brennstoff war mit 93 % U-235 angereichert. Der PuO₂-Anteil betrug 20 %. Die Abbrände betrugen (Ausnahme Stab Nr. 9) durchweg über 100 MWd/kgM. Die Hüllinnentemperaturen lagen maximal zwischen 680 und 720°C. Es wurden variiert die Parameter Stableistung (350 - 550 W/cm), Schmierdichte (83-86-90 % TD), axiale Rückhaltung (mit/ohne) und der Radialspalt (25-70-127,um). Die Hüllrohre waren aus dem austenitischen Edelstahl 1.4988. Der Stabdurchmesser betrug 6,0 mm, die Wandstärke 0,38 mm. Bei den Stäben 1, 2, 9 und 10 traten Stabdefekte auf, die allerdings kapselspezifisch waren: Durchschmelzen der Hülle jeweils unterhalb der Abstandshalter wegen Gasansammlung. Die Durchleuchtung erbrachte für alle Stäbe eine regelmäßige Zentralkanalkontur.

In der vorliegenden Dokumentation wird nach Darstellung von Aufgabe und Ziel des Experimentes eine detaillierte Beschreibung der Prüflingsauslegung, der Spezifikation, der Herstellung, des Bestrahlungsablaufs, der Kalibrierung des Einsatzes, der Spaltgasmessung und der zerstörungsfreien Nachuntersuchung gegeben. Weiterhin werden die Hülldehnungen in Relation zur Leistungsgeschichte interpretiert.

ABSTRACT

BR2-Capsule-Irradiation Mol 8C - Non-destructive Post Irradiation Examination

Within the frame of the GfK-irradiation experiments for the development of a fuel pin for Fast Breeder Reactors the series Mol 8C continues the series Mol 8B, which consisted of an irradiation under epithermal conditions with continuous measurement of fission gas pressure build-up. The experiment Mol 8C comprises 10 pins (520 mm of active length) which were irradiated in NaK in capsules under epithermal flux in the BR2. The fuel consisted of 93 % enriched U-235 in UO₂ and 20 wt % PuO₂. Except for one pin (No. 9) burn-up values of more than 100 MWd/kgM were reached, as well as values between 680 and 720°C for the max. inner clad temperatures.

The following parameters were varied:

Rod power (350 - 550 W/cm), smear density (83-86-90 % TD), axial restraint (with/without) and the radial gap (25-70-127/um). The cladding consisted of austenitic steel No. 1.4988, its diameter and wall-thickness being 6,0 mm and 0,38 mm. The pins No 1, 2, 9 and 10 were defected by gas trapping and cladding melting beyond the distance stars in the capsule. The betatron radiographs showed a regular contour of the central void.

The documentation in this report presents the objectives of the experiment, a detailed description of design, specification and fabrication of the pins, the irradiation history, capsule calibration, measurement of fission gaspressure and non-destructive post irradiation examination. Furtheron an interpretation of diameter increase in relation to the history of rod power and the distribution of cladding temperatures are given.

Inhalt:

1.	Einleitung	1
2.	Aufgabenstellung und Versuchsziel	2
3.	Auslegungsdaten und Spezifikation	4
3.1	Brennstab	4
3.2	Brenn- und Brutstoff	4
3.3	Hüllrohr	10
4.	Auslegungsrechnungen	11
4.1	Bestrahlungsbedingungen	11
4.2	Spaltgasfreisetzung	11
4.3	Hüllrohrbeanspruchung	11
5.	Prüflingsherstellung	14
5.1	Ausgangspulver für Brenn- und Brutstoff	14
5.2	Tablettenherstellung	15
5.3	Hüll- und Strukturmaterial	29
5.4	Stabherstellung	32
5.5	Stabprüfung	32
6.	Bestrahlungseinrichtung	33
6.1	FAFNIR-Kapsel	33
6.2	Flußspektrum (epithermisch)	39
7.	Bestrahlung	44
7.1	Bestrahlungsablauf	44
7.2	Ergebnisse während der Bestrahlung	61
8.	Zerstörungsfreie Nachuntersuchung	84
8.1	Profilometrie	84
8.2	Durchleuchtung	89
8.3	γ-Spektrometrie	
9.	Interpretation der Hülldehnungen	100
10.	Schlußbetrachtung	131
11.	Literatur	132

Seite:

-

-

1. Einleitung

Die Versuchsgruppe Mol 8C setzt die mit der Gruppe Mol 8B begonnene Serie der Oxidbestrahlungen mit kontinuierlicher Messung des Spaltgasdruckaufbaus bzw. der Gasfreisetzung fort. Das Experiment umfaßt 10 Brennstäbe mit 520 mm aktiver Länge, die einzeln in Kapseln im epithermischen Fluß des BR2 bestrahlt wurden. Als Brennstoff wurde Mischoxid UO₂-PuO₂ verschiedener Dichte in Tablettenform eingesetzt.

Hinsichtlich der Versuchsgruppe Mol 8B wurden folgende Parameter geändert:

- Stablänge	hier größer	1024,4 mm
- Stableistung	z.T. höher	350 - 550 W/cm
- max. Hüllober-		
flächentemp.	hier höher	640 ⁰ C
- Variation von:		Stableistung
		Schmierdichte
		Ax. Rückhaltung
		Radialspalt.

Die Pu-Anreicherung blieb mit 20 Gew.% unverändert, ebenso das Material für die Hüllrohre, W.Nr. 1.4988.

In diesem Bericht werden alle Details über die 10 Prüflinge dieser Versuchsgruppe angegeben wie Aufgabenstellung, Auslegung, Spezifikation, Herstellung der Prüflinge, Bestrahlungsablauf und zerstörungsfreie Nachuntersuchung. Weiterhin wird eine Interpretation der Hülldehnungen vorgenommen. Diese Zusammenstellung basiert auf einer Vielzahl von internen Niederschriften und persönlichen Mitteilungen. In der folgenden Übersicht sind der Zeitablauf des Experimentes und die für die einzelnen Schritte verantwortlichen Stellen und Personen angegeben.

Zeitraum	Teilarbeit	Hauptbeteiligte/ Institutionen
1967	Vorüberlegungen	Gerken, Karsten/ _{IAR}
1968	Bestrahlungskapsel FAFNIR	V.d.Hardt,Technologie CEN/Mol
1968	Auslegung und Spezifikation	Gerken, Kummerer, IAR/IMF
1971	Herstellung der Prüflinge	Dippel, Kummerer, IMF
1970-73	Organisation und Betreuung der Bestrah- lung im BR2	V.d.Hardt,Freund, IMF, GfK-AG Mol
1974/75	Untersuchung in den Heißen Zellen GfK	Scheeder, Enderlein, Pejsa, HZ/RBT
1974/75	Organisation und Betreuung der NU	Weimar, IMF

2. Aufgabenstellung und Versuchsziel

Bekanntlich werden die Hüllrohre eines Brennelements durch 3 verschiedenartige Kräfte beansprucht. Es sind dies:

- der Spaltgasdruck,
- der Festkörperdruck des schwellenden Brennstoffs
- die mechanische Wechselwirkung (Brennstoff-Hülle)
 - die durch die Lastwechsel des Reaktors bedingt ist.

In diesem Experiment sollte dem Phänomen des Spaltgasdruckaufbaus im Oxidbrennstab nachgegangen werden. Zu diesem Zweck wurden die folgenden Parameter verknüpft (Tab. 1).

Parameter		Verknüpfung	Versuchsziel	Auswertung
550 W/cm 350 W/cm	Max. Stableistung		Spaltgas- freisetzung	bei allen 10 Stäben
90 % TD 86 % TD 83 % TD	Schmierdichte		Verfügbarkeit der inneren Porosität für das Brenn- stoffschwellen	an 8 Stäben
mit ohne	Axiale Rückhaltung		Wechselweise Ver- fügbarkeit des	an
25 μ 70 μ 127 μ	Radialer Spalt (radialen Spaltes und der inneren Porosität	2 Stäben

Tabelle 1 Verknüpfung von Parametervariation und Versuchsziel

Der Spaltgasdruckaufbau wird bei jedem Stab mittels eines Druckmessaufnehmers (Kapillare) kontinuierlich während der Bestrahlung angezeigt und registriert. In der bereits bei dem Experiment Mol 8B erprobten FAFNIR-Kapsel (Cd-Abschirmung, stagn. NaK) werden die Stäbe dem "schnellen" Neutronenspektrum des BR2 ausgesetzt.

Die wesentlichen Unterschiede zum SNR-300-Stab sind bedingt durch die Bestrahlungskapazität und Core-Abmessungen des BR2:

- Kürzere aktive Länge und damit auch geringere Gesamtlänge des Prüflings
- Fehlen der unteren Brutstoffzone
- Reine Kapselbestrahlung, d.h. stagnierendes Kühlmittel (NaK).

Das Bestrahlungsexperiment soll neben den in Tabelle 1 angesprochenen Zielen noch folgende Fragen klären:

 Bleiben die "Lang"-Stabprüflinge bis zu dem Zielabbrand von 90.00 MWd/kgM intakt? 2. Können die Zyklus-Freisetzungsraten mittels Modellrechnungen auch theoretisch verstanden werden?

Die Nachbestrahlungsuntersuchung soll darüberhinaus noch folgende Detailfragen klären:

- Korrosiver Hüllangriff
- Spaltproduktverteilung im Stab
- Bilanz der Spaltgase
- Integrales Schwellen des Brennstoffs mit der Hülle
- Kriechaufweitung der Hülle.

3. Auslegungsarbeiten und Spezifikation /1/

3.1 Brennstab

In Tabelle 2 werden die Auslegungsdaten der Brennstäbe gegeben. Unter Benutzung der in Tabelle 1 gegebenen Parameterverknüpfung ergab sich eine Serie von insgesamt 13 Stäben (3 Reserve). Hervorgehoben sei die bei den Stäben C9 und C10 vorgenommene Dichtevariation innerhalb des Stabes.

Tabelle 3 gibt die Materialwerte in einer Gesamtübersicht wieder. Abbildung 1 zeigt den inneren und äußeren Aufbau des Prüflings. Das hier unter 5 aufgeführte Stützrohr im Gasplenum soll eine während der Bestrahlung auftretende Axialverlängerung von Brenn- und Brutstoff in eine Durchmesserzunahme "umlenken". Der sogenannte "axiale Restraint" wurde nur bei 6 Prüflingen (siehe Tab.2) vorgenommen.

3.2 Brenn- und Brutstoff

3.2.1 Brennstofftabletten

Chemische Zusammensetzung

- Der Nennwert der Brennstoffmischung ist $80,0 \pm 0,5$ Gew.% $20,0 \pm 0,5$ Gew.% $Pu0_2$

Turner - HunteQuilleauneen aor IoranoneOrappe Hea e	Tabelle 2	Auslegungsdaten	der Versuchsgruppe	Mol 8	8	С
---	-----------	-----------------	--------------------	-------	---	---

Тур	Bezeichnung	Schmierdichte (% th.D.)	Tablettendichte (% th.D.)	Radial.Spalt (µ)	Tablettendurchmesser (mm)	Axiale Rückhaltung	Max.Stableistung ¹⁾ (W/cm)
Р	8C - 1 8C - 2					mit	550 350
Q	8C - 3 8C - 4	90,0	95,0	70	5,10	ohne	550 350
Reserve ²)	8C - 11						
R	8C - 5 8C - 6					mit	550 350
S	8c - 7 8c - 8	83,0	87,6	70	5,10	ohne	550 350
Reserve ²)	8C - 12						
Т	8C - 9 8C - 10	86,0	87,6/90,8/95,0	25/70/127	5,190/5,100/4,986	mit	550 550
Reserve ²)	8C - 13						

1) Max. Stableistung zu Beginn eines Zyklus

2) Diese Reservestäbe werden unverschlossen beim Hersteller auf Abruf gelagert. Sie sollen mit und ohne axiale Rückhaltung lieferbar sein.

ו 5

			· · · · · · · · · · · · · · · · · · ·
	Gesamtlänge des Brenns	tabes (mm)	1024,4 (ohne Kapillare)
Außenmaße	Außendurchmesser	(mm)	6,0 <u>+</u> 0,03
	Länge der Kapillare	(mm)	3000
	Oberer Endstopfen	(mm)	23 (mit Stopfenkern)
	Spaltgasraum	(mm)	250
Einteilung	Führungsstück ohne Stützrohr	(mm)	4
der Stablänge	Führungsstück mit Stütz r ohr	(mm)	246
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Brenn s toffsäule	(mm)	500 <u>+</u> 3
	Brutstoffsäule	(mm)	195 <u>+</u> 2
	Isoliertabletten	(mm)	13 ± 0,5
	Unterer Endstopfen	(mm)	20 (mit Stopfenkern)
	Material		Nr. 1.4988
Hülle	Innendurchmesser	(mm)	5,24 <u>+</u> 0,03
	Wandstärke	(mm)	0,38 <u>+</u> 0,03
	Material		Nr. 4401
Kapillare	Außendurchmesser	(mm)	1.1 + 0.02
	Wandstärke	(mm)	0,2 <u>+</u> 0,01
	Material		UOPuO_
	PuOAnteil	(Gew%)	20 + 1
	U-235-Anteil im UO	(Gew%)	93
	0:Me-Verhältnis		2.0 + 0.03
	Geom.Tablettendichte	(% th.D)	95.0 + 2
Brennstoff			87.6 + 2
DI GIII DI GII	iyp n u. S		$07,0 \pm 2$
	Typ T Mohlattandunukaan		07,07 90,07 95,0
	J'ablettendurchmesser	(mm)	
	тур Р, Q, К, С	2	$5,10 \pm 0,05$
	Typ T		5,190 / 5,100 / 4,986
	Tablettenhohe	(mm)	6,5 <u>+</u> 1
	Schmierdichte	(% th.D)	
	Typen P u.Q /	Ru.S/T	90.0 / 83,0 / 86,0
Brutstoff	Material		UO2
und	Tablettendichte	(% th.D)	95 <u>+</u> 2,0
Isoliertabl.	Tablettendurchmesser	(mm)	5,10 u. 5,00
	Tablettenhöhe	(mm)	6,5
	Brennstoffabschnitt	(mm)	520 <u>+</u> 3,0
Brennstoff.	Brutstoffabschnitt	(mm)	195 <u>+</u> 2,0
säule	Isoliertabletten	(mm)	13 <u>+</u> 0,5
	Gesamtlänge	(mm)	728 <u>+</u> 5
Gasfüllung			l atm Helium
Obe rflächen-	Wischtest		unter Nachweisgrenze
kontamination	oberflächlich fixiert		22 α -Zerf./cm ² .min

Tabelle 3: Auslegung und Spezifikation

Der in diesem Bereich liegende wirkliche PuO_2 -Gehalt der Mischung ist mit einer Analysengenauigkeit von <u>+</u> 0,1 % PuO₂ anzugeben.

- Der Sauerstoffgehalt ist in allen Tabletten einheitlich. Es wird ein Stöchiometriewert 0/Me = 2,0 + 0,03 mit einer Nachweisgenauigkeit von + 0,02 angestrebt.
- Der H₂O-Gehalt muß unter 100 ppm liegen.
- Der gesamte Gasgehalt des Brennstoffes soll nicht höher als 0,1
 Norm-cm³ je Gramm Brennstoff geprüft bei einer Freisetzungstemperatur von 1600°C – sein.
- Die sonstigen chemischen Verunreinigungen sollen insgesamt 1000 ppm nicht übersteigen.
- Isotopenzusammensetzung
 - Das UO $_2$ enthält Uran mit 93 % U 235
 - Das PuO₂ enthält Pu mit einer Isotopenzusammensetzung von etwa

91 % Pu 239 8 % Pu 240 1 % höhere Isotope.

Die wirkliche Zusammensetzung ist mit einer genauen Isotopenanalyse zu belegen.

- Homogenität

Die Pulvermischung wird gut homogenisiert. Alle PuO $_2$ -Partikel sollen kleiner als 100 μm sein.

- Tablettendichte

Hier ist zwischen 3 Qualitäten zu unterscheiden:

```
P und Q 95,0 <u>+</u> 2 % TD

R und S 87,6 <u>+</u> 2 % TD

T (Sonderqual.) 87,6 <u>+</u> 1 % TD

90,8 <u>+</u> 1 % TD

95,0 <u>+</u> 1 % TD.
```

- Tablettengeometrie
 - Der Tablettendurchmesser ist bei den Tablettensorten der Standardqualität 5,10 + 0,03 mm
 - Bei den Tabletten der Sonderqualität gehört zu jeder Dichtestufe ein bestimmter Durchmesser, nämlich
 - zur Sorte t₁ (87,6 %): 5,190 \pm 0,010 mm zur Sorte t₂ (90,8 %): 5,100 \pm 0,010 mm zur Sorte t₃ (95,0 %): 4,986 \pm 0,010 mm.
 - Der Nennwert der Tablettenhöhe ist 6,50 mm. Die Einzelwerte können in einem Bereich von etwa 1 mm schwanken, wobei allerdings die Forderungen hinsichtlich der Höhe der Tablettensäulen und Säulenabschnitte erfüllt werden müssen. Die Stirnflächen sollen eben und orthogonal zu den Zylinderflächen sein.
- Oberfläche der Tabletten

Die Oberfläche darf keine sichtbaren Fehler aufweisen mit Ausnahme der beim Schleifen der Zylindermäntel unvermeidbar auftretenden Kantenabplatzungen. Dabei soll keine der linearen Abmessungen einer Abplatzung größer als 1 mm sein.

3.2.2 Brutstofftabletten

Material und Zusammensetzung

- Die Brutstofftabletten bestehen aus reinem UO₂, dessen Urananteil natürliche Isotopenzusammensetzung (0,7205 % U-235) aufweist.
- Der Sauerstoffgehalt ist in allen Tabletten einheitlich. Es wird ein Stöchiometriewert O/Me = 2,0 + 0,03 mit einer Meßgenauigkeit von + 0,02 angestrebt.
- Der H₂O-Gehalt muß unter 100 ppm liegen.
- Der gesamte Gasgehalt des Brutstoffes soll nicht höher als
 0,1 Norm-cm³ je Gramm Brutstoff geprüft bei einer Freisetzungstemperatur von 1600°C – sein.
- Die sonstigen chemischen Verunreinigungen sollen insgesamt 1000 ppm nicht übersteigen.

Tablettendichte

Die Tablettendichte des Brutstoffes beträgt 95,0 + 2,0 % TD.

Tablettengeometrie

- Es werden hinsichtlich des Durchmessers zwei Sorten unterschieden, nämlich

> Sorte b_1 : 5,10 \pm 0,03 mm Sorte b_2 : 5,00 \pm 0,03 mm.

- Der Nennwert der Tablettenhöhe ist 6,50 mm. Die Einzelwerte können in einem Bereich von etwa 1 mm schwanken, wobei allerdings die Forderungen hinsichtlich der Höhe der Tablettensäulen und Säulenabschnitte erfüllt werden müssen.

Oberfläche der Tabletten

Die Oberfläche darf keine sichtbaren Fehler aufweisen mit Ausnahme der beim Schleifen der Zylindermäntel unvermeidbar auftretenden Kantenabplatzungen. Dabei soll keine der linearen Abmessungen einer Abplatzung größer als 1 mm sein.

3.3 Hüllrohr

Die Abmessungen des Hüllrohres gehen aus Tab. 3 hervor. Der verwendete Werkstoff hat die Nummer 1.4988 (austenitisch X8CrNiMoVNb 1613).

- Chemische Zusammensetzung (Richtanalyse) in Gew. %.

4. Auslegungsrechnung

4.1 Bestrahlungsbedingungen

In Abb. 2 sind für einen typischen axialen Flußverlauf der FAFNIR-Kapsel im BR-2 die Stableistung, Hüllinnentemperatur, Brennstaboberflächentemperatur und die Zentraltemperatur angegeben /2/.

Für einen Abbrand von ca. 90,0 MWd/kgM ergeben sich für Standzeit und Flußdosis folgende Werte /1/:

χ (W/cm)	Standzeit (d) 90/83 % Schmierd.	Flußdosis (E > O,1 MeV)
350 550	520 / 480 335 / 310	ca. 7,5 · 10 ²¹ n/cm ²

4.2 Spaltgasfreisetzung

Die Spaltgasfreisetzung ist eine Funktion der mittleren Brennstofftemperatur, der Porosität der Bestrahlungszeit, sowie der Leistungszyklen des jeweiligen Treiber-Cores. Es wurden zur Ermittlung der Freisetzungsrate verschiedene Modelle entwickelt. Es soll hier nur Abb. ³ angegeben werden, die nach COMETHE II /3/ gerechnet wurde.

4.3 Hüllrohrbeanspruchung

Die Hüllrohre werden durch Innendruck (Spaltgas und Schwellen) und durch mech.Wechselwirkung zyklisch beansprucht. Die Spannungsverhältnisse wurden mit "CRASH" /3/ nachgerechnet, wobei die Vergleichsspannung nach Mises und das Kriechen nach Norton ermittelt wurden. Die Materialdaten für den Werkstoff Nr.1.4988 (unbestrahlt) sind aus /4/ entnommen.

Abb. 2 Axialer Temperatur – und Leistungsverlauf im Brennstab für 85 und 95% th.D. der Tabletten

Abb. 3 Spaltgasfreisetzungsrate in Abhängigkeit von der Temperatur und der Bestrahlungszeit (aus Comethe II)

- 13 -

In der Tabelle 4 sind für den Ort der maximalen Stableistung die Kriechrate und die maximale Vergleichsspannung für das Ende der Standzeit angegeben. Die Zyklusdauer beträgt im BR-2 ca. 21 Tage, wobei ca. 14 Tage Bestrahlungszeit sind. Die Belastung der Hülle durch Festkörperdruck aufgrund von Schwellen und Lastwechseln konnte nicht berücksichtigt werden.

Die maximale Kriechrate tritt an der Innenfaser, die maximale Vergleichsspannung an der Außenfaser auf. Verglichen mit den zulässigen Werten – $\sigma_{0,2}$ (plastische Verformung), ε_{zul} (aus Bestrahlungstests ermittelt) – zeigt es sich, daß noch eine große Sicherheitsspanne vorhanden ist. Jedoch reduziert sie sich durch die unbekannten Heißkanaleffekte, durch das Brennstoffschwellen und die mechanische Wechselwirkung aufgrund von Lastwechseln.

		Fall I	Fall II
Max. Stableistung	(W/cm)	350	550
Standzeit	(h)	18 150	11 590
Vollastbetriebstage	(h)	12 100	7 660
Anzahl der Zyklen im BR 2		36	23
Max. Hüllinnentemperatur	(⁰ C)	680	680
Max. Vergleichsspannung	(kp/mm^2)	8,65	11,18
Streckgrenze o.2	(kp/mm^2)	18,80	18,80
Max. Kriechrate	(%)	0,0069	0,0125
Zulässige Kriechrate	(%)	0,15	0,15

Tabelle 4 Hüllrohrbeanspruchung bei Mol 8C

5. Prüflingsherstellung

5.1 Ausgangspulver für den Brenn- und Brutstoff

Als oxidische Ausgangspulver standen zur Verfügung:

- a) UO2 mit Natururan, ADU-gefällt, von Firma NUKEM für den Brennstoff
- b) UO₂ mit 93,01 % U-235, ADU-gefällt, von Firma NUKEM, für Tabletten der Brennstäbe 8C-1 bis 8C-4, 8C-9 und 8C-10
- c) UO₂ mit 93,16 % U-235, konvertiert, von Firma NUKEM, für die Tabletten der Brennstäbe 8C-5 bis 8C-8
- d) PuO₂ mit nominell 7,7 % Pu-240, oxalatgefällt aus verschiedenen Chargen der Lieferungen der USAEC.

Die genaue Isotopenzusammensetzung des Pu ist für die verwendeten Chargen in Tabelle 5 angegeben. Tabelle 6 enthält die chemischen Verunreinigungen der Ausgangspulver.

	Meßergebnisse (Gew%) von		
	Hanford/USA	Karlsruhe	
Charge FEU-25-04- 003			
Pu-239	90,782	90,887	
Pu-240	8,308	8,232	
Pu-241	0,871	0,842	
Pu-242	0,039	0,039	
Charge EU-28-10-24			
Pu-239	90,519	90,498	
Pu-240	8,238	8,278	
Pu-241	1,133	1,127	
Pu-242	0,061	0,061	

Tabelle 5 Isotopenzusammensetzung im Pu0,

Da bei den Brennstofftabletten 3 verschiedene Nenndichten laut Spezifikation gefordert wurden, wurde das unter b) und c) angeführte angereicherte UO₂ entsprechend der jeweiligen "Sinterfreudigkeit" für die oben angegebenen Stäbe verwendet. Das unter b) angeführte Pulver mußte für den Einsatz bei den Stäben des Typs T noch vorher kalziniert werden, da hier z.T. sehr niedrige Sinterdichten gefordert wurden. Es ergaben sich so 3 Grundgemische (s.Tab.⁷).

5.2 Tablettenherstellung

Die Pulvergemische wurden unter Zusatz von Polyvinylalkohol + H_2^0 granuliert, bei 50°C getrocknet und durch ein Sieb mit 100/um Maschenweite gestrichen.

Nach Volumendosierung dieses Granulats wurde mit 6 t/cm^2 gepreßt. Danach wurden die Tabletten entwachst und bei 1600°C unter Ar/5H₂ gesintert (Dauer 2h).

Die Meßergebnisse hinsichtlich Dichte und Geometrie sind in den Tabellen 8 - 17 angeführt. An einigen Brennstofftabletten eines jeden Mischansatzes wurden noch chemische Analysen durchgeführt (Tab.18).

Tabelle 6:

	UO ₂ mit	PuO ₂ aus	Pu0 ₂ aus	UO2 mit	UO_ mit
	Natururan	FEU-25-04-003	EU-28-10-24	ADU-gefällt	dir. konv.
Ag	0,12	_+)	-	0,3	0,16
Al	< 8	-	100	12	29
В	< 0 ,0 8	-	1	0,11	< 0,08
С	140	-	-	80	_
Ca	26	-	90	∠ 20	_
Cd	< 0,07	-	< 1	< 0,07	< 0,07
Cl	< 3	-	-	7	32
Co	< 1	-	-	<1	-
Cr	< 3	15	< 5	< 3	12
Cu	_	-	< 1	—	0,5
F	5	-	80	12	_
Fe	40	100	40	63	75
Cđ	< 0,02	-			-
Mg	2	10	45	0,5	-
Мо	<1	-	< 19	< 1	_
Mn	<1	-	5	< 1	3
N	18	-	-	14	-
Ni	6	45	5	5	180
Р	6	-	-	4	_
Pb	< 1	-	< 10	< 1	-
Si	< 5	-	< 10	~ 5	< 5
Sn	< 5	-	< 5	< 5	< 5
Th	< 10	-	-	96	< 10
v	< 0,2	-	< 10	18	< 3
Zn	< 20	-	< 50	< 20	< 20
Zr	< 0,2			255	-

+) bedeutet: nicht analysiert

Tabelle 7: Mischprotokoll für den Brennstoff

	KUI	UO ₂ mit 93,01 % U-235, ADU-gefällt
Misch-	к ₀₂	UO ₂ mit 93,16 % U-235, direkt kon ver tiert
nenten	K _{Pul}	PuO ₂ aus Charge FEU-25-04-003
	K _{Pu2}	PuO ₂ aus Charge EU-28-10-24

	Kom	ponente	n	Gesamt-	Pu (Corr 4)	
	Herkunft	Vorbehandlg.	Menge (g)	menge (g)	$\overline{U+Pu}$ $(U=W \cdot -p)$	
1	K _{Pul}	unkalz.	164,2	804 6	20 月1	
	K _{Ul}	unkalz.	640 , 4	004,0	<u>ـ</u> ـــ ر ر	
2	K Pu2	unkalz.	193,23	963.45	20.06	
K _{U2}	κ _{υ2}	unkalz.	770,22	7-77		
3	K _{Pu2}	unkalz.	68 ,00	340,00	20.00	
	к _{Ul}	unkalz.	272,00			

-	1	8	-
		~	

			<u> </u>	0 -	
EINZELWEI	RTE	Gewicht (g)	Höhe (mm)	Durchmesser (mm)	Geom. Dichte (% th.D.)
Unteres	1	1,3736	6,440	5,100	95,04
Ende	2	1,3699	6,440 6.410	5,090 5,100	95,16 94,98
der	4	1,3550	6,405	5,095	94,45
Brennstoff-	5	1,3834	6,465 6,305	5,100	95,35
säule	7	1,3668	6,425	5,095	94,98
	8	1,3517	6,415	5,085	94,45
	10	1,3784	6,450 6,445	5,105	94,97 95,30
	11	1 3667	6 440	5,095	94.75
	12	1,3617	6,415	5,090	94,96
	13	1,3877	6,485 6 455	5,095 5,095	95,54
	15	1,3687	6,435	5,095	94,96
	16	1,3661	6,410	5,095	95,15
	18	1,3649	6,435	5,105	94,33
	19	1,3989	6,525	5,090	95,91
	20	1,0042	6,400 C Iulio	5,105	95,29
	21	1,3636	6,440 6,475	5,085	95,02 93,84
	23	1,3745	6,480	5,085	95,08
	24	1,3891	6,460	5,105	95,63 05.18
	26	1,3829	6,450	5,100	95,54
	27	1,3733	6,445	5,100	94,95
	20	1,3667	6,410	5.090	95.38
	30	1,3722	6,435	5,100	95,02
	31	1,3816	6,455	5,100	95,37
	32	1,3762	6,440 6,440	5,100 5-100	95,22 95,29
	34	1,3908	6,505	5,095	95,46
	35	1,3781	6,440	5,110	94,98
	37	1,3849	6,470	5,005	95,77 95,57
	38	1,3612	6,505	5,085	93,80
	39 40	1,3592	6,420 6,400	5,080 5,100	95,08 94,83
	41	1,4071	6.520	5,100	96.17
	42	1,3630	6,455	5,090	94,46
	43	1,3746	6,455	5,090	95 , 26
	45	1,3834	6,455	5,100	95,50
	46	1,3577	6,420	5,080	94,98
	47	1,3746	6,415 6,485	5,095	94,81 94.82
	49	1,3763	6,450	5,100	95,08
	50	1,3887	6,480	5,105	95,31
	51 52	1,3863	6,470 6,435	5,110 5,100	95,10 94,90
	53	1,3696	6,430	5,095	95,10
	54	1,3755	6,445	5,090	95,48 05.00
	56	1,3828	6,480	5,095	95,20
	57	1,3419	6,420	5,080	93,87
i	59	1.3690	0,425 6.430	5,105 5.095	95,06
	60	1,3694	6,440	5,100	94,75
	61	1,3668	6,410	5,100	95,02
	62 63	1,3742	6,475 6,460	5,085 5,105	95,13 94 93
	64	1,3663	6,425	5,100	94,76
	65	1,3760	6,445	5,105	94,95 95 01
	67	1,3628	6,410	5,100	94,74
	68	1,3627	6,430	5,080	94,48
	70	1,3762	0,405 6.450	5,110 5.095	9 4,92 95 , 26
	71	1.3778	6.440	5.100	95.33
	72	1,3702	6,425	5,100	95,03
Oberes	73	1,3679	6,4 2 5	5,095	95,06
operes	75	1,3864	6,470	5.095	95.52
Ende	76	1,3727	6,430	5,105	94,94
der	77	1,3918	6,475 6,455	5,105	95 ,59 95,35
Brennstoff-	79	1,3732	6,460	5,090	95,09
säule	80	1,3742	6,435	5,100	95,16
	81	1,3700	6,435	5,095	95 ,0 5
GESAMTWEI	RTE	111,2556	521,704		
MITTELWEI	RTE			5.098	95.01 0
			-		

Tabelle 8

Brennstoffsäule für

- 19 -

Tabelle 9:

Brennstoffsäule

für

EINZELWE	RTE	Gewicht (g)	Höhe (mm)	Durchmesser (mm)	Geom.Dichte (% th.D.)
Unteres Ende	1 2	1,3701 1,3844	6,425 6,475	5,105 5,100	94,84 95,27
den	3	1,3707	6,480	5,075	95,19
der	5	1.3877	6.465	5,100	95,65
Brennstoff-	6	1,3712	6,435	5,095	95.14
säule	7	1,3873	6,460	5,105	95,51
	8 0	1,3650	6,420 6,435	5,095	94,95
	10	1,3783	6,455	5,100	95,15
	11	1.3730	6.425	5.105	95.04
	12	1,3734	6,420	5,100	95,33
	13	1,3622	6,430	5,105	94,22
	14 15	1,3700	6,465	5,100	94,96
	16	1,3755	6,450	5,095	95,21
	17	1,3697	6,425	5,080	95,74
	10	1.3553	6,405	5.080	95.03
	20	1,3667	6,430	5,090	95.09
	21	1,3745	6,470	5,095	94,85
	22	1,3702	6,450	5,100	94,66 01 85
	24	1,3649	6,400	5,100	95.03
	25	1,3581	6,385	5,095	94,97
	26	1,3636	6,400 6,470	5,100	94,94
	28	1,3554	6,380	5,100	94,67
	29	1,3699	6,450	5,100	94,64
	30	1,3694	6,460	5,095	94,65
	31 32	1.3693	6,440 6,440	5,100 5,100	94,75 94,96
	33	1,3522	6,370	5,100	94,59
	34	1,3574	6,405	5,090	94,81
	25 36	1,5765	6,440 6,435	5,095	95,42 94,31
	37	1,3727	6,460	5,100	94,69
	38 70	1,3757	6,435	5,095	95,45
	29 40	1,3793	6,475 6,455	5,100	95,22
	41	1.3688	6,450	5,100	94,56
	42	1,3554	6,405	5,095	94,48
	43 hh	1,3864	6,490 6,455	5,100	95,19 95,44
	45	1,3623	6,390	5,100	95,00
	46	1,3638	6,400	5,100	94,96
	47 18	1,3661	6,410 6,480	5,105	94,78
	49	1,3799	6,430	5,105	95,44
	50	1,3669	6,415	5,100	94,95
	51	1,3821	6,475	5,095	95,30
	52	1,3710	6,420 6,420	5,105	94.97
	54	1,3851	6,455	5,105	95,43
	55	1,4191	6,560	5,110	96,02
	57	1,3653	6,430	5,085	95,18
	58	1,3839	6,450	5,105	95,42
	59 60	1,3806	6,455 6,435	5,100	95,21
	61	1,3782	6.445	5,105	95,10
	62	1,3783	6,480	5,100	94,78
	63 64	1,3593	6,465	5,100	95,69
	65	1,3756	6,420	5,110	95,11
	66	1,3768	6,445	5,095	95,38
	68	1.3829	6,455	5,100	95,46
	69	1,3769	6,430	5,105	95,23
	70	1,3706	0,425	5,105	94,07
	71 72	1,3811 1.3654	6,435 5,400	5,100	95,64 94.90
	73	1,3865	6,455	5,105	95,53
Oberes	74	1,3830	6,450	5,100 5,085	95,55
Ende	76	1,4026	6,520	5,095	96,05
der	77	1,3716	6,430	5,090	95,43
Brennstoff-	78 70	1,3649	6,400 6 435	5,100	95,03
säule	80	1,3809	6,470	5,100	95,11
	81	1,3704	6,410	5,110	94,89
GESAMTWE	RTE	111.3194	521,72		
מש. דא ייי ייד א	8 ጥ ድ			5,099	95.118

EINZELWE	RTE	G ew icht (g)	Höhe (mm)	Durchmesser (mm)	Geom.Dichte (% th. D.)
Unteres Ende der Brennstoffsäule	1 2 3 4 5 6 7 8 9	1,3659 1,3690 1,3724 1,3668 1,4239 1,3560 1,3775 1,3872 1,3707 1,3727	6,400 6,465 6,445 6,445 6,565 6,565 6,435 6,435 6,445 6,445 6,445 6,445	5,105 5,100 5,100 5,110 5,095 5,110 5,115 5,100 5,100	94,92 94,36 95,18 95,09 96,27 94,82 95,01 95,05 95,06 95,06
	11 12 13 14 15 16 17 18 19 20	1,3732 1,3802 1,3957 1,3689 1,3843 1,3856 1,3652 1,3775 1,3779 1,3679	6,425 6,4490 6,4455 6,455 6,455 6,445 6,445 6,445 6,445 6,445 6,445 6,445 6,445 6,445 6,445	5,105 5,110 5,100 5,105 5,100 5,100 5,100 5,105 5,105 5,105 5,100	95,13 95,35 95,83 94,90 95,64 95,65 94,83 95,27 95,18 95,17
	21 22 23 24 25 26 27 28 29 30	1,3864 1,3777 1,3804 1,3643 1,3597 1,3703 1,3596 1,3774 1,3807 1,3681	6,455 6,4355 6,4455 6,410 6,440 6,440 6,440 6,440 6,440 6,440 6,440	5,100 5,110 5,100 5,095 5,095 5,095 5,110 5,110 5,105 5,105	95,71 95,03 95,29 95,03 94,93 95,15 94,15 95,01 95,50 94,92
	31 32 33 34 35 36 37 38 39 40	1,3876 1,3679 1,3759 1,3894 1,3863 1,3608 1,3670 1,3795 1,3809 1,3826	6,440 6,440 6,445 6,4455 6,4455 6,440 6,395 6,3420 6,445 6,445	5,095 5,100 5,100 5,100 5,095 5,105 5,105 5,115 5,105	95,90 95,09 95,35 95,54 95,63 94,86 95,25 95,19 95,29 95,29 95,40
	41 42 33 44 55 44 55 46 77 88 49 50	1,3800 1,3790 1,3639 1,3599 1,3633 1,4007 1,3856 1,3783 1,3757 1,3670	6,430 6,4415 6,4415 6,4425 6,455 6,455 6,455 6,450 6,430	5,110 5,090 5,095 5,085 5,110 5,090 5,105 5,100 5,100 5,100	95,26 95,50 94,93 93,96 95,96 95,96 95,46 95,04 95,04 94,73
	51 52 53 54 55 56 57 58 57 58 59 60	1,4040 1,3790 1,3815 1,3728 1,3883 1,3809 1,3752 1,3826 1,3636 1,3636	6,495 6,4355 6,4355 6,455 6,455 6,450 6,440 6,440 6,450	5,110 5,100 5,105 5,105 5,105 5,100 5,100 5,100	95,95 95,12 95,37 94,88 95,46 95,46 95,07 94,78 95,37 94,76 95,37 94,76
	61 62 63 64 65 66 67 68 69 70	1,3694 1,3769 1,3972 1,3832 1,3889 1,3539 1,3599 1,3696 1,3657 1,3773	6,410 6,4480 6,4490 6,4475 6,440 6,475 6,415 6,415 6,425	5,100 5,115 5,110 5,100 5,090 5,100 5,085 5,115 5,085 5,105	95,20 95,01 95,70 95,33 95,96 94,64 95,62 94,65 95,28 95,28 95,34
Oberes Ende der Brennstoff- säule	71 72 73 74 75 76 77 78 79 80	1,3856 1,3732 1,3938 1,3643 1,4054 1,3747 1,3639 1,3784 1,3905 1,3852	6,465 6,455 6,455 6,395 6,410 6,410 6,440 6,440 6,440 6,4455	5,095 5,100 5,110 5,105 5,095 5,105 5,105 5,110 5,100 5,110	95, 69 95, 16 95, 84 94, 88 96, 24 95, 38 94, 70 95, 00 95, 77 95, 25
GESAMTWE	81 R T E	1, <i>3</i> 744 111.5293	6,415 521.396	5,110	95,10
MITTELWE	RTE			5,103	95,215

Tabelle 10: Brennstoffsäule

für

- 21 -	-
--------	---

Tabelle 11:

Brennstoffsäule

für

EINZELWERTE		Gewicht (g)	Höhe (mm)	Durchmesser (mm)	Geom.Dichte (% th. D.)
Unteres Ende der Brennstoff- säule	1 2 3 4 5 6 7 8 9	1,3825 1,3583 1,3883 1,3808 1,3756 1,3779 1,3777 1,3860 1,3779 1,3736	6,435 6,390 6,455 6,435 6,430 6,420 6,440 6,440 6,430	5,110 5,100 5,110 5,105 5,110 5,105 5,110 5,105 5,105 5,105	95, 36 94, 72 95, 46 95, 24 95, 14 94, 92 95, 07 95, 38 94, 86 94, 98
	11 12 13 14 15 16 17 18 19 20	1,3682 1,3718 1,3681 1,3647 1,3862 1,3948 1,3819 1,4213 1,3762 1,3741	6,430 6,420 6,420 6,415 6,465 6,475 6,475 6,475 6,460 6,440 6,410	5,095 5,105 5,105 5,105 5,105 5,105 5,100 5,110 5,085 5,105	95,00 94,88 94,77 95,17 95,36 95,80 95,10 96,31 95,49 95,34
	21 22 23 24 25 26 27 28 29 30	1,3773 1,3716 1,3714 1,3584 1,3735 1,3763 1,3755 1,3755 1,3702 1,3814 1,3711	6,435 6,430 6,425 6,415 6,410 6,425 6,415 6,410 6,440 6,440 6,395	5,095 5,095 5,085 5,105 5,105 5,110 5,100 5,100 5,105 5,110	95,56 95,24 95,30 94,62 95,29 95,26 95,17 95,25 95,40 95,16
	31 32 33 34 35 36 37 38 39 40	1,3855 1,3726 1,3768 1,3693 1,3764 1,3688 1,3602 1,3743 1,3850 1,3723	6,445 6,425 6,445 6,450 6,420 6,420 6,420 6,450 6,450 6,445 6,415	5,115 5,100 5,105 5,100 5,000 5,095 5,100 5,105 5,105 5,110	95,23 95,20 95,26 95,26 95,09 95,19 94,93 94,93 94,76 95,57 94,95
	41 42 43 44 45 46 47 48 49 50	1,3735 1,3794 1,3770 1,3724 1,3816 1,3743 1,3769 1,3804 1,3715 1,3612	6,440 6,450 6,435 6,420 6,455 6,455 6,455 6,430 6,445 6,445 6,445 6,4420	5,105 5,095 5,100 5,095 5,095 5,095 5,115 5,095 5,095 5,090	94,85 95,48 95,36 95,56 95,35 95,42 95,10 95,01 94,85
	51 52 53 54 55 56 57 58 59 60	1,3702 1,3645 1,3708 1,3901 1,3670 1,3807 1,3811 1,3812 1,3666 1,3862	6,435 6,425 6,410 6,470 6,405 6,445 6,445 6,445 6,445 6,445 6,440	5,090 5,085 5,110 5,100 5,100 5,110 5,110 6,105 5,100 5,110	95,26 95,19 94,92 95,74 95,10 95,16 94,97 95,31 95,31 95,58 95,54
	61 62 63 64 65 66 67 68 69 70	1,3717 1,3751 1,3676 1,3676 1,3672 1,3746 1,4052 1,3503 1,3722 1,3919	6,435 6,440 6,440 6,415 6,430 6,430 6,445 6,420 6,445 6,420 6,470	5,095 5,095 5,080 5,100 5,095 5,105 5,110 5,080 5,100 5,105	95,17 95,90 95,37 95,00 94,93 95,07 95,07 94,10 95,24 95,68
Oberes Ende der Brennstoff- säule	71 72 73 74 75 76 77 79 80 80	1,3805 1,3793 1,3838 1,3611 1,3765 1,3733 1,3815 1,3755 1,3765 1,3764	6,430 6,445 6,440 6,440 6,445 6,435 6,435 6,430 6,430 6,450 6,450 6,450	5,115 5,105 5,105 5,105 5,105 5,105 5,105 5,100 5,100 5,110	95,11 95,18 95,56 94,73 95,77 94,91 95,55 94,95 94,95 94,95 94,72 95,14
GESAMTWE	RTE	111,4621	521,74	, 1 00	7),14
MITTELWE	RTE			5,102	95 , 197

Tabelle 12	
------------	--

Brennstoffsäule für Brennstab 80-5

EINZELWERTE		Gewicht (g)	Höhe (mm)	Durchme sser (mm)	Geom.Dichte (% th. D.)
Unteres Ende der Brennstoff- säule	1 2 3 4 5 6 7 8 9	1,2952 1,2925 1,2879 1,2845 1,2699 1,3024 1,2221 1,2682 1,2682 1,2653	6,625 6,555 6,585 6,570 6,510 6,605 6,320 6,435 6,585	5,100 5,110 5,100 5,100 5,100 5,110 5,100 5,100 5,100 5,090	87,11 87,52 87,15 86,78 86,92 87,52 86,17 87,82 85,97 85,97
	10 11 12 13 14 15 16 17 18 19 20	1,2615 1,3007 1,2871 1,2803 1,2930 1,2918 1,2774 1,2569 1,2783 1,2637 1,2429	6,535 6,655 6,495 6,510 6,545 6,545 6,615 6,550 6,560 6,475 6,560 6,440	5,105 5,100 5,100 5,100 5,100 5,100 5,095 5,085 5,100 5,100 5,100 5,105	65,69 86,92 88,29 87,03 88,08 88,08 86,22 85,88 87,97 85,84 85,83
	21 22 23 24 25 26 27 28 29 30	1,2804 1,2755 1,2740 1,2943 1,2673 1,2829 1,2773 1,2878 1,2878 1,2626 1,2669	6,560 6,520 6,515 6,570 6,505 6,535 6,535 6,555 6,505 6,510	5,095 5,105 5,100 5,105 5,100 5,105 5,110 5,100 5,100 5,100	87,14 87,00 87,14 86,81 86,64 86,64 86,75 87,54 86,49 86,72
	31 32 33 34 35 36 37 38 39 40	1,2784 1,2483 1,2826 1.2556 1.2556 1,2538 1,2538 1,2704 1,2673 1,2632 1,2708	6,580 6,490 6,540 6,500 6,360 6,365 5,550 6,550 6,520 6,500	5,100 5,095 5,095 5,100 5,110 5,100 5,100 5,100 5,095 5,100	86,58 85,88 87,56 86,68 87,59 86,59 86,59 86,50 86,50 87,12
	41 42 44 45 46 47 48 49 50	1,2815 1,2835 1,2318 1,2654 1,2349 1,2502 1,2502 1,2587 1,2394 1,2716	6,550 6,580 6,370 6,550 6,385 6,700 6,390 6,390 6,370 6,370 6,500	5,110 5,105 5,100 5,100 5,105 5,100 5,100 5,100 5,110 5,110	86,84 86,75 86,17 87,11 87,07 87,18 86,35 86,53 86,83
	51 52 53 55 55 57 58 59 60	1,2613 1,2750 1,2841 1,2862 1,2681 1,2725 1,2954 1,2950 1,2951 1,2320	6,535 6,570 6,725 6,725 6,575 6,545 6,545 6,550 6,550 6,500 6,320	5,100 5,100 5,110 5,080 5,105 5,110 5,110 5,105 5,100 5,095	86,00 86,48 87,15 85,88 85,77 86,79 86,79 87,78 87,04
	61 62 63 64 65 64 67 68 69 70	1,2925 1,2194 1,2724 1,2923 1,2920 1,2757 1,2762 1,2836 1,2460 1,2432	6, 545 6, 335 6, 570 6, 565 6, 540 6, 550 6, 550 6, 375 6, 375 6, 390	5.110 5,070 5,090 5,110 5,105 5,100 5,110 5,105 5,110 5,115	87,65 86,79 88,06 88,06 87,96 86, 82 86, 82 86, 75 86, 82 86, 78 86, 19
Oberes Ende der Brennstoff- säule	71 72 73 74 75 76 ?? 78 79 80	1,2739 1,2619 1,3293 1,3127 1,2588 1,2683 1,2688 1,2688 1,2654 1,2770 1,2970	6,550 6,515 6,810 6,635 6,520 6,570 6,580 6,580 6,570 6,565	5,110 5,100 5,105 5,110 5,105 5,105 5,085 5,105 5,105 5,105	86, 33 86, 31 86,81 87,82 85,85 85,85 88,38 87,56 86,44 87,69
GESAMTWE	ERTE	101,6531	522,32		
MITTELWE	RTE			5,102	86,685

Tabelle 13:

Brennstoffsäule für Brennstab 8C-6

EINZELWE	RTE	Gewicht (g)	Höhe (mm)	Durchmesser (mm)	Geom.Dichte (% th.D.)
Unteres	1	1,2868	6,590	5,105	86,84
Ende	2	1,2677	6,510	5,100	86,77
d	3	1,2726	6,490	5,100	87,38
der	4	1,2025	6,520	5,090	87.38
Brennstoff-	6	1,2991	6,520	5,110	88,43
säule	7	1,2757	6,555	5,110	86,38
	8	1,2739	6,535	5,090	87,21
	10	1,2804	6,525	5,105	87,27 87,27
	10	1,2020	6,500	5,000	96 70
	12	1,2000	6,520	5,090	86.59
	13	1,2422	6,410	5,095	86,52
	14	1,2821	6,480	5,100	88,16
	15	1,2658	6,515	5,090	86,92
	10	1,2005	6.570	5,105	86,56
	18	1,2795	6,505	5,095	87,82
	19	1,2374	6,380	5,100	86,42
	20	1,2671	6,450	5,100	87,54
	21	1,2491	6,405	5,090	87,24
	22	1,2648	6,535	5,085	86,75
	25	1,2759	0,727 6 565	5,105	86,60
	25	1,2750	6,525	5,095	87,24
	2 6	1,3068	6,750	5,100	86,27
	27	1,3028	6,630	5,100	87,56
	20	1,2000	6,500	5,105	07,27 87,47
	30	1,2637	6,375	5,100	88,33
	31	1,2632	6.460	5,100	87.13
	32	1,2496	6,480	5,100	85,93
	33	1,2759	6,520	5,090	87,54
	34 75	1,2850	6,540	5,100	87,55
	22 36	1,2882	6,540	5,105	87.60
	37	1,2746	6,495	5,100	87,45
	38	1,2334	6,375	5,095	86,38
	39 10	1,2955	6,605	5,105	87,22
	40	1,2154	0,445	5,100	00,10
	41 ルン	1,2868 1,2714	6,505	5,095	87,51 86.96
	43	1,2830	6,520	5,100	87,69
	44	1,2733	6,515	5,095	87,26
	45	1,2820	6,515	5,100	87,68
	46)17	1,3123	6,640	5,100	88,06
	48	1,2876	6.615	5.095	86.90
	49	1,2514	6,400	5,105	86,95
	50	1,2317	6 , 380	5,090	86,36
	51	1,2838	6,645	5,105	85,92
	52 57	1,2731	6,550	5,095	86,78
	50 54	1,2285	6,350	5,095	86.37
	55	1,2808	6,530	5,110	87,06
·	56	1,2814	6,525	5,095	87,68
	57	1,2941	6,495	5,105	88,61
	50 59	1,2009	6,000 6,565	5,100	86.58
	60	1,2802	6,455	5,100	88,37
	61	1,2604	6.490	5,100	86.54
	62	1,2648	6,520	5,095	86,61
	63	1,2704	6,485	5,100	87,29
	64 4 5	1,2522	6,400	5,110	86,84
	66	1,2700	0,000 6 555	5,005	86.84
	67	1,2708	6,490	5,100	87,25
	68	1,2787	6,535	5,100	87,19
	69 70	1,2359	6,370	5,095	86,62
	10	1,2040	0,540	5,100	07,40
-	71 72	1,2467	6,445 6 535	5,100	86,19
Oberes	73	1.2763	6,605	5,100	86.10
Ende	74	1,2774	6,485	5,105	87,60
der	75	1,2499	6,410	5,105	86,72
Brennstoff_	76 77	1,2841	6,575	5,110	86,68 86,88
	78	1.2579	6,535	5.085	86.28
saute	79	1,2760	6,520	5,110	86,86
	80	1,2785	6,530	5,110	86,90
GESAMTWE	RTE	101,7226	521,231	5,000	
MITTELWE	RTE			5,099	87,145

EINZELWE	RTE	Gewicht (g)	Höhe (mm)	Durchmesser (mm)	Geom.Dichte (% th.D.)
Unteres Ende der	1 2 3 4 5	1,2669 1,3178 1,2864 1,2703 1,2733	6,480 6,690 6,605 6,575 6,545	5,105 5,110 5,110 5,100 5,100	86,95 87,43 86,44 86,09 86,69
Brennstorisaule	6 7 8 9 10	1,2755 1,2598 1,2722 1,2793 1,2720	6,540 6,530 6,550 6,585 6,540	5,100 5,085 5,100 5,105 5,105	86,90 86,48 86,55 86,40 86,50
	11 12 13 14 15 16 17 18 19 20	1,2714 1,2447 1,3081 1,2935 1,2601 1,2797 1,2814 1,2840 1,2878 1,2372	6,520 6,385 6,580 6,505 6,500 6,530 6,530 6,555 6,655 6,365	$5,1\infty$ 5,115 5,105 5,100 5,100 5,100 5,100 5,110 5,110 5,1100 5,1100 5,1100	86,89 86,36 88,41 88,26 86,38 87,15 87,04 87,21 86,23 86,23 86,61
	21 22 23 24 25 26 27 28 29 30	1,2525 1,2658 1,2621 1,2484 1,2988 1,2651 1,2907 1,2665 1,2472 1,2724	6,375 6,425 6,485 6,270 6,500 6,535 6,520 6,445 6,360 6,360 6,600	5,095 5,110 5,100 5,100 5,110 5,090 5,090 5,090 5,100 5,095	87,72 87,44 86,72 88,72 87,34 86,60 88,56 87,91 87,38 86,08
	31 32 33 34 35 36 37 38 39 40	1,2540 1,2652 1,2651 1,2649 1,3053 1,2406 1,2970 1,2800 1,2745 1,2800	6,420 6,480 6,540 6,540 6,590 6,590 6,555 6,555 6,575 6,560	5,100 5,095 5,100 5,100 5,100 5,105 5,105 5,100 5,100 5,110 5,100	87,04 87,17 86,73 86,18 88,26 86,48 87,33 87,01 86,04 86,95
	41 42 43 44 45 46 47 48 49 50	1,2947 1,2868 1,2728 1,2496 1,2638 1,2788 1,2780 1,2721 1,2743 1,2918	6,535 6,595 6,510 6,510 6,510 6,555 6,565 6,545 6,545 6,510 6,560	5,105 5,100 5,100 5,090 5,100 5,100 5,100 5,100 5,100 5,100	88,11 86,94 87,12 87,55 86,84 86,93 86,75 87,12 87,12 87,22 87,75
	51 52 53 54 55 56 57 58 59 60	1,3147 1,2488 1,2340 1,2677 1,3067 1,2430 1,2739 1,2698 1,2781 1,2755	6,655 6,380 6,545 6,58 6,58 6,590 6,625 6,510 6,545 6,550	5,110 5,105 5,100 5,105 5,100 5,100 5,100 5,105 5,105 5,090	87,68 87,05 86,05 86,14 88,49 86,68 86,36 86,36 86,74 86,84 86,84
	61 62 63 64 65 66 67 68 69 70	1,2800 1,2710 1,2588 1,2918 1,2512 1,2695 1,2809 1,2815 1,2720 1,2291	6,545 6,530 6,360 6,575 6,400 6,565 6,585 6,585 6,555 6,500 6,370	5,095 5,090 5,105 5,110 5,100 5,105 5,100 5,100 5,100 5,100	87,32 87,07 88,02 87,20 87,11 86,00 86,68 87,12 87,20 85,98
Oberes Ende der Brennstoffsäule	71 72 73 74 75 76 77 78 79 80	1,2781 1,2687 1,3092 1,2825 1,2868 1,2794 1,2587 1,2770 1,2600 1,2734	6,605 6,505 6,540 6,525 6,525 6,525 6,545 6,525 6,5445 6,580 6,530 6,515	5,090 5,105 5,110 5,100 5,100 5,100 5,105 5,105 5,105 5,100 5,110	86,56 86,74 88,85 87,58 87,08 87,37 86,85 86,31 85,98 86,75
GESAMTWE	RTE	101,8521	521,340		
MITTELWE	RTE			5,101	87,011

Tabelle 14:

Brennstoffsäule für Brennstab 80-7

Tabelle 15:

Brennstoffsäule für Brennstab 8C-8

EINZELWERTE		Gewicht (g)	Höhe (mm)	Durchmesser (mm)	Geom.Dichte (% th.D.)
Unteres	1	1,2799	6,510	5, 105	87,43
Ende	23	1,2782 1,2920	6,500 6,600	5,105 5,095	87,45 87.40
der	4	1,2266	6,315	5,090	86,89
Brennstoff-	5	1,2724	6,560 6,570	5,090	86,27
säule	7	1,2704	6,535	5,105	86,45
	8	1,2547	6,485 6,515	5,100	86,21 86,03
	10	1,2932	6,565	5,095	87,95
	11	1,2871	6,550	5,105	87,39
	13	1,2828	6,495	5,105	87.01
	14	1,2338	6,345	5,090	86,99
	15 16	1,2559	6,420 6,580	5,100	87,17 88,40
	17	1,2989	6,590	5,095	88,00
	18 19	1,2693	6,545 6,550	5,095	88.03
	20	1,2886	6,545	5,100	87,73
	55	1,2783	6,5 <u>5</u> 5	5,095	87, <i>55</i> 88.26
	23	1,3155	6,720	5,100	87,23
	24 25	1,2457	6,290 6,535	5,100	88.03
	26	1,2676	6,525	5,100	86,57
	27 28	1,2703	6,510	5.095	85,97
	29	1,2618	6,490	5,090	86,98
	<i>2</i> 0	1,2670	6 Elio	5,070	87,49
	32 32	1,2031	6,575	5,090	88,01
	33 34	1,2721	6,565	5,100	86,34
	35	1,2776	6,575	5,100	87,38
	36 37	1,2524	6,330 6,565	5,100	88,16 86,43
	38	1,2725	6,525	5,090	87,24
	39 40	1,2893	5,525 6,510	5,100	88,05 86,78
	41	1,2745	6,545	5,100	86,77
	42 117	1,2719	6,545	5,100	86,59
	49	1,2729	6,560	5,100	86,46
	45 26	1,2854	6,570	5,105	87,01
	40 47	1,2686	6,480	5,090	87,58
	48 20	1,2829	6,540	5,100	87,41
	50	1,2920	6 ,3 80	5,105	87,94
	51 50	1,2500	6,410	5,100	86,90
	53	1,2700	6,495	5,100	87,23
	54	1,2780	6,560	5,100	86,81
	56	1,2424	6,390	5,105	86,47
	57	1,2660	6,480	5,090	87,40
	59	1,2749	6,520	5,105	86,96
	60	1,2610	6,370	5,100	88,21
	61 62	1,2489 1,2896	6,460 6,545	5,100 5,100	86,15 87.80
	63	1,2718	6,540	5,100	86,65
	65	1,2716	6,510	5,100	87,04
	66	1,2780	6,525	5,095	87,45
	68	1,2723	6,520	5,095	87,12
	69 70	1,2662	6,570	5,090	86,22
	71	1.2438	6.360	5,100	87.14
Oberes	72	1,2775	6,535	5,100	87,11
Ende	73 74	1,2474 1.2981	6,380 6,645	5,100	87,12 87,22
der	75	1,2773	6,560	5,090	87,10
Brennstoff-	76 77	1,3011 1,2604	6,545 6,515	5,100 5,090	88,58 86,55
saule	78	1,2806	6,575	5,095	86,96
	79 80	1,2522	6,655	5,100	86,60 87,31
GESAMTWE	RTE	101,8374	520,930		
MITTELWERTE				5,097	87,210

EINZELW	IERTE	Gewicht (g)	Höhe (mm)	Durchmesser (mm)	Geom.Dichte (% th.D.)
Oberes Ende der	1 2 5 4 5	1,3366 1,3513 1,3466 1,3422 1,3418	6,515 6,575 6,570 6,540 6,545	4,986 4,991 4,985 4,991 4,989	95,65 95,62 95,59 95,49 95,46
Brennstolf- säule	6 7 t ₂ 8 9 10	1,3421 1,3402 1,3045 1,3432 1,3420	6,525 6,535 6,350 6,535 6,525	5,106 5,100 5,106 5,105 5,105 5,105	91,44 91,38 91,33 91,41 91,40
	11	1,3389	6,495	5,193	88,60
	12	1,3434	6,525	5,189	88,62
	t ₁ 13	1,3327	6,460	5,195	88,60
	14	1,3330	6,465	5,192	88,65
	15	1,3293	6, 45 0	5,193	88,58
	16	1,3325	6,530	4,978	95,44
	17	1,3393	6,535	4,989	95,43
	t ₃ 18	1,3381	6,540	4,985	95,43
	19	1,3353	6,510	4,992	95,40
	20	1,3392	6,535	4,990	95,39
	21	1,3393	6 ,530	5,105	91,21
	22	1,3424	6 ,540	5,104	91,32
	t ₂ 23	1,3379	6 ,515	5,108	91,22
	24	1,3374	6 ,515	5,106	91,26
	25	1,3347	6 ,510	5,103	91,25
	26 27 t ₁ 28 29 30	1,3348 1,3352 1,3498 1,3306 1,3405	6,490 6,490 6,555 6,455 6,500	5,192 5,190 5,194 5,194 5,194 5,195	88,43 88,52 88,47 88,56 88,57
	31	1,3377	6,535	4,988	95,36
	32	1,3274	6,495	4,986	95,28
	t ₃ 33	1,3270	6,495	4,985	95,29
	34	1,3297	6,525	4,980	95,24
	35	1,3333	6,520	4,989	95,24
	36	1,3543	6,600	5,108	91,15
	37	1,3333	6,500	5,108	91,12
	t ₂ 38	1,3068	6,400	5,100	90,99
	39	1,3359	6,515	5,107	91,12
	40	1,3409	6,540	5,107	91,11
	41 42 t ₁ 43 44 45	1,3278 1,3864 1,3223 1,3279 1,3405	6,450 6,740 6,425 6,450 6,5 30	5,196 5,196 5,195 5,196 5,196 5,189	88,37 88,30 88,38 88,38 88,38 88,38
	46	1,3305	6,500	4,992	95,20
	47	1,3248	6,500	4,982	95,17
	48	1,3325	6,525	4,987	95,17
	49	1,3229	6,480	4,988	95,10
	50	1,3257	6,510	4,982	95,09
	51 52 t ₂ 53 54 55	1,3188 1,3357 1,3319 1,3330 1,3263	6,445 6,515 6,505 6,515 6,490	5,106 5,108 5,105 5,105 5,105 5,099	90,97 91,07 91,06 90, 9 9 91,10
	56 57 t ₁ 58 59 60	1,3252 1,3242 1,3235 1,3830 1,3223	6,460 6,445 6,435 6,740 6,440	5,190 5,194 5,196 5,190 5,192	88,27 88,27 88,29 88,29 88,29 88,28
	61	1,3318	6,545	4,981	95,06
	62	1,3215	6,495	4,981	95,05
	t ₃ 63	1,3225	6,500	4,982	95,01
	64	1,3215	6,475	4,989	95,04
	65	1,3132	6,440	4,989	94,91
Unteres	66	1,3344	6,535	5,103	90,88
	67	1,3305	6,505	5,106	90,93
	t ₂ 68	1,3336	6,515	5,107	90,96
	69	1,3293	6,520	5,100	90,85
	70	1,3244	6,490	5,100	90,93
Ende der Brennstoff-	71 72 t ₁ 73 74 75	1,3788 1,3288 1,3402 1,3300 1,3199	6,735 6,465 6,520 6,480 6,430	5,189 5,196 5,196 5,196 5,196 5,196	88,12 88,24 88,24 88,11 88,12
saute	76	1,3063	6,410	4,989	94,90
	77	1,3137	6,450	4,988	94,88
	t ₃ 78	1,3092	6,440	4,984	94,85
	79	1,3152	6,470	4,985	94,81
	80	1,3019	6,435	4,987	94,82
GESAMTW	ERTE	106,6366	520,44	_	-

Tabelle 16:

Brennstoffsäule für

- 27 -

Tabelle 17: Brennstoffsäule für B Brennstab 8C-10

EINZELWERTE		Gewicht (g)	Höhe (mm)	Durchmesser (mm)	Geom.Dichte (% th.D.)
Oberes Ende der Brennstoff-	1 2 t ₃ 3 4 5	1,3111 1,3080 1,3211 1,3009 1,3089	6,455 6,450 6,495 6,420 6,425	4,984 4,982 4,988 4,980 4,983	94,77 94, 7 0 94,75 94,70 94,71
säule	6 7 ^t 2 8 9 10	1,3266 1,3327 1,3284 1,3268 1,3268 1,3375	6,505 6,515 6,500 6,495 6,555	5,101 5,109 5,107 5,105 5,104	90,84 90,83 90,82 90,85 90,78
	11 12 t ₁ 13 14 15	1,3315 1,3202 1,3214 1,3227 1,3179	6,515 6,450 6,440 6,455 6,440	5,188 5,195 5,196 5,196 5,196 5,192	88,01 87,90 88,08 87,97 87,99
	16 17 t ₃ 18 19 20	1,2982 1,3051 1,3124 1,3072 1,3110	6,405 6,420 6,460 6,450 6,470	4,981 4,988 4,989 4,983 4,983 4,983	94,68 94,70 94,60 94,60 94,58
	21 22 t ₂ 23 24 25	1,3268 1,2908 1,3046 1,2889 1,3212	6,495 6,330 6,395 6,330 6,480	5,108 5,103 5,104 5,100 5,104	90,74 90,76 90,76 90,73 90,71
	26 27 t ₁ 28 29 30	1,3252 1,3297 ,1,3389 1,3173 1,3270	6,470 6,510 6,540 6,445 6,510	5,195 5,196 5,196 5,195 5,188	87,96 87,68 87,89 87,78 87,78 87,78
	31 32 t ₃ 33 34 35	1,2935 1,3058 1,3082 1,3159 1,2977	6,395 6,450 6,450 6,480 6,480 6,400	4,980 4,983 4,988 4,990 4,988	94,53 94,50 9 4 ,48 94,52 94,46
	36 37 t ₂ 38 39 40	1,3354 1,2927 1,3205 1,2923 1,3318	6,540 6,340 6,490 6,340 6,520	5,108 5,105 5,101 5,104 5,109	90,70 90,68 90,63 90,69 90,70
	41 42 t ₁ 43 44 45	1,3180 1,3332 1,3257 1,3183 1,3270	6,450 6,525 6,500 6,455 6,505	5,195 5,194 5,192 5,196 5,193	87,76 87,78 87,69 87,6 7 87,67
	46 47 ⁴ 3 49 50	1,2975 1,3096 1,3055 1,3023 1,3219	6,395 6,470 6,445 6,430 6,525	4,999 4,986 4,987 4,986 4,988	94,40 94,37 94,40 94,42 94,37
	51 52 t ₂ 53 54 55	1,3146 1,3303 1,3707 1,3356 1,3329	6,465 6,540 6,745 6,560 6,545	5,104 5,106 5,101 5,107 5,105	90,47 90,42 90,52 90,48 90,57
	56 57 t ₁ 58 59 60	1,3292 1,3213 1,3090 1,3266 1,3247	6,510 6,470 6,420 6,505 6,500	5,196 5,196 5,195 5,196 5,192	87,65 87,67 87,56 87,55 87,62
	61 62 t3 64 65	1,2986 1,3000 1,3016 1,3015 1,2985	6,430 6,430 6,435 6,445 6,445	4,985 4,983 4,986 4,983 4,983 4,985	94,19 94,37 94,30 94,26 94,26
	66 67 t ₂ 68 69 70	1,2825 1,2850 1,3413 1,3264 1,3155	6,315 6,330 6,600 6,535 6,475	5,105 5,105 5,105 5,104 5,104 5,107	9 0,3 2 90,28 90,38 90,30 90,28
Unteres Ende der	71 72 t ₁ 73 74 75	1,3204 1,3221 1,3024 1,3204 1,3527	6,490 6,500 6,415 6,495 6,650	5,190 5,195 5,187 5,191 5,191 5,196	8 7,54 87,35 87,46 87,44 87,32
Brennstoff- säule	76 77 ^t 3 78 79 80	1,2985 1,3032 1,2848 1,3096 1,2996	6,435 6,445 6,375 6,470 6,435	4,985 4,989 4,981 4,992 4,987	94,11 94,16 94,15 94,14 94,12
GESAMTW	ERTE	105,1891	517 ,3 9	-	-

1. Pu-Gehalt

	l. Ansatz	2. Ansatz	3. Ansatz
<u>Pu</u> <u>U+Pu</u> (Gew%)	20,38	19,98	20,10

2. Chemische Verunreinigungen

	1. Ansatz	2. Ansatz	3. Ansatz
С	200	47	54
Cl	27	1	16
F	7	70 - 140	б
В	0,1	0,1	0,1
Mg	10	< 5	< 5
Mn	< 5	35	< 10
РЪ	< 10	< 10	< 10
Cr	15	30	20
Sn	< 5	< 5	< 10
Fe	90	400	270
Ni	80	110	15
Co	< 5	< 5	
Al	200	150	100
Мо	< 5	< 10	< 10
Cu	< 2	< 1	< 2
Cđ	1	< 1	< 1
Na	10	< 10	< 10
Ag	< 5	< 5	< 5
Zn	5	< 5	< 5
Si	300		45
Ca	20	10	10
v	< 5	< 10	< 10

3. Stöchiometrie
Die Brennstäbe 8C-1 bis 8C-4 enthalten je 81 Brennstofftabletten, die Brennstäbe 8C-5 bis 8C-10 je 80 Brennstofftabletten. In allen Stäben befinden sich am unteren Ende der Brennstoffsäule je zwei Isoliertabletten. Am oberen Ende der Brennstoffsäule schließen sich jeweils Brutstofftabletten mit 5,0 mm Durchmesser an, denen weitere 28 Brutstofftabletten mit 5,1 mm Durchmesser folgen. Jede Tablette wurde hinsichtlich Gewicht und Dimensionen vermessen und die Einzeltabletten zu Säulen zusammengelegt. Die Wiedergabe aller Einzelwerte für die Tabletten befindet sich in den Tabellen 8 - 17. Die Zusammenfassung der Materialwerte der Stäbe 8C-1 bis 8C-10 enthalten die Tabellen 19 - 22 Die Zählung der Tabletten beginnt bei allen Brennstäben am unteren mit der Kennzeichnung versehenen Endstopfen.

5.3 Hüll- und Strukturmaterial

Für die Herstellung des Prüflings wurde Rohr- und Vollstabmaterial aus dem austenitischen Edelstahl X8CrNiMoVNb 1613 (Werkstoff-Nummer 1.4988) verwendet.

Die Nennabmessungen waren:

- bei den Rohren	Durchmesser 6 mm
	Wandstärke 0,38 mm
- beim Stabmaterial	Knüppeldurchmesser ca. 10 mm.

Das Halbzeug wurde von der Firma Mannesmann im Rahmen größerer Lieferchargen bezogen. Nach einer Vorprüfung bei Firma NUKEM wurden die Rohre im Prüflabor des IMF/LB einer genauen Kontrolle unterzogen. Es wurden der Innendurchmesser, der Außendurchmesser und die Wandstärke gemessen. Ferner wurden die Rohre einer Ultraschall-Rißprüfung unterworfen und ausgewählt. In Karlsruhe wurden die Rohre abgelängt, die Endstopfen gedreht und das Führungsstück mit Haltefeder und Sinterstahlfilter vorbereitet.

Brennstoff					1	
Stab-Nr.	Gewicht (g)	Höhe ⁺⁾ (mm)	mittlerer Durchmesser (mm)	mittlere Dichte (% th.D.)	Pu-Gehalt	U-235-Gehalt
8C-1	111,2556	521,704	5,098	95,010	19,625	72,253
8c-2	111,3195	521,720	5,099	95,118	19,638	72,295
80-3	111,5293	521 , 39 6	5,103	95,215	19,674	72,431
8c-4	111,4621	521,740	5,103	95,197	19,662	72,387
Brutstoff			b			
8C-1	42,282	196,96	5,10 ⁺⁺⁾	96,00	-	0,269
8c-2	41,922	195,64	5,10	95,97	-	0,266
80-3	42,234	197,15	5,10	95,92	-	0,268
8c-4	42,092	196 ,20	5,10	96,08	-	0,267
Isoliertab	letten					
8c-1	2,812	13,01	5,105	96,37	-	-
8c-2	2,829	13,14	5,100	96,16	-	-
8c-3	2,727	12,69	5,095	96,14	-	-
8c-4	2,746	12,85	5,100	95,49	-	-

Tabelle 19: Materialwerte für die Brennstäbe Nr. 8C-1, -2, -3, -4

+)aus den Einzelhöhen der Tabletten errechnet/ ++) ohne Einbeziehung der beiden Tabletten mit 5,0 mm Ø!

Brennstoff						1
Stab-Nr.	Gewicht (g)	Höhe ⁺⁾ (mm)	mittlerer Durchmesser (mm)	mittlere Dichte (% th.D.)	Pu-Gehalt	U-235-Gehalt
8°-5	101,6531	522,200	5,102	86,685	17,932	66,502
8 c- 6	101,7226	521,231	5,099	87,145	17,944	66,547
8c-7	101,8521	521,340	5,101	87,011	17,967	66,632
8c-8	101,8374	520,930	5,097	87,210	17,964	66,622
Brutstoff				****	*	
80-5	41,802	195,800	5,090	95,730	-	0,265
8C-6	41,584	194,690	5,090	95,770	-	0,264
8C-7	41,778	195,710	5 ,0 90	9 5, 720	-	0,265
8 C- 8	41,745	195,720	5,085	95 , 8 30	-	0,265
Isoliertab	letten					•
8c-5	2,711	13,080	5,000	96,340	-	_
8c-6	2,687	13,030	5,000	96,090	-	-
80-7	2,734	13,170	4,998	96,530	-	-
80-8	2,690	12,995	5,005	96,210	-	-

Tabelle 20: Materialwerte für die Brennstäbe Nr. 80-5, -6, -7, -8

+) aus den Einzelhöhen der Tabletten errechnet

a) Bren	nstof	f				
Tabletten- sorte	Gewicht	H (5er Gruppe)	Mittlere Durchmes	r ser	Mittlere % th.D.	
tz	6,7185	32,745	4,988		95,56	
to	6,6720	32,470	5,104		91,39	
t	6,6773	32,395	5,192		88,61	
tz	6,6844	32,650	4,987		95,42	
t ₂	6,6917	32,610	5,105		91,25	
t	6,6909	32,490	5,103		88,51	
- t-3	6,6551	32,570	4,986		95,28	
ty	6,6712	32,555	5,106		91,10	
t,	6,7049	32,595	5,194		88,36	
ta	6,6346	32,515	5,986		95,15	
tý	6,6457	32,470	5,104		91,04	
t,	6,6782	32,520	5,192		88,28	
t _x	6,6186	32,455	4,985		95,01	
to	6,6522	32,565	5,105		90,91	
t ₁	6,6977	32,630	5,197		88,16	
tz	6,5436	32, 205	4,987		94,85	
Gesamtgew.:	106,6366	-	-		-	
Gesamthöhe ⁺)	520,440	-		-	
Pu-Gehalt:			18,811 g			
U-235-Gehal	t:		69,253 g			
		b) Bruta	stoff	c) :	Isoliert	a b i
Gewicht		41,86	0 g		2,808 g	
Höhe ⁺⁾		195,42	0 mm		12,985 mm	
mittl. Durc	hme ss er	5,10	2 mm ⁺⁺⁾		5,107 mm	
mittl. Dich	te	95 , 95	\$ th.D.		96 ,3 2 % ti	h.D.
Gehalt an U	-235	27,18	5 g		-	

Materialwerte des Brennstab-Sondertypes Mol 8C-9

+)

Tabelle 21:

Höhen berechnet aus Einzelwerten der Tabletten

++)ohne Einbeziehung der beiden Tabletten mit 5,00 mm Durchmesser

Tabelle 22. Materialwerte des Brennstab-Sondertypes Mol 8C-10

a) Bren	nstoff			******	
Tabletten- sorte	Gewicht	H (5er Gruppe)	Mittlerer Durchmesser	Mittlere % th.D.	
t _z	6,2420	32,275	4,983	94,73	
ty	6,6520	32,570	5,105	90,82	
t	6,6137	32,300	5,193	87,99	
tz	6,5339	32,205	4,985	94,63	
tý	6,5323	32,030	5,105	90,74	
t	6,6381	32,475	5,194	87,82	
- tz	6,5211	32,175	4,986	94,50	
té	6,5727	32,230	5,105	90,68	
t_1	6,6222	32,435	5,194	87,71	
- t-z	6,5368	32,265	4,987	94,39	I
t _o	6,6841	32,855	5,105	90,49	
t,	6,6108	32,405	5,195	87,61	
tz	6,5112	32,205	4,985	94,31	
to	6,5507	32,255	5,105	90,31	
t	6,6180	32,550	5,192	87,42	
^t 3	6,4954	32,160	4,987	94,14	
Gesamtgew.:	105,1891	-	-	-	
Gesamthöhe ⁺	-) _	517 ,390			
Pu-Gehalt:		18	,555 g		
U-235-Gehal	t:	68	,313 g		
		b) Bru	tstoff	c) Isoli	e r
Gewicht		4	2,186 g	2,771	g
Hôhe ⁺⁾		19	6,630 mm	12,945	mm
mittl. Durc	hmesser		5,103 mm ⁺⁺⁾	5,102	mm
mittl. Dich	ite	9	6,010 % th.D.	95,59	6 th
Gehalt an U	-235	2	7,317 g	-	
		•			

+) Höhen berechnet aus Einzelwerten der Tabletten

++) ohne Einbeziehung der beiden Tabletten mit 5,00 mm Durchmesser

5.4 Stabherstellung

Nach sorgfältiger Reinigung aller Teile wurden die unteren Endstopfen unter Helium-Schutzgas in die Hüllrohre eingeschweißt. Die Fertigungskontrolle prüfte hierauf die Dichtheit und die Schweißqualität an den unteren Endstopfen(Kennzeichnung). Die Prüfungen ergaben keine Beanstandungen.

Beim Füllen der Rohre wurden die Tabletten durch eine Schutzkappe eingeschoben. Danach wurde das Führungsstück (bei einigen Stäben mit Stützrohr) mit Haltefeder eingeführt und die Stäbe nach mehrmaligem Spülen mit Helium gefüllt. Unter sicherem Luftabschluß wurde der Endstopfen eingepreßt und anschließend unter Helium mit dem Hüllrohr verschweißt. Die Brennstäbe mit den eingeschweißten oberen Endstopfen wurden nun einer Zwischenprüfung unterzogen, bei der die Beschaffenheit der Schweißnaht untersucht wurde. Erst nach dem sich hierbei keine Beanstandungen ergaben, wurde das Aufnahmestück mit der Kapillare in den oberen Endstopfen eingeschraubt.

Bei den Stäben 8C-1 bis 8C-4 sowie 8C-9 und 8C-10 wurden die Kapillare bzw. das Aufnahmestück für die Kapillare mit Nicrobraze 50 nach dem Lichtlötverfahren eingelötet. Bei den zuerst gefertigten Stäben 8C-5 bis 8C-8 war Silberlot verwendet worden. Da dies aus Verträglichkeitsgründen gegenüber Natrium nicht zulässig ist, wurden in Mol die Kapillare wieder von den Stäben gelöst und die Lötung mit Nicrobraze 50 wiederholt.

Die Kontaminationsprüfung der Stäbe ergab keine nennenswerte äußere Kontamination.

5.5 Stabprüfung

Die Röntgenprüfung der Schweißnähte und der Lötungen sowie der Helium-Lecktest wurde bei GfK in der Abteilung Fertigungskontrolle ausgeführt. Die Prüfung der Schweißnähte und die der Lötungen war mit Ausnahme der Stäbe 8C-9 und 8C-10 ohne Befund. Die spezifizierte Leckrate für die Stäbe einschließlich der Kapillaren war 10^{-9} Torr · 1 · sec⁻¹. Die gemessene Leckrate der Stäbe 8C-1 bis 8C-4 betrug 2 · 10^{-9} bis 4 · 10^{-9} Torr · 1 · sec⁻¹, die der Stäbe 8C-5 bis 8C-8 je 1 · 10^{-8} Torr · 1 · sec⁻¹. Der Innendruck betrug bei allen diesen Stäben 1 atm. Wegen der gefundenen Poren in den Lötungen der Stäbe 8C-9 und 8C-10 wurden diese Stäbe bei einem Innendruck von 80 atü Helium geprüft. Die gefundenen Leckraten betrugen 3,5 · 10^{-9} bzw. 1,5 · 10^{-9} Torr · 1 · sec⁻¹. Aufgrund dieses Ergebnisses für die Stäbe 8C-9 und 8C-10 wurden die Lötungen mit den Poren belassen.

Abschließendwurden die Brennstäbe ihrer gesamten Länge nach mit einem Vergleichsmaß geröntgt. In Tabelle 23 sind die aus den Röntgenaufnahmen gewonnenen Werte für die Längen der Tablettensäulen den berechneten Werten gegenübergestellt. Es zeigt sich, daß beim Einfüllen der Tabletten ein zusätzlicher Längenbedarf besteht. Dieser kann durch leichtes Verkanten der Tabletten, die Rauhigkeit der Stirnflächen oder kleine Oxidteilchen bedingt sein. Im übrigen ist die Genauigkeit der Meßwerte aus den Röntgenaufnahmen auf ca. 1/10 mm begrenzt.

6. Bestrahlungseinrichtung

6.1 FAFNIR-Kapsel

Die Brennstäbe wurden einzeln in FAFNIR-Einsätzen bestrahlt. Der Aufbau dieses schon bei der Bestrahlung 8B1/2 benutzten Einsatzes geht aus Abb.4 hervor. Der Brennstab ist in einem dichten Behälter zentriert. Dieser Behälter wird bis über den Brennstab zur guten Wärmeabführung mit NaK-Eutektikum gefüllt und befindet sich wiederum zur doppelten Umhüllung des NaK gegenüber dem Primärkreislauf in einem dichten Aufhängerohr, dem Einsatzunterteil. Zwischen NaK-Behälter und Aufhängerohr befindet sich in Höhe des Brennstabes die Wärmebarriere (Gasspalt), die so ausgelegt wurde, daß bei der Sollstableistung gleichzeitig die gewünschte Hüllwandinnentemperatur erreicht wird. Das Aufhängerohr über der Länge des Brennstabes besteht aus einem Kadmium-Edelstahl-Sandwichrohr zur Abschirmung der thermischen Neutronen (Abb.5+6). Im Aufhängerohr befinden sich der Druckumformer außerhalb des Corebereiches und

Stab- Nr.	Bere Brennstoff	chnete Höhen Brutstoff	Isoliertabl.	Ge s amthöhe	Tatsächliche Höhen (Berechnet aus theor. Innenlänge des Brennstabes (987 mm) + gemesse- ne Länge des Gasplenums)
8c-1	521,704	196 , 96	13,010	731,67	+)
8c-2	521,730	195,64	13,140	730,50	+)
8c-3	521,396	197,15	12,690	731,23	+)
8c-4	521,740	196,20	12,850	730,79	+)
8c-5	522,200	195,80	13,080	731,08	731,37
8c-6	521,231	194,69	13,030	728,95	730,19
8c-7	521,340	195,71	13,170	730,22	730,09
8c-8	520,930	195,72	12,995	729,64	730,49
8c - 9	520,440	195,420	12,985	728,84	730,49
8c-10	517 ,3 90	196,630	12,945	726,96	728,80

Tabelle 23: Vergleich der berechneten und tatsächlichen Säulenhöhen von Brennstoff und Brutstoff

+) Röntgenaufnahmen nicht auswertbar!

-35-

eine Gaszufuhr- und Gasabfuhrleitung. Einsatzunterteil und Einsatzkopf sind heliumdicht voneinander getrennt (Stopfbuchsendichtung) und zur Kontrolle der Integrität mit unterschiedlichen Drücken beaufschlagt. Von den insgesamt 12 Thermoelementen sind neun in verschiedenen Höhenkoten direkt auf die Hüllaußenseite des Brennstabes aufgebunden. In der heissesten Zone sind zwei Elemente um 180⁰ versetzt angebracht, ein Thermoelement ist zur Messung des Temperatursprungs im NaK-Spalt an der Innenseite des NaK-Behälters befestigt und zwei sind zur Kontrolle des NaK-Füllstandes 1 bis 2 mm in das NaK-Bad eingetaucht.

Thermoelementausgleichsleitungen, Versorgungs- und Meßsignalleitungen des Druckumformers sowie die Gasleitungen zur Druckbeaufschlagung von Einsatzkopf und -unterteil sind über den Einsatzkopf mit der Out-pile-Anlage verbunden. Diese Anlage gestattet den Parallelbetrieb von acht FAFNIR-Einsätzen und enthält pro Einsatz einen 12-Punkt – Drucker für die Thermoelemente, einen Linienschreiber für den Spaltgasdruck, einen pneumatischen Teil zur Druckbeaufschlagung und Spülung des Einsatzes mit der zugehörigen Gasprobenentnahmestation und Aktivitätsüberwachung. Gemeinsame Teile sind ein Punktdrucker für Einsatzkopfdruck und ein Punktdrucker für Einsatzdruck, Eingangs- und Ausgangsseite.

Der pneumatische Schrank besitzt ferner die notwendigen Gasversorgungsleitungen, Alarmeinheiten und einen Vakuumpumpensatz. Das Flußschema des pneumatischen Schrankes mit Glove-Box ist in Abb. 7 wiedergegeben. Die 10 Brennstäbe wurden von der GfK beigestellt, die 10 FAFNIR-Einsätze von CEN, Abteilung Technologie, entworfen und hergestellt. Die Out-pile-Anlage wurde von der Gruppe Technologie in Mol entworfen und von CEN-Grenoble in Auftrag gebaut. Die Betreuung der Bestrahlung im BR2 oblag der Arbeitsgruppe Mol der GfK.

6.2 Flußspektrum (epithermisch)

In Abb. 8 wird das relative Flußspektrum im Brennstab unter Berücksichtigung der Cadmium-Abschirmung gegeben. Abb. 9 gibt die Leistungsdichteverteilung im Brennstab wieder. Infolge der hohen σ_f -Werte im Energiebereich 1 - 1000 eV (Pu²³⁹!) finden dort praktisch 2/3 der Spaltungen und nur noch ca. 1/3 im "schnellen" Energiebereich von ca. 1 MeV statt. Abbildung 10 zeigt schließlich eine Flußabsenkung im Energiebereich 10 - 21,5 eV für den Brennstab Mol 8C-5 zu Beginn der Bestrahlung gerechnet nach MERKUR.

7. Bestrahlung

7.1 Bestrahlungsablauf

Die Bestrahlung begann mit den Stäben C1 und C2 im BR2-Zyklus 15/70 am 11.11.1970 und wurde beendet im BR2-Zyklus 2/74 am 15.3.1974 mit den Stäben C2 und C4. Die BR2-Zyklen in ihrer "Feinstruktur" für Mol 8C sind in /7/ enthalten.

Der Bestrahlungsablauf geht aus den beigefügten Tabellen 24 - 33 hervor. Die Positionen der verschiedenen Einsätze sind in Abb.11 enthalten.

Zu den Tabellen sind folgende Erläuterungen nötig:

- der Abbrand des BR2-Brennelementes, BE-Abbrand, gilt bei Zyklusbeginn,
- die maximalen ungestörten Flüsse sowie die -Heizung gelten für die Soll-Reaktorleistung bei Zyklusbeginn,
- die maximalen ungestörten Dosen entsprechen der tatsächlich freigesetzten Gesamtenergie des Reaktors,
- die Soll-Reaktorleistung ist die nominelle Reaktorleistung.
 Die mittlere Zyklusleistung errechnet sich aus freigesetzter
 Energie und Zykluszeit,
- max. Temperatur und abs. max. Stableistung im Zyklus sind die während eines Zyklus erreichte max. Temperatur und die dazugehörende Stableistung. Diese Werte haben nur geringe Aussagekraft für die gesamte Bestrahlung, da sie nicht während des gesamten Zyklus und auch nicht immer an derselben Stabstelle auftreten.
- Hot Spot ist die durch ein Thermoelement erfaßte Stelle des Brennstabes, die die höchste Belastung zeigt. Die Abweichung beträgt in Einzelfällen kurzzeitig max. 5 %.
- Stableistung "Mittel über Zyklus und Stab" ist der Mittelwert aus den über die Stablänge geometrisch gemittelten Stableistungen bei Zyklusbeginn und Zyklusende. Schwankungen in der Reaktorleistung und/oder Trimmstabverstellungen und die daraus resultierenden Stableistungsschwankungen im Laufe des Reaktorzyklus werden hier nicht berücksichtigt, so daß dieser Wert gelegentlich ziemlich ungenau ist. In Punkt 7.2.1 wird diese Stableistung anhand des Flußprofils in den BR2-Bestrahlungskanälen berechnet. In Tab. 34 werden dann beide Werte miteinander verglichen.

ZYKLUS BR2	KANAL	BE-	MAX. UN	GESTÖRT.	FLUSS be	ez. DOSIS	8	FREIGES	SOLL -	ZYKLUS	MAX.		EISTUN MITTEL	G[W/cm] MITTEL	ABBRA MITTEL		WD/kg M MITTEL	e] GESAM T	SPALTGAS DRUCK	GESAM T-
		[]	50 ¹⁴ , 27	[10 ²⁰]	[C-20						AD30 L.	UBER 79KL I	UBER	UBER	HOTSPOT			ZYKLUS	SETZUNG
		[%]	lin vem sj	[10 nvt]	[10 n/cm's]	[10 nvt]	[W/gr.Al]	[MWD]	LEISTUNG	520% RL	ZYKLUS	MAX. I.	HOT-	UND	HOTSPOT	1015101	LI STAR	LI STAR	[bar]	5012010
15/70			2 10	0.59	1	1.91		056.0				ZYKL.	320	268	2 454		2.058	0.5145	2 7	1.99
16/70	H 323 F 214	33	2.19	2.58	1.45	1.71	7.0	950.3	70	19.45	497 576	344	405	310	2 688	5.142	2.118	4,176	3.9	1.09
17/70	*	26	2.63	3.05	2.11	2.45	7.9	941.1	70	14.41	542	396	378	293	2.894	8.036	2.241	6.417	4.9	1.03
1/71	#	27	2.78	4.70	3.29	5.55	P.3	1371.6	70	18.88	622	505	485	388	4.866	12.902	3.897	10.314	5.15	0.7
2/71	н	39	2.60	4.73	3.01	5.48	7.7	1475.9	70	20.91	591	461	451	370	5.016	17.918	4.116	14.43	-	- ①
3/71	4	-	-	-	-	-	-		-	-	-	-	-	-	-	-	+	-	-	2
4/71	F 46	41	2.8	5.31	3.74	7.1	7.8	1537.6	70	22.1	630	518	480	348	5.637	23.555	4.086	18.516	6.5	0.54
5/71	'n	40	2.55	4.47	3.53	6.19	7.6	1419.7	70	18.93	662	564	505	367	5.082	28.637	3.695	22,211	8.5	0.64
6/71	u	47	2.52	4.56	3.05	5.51	7.2	1468.3	70	20.97	639	530	496	374	5.53	34.167	4.162	26.373	9.6	0.63
7/71	H	44	2.1	2.07	2.60	2.55	6.3	800.6	70	11.96	608	484	464	358	2.95	37.117	2.377	28,650	10.6	0.65
8/71	н	44	2.34	3.29	2.76	4.06	6.4	1191.3	70	16.39	646	541	49	377	4.273	41.39	3.281	31.931	11.4	0.64
9/71	<i>y</i>	47	2.31	3.46	2.85	4.26	6.3	1215.6	70	:6.95	630	518	479	346	4.3:8	45.708	3.12	35.051	12.1	0.62
10/71	u	47	2.3	3.39	2.82	4.17	6.2	1194.0	70	21.27	640	53%	192	264	4.327	49.933	1 400	10.204		0.05
11/71	N	50	2.20	4.35	2.80	5.30	6.5	1540.4	70	21.57	610	488	504	364	5.725	60-641	4.136	42.34	14.1	0.62
2/72	H	<u> </u>	2.40	2.25	2.05	1. 53	6.9	1105.4	70	16.09	648	542	506	355	4 222	64.964	3.034	49.271	17.6	0.68
3/72	" *	44	2.36	4.28	2.94	5.33	6.7	1468.7	70	19.91	602	506	482	358	5.099	70.063	3.786	53.057	18.7	0.67
4/72	"	49	2.11	4.68	2.82	5.71	6.6	1640.5	70	21.93	641	534	476	330	5.523	75.586	3.823	56.88	-	- 0
5/72	u	43	2.16	5.73	2:95	7.84	6:8	2148;2	70.	29.25	620	502	415	327	6.456	82.042	5.089	61.969	23.6	0.74
6/72	"	46	2.25	4.77	2.96	6.28	6.7	1802.3	73.5	23.09	582	448	415	312	5.09!	87.133	3.826	65.795	25.3	0.75
7/72		39	2.14	4.60	3.03	6.53	6.9	1829.0	73.5	22.98	608	486	444	312	5.421	92.554	3.808	69.603	27.8	0.79
8/72	,	34	2.05	3.88	3.17	6.01	7.2	1611.1	73.5	20.56	632	520	480	342	5.241	97.795	3.733	73.336	29.7	0.8
9/72	"	39	2.06	2.79	2.98	4.43	6.9	1263.8	73.5	15.71	642	534	509	311	4.249	102.044	2.597	75 . 133	29.9	0.78
10/72	F 254	31	2.03	4.01	3.21	6.36	6.3	1678.8	75.5	20.02	616	496	435	29 ⁸	4.625	106.669	3.171	79.104	-	- (4)
11/72	F 254	23	1.88	0.25	3.21	0.41	7.1	111.4	73.5	1.37	628	516	488	367	0.355	107.024	0.267	79.371	-	- 3
1/73													l	ļ						
2/73																				
3/73				ļ							l									
4/73						Spaltgasa	ruckregist	ierung de	fekt		 									ļ
5/73				<u> </u>		Einsatz a	usgebau	zur Repo	rotur		<u> </u>				ļ					
0/73				<u> </u>		Spaltgas	ruckregi.	trierung da la 1. L	defekt		ł									
8/72				+	€ €	DUE TOUT	uplus M.	72		<u> </u>	ł									
9/73				<u>+</u>		"ur 181(2	racus 11/	12		+	ł			<u> </u>						-
10/73				<u>+</u>							t			<u> </u>						
11/73									+	t ·····	t									
1/74				t	-					<u> </u>	t									
2/74				†							1				1					
SUMME				91.87		114.84		32261.4		438.26						107.024		79.371	30	
Bem.				L	<u>i</u>		1	L	L	1	MITTELW	ERTE	459.8	341.3	Bestral	nlungsal	olauf N	MOL 8C.	1. т	ab. 24

ZYKLUS BR2	KANAL	BE-	MAX. UN	GESTÖR T.	FLUSS b	ez. DOSIS	8-	FREIGES	SOLL -	ZYKLUS	MAX.	STABL	EISTUN MI TTEL	G[W/cm] MITTEL	ABBRA MITTEL	ND [M)	WD/kg M MITTEL	e] GESAM T	SPALTGAS DRUCK	GESAM T-
0,					SCH	NELL	HEIZUNG	ENERGIE	REAKTOR-	ZEIT	TEMP IN	ABSO L	ÜBER	ÜBER	ÜBER	GESAMT	ÜBER	ÜBER	ZYKLUS	FREI-
		[%]	[10'''n/cm [*] s]	[10 ² nvt]	[10 ¹¹ n/cm ² s]	[10 ² nvt]	[W/gr.Al]	[MWD]	LEISTUNG	>80 % RL	ZYKLUS	MAX. 1.	IZYKLI HOT-	UND	ZYKLUS	HOTSPOT	ZYKLUS	ZYKLUS	ENDE	SETZUNG
									[MWth]	[D]	[°C]	ZYKL.	SPOT	STAB	HOTSPOT		U. STA B	U.STAB	[bar]	
15/70	H 37	32	2.19	2.58	1.51	1.78	5+7	956.3	70	14.45	635	296	267	228	2.049	-	1.751	-	4,4	1.926
16/70	H 37	32	2.18	°•36	1.50	1.63	5.4	875.4	70	12.49	628	290	262	208	1.737	3.773	1.382	3.133	4.5	1.144
17/70	H 37	31	2.15			1.75	5.8	941.1	70	+0 20	626	288	275	215	2.108	5.871	1.047	4.700	4.5	1.077
2/71	H 323 H 323	28	2.06	3.72	2.42	4.10	5.9	1/275.9	70	20.91	633	205	260	220	2.810	11 605	2.209	9.560	2.8	- 1
3/71	H 323	15	2.02	1.43	2.67	4.44	6.3	1052.7	70	17,15	620	203	259	185	2.914	11.967	1.688	11.248	2.9	0.019
4/71	H 323	28	2.15	4.08	5.05	5.79	6.4	1537.6	70	23.1	640	301	267	201	3.139	17.106	2.354	13.602	3.2	0.062
5/71	н 3월3	25	1.99	3.49	2.98	5.21	6.1	1419.7	70	19.93	612	276	259	189	2.609	19.715	1.903	15.505	3.6	0.109
6/71	H 323	24	1.73	3.14	2.39	5.35	6.6	1468.2	70	20.97	657	317	295	240	3.283	22.998	2.677	18.182	5.4	0.301
7/71	H 323	21	1.37	1.35	2.39	2.36	5.6	800.6	70	11.96	662	322	299	24 0	1.899	24.897	1.525	19.707	5.9	0.332
8/71	H 323	19	1.37	2.01	2.44	3.57	5.6	1:91.3	70	16.37	682	341	305	253	2.650	27.547	2.199	21.906	6.8	0.385
9/71	H 323	33	1.58	2.37	2.36	3.55	5.0	1215.6	70	16.95	667	322	289	232	2.607	30.154	2.088	23.994	7.2	0.387
10/71	H 323	36	1,62	2.39	2.29	3.39	5.0	1194.6	70	16.17	655	315	286	224	2.455	32.609	1.921	25.915	7.6	0.390
11/71	H 323	39	1.60	3.06	2.30	4.4	5.3	1540.2	70	21.37	680	338	323	250	3.669	36.27 ⁸	2.834	28.749	9.2	0.469
1/72	H 323	39	1.98	3.71	2.73	5.3	6.0	1516.1	70	21.48	667	326	275	225	3.144	39.422	2.565	31.314	10.5	0.51%
2/72	H 323	42	2.03	2.99	2.75	4.05	5.8	1195.1	70	16.09	650	310	283	217	2.417	41.839	1.855	35.109	12.50	0.559
3/12	н 323	40	2.01	3.04	2.30	5.02	6.0	1451.7	70	21 92	626	344	324	204	3.600	45.063	2.731	38,697	15,15	0.673
5/72	H 337	58	2.17	5.75	2.43	6.44	5.1	2140.2	70	29.25	649	310	279	215	4.333	53,296	3.342	42.039	16.30	0.677
6/72	H 337	55	1.82	3.96	2.12	4.5	4.7	1202.3	72.5	23.09	633	294	261	187	3.206	56.502	2.292	44.331	17.20	0.685
7/72	H 337	50	1.76	3.70	2.10	4.52	4.8	11.29.0	73.5	22.95	621	254	354	182	3.096	59.598	2.219	46.550	17.85	0.682
8/72	H 337	49	1.75	3.31	2.17	4.11	4.8	1611.1	73.5	20.56	629	201	264	201	2.889	62.487	2.198	48.748	19.20	0.709
9/72	Н 337	/ ₄ / ₁	1.63	3.92	2.16	5.21	5.0	2647.4	73.5	25.53	637	290	266	175	3.613	66.100	2.380	51.128	20.15	0.715
10/72	Н 337	43	1.68	3.32	2.31	4.56	5.2	1675.8	73.5	20.02	651	311	298	227	3.171	69.271	2.411	53.539	22.30	0.768
11/72	н 337	49	1.76	1.30	2.17	1.60	4.90	631.0	73.5	7.08	649	300	266	207	1.113	70.384	0.866	54.405	22.80	0.775
1/73	H 337	52	1.83	3.16	2.19	3.80	4.80	1471.3	73.5	17.86	622	284	251	184	2.378	72.762	1.748	56.153	22.60	0.743
2/73	Н 337	49	1.00	3.70	2.20	4.52	4.60	1747.4	73.5	20.75	59 ⁸	266	246	180	2.717	75.479	1.982	5°.135	25.00	0,805
3/73	H 337	46	1.75	4.73	2.31	6.23	4.70	2298.9	73.5	27.91	652	312	276	215	4.096	79.575	3.184	61.318	25.60	0.784
4/73	H 337	53	1.87	3.74	2.12	4.24	4.50	1701.5	73.5	20.05	650	309	292	221	3.114	02.009	2.390	300.00	27.20	0.000
5/73	ר ז <u>ו</u> ק דינים	56	1.88	3.94	2.19	4.60	4.60	1782. ⁹	75.5	22.14	649 636	297	281	216	3.300	85.989	2.537	68 520	29.40	0.840
0//3 7/73	н 337 Н 337	54	1.71	3.31	2.40	4.66	4.50	1646.1	73.5	18.83	643	314	267	211	2.675	01.646	2.116	70.638	31.20	0.847
8/73	H 337	55	1.68	4.95	2.25	6.99	4.50	2505.0	73.5	29.41	642	304	283	230	4.428	96.074	3.598	74.236	32.70	0.849
9/73	H 337	53	1.69	4.91	2.34	6.39	4.50	2469.2	73.5	29.71	643	304	283	217	4.471	100.545	3.433	77.669	34.50	0.860
10/73	H 337	56	1.74	2.58	2.31	3.41	4.40	1261.3	73.5	14.58	640	301	286	227	2.215	102.760	1.760	79.429	35.20	0.860
11/73	Н 337	55	1.65	3.99	2.24	5.43	4.30	2058.3	73.5	24.85	632	294	278	215	3.677	106.437	2.841	82.270	36.60	0.866
1/74	Н 337	53	1.69	3.80	2.34	5.27	4.30	1915.1	73.5	22.67	640	301	272	217	3.273	109.710	2.609	84.879	37.20	0.854
2/74	н 337	50	1.84	3.50	2.65	5.05	5.10	1543.3	70.0	20.46	649	310	300	231	3.261	112.971	2.512	87.391	38.20	0.854
SUMME				129.73		157.8		58926.4		761.56						112.971		87.391	38,20	
Bem.	① negat	ive Fre	isetzungs	rate	1			L			MITTELW	ERTE	279	216.5	Bestral	nlungsal	blauf N	MOL 8C.	2. T	ab . 25

ZYKLUS BR2	KANAL	BE-	MAX. UN	GESTÖR T.	FLUSS be	z. DOSIS	8-	FREIGES	SOLL-	ZYKLUS	MAX.	STABL	EISTUN MITTEL	G[W/cm] MITTEL	ABBRA	ND [M	ND/kg M MITTEL	le] GESAM T	SPALTGAS DRUCK	GESAM
		[%]	INERI [10 ¹⁴ n/cm²s]	[10 [°] nvt]	50H [10 ¹⁴ n/cm²s]	[10 ² nvt]	HEIZUNG [W/gr.Al]	ENERGIE [MWD]	REAKTOR- LEISTUNG	ZEIT >80 % RL [D]	ZYKLUS	ABSOL MAX. I 7 YKI	ÜBER ZYKL.L HOT-	ÜBER ZYKL. UND STAB	ÜBER ZYKLUS HOTSPOT	GESAMT HOTSPOT	ÜBER ZYKLUS U. STA B	ÜBER ZYKLUS U.STAB	ZYKLUS ENDE [bar]	SETZUN
15/70												1211.2.		JIAD				1		
16/70		1									<u> </u>	1	+							
17/70	····	<u> </u>									<u>†</u>	1	-							
1/71	G 120	19	2.23	3.77	2.78	4.7	6.6	1371.6	70	18.88	447	356	335	262	3.36	-	2.627	-	5.2	2.24
2/71	F 166	17	2.1	3.22	3.42	6.23	6.9	1475.9	70	20.91	467	402	392	339	4.356	7.651	3.763	6.39	2.4	-
3/71	F 314	26	2.91	4.5	3.50	5.41	8.1	1252.7	70	17.15	580	568	523	393	4.768	12.41.9	3.522	9.972	6.6	0.34
4/71	-	28	2.80	5.31	3.30	6.36	7.3	1537.6	70	22.10	557	582	489	32.1	5.739	18.158	4.469	14.441	7.2	0.32
5/71	-	41	2.55	4.47	3.41	5.98	7•4	1419.7	70	18.93	563	541	48.4	366	4.572	23.03	3.68	18.121	8.1	0.36
6/71		36	2.52	4.566	3.54	6.12	8.1	1468.2	70	20.97	550	524	489	399	5 454	28.484	4.451	22.572	8.9	0.36
7/71	-	30	1.96	1.93	3.04	3.0	7.3	100.6	70	11.96	540	506	474	380	3.011	31.495	2.418	24.990	9.2	0.35
8/71		28	1.97	2,896	3.13	4.6	7.4	1191.3	70	16.37	561	537	505	415	4.395	35.89	3.613	28.603	10.7	0.42
9/71		26	1,95	2.925	3,25	4.88	7.3	1215.6	70	16.95	579	568	502	411	1 501	40 411	3 707	37.210	11.8	0.41
10/71		13	1.75	2.58	1.39	4.99	7.7	1194.6	70	16.17	560	526	1.05	200	4.250	10.411	5.101	2. (70	10/	
11/71			1 40	0.95	1 20	6 20	2 1	16/.8 2	70	21.27	561	550	520	202	5 006	50 567	3.340	15.050	12.4	0.4
1/72	-		1.49	2.05	3.29	6.29	C • 1	1540.2	70	21.07	504	542	5:0	393	5.900	50.507	4.405	40.121	14.0	0.4
2/72			1.55	2.00	3.37	0.5		1310.1	70	4.00	940	5.4	40	570	5.470	60.00/	2 0 15	49.342	17 /	0.5
2/72	-		1.53	2.257	3.37	4.97	9	1195.4	70	10.09	548	518	417	376	5. (02	6- 600	1.16	50 017	20.3	0.5
3/12			1.54	2.19	1.39	6.19	····	1407	70	• • • • • •		250	5.39	403	5.603	03.000	4.40	52.017	20.)	0.0
4/12	•		1.50	3.04	3.30	6.68	8.3	1640.5	70	27. 3	583	573	523	420	6.067	71.673	4.876	50.893	23.2	0.07
5/72	•		1.47	3.9	3.24	.59	P.2	2142.2	70	29.35	550	520	482	383	7.485	79.158	5.946	62.839	24.8	0.66
6/72	-	0	1,50	3.18	3.30	6.99	2.3	1802.3	73.5	23.09	57%	558	474	353	5.21	84.979	4.337	67.176	26.8	0.6
1112	•	0	1.37	2.95	3.65	7.24	°•7	1829.0	73.5	22.98	564	544	470	361	5.739	90.718	4.414	71.590	27.9	0.67
8/72	-	0	1.37	2.59	3.66	6.93	8.8	16/1.	73.5	20.56	571	553	506	404	5.531	96.249	4.418	76.008	30	0.69
9/72	-	0	1.33	3.30	3.54	(.52	2.6	20'+7.4	73.5	25.53	565	544	429	352	6.627	102.976	4.775	80.783	30.8	0.6
10/72	-	0	1.34	2.64	3.59	7.08	^ •7	1679.0	73.5	20 .02	557	528	477	401	5.070	107.946	4.263	85.046	31.8	0.60
11/72		0	1.34	0.99	3.58	66	£.6	631.0	73.5	7.88	525	481	441	375	1.748	109.794	1.573	86.619	33.2	0.61
1/73		4	1.43	2.47	3.68	6.36	8.5	1471.3	73.5	17.86	531	490	1, 4, 1,	364	4.212	114.006	3.452	90.071	33.1	0.65
2/73				ļ							ļ	<u> </u>	ļ				ļ			
3/73								<u> </u>			L							L		ļ
4/73				L				L			ļ	ļ				. <u> </u>		ļ		Į
5/73			<u> </u>		L															ļ
6/73		ļ		L	ļ	L					L	<u> </u>		L				ļ	<u> </u>	
7/73					L							ļ								
8/73					L			ļ			L	L								
9/73								L					1							
10/73																				
11/73																				
1/74																				
2/74																				
	,			72.5		137.2		33515.8		448.04						114.006		90.071	33.1	0.65

ZYKLUS BR2	KANAL	BE- ABBRAND	MAX. UN THERI	GESTÖRT. MISCH	FLUSS be	ez. DOSIS	δ- HEIZUNG		SOLL -	ZYKLUS	MAX. TEMP IN	STABL	EISTUN MITTEL	G[W/cm] MITTEL	ABBRA MITTEL	ND [M'	ND/kg M MITTEL	e] GESAM T	SPALTGAS DRUCK	GESAM T- FREI-
		[n/]	50 ¹⁴ ([10 ²⁰ 1]	10 ¹⁴ , 2 1	[10 ²⁰ 1]	[7.00.00		UBER ZYKLI	UBER ZYKI	UBER	HOTSPOT		UBER	ZYKLUS	SET7LING
		[70]	lio n/cm sj		[[U n/cm s]		[W/gr .Al]	[MWD]	LEISTUNG	-00% KL	ZYKLUS [0 c]	MAX I.	HO T-	UND	HOTSPOT		U STAR		[bar]	
15/70					<u> </u>					[0]	[C]	ZYKL.	SPUT	SIAB			U. SIAD	0.01AD	[541]	
16/70	H 23		2 11	2.28	1.4	1 5 1		875 4	70	12 / 0	560	202	265	221	1 767		1 5 2 1		3.8	° 615
17/70	-	18	2.09	2.43	2.03	2.36	6.6	941.1	70	14.41	580	200	20)	227	2.156	3.913	1.742	3.273	-	-
1/71	-	17	2,20	3.72	2,97	5.02	7.3	1371.6	70	18.88	666	392	360	302	3.612	7.525	3.029	6.302	1.95	0.017
2/71	-	25	3.06	3.75	2.54	4.63	6.4	1475.9	70	20.91	632	358	324	297	3.598	11.123	3.3	9.607	4	0.463
3/71	-	27	2,22	3.43	2,40	3.71	5.6	1252.7	70	17.15	582	312	281	227	2.565	13.688	2.066	11.668	4.1	0.397
4/71	•	40	2.15	4.08	2.50	4.74	5.6	1537.6	70	32.10	592	322	283	221	3.322	17.010	2.595	:4.263	4.0	0.31
5/71	•	25	1.99	3.49	2.98	5.22	6.0	1419.7	70	18.93	641	366	308	344	3.104	20.114	2.454	16.717	5	6.39
6/71		18	1.73	3.14	3.14	5.69	7.3.	1468.2	70	20.97	636	362	343	286	3.825	23.939	3.191	19.908	5.9	0.414
7/71	H 337	17	1.37	1.35	2.49	2.46	6.0	800.6	70	11.96	605	332	311	257	1.974	25.912	1.633	21.541	6.4	0.54
8/71	H 23	21	1.41	2.07	2.46	3.61	5.7	1191.3	70	16.37	615	342	317	267	2.755	28.667	2.326	23.867	6.4	0.397
9/71	<u>H 337</u>	23	1.46	2.19	2.53	3.79	5.6	1215.6	70	16.95	597	3:8	289	845	2.606	31.273	2.209	26.076	6.2	0. 145
10/71		26		2.56	2.48	3.65	5.3	1194.6	70	16.17	576	306	28.1	237	2.415	33.688	2.040	28.116	7.0	0.382
11/71	•	14	1.30	2.48	2.51	4.79	6.1	1548.2	70	21.37	631	357	340	281	3.858	37.546	3.195	31.311	8.9	0.,71
1/72	<u> </u>	18	1.66	3.11	3.07	5.74	6.9	1516.	70	21.48	618	344	301	258	3.139	40.985	2.950	34.210	:0.5	1.5.7
2/72		15	1.61	2.37	3.0%	4.55	6.9	1195.4	70	16.09	60.	330	203		2.507	43.573	2.113	30.374	11.0	0.15
3/12		13	1.58	2.86	3.11	5.64	7.1	1468.7	70	19.95	6:28	354	339		3.504	47.156	3.077	39.431		0.151
5/72	- H 102	23	1.74	4.61	2.96	7.55	6.0	5148.2	70	20.05	590	311	080	211	4.380	55.301	3.586	46.306	14.7	0.5
6/72	- -	27	1 4.8	2 12	2.46	5 21	5.4	1802.3	73.5	23.09	561	291	262	301	1 216	58-516	2.464	48.670	15.1	0.511
7/72			1.33	2.86	2.52	5.42	5.7	1829.0	73.5	22.9"	558	2.90	362	205	3.194	61.710	2.501	51.17	15.7	0.5.1
8/72	-	10	1.19	2.25	2.90	5.49	6.3	1611.1	73.5	20.56	565	295	2.0	234	3.064	64.774	2.557	53.729	17.8	0.569
9/72		0	'.01	2.43	2.69	6.47	6.3	2047.4	73.5	25.53	565	296	372	360	3.628	68.462	2.714	56.442	17.5	0.53
10/72	-	0	1.02	2.01	2.73	5.39	6.3	1672.8	73.5	20.02	572	303	399	236	3.064	71.506	2.511	58.953	18.35	0.533
11/72	•	0	1.02	0.76	2.72	2.01	6.3	63:.0	73.5	7.38	558	290	264	120	1,107	72.633	0.921	59.074	.9.25	6,562
1/73	-	3	07	1.85	2.79	4.83	6.2	1471.3	73.5	17.36	544	276	353	310	3.401	75.013	:.99	61.864	18.90	0.532
2/73	-	0	1.04	2.14	2 .7 8	5.70	6.2	1747.4	73.5	20.75	556	289	275	203	3.026	78.059	0.463	64.327	2.42	0.527
3/73	ŧ	0	1.04	2.81	2.77	7.48	6.1	2298.9	73.5	27.91	602	329	29)	246	4.319	80.378	3.648	67.975	22.°	0.605
4/73	-	0	i .0 5	2.10	2.80	5.6	6.1	1701.5	73.5	20.05	616	342	322	262	3.437	85.814	2.796	70.771	26.2	0.60
5/73		0	1.05	2.20	2.00	5.86	6.2	1782.2	73.5	22.14	584	313	290	243	3.432	89.046	2.863	73.634	29.1	0.739
6/73	-	10	1.14	2.28	2.79	5.58	5.9	1700.9	73.5	20.61	568	297	224	208	3.:09	9.1.355	2.603	76. 16	30.4	0.749
7/73	-	13	1.21	2.34	2.35	5.51	5.9	1646.1	73.5	18.3	585	3:0	285	242	2.751	95.106	9.423	7: .659	31.1	0.745
8/73	-	0	1.02	3.00	2.73	8.04	6.0	2505.0	73.5	29.41	575	305	294	.57	5.599	95.05	4.017	82.676	33.35	0.766
9/73	-	12	1.19	3++5	S.º1	č.15	5.6	2469.1	73.5	29.7:	581	3.12	379	123	4.412	104.17	3.495	6. 71	34.3	0.75
10/73		0	1.04	1.54	0.77	4.11	6.1	2161.3	73.5	14.58	570	300	.127	249	5.674		1.900		30.0	0.760
$\frac{11/73}{1/74}$	<u>H 97</u>	10	1.00	0.61	0.01	6.22	2+9	10:5	73.5	371.00	605	43.2	311	-33	3.570	1:0 786	5.074	91. 15	30.5	0.766
2/74		10	1,10	£.0i	2.01	0.33	V	19.0.1	13.3						2.793	10, 10 10	1.944	71.17	37.03	0.700
2/74												+								
SUMME				95.5		184.3		56419.2		726.65						(13.756		94.15	37•5	0.766
Bem.				7							MITTELW	VERTE	295	244	Bestrat	nlungsa	blauf M	40L 8C4	T	ab . 27

ZYKLUS BR2	KANAL	BE- ABBRAND	MAX. UN	IGESTÖRT. MISCH	FLUSS be	ez, DOSIS NELL	ل HEIZUNG	FREIGES	SOLL -	ZYKLUS	MAX. TEMP IN	STABL		G[W/cm] MITTEL	ABBRA	ND [M)	WD/kg M MITTEL	e] GESAM T	SPALTGAS DRUCK	GESAM T-
		[9/4]	10 ¹⁴ n/cm ² s	[10 ²⁰ y t]	10 ¹⁴ n/cm ² s]	$\begin{bmatrix} 10^{20} \text{ py t} \end{bmatrix}$		[MWD]	LEISTUNG	>80 % RI	7781115	MAXI	ZYKL.	ZYKL.	ZYKLUS	HOTSPOT	ZYKLUS	ZYKLUS	ENDE	SETZUNG
		[[/0]							[MW th]	[D]	[° C]	ZYKL.	HOT-	UND	HOTSPOT		U. STA B	U.STAB	[bar]	
15/70											1									
16 / 70																				
17/70			[┣					[ļ		[
1/71				<u> </u>							 									
3/71	G240	18	1.79	2.77	3.02	4.66	7	1252.7	70	17.15	496	384	362	289	3.577	-	2.752	-	4.6	-
4/71	F 166	16	3.04	3.97	3.39	6.43	7.4	1537.6	70	27,10	519	413	361	300	4.594	P.171	3.816	6.668	4.8	0.069
5/71	F 14	37	2.15	3.77	2.62	4.58	6.4	14:2.7	70	15.93	613	544	470	37 ⁹	5.132	13.303	4.119	10.787	5.6	0.212
6/71	-	14	2.15	3.90	4.06	7.36	9.5	1468.2	70	20.97	621	55 ⁸	519	439	6.27i	19.57!	5.303	16.090	5.5	0.128
7/71	-	17	1.81	1.79	3.30	3.26	7.9	800.6	70	11.96	571	485	461	384	3. 77	22.751	2.647	15.737	5.2	0.073
8/71	-	16	1.77	2.60	3.27	4.30	7.7	1191.3	70	16.37	597	521	492	417	4.6 4	27.395	3.932	22.669		- 0
9/ /1	-	14	1. 54	2.76	3.52	5.30	7.9	1215.0	70	16.95	602	510	491	307	4.794	32.109	3.608	20.298	7.2	0,118
11/71	-	0	1.51	2.89	3.31	6.33	8.4	1548.0	70	21.37	622	558	523	446	6.442	42.859	5.496	35.492	10.15	0.357
1/72	-	0	1.66	3.11	3.66	6.35	9.3	1516.1	70	20.09	634	576	525	440	6.072	42.931	5.089	40.581	12.0	0.417
2/72	-	0	1.66	0.45	3.66	5.41	9.1	1195.4	70	16.09	606	534	419	407	4.538	53.469	3.778	44.359	12.7	C.417
3/72	-	0	1.67	3.03	3.64	6.6	9.4	1468.7	70	19.91	646	594	553	468	6.344	59.213	5•3 75	49.734	15.6	0.506
4/72	-	0	1.63	3.30	3.58	74	9.4	1640.5	70	21.93	621	558	502	413	6.316	66.129	5.194	54.928	17.8	0.549
5/72	-	0	1.59	4.22	3.51	9.3	9.2	2142.2	70	29.25	596	5:20	429	374	7.232	73.361	6.306	61.234	19.4	0.552
5/72	-	0	1.51	3.20	3.32	7.04	8.5 9.6	1802.3	73.5	02.98	535	503	421	335	5.965	78.960	4.455	65.689	21.0	0.571
8/72	- F 20	27	2 17	1. 1	2 92	7 25	9.1	1611.1	73.5	20.56	602	508	465	398	5.512	90.437	4.711	75.090	25.2	0.637
9/72	E 30	29	1.94	4.67	3.97	9.55	9.3	2047.4	73.5	25.53	609	539	493	373	7.351	97.688	5.481	80.579	25	0.579
10/72	•	18	1.70	3.35	4.14	2.17	9.7	1679.5	73.5	20.02	617	550	531	458	6.125	103.513	5.292	85.861	27.2	0.602
11/72	-	18	1.70	1,26	4.12	3.06	9.6	631.0	73.5	7.68	621	556	505	449	2.95	106.100	2.041	87.902	28.7	0.627
1/73	-	23	1.8	3.11	4.09	7.08	9.4	1471.3	73.5	17.°6	598	520	468	394	4.812	1;0.920	4.050	91.952	28.4	0.592
2/73	-	27	1.88	3.86	3.99	°•3	9.4	1747.4	73.5	20.75	575	406	444	370	5.305	116.325	4.421	96.373	30.7	0.619
3/73											 	ļ								
4/73			-																	
6/73				1							<u> </u>									
7/73											T									
8/73																				
9/73																				
10/73									ļ		ļ			ļ						
11/73	L		ļ								<u> </u>			<u> </u>						ļ
2/74			<u> </u>	+	<u> </u>	<u> </u>		 	+		<u> </u>		<u> </u>							
2/14						100			1	1.07 0	<u> </u>					116.225		96. 373	30.7	0.619
SUMME				69.5		140.6		324:5•7		40/**						1.0,209				
Bem.											MITTELW	ERTE	473	393+4	Bestra	nlungsa	blauf M	40L 8C	5. T	ab . 28

ZYKLUS	KANAL	BE-	MAX. UN	GESTÖR T.	FLUSS b	ez. DOSIS	8-	FREIGES	SOLL-	ZYKLUS	мах	STABL	EISTUN	G[W/cm] MITTEI	ABBRA	N'L [M\	ND/kg M MITTEI	Ie] Igesamt	SPALTGAS DRUCK	GESAM
DRZ		ABBRANL	THER	MISCH	SCH	NELL	HEIZUNG	ENERGIE	REAKTOR	ZEIT	TEMP IN	ABSO L	ÜBER	ÜBER	UBER	GESAMT	ÜBER	ÜBER	ZYKLUS	FREI-
		[%]	10"n/cm*s]	10 ² nv t	[10 ¹⁴ n/cm ² s]	[10 ²⁰ nvt]	[W/gr.At]	[MWD]	LEISTUNG	>80 % RL	ZYKLUS	MAX. I	ZYKL.I.	ZYKL.	ZYKLUS	HOTSPOT	ZYKLUS	ZYKLUS	ENDE	SETZU
		r							[MW th]	[D]	[°C]	ZYKL.	HOT- SPOT	UND STAB	HOTSPOT		U. STA B	U.STAB	[bar]	
15/70																				
16/70	H323	36	2.18	2.36	1.30	1.40	5.20	875 . 4	70	12.49	491	282	246	207	1.768	-	1.493		2.50	-
17/70	-	36	2.15	2.50	2.17	2.52	6.40	941-1	70	14.41	457	250	227	183	1.889	3.657	7.522	3.015	2.50	0.15
1/71	H 37	32	2.20	3.72	2.46	4.17	6.00	1372.6	70	18.88	544	332	306	258	3.331	6.988	2.802	5.817	2.90	0.23
2/71	-	17	2.06	3.75	2.78	5.07	6.40	1475.9	70	20.91	577	367	315	278	3.799	10.787	3.345	9.762	3.00	0.17
3/71	-	34	2.22	3.48	1.97	3.05	6.00	1252.7	70	17.15	548	336	303	214	2.999	13.786	2.718	71.280	3.30	0.20
4/71	-	28	2.15	4.08	3.05	5.79	6.20	15 37.6	70	22.10	517	305	271	198	3.447	17.233	2.526	13.806	3.20	0.14
5/71	-	14	1.75	3.07	3.12	5.47	6.40	7429.7	70	18.93	550	338	304	235	3.319	20.552	2.561	16.367	5.20	0.40
6/71	-	15	1.73	3.13	3.20	5.79	7.10	1488.2	70	20.97	563	351	314	268	3-799	24.351	3.238	79.605	5.70	0.39
7/71	-	16	1.37	1.35	2.52	2.49	5.70	800.6	70	71.96	516	304	293	240	2.015	26.366	1.652	21.257	5.70	0.36
8/71	-	15	1,37	2.01	2.54	3.74	5.70	7197.3	70	76.37	542	330	295	246	2.783	29.149	2.324	23.581	5.80	0.33
9/71	-	24	1.46	2.19	2.48	3.73	5.30	1275.6	70	16.95	511	299	279	222	2.724	37.873	2.164	25.745	5.75	0.30
10/71	+	26	1.49	2.20	2.48	3.65	5.10	1194.6	70	16.17	536	324	302	233	2.814	34.687	2.167	27.912	6.35	0.33
11 / 71		32	1.52	2.90	2.38	4.55	5,30	1548.2	70	21.37	528	315	298	241	3.667	38.354	2.966	30.878	6.80	0.33
1/72	-	12	1.56	2.92	3.09	3.78	6.70	1576.1	70	21.48	521	308	275	223	3.408	41.762	2.756	33.634	8.45	0.43
2/72	-	13	1,58	2.33	3.08	4.55	6.80	1195.4	70	16.09	540	328	300	240	2.785	44.547	2.229	35.863	9.90	0.48
3/72	-	18	1.66	3.01	3.08	5.58	6.60	1468.7	70	19.91	523	310	294	247	3.370	47.917	2.834	38.697	9.80	0.44
4/72	-	19	1.64	3.32	2.98	6.03	6.50	1640.5	70	21.83	546	333	297	238,	3.737	51.654	2.990	4.1.687	71.80	0.52
5/72	-	22	1.65	4.37	2.92	7.74	6.40	2148.2	70	29.25	509	296	253	216	4.259	55.913	3.647	45.334	13.40	0.56
6/72	-	18	1.37	2.90	2.53	5.36	5.70	1802.3	73.5	23.09	466	258	238	197	3.768	59.081	2.627	47.961	13.85	0.55
7/72	-	11	1.27	2.73	2.53	5.44	5.80	1829.0	73.5	22.98	500	288	267	221	3.532	62.613	2.92%	50.895	16.50	0.63
8/72	-	1.4	1.31	2.43	2.53	4.79	5.80	1671.7	73.5	20.56	509	297	278	22.9	3.2.9	65.902	2.710	53.595	19.90	0.70
9/72		0	7.07	2.43	2.69	6.47	6.30	2047.4	73.5	25.53	570	298	273	200	4.016	69,918	2,947	56.542	19.2	0,68
10/72	-	0	1.02	2.01	2.73	5.39	6.40	1678.8	73.5	20.02	546	334	374	253	3.622	73.540	2.913	59.455	22.10	0.76
11/72	-	0	1.02	0.76	2.72	2.01	6.30	637.0	73.5	7.88	520	308	272	239	1.235	74.775	1.016	60.541	22.75	0.77
1/73	-	3	1.07	1.85	2.79	4.11	6.30	1471.3	73.5	77.86	511	300	267	218	2.751	77.526	2.242	6.783		+0.71
2/73	-	0	7.04	2.14	2.78	5.77	6.50	7747.4	73.5	20.75	490	280	259	792	5.091	0.017	2.29	05.074	. 3.00	+
3/73	-	9	7.74	3.08	2.83	7.65	6.20	2298.9	73.5	27.91	570	358	325	244	5.221	⁹⁵ • ⁹³⁸	3+923	68.997	25.70	0:77
4/73		24	1.35	2.70	2.83	5.66	6.30	1707.5	73.5	20.05	590	382	370	285	····/9	90.117	3.290	72.295	27.00	10.76
5/73	-	35	7.48	3.10	2.75	3.70	5.50	1182.8	/3.5	12.74	531	324	120	235		931909	3.001	75.296	27.60	10176
0//3		79	7.20	2.52	2.71	5.34	5.00	1646 1	75.5	18 02	580	300	330	215	3.980	971829	3.265	77.562	27:40	0:77
0/72	-	29	7.40	2.11	2 . / 8	8 01	5.50	1545.0	72 5	29.14	576	266	338	271	5.704	07.258	4.501	96.010	29.00	+0.77
0/73		28	1.38	4.01	2.76	8.01	5.00	2469.9	72.5	29.74	566	354	320	2.54	5.471	.0 800	1. 340	00 =61	21.10	10.77
3/ /3	-	~~	1 22	2.01	4.70	1, 14	5.40	1061 3	12 =	14 50	500	20.8	270	106	204/1	115.005	1.61.0	90.001	20 1.0	10.73
11/73	-	27	1,30	2.03	2.11	4.77	3.50	1201.3	/ 3.3	14.50		290	+	+ , , , , , , , , , , , , , , , , , , ,	• . 00			9 09) 40	10.74
1/7/				+					+	+	<u> </u>	1	+	<u>+</u>				<u>-</u>		+
2/7/				+					+		t	1	1		<u> </u>				<u> </u>	+
21/4				<u> </u>	+			= 0/1/1= 1		679 13	†	+	+			115 005		9: . 100	32.40	C. 74
SUMME				94.1		140.5		52445.4		013.15						115.095			9.440	
Bem		I	I	L	1	l	I	L	I	l		1	202 4	234.7		L	1	L	L	
Jenn.											1		A74.9		ih	1		101 00/	•	6_L ·

ZYKLUS BR2	KANAL	BE- ABBRAND	MAX. UNGESTÖR T THERMISCH		RT. FLUSS bez. DOSIS		&− HEIZUNG	FREIGES	SOLL -	ZYKLUS	MAX. TEMP IN	STABLI ABSOL.		G[W/cm] MITTEL	ABBRA MITTEL	ND [M) GESAMT	WD/kg M MITTEL UPER	e] GESAM T	SPALTGAS DRUCK	GESAM T- FREI-
1		[•/_]	10"n/cm²s]	[10 ²⁰ nv t]	$10^{4} n/cm^{2} s$	$[10^{20} \text{pyt}]$	[₩/ar∧ī]	נחשאו	LEISTUNG	>80 % RI	7781115	MAY 1	ZYKLL	ZYKL.	ZYKLUS	HOTSPOT	ZYKLUS	ZYKLUS	ENDE	SETZUNG
		[/0]					[[w/gu/⊲t]	[intro]	[MW th]		[°C]	ZYKL	HOT-	UND	HOTSPOT		U. STA B	U.STAB	[bar]	
15/70					<u> </u>					- <u>-</u>				517.0						
16/70									[
17/70																				
1/71			ļ										ļ							
2/71	G 240	18	2.11	3.84	2.64	4.01	6.40	1475.9	70	20.91	460	370	325	282	3.9.0	-	3.399	-	• · · · ·	
<u> </u>	F 194	18	2.12	3.38	3.46	5.35	7.00	1050.7	70	17.15	538	464	428	-58	4.3.7	8.740	·	t.9.6	f.;0	0.297
5/71	= F 346	37	2.04	3.37	3.39	6. 4	6.40	1537.6	70	18 03	500 500	4.23	350	2.6	5 453	12.593	4 . 55	11,092	0.0	0.7.5
6/71	-	18	2.15	3.90	3.90	7.07	9.20	1468.0	70	20.97	596	560	516	50	6.:04	14.135	5.030	20.441	9.00	0.436
7/71	-	20	1.81	1.79	3.17	3.3	7.80	800.6	70	11.96	546	488	461	384	3. 171.	7.36:	2.516	3.0F7	10.0	0. 1/6
8/71	-	16	1.77	2.60	3.37	4.80	7.70	1191.3	70	16.37	594	561	503	419	1.746	30.107	.95'	27.041	11.3	0.448
9/71	-	25	1 .96	2.94	3.33	4.99	7.40	1215.6	70	16.95	570	500	4.92	395	4.104	36.011	3.058	30.899	12.1	C.151
10/71	-	25	1.97	2.90	3.34	4.93	7.30	1194.6	70	167	560	50 ⁹	468	363	9.35F	. 64	3.570	34.469	12.2	0.45
11/71	-	0	1.51	2.88	3.31	6.33	8.40	1540.2	70	21.07	610	584	552	468	6.791	42.060	5.76?	40.031	17.00	0.6:5
1/72	-	0	1.66	3.11	3.66	6.35	9.30	1516.1	70	21.48	598	566	480	4:17	5.965	54.005	5.225	35.516	:0.80	0.643
2/72	-	0	1.66	2.45	3.66	5.40	9.0	195.4	70	16.09	568	520	499	400	4.615	58.640	3.704	49.820	19,20	0.611
3/72	-	0	1.67	3.03	3.67	6.65	9.4	1468.7	70	19.91	614	590	55+	471	6.312	64.960	5.402	54.6 12	20,80	6.f.19
5/72	-	0	2.63	3.30	3.58	7.3	9.3	1640.5	70	20.13	606 E64	580	501	433	0.195 7.023	75.385	6.553	66.752	59.0	0.609
6/72		0	1.51	3.20	3.32	7.03	8.3	1802 2	70	295	504	180	1.4.5	3.05	5 0.05	85 181	1. 7 14	7: 176		C with
7/72		0	:.50	3.22	3.3	7.11	8.3	1829.0	73.5	22.98	553	495	44.0	355	5.000	9.01	1.698	76.174		0.630
8/72	E 330	37	2.17	4.11	3.83	7.5	9.1	16:1.1	71.5	30.36	600	568	496	4.27	3.76	96,000	5.061	81.235		0.507
9/72	-	39	2.13	5.13	3.63	74	9.0	2047.4	73.5	25.53	589	557	503	179	7.6/9	105,609	5.570	36.307	1.4	0.6.6
10/72	-	40	2.06	4.06	3.46	6.22	1.9	1678.8	71.5	20.01	593	560	539	1.54	4.14.14	6. 9	5.118	91,923	31.3	0.504
11/72	-	40	2,06	4.53	3. 14	.55	۶.7	631.0	7%.5	7.58	58A	55-1	471	4:5	· · · 39	1.4.960	7	93.8 0	3.3	0.619
1/73	-	44	2.16	3.74	3.33	5.76	8.5	147:.3	73.5	17.86	57%	509	47	390	4.056	1:7.224	1.016	97.806	31.2	0.5
2/73																				
3/73										 										
4/73								<u> </u>	 	<u>├</u>										<u>├</u> ┨
6/73																				<u>├</u>
7/73					<u> </u>				<u> </u>	· · · · · · · · · · · · · · · · · · ·									ļ	<u>├</u>
8/73				<u> </u>	<u> </u>			İ						<u> </u>						
9/73					[[f						(
10/73																				
11/73																				
1/74																				
2/74				ļ					ļ											
SUMME				72.9		131.4		33144.2		429.36						117.526		97.826	32.2	0.612
Bem.											MITTELW	ERTE	476.4	396.4	Bestrat	nlungsat	olauf t	MOL 8C 2	? Т	ab . 30

ZYKLUS	KANAL	BE-	MAX. UNGESTÖR T		T. FLUSS bez. DOSIS		8-	FREIGES	SOLL-	ZYKLUS	MAX.	STABL	EISTUN MITTEI	G[W/cm] MITTEI	ABBRA	ND [M'	WD/kg M Imittei	Ie] Igesamt	SPALTGAS DRUCK	GESAM T-
			THER	MISCH	SCH	NELL	HEIZUNG	ENERGIE	REAKTOR	ZEIT	TEMP IN	ABSOL.	ÜBER	ÜBER	ÜBER	GESAMT	ÜBER	ÜBER	ZYKLUS	FREI-
		[%]	[10"'n/cm*s]	[10 ² 0vt]	[10 ¹⁴ n/cm ² s]	[10 ²⁰ nvt]	[W/gr.Al]	[MWD]	LEISTUNG	>80 % RL	ZYKLUS	MAX. I.	ZYKL.L	ZYKL.	ZYKLUS	HOTSPOT	ZYKLUS	ZYKLUS	ENDE	SETZUNG
									[MWth]	[D]	[°C]	ZYKL.	SPOT	STAB	HOTSPOT		U. STA B	U.STAB	[bar]	
15/70																				
16/70																				
17/70	H 337	31	2.09	2.13	1.47	1.71	5.7	941.1	70	14.41	512	235	224	169	1.858	-	1.400	-	7.10	0.163
1/71	•	15	2.20	3.72	2.96	5.01	7.4	1371.6	70	18.28	634	336	309	234	3.361	5.219	2.551	3.95:	7.70	0.405
2/71	•	16	2.06	3.75	2.81	5:.12	6. ^p	1475.9	70	20.91	584	293	276	22 7	3.325	8.544	2.738	6.689	P.40	0.478
3/71	-	33	2.22	3.43	2.89	4.47	6.2	1252.7	70	17.15	568	278	254	175	2.510	11.054	1.732	8.421	8.35	0.366
4/71		2 7	2.15	4.08	3.13	5.94	6.6	1537.6	70	22.10	586	293	261	185	3.318	14.372	2.358	10.779	P.50	0.318
5/71	-	18	1.75	3.07	2.93	5.13	6.0	1419.7	70	18.93	554	268	248	178	2.705	17.077	1.945	12.724	9.75	0.494
6/71		18	1.73	3.13	3.14	5+68	7.2	1468.2	70	20.97	605	310	291	219	3.520	20.597	2.646	15.370	10.60	0.535
7/71	H 623	17	1.37	1.35	2.49	2.46	5.9	800.6	70	11.96	580	288	272	201	1.874	22.471	1.385	16.755	10.80	0.519
8/71		21	1.41	2.07	2.46	3.61	5.7	1191.3	70	16.37	616	320	293	221	2.765	25.236	2.085	18.840	12.3	0.643
9/71	-	24	1.46	2.19	2.48	3.72	5.6	1215.6	70	16.95	592	292	267	200	2.610	27.846	1.958	20.79.9	12.3	0.512
10/71	-	26	1.49	2.20	2.48	2.74	5.4	1194.6	70	16.17	598	304	283	2 0 8	2.632	50.478	1.939	22.737	12.95	0.555
11/71	-	0	1.14	2.18	2.50	4.78	6.3	1548.2	70	21.37	637	338	321	237	3.958	34.436	2.922	25.659	14.30	0.650
1/72	•	0	1.39	2,60	3.05	5.71	7.4	1516.1	70	21.42	643	344	304	246	3.761	38.197	3.039	28.698	17.75	0.856
2/72	-	0	1.39	2.05	3.04	4.49	7.4	1195.4	70	16.09	632	334	308	215	2.853	41.050	1.994	30.692	18.4	0. 19
3/72	-	0	1.39	2.52	3.04	5.51	7.4	1469.7	70	19.91	646	347	323	245	3.702	44.752	2.817	33.509	19.55	0.856
4/72	-	0	1.36	2.75	2.99	6.05	7.4	1640.5	70	21.93	647	348	314	227	3.955	48.707	2.855	36.364	20.60	0.855
5/72	-	0	1.33	3.53	2.92	7.74	7.2	2148.2	70	29.25	615	319	268	199	4.525	53.232	3.346	39.710	20.70	0.789
6/72	-	0	1.14	2.42	2.51	5.31	6.3	1802.3	73.5	29.09	563	274	249	181	3.311	56.543	2.406	42.116	21.0	0.760
7/72		0	1.04	2.24	2.78	5.98	6.6	1829.0	73.5	22.98	602	307	281	197	3.719	60.262	2.615	44.731	22.55	0.795
8/72	-	0	1.04	1.97	2.79	5.28	6.5	1611.1	73.5	20.56	589	296	275	192	3.256	63.518	2.272	47.003	24.25	0.839
9/72	-	0	1.01	2.43	2.69	6.47	6.5	2047.4	73.5	25.53	604	310	283	180	4.158	67.676	2.655	49.658	25.05	0.831
10/72	-	0	1.02	2.01	2.73	5.38	6.6	1678.9	73.5	20.02	631	333	318	225	3.671	71.347	2.600	52.258	26.1	0.835
11/72	-	0	1.02	0.76	2.72	2.02	6.6	631.0	73.5	7.88	634	337	302	219	1.371	72.718	0.993	53.251	27.2	0.867
1/73	-	3	1.07	1.85	2.79	4.75	6.6	1471.3	73.5	17.86	620	324	290	195	2.984	75.702	2.004	55.255	26.75	0.817
2/73	-	0	1.04	2.14	2.78	5.71	6.6	1747.4	73.5	20.75	582	290	269	:76	3.214	78.916	2.107	57.362	28.3	0.849
3/73	•	14	3.21	3.27	2.83	6.96	6.2	2298.9	73.5	27.91	661	360	340	244	5.467	84.383	3.920	61,282	29.8	0.850
4/73		26	1.37	2.74	2.84	5.68	6.1	1701.5	73.5	20.05	660	360	350	259	4.050	88.433	2.989	64.271	30.9	0.850
5/73		33	1.46	3.06	2.74	5.74	5.6	1782.8	73.5	02.14	615	319	291	215	3.710	92.143	2.742	67.013	31.6	0.739
6/73		19	1.26	2.52	2.77	5.54	6.1	1700.9	73.5	20.61	680	380	359	252	4.263	96.406	2.993	70,006	32.1	0.120
7/73	-	40	1.69	3.27	2.35	4.55	5.1	1646.1	73.5	18.83	655	354	332	250	3.599	100.005	2.710	72.746	33.6	0.836
8/73	-	40	1.58	4.05	2.40	7.24	5.3	2505.0	73.5	29.41	678	376	348	258	5.902	105.907	4.365	77.081	35.95	0.858
9/73		40	1.03	4.73	2.47	7.10	5.0	2469.7	73.5	29.71	647	340	322	233	5.511	111.418	3.995	81.076	35.50	0.803
10/73	-	49	1.05	2.45	2.48	3.68	5.0	1201.3	73.5	14.58	015	319	299	202	2.509	113.927	1.700	02+//0	ر0.05	0.02
										<u> </u>	<u> </u>		}					}		├┨
2/11/				<u> </u>						<u> </u>	}		 		<u> </u>					├ ────
2/74										 	<u> </u>	<u> </u>	<u> </u>							
SUMME				89.6		167.32		51570		666.64						113.927		82.776	36.05	0.802
Bem.											MITTELW	ERTE	2.9% 6	244	Bestra	nlungsa	blauf N	40L 8C .	8. T	ab . 31

-

ZYKLUS	KANAL	BE-	MAX. UN	GESTÖR T.	FLUSS be	z. DOSIS	8-	FREIGES	SOLL-	ZYKLUS	MAX.	STABL	EISTUN	G[W/cm]	ABBRA	ND [M	ND/kg M	le]	SPALTGAS	GESAM T-
DR2		ABBRANU	THERI	MISCH	SCH	NELL	HEIZUNG	ENERGIE	REAKTOR	ZEIT	TEMP IN	ABSO L	ÜBER	ÜBER	ÜBER	GESAMT	ÜBER	ÜBER	ZYKLUS	FREI-
		[%]	[10 ¹⁴ n/cm²s]	[10 ² 0vt]	[10 ¹⁴ n/cm ² s]	[10 ²⁰ nvt]	[W/gr.Al]	[MWD]	LEISTUNG	>80 % RL	ZYKLUS	MAX. I.	ZYKL.L	ZYKL.	ZYKLUS	HOTSPOT	ZYKLUS	ZYKLUS	ENDE	SETZUNG
									[MWth]	[D]	[°C]	ZYKL.	SPOT	STAB	HOTSPOT		U. STA B	U.STAB	[bar]	
15/70																				
16/70				ļ							L		ļ				<u> </u>	ļ		
17/70				<u> </u>	<u> </u>					ļ	<u> </u>							<u> </u>		
2/71															<u> </u>					
3/71					<u>+</u>								1		<u> </u>		<u> </u>			
4/71												<u> </u>								
5/71												<u> </u>						<u> </u>		
6/71																				
7/71										L	L	Í						ļ		
8/71				ļ								ļ						<u> </u>	 	ļ
9/71	F 166	47	2.18	3.21	6.22	3.96	4.6	1194.6	70	16.17	506	348	318	284	2.855		2.550	<u> </u>		
11/71	-	32	1.89	3.61	2.87	5.48	5.3	1548.2	70	21.17	521	365	329	269	3.909	6.764	3,192	5.742	5.6	0.077
1/72	-	20	2.01	3.76	3.33	6.23	6.8	1516.1	70	21.48	570	426	371	363	4.437	11.201	4.339	10.081	6.8	0.306
2/72	-	20	2.02	2.98	3.31	4.88	6.7	1195.4	70	16.09	606	474	449	370	4.017	15.218	3.308	13.389	7.8	0.395
3/72	-	22	2,06	3.73	3.34	6.05	6.7	1469.7	70	19.91	612	484	401	317	4.443	19.661	3.508	16.897	8.4	0.392
4/72	-	10	1.80	3.64	3.16	6.40	7.2	1640.5	70	21.83	614	486	401	317	4.865	24.526	3.843	20.740	9.6	0.447
5/72	-	13	1.81	4.80	3.13	8.3	7.0	2148.2	70	29.25	655	545	447	386	7.274	31.800	6.282	27.022	14.6	0.751
7/72	-	16	1.56	3.52	2.85	5.04	6.1	1802.3	73.5	23.09	500	422	385	325	4.947	36.7.47	4.178	31.200	15.1	0.686
8/72	F 014	36	2.10	3.98	3.16	5.98	7.1	1611.1	73.5	20.56	624	502	456	349	5.213	42.090	3.995	39.990	20.5	0.615
9/72	-	25	1.86	4.48	3.16	7.53	7.4	2047.4	73.5	25.53	640	524	462	302	6.552	54.661	4.281	44.271	22.2	0.837
10/72	-	30	2.01	3.97	3.21	6.33	7.6	1678.8	73.5	20.02	632	510	493	374	5.485	60.146	4.165	48.436	24.8	9.884
11/72	-	28	1.96	1.45	3.25	2.41	7.7	631	73.5	7.88	640	524	433	353	1.897	62.043	1.547	49.983	25.6	0.881
1/73	-	32	2.07	3.58	3.22	5.57	7.5	1471.3	73.5	17.86	628	506	423	322	4.203	66.246	3.196	53.179	26.0	0.855
2/73	-	35	2.14	4.40	3.19	6.55	7.3	1747.4	73.5	20.75	582	440	395	292	4.552	70.798	3.369	56.548	28 .0	0.882
3/73	-	. 39	2,20	5.95	3.11	8.40	7.0	2298.9	73.5	27.91	624	501	451	359	6.995	77.793	5.566	62,114	30.3	0.884
5/73	-	42	1.37	4.50	3.53	7.4	7.6	1782.8	73.5	22.14	572	430	106	310	4.761	87.445	3 033	60.88R	33.4	0.884
6/73	-	32	1.87	3.74	3.55	7.1	7.8	1700.9	73.5	20.61	630	510	464	357	5.116	92.761	4.095	73.983	34.4	0.865
7/73					,,,,,,															
8/73																				
9/73																				
10/73				<u> </u>			ļ				ł	ļ	ļ							ļ]
11/73																		ļ		
2/74				 			<u>├</u> ───		<u> </u>		<u> </u>		<u> </u>					 		
2/14							<u> </u>		<u> </u>		t	<u> </u>								_
SUMME				72.94		118		31014		395.47						92.761		73.983	34.4	0.865
Bem.	Bem.											ERTE	420.2	335.6	Bestrat	nlungsat	olauf I	MOL 8C 9) T	ab . 32

ZYKLUS	KANAL	BE-	MAX. UN	GESTÖR T.	FLUSS be	z. DOSIS	8-	FREIGES	SOLL-	ZYKLUS	MAX.	STABL	EISTUN	G[W/cm]	ABBRA	ND (M)	ND/kg M	e]	SPALTGAS	GESAM T-
BR2		ABBRAND	THER	HISCH	SCH	NELL	HEIZUNG	ENERGIE	REAKTOR-	ZEIT	TEMP IN	ABSO L.	ÜBER	ÜBER	ÜBER	GESAMT	ÜBER	ÜBER	ZYKLUS	FREI-
		[%]	10""n/cm [*] s]	10 ² nv t]	10 ¹⁴ n/cm ² s	[10 ² nv t]	[W/or.Al]	[MWD]	LEISTUNG	>80 % RL	ZYKLUS	MAX. I.	ZYKL.L	ZYKL.	ZYKLUS	HOTSPOT	ZYKLUS	ZYKLUS	ENDE	SETZUNG
		r1		- · ·]	<u> </u>				[MWth]	[D]	[°c]	ZYKL.	SPOT	STAB	HOTSPOT		U. STA B	U.STAB	[bar]	
15/70																				
16 / 70			1									1								
17/70																				
1/71										-										
2/71																				
3/71																				
4/71																				
5/71																				
6/71													ļ							
7/71																				
8/71																		ļ		
9/71	B 10/	22	1 06	2.20	2.01	1. 20	E 2	110/ 6	70	16 17	510	1.20	38)	344	2 / 00		2 080	<u> </u>	6.0	
11/71	JF 194	<u>ەر</u>	1 / 1	2.09	2.91	4.29	5.5	1194.0	70	01.07	19	439	201	344	3.422	-	3.089	6 509	6.2	0.129
1/72	-	11	1.84	2.69	2.05	5.00	7 1	1548.2	70	21.37	496	408	374	295	4,443	7.865	3.509	11.241	7.6	0.32
2/72	-	0	1.65	2.43	3.10	4.57	7.3	1195.4	70	16.09	577	520	414	304	4.444	17.253	3.527	14.768	R-6	0.37
3/72	-	23	2.07	3.75	3.39	6.14	6.7	1468.7	70	19.91	568	508	452	349	5.000	22.253	3.861	18.629	9.0	0.355
4/72	-	10	1.80	3.64	3.16	6.4	7.1	ú640.5	70	21.83	578	521	416	335	5.288	27.541	4.072	22.701	10.2	0.408
5/72	-	12	1.79	4.75	3.13	8.3	7.1	2148.2	70	29.25	606	564	488	409	7.941	35.482	6.661	29.362	14.6	0.646
6/72	-	17	1.68	3.56	2.85	6.04	6.1	1802.3	73.5	23.09	536	460	416	333	5.338	40.820	4.278	33.640	14.8	0.577
7/72	-	20	1.65	3.55	3.31	7.12	6.5	1829.0	73.5	22.98	562	498	465	356	5.942	46.762	4.553	31.193	16.2	0.589
8/72	F 346	37	2.12	4.01	3.11	5.89	7.0	1611.1	73.5	20.56	567	506	466	378	5.324	52.086	4.324	42.517	18.9	0.669
9/72	+	17	1.66	3.99	3.74	9.0	8.0	2047.4	73.5	25.53	587	535	492	341	6.989	59.075	4.847	47.364	21.8	0.736
10/72	-	17	1.62	3.2	3.68	7.25	P.2	1678.8	73.5	20.02	599	554	540	420	6.012	65.087	4.680	52.044	23.8	0.754
11/72	•	20	1.67	1.24	3.65	2.71	۶.0	631	73.5	7.98	603	560	499	397	2.187	67.274	1.739	53.783	24.5	0.759
1 / 73	-	24	1.77	3.06	3.68	8.36	7.8	1471.3	73.5	17.86	576	518	460	368	4.567	71.841	3.657	57.440	25.4	0.745
2/73	B 330	42	2.14	4.4	3.41	7.0	8.3	1747.4	73.5	20,75	620	586	512	409	5.902	77.743	4.717	62.157	27.6	0.767
3/73	-	44	2.37	6.4	2.99	36.8	7.9	229A.9	73.5	27.9	606	566	497	399	7.712	85.455	6.187	68.344	29.0	0.742
4/73	₽ 346	43	2.29	4.58	3.13	6.26	6.7	1701.4	73.5	20.05	573	514	471	389	5.255	90.710	4.338	72.682	29.7	0.719
5/73	-	20	1.66	3.48	3.69	7.73	0.3	1782.8	73.5	22.14	584	532	466	384	5.736	96.446	4.731	77.413	32.5	0.755
6/73	E 330	53	2.29	4.58	2.81	5.62	7.6	1700.9	73.5	20.61	606	564	528	427	6.054	102,500	4.889	82.302	33.8	0.745
7/73	-	47	2.45	4.74	2.87	5.55	7.5	1646.1	73.5	12.83	612	573	516	415	5.400	107.900	4.345	86.647	35.1	0.741
8/73	-	51	2,26	6.65	2.92	F.6	7.R	2505.0	73.5	29.41	614	578	514	437	8.398	116.298	7.141	93.788	36.2	0.710
9/73												l								ļ
10/73							<u> </u>	ļ				 		ļ	 				<u> </u>	
11/73						ļ	ļ													
1/74			ļ						ļ			<u> </u>								
2/74			L									<u> </u>			<u> </u>				*	
SUMME				81		136		35165.1		443.71						116.298		93.788	36.2	0.710
Bem.	5		•	<u>.</u>	**************************************	• <u> </u>	•	•	•		MITTELW	ERTE	470.6	379•4	Bestrat	lungsal	olauf N	MOL 8C.	1.0 T	αb . 33
L													L	·						

Tabelle 34: Verlauf der Betriebsbedingungen über die Bestrahlungszeit

	Ferti-	Solltp.	Hüllw.	Stabl.	kalibr.	Solltp.	Hüllw.	Stabl.	Stabl.	End-	Solltp.	Hüllw.	Stabl.
	gungs- spalt [mm]	[°c]	innen- temp. [°C]	[W/cm]	Spalt [mm]	[° c]	innen- temp. [°C]	(1) [W/cm]	(2) [W/cm]	spalt (3) [mm]	[°c]	<pre>innen- temp. [°C]</pre>	[W/cm]
8C1	0,07	618	680	516	0,07	618	680	516	428	0,042	618	695	510
8C2	0,16	644	680	310	0,16	644	680	310	280	0,123	644 (4) 635	690 680	338 330
8c3	0,05	586	654	550	0,04	558 (604)	630 (680)	550	454 (500)	0,015	558	642	534
8c4	0,12	596	640	350	0,13	618 (637)	654 (680)	350	305 (323)	0,095	618 (4) 591	670 645	370 350
805	0,06	608	680	550	0,057	605 (614)	672 (680)	550	452 (460)	0,026	605	690	548
8c6	0,11	574	615	350	0,1	556 (617)	598 (668)	350	306 (350)	0,079	556	604	345
8 c 7	0,05	586	654	550	0,047	576 (606)	645 (680)	550	450 (484)	0,017	576	675	550
8c8	0,13	617	660	350	0,14	640	680	330	309	0,1	640	696	380
809	0,07	618	680	516	0,072	618	680	516	425	0,046	618	700	500
8C10	0,05	586	654	550	0,05	586 (608)	654 (680)	550	450 (477)	0,02	586	670	550
	1	2	3	4	5	6	7	8	9	10	11	12	13

(1) Stableistung, die erreicht wird ohne Berücksichtigung der "NaK-Konvektion"

(2) Stableistung, die erreicht wird nach Berücksichtigung der "NaK-Konvektion"

(3) Aus Diagramm 3 ermittelte Spalte bei Bestrahlungsende

 (4) Erniedrigung der Solltemperaturen entsprechend Hüllwandinnensolltemperatur (8C2) und Sollstableistung (8C4). Diese Massnahme war notwendig, da diese Einsätze in den letzten Bestrahlungszyklen die gewünschten Solltemperaturen tatsächlich erreichten. - Die Abbrände sind aus den vorher definierten Stableistungen berechnet mittels der Formel

- Die "Gesamtfreisetzungsrate" wird wie folgt berechnet:

$$F_{ges} = \frac{P_{t = tz} - P_{t = o}}{Ages.z.St.} \cdot Z$$

- $P_{t = tz}$ und $P_{t = o}$ sind Spaltgasdrücke bei Bestrahlungsende bzw. -anfang

- A ges.z.St. ist der über Zeit und Brennstab gemittelte Gesamtabbrand (unkorrigiert)

$$Z = \frac{V \text{ Gasplenum}}{V \text{ Spaltstoff.U.T}_{1}} \mathcal{P}$$

V_{Gasplenum} = Volumen des Spaltgasraumes + Volumen des Druckumformersystems V_{Spaltstoff} berechnet mit Hüllinnendurchmesser

U = Umrechnungsfaktor für Maßeinheit = $9,1\cdot10^{-5}$

 $T_1 = Mittlere Spaltgastemperatur, hier mit 373^oK angenommen$

Aus den Tab.24-33ist zu entnehmen, daß die Bestrahlungsbedingungen der einzelnen Brennstäbe dauernd den verlangten Betriebsbedingungen angepaßt wurden. Dies geschah hauptsächlich durch die Wahl des Treiber-Brennelements, der Bestrahlungsposition und durch Anpassung der Position der Trimmstäbe in Kombination mit der Reaktorleistung. Ein linearer Zusammenhang zwischen Neutronenfluß und erreichter Temperatur bzw. Stableistung ist nicht feststellbar soweit es den thermischen und schnellen Flußanteil betrifft. Aus der Tab. 34 ist weiterhin ersichtlich, daß der Sollwert 680°C für die Hüllwandinnentemperatur sowie die Sollstableistungen von 550 bzw. 350 W/cm in mehreren Fällen kurzzeitig überschritten wurden. Die maximal zulässige Hüllwandinnentemperatur von 720°C sowie die maximal zulässigen Stableistungen von 605 bzw. 385 W/cm wurden nur in ganz seltenen Störfällen erreicht oder überschritten. Die Angaben für thermische und schnelle Flüsse sind aufgrund der Ergebnisse der letzten Flußmessungen korrigiert worden (Abb. 12 u. 13).

Das Verhalten der FAFNIR-Einsätze während der Bestrahlung war ausgezeichnet. Ein großer Prozentsatz der Thermoelemente und Druckumformer arbeiteten über die gesamte Bestrahlungszeit. Weniger robust erwiesen sich die Ausgleichskabel. Die Out-pile-Anlage funktionierte zuverlässig.

Der Betriebsaufwand der Einsätze umfaßte folgende Aktivitäten:

- Vorbereitung der Einsätze und Anlagen für Reaktorstart,
- Inbetriebnahme,
- Protokollierung aller Meßwerte im 4-Stunden-Rhythmus
- Außerbetriebnahme
- Eingriffe bei 4-Stunden-Alarmen und
- Wartung bzw. Reparaturen an Anlagen und Einsätzen.

Nach jedem Reaktorzyklus wurde für jeden Einsatz ein Zyklusbericht verfaßt /11/.

Der berechnete Zusammenhang zwischen registrierter Temperatur und Stableistung basiert auf einigen Annahmen. Deshalb wurde parallel zur FAFNIR-Bestrahlung ein FAFNIR-Kalibrationseinsatz eingesetzt. Dieser Einsatz erlaubte es, die Kenntnisse über den Zusammenhang zwischen Temperatur und Stableistung und über die Kenndaten typischer FAFNIR-Bestrahlungspositionen im BR2 zu verbessern.

Einen wesentlichen Beitrag zur besseren Interpretation der Bestrahlungsergebnisse lieferte weiter ein Out-pile-Versuch, wobei ein FAFNIR-Einsatz mittels elektrischer Heizung thermodynamisch untersucht wurde. Hierbei stellte man fest, daß der in /9/ dargestellte

korrigierte Zusammenhang zwischen Hüllwandtemperaturen und linearer Spaltleistung gut mit den experimentellen Ergebnissen übereinstimmt. Die Korrekturfaktoren, betreffend den Beitrag der NaK-Konvektion bei der Wärmedurchgangsrechnung (siehe Tab.34),wurden hiermit bestätigt.

7.2 Ergebnisse während der Bestrahlung

7.2.1 Zusammenhang zwischen Temperatur und Stableistung

Für den praktischen Betrieb der 8C-Einsätze wurden als Betriebsbedingungen 550 W/cm \pm 10 % und 350 W/cm \pm 10 % für die Stableistung und 680°C und 720°C als Sollwert bzw. max. zulässiger Wert für die Hüllwandinnentemperatur spezifiziert.

Der Zusammenhang zwischen der an der Außenhülle des Brennstabes registrierten Temperatur und der linearen Stableistung wurde rechnerisch aus der Wärmedurchgangsgleichung bestimmt /10/. Das Rechenprogramm berücksichtigt die Temperaturabhängigkeit der Wärmeleit- und Wärmeübergangszahlen der einzelnen Komponenten, die durch thermische Dehnung hervorgerufenen Dimensionsänderungen und den Beitrag der Wärmestrahlung. In dem NaK-Behälter wird mit ungestörter, natürlicher Konvektion des Flüssigmetalls gerechnet. Für eine Reihe von Gasspalten zwischen dem NaK-Behälter und dem Cd-Sandwichrohr liefert das Programm den Zusammenhang zwischen gemessener Temperatur und Stableistung bei konstanter Primärwassertemperatur und γ -Wärme. Die γ -Wärme ist die in den Strukturmaterialien des Einsatzes erzeugte Wärme durch Absorption von Gammaquanten, die durch (n, γ)-Reaktionen im Core und Cadmiumschirm entstehen.

Die Dimensionen der Gasspalte in Abb. 14 sind auf Raumtemperatur bezogen. Die Kurvenschar der Diagramme wurde sowohl für Helium als auch für Neon als wärmeleitendes Gas im Gasspalt berechnet. Anhand dieser Kurvenschar und den gemessenen Fertigungsspalten wurden die Solltemperaturen für die ersten Inbetriebnahmen festgelegt.

Aus Tabelle 34, Spalte 1 - 4 ist ersichtlich, welche Stableistungen und Hüllwandinnentemperaturen dabei erreicht werden konnten.

Zwei Ergebnisse während der Bestrahlung haben einen Einfluß auf den Betrieb der Einsätze ausgeübt:

Zuerst kam man durch theoretische Überlegungen und durch die ersten Ergebnisse von Nachuntersuchungen an früheren FAFNIR-Einsätzen zu der Annahme, daß die Konvektion des Flüssigmetalls im NaK-Behälter nicht ungestört stattfindet und demzufolge dieser Beitrag in der Wärmedurchgangsrechnung überschätzt wurde.

Eine erste Korrektur des Zusammenhangs zwischen gemessener Temperatur und Stableistung erfolgte /9/. Es wurde abgeschätzt, daß bei den gleichen Betriebssolltemperaturen 17 % weniger Leistung bei 550 W/cm-Stäben und 12 % weniger Leistung bei 350 W/cm-Stäben abgeführt wurde. Die Betriebsbedingungen wurden jedoch wegen der relativ unsicheren Annahmen noch nicht korrigiert.

Der Aufbau des Einsatzes erlaubte weiterhin, daß der Gasspalt während des Betriebes kalibriert werden konnte: Es wird bei konstanter, möglichst hoher Reaktorleistung d.h. Eingangstemperatur, im Gasspalt ein He-Ne-Gasaustausch vorgenommen und die entsprechenden Temperaturen beobachtet. Aus den Wärmedurchgangsrechnungen für Helium und Neon kann die Spaltbreite errechnet werden.

Dieser "warme" Gasspalt wurde während der Bestrahlung regelmäßig überprüft, wobei sich herausstellte, daß der Spalt im Laufe der Bestrahlung etwa linear abnahm. Abb. 14 gibt einen Überblick über den Spaltverlauf.

Eine Abnahme der Spaltbreite im Laufe der Bestrahlung bedeutet, daß bei gleichbleibender Betriebstemperatur eine größere Leistung abgeführt werden kann. Eine Überprüfung der zulässigen Betriebstemperatur erfolgte daher anhand der kalibrierten Gasspalte. Anhand dieser Gasspalte (Spalte 5) wurden die neuen Solltemperaturen (Spalte 6) festgelegt. Die hierbei erreichbaren Hüllwandinnentemperaturen und Stableistungen (Spalte 7 und 8) wurden bestimmt ohne Berücksichtigung der zuerst geschätzten "NaK-Konvektions-Korrektur". In Spalte 9 ist die Stableistung eingetragen, die bei den Temperaturen aus Spalte 6 abgeführt werden könnten (unter Berücksichtigung der Korrektur der NaK-Konvektionen). Die in den Spalten 6, 7 und 9 zwischen Klammern angeführten Zahlen sind die Werte, die man bei Korrektur der NaK-Konvektion für die Gasspalte der Spalte 5 hätte einstellen müssen, um die gewünschte Sollstableistung (Einsatz 8C6) oder Hüllwandinnentemperatur (Einsätze 8C3, 8C4, 8C5, 8C7 und 8C10) zu erreichen. Von diesem Zeitpunkt an wurden die erreichbaren Stableistungen aufgrund der Solltemperaturen aus Spalte 6 unter Berücksichtigung des abnehmenden Gasspaltes fortlaufend überprüft (ohne Berücksichtigung der NaK-Konvektionskorrektur). Die Stableistungen erreichten im weiteren Verlauf der Bestrahlung gelegentlich Werte über die Sollstableistung, ohne daß die maximal zulässigen Stableistungen jedoch überschritten wurden. Das gilt auch für die Hüllwandinnentemperatur.

Die Bestrahlungsbedingungen hätten generell für einige Experimente erniedrigt werden müssen, wenn nicht die vorgenannten Out-pile-Versuche im weiteren Verlauf der Bestrahlung bestätigt hätten, daß der Beitrag der NaK-Konvektion bei der Wärmeabfuhr vernachlässigt werden kann.

Die Spalten 10, 11, 12 und 13 der Tabelle 34 enthalten schließlich die Bestrahlungsdaten, die bei Bestrahlungsende und bei der gleichen Solltemperatur ohne Konvektion erreicht werden konnten. Da nur die Einsätze 8C2 und 8C4 die gewünschten Solltemperaturen erreichten, wurden hier die Solltemperaturen für die letzten Zyklen herabgesetzt. Maximal zulässige Temperaturen und/oder Stableistungen wurden nur in seltenen Ausnahmefällen erreicht.

7.2.2 Abbrandberechnung und Korrekturen

Die Abbrandberechnung wurde durchgeführt aufgrund der gemessenen Temperaturen (siehe hierzu Punkt 7.1). In den Tabellen 24-33 sind die Abbrände als unkorrigierte Werte eingetragen. Als Abbrandziel wurde ein Abbrand von etwa 115 MWd/kgMe festgelegt. Nach der Bestrahlung stellte sich heraus, daß die Abbrandzunahme durch Spaltverminderung die Abbrandabnahme durch Wegfall der NaK-Konvektion übertraf, so daß schließlich der Zielabbrand von 100 MWd/kgMe überschritten wurde.

In der Tabelle 35 werden Abbrandberechnungen und -korrekturen zusammengefaßt. Hierzu sind folgende Erläuterungen nötig:

- Al ist der aus den Zyklusberichten berechnete unkorrigierte Abbrand an der Stelle des heißesten Thermoelements. Dieser Abbrand ist über die Bestrahlungszeit integriert. Der "Hot Spot"lag bei -30 mm bei den Einsätzen 8C1, 8C2, 8C3, 8C6, 8C7, 8C8 und 8C9, sonst bei -90 mm. Der Unterschied zwischen den Positionen -30 und -90 mm war immer sehr gering, was dem axialen epithermischen Flußprofil in Abb. 12 entspricht. Dieser Abbrand kann als maximaler Abbrand des Brennstabes im Hot Spot betrachtet werden.
- A2 ist der max. Abbrand des Brennstabes nach Korrektur mit dem sogenannten NaK-Konvektions-Korrekturfaktor.
- A3 ist der maximale Abbrand des Brennstabes nach Berücksichtigung der Korrektur der Gasspaltabnahme und "Konvektion" (Faktor F = (^{0,88}_{0,83} + 0,00136 · A1).
 Dieser Wert ist der korrigierte, maximale Gesamtabbrand des Brennstabes im Hot Spot.
- A4 ist der Gesamtabbrand des Brennstabes, gemittelt über Zeit und Stablänge. Die Teilwerte dieses Abbrandes werden als rechnerische Mittelwerte aus den über die Stablänge integrierten Stableistungen bei Zyklusbeginn und Zyklusende berechnet.
| Expe-
riment | Max. Abbrand im Hot
t Spot gem. über die Zeit | | | Abbrand gem. über Zeit
und Stablänge | | | Abbrände für die einzelnen Höhenkoten, berechnet aus
A3 mit Hilfe des Flussprofils | | | | | | | ; | |
|-----------------|--|--|--|---|--|--|---|------------------------------|-----------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|------------|
| | Ausgangswert
Hot-spot | Korrektur NaK-
Konvektion:A2=fA1
f ₁ =0,83 für 550 W/cm
f2=0,8 8 für 350 W/cm | Korrektur der Spalt-
abnahme +
NaK-Konvektion
A3=F.A1 | Ausgangswert | Wert, korrigiert
entsprechend A3
A5=F.A4 | Wert, berechnet auf
Grund d. Flusspro-
fils A3.K=A6
K=0,856 | Höhe -297 mm
TE10; k ₄₀ =0,62
A7=A3.k10 | Höhe -230 mm
TE9 k9=0,795 | Höhe -160 mm
TE8 k8=0,94 | Höhe – 90 mm
TE7, 11 k7=0,995 | Höhe – 30 mm
TE6 k6=0,995 | Höhe + 40 mm
TE5 k5=0,972 | Höne +110 mm
TE4 k4=0,895 | Höhe +180 mm
TE3 k3=0,77 | . |
| | A 1 | A2 | A3 | A4 | A5 | A6 | А7 | А8 | A9
(A'9) | A 10
(A'10) | A11
(A'11) | A12 | A13 | A 14 | - |
| 8C1 | 107,024 | 88,83 | 104,41 | 79,371 | 77,43 | 89,37 | 64,73 | 83,06 | 98,14
(85) | 103,89 | 103,89
(104,41) | 101,49 | 93,45 | 80,4 | |
| 8C2 | 112,971 | 99,41 | 116,77 | 87,391 | 90,01 | 99,95 | 72,4 | 92,83 | 109,76
(100,96) | 116,19 | 116,18
(116,77) | 113,5 | 104,51 | 89,91 | 1 |
| 8C3 | 114,006 | 94,62 | 112,30 | 90,071 | 88,72 | 96,13 | 69,63 | 89,28 | 105,56 | 111,74 | 111,74 | 109,16 | 100,51 | 86,47 | - |
| 8C4 | 113,756 | 100,1 | 117,70 | 94,115 | 97,38 | 100,75 | 72,97 | 93,57 | 110,64 | (117, 11) | (117, 11) | 114,40 | 105,34 | 90,63 | |
| 805 | 116,225 | 96,467 | 114,84 | 96,373 | 95,22 | 98,30 | 71,2 | 91,3 | 107,95 | 114,27 | 114,27 | 111,62 | 102,78 | 88,43 | - |
| 866 | 115,095 | 101,28 | 119,3 | 92,209 | 95,58 | 102,12 | 73,97 | 94,84 | 112, 14 | 118,70 | 118,70 | 115,96 | 106,77 | 91,86 | - |
| 867 | 117,824 | 97,79 | 116,67 | 97,826 | 96,87 | 99,87 | 72,34 | 92,76 | 109,67 | 116,09 | 116, 1 | 113,41 | 104,42 | 89,84 | - |
| 8c8 | 113,927 | 100,25 | 117,91 | 82,776 | 85,67 | 100,93 | 73,1 | 93,74 | 110,83 | 117,32 | 117,32 | 114,6 | 105,53 | 90,79 | - |
| 809 | 92,761 | 76,99 | 88,69 | 73,983 | 70,74 | 75,92 | 54,99 | 70,51 | (33, 37)
(76, 97) | 88,25 | 88,25 | 86,21 | 79,38 | 68,29 | - |
| 8C10 | 116,298 | 96,53 | 114,92 | 93,788 | 92,68 | 98,37 | 71,25 | 91,36 | 114,36
(114,25) | (114, 36)
(114, 92) | 114,35
(113,31) | 111,7 | 102,85 | 88,49 | 1 |

Tabelle 35: Abbrandberechnung und -Korrektur

Ţ 66 Der Verlauf der Stableistung über die Zykluszeit wird hierbei nicht berücksichtigt. Im allgemeinen wurden während des Reaktorzyklus höhere Stableistungen erreicht als bei Zyklusbeginn und gegen Zyklusende.

- A5 ist der korrigierte Abbrand, gemittelt über Stab und Zeit. Der Korrekturfaktor ist derselbe, wie der für A3.
- A6 ist der Abbrand über Zeit und Stab, diesmal berechnet über das Flußprofil.

Ausgangswert ist der über die gesamte Bestrahlungzeit integrierte Abbrand im Hot Spot, A3. In den Abbildungen 12 u. 13 ist dargestellt, wie aus dem Profil des epithermischen Flusses (gemessenes Profil) für die betreffende Stablänge der mittlere Koeffizient K = 0,856 bestimmt wird. Den hiermit aus A3 berechneten mittleren Abbrand A6 betrachten wir als eine genauere Angabe als A5. Er liegt im Mittel 8% höher als A5.

A7 bis A14 sind Abbrände für die einzelnen Höhenkoten über die Zeit integriert und berechnet aus A3. Die Koeffizienten k n resultieren aus dem axialen Flußprofil des epithermischen Flusses. In den Positionen -30, -90 und -160 mm wurden die über die Zeit integrierten Werte aus den Zyklusberichten, korrigiert mit dem Faktor F, als Vergleich eingetragen. Es sind dies die Abbrände A9', A10' bzw. A11'.

Aus dem Vergleich (siehe S. 68) zwischen A9, A10, A11 und A9', A10', A11' fällt zuerst die meist gute Übereinstimmung auf. Hieraus kann man folgern, daß auch der Vergleich zwischen A5 und A6 zulässig ist.

Treten größere Unterschiede auf zwischen A9 und A9' bzw. zwischen A10 und A10' dann liegen die aus A3 über das Flußprofil berechneten Werte über den Zykluswerten.

	Höhe	TE	A9	A9'	A10	A10'	A A	Bemerkung
8C1	-160	8	98,14	85,00	103,89	9 6,16	1,15	TE8 defekt
	- 90	7,11			103,89	96,16	1,08	Spaltunter- schiede
8C2	-160	8	109,76	100,96			1,08	TE in Ordnung
	- 90	7,11			116,19	110,10	1,05	TE in Ordnung
8C3	-160	8	105,56	98 , 64				TE in Ordnung
8C8	-160	8	110,83	95 , 40			1,16	TE8 defek t
	- 90	7,11			117,32	109,63	1,07	TE7, 11 defekt
8C9	-160	8	83,37	76,97		,	1,08	TE8 defekt

Vergleich der Abbrände

Die größten Unterschiede bei 8C1 und 8C8 auf Höhe -160 mm können durch frühzeitigen Ausfall der Thermoelemente teilweise erklärt werden. Darum mußten die Temperaturen für diese Höhenkoten aus dem Temperaturverlauf extrapoliert werden. Größere örtliche Gasspaltunterschiede im Vergleich zu dem benutzten mittleren Gasspalt täuschen bei 8C2 und 8C3 abweichende Zyklusabbrände bei -90 und -160 mm vor.

Das benutzte axiale Profil des epithermischen Flusses wurde mittels Flußsonden in typischen FAFNIR-Bestrahlungspositionen gemessen.

Die Möglichkeit, den Abbrand direkt aus dem Neutronenflußspektrum oder aus den Spaltraten für die einzelnen Spaltstoffisotopen zu bestimmen, wird für den BR2 nicht praktiziert.

Eine Ungenauigkeit liegt in der Formel zur Berechnung des Abbrandes. Hierbei wird eine mittlere Stableistung über die Zykluszeit multipliziert mit einer Zykluszeit bei der die Reaktorleistung 80 % oder mehr der nominellen Reaktorleistung beträgt.

Abbrände, die bei Reaktorleistungen unter 80 % der Nominalleistung erzielt wurden, werden hierbei also nicht berücksichtigt. Eine Abschätzung der Betriebszeiten bei verminderter Reaktorleistung im Vergleich zu den Vollastbetriebszeiten ergibt, daß zu den erreichten Abbränden etwa 1 % hinzugefügt werden sollte. Diese Korrektur wurde wegen ihrer Geringfügigkeit in Tabelle ³⁵ nicht durchgeführt.

7.2.3 Spaltgasdruckaufbau

Wie schon zuvor erwähnt, war jeder Brennstab der Mol 8C-Reihe über ein Kapillarrohr mit einem Druckumformer im Aufhängerohr verbunden. Die Einbaulage des Druckumformers wurde so gewählt, daß auf der einen Seite der Druckumformer einer möglichst geringen Neutronenbelastung ausgesetzt war, und auf der anderen Seite die bis zum Druckumformer hochsteigenden Spaltgase eine noch annehmbare Aktivität auf der Höhe des Einsatzkopfes verursachen können. Es konnte weder eine Neutronenschädigung des Druckumformers noch eine erhöhte Aktivität des Einsatzoberteils während der Bestrahlung festgestellt werden. Eine Nachuntersuchung der bei Mol 8B benutzten Druckumformer des gleichen Fabrikats ergab, daß auch die Kennlinien der Druckumformer durch die Bestrahlung nicht beeinflußt wurden. Die Druckumformer wurden vor und nach der Bestrahlung geeicht. Das Brennstabgasplenum mit dem Druckumformerfreivolumen wurde auf Dichtheit getestet und mit Helium geflutet. Das gesamte Freivolumen für die Spaltgase wurde hierbei ebenfalls bestimmt.

Beim Abtrennen und anschließendem Verschweißen dieses Stutzens entwich eine unbestimmte Heliummenge, so daß bei Bestrahlungsbeginn unterschiedliche Brennstabinnendrücke vorlagen (siehe Abb.15 - 24).

Die Druckumformer der Einsätze 8C1, 8C2, 8C4, 8C6 und 8C8 messen den Druckunterschied zwischen Brennstabinnern und Einsatzunterteil (relative Druckumformer), die anderen sind Absolut-Druckumformer, d.h. sie sind unabhängig von Druckschwankungen im Einsatzunterteil.

In den beigefügten Abbildungen 15 - 24 sind über den mittleren Abbrand über Zeit und Stablänge der Spaltgasdruckaufbau, die Zyklusfreisetzungsrate und die Gesamtfreisetzungsrate aufgetragen In Abb. 25 sind die Spaltgasdruckverläufe und die Freisetzungsraten aller 10 Stäbe nochmals zusammengefaßt. Eine grobe Betrachtung dieser Abbildungen führt zu folgenden Aussagen:

- Ein stetiger Spaltgasdruckaufbau findet ab etwa 10 MWd/kgMe statt. Bei niedrigeren Abbränden bleibt der Druck in dem Brennstab etwa konstant. Die Druckschwankungen im chronologischen Verlauf des Brennstabinnendruckes, speziell zwischen den Drücken bei Zyklusende und bei Zyklusbeginn des darauffolgenden Reaktorzyklus, sind hauptsächlich auf die zum Zeitpunkt der Druckmessung herrschenden unterschiedlichen Temperaturen zurückzuführen. Eine durchgeführte Temperaturkorrektur anhand einer mittleren Temperatur für das gesamte Gasplenum führte nicht zu einer Verbesserung in der Kontinuität der Druckauftragung.
- Die Messung des Spaltgasdruckes (Abb.15-24) in dem wichtigen Bereich ersten Abbrandprozentes ist durch den wechselhaften Reaktorbetrieb zu sehr beeinflußt, um genaue Aussagen machen zu können. In einigen Fällen ist zuerst ein deutlicher Druckabfall zu sehen, jedoch kann man nicht berechnen, wie groß der Temperatureffekt hierbei war, da die Temperaturschwankungen in dem Meßvolumen nicht bekannt sind. Zur Messung des Druckverlaufes in diesem Bereich ist eine temperaturunabhängige Absolutmessung notwendig.
- Die gemessenen Enddrücke sind die Drücke des insgesamt zur Verfügung stehenden Freivolumens in Brennstab, Kapillaren und Druckumformer. Korrigiert auf das Freivolumen des Brennstabes allein ergeben sich für diese Brennstäbe die in Tabelle 36 aufgeführten Spaltgasdrücke P_{SK}.
- Die verwendeten Volumina betragen: Gasvolumen $V_{Plenum} = 8,9 \text{ cm}^3$ Spaltgasvolumen im Brennstab $V_s = 6,8 \text{ cm}^3$ (für die Brennstäbe 8C3, 8C4, 8C7 und 8C8) $V_s = 5,9 \text{ cm}^3$ (für die Brennstäbe 8C1, 8C2, 8C5, 8C6, 8C9 u. 8C10).

Einsatz	Abbra A5	ände A6	Druck bei Bestrahlungsende und Betriebstemp. bzw. Raumtemp. ^P S bar ^P SE bar		Druck, korrigiert auf Spaltgasvolumen ^P SK bar	P _S A5	PSK A6
8C1	77,40	89,40	32,0 ⁺⁾	26,0 ⁺⁾	48,3	0,620	0,540
8C2	90,00	100,00	38,2	31,0	57,6	0,640	0,576
8C3	88,70	96,10	33,1	27,4	43,3	0,490	0,450
8C4	99 , 75	103,81	36,8	33,1	48,2	0,480	0,460
8C5	95,20	98,30	30,7	26,0	46,3	0,486	0,470
8C6	95,60	102,10	32,4	25,4	48,9	0,510	0,480
8C7	96,90	99,90	32,2	27,2	42,1	0,430	0,420
8C8	85,70	100,90	36,0	29,0	47,1	0,550	0,470
8C9	70,70	75 ,9 0	34,4	23,4	51,9	0,730	0,680
8C10	92,70	98,40	36,2	26,4	54,6	0,590	0,550
+) Gesch letzt	nätzter ten Best	Wert, d trahlung	la Druckumformer gszyklus defekt	Mittelwert	0,550	0,510	

Tabelle 36 Verhältnis zwischen Spaltgasdruck und Abbrand bei Bestrahlungsende

Tabelle 36 ist zu entnehmen, daß die Spaltgasdruckzunahme etwa 0,5 bar pro MWd/kgMe Abbrand beträgt.

- Für Abbrände kleiner als 1 % können infolge stärkerer Druckschwankungen keine zuverlässigen Aussagen bezüglich der Gesamtfreisetzungsrate gewonnen werden.
- Darauf folgt eine Periode, in der der Spaltgasdruck mehr ansteigt als der Abbrand, so daß die Freisetzungsrate deutlich zunimmt. Schließlich erreicht jeder Brennstab einen Zustand, bei dem Spaltgasdruck- und Abbrandzunahme proportional sind. Die Freisetzungsrate bleibt konstant. Diese Gesamtfreisetzungsrate bei Zyklusende liegt für ^{alle} Brennstäbe im Mittel bei 0,75. Sie wird in den meisten Fällen bei 50 MWd/kgMe Abbrand schon erreicht.
- Die Zyklusfreisetzungsrate, d.h. das Verhältnis zwischen Druckund Abbrandzunahme pro Zyklus ist eine Momentaufnahme, die durch den unregelmäßigen Druckverlauf zu stark beeinflußt wird und für die Gesamtbeurteilung des Spaltgasdruckaufbaus nicht verwendet werden sollte.

7.2.4 Brennstabschäden

Bei normalem Verlauf der Bestrahlung wurden die Einsätze bei einem berechneten unkorrigierten maximalen Abbrand von etwa 115 MWd/kgMe ausgebaut. Als Betriebsanweisung für einen frühzeitigen Abbruch der Bestrahlung galt, daß der Reaktor sofort abgeschaltet und der Einsatz ausgebaut werden mußte, wenn gleichzeitig Temperaturschwankungen und Spaltgasdruckabfall auftraten, d.h. wenn die Dichtheit des Brennstabes nicht mehr gewährleistet ist.

Diese Phänomene traten auf bei den Einsätzen 8C1, 8C2, 8C9 und 8C10. In chronologischer Reihenfolge sah die Registrierung der Brennstabdefekte so aus, daß anfänglich leichte Temperaturunregelmäßigkeiten an einem oder mehreren Thermoelementen nicht sofort mit einem Spaltgasdruckabfall in Beziehung gebracht werden konnten. Erst eine längere Beobachtung der Spaltgasdruckregistrierung ließ in solchen Fällen auf einen tatsächlichen Druckabfall schließen. In diesen vier Fällen wurde der Reaktor abgeschaltet und der Einsatz entladen. Im Falle von 8C9 erfolgte die Abschaltung durch eine Fehlinterpretation der Spaltgasdruckaufzeichnung etwa sieben Stunden zu spät.

Neutrografische Aufnahmen der Brennstäbe nach Bestrahlung zeigten bei den vier defekten Stäben größere Defektstellen unterhalb der Abstandshalter bei etwa -90 mm und vor allem bei + 180 mm, bezogen auf Reaktor-O-Ebene (Abb. 26 und 27).

Dies führte zu der Annahme, daß beim Auftreten von feinen Rissen in der Brennstabhülle die sich im Brennstab befindenden Füllgase und gasförmigen Spaltprodukte über die Risse entwichen und in dem umgebenden NaK hochstiegen bis zu den Abstandshaltern. Bei den Abstandshaltern kam es zur Stauung der Gase, so daß hier eine örtliche Wärmebarriere gebildet wurde, die zu einem Durchbrennen der Brennstabhülle führte.

Zusätzlich zu dieser Erscheinung zeigten die Stäbe 8C9 und 8C10 in der Heißen Zone oberhalb des mittleren Abstandshalters, d.h. bei etwa -50 mm bezogen auf Reaktor-O-Ebene, eine deutliche Bersterscheinung /11/.

8. Zerstörungsfreie Nachuntersuchung

8.1 Profilometrie

An allen 10 Prüflingen wurde vor und nach der Bestrahlung eine Vermessung der äußeren Dimensionen vorgenommen. Die Durchmesser wurden mittels Wendelschrieben bzw. Mantellinienschrieben bestimmt. Die Durchmesserbestimmung wurde auf einer Meßbank mit Hilfe eines indüktiven Wegaufnehmers als Meßtaster durchgeführt, wobei die Meßwerte kontinuierlich aufgezeichnet wurden.

Die Stäbe 1, 4, 7, 9 und 10 wurden mittels der Wendelschriebe und die restlichen Stäbe 5, 6 und 8 mittels Mantellinienschrieben erfaßt. Letztere wurden 90[°] zueinander versetzt angefertigt. Die Zuordnung ist auf den Abbildungen 28 - 32 markiert.

Die Wendelschriebe wurden mit einer Steigung von 5 mm/Umdrehung bei 4 Umdrehungen/min. gefahren. Nach Differenzbildung der Schriebe vor und nach der Bestrahlung wurde der Wert auf den Nominaldurchmesser bezogen. Die Durchmesserveränderung $\Delta D(\%)$ wird in den Abbildungen 28 - 32 über der Stabachse wiedergegeben. Die Tabelle 37 gibt die jeweiligen Maxima wieder.

Tabelle 37 Maxima der Durchmesserveränderung

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
∆D(%)	0,5	1,60	0,35	1,85	0,95	0,30	0,55	0,55	1,10	1,40

8.2 Durchleuchtung

Die Brennstäbe wurden mit Ausnahme der Stäbe C3, C5 und C7 bereits in Mol am BR2 in der FAFNIR-Kapsel neutronografiert (siehe Abb. 26 u. 27). Sehr gut sind hier bereits die Defekte der Stäbe 1, 2, 9 und 10 erkennbar. In Karlsruhe wurden alle Stäbe (außer 9 und 10) im Rahmen der zerstörungsfreien Nachuntersuchung nochmals in den Heißen Zellen mittels eines Betatrons (19 MeV) durchstrahlt). Diese Bilder sind in Abb. 33 und 34 enthalten. In der Tabelle 38 sind die Hauptmerkmale, die anhand der Betatron-Aufnahmen zu erkennen sind, zusammengestellt.

Stab	Bemerkung
1	Untere Isoliertablette abgeplatzt, Cs-Anhäufung oben ⁺⁾
2	Defektstelle weiß, Spalte in Brutstoff-Säule
3	Zentralkanal wird nach unten dünner Cs-Anhäufung oben ⁺⁾
4	Cs-Anhäufung oben ⁺⁾
5	Cs-Anhäufung oben ⁺⁾ und unten ⁺⁺⁾ , Spalte in Brutstoff-Säule, Zentralkanal teilweise blockiert
6	siehe Stab 8
7	siehe Stab 5
8	Cs-Anhäufung unten ⁺⁾ , Spalte in Brutstoff-Säule
9	keine Betatron-Durchstrahlung
10	keine Betatron-Durchstrahlung

Tabelle 38 Beobachtungen anhand der Betatron-Aufnahmen

+) Übergang Brennstoff - Brutstoff,

++)Übergang Brennstoff - untere Isoliertablette

- 90 -

- 91 -

-92-

- 93 -

1 - 76

Abb. 33

. Stab 1 Stab 2 Stab 3 Stab 4

Betatron-Durchleuchtungen

8.3 Y-Spektrometrie

Zur Charakterisierung der Brennstoffsäulen hinsichtlich der Rißstruktur, des axialen Leistungsverlaufes der Brennstoffverlagerung und der Spaltproduktwanderung wurden die Prüflinge γ -spektrometrisch untersucht. In dieser Untersuchung wurde zum einen die γ -Aktivität entlang der Stabachse als γ -Profil erstellt, zum anderen γ -Spektren von bestimmten Bereichen des Prüflings aufgenommen.

Als Detektor diente hierzu ein Halbleiterkristall (GeLi) mit nachgeschaltetem Multikanal-Analysator. Profile und Spektren wurden mit einem schlitzförmigen Kollimator mit den Maßen 0,5 mm x 20 mm x 700 mm durch die Abschirmwand der Heißen Zellen aufgenommen. Während der Messung rotierten die Prüflinge um ihre Längsachse. Hierdurch wurde erreicht, daß Aktivitätsansammlungen im Bereich der Brennstoffaußenzonen nicht durch eine zufällige ungünstige Orientierung des Prüflings zum Detektor unbeachtet blieben.

Die Standard-Untersuchung wurde mit den Aufnahmen eines typischen γ -Spektrums begonnen. Dazu wurde ein Brennstoffsäulenbereich ausgewählt, der eine möglichst geringe Konzentrationsänderung an Spaltprodukten erwarten ließ. Gewöhnlich war dies etwa die Mitte der Brennstoffsäule. Anhand des γ -Spektrums wurden dann die besonderen Energiebereiche für bestimmte γ -Profile ausgewählt. Unabhängig von γ -Spektren wurde von jedem Prüfling ein integrales Profil aufgenommen, das die γ -Linien im weiten Bereich zwischen 400 keV und 1700 keV umfaßte.

Zu den Profil**e**n, die an allen Prüflingen gemessen wurden, zählte auch das Zr/Nb-95-Profil. Vom Spalt-Zirkon ist bekannt, daß es sich in Oxidbrennstoff unter den hier betrachteten Bestrahlungsbedingungen nicht an- oder abreichert. Somit kann das Zr/Nb-95-Profil in besonderem Maße als Brennstoff-Indikator zur Ermittlung von Brennstoffverlagerungen herangezogen werden. Bei kurzen Bestrahlungszeiten ist dem Profil auch der axiale Stableistungsverlauf zu entnehmen.
Je nach Abklingdauer wurden weitere Nuklid-Profile zur Bestimmung der Spaltproduktwanderung vermessen. Es waren dies insbesondere Profile für Cs/Ba-137 und Ru-106.

Zur Vervollständigung der Nuklidprofile in Bezug auf die Spaltproduktwanderung wurden, verteilt über die gesamte Prüflingslänge, zusätzliche Spektren aufgenommen, wo immer die Profile einen Hinweis auf anomale Spaltproduktverteilungen brachten. Im Mittel waren etwa 6 Spektren für die Charakterisierung der Spaltproduktwanderung ausreichend. In Einzelfällen wurde die Zahl noch erhöht.

Von den hier untersuchten Stäben werden in den nachfolgenden Abbildungen 35 - 50 sowohl das integrale γ -Profil, als auch das Cs-137- und das Zr/Nb-95-Profil gezeigt.

Die Cs-137-Profile zeigen das bereits gewohnte Bild: starke Cs-137-Anreicherungen an den Enden der Spaltstoffsäule und Cs-Defizit an den Stellen der Stabschäden.

Die Zr/Nb-Profile zeigen eine unterschiedliche Aufwölbung in Höhe Brennstoffsäulen-Mitte, was mit den unterschiedlichen Positionen der Kapseln im BR2 während der einzelnen Zyklen erklärbar ist.

9. Interpretation der Hülldehnungen

Zur Erklärung der bei den Prüflingen der Vg Mol 8C aufgetretenen Hüllverformungen sind sowohl Fließen des Hüllmaterials als auch Kriechen in Betracht zu ziehen, denn die Hülltemperaturen lagen bei einigen Prüflingen, zumindest über einen Teil der Bestrahlungszeit hinweg, hoch genug. Von großem Interesse ist nun die Klärung der Frage, welches der beiden Phänomene (Fließen oder Kriechen) die dominierende Rolle gespielt hat.

- 101 -

- 102-

- 103 -

- 104 -

- 105 -

- 106 -

-107 -

- 108 -

- 109 -

- 110-

- 111 -

- 112 -

- 113 -

- 114 -

- 115 -

- 116 -

Beide Effekte sind hauptsächlich infolge instationärer Vorgänge wirksam geworden; dies ist aus Abbildung 51 zu ersehen. Es sind hier die maximalen Hülldehnungen der Prüflinge als Funktion des Abbrandes am "Hotspot" aufgetragen. Es existiert keine Korrelation zwischen Abbrand und Größe der Hülldehnung. Daraus ist zu schließen, daß das Brennstoffschwellen und die Spaltgasfreisetzung (in direkter Weise) keinen wesentlichen Beitrag zur mechanischen Belastung der Hülle liefern. Dies wurde auch schon von anderer Seite für oxidische Brennstäbe festgestellt /13/.

Da die Prüflinge unterschiedliche Schmierdichten (83,86 und 90 % TD) hatten, wurden in der Abbildung 52 die maximalen Hülldehnungen (Δ d/d)max. (die Spitzen sind dabei aber unberücksichtigt) als Funktion der Schmierdichte aufgetragen. Die Stäbe mit der Schmierdichte von 83 % TD haben relativ kleine Hüllverformungen erfahren. Doch zeigen die Prüflinge mit 90 % TD Schmierdichte gravierende Unterschiede in den Hülldehnungen, die sich nur durch die unterschiedliche Belastung aufgrund von Lastwechseln erklären lassen. Aus Abbildung 52 ist weiter zu ersehen, daß die axiale Rückhaltung keinen großen Effekt hat.

In /14, 15 und 16/ wurde gezeigt, daß die Leistungsrampen in Zahl und Höhe in entscheidender Weise für die bei den Prüflingen der FR2-Kapselversuchsgruppen 4b und 5b aufgetretenen Hüllverformungen verantwortlich sind. Innerhalb eines gewissen Streubereiches sind die relativen Hülldehnungen $\Delta d/d$ der Summe der "normierten" positiven Leistungssprünge $\Sigma\Delta\chi^{norm}$ ($\Delta\chi^{norm} = (\chi_2 - \chi_1) / \chi_1$)

 χ_2 = Stableistung zu Beginn des neuen Zyklus, χ_1 = Stableistung zu Ende des alten Zyklus

direkt proportional, d.h. je größer der Wert von $\Sigma \Delta \chi$ ^{norm}, umso größer waren auch die Hülldehnungen bei den Prüflingen der beiden genannten Versuchsgruppen. Die Hülltemperaturen lagen dabei so niedrig, daß das Hüllkriechen (Vg5b) /15/ keine Rolle bzw. nur bei den Prüflingen einiger Kapselversuchseinsätze (Vg4b) eine gewisse Rolle gespielt hat /14/.

Abb. 51: Maximale Hülldehnung als Funktion des Abbrandes am "Hotspot"

Abb.52: Maximale Hülldehnungen als Funktion der Schmierdichte

Bei der Vg Mol 8C wurden nun teilweise Hüllaußentemperaturen von mehr als 600[°]C erreicht. Es ist also anzunehmen, daß das Hüllkriechen dabei eine bedeutende Rolle gespielt haben muß. Letzteres soll im folgenden untersucht werden.

Für einige Stäbe (8C-1, 8C-2, 8C-4 und 8C-7) wurde $\Sigma\Delta\chi$ ^{norm} bei verschiedenen TE-Positionen berechnet und in den Abbildungen 53 - 56 über der Stablänge zusammen mit den gemessenen Hülldehnungen aufgetragen. Man erhält so eine gewisse Vorstellung über den axialen Verlauf der Hüllbelastung durch Leistungsrampen. Wie man sieht, ergibt sich für alle untersuchten Stäbe prinzipiell der gleiche Verlauf von $\Sigma\Delta\chi$ ^{norm}: die Ausgleichsgeraden dieser Größe steigen von links nach rechts mehr oder minder steil an. Die Belastung der Hülle durch Leistungsrampen sollte also am oberen Ende der Brennstoffsäul**e** am größten gewesen sein.

Dabei sind aber verschiedene Effekte wie Rißausheilung und "Relocation" des Brennstoffs noch nicht berücksichtigt. Diese haben sicher einen Einfluß auf die mechanische Belastung der Hülle und sollten in starkem Maße von der Brennstofftemperatur abhängen /13/. Lag nun ein starker axialer Gradient in der linearen Stableistung vor (dies ist bei den Prüflingen der Vg Mol 8C der Fall), dann muß auch ein starker axialer Temperaturgradient geherrscht haben. In den axialen Bereichen mit maximaler Stableistung (und maximaler Hülltemperatur) dürfte sich der Brennstoff durch Zyklieren stärker nach außen geschoben haben als in den kälteren Zonen. Dies würde bedeuten, daß die axiale Verteilung von $\Sigma\Delta\chi$ ^{norm} nicht mehr der axialen Verteilung der mechanischen Belastung der Hülle durch Leistungsrampen entspricht.

Leider liegen im Moment noch keine experimentellen Daten über die Temperaturabhängigkeit der beiden oben genannten Effekte vor, so daß man sich im Moment mit der Größe $\Sigma\Delta\chi$ ^{norm} als Maß für die Hüllbelastung durch Leistungsrampen behelfen muß. (Bei den Prüflingen der Vg 4b und Vg 5b war diese Größe ausreichend, da aufgrund der geringen Höhe der Brennstoffsäule (ca. 80 mm) ein axialer Leistungsgradient nicht ins Gewicht fiel).

Abb.54 Hülldehnungen Δ d/d, Summe der "normierten" Leistungssprünge $\Sigma \Delta X^{norm}$ und Häufigkeit der Maxima von Hülltemperatur und Stableistung entlang der Brennstoffsäule

der Maxima von Hülltemperatur und Stableistung entlang der Brennstoffsäule

Der Verlauf von $\Sigma\Delta\chi^{norm}$ über die Länge der Brennstoffsäule ist nun gänzlich verschieden von dem der Hülldehnungen; da wo $\Sigma\Delta\chi^{norm}$ groß ist, sind die Hülldehnungen klein. Zudem sind diese, grob gesprochen, symmetrisch bezüglich des Maximums (soweit vorhanden).

Man muß also annehmen, daß der durch thermische Differenzdehnung bei Leistungsrampen sich aufbauende Kontaktdruck zwischen Brennstoff und Hülle beschränkt geblieben ist, so daß die Fließgrenze des Hüllmaterials kaum überschritten wurde. Die Ursache dafür ist in der speziellen Form des Anfahrens zu suchen. Bei allen Zyklen wurde der Reaktor nur bis zu höchstens 80 % Nominalleistung "schnell" hochgefahren; der restliche Leistungsanstieg fand dann so langsam statt, daß die Spannungen im Brennstoff schnell genug relaxieren konnten und ein weiterer Aufbau des Kontaktdrucks verhindert wurde.

In /17/ wurde gezeigt, daß bei den Prüflingen der Vg 5b aller Wahrscheinlichkeit nach, nur Leistungssprünge größer 20 % zu Hülldehnungen aufgrund des Überschreitens der Fließgrenze geführt haben. Wenn man diesen Wert als repräsentativ akzeptiert, dann muß man schließen, daß bei allen Prüflingen der Vg Mol 8C nur Leistungssprünge größer ca. 40 % zu Hüllaufweitungen aufgrund von Fließen des Hüllmaterials geführt haben können. Da nun die Prüflinge von Mol 8C nur wenige solcher Leistungsrampen erfahren haben, wäre damit geklärt, warum hohe Werte von $\Sigma \Delta \chi^{norm}$ so geringe Hüllaufweitungen zur Folge hatten.

Die charakteristische Form der Hülldehnungen deutet nun darauf hin, daß das Hüllkriechen eine bedeutende Rolle gespielt hat. Nach dem in /13/entwickelten Modell zur Berechnung der Hülldehnungen aufgrund plastischen Fließens sollte unter der Annahme von realistischen Werten für die Plastizitätstemperatur die Hülldehnung an den kälteren axialen Zonen stärker sein als in der Zone maximaler Stableistung und Hülltemperatur. Es wird in /13/ ein deutliches Minimum in der letzteren Zone vorhergesagt.

Dies widerspricht nun den bei den Prüflingen von Mol 8C gefundenen experimentellen Tatsachen. In /13/ wurde das Hüllkriechen unberücksichtigt gelassen; es sollen deshalb im folgenden die Hüllverformungen unter diesem Aspekt diskutiert werden. Die Kriechraten und damit auch die Kriechdehnungen in der Hülle sind in erster Linie Funktionen der Hülltemperatur und -spannung und der Zeit, während der die Hülle unter mechanischer Belastung steht. Die wichtigste Variable sollte aber die Hülltemperatur sein, da die Kriechrate exponentiell von dieser Größe abhängt. Die axiale Verteilung der Hülltemperatur bei den Prüflingen von Mol 8C hat sich nun von Zyklus zu Zyklus geändert, insbesondere lag das Maximum nicht ständig an derselben Stelle.

Es wurde deshalb die Häufigkeit des Maximums der Hülltemperatur T_{Ha}^{max} (und der Stableistung χ^{max}) bei den jeweiligen TE-Positionen bestimmt und in den Abbildungen 53 - 62 aufgetragen. Man erhält so eine Vorstellung, in welcher axialen Zone die Hülltemperatur am häufigsten ihr Maximum hatte. Diese Maxima lagen nun am häufigsten bei den TE's 5, 6 und 7, also in dem Bereich, in dem auch die Hülldehnungen maximal sind (soweit überhaupt ein charakteristisches Maximum vorhanden ist). Bis auf die beiden Prüflinge 8C-9 und 8C-10, die beide einen Hüllschaden zeigten, ist die Korrelation zwischen dem Maximum in der Häufigkeit von T_{Ha}^{max} und dem der Hülldehnung (soweit vorhanden) relativ gut. Die steilen Spitzen in der Hülldehnung, die man bei einigen Prüflingen (z.B. beim 8C-2) an den TE-Positionen findet, dürften durch TE-Teste nach der Demontage zu erklären sind.

Über die absolute Höhe von T_{Ha}^{max} ist in der Häufigkeitsverteilung keine Aussage gemacht, ebenso nicht über Dauer und Größe der mechanischen Belastung der Hülle. Damit dürfte zu erklären sein, warum bei einigen Prüflingen (z.B. beim 8C-6) die Hülldehnungen über die ganze axiale Länge der Brennstoffsäule klein sind und warum insbesondere kein charakteristisches Maximum in der Hüllverformung zu finden ist.

Beim Prüfling 8C-6 war die Größe von $\Sigma \Delta \chi^{\text{norm}}$ durchaus vergleichbar mit der anderer Prüflinge, die weitaus größere Hülldehnungen erfahren haben. Ist die Annahme richtig, daß die Hülldehnungen hauptsächlich auf Hüllkriechen zurückzuführen sind, dann müssen beim 8C-6 die Hülltemperaturen niedrig gewesen sein.

Ein nennenswertes Kriechen der Hülle findet natürlich nur dann statt, wenn die Hülle unter starker mechanischer Belastung steht, also Kontaktdruck zwischen Hülle und Brennstoff herrscht. Nach der Diskussion zu Beginn des Abschnitts kann dies nur bei instationären Vorgängen der Fall gewesen sein und zwar in erster Linie bei den Leistungsrampen.

Abb.57:Hülldehnungen ∆d/d und Häufigkeit der Maxima von Hülltemperatur und Stableistung entlang der Brennstoffsäule

Abb.58:Hülldehnungen Δ d/d und Häufigkeit der Maxima von Hülltemperatur und Stableistung entlang der Brennstoffsäule

Abb.59: Hülldehnungen ∆d/d und Häufigkeit der Maxima von Hülltemperatur und Stableistung entlang der Brennstoffsäule

Abb.60:Hülldehnungen ∆d/d und Häufigkeit der Maxima von Hülltemperatur und Stableistung entlang der Brennstoffsäule

- 126 ~

Abb.61:Hülldehnungen ∆d/d und Häufigkeit der Maxima von Hülltemperatur und Stableistung entlang der Brennstoffsäule

Abb.62:Hülldehnungen ∆d/d und Häufigkeit der Maxima von Hülltemperatur und Stableistung entlang der Brennstoffsäule

- 127 -

In Abbildung 63 wurden deshalb für den 8C-6 die Hülltemperaturen bei Beginn der Zyklen mit den größten Leistungsrampen gegen die axiale Höhe z aufgetragen. Wie man sieht, wird dabei eine Temperatur von 450°C nicht wesentlich überschritten. Die Hülltemperaturen des Prüflings 8C-6 waren also in den entscheidenden Phasen niedrig.

In der Abbildung 64 wurden im Gegensatz dazu die Hülltemperaturen des Prüflings 8C-2 aufgetragen (auch wieder zu Beginn der Zyklen mit den größten Leistungsrampen). Hier liegen die Hülltemperaturen im relevanten axialen Bereich zum Teil wesentlich höher; beim TE 6 wurden ca. 600[°]C erreicht. Aus dem axialen Verlauf der Hülltemperatur läßt sich aber der axiale Verlauf der Hülldehnung qualitativ schwerlich verstehen. Es ist z.B. nicht zu verstehen, warum beim TE 7 die Höhe des 8C-2 so wenig gedehnt ist (die Spitze sei hierbei unberücksichtigt).

Dies sollte allerdings durch eine Nachrechnung mit Brennstabcodes möglich sein. Die in SATURN le enthaltenen Rißausheilungsmechanismen durch thermische Ausdehnung und Schwellen sind allein nicht ausreichend, um die experimentellen Gegebenheiten bei den Prüflingen der Vg Mol 8C richtig zu beschreiben; außerdem ist der "Relocation "-Effekt modellmäßig noch nicht vollständig erfaßt, insbesondere was die Abhängigkeit von der Brennstofftemperatur anbetrifft. Dadurch kommt es bei Rechnungen mit SATURN le zu keinem nennenswerten Kontaktdruckaufbau. Ein weiterer Punkt ist der der Rechenökonomie. Die Stäbe wurden teilweise mehr als 30 Zyklen lang bestrahlt. Zur Nachrechnung der ganzen Bestrahlungsgeschichte würde SATURN le sehr viel Rechenzeit verbrauchen. Um aber zu quantitativen Aussagen zu kommen, müßte die Bestrahlungsgeschichte mehrerer Stäbe an mehreren axialen Schnitten nachgerechnet werden. Da das Rechenprogramm SATURN le noch nicht optimiert ist und noch nicht vollständig ausgetestet, würde dies einen sehr großen Zeitaufwand erfordern.

Abb.63 : Axiale Verteilung der Hüllaußentemperatur bei den größten Leistungsrampen (TE 8)

Abb.64 : Axiale Verteilung der Hüllaußentemperatur bei den Leistungsrampen größer als 30 % (TE 8)

10. Schlußbetrachtung

Nach Abschluß der zerstörungsfreien Nachuntersuchung der 10 Stäbe der Kapselversuchsgruppe Mol 8C kann folgende Bilanz gezogen werden:

- Die spezifikationsgemäße Stableistung von 350 bzw. 550 W/cm und die angestrebte max. Hüllinnentemperatur von 680°C bzw. 720°C wurden erreicht.
- 2. Der angestrebte Abbrand von 90 MWd/kgMe wurde überschritten.
- Bei 4 von 10 Pr

 üflingen traten aus kapselspezifischen Gr

 ünden Heißstellen

 im NaK unterhalb der Abstandshalter auf, was zum Durchschmelzen der

 H

 üllrohre f

 ührte.
- 4. Die axiale Rückhaltung einiger Stäbe hatte keinen großen Effekt auf die Hüllverformungen.
- 5. Bei den Prüflingen mit großen Hülldehnungen hat aller Wahrscheinlichkeit nach das Hüllkriechen eine entscheidende Rolle gespielt. Hüllverformungen aufgrund plastischen Fließens infolge von Lastwechseln sollten aufgrund der speziellen Form des Anfahrens beschränkt geblieben sein. Daraus kann man schließen, daß die Hülldehnungen von Oxid-Brennstäben klein bleiben sollten, wenn folgendes gewährleistet ist:
 - a) die Hülltemperaturen dürfen nicht zu hoch liegen (ein Wert von ca. 450°C sollte nicht entscheidend überschritten werden),
 - b) das Anfahren des Reaktors muß spezifiziert sein.

Nur weitere Bestrahlungsexperimente können zeigen, ob die Spezifikation, daß nur bis zu höchstens 80 % Nominalleistung "schnell" hochgefahren wird, generell ausreicht, um die mechanische Belastung der Hülle durch thermische Differenzdehnung beschränkt zu halten. Besser wäre mit Sicherheit eine Spezifikation, die sich an der Stableistung zu Ende des vorhergehenden Zyklus orientiert.

6. Die In-Pile-Spaltgasmeßeinrichtung hat sich ausgezeichnet bewährt. Hierdurch war es möglich, die Spaltgasfreisetzungsrate im Mischoxid experimentell zu bestimmen.

11. Literatur:

- /1/ A. Gerken, K. Kummerer: Auslegung und Spezifikation des U0₂-Pu0₂-Brennstab-Bestrahlungsversuches Mol 8C im BR2 (unveröffentlicht)
- /2/ G. Karsten, H. Kämpf, A. Gerken, M. Guyette: Theoretical and Computer Analysis on the Behaviour of Fast Reactor Fuel Pins and Related Parts of the Core under Operational Conditions, KFK 878 (1969)
- /3/ M. Guyette: CRASH: a Computer Programme for the Analysis of Creep and Plasticity in Fuel Pin Sheaths, KFK 1050 (1970)
- /4/ K.D. Closs: Physik.-u. mechan. Eigenschaften von Hüllmaterialien (unveröffentlicht)
- /5/ Th. Dippel, K. Kummerer: Herstellung Pu-haltiger Prüflinge für die Versuchsgruppe Mol 8C im Reaktor BR2 in Mol (unveröffentlicht)
- /6/ P.v.d.Hardt: Auslegung des Reaktoreinsatzes - Mol 8B Technical Note (unveröffentlicht)
- /7/ M. Heck: Anfahrbedingungen des BR2 (unveröffentlicht)
- /8/ R. Kirchner: AG-Mol-Berichte (unveröffentlicht)
- /9/ J. van Loy:

Capsules with Fission Gas Pressure Measurement Mol 8C-Project Technical Note (unveröffentlicht)

- /10/ J. van Loy: Thermal Behaviour Calculations for FAFNIR Capsules Technical Note (unveröffentlicht)
- /11/ GfK-Arbeitsgruppe Mol: AG-Mol-Abschlußberichte (unveröffentlicht)
- /12/ GfK-Arbeitsgruppe Mol: AG-Mol-Notizen (unveröffentlicht)
- /13/ I. Müller: Parameter-Modellstudien zur mechanischen Wechselwirkung zwischen Brennstoff und Hülle von Schnellbrüter-Oxidbrennstäben bei Leistungsänderungen (unveröffentlicht)
- /14/ H. Steiner: Hülldehnungen der FR2-Kapsel-Versuchsgruppe 4b (unveröffentlicht)
- /15/ H. Steiner: Analyse der Hülldehnungen der Versuchsgruppe 5b (unveröffentlicht)
- /16/ A. Gerken:

Modelltheoretische Analyse der Brennstabbelastungen durch zyklischen Leistungsbetrieb anhand des experimentellen Datenmaterials der KVE Vg. 4a, 4b, 5b und Mol 8B, KFK 1913 (1974)

/17/ H. Steiner:

Ab welcher Größe führen Leistungssprünge zu Hüllaufweitungen? (unveröffentlicht)