
Februar 1977

Institut für Reaktorentwicklung

ARecommendation on Methodology in
Computer Graphics

KFK 2394

J. Encarnac;:ao, Technische Hochschule Darmstadt

B. Fink, Philips GmbH, Forschungslabor Hamburg

E. Hörbst, Siemens AG., Zentralforschungslabor München

R. Konkart, AEG-Telefunken, Konstanz
G. Nees, Siemens AG., Erlangen

D. L. Parnas, Technische Hochschule Darmstadt, now University of

North Carolina at Chapel Hili

E. G. Schlechtendahl, Gesellschaft für Kernforschung, Karlsruhe

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M. B. H.

KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2394

Institut für Reaktorentwicklung

A Recommendation on Methodology in Computer Graphics

J. Encarnacao, B. Fink, E. Hörbst, R. Konkart,

G. Nees, D.L. Parnas, E.G. Schlechtendahl

Authors' Affiliations:

Technische Hochschule Darmstadt

Philips GmbH, Forschungslabor Hamburg

Siemens AG., Zentralforschungslabor München

AEG-Telefunken, Konstanz

Siemens AG., Erlangen

Technische Hochschule Darmstadt, now University of
North Carolina at Chapel Hill

Gesellschaft für Kernforschung, Karlsruhe

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Abstract

This report shall provide a design basis for device independent computer

graphics. The concept of a portable graphics system is outlined, its

interfaces to output and input devices, to the operating system and to

the application program are described. A recommendation on development

methodology starting from formal specification is given.

The report is the result of a cooperation of scientists from a number

of institutions in the Federal Republic of Germany, all dealing with

computer graphics. The initiative for forming the group was taken by

Prof. Encarnacao. The members of the group represent computer scientists,

developers of graphie systems and users of graphie systems. The goal was

to establish a consistent approach to the methodology for defining,

describing, designing und using graphical systems. The paper was presented

to the IFIP GRAPHICS WORKSHOP, Chateau de Seillac France, May 23-26,1976

Zusammenfassung

Eine Empfehlung zur Methodologie in der graphischen Datenverarbeitung

Dieser Bericht bietet eine Entwurfsgrundlage für geräteunabhängige gra

phische Datenverarbeitung. Das Konzept eines portablen graphischen Systems

wird dargestellt; die Schnittstellen zu Ein- und Ausgabegeräten, zum Be

triebssystem und zum Anwendungsprogramm werden beschrieben. Eine Vorge

hensweise für die Entwicklung, basierend auf einer formalen Spezifikation

wird gegeben.

Der Bericht ist das Ergebnis einer Zusammenarbeit von Wissenschaftlern

mehrerer Institutionen der Bundesrepublik Deutschland, die alle mit

graphischer Datenverarbeitung befaßt sind. Die Initiative zu dieser Gruppe

ging von Prof. Encarnacao aus. Die Mitglieder der Gruppe repräsentieren

Informatiker, Entwickler und Anwender graphischer Systeme. Das Ziel war

ein in sich konsistenter Ansatz zur Methodologie hinsichtlich Definition,

Beschreibung, Aufbau und Verwendung graphischer Systeme. Die Arbeit wurde

dem IFIP GRAPHICS WORKSHOP, Chateau de Seillac, Frankreich, 23.-26.Mai 1976

vorgelegt.

- 0 -

CONTENTS

I . Introduction,

1.1 Review of graphie systems

1.2 Constraints for a general-purpose concept

2. Interfaces in a graphie system

3. Graphical output devices and corresponding formats

4. Basic design of a device-independent graphie system

5. The structure of the pseudo picture code (pPC)

6. Production of the output

7. Input process and input code interpreter

8. Device tables

9. Remarks on implementation

10. Input file

11. Interface to the application program

11.1 Job Control Language

11.2 Device simulation

11.3 Logical functions

12. Configurations of graphie systems

13. Development Methodology

13.1 Component Specification

13.2 Methodology

13.3 Notations

13.4 Abstract implementation

14. Acknowledgement

15. Bibliography

Authors' addresses

Page

2

3

3

5

8

12

15

20

23

25

26

26

26

27

29

30

32

35

36

37

38

43

44

49

- 1 -

1. Introduction

The motivation and objectives for a standard graphica1 software are in

addition to uniform representation of graphica1 problems, portability or

machine independence and the device independence.

Demands that shou1d be fulfi11ed by a standard graphica1 system are:

a) It shou1d be defined in a way general enough to support

a wide variety of users,

b) The definition shou1d be easi1y understood for prograrnrners

(users).

To be ab1e to reach the desired goal of having such a device independent,

genera1-purpose, easy understood system with a good chance of success, we

propose to make the fo110wing restrictions:

a) The graphics functions to be defined inc1ude the construction

and manipulation of pictures (no picture analysis)

b) A picture is generated from vector and/or text elements (no

gray-sca1e pictures)

c) On1y those graphics periphera1 devices that are suitab1e for a

genera1-purpose system will be considered. These inc1ude:

Text displays

Plotters, Digitizers, COM

Storage tube devices

Refresh displays

Refresh displays with transformation hardware

d) The definition of the graphics functions, that in the final analysis

represent the user interface, shou1d ref1ect the expected frequency

of occurrence of the operationa1 device types e.g. the hardware of

the most frequent used device types shou1d be as effective1y as

possib1e uti1ized. Oue may accept a 10ss of efficiency for more un

usua1 device types.

Device independence (e.g. independence from graphic peripherals) is the point

on which we want to concentrate. We define device independence as the ability

to use an app1ication program with a wide variety of devices.

- 2 -

Standarization in this area should contribute to our ability to produce

graphical data ~n one computer and then output it successively or simultaneous

ly in different graphics output devices (also using external intermediate

storage). Simultaneous output on different devices is important when it is

necessary to work with different picture sections, for example a general view

and some detail view of the same picture. It is very important to have in

addition to output device independence, also input device independence. This

will be .realized in this concept by using logical input devices and having

them assigned to physical input devices.

i.i Review of graphie systems

w~ can distinguish between the following four types of graphie systems:

I) Terminal systems

2) Type specific systems

3) User specific systems

- these systems were ~n both hardware and

software manufacturer dependent (for

example IBM 2250, CDC 1700-Digigraphics,

Adage, Vector General). They were developed

mainly for users coming from the military

area, from the car or airplane industry, etc.

and also mainly financed from there.

these systems were primarily designed for

special device combinations (Plotter/Tek

tronix for example), and used mostly in

computing center environments. For the input

there were only special solutions, s~nce

systems had no convenient structure. The out

put was generally solved and the corresponding

routines were imbedded in a high level language

(mainly FORTRAN).

these systems were designed for a special

application and were optimized for that appli

cation (for example Computervision) • Even for

slight changes of the applications or on the

basic techniques one would be dependent on the

manufacturer, since the systems were not trans

parent for the user.

4) Device independent systems

- 3 -

- these are new systems, which try to solve

the problem of device independence based on

a stepwise development.

A methodological concept for device independent systems will be topic of this

position paper. Therefore we will first give some constraints and then discuss

the basic interfaces in such a system, as weIl as its implementation. We will

also shortly consider system aspects such as the environment provided by the

operating system and the users' influence on simulation routines.

1.2 Constraints for a general-purpose concept

Today in the commerc. 11 and scientific-technical data processing it 1S not

signif{cant which external storage device is just in use, provid~d that the

devices make the same basic functions (for example direct access) possible.

The same should be valid for graphical peripherals in the future.

With interactive systems it should also be possible to process different graphic

dialog modules in parallel.

We have to proceed on the assumption that more and more applications will deal

with a virtually unlimited amount of data (for example 60000 vectors).

In order to make an adjustment from the user side feasible, it has to be possible

to determine device parameters (for example the set up of drawing area) in the

application program by calling subroutines.

2. Interfaces 1n a graphic system

The basic idea 1n the design of a device-independent general purpose graphic

system is to split the system in a device-dependent and a device-independent

part and to have so the graphic input and output completely separated from

the user program. This concept follows /COT 72/, was discussed in/ENC,ECK 76/

and 1S shown in Fig. 1. The interesting interfaces für our purposes are there:

a) User interface - it should be completely independent from the

application

b) Code generator interface - this 1S the interface between pre-processor

and output processor. The pre-processor

interprets the graphic output functions of the

application program and generates device

independent data; this data will be translated

by the output processor into a device

- 4 -

dependent form. Relative to the output th~

pre-processor has therefore picture compiler

characteristics~ the output processor on the

other hand has picture assembler characteristics.

cJ Logical input interface (only by interactive graphics)

this is the interface between input and pre

processor. The input processor processes the

physical input events and transfers the logical

input results to the pre-processor.

DEVICE DEPENDENT
lNPUT DATA

USER
INTERFACE

I
I
I
I

I -- -----l I
IJEVICE INDEPENDENT ir- ~:~ ~ -~I ' r - - - - -

,rNPlIT DATAr===::;=t ~~t.oUbOR -, '- t-~ .~ ~~li
. +~ ~_J

DEVICE INTERFACE

LOG ICAL
INPUT INTERFACE

DEVICE DEPENDENT
OUTPUT DATA

DEVICE DEPENDENT------~~~

r- --- --f-. -I /~ - - -~', .r...L - - - - - I : 1.- - - - -" \

, I !- - - ..-~/ \ 1
,.... - - - 1/

OUTPUT i J'
PRüCcSSOR . ~ r /

""---_/DEV ICE INDEPENDENT
OUTPUT DATA

CODE GENERATOR

IINTERFACE I

PRE
PROCESSOR

I
j--'('--

DEVICE
: DRIVER

...........111------ DEV ICE INDEPENDENT -------Jl...~I..iIII------
I

USER
PROGRPM

Fig. I: Separation between user program and graphical input and output

In order to be able to discuss ~n detail these interfaees~ we have first to deal

with graphieal i/o-deviees~ its elassifieation and their inference in the graphie

system.

- 5 -

3. Graphieal output deviees and eorresponding formats

Regarding the elassifieation of output deviees'we might eharaeterize them

aeeording to their operating behaviour or aeeording to the graphie elements

whieh they aeeept for display. The first eriterion would distinguish between

"random" or "ineremental" deviees on one side (XY-plotters, random sean tubes,

ete.) on whieh graphie objeets may be displayed one at a time and "sequential"

or "bat eh" deviees on the other side whieh ean display only whole pietures

(eleetrostatie plotters. eolour jet plotters. ete.). In the sequel we eonsider

the seeond eriterion and propose following /PHIL 75/ and/ENC,ECK 76/ an upwards

eompatible elassifieation for these deviees, whieh means that the eharaeteristies

of the lowest deviee elass should be a subset of the eharaeteristies of the next

higher elass. This means that the eharaeteristie graphie basie funetions of a

eertain elass may always be implemented in higher elasses. We elassify the de

viees aeeording to the formats whieh the eorresponding output proeessors will

aeeept.

The elements for the elassifieation are:

elass 1 symbol

elass 2 symbol, point, line, (circle, are)

elass 3 segment

elass 4 oriented graph

In Fig. 2 for the four elasses the eorresponding format of its representation

in the eomputer is shown.

A typieal deviee of elass 1, whieh would aeeept the line-eolumn format would be

an A/N-Display. If we inelude the veetor graphie supported by elass 2 deviees,

we have the unstruetured format.

A segment is a linear list of graphie primitives and represents the simplest

graphies operand (display group), that ean be manipulated as an unit and be

used to build bigger units. These are ealled eolleetions, they are a linear

list of segments.

A segment is the eharaeteristie element for the deviee elass 3, s~nee the

seleetive pieture manipulation is the deviee eharaeteristie. The eorresponding

format is the segmented format. This is the usual pieture format, that we find

in the types of graphie system diseussed in the ehapter 1.1.

The oriented graph is the charaeteristie element for the deviee elass 4;

the eorresponding format is the struetured format. This format is not suit

able for deviees without transformation hardware.

- 6 -

These different classes of output devices and some typical examples IENC,

ECK 761 are shown in Fig.3.

OP-CODE

I X I y

0

0

0

I ------

0

0

0

CLASS 1: L1NE-COLUMN FORMAr CLASS 2: UNSTRUCTURED FORMAT

SEGMEN

REFERENCES
WITH TRANS

FORMATION
PARAME

TERS

PICTURE

COLLECTION 1

COLLECTION 2

oo

8
GRAPHICS
PRIMITIVES

GRAPHICS
PRIMITIVES

TERMINAL
NODES

ILEAVES)

CLASS 3: SEGMENTED FORMAT CLASS4: STRUCTURED FORMAT

FIG.2: FORMATS OF THE FOUR CLASSES OF GRAPHICAL OUTPUT
DEVICES

- 7 -

GlO"PI\-«(At. r"",. R. j

CO"H'O~T

~

'\

'PAS~\IIJ

G;QA"PK,CS

DEVICE CHARACTER ISTIC TYPlCAL DEVICESCLASS --
I CX'JLY. TEXT GRAPHIe A/N - DISPLAYS

2 AS CLASS .i • PLOTTERS..
STORAGE DEVICESPLUS VECTOO GRAPHl C

• RASTER DEVICES

AS CLASS 2 . DISPLAYS WITH
3 PLUS SElJ:CTlVE PICTURE REGENERATION

PICTURE l-wllPULATION

-- ..-

4 AS CLASS 3 DISPLAYS WITH
PWS REAL TIME GW'HICS TRANSFORMl\TI ON HARDWARE

FIG,): CLASSES OF GRAPHlCAl OUTPUT DEVICES

The following tables proposed by R. ECKERT g1ve a detailled information about

these four formats. They contain the basic functions for the generation and mani

pulation of the different formats. We consider a graphical language with operands

(display group) and operatörs. The operands are built out of primitives, which

may have attributes /ENC,ECK 76; ECK 76/.

- 8 -

In the first row we glve the characteristic elements of the four formats; the

second row contains the corresponding localization data. The possibilities of

grouping the characteristic elements and the corresponding identifying data

are presented in the subsequent two rows. Finally the different attributes

and the different kinds of graphic operators are listed.

4. Basic design of a device-independent graphic system

The basic design ofa device-independent graphics system lS shown 1n fig. 4.

Two types of connectors are used to represent control and data flow in these

figures in accordance with the methodology to be described in chapter 13.

Block I sends information to block 2, thus changing

the state in block 2 and/or subsequent blocks

(O-function). Data and control flow is in the

direction of the arrow.

Block 1 requests information from block 2 and/or

subsequent blocks (V-function). Control flow is

in the direction of the arrow, data flow is

opposite to the arrow direction.

In the following we shall distinguish between the hardware which is used to

produce a picture, an interrupt or an input message on one side and the identi

fication on the other side, which lS used in the users' program to specify the

hardware piece to which a picture is to be sent or from which message is being

expected. We call the hardware pieces themselves "devi~es", while we call their

identification in the users' program and in the graphics system "units". We do this

1n analogy to standard 1/0 practice. The 1/0 unit number in FORTRAN or the file in

PL I corresponds to the "unit" , while the printer, card reader, tape etc. corres

ponds to the "device". Thus the application program will be written in terms of

units only and will not refer directly to devices.

The different possible ~ays on generating pictures lead to the definition of two

different kinds of picture buffers. In Fig. 4 these buffers are called pseudo

picture code and device dependent picture code. The Pseudo-Picture-Code (PPC) is

a device independent structured description of the picture to be displayed and it

contains all the picture data in user specific form. The pseudo-picture code serves

as a source representation, that can be used to control several output devices.

- 9 -

Structured
format

Characted stic
elementes)

Line
column
format

symbol

• A/N-character
.. special Symbob
(these are the
graphics
prim'itives)

lunstructured
format

Graphics
Primitives

.. symbol

..point

.1ine segment

Segmented
format

Segment

(see Fig. 2)

I,
Orientei-J
graph ~ 1
(see Fig. 2)

t----------+----------l>---------+---------4----------I-
localization
data is part
of the
calling entities

no position
ing data

.. static
segments

a11 coordi
nates are
absolute

2D/3D

• character
(4 numbers)
position
coordinates

character
area

.. point
2D/3D
absolute
relative

... line segment

• line-nUniber

• column-number

Data for
the localiza
tion of the
characteristic
elements

.. segments, .j
which may be
modified I
absolute I
positioning I
coordinates

absolute relative
relative

coordinates J
in the
graphic
primitives

;----+-----!-----+--___O_-

Display
groups

character

line vector

Une

column vector

graphics
primitives

segment

collection

leaf
(terminal nodes)

calling
entities

(nodes)

column

matrix

picture

~I' _---'---'--__L

name of the leafIdentifying
data for
the display
groups

line, column

line, begin
and end of
string

line number

column, begin
and end of
string

column number

start line,
start column,
end line,
end column

graphics
primitives

IC:collection name of the
name calling entity

IS:segment
name

IG:name of
the graphics
primitives in
a segment (IS)
of a collect
ion (IC)

segment
IC
15

collection L
IC 1

- 10 -

I
-------------------------------------~

Line- Unstructured
column format

i format
1----- -

I

!Attributes

Graphics

operators

blink mode

safe mode

define
graphics
operands

define
attributes

change
attributes

scrolling

character s~ze

1

1 write directions

brightness

I
l-
i
I
I
I
I
I

\
\

\,

Segmented
format

I
i character size
\

Iwrite directions

Ibrightness

Iselectability

blink mode

positioning

Imode

begin segment
end segment

begin collection
end collection

omit segment
omit collection

delete segment
delete collection

extend segment
extend collection

translate segment
translate collectio

scale segment
scale collection

rotate segment
rotate collection

define attributes

change attributes

Structured
format

character size

write directions

brightness

selectability

blink mode

positioning
mode

4X4-Matrix

define leaf
define node

omit leaf
omit node

delete leaf
delete node

translate (node)

zoom (node)

rotate (node)

define attributffi

change attributffi

I
I

- II -

The Device-dependent Picture Code (DDPC) is used for picture refresh and ~s

generated from the pseudo picture code in such a form, that in each case the

selected device can be used in an almost optimal way. That means, if the out

put device is able to interpret subpictures or subpictures out of the structured

description, then this ability will be utilized; the same is valid for trans

formations and graphical primary elements (primitives) as circle and other curve

generators. If when designing a graphics system, we want to take into consider

ation the whole spectrum of existing I/O-devices and we want to be able to use

them effectively, then it should in principle be possible to omit both internal

picture definitions. Of course in a specific case, for example plotter output,

the one or the other or both of these may be dropped. In Fig. 4 hardware output,

input and interrupts producing devices of the types listed in chapter 1 have

been considered. Other hardware units of similar characteristics may be included.

The question of simulation of certain units in devices which do not readily provide

the required capabilities, will be discussed later in chapter 11. Also the

question of separated computers will be trated in chapter 12.

Each users' application program communicates with the graphics system by means

of an interface. Within the scope of a "Begin" and "End of the graphics system" as

described in chapter II this interface consists of:

a) identification of graphic units (e.g. names, numbers)

b) identification of graphic objects (e.g. names, numbers)

c) routines, callable in the users' program language

d) possible working space for the graphic system.

The graphics supervisor communicates with

a) the PPC,

b) service routines for picture transformations and

c) device dependent routines.

In order to select the appropriate device dependent routine, the graphics system

will have to read the device description table. When an interrupt is generated from

a unit, the flow of control is reversed, it now goes up from the unit to the

graphics system.

The overall structure of the system reflects the fact that the whole spectrum

of available graphics units has been taken into account. In particular the consider

ation of refresh type displays and the necessary high speed interaction is respon

sible for a certain redundancy of information. Namely: the information, which is

- 12 -

necessary to produce a picture of various objects on an output unit, ~s

certainly available in the users data base. In order to avoid costly operations

in case of simple modifications of the picture (e.g. rotation) the PPC and the

archive contain a redundant but more suitable set of information.

5. The structure of the pseudo picture code (PPC)

This list contains the graphical information ~n user coordinates; besides that

there is an administration list.

The primitives, that may be included in the PPC-list are:

----~_._---------~--------------------------

Attributes of the eolleetion ,
Primitives that are effeetive on the primitives

-------- ------.------------- ---- --

2 D

Point: X, Y

Line: X, Y

or

Circl,,:

eentre XH' Y
M

and

radius

Are:
cent re l)1' YM

starting point
XA'YA

another free point
XF'YF

direetion

~~mbols :

Code
or

Code string

(.t)
blink, intensi ty, selectabi li ty

and eolour

blink, intensity, selectability

colour and line modus

_ 11 _

- 11 _

_ h _

- " -

in addition: size and direction of

line drawing

--------- -~---------~-------------__1

3 D Point: X, Y, Z

Line : X, Y Z,,
or

XI' Y
I

, Z,

X2 , Y2 , Z2 1
as in 2 D

(*) Selectability means that the object can be indicated from the device

.....
VI

'--y-J
OUTPUTDEVICELOCAL

TRANSFOR

MATIONS

DATA

BASE

INPUT
_-,SIMULA

TION
ROUTINES

....----------------------;;;;.;;;-;:::;~i\T.r"'---'----7"L-------__jINPUT
CORRELATION CODE

USER COORDINATES TO THE DATA BAS.E INTER-

INPUT PRETER
~~RECORDS DEV~ES

STATE
TABLES

REPRESH
DISPLAY

PRE-PROCES-
'SOR(GRAPHICS1---....

USER'S I----~SUPERVISOR) STORAGE
TUBEAPPLlCA- DEV~E

BUFFE TION INPUT
INPUT(FO OUTPUT ...0

XAMPLE PROGRAM FILE SIMULA-
IGmZER) TION PLOTTER

ROUTINES

PROCESSING COORDINATES DEVICE
ABILITY

FIG. 4: coNCEPT FOR A DEVICE INDEPENDENT GRAPHlCS SYSTEM

- 14 -

Primitives which represent for example a square surface and an acoustic signal

are included among the symbols; characters are also viewed as symbols.

The coordinates can be absolute or relative. Absolute coordinates refer to the

zero of the users coordinate system; relative coordinates on the other hand

refer to an actual reference point, that may be stored in a stack.

The PPC-list is structured as fallows: We distinguish between "picture" and

"subpictures". The "subpictures" have to be "calIed" in order to become effective.

The following is a rough definition of the syntax of "picture" and "subpicture".

(We underlined those terms which we did not define in more detail at this state).

<: picture '7:: = picture header -:.. sequence of entities /" end mark

<. sequence of entities"7:: = <:. sequence of entities"7 < entity>l< entity '7

< entity >:: = .(collection;;. t< general primitive>

<:: collection >:; = collection header < sequence of entities> end mark

-<. general primitive >:: = point I line I circle '~I~l r subpicture call

-< subpicture >:: = subpicture header .::: sequence of primitives ;> e.nd mark

-<sequence of primitives '7:: = <,sequence of primitives ><general primitive >-I
< general primitive '7

Collections and subpictures can be modified (i.e. delete, insert, move, ••) but

primitives - and thus subpicture calls - can not be modified. The latter restric

tion allows to implement in the DDPC subpicture calls as efficient as possible,

namely by in-line generation (copy of the subpicture) or by using hardware sub

picturing (Return-Jumps). Normally hardware subpicturing ~s restricted to a maximum

allowed subpicture nesting depth also in the device independent part.

The headers of the various items (picture, collection, subpicture) contain ~n

formation relevant to the entire item. Among others a header contains the corres

ponding ID and the attributes valid for that item. In case of ambiguity (which

results from nesting of collections and/or subpictures) the attributes of the

lower-level item suspend meanwhile those of the superior item.

Considering the application program, the attributes can be defined explicitly or

implicitly. When they are defined implicitly, then the graphics supervisor will

automatically take the values from the superior item or, if there is none,

default values.

- 15 -

Example:

here the graphies
supervisor will set
"blink"

blink

COllec~on, defanlt

PrimitivePrimitive

Collection t

/
collection t default

/\
Primitive

6. Production of the output

To describe the output we will assume t that for a simple example describing

the generation of a graphical object the corresponding program (written con

sistent to the BNF of chapter 5 but otherwise arbitrary syntax) based on Fig. 4

has to be processed.

Example:

[Q]Subpicture:

Collection

Collection 2

Collection 0

Collection 3

C\

Primitive

- 16 -

Programm:

BEGIN SUBPICTURE (NAME)

ATTRIBUTE (INTENSITY)

DRAH (4, ARRAY)

CIRCLE (X, Y, RADIUS)

END SUBPICTURE (NAME)

Subpicture

} collcction 2

} collection 3

} Primitive

BEGIN (IDo)

COMHENT (TEXT)

BEGIN (IDI)

DRAW (4, ARRAY)

SHAPE (3, ARRAY)

BEGIN (IDI')

ATTRIBUTE (INTENSITY)

TEXT (ARRAY)

END (IDI')

END (IDI)

BEGIN (ID2)

SUBPICTURE (NAHE)

END (ID2)

BEGIN (ID3)

DR..i\\.J (12, ARRAY)

END (ID3)

LINE (IX, IY)

END (IDo)

collection I'

collection I

collection 0

The pseudo-picture code generator will produce if we suppose the segmented format

discussed in chapter 3 the following PPC-Code from the given program. If, however,

the graphics system is processed on a special-purpose hardware, then the structured

format (see chapter 3) rnay also be used as the basis for the implementation.

Al

E)

A 2

A 3

A 4

E 2

E 3

A 5

E 4

A 6

E 5

E 6

- 17 -

Head of Subpicture

Attributes

Primitives

End of Subpicture

Head of Collection 0

Attributes

Head of Collection I

Attributes

Pr imi t i ve.s

Head of Collection I'

Attributes

Primitives

End of Collection)'

End of Collection I

Head of Collection 2

Attributes

CaU subpicture A)

End of Collection 2

Head of Collection 3

Attributes

Primitives

End of Collection 3

Primitive

End of Collection 0

- 18 -

Default attributes are inserted ~n the above PPC-Code, whenever they are not

explicitly defind in the sampIe program.

An ~s the address of the corresponding collection. Since collections may

be nested, an end mark En for each collection is stored. By means of a g~ven

end mark it is possible to find primitives after an END (ID).

The PPC-administrator builds the two following tables:

ID-list:

IDs of the Address
collection levels (A.. Begin;

E •• End)
> ... -." .•.•=

IDo 0 0 ... A2 E6
--'--

IDo IDI 0 ... A3 E3

r-=- --
i IDo IDI IDI' ... A4 E2

--I--- --- --,_._-_._~

I IDo ID2 0 A5 E4
\

I IDo ID3 0 i ... A6 E5, II I

I

Stibroutine-list:

Name Address

~I~-'"

Name Al EI

- - -

The graphics-supervisor can now (using the PPC interpreter) interpret the PPC

Code in normalized system coordinates. It can (by use of the device description

tables) determine whether a simulation (for example for the circle by non

existence of a circle-generator) has to be performed or not. The' graphical in

formation will then be available in the following form

PPC-Address PPC-Code x, Y or similar

- 19 -

The primitives are produced and output in device coordinates by the device

code generator with the support of the device description tables and device

state tables. The following correlation table is produced by the device code

generator. It will be used later on when processing the input or making changes

for the mapping between PPC and DDPC codes.

Correlation table:

PPC-Address DDPC-Address

A2 AD I I

A3 AD2

i

A4 AD3 I
E2 AD 4 I

I
E3 AD 4 I
A5 AD 4

E4 AD5

A6 AD 5

E5 AD6

E6 AD 7

Between E2 and A5 as weIl as E4 and A6 no code will be produced.

Let us now consider some output functions. If an attribute is to be changed,

for example the collection in our example shall blink, then a list, in which

the ID hierarchy is stored will be accepted as input parameters. The PPC-admini

strator must then find all heads and internal end marks of the ID (collection)

and will set the blink attribute; through the device code generator and the DDPC

administrator, the corresponding addresses will be set up. When executing a delete

the PPC-administrator must delete all the corresponding ID-addresses out of the

ID-list. Having refresh-displays this must also happen for the correlation table,

which must be reorganized afterwards. If we have storage tube devices, then the

- 20 -

collection which is desired may be shown, because it is not always desirable

to erase the picture and to make a new display of the changed picture.

Let us have a look at the insert function; the PPC-administrator has to find

the corresponding ID, to cut off the PPC-list at that position and by means

of the administrator to reorganize all lists. Another possibility is to delete

and to build the collection "from scratch". A third possibility is the use of

JUMPS or similar commands, when they exist in the graphics-supervisor.

If a picture is dispayed on different devices, in which different functions

are processed with the same picture data, then we have to produce several

PPC-copies - one for each output device. This is shown ln Fig. 5.

copies

l~-'---"~~'------1refreshdisPl.\

I
,.- 1_~jwindow

..,,'d I ~ operation
I
j

I

I

I
I
I
I

I

I

~~~-------------~--~~ storage tube I
t
'-

Fig. 5: PPC-Output of different devices

Fig. 4a represents the output part of the graphics system from Fig. 4,

as discussed in detail in this chapter.

7. Input process and input code interpreter

We assume the use of.logical input devices (input units). As classes of input

characteristics we shall consider

11 text input

12 I :N - choice (for example menu,
function keyboard)

13 input of scalar, analog values
(for example dials)

14 position input

15 identification



INPUT
SIMULA
TION
ROUTIN

- -
PPC

~

~AOMINIS~
~TRATOR I _IARCHIVE

INPUT
DEVICES
STATE
TABLES

INPUT
CODE
INTER
PRETER

INPUT

CONTROL

OINPUT
DEVICE

f\)
I-'

Cf)
IJJ
o
:>
w
o
t
::::>
Il.
t
::::>o

-...........
DDPC

r~

~D~:' ,/
DDPC
GENE
RATOR

FILE

DATA
BASE

PROGRAM

USER'S

APPUCA

TION~
~

TRANSFOR-

MATIONS
====~} 0 - FUNCTION
====~) V - FUNCTION

FIG.4A: OUTPUT FlOW IN THE GRAPHICS SYSTEM



22

These logical functions may be realized by certain input devices;

if they are not available~ they can be simulated by pseudo-devices. The

corresponding simulation routines are administrated by the input code

interpreter.

Meaningful and implemented input functions are - stored in an device

allocation table - part of the device description tables. An example of

such a description (which can be different for each installation)~ is

the following table:

logical 11
input I physical input devices simulated input deviccs

redon'll
'Ili'h'- tablet function dial A/N- tele- joy- menu I pseudo- trackihg mouse pseudo-

pen keyboard keyboard type stick i, dial lightpen
I i

I

\
I

I I X X I
I I 2 X X X X

I 3
,

X X

I 4 X X X X

i

I I 5 X X

If the installation provides more than one tablet e.g.~ then this column in the

table above would have to be subdivided. Corresponding if the application program

requests the use of more then one input unit of type 14 e.g.~ then the corres

ponding row would have to be subdivided.

The input code interpreter transforms the information taken from the input device

into the following format

Device
identifi
cation

Type of
information

lnformation
Code



- 23-

The PPC-administrator uses it for PPC.manipulations and/or for passing it

to the input file.

The information codes of the single logical input functions are:

I - An Array with ASCII-Code

I 2 - A number

I 3 - A scalar

I 4 - Three scalars (normalized system coordinates)

as identific~tion input

I 5 - ID search information

The input code interpreter receives (under control of the local DDPC

administrator) as information the correlation between the physical address

in the DDPC-list and the physical address of the same segment in the PPC-code

interpreter and can herewith determine the corresponding collection by the aid

of the ID search information. It supplies then the users' program with the

corresponding ID's of all superior collections to which it belongs or waits

until this information is requested by the user's program. Also the device

identification is replaced by the corresponding unit identification t when the

message is passed to the application program.

The user will then acknowledge the input; by the message acceptance by the

users' program out of the input file this acknowledgement will be deleted.

The interrupthandler g~ves each device its own priority in the operating

system (pre-processor).

Fig. 4b represents the input part of the graphics system from Fig. 4 t as

discussed in detail in this chapter.

8. Device tables

In the device state table (both for input and output devices) is stored whether

the device is on or off and in which form it may actually be addressed (that

means which device type is at the moment simulated on it).

The device description table contains the hardware parameters of the 1/0

devices t so that the device code generators are able to produce the corres

ponding DDPC for output or PPC for input. Besides that it contains pointers

to the device allocation table.



I :IGRAPHICS
SUPERVISOR

BUFFERE.

INPUT

~
EJ

USER'S

APPLICA

TION

PROGRA
INPUT

FILE

TRANSFOR
MATIONS

DMINI
TRATOR

DDPC I 0, V) I\)

w ~

<J

DDPC- [2] o~ iGENE-
RATOR

:J
0

I

DDPC-n 0OUTPUT I IGENE-SIMULA-
RATORTION

ROUTINES

i> O-FUNCTION
~ V-FUNCTION

FIG. 48: INPUT FLOW IN THE GRAPHICS SYSTEM



25

9. Remarks on implementation

The modules existing in the global system shown in Fig. 4 have different implemen

tations. We want to distinguish in the following table between tasks for the

operating system of the graphics system, drivers, parts of the program package

(that probably in near future also can be partly realized in hardware or firm-

ware), data, archive and data bases. Everything except the drivers should be written

in a high level programming language. In order to permit certain multiprogramming and

time-sharing applications, it may be advantageous to implement all parts reentrant.

Tasks for operating Program
the operating system package Data Archive Data
system (Drivers) (or Hardware base
(qS-Data) or Firmware) system

device device pseudo input archive users'

code picture file (under
administrator datadependent

.the users' -
picture generator code program)

records base

code generator .
- - --

1/0- local pseudo buffe red

device device picture input

description administra- code

tables
tor interpreter

- - -
graphics-

1/0- input supervisor

device control -
transformations

state - -
tables input l/O-simulation

code rout!nes

PPC-administra-
tor



-~-

10. Input file

For each device there is an input file~ ~n which is stored by

I text

I 2 a number

I 3 a scalar

I 4 three scalars (in user coordinates)

I 5 lenght~ Array (ID)

From the point of view of the users' program we have to distinguish between

(I) interruptable devices

and

(2) permanent readable devices

In the case of interruptable devices th~ input file~ that ~n most cases is built

as a queue~ contains in its head the list length and then the corresponding

input information. The users' program waits until the length of the queue is

greater then zero or it g~ves the control back immediately if it doesn't con

tain any message (input information). In the case of permanent readable devices

the users' program can always read this input information.

11. Interface to the application program

11.1 Job Control Language

The concept as described in this paper should be realisable not only in a single

user environment but also in a time sharing system. In order to permit this

without running into deadlock problems all devices which may be used during exe

cution of a perticular users' program may have to be allocated to this program

prior to its initiation by means of the job control language. We will illustrate

this using an example written in an arbitrary job control language:

jobstep

allocate refr.esh displaYf I to be referred to ~n the

program as DISPLAY I

allocate storage tube~ I to be referred to in the program

as DISPLAY 2

allocate the lightpen of refresh display # I to be referred to in the

program as KEY I

allocate teletypei 18 to be referred to ~n the program

as KEY 2



- 27-

allocate the keyboard of refresh display 11' 2 to be referred to in

the program as TEXT 1

allocate teletype* 18 to be referred to in the program as TEXT 2

Within the users' program the reference names thus defined may be used as device

identifications. Using an arbitrary programming language we write an example:

DECLARE (TEXTIN I, TEXTIN 2) GRAPHIC TEXT INPUT UNITS,

DECLARE (PLOTTER I, PLOTTER 2) GRAPHIC OUTPUT UNITS;

DECLARE READ GRAPHIC UNIT VARIABLE;

ALLOCATE PLOTTER 1 TO DISPLAY 1 •,
ALLOCATE PLOTTER 2 TO DISPLAY 2',
ALLOCATE TEXTIN TO TEXT INTERRUPT (KEY 1) ;

ALLOCATE TEXTIN 2 TO TEXT 2 INTERRUPT (KEY 2) ;

GENERATE OUTPUT ON PLOTTER AND PLOTTER 2;

ACTIVATE INTERRUPT FOR TEXTIN 1, TEXTIN 2 •,
WAIT FOR INTERRUPT SET DEVICE (READ);

DEACTIVATE INTERRUPT FOR TEXTIN 1, TEXTIN 2;

GET MESSAGE FROM DEVICE (READ) INTO (TEXTSTRING);

In this example output is produced on two output units, then a text input

~s expected from one bf the two input units. The program waits for the inter

rupt and then gets the message from the corresponding unit.

11.2 Device simulation

As an example a program may have been written to operate with

a choice input unit,

a identification input unit and

a scalar input unit.

The program was operating in an installation where the devices

a function-keyboard,

a refresh display with lightpen and

an analog signal input

were available.



_ 28 _

If we now assurne that the program should be implemented in a different installa-

tion, the following situations may arise

a) the hardware 1S equivalent (of the same class as defined in chapter 3)

b) the hardware 1S more powerful (of a higher class)

c) the hardware is less powerful (of a lower class)

Cases a) and b) do not make problems, since they can at least be handled by

simulation routines within the graphics system. Case c) could also 1n some cases

be handled by simulation routines, in other cases, however, it may be necessary

or desirable from an users' point of view to give the application program some

control of the simulation. For such a technique we propose the following.

We assurne then that sampIe program should operate either

I) with one refresh display only (no scalar input, no keyboard) or

2) with only a storage tube with joystick (tracking cross) and

keyboard (no identification device).

The following solutions might be chosen:

a) case 1 : a menu 1S to be set up 1n a reserved area of the refresh

display for simulating the function keyboard and a pseudo

dial in an other display area for simulating the analog

signal input.

b) case 2: a text input may be used to simulate the choice device and

the scalar input, the joystick together with the keyboard

interrupt may be used to locate a point on the screen such

that the nearest displayed element can be identified to

simulate the identification device.

However, other ways of simulation may be more suitable. It may be difficult to

provide a standard simulation package for such situation without regarding the

actual users' program. It would be better that the simulation be done for each

users' program. However, this simulation should be such, that the part of the

program which already exists must not be changed, only a prologue and epilogue

should be used. This may be realized by the concept of pseudo units. We will

illustrate this by using case 2 as an example. The original program may look as

folIows:



- 29-

DECLARE PICK GRAPHIC PICK UNIT;

KEY GRAPHIC CHOICE INPUT UNIT,

SPEED GRAPHIC SCALAR INPUT UNIT;

ALLOCATE PICK TO DISPLAY;

ALLOCATE KEY TO F-BOARD ;

ALLOCATE SPEED TO DIAL;

In case 2 the units which are available may be

TELETYPE - to which the keyboard is allocated

STORAGE - to which the storage tube is allocated

JOYSTICK - to which the joystick is allocated

The prologue to the above prograrn may take the form:

DECLARE (DISPLAY, F-BOARD, DIAL) GRAPHIC UNIT;

DEFINE DISPLAY SIMULATION (JOYSTICK, TELETYPE);

DEFINE F-BOARD SIMULATION (TELETYPE, characters simulating the keys);

DEFINE DIAL SIMULATION (TELETYPE, data format specification);

These simulation routines would have to perform the following tasks:

a) Allocation of pseudo device description tables for use ~n the

subsequent prograrn in place of the original device description

tables.

b) Insertion of addresses of special simulation routines with references

to the actual device description tables of TELETYPE, STORAGE, JOYSTICK

and of specified parameters in the pseudo device description tables.

11.3 Logical functions

These functions form (part of) the interface to the users' program. We want to

distinguish between the following classes of logical functions:

(1) Administration routines

(2) Graphics functions

(3) Dialog functions

Functions supporting type, assignments

and identification for the device

Functions for the definition of graphical

objects, for the set up of the coordinate

transformations and of the display mode

Functions for the dialog process, for

structur and attribute manipulations.

Some examples of these functions will now be given in a table form.



_ 30_

Administration

routines

Graphies

funetions

Dialog

functions

• Begin of the graphies system

• Set graphieal deviee on
(with or without simulation)

• Reset of a graphieal deviee
!

• Begin of a subpieture

· End of a subpieture

· Begin of a eolleetion

• End of a eolleetion

• Begin of a pieture

• End of a pieture

• Funetions for the definition, administration
and eall of a ehoiee I:N

• Set the graphieal deviee off

• End of the graphies system

• Seale and eoordinate system

• Windowing

• Definition of attributes

• Display

• Read data out of the deviee deseription tables

I .I . Delete of a eolleet10n

• Move of a eolleetion

• Real-time move

· Zooming

• Detail sealing the defined window

• Read permanent readable deviees

• Read interruptable deviees
I

All logieal functions together with the neeessary eonventions have to be made

available at the language level of the users program in a suitable syntaetieal form.

12. Configurations of graphie systems

We shall distinguish between four typieal types of eonfigurations of graphie

systems /DUNN 73/:



- 31 -

I) Simple lID-System

2) Buffered lID-System

3) "Intelligent" Terminal

4) "Intelligent" Satellites

By simple lID-system we mean the graphics I/O-s,ystem that is seen as a

remote device, independent of its location. All functions have to be pro

cessed by the computer components, to which the lID-system is connected.

The I/O-devices are only loaded and activated to respond to user requests

or other actions. The graphros system need only the display of the results

of the output function as pictures. This involves the decoding and execut

ion of the graphics commands, the recording and coding of the user input.

All the other functions will be performed by the computer.

In a buffered lID-system the graphics system also functions as an external device.

lt is mainly used to refresh displays. The graphics system contains a picture

buffer, some registers and its own (limited) instruction set. With this

equipment it lS possible to directly and completely process the l/O-functions

in the graphics system. The load on the computer is therefore smaller and

the performance, from the users' point of view, can be substantially increased.

In this configuration we must consider two different response times. The

graphics system, because of the local hardware support responds quickly;

the computer may be slow and will depend on the computer load as weIl as the

transmission time. In some applications this may lead to some synchronisation

problems.

A third kind of configuration is cornrnonly referred to as "intelligent" terminals.

By "intelligent" we mean a certain degree of autonomy or processing ability,

which allows some execution of some classes of process without interrupting

the computer, to which it is connected. lf the "intelligence" can be extended

to the storage and user function (data base and userS application prograrn)

then we have the so called "intelligent" satellites.

As a graphics control block (sometimes called protocol) we shall mean

an information block (cornrnands, programs and data) that makes a communication

between computer (host) and the graphics system possible. This protocol

defines the interface; on each side of the interface there must be a correspond

ing protocol interpreter and generator (see Fig. 6).



- 32 -

SYSTEM

GRAPHIGS

GCß-

INTER

PRETER

I
----·~

GCB-"lGENERATOR

C
o
N
T
R
o
L

G
R
A
P
H
I
C
S

Ä
1
1

I

B
L
o

I C

l K

-lGCB
interface

GCB-

GENERl\.l'OR

COMPUTER

II .
L J

Fig. 6: The graphics control block

The interfaces of the four configurations ~n our concept are indicated in

Fig. 7.

13. Development Methodology

Successful development of graphie systems of the sort discussed in t~is paper

requires a methodological approach to the development of computer systems.

Experience with an ad-hoc approach to the development of large systems has shown

a need for a more systematic or step by step approach. Such a step-by-step

approach requires an ability to precisely specify the interfaces between compo

nents and to precisely document the design decisions made at each stage of the

development. If we are not able to precisely document the decisions and inter-



INTELLIGENT
SATELLITE

INTELLIGENT
TERMINAL

BUFFERED
GRAPHICS
I/O-SYSTEM

SIMPLE
GRAPHICS
I10-SYSTEM

11 11 IBUFFERED
• INPUT

~

INPUT

PROCESSOR

DEVICE DEVICE
APPLICATION 1

4
~ .. liNDEPENDENT DEPENDENT

PROGRAM OUTPUT OUTPUT
PROCESSOR PROCESSOR

INPUT

CONTROL

-
DDPC-- - PICTURE

~

DATA BASE PPC- --/

RECORDS

FIG.7: INTERFACES OF THE DIFFERENT CONFIGURATIONS FOR GRAPHICS SYSTEMS



_ 34 _

faces made along the way, our final product may be just another one indistinguish

able from those developed with moderate success in a less systematic way.

For these reasons we need a specification language in which to write this

documentation. However, "Specification" is used in two quite different ways

in the computer system literature. Engineers tend to use it in the sense of

"SPECS" meaning a statement of the requirements which a product to produce must

meet. Mathematically trained"persons often use the word in a more general sense

meaning simply any statement which makes the description of an object more specific.

For example the specifications for operating systems given in /HOARE 73/ and

/BREDT 75/ are specifications in the more general sense, but would not be

accepted as specifications in the narrow sense used in /PAR 72/. While both of

these papers provide more specific information about the systems being described,

they do not provide a statement of the requirements which the systems must fulfill.

In order to avoid terminological confusion we shall in the sequel use "specification"

~n the engineering (SPECS) sense, and use the phrase "abstract implementation"

instead of the more general use of the word "specification". An implementation

of a function or component is a program which is written ~n terms if existing

hardware or in a programming language which can and will be translated automatically

into a machine level program. In an abstract implementation, we write the program

in terms of a language or machine for which there may not exist a practical im

plementation. By writing this program we make and document certain decisions, but

writing this in terms of an abstractly defined machine or programming language we

leave certain other design decisions open. Thus the concept of an abstract imple

mentation supports the concept of step-by-step development and provides documenta

tion of the intermediate design decisions. Such an abstract implementation is

not however, a specification in the narrow sense because it ~s not a requirement

that the system be implemented in terms if such a machine. The abstract implemen-

tat ion goes beyond the requirement stage as a step towards the implementation.

In summary then, we see two fundamental problems involved in the development

of the systems described. (1) We require precise descriptions of the various

components so that interface problems can be avoided. The description of the

properties of the components visible at the interface are considered requirements

that those components can meet and will be called specifications. (2) When one

beg ins to implement such components, it is necessary that internal design decisions

be precisely documented. This topic will be handled in the paragraph on abstract

implementation. Naturally, larger components will be subdivided into smaller



- 35 -

components. The way that these subcomponents will be used to obtain the larger,

is expressed in form of an abstract implementation in terms if those components.

13.1 Component Specification

A methodology and system structure such as that pictured on the previous pages

is only realizable if each component ~s precisely and abstractly specified.

The need for a precise specification should be clear to all. Every arrow in

Fig. 4 represents an interface between two components which will be developed

independently and perhaps changed later. Without a precise description of the

interface, major difficulties can appear at the time of system integration and

whenever maintenance or improvement is needed. The need for abstract specifica

tion is perhaps not as obvious; it causes from two factors:

(I) The structure shown ~s expected to be shared by many different

systems implemented by different manufacturers using somewhat

different technologies.

(2) Technological advances and/or environmental demands will lead

to the replacement of single components with improved, and/or less

expensive vers ions us~ng new techniques. For example a software

pseudo-code-interpreter might be replaced with hardware or micro

programming. For a smooth execution of such changes, it ~s essential

that the interface of the new component be the same as that used for

the old one. Thus the specification of the interface, (which states

the assumptions, which each side may make about the other) must

abstract from any possible differences between various implementations.

It is also important that the specification of the components be parameterized.

This is necessary because one cannot expect that all systems will have the same

capacity. Were we attempt to require that all the systems have the same capacity,

deviations will be made anyway and will be unconstrained. The parameters in an

abstract specification indicate the freedom which individual system designers

enjoy, but they also indicate the borders within which those systems should stay.

Each parameter corresponds to an observable property of a component. It's value

will be specified at a later time. For example, it is necessary to include in the

specifications a parameter which indicates how many device description tables can be

supported by the system. The need for both precision and abstract ion means that

the specification must be written ~n a standard formalism developed for this

purpose. Because we wish to abstract fram implementation details, the ALGOL-

like programming languages and hardware description languages often cannot be used.



-~-

These reveal exactly the implementation details which we wish to abstract from.

For example when one writes two assignment statements, one implies a sequence

of events which in some cases one could violate without violating the require

ments (e.g. A : = B; C : = D when A,B,C,D are simple variables).

In this paper we will not attempt to specify the exact notation to be used in

describing the components. We will, however, describe the basic principles of

abstract formal specifications, and outline a methodology for coming to such

specifications.

The basic philosophy behind most current approaches to abstract specification

is to be found in /PAR 71/ and PAR 72/. A substantially improved notation for

specifications has been developed by Guttag /GUT / for use when many objects

of the same specification will be created and functions for creating and deleting

such objects are available. Both of these methods are discussed in a survey by

Liskov and Zilles /ZI,LIS 75/.

13.2 Methodology

The first step in preparation of a formal abstract specification is the identifi

cation of all channels of communication between the component and its environment.

This means to identify all ways ln which the component can give information to

its users and all ways in which it can ge information from its users and from

those components which it uses. In doing this it must be remembered that these

communication channels should be those which will be present for all conceivable

implementations. All ways by which one can obtain information from the component will

be called V-functions (~alue delivering functions); all ways by which one can give

information to the component are called O-functions (they Qperate on the state

of the component).

For example for a simple display there would be a V-function which should indicate

part of the state of the screen at a given point (light on, light off, blink,

etc;). There would be O-functions corresponding to each key, and input connection.

For each of the V-functions an initial value may be specified.

The next step is to describe the effects of all of the O-functions exclusively in

terms of the immediate and delayed effects in the values of the V-functions.

This is critical: if the effects are described in terms of something other than

the V-functions (which include everything available outside of the components) then

the danger exists that one would be providing or suggesting information that was

biased towards a particular implementation. Thus, we ought not to describe the



- 37 -

effect of pushing a key by indicating that it causes a change in an internal

buffer used for refreshing the screen. This buffer might not be present if a

plasma screen technology were applied. Instead, we must describe the effect in

terms of the V~functions that describe the screen. If the effect on the screen

is delayed, (e.g. until a REWRITE-KEY is depressed), then the effect of the

change is described in terms of the change that will occur in the future when that

action occurs. In cases where information is stored away for future use, and a new

picture is put in the display, we can describe the effect of this storage instruc

tion by describing the possible ways (sequences of actions) that will result in

the display being restored to its previous state.

If, for example, a picture stack is available, then the effect of the commands STACK

and RESTORE can be described by indicating that

(1) After executing STACK the screen is blank, and

(2) The sequence of commands STACK; RESTORE leaves the state of the

system unchanged.

It is important to note that no mention of the internal memory (which must be

present) is made. It is implied by the existence of a sequence that will restore

the screen, but it is never mentioned explicitly. This indirect or abstract form

of specification is the only certain way of avoiding a bias towards a certain

design or technology.

13.3 Notations

In the original work by Parnas a very direct notation was used. Each function

was described in terms of its possible values (for V-functions), and its effects

on other observable functions (for O-functions). In order to describe delayed

effects, "hidden functions" were introduced. These hidden functions contained

those aspects of the device's state which would influence future behavior. It

1.S now feIt that this reliance on hidden functions was an error. Although it

is theoretically possible to avoid bias towards a certain implementation, it is

not easy.

In a more recent working report, Parnas and Handzel /PA,HA 75/ have extended the

notation in order to remove the hidden functions. Two notational tricks were

introduced:



a) History characterizing sets

In the specification, functions which described the history of the

object (which actions have been executed on it) are defined. The

effect of each O-function on the history set is defined and the

values of V-functions are defined in terms of the history sets. The

history sets are always defined so that only the minimum (or

strictly relevapt) history about the object is maintained.

b) Canonical sequences

Instead of the history sets, a set of identity preserving sequences

is given. Each of these sequences preserves the state of the device,

thus any combination of them preserves the state of the device. As

shown in theexarnple above, this implies the information that must

maintained internally, but does not provide any suggestions of its

form or representation.

John Guttag in his dissertation (apparently working on the basis of a proposal by

Zilles) has extended the canonial sequences by introducing an algebraic approach

to the specification. The various components are assumed to define types of

variables. Every O-function transforms a variable to a new value in the space

appropriate to that type. The notation assurnes that O-functions have values which

are variables of that type. This allows one to refer to the whole object without

referring to its individual components and/or possible internal information.

In our example above, one would regard the functions STACK and RESTORE as having

values which are displays. (Thus "RESTORE(B)" (where B is a display) is itself

a display, but not just the visible part of the information - the complete state.

The canonical sequence used ln our example could then be written: RESTORE(STACK(B»

= B. For simple exarnples, such as stacks, the advantages of this notation are

minor, but as shown in Guttag's theses, it becomes quite advantageous for more

complex examples. (Note: in comparing the size of Parnas's specifications with

those of Guttag, it is important to note, that Parnas's specifications include

some information about error treatment and initial values which is not present

in the Guttag specific~tions).

13.4 Abstract implementation

We now sketch a solution to the second of the two problems mentioned in the

introduction to paragraph 13: The adequate documentation of the internal design

decisions for modules /NEES 76,72/. One may say that to specify a module means



- 39-

to solidify its exostructure (input/output constraints), at the same time

leaving its endostructure (the algorithm) malleable. The boundary between exo-

and endostructure coincides roughly with the line which is commonly drawn between

declarative and procedural definitions of programs. Hence one would reason, that

specification being available, the next step should directly lead to compilable

code. The distance between specification and machine code may however be so grear,

that the insertion of intermediate steps is recommendable. This will be realized,

if one admits that to design the endostructure of a module means constructively

to define the transformation of one class of data structures (representing a type

of variable) into another, where the one class 1S given by the O-function, the other

one by the V-function of the specification. It will be .useful in many cases, to

state the cyclic or recursive steps of that transformation, without to drag along

e.g. a doublelinking of records. The coding of such a transformation in a pro

gramming language still to be characterized, we will call an abstract implementation

/GUT 75/.

For such a purpose almost all existing programming languages are either too

specialized (LISP) or too voluminous (ALGOL 68). One language which qualifies it

self however, is GEDANKEN, which Reynolds has introduced in two papers

/REY 69,70/. In GEDANKEN assignment and indirect addressing are formalized by

the concept of reference. The values a reference can possess are reference,

integers, booleans, characters, functions, and label values (the latter essentially

being states of the module considered). Every data structure is a function. Some

data structures may be implicit, i.e. they are to be defined by an algorithm for

computing or accessing their components. In this way hardware modules can be direct

ly modelIed into GEDANKEN-data-structures.

The usefulness of GEDANKEN for abstract implement at ions 1n computer graphics shall

now be demonstrated by coding an algorithm for the transformation of user-oriented

picture-structures into pseudo-picture-code-sequences, i.e. device-independent

structured display files. In GEDANKEN any sequences s = (xI, •.• ,xn) of values is

a function, where s LL I, s UL = n for two special atoms LL (~ower ~imit) and

UL (Upper Limit) and s i x. for I ~ i ~ n. Arecord (in the sense of Hoare) is
- - 1

given by a function, which 1S defined 1n a set of atoms, the field names of the

record. The set of records 1S subdivided into record classes, where arecord class

C is given by an expression (CLASS,C,(fl,vl), ••• ,(fn,vn» where f l , ..• ,fn are

field names of the records'of C. Every record r owns a special name TYPE such



40

are members of s. Another record class

that r TYPE = C. If v. denotes a set s, then r f. s. If v. is of the form
~ ~ J

SEQ, v where v denotes a set s, then r f. is a sequence the components of which
~

definition (UNION, v ,vI"" v )o n
denotes by v the union of the sets denoted by vl' ..• v . Several record classeso n
can be combined into a sequence which is called an abstract syntax /REY 69/.

Fig. 8 gives an abstract syntax for picture structures. This syntax is roughly

equivalent to the BNF-syntax given in chapter 5. With the definition of the

concept of arecord class in mind, the meaning of an abstract syntax can very

easily be translated into common language:

"A picture has Subpictures (which is sequence of Subpicture) and Collections

(which is Collection). A Collection has ID (which is Number and Attributes ...• "

This abstract syntax AFPC is now used to abstractly-implement, a functiortPPC.

Sequence (the " .• " being used,as adelimiter) which is exactly a pseudo code

generator in the sense of chapter 6 (fig. 9). The structure of fig. 10 e.g.

will by PPC.Sequence be mapped onto the PPC-code shown by fig. 11. The abstract

syntax AFPC does not point directly into the body of the functiortPPG.Sequence

because it is bound to a free variable in the body of the function Test (top

of Fig. 8 /REY 69/).

y
1
("

5

't

~

2,.

;f

DDo
--""""i--+--+--+--+--+--I~~~i--'I-+--+--~~-l-+--l-.j:....,,,. X

-t 1 ~ ..,. S , ':l g !) 40·H n H tlt l!ö " ., 4S'

Fig. 10: Picture described by Fig. 8



41

The abstract syntax AFPC defines the structure of any datum which represents

a certain picture out 6f a given class of pictures. Thus e.g. lines 2 to 4

say, that a Picture is given by declarations of Subpictures and by a

structure called Collections which is a Collection. If one row considers

lines 5 and 8, one will realize, that a Collection includes a sequence of

Entities, where an Entity may be a Primitive or a Collection again (notize

line 9). Because a Primitive can have a UNlVERSAL which can be everything, a

Primitive can for exarnple be a Subpicture.

Det. ot tno tunetion Test(x,C):
It x is ~ primitive datum,(e.~. a r.Jmber}
or arecord, and C 1s arecord class,
~h~n T(x,C) ~ XEC

.An' abstract syntax tor tha psoudo picture coda· (PP<::)

1 APP<::. (
2 (CLASS Picture,
3 (Subpicturos, SEQ, Subpicture)~

4 (Collections, Collection».

5 (Cr,Ass, Collection,
6 ' (Id, llurnber),
7 (Attributes, SEQ, Aitribute),
8 (EntitH's, SEQ, Entity» ,

9 (UIIION, Entity, Prim!tive, Collection).

10 (CLASS, Primitive,
11 (Pri"" UIlIVERSAL),

,12 (P;u-ams, SEQ, CHARCLASs:»,

13 (CLASS, SUbpicture:
14 (Id, SEQ, CHARCLASS),
15 (Attributes, SEQ, Attribute),
16 (Things, SEQ, Thing»,

17 . (CUSS, Thing,

18 (Prim, UNIVERSAL), '
19 (Params, SEQ, lIUMBERCLASS» ,
20

Fig. 8: Description of Fig. 10

The structure of the procedure PPC.Sequence just inverts the structure of

the syntax APPC (Fig. 8): Where AFPC defines the different components of the

data typePicture top down, the corresponding procedure PPC,Sequence is a

bottom-up-construction of subprocedures corresponding to the different components

of Picture. Thus e.g, the subclass Thing at the bottom of Fig. 8 is mapped onto

the leading subprocedure Da. Thing in Fig. 9. Besides declaration of subprocedures

Fig. 9 contains just one line of code: A call to the top-level subprocedure

Do.Picture (line 29).



- 42-

A ~uncti~n'which convert8 PPC~data-structure8p into
PFC-sequences, \lhere AFPC i8 the abstract syntax. o~ th~ Jl

1 PPC.Sequenc~ (p,APPC) is
2 (Do.Thing(x) 18 (Test(x,Thing) ~
3' 'Cons(x Prim, ~ Params), T ~ Error)t
4 Do.Things(x) is (Is.Empty x .). x, T oi>

5 Cons(Do.Thing(x 1), Do.Things(Tall xi»'"
6 'Do.Subpicture(x) i8 (Test(x,Subpicture) ~.

7 cons(:< Id, Cons("ATTRIB". '
8 'Conc(x Attributes,
9 Aug(Do.ThinGs(x Things),"EIIDSUB"»», T ->Error);

,10 Do.Subpictures(x) is (Is.Empty x ->x, T ->
11 Cons(Do.Subpicture(x 1), Do.Subpictures(Tall x»)r
12 Do.Primitive(x) i~
13 Cons( (x = nSUBPICTUREn ... npSHJHpn, T -> nU1PLICn),
14 cons(x.Sort, x Params»~

15 Do.Entity(x) is (Tcst(x,Entity) ~,

16 (Test(x,Primitive) ->Do. Primitive x,
17 T ... Do. CollecUon x»;
18 Do.Entities(x) is (Is.Empty x ~x, T ~

19 Cons(Do.Entity(x 1), Do.Entities(Tall x»);
20 no.Collection(x) i8 (Test(x,Collection) -~

21 Cons(x Id, cons( "COLLEC" ,
22 Conc(x Attributes, Aug(Do.Entities(x Entitie8),
23 nElIDCOL'»», T ~Error);

24 Do.Picture(x) is (Tcst(x,Picture) ~
25 Cons(npICTUR",
26 Conc (00. Subpictures (x S~bpictures).

27 Aug(Do.Collectlon(x Collection), "ENDPIC"»),
28 T ~ Error);

. 29 Do. Picture . (p»

Fig. 9: Convection von PPC-data-structures into PPC-sequences

This figure tries to explain the idea of abstract implementation by a

compilation of the data structure corresponding to Fig. 10 into a PPC

sequence. This will easily be grasped, when one realizes. that the data

structure for Fig. 10 will start with arecord Picture, which has just

one Su~picture, which is a rectangle. Hence the evaluation of Do.Picture

in lines 24 to 28 of Fig. 9 can do nothing else as to generate the string

"PICTURE" which appears as the head of the operations and data listed in

the last column of Fig. 11. In this way the compilation will proceed,

gene rating for example "RECTAN". The compilation finally stops after ge

nerating the closing symbol "ENDPIC" by line 27 of Fig. 9.



Commimt
Begin-
or' End- Adress Operation or datum
point

',H~ad oi: picture A 1 1 PICTUR

IIcad oi: sUbpictuz:e A 2 2 SUBPIC
I

Subpictll-e,Id 3 RECTAN

ImpUcit '. 4 IHPLIC

reference 5,' i path
Parameters 6 1l,1l,1,1l.1,;1,1".2,1'l;1"

End oi: subpicture E 2 16 ENDSUB

lIead of coll. (6 A 3 11 COLLEC

Id oi: collect. I" 18 '1,.
Attri- 19 ATTRIB

butes 2(6 (6

Implicit 21 HiPLIC
,,'

I"cference 22 lGrid
Parameters 23 1.1,3.2,6

Head of .col1. 1 A4 28 COLLEc

Id of collect. 1 29 1 .
Subpicture 31" PSHJNP

call 31 2

Parameters 32 1.5,1.5

Subpicture 34 PSHJT1P

cal1 35 2

Parameters 36 3.5,1.5

End of. coll. 1 E4 38 E11DCOL

Implicit 39 mPLIC

reterence 41" iCJ,rcle

Parameters 41 6,3,(6.5.
End of collo I" E 3 44 ENDCOL
End of picture E 1 45 arbPIC

Fig. 11: Compilation of the data structure corresponding to Fig. 10

into a PPC-sequence

14. Acknowledgement

The authors are gratefully indebted to R. Eckert and M. Gonauser who contributed

with their work and many valuable discussions to the contents of this position

paper.



15. Bibliography

I BREDT 75 I

I COT 72 I

I DUNN 73 I

I ECK 75 I

I ECK 76 I

IENC, TRA 731

- 44 -

A.R. Saxena and T.H. Bredt

A structured specification of hierarchical
operating system

SIGPLAN Notices, Vol. 10, No.6, June 1975,
pp. 310-318

Ira W. Cotton

Network graphie attention handling

Online 72 Conference Proceedings, Uxbridge,
England, 4-7 Sept. 1972, Vol. 2, pp. 465-490

R.M. Dunn

Computer Graphics: Capabilities, Costs and
Usefulness;

Quarterly Report of SIGGRAPH-ACM
Vol.7, No.l, 1973, pp. 1-29

R. Eckert

Geräteunabhängige graphische Software;
Probleme und Lösungsmöglichkeiten

(Device independent graphical software;
Problems and possible solutions)

Bericht Nr. GDV 75 - 4
FB Informatik, TH Darmstadt (in German)

R. Eckert

Functional aspects and specification of
graphics systems

Bericht Nr. GDV 76 - 2
FB Informatik, TH Darmstadt

J. Encarnacao and U. Trambacz

The design and organisation of a general
purpose display processor

Proceedings of the "Journees Graphiques 1973"
Colloques AFCET/IRIA, Paris, Dec. 1973,
pp. 37-50



/ ENC 74 /

/ENC, ECK 76/

/ FNI 75 /

/GI,ENC,SAV 75/

/ GBM 75 /

/ GRA 75 /

- 45-

J. Encarnacao

Möglichkeiten zur interaktiven graphischen
Datenverarbeitung in Time-Sharing-Systemen
und ihre Leistungsabschätzung

(Practically of interactive computer graphics in
time sharing systems and performance estimation)

Lecture Notes of the German Chapter of the ACM
1-1974, pp. 1-17 (in German)

J. Encarnacao, R. Eckert

Bemühungen und Möglichkeiten bei der Begriffs
bildung und Normung graphischer Systeme

(Activities and possibilities for the
standardization of graphics systems)

Lecture Notes of the German Chapter of the ACM
lI/März 76 (in German)

FNI ad hoc Komitee beim Beirat
"Verarbeitung graphischer Daten"
Unterausschuß !'Graphische Software"

Abschlußpapier zur Erarbeitung von Vorgehens
alternativen für die Normung graphischer Software;

(Final report on alternative procedures for the
standardization of graphical software)

September 1975 (in German) (unpublished)

W.K. Giloi, J. Encarnacao and S. Savitt

Interactive Graphics on Intelligent Terminals
in a Time-Sharing-Environment

Acta-Informatica 5, 257-271 (1975)

Graphische Methodenbank - Benutzerhandbuch

(GMB Users' handbook)

Siemens AG, München, FL SYST 152; 1975 (in German)

Interaktives graphisches System GRAFSY
Systembeschreibung

AEG-Telefunken, A 510.6.6/0775



/ GUT /

/HOARE 73/

/HO,GE,GO 75/

/ NEES 72 /

/ NEES 75 /

/NEW,SPR 74 /

/ PAR 71 /

- 46 -

J.V. Guttag

The Specification and Application to Programming
of Abstract Types

Technical Report CSR6-59, University of Toronto,
Canada (Sept. 1975)

C.A.R. Hoare

A structured paging system

Computer Journal 16,3 (Aug. 1973),pp. 209-215

E. Hörbst, G. Geitz and M. Gonauser

An integrated System which provides the use of
various graphie terminals

Interactive Systems, London, 1975, pp. 45-56

G. Nees

Strukturunterschiede bei graphischen Programmier
sprachen

(Different structures in graphical prograrnrning
languages)

Lecture Notes of the German Chapter of the ACM
III/Dezember 1972, pp. 65-86 (in German)

G. Nees

Toward an unified approach to the specification
of computer graphics software

Lecture Notes of the German Chapter of the ACM
I/April 1976

W.M. Newrnan and R.F. Sproul

An Approach to Graphics System Design

Proceedings of the IEEE (April 74),pp. 471-483

D.L. Parnas

Information Distribution Aspects of Design
Methodology

Proceedings of 1971 IFIP Congress, Ljubljana~

23-28. Aug. 1971 ~ North-Holland Publishing Co.
(1972)~ pp. 339-344



/ PAR 72 /

/ PA, HA 75 /

/ PHIL 75 /

/ REY 69 /

/ REY 70/

/ SAN 75 /

/SCHL et. al. /

- 47-

D.L. Parnas

A Technique for Software Module Specification
with Examples

Communications of the ACM,May 1972, pp.330-336

D.L. Parnas and G. Handzel

More on Specification Techniques for Software
Modules

Forschungsbericht BS I 75/1, Technische Hoch
schule Darmstadt 1975

PHILDIG - General Description

N.V. Philips, Eindhoven
The Netherlands
Publ.No: UDP-DSA-SCA/75/ool/DE/CN

J. Reynolds

GEDANKEN - a simple typeless language which
permits functional data structures and coroutines.

ANL-762 I , Argonne Nat. Lab., Argonne 111.,.1969

J. Reynolds

GEDANKEN - a simple typeless language based on
the principle of completeness and the reference
concept.

Communications of the ACM 13, 308-319, 1970

T.L. Sancha

Some Notes on Software Standardization

Computer Aided Design Centre
Cambridge, England (October 75)

G.Edler, E.G.Schlechtendahl, U. Schumann,
R.Schuster

Design Principles of the GRAPHIC System

Bericht KFK 1722 (1973)
Gesellschaft für Kernforschung, Karlsruhe



/ SCHU /

/ SPR,THO 74 /

/ ZI, LIS 75 /

R. Schuster

System und Sprache zur Behandlung
graphischer Information im rechnergestützten
Entwurf

Bericht KFK 2305 (Aug. 1976).
Gesellschaft für Kernforschung, Karlsruhe

R.F. Sproull, E.L. Thomas

A Network Graphie Protocol (Aug. 74)

Xerox Palo Alto Research Cent re

S. Zilles and B. Liskov

Specification Techniques for Data Abstractions

I.E.E.E. Transactions on Software Engineering,
vol. 1, No. 1, 1975, pp. 7-19



Authors' addresses

(I) Encarnacao, J.
Fachbereich Informatik
FG Graphische Datenverarbeitung
Technische Hochschule Darmstadt
Steubenplatz 12

6100 Darmstadt, W.-Germany

(2) Fink, B.
Philips Forschungslaboratorium Hamburg GmbH
Vogt-Kölln-Straße 30

2000 Hamburg 54, W.-Germany

(3) Hörbst, E.
Siemens AG
Zentralforschungslaboratorium
Postfach 700077

8000 München 70, W.-Germany

(4) Konkart, R.
AEG-Telefunken
Bücklestraße 1-5

7750 Konstanz, W.-Germany

(5) Nees, G.
Siemens AG
E 549
Werner-von-Siemens-Straße 50

8520 Erlangen 2, W.-Germany

(6) Parnas, D.L.
Fachbereich Informatik
FG Betriebssysteme I
Technische Hochschule Darmstadt
Steubenplatz 12

6100 Darmstadt, W.-Germany

(7) Schlechtendahl, E.H.
Institut für Reaktorenentwicklung
Ges. für Kernforschung mbH
Weberstraße 5

7500 Karlsruhe, W.-Germany




