KERNFORSCHUNGSZENTRUM

KARLSRUHE

Institut für Angewandte Kernphysik

Operation of the Karlsruhe Isochronous Cyclotron in 1976

F. Schulz, H. Schweickert

GESELLSCHAFT
FUR
KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2461

Institut für Angewandte Kernphysik

Operation of the Kar1sruhe Isochronous Cyclotron in 1976

F. Schulz and H. Schweickert

Abstract

The operation of the Karlsruhe Isochronous Cyclotron in 1976 is briefly surveyed. The status and the results of the following technical developments are briefly described:

```
Computer aided cyclotron operation
New correction coils for the cyclotron
Non-intercepting measurement of the extraction rate
Lambshift source for polarized deuterons
Improvements of the \({ }^{6} \mathrm{Li}^{3+}\)-Penning ion source
New beam line to an irradiation room for machine parts
Nova 2 computer system for nuclear physics experiments
Routine production of Iodine-123 for nuclear medicine
```

In the annual report 1975 we have included a section consisting of a series of brief reports on applied research in progress. This year we give a compilation of the current basic nuclear physics work at our cyclotron. The short papers prepared by the experimental groups are arranged according to the following topics:

Experiments using the $156 \mathrm{MeV}{ }^{6} \mathrm{Li}^{3+}$ - beam
Experiments using the 52 MeV polarized deuteron beam
Further nuclear reactions
Nuclear spectroscopy
Measurements of nuclear magnetic moments
Measurements with the neutron time-of-flight spectrometer

Betrieb des Karlsruher Isochron Zyklotrons im Jahre 1976

Es wird ein kurzer Überblick über den Betrieb des Karlsruher Isochron Zyklotrons im Jahre 1976 gegeben. Ferner wird iber den Stand und die Ergebnisse folgender Weiterentwicklungen an der Beschleunigeranlage berichtet:

Rechnerunterstützung des Zyklotronbetriebes
Neue Korrekturspulen für das Zyklotron
Berührungslose Messung der Extraktionsrate
Lambshiftquelle für polarisierte Deuteronen
Verbesserungen an der ${ }^{6} \mathrm{Li}^{3+}$-Penning-Ionenquelle
Strahlfuhrung in den Bestrahlungsraum fur Verschleißmessungen

Nova 2-Rechnersystem für kernphysikalische Experimente Routineproduktion von Jod-123 für die Nuklearmedizin

Nachdem wir im Jahresbericht 1975 einen Überblick über die anwendungsorientierte Forschung an dem Beschleuniger gegeben haben, werden in einem Anhang zu diesem Bericht die aktuellen kernphysikalischen Arbeiten beschrieben. Die Kurzberichte der Experimentatoren sind dabei in folgende Abschnitte eingeteilt:

Experimente mit hochenergetischen (156 MeV) ${ }^{6} \mathrm{Li}^{3+}$ - Ionen Experimente mit polarisierten Deuteronen

Sonstige Kernreaktionen
Kernspektroskopie
Messung von Kernmomenten
Messungen am großen Flugzeitspektrometer

1. OPERATION SUMMARY 1
F. Schulz, H. Schweickert
2. TECHNICAL DEVELOPMENTS6
3. 1 Computer Aided Cyclotron Operation
W. Kappe1, W. Karbstein, W. Kneis, J. Möllenbeck,
H. Schweickert
2.2 New Correction Coils of the Cyclotron 10
V. Bechtold, L, Friedrich, L. Wiss
2.3 New Computer Controlled Power Supp1ies for the Correction Coils of the Cyclotron W. Kappe1, G. K1inger, E. Schönstein
2.4 Non-intercepting Measurement of the Extraction Efficiency 15 at the Karlsruhe Cyclotron
G. Haushahn, W. Maier, E. Röhrl
2.5 Present Status of the Kar1sruhe Polarized Ion Source 17 V. Bechtold, L. Friedrich, P. Ziegler
2.6 Improvements of the ${ }^{6} \mathrm{Li}^{3+}$-Penning Ion Source 21 J. Biber, H. Kuhn, F. Schulz
2.7 New Beam Line for Irradiation of Machine Parts 23
G. Bauer, P. Kauther, Ch. Rämer
4. 8 Nova-2-Computer-System for Nuclear Physics Experiments 26
W. Karbstein, B. Kögel
2.9 First Attempts towards an Automatization of the 29 Beam Guiding System W. Kneis
5. 10 A Novel Method if ${ }^{123}$ J-Routine-Production for Radio 32 Diagnostical Purpose K.H. Assmus, F. Schulz, R. Schütz, H. Schweickert, F. Michel, H. Münzel
6. BASIC NUCLEAR PHYSICS AT THE CYCLOTRON36
3.1 Experiments using the $156 \mathrm{MeV}{ }^{6} \mathrm{Li}^{3+}$-Beam 36
3.1.1 Giant Resonance Excitation by $156 \mathrm{MeV}{ }^{6}$ Li Scattering 36H.J. Gils, H. Rebel, J. Buschmann, H. Klewe-Nebenius3.1.2 Investigation of the Compound Nuclear Reactions39$191+193 \mathrm{Ir},{ }^{197} \mathrm{Au}\left({ }^{6} \mathrm{Li}, \mathrm{xn}+\mathrm{yp}\right)$ at $\mathrm{E}_{\mathrm{Li}}=48-156 \mathrm{MeV}$J. Kropp, H. Faust, J. Rieder, H. Ki Klewe-Nebenius,H. Rebe1, H.J. Gils, K. Wisshak
3.1.3 Scattering of ${ }^{6} \mathrm{Li}$ on ${ }^{12} \mathrm{C},{ }^{40} \mathrm{Ca},{ }^{90} \mathrm{Zr},{ }^{208} \mathrm{~Pb}$ at $\mathrm{E}_{\mathrm{Hi}}=156 \mathrm{MeV} 44$ H.J. Gils, H. Rebel, J. Buschmann, S. Zagromski, H. Klewe-Nebenius, H. Faust
3.2 Experiments using the 52 MeV Polarized Deuteron Beam 48
3.2.1 Spin Determination of Selected Hole States by a 48Mesurement of the Analysing Power of the($\mathrm{C},{ }^{3} \mathrm{He}$) ReactionH. Breuer, P. Doll, K.T. Knöpfle, G. Mairle, H. Riedese1,G.J. Wagner, V. Bechtold, L. Friedrich
3.2.2 Vector Analysing Power in $d-p$ and $d-d$ Elastic Scattering at 52 MeV
V. Bechtold, L. Friedrich, M.S. Abdel-Wahab, J. Bialy, M, Junge, F.K. Schmidt
3.3 Nuclear Reactions with Unpolarized Deuterons and α-Particles 55
3.3.1 Decay Properties of Nuclear Hole States55H. Breuer, P. Doll, K.T. Knöpfle, G, Mairle,H. Riedese1, K. Schindler, G.J. Wagner
3.3.2 Particle Decay from the Giant Resonance Region in ${ }^{12} \mathrm{C}$ 58
H. Breuer, P. Doll, K.T. Knöpfle, G. Mairle,
H. Riedese1, K. Schindler. G.J. Wagner
3.3.3 Nuclear Matter Sizes of $204,206,208 \mathrm{~Pb}$ from 104 MeV α-Particle Scattering
H.J. Gils, H. Rebel, J. Buschmann, H. Klewe-Nebenius
3.3.4 Experimental Studies of Isoscalar Octupole Transition Rates and of Neutron Collectivities by α-Particle Scattering H.J. Gils, H. Rebel
3.3.5 ($\alpha, \alpha^{\prime} \gamma$) Angular Correlation Measurements on sd-She11 Nuc1ei
W. Eyrich, A. Hofmann, U. Scheib, S. Schneider, F. Vogler, H. Rebel
3.4 Nuclear Spectroscopy 72
3.4.1 Experimental Study of the Enhanced $\mathrm{L}=4$ Transition in ${ }^{140} \mathrm{Ce}$ 72
A. Hanser, H. Rebel, H. Buschmann, H.J. Gi1s, H. Klewe-Nebenius
3.4.2 Shape Factor Measurements on Short Lived B-Emitters 76 W. Thies, H. Appe1, R. Pes1, H. Behrens
3.5 Measurements of Nuclear Magnetic Moments 79
3.5.1 Determination of the Quadrupolemoment of the ($25 / 2^{+}$) Isomer 79 in 117 Sb
M. von Hartrott, K. Nishiyama, D. Quitmann, J. Rossbach, E. Weihreter
3.5.2 Spins and Magnetic Moments of Neutron Deficient Rb Isotopes by In-Beam Optical Pumping
J. Collignon, F. Buchinger, R. Neugart, H. Schweickert 81
3.5.3 High Resolution Laser Spectroscopoy of Radioactive 83 Light Barium Isotopes
G. Nowicki, K. Bekk, S. Göring, A. Hanser, H. Rebel, G. Schatz
3.5.4 Positron Trapping 86
G. Gräff, D. Richter
3.6 Measurements with the Large Neutron Spectrometer 87
3.6.1 Isospin Mixing of $T=3 / 2$ Isobaric Analog States in 87 Light $T_{z}=1 / 2$ Nuclei S. Cierjacks, I. Schouky
3.6.2 Precision Measurements of Fission Cross Section Ratios 91 for 239 Pu and 240 Pu Relative to 235 Pu K. Kari, S. Cierjacks, D. Erbe, B. Leugers, G. Schmalz,
3.7 Measurements on Nuclear Fission 93
3.7.1 Determination of the Fission Barrier of ${ }^{232} \mathrm{Pu}$ from 93 B-Delayed Fission D. Habs, H. K1ewe-Nebenius, V. Metag, B. Neumann, H.J. Specht
PUBLICATIONS 96
F. Schulz, H. Schweickert

Institut für Angewandte Kernphysik/Zyklotron des Kernforschungszentrums Karlsruhe

During the period of report the machine was in full operation (see table 1). The cyclotron beam was used for irradiations for 7722 hours, which amounts to 90.6% of the total shift time. Since we needed no shut down time in this period and since the ratio of system failures to the total scheduled shift time decreased to 6.4% the avaiable beam time increased by 899 hours as compared to the past year. Thel present reduction of the unscheduled shut downs must partly be attributed to the cyclotron computer which is now in routine use. Again for approximately 12% of the experimental time the axial injection system was used to study nuclear reactions with polarized deuterons (52 MeV) and high energy ${ }^{6} \mathrm{Li}^{3+}$ ions (156 MeV). Tables 1 to 4 show the operational statistic 1976 in a form similar to that of the previous reports ${ }^{1-2)}$.

On the users'side (Table 3) now 47% of our machine time is given to visitors from laboratories outside the Nuclear Research Center Karlsruhe. It is in fact our policy to accommodate every experiment for which the facilities of this laboratory are particularly appropriate independent of questions of institutional affiliation. The use of the cyclotron for application oriented research projects amounted to about 50% of the total time available for experiments. Because of the starting routine production of iodine-123 ($\sim 4 \mathrm{Ci}$ in 1976) the amount of beam time for nuclear medicine increased from 316 h in 1975 to 570 h in 1976.

References

1) G. Schatz, F. Schulz, H. Schweickert, KFK-Ext. 18/75-1
2) F. Schulz, H. Schweickert, KFK 2298 (1976)

Cyclotron operational	with internal ion sources		with external ion sources			total	
for experiments	6087 h	82.9 \%	796 h	67.3	\%	6883 h	80.8\%
for beam development and testing new components	701 h	9.6 \%	138 h	11.7	\%	839 h	9.8 \%
Total time of operation	6788 h	92.5 \%	934 h	79.0	\%	7722 h	90.6%
Scheduled shut-down for maintenance, repair and installation	213 h	2.9%	39 h	3.3	\%	252 h	2.9 \%
Unscheduled shut-down	338 h	4.6%	209 h	17.7	\%	547 h	6.4%
Total shift time	7339 h	100%	1182 h	100	\%	8521 h	100%

Table 1: Operation of the Karlsruhe Isochronous Cyclotron in 1976

Cyclotron

Axial injection including ion source	223 h	40.76%
Radiofrequency system	64 h	11.70%
Internal ion source	46 h	8.41%
Extraction	36 h	6.58%
Vacuum system (including all leaks)	30 h	5.48%
Magnet power supplies	8 h	1.46%
Others	23 h	4.20%
Cyclotron total	430 h	78.61%

Additional equipment

Targets (including target transport, cooling, automatic target handling)	50 h	9.14%
Internal deflector for neutron time-of-flight experiments	27 h	4.93%
External beam handling system		
Safety control system	23 h	4.20%
Others	9 h	1.64%
Additional equipment total	112 h	20.47%
Loss of machine time due to high		
radiation leve1		
Grand total		

Table 2: Main causes of unscheduled shut-down in 1976

Karlsruhe users

Institut für Angewandte Kernphysik	1168 h	17.0%
Projekt Schneller Brüter	1166 h	17.0%
Labor für Isotopentechnik	589 h	8.5%
Institut für Radiochemie	402 h	5.8%
Institut für Experimentelle Kernphysik	277 h	4.0%
Institut für Heiße Chemie	23 h	0.3%
Institut für Material- und Festkörperforschung	6 h	0.1%
	3631 h	52.7%

External users

Universität Saarbrücken	852 h	12.4%
Freie Universität Berlin	547 h	7.9%
MPI für Kernphysik Heidelberg	390 h	5.7%
Techn. Universität München	324 h	4.7%
Kernforschungsanlage Jülich	223 h	3.2%
Universität Heidelberg	198 h	2.9%
Deutsches Krebsforschungszentrum Heidelberg	184 h	2.7%
Universität Erlangen	170 h	2.5%
Universität Mainz	120 h	1.7%
Universität Konstanz	93 h	1.3%
Nuklearmedizinische Klinik München	75 h	1.1%
Universität Clermont	42 h	0.6 .7
Universität Gießen	20 h	0.3%
Universität Ulm	8 h	0.1%
Universität Münster	3 h	0.1%
Universität Stuttgart	3 h	0.1%
	3252 h	47.3%

Table 3: User statistics for 1976

Nuclear reactions	1653 h	24.0%
Neutron physics	1166 h	17.0%
Materials research	1017 h	14.7%
Solid state physics	957 h	13.9%
Engineering	686 h	10.0%
Nuclear medicine	570 h	8.3%
Nuclear spectroscopy	480 h	7.0%
Nuclear chemistry	311 h	4.5%
Others	42 h	0.6%
	6882 h	100%

Table 4: User statistics for 1976

Period	Numbers of persons	Total dose (man-rem)	Mean dose (rem)
1968	12	8.77	0.73
1969	18	27.98	1.55
1970	18	33.83	1.88
1971	15	21.61	1.44
1972	15	16.06	1.07
1973	15	19.27	1.28
1974	15	16.22	1.08
1975	14	15.11	1.08
1976	25	18.67	0.75

Table 5: Total radiation dose received by operation personne1

2. TECHNICAL DEVELOPMENTS

2.1 Computer Aided Cyclotron Operation

W. Kappe1, W. Karbstein, W. Kneis, J. Mö11enbeck, H. Schweickert

Institut für Angewandte Kernphysik/Zyklotron des Kernforschungszentrums Kar1sruhe

In the last year a first description of our computer controlled beam diagnostic and logging system has been given ${ }^{1,2}$). In the meantime the system has proved to be very helpful for the routine operation of the cyclotron, especially for the quick, reproducible and accurate measurement of beam properties and for the detection of imperfect parameter settings. A number of new programs has been added to the CICERO-system (fig. 1). In the following we will give short descriptions of some of these.

DATE	2/ 3/1977 TIME 12:43.37	DATE	2/3/1977 TIME 12146: 6	DATE 2/ 3/1977 TIME 12:46139
CICER	OTAELE----------------PAGE-	CICERO		
0	- STATUS INJECTION 1	0	- Phase width internal	- - EMITTANCE POSITION OF REST
1	- STATUS INJECTION 2	1	- phase wioth external	1 - EMITTANCE EXTERNAL BEAM
2	- status ionsource	2	- PHASE POSITION PHImF Pr $^{\text {P }}$	2 - beam scanner eu
3	- Status cyclotron	3	- 311 PULSING	3 - beam scanner ci
4	- status magnetic fieldos	4	- 'quitmann -pulsing	4 - beam scanner cs
5	- status external beam	5	- A8SOLUTE ENERGY	5 - begm matching cs
6	- free	6	- TEST PHOTOMULTIFLIER	6 - FREE
?	- Free	7	- FREE	7 - FREE
8	- FreE	8	- FREE	9 - FREE
9	- MONITOR	9	- FREE	9 - FREE
$\frac{\text { RET }}{2}$	 		= NEXTVAGE 	

Fig.' 1: Lists of measurement programs ready for use as displayed on the television screen in the control room. The cyclotron operator selects the diagnostics program required by input of a number via a keyboard. The computer subsequently excecutes this program and displays the result on the television screen.

Emittance measurement

The emittance measurement described earlier ${ }^{1,2)}$ has been extended by a further evaluation section named SIGMAFIT. This program is automatically started after measurement. A fit for the best ellipse representation of the measuring points is made and displayed on the TV-screen as shown in fig. 2 .

Fig. 2: Results of an emittance measurement performed by the computer at the extracted 52 MeV deuteron beam. Horizontal and vertical emittance ellipses are fitted by the new program SIGMAFIT

Absolute energy measurement

For some applications of the cyclotron, especially for the investigations of wear of machine parts, it is important to know the energy of the external beam precisely. Since in practice the beam energy depends on the operating conditions of the cyclotron it is desirable to have a simple beam energy monitor. The time-of-flight technique used (figs. 3 and 4) consecutively measures the time of arrival of prompt γ-rays from two graphite targets with respect to a timing signal from the accelerating frequency.

Fig. 3: Schematic diagram of the energy Fig. 4: Typical result of an energy meadetermination for the extracted beam by a time-of-flight technique. The accuracy achieved is $\pm 50 \mathrm{keV}$ at 52 MeV surement at the external 52 MeV deuteron beam. As in similar programs the computer tracks the operator through the procedure up to this final TV-picture. The time used is 60 sec .

Adjusting_the currents of the correction coils

The installation of the new CAMAC controlled power supplies for the correction coils ${ }^{3}$) gives the possibility to decouple the corrections for isochronism and the centering of the beam. In fig. 5 the geometrical arrangement of the correction coils is shown.

Fig. 5: Geometrical arrangement of the existing correction coils on the pole faces of the hill sectors. It consists of 15 individual pairs of coils each powered by a separate supply

According to the philosophy represented in fig. 6 it is possible to adjust and monitor the isochronism correction (ΣI_{c}), the amplitude (K) and angle (ϕ) of a first harmonic for the five radii (fig.7) independently of each other at the control console.

Fig. 7: Typical disp1ay picture during the adjustment of the correction currents. The isochronous correction and the first field harmonic (K, ϕ) can be varied independently from the console. Measured actual values are displayer.

Quality of the 3:1 beam suppression
During operation of the fast neutron time-of-flight spectrometer it is often necessary to test the quality of the $3: 1$ beam suppression. The hardware for this measurement has been described in detail elsewhere ${ }^{4)}$, so it is sufficient to show the final display picture (fig. 8).

Beam scanner
The first two rotating beam scanners 5) have been tested in connection with the computer (fig. 9).

Fig. 8: TV-screen of the computer after the measurement of the $3: 1$ beam suppression. For demonstration a situation with a poor suppression is chosen

Fig. 9: Display of the beam profile and center taken with the fast quasi-non-intercepting devices. Currents down to 300 nA can be measured; below this limit the sliding contacts used give noise problems

Iodine- 123 quality control
For isotope production a program has been added which controls the activity and quality of the produced ${ }^{[23} J{ }^{6}$). The γ-spectrum of the NaJ solution is measured by means of a $27 \mathrm{~cm}^{3} \mathrm{Ge}$ (Li) detector and a NE 9060 CAMAC ADC. A quality control certificat accompanies the batches to be sent to the hospitals (fig. 10).

Fig. 10: Results of the quality control of the iodine -123 production. This picture is part of a detailed quality control certificat and shows a typical sample of 129 mCi and a iodine-124 impurity of 1.3% at the time of measurement

References

1) G. Schatz, F. Schulz, H. Schweickert; Report KFK-Ext. 18/75-1 (1975)
2) F. Schulz, H. Schweickert; Report KFK 2298 (1976)
3) Contribution 2.3
4) W. Kappe1, J. Mö11enbeck, H. Schweickert; Proc. Sixth International Cyclotron Conference, Vancouver, July 1972 (American Inst. of Physics, New York, 1972) p. 358
5) G. Bauer, K. Heidenreich, G. K1inger, Ch. Rämer, R. Schütz; Report KFK 2233 (1975) p. 101
6) Contribution 2.10

2.2 New Correction Coils of the Cyclotron

V. Bechtold, L. Friedrich, L. Wiss

Institut für Angewandte Kernphysik/Zyklotron des Kernforschungszentrums Karlsruhe

After the decision in 1975 to build a new set of trim coils for the cyclotron numerical calculations were done to investigate whether a suitable new configuration of trim coils is able to accelerate ${ }^{3} \mathrm{He}^{2+}$ - and H^{+}-ions in addition to the $e / m=1 / 2$ particles. These calculations led to a trim coil configuration consisting of six coils per plate with summing fields ${ }^{1)}$.

According to these calculations a prototype coil was designed. Several changes in the project for the cooling plate resulted in a simpler and less expensive design. A prototype is now under construction.

The coil conductor is a copper band of $7 \times 0.7 \mathrm{~mm}^{2}$ in cross section which will be wound tightly around aluminium forms. The power dissipated in the coil windings is transported through a thin insulation layer on the copper band, a thin glass silk (0.1 mm) and a thin layer of epoxy resin with quartz to a copper plate on each side of the coil. These plates are cooled by water flowing through a rectangular cooling channel inserted into the plates. Fig. 1 shows a top view of the copper plate and the layout of the cooling channel. The copper plate is only 3 mm thick and the cooling channels are $12.5 \times 2.5 \mathrm{~mm}$ with $11.5 \times 1.5 \mathrm{~mm}^{2}$ inner cross section.

Fig. 1: Top view of the copper plate with layout of the cooling channel. The plate is 3 mm thick and the inner cross section of the cooling channels is $11.5 \times 1.5 \mathrm{~mm}^{2}$

The all over thickness of the trim coil is 13.3 mm . Fig. 2 shows a cross section of the coil with cooling plates on either side.

Fig. 2: Cross section of a trim coil with cooling plates on each side.

To get the desired field correction currents up to 50 A per coil are necessary, producing a power density of $1 \mathrm{~W} / \mathrm{cm}^{2}$. To transport this power loss quickly to the cooling plates a good thermal conductivity is necessary. The thermal conductivity depends on the distance and the medium between windings and cooling plate.

The distance is minimized by pressing the whole winding of the coils. The trim coil set is then completely filled with epoxy resin and the cooling plates are pasted on each side. This leads on one hand to a good mechanical
stability of the coil, on the other hand to an improvement of the thermal conductivity between windings and plates by appropriate selection of the epoxy resin.

We tried two epoxy resins from Ciba namely Araldit F and Araldit F doted with quartz powder. The measured thermal conductivity for both epoxy resins is

$$
\begin{aligned}
& \lambda=0.58 \cdot 10^{-3} \frac{\mathrm{cal}}{\mathrm{~cm} \mathrm{sec}{ }^{\circ} \mathrm{C}} \text { for Araldit } \mathrm{F} \\
& \lambda=1.45 \cdot 10^{-3} \frac{\mathrm{ca1}}{\mathrm{~cm} \mathrm{sec}{ }^{\circ} \mathrm{C}} \text { for Araldit } \mathrm{F} \text { doted with quarz powder }
\end{aligned}
$$

The thermal conductivity λ for the doted resin is a factor of 2.5 higher than for the resin without quartz. The processing of the epoxy resin at $70^{\circ} \mathrm{C}$ was done in vacuum to ensure a proper outgassing. The hardening was made at $100^{\circ} \mathrm{C}$ while simultanously pressing the whole trim coil set. This is done in vacuum, too. The arrangement for this procedure is shown in fig. 3.

Fig. 3: The arrangement for pressing and outgassing the whole trim coil set during the hardening time of the epoxy resin by means of vacuum. The whole set-up can be heated to $100^{\circ} \mathrm{C}$

The basis is a granite plate ($150 \times 150 \times 20 \mathrm{~cm}$) which can be heated up to $100^{\circ} \mathrm{C}$ by means of heating channels at the bottom. The surface of the granite plate is manufactured with an accuracy of $1-5 \mu$ and a parallelism of $1 / 10 \mathrm{~mm}$. This surface quality will not change while heating up the plate to $100^{\circ} \mathrm{C}$. A vacuum chamber is built up with an aluminium ring on the surface of the plate. A steel plate will close this chamber. The whole trim coil set will be inserted into this chamber and can be heated. By properly dimensioning the height of the aluminium ring it is possible to press the trim coil set between the steel plate and the granit plate by evacuating the chamber. In this way the trim coil set is fixed during the hardening time of the epoxy resin. For the high currents up to 50 A a special vacuum tight feed through was designed. This feed through consists of an epoxy flange into which hard silver plated copper bolts and copper pipes are soldered. Each coil plate will be supplied separately with current and water so that six epoxy flanges are needed. The flange with the arrangement of the current and water connections is drawn to scale in fig. 4.

Fig. 4: Epoxy flange with the arrangement of the 13 current and 4 water connections supplying one coil plate. The flange is a special feedthrough for high currents

In the middle of 1977 a prototype of the trim coil will be ready for the test bench. If all experimental investigations and tests are satisfying the new trim coils will available at the end of 1978.

References

1) F. Schulz, H. Schweickert; Report KFK 2298 (1976) p. 15

2.3 New Computer Controlled Power Supplies for the Correction Coils of the Cyclotron

W. Kappe1, G. Klinger, E. Schönstein

Institut für Angewandte Kernphysik/Zyklotron des Kernforschungszentrums Kar1sruhe

The 12 years old power supplies for the correction coils have been replaced by new ones which are controlled and monitored via CAMAC by our Nova $2 / 10$ computer. The principle of this set up is shown in fig. 1.

Fig. 1: Simplified block diagram of the circuitry for the new computer controlled power supplies for the correction coils

Each coil is supplied by a separate current source with a built in 12 bit BCD digital-to-analog converter. The digital input of this DAC is defined by a register incorporated in a special CAMAC modul (fig. 2). The register can be loaded and read either by a standard CAMAC dataway operation or in the case of manual operation by an up/down counter. Two clock rates, 2 Hz and 200 Hz , are provided. An additional 3 bit register, which is read by the dataway, serves as a status register for alarm situations at the high current power supplies. The long line transmitter circuits to the power supplies are equipped with optoelectronic coupling boards to give a high noise suppression. The computer control also enables us to check the mechanical and electrical quality of the correction coils by monitoring the applied voltages and circulating currents.

Abb. 2: Photograph of the CAMAC moduls controlling the power supplies for the correction coils

2.4 Non-intercepting Measurement of the Extraction Efficiency at the Karlsruhe Cyclotron

G. Haushahn, W. Maier, E. Röhrl

Institut für Angewandte Kernphysik/Zyklotron des Kernforschungszentrums Karlsruhe

The aim of the capacitive internal beam probe described below is to measure the extraction efficiency of the Karlsruhe Isochronous Cyclotron without interrupting the beam. Last year we reported about a simple capacitive probe at the external beam line using the second harmonic (66 MHz) of the ion beam pulses to suppress the noise background ${ }^{1)}$. A similar technique is now applied to an internal capacitive probe located just in front of the extraction elements in the north east hill sector. A cross section of the very carefully shielded probe is shown in fig. 1. In order to increase the pick-up signal from the

Fig. 1: The triply shielded internal capacitive probe. The probe length in radial direction is 40 mm to increase the signal induced by the beam
ion beam, 30 turns are measured simultaneously with a radial probe extension of 40 mm .

In contrary to the probes in the external beam line the rf-suppression by use of the second harmonic (66 MHz) is not sufficient, since the pick-up voltage is contaminated by a second harmonic originating from the stray field of the dees. This noise voltage from the acceleration system is compensated by a special circuit shown in fig. 2.

Fig. 2: A block diagram of the non-intercepting internal beam current monitor working on the second harmonic. A compensation technique is used to suppress the pick up of the second harmonic from the rf-system.

By using this technique a suppression of the second harmonic component of approximately 50 dB has been realized. Thus ion beam currents down to $0.1 \mu \mathrm{~A}$ can be measured (fig. 3).

> Fig. 3: Calibration curve of the new internal non-intercepting current probe. Currents down to $0.1 \mu \mathrm{~A}$ can be measured very reliably

Up to now there are some difficulties in the long term stability of the necessary rf-compensation for the internal probe. It turned out that the stray-field of the dee's is strongly dependent on some cyclotron parameters. Nevertheless this probe together with an external capacitive probe in the beam line gives the operators a continuous information on the extraction efficiency. For that purpose the output voltages of the two probes are compared in a ratiometer (Ortec 5047) and displayed at the control console.

1) G. Haushahn, K. Heidenreich, E. Röhr1; KFK 2223 (1975) p. 97

2.5 Present Status of the Kar1sruhe Polarized Ion Source

V. Bechtold, L. Friedrich

Institut für Angewandte Kernphysik/Zyklotron des Kernforschungszentrums Karlsruhe
P. Ziegler, Institut für Experimentelle Kernphysik, Universität Karlsruhe

The Lambshift source C-LASKA (fig. 1) producing polarized deuterons from charge exchange of metastables with iodine is in operation at the Karlsruhe isochronous cyclotron since the beginning of 1974. The source is installed in the basement of the experimental hall, separated from the cyclotron vault by 3 m of shielding. The distance between the axial injection system and the source is 11 m . Thus the magnetic strayfield of the cyclotron is eluded. In addition the source can be handled, when the cyclotron is in operation. The source delivers $0.8 \mu \mathrm{~A}$ vector polarized deuterons with an emittance of $1.1 \mathrm{~cm} \mathrm{rad} \mathrm{eV}^{1 / 2}$. Of this, 5 \% could be extracted from the cyclotron.

Source current Current in scattering chamber

vector pol.	tensor pol.	vector pol.	tensor pol.
$0.8 \mu \mathrm{~A}$	$0.6 \mu \mathrm{~A}$	40 nA	30 nA

Two important improvements have been achieved in 1976:

1. To protect the bearings and the oil of the turbopumps from the very agressive iodine, evaporated in the source, a low iodine pressure in the forevacuum has been maintained by liquid nitrogen traps. The consumption of the liquid nitrogen was high and every three hours a refilling of the traps led to an interruption of 10 minutes. These traps have been replaced by an iodine condensor, which is cooled by alcohol at $-80^{\circ} \mathrm{C}$. The source can now be operated continously for more than 150 h .
2. Acclerating a polarized beam in a cyclotron without depolarization requires the spin alignment axis to be parallel to the cyclotron magnetic field. In this case the general formula for the cross section for scattering or reaction with polarized deuterons amounts to:

Fig. 1: The Lambshift source C-LASKA in the basement of the experimental hall. A section of the source is drawn to scale in the figure below. The deuterons produced in the rf-source are partially neutralized in cesium by the charge exchange reaction $\mathrm{D}^{+}+\mathrm{Cs} . \rightarrow \mathrm{D}(2 \mathrm{~S})+\mathrm{Cs}^{+}$. The metastable atoms are polarized by running through a special magnetic field of two quenching magnets. Then the ionization takes place in a charge exchange cell with iodine. The 1 keV polarized beam produced this way is accelerated in two steps to 10 keV by tube lenses.

$$
\begin{aligned}
\sigma(\theta)=\sigma_{0}(\theta)\left\{1+\frac{3}{2} \cos B \cdot P_{3} A_{y}(\theta)\right. & +\frac{1}{2} \sin ^{2} \beta \cdot P_{33} \cdot A_{x x}(\theta) \\
& \left.+\frac{1}{2} \sin ^{2} \beta \cdot P_{33} \cdot A_{y y}(\theta)\right\}
\end{aligned}
$$

$\sigma_{0}(\theta)$ is the cross section measured with unpolarized beam. With a polarized beam the cross section depends on the angle β between the (vertical) spin alignment axis and the normal $n=K_{\text {in }} \times K_{\text {out }}$ of the scattering plane. The simplest method to determine the vector analysing power $A_{y}(\theta)$ and the tensor analysing power $A_{x x}(\theta)$ and $A_{y y}(\theta)$ uses two detectors mounted symmetrically in a scattering chamber with equal scattering angles θ. It was shown by König et al.that 8 counting rates have to be taken, namely the "right" and "left" counting rate in the horizontal scattering chamber and the "below" and "above" counting rate in the vertical scattering chamber with "spin up" and "spin down" respectively ${ }^{1)}$.
In a modified version of this method we used the mixed and pure vector polarized beam of C-LASKA both with spin f lip to get the analysing powers A_{y} $A_{y y}$ in a horizontal scattering experiment. An effective method to flip the spin was achieved in the following way.

To get a transverse polarized beam, a transverse magnetic field is produced in the charge exchange cell (fig. 2). This field is.compensated electrically to avoid quenching of the metastables and broadening of the beam. For this purpose

Fig. 2 : The charge exchange cell with the transverse field magnet. The sliced iodine cell is able to compensate the transverse field
the cell (18 mm diameter and 200 mm length) has been sliced into 24 segments which are operated at different potentials. The polarization of the metastable atoms is rotated to transverse direction by superimposing the outgoing field of the second quenching magnet and the strayfield of the iodine cell. Shaping of this field is achieved by an additional coil.

The polarization is flipped by simultaneously reversing the magnetic and electrical field. This results in small changes of the beam direction, which have to be corrected carefully because the acceptance of the cyclotron depends very critically on the beam direction. This is done by compensating separately the magnetic field for both directions. In addition a transverse field magnet is applied at the exit of the cell, which also can be excited separately for both directions. This magnet looks like the stator of an electric motor. Careful adjustment gives equal intensity for both directions. The measured vector polarization P_{3} for spin "up" and "down" as a function of time is given in fig. 3. The direction of the polarization can be automaticly controlled by the data acquisition system of the experimenta

Fig. 3: The vector polarization P_{3} measured during a period of 100 hours for "spin up" and "spin down"

References

1) V. König, W. Gruebler, P.A. Schmelzbach; Jahresbericht 1976, Laboratorium für Kernpyhsik ETH Zürich, p. 138
2) J. Bruinsma and R. van Wageningen, preprint, to be published in Nuc1. Phys.
2.6 Improvements of the ${ }^{6} \mathrm{Li}^{3+}$-Penning Ion Source
J. Biber, H. Kuhn, F. Schulz

Institut für Angewandt Kernphysik/Zyklotron des Kernforschungszentrums Karlsruhe

Since 1973 the external hot filament Penning ion source ${ }^{1)}$ is used at the Karlsruhe axial injection system for basic nuclear physics experiments. The improvement in this time can be seen in table 1.

	mean current in scattering chamber	max. current in scattering chamber
1973	-	10 pA
1974	30 pA	50 pA
1975	150 pA	1 nA
1976	5 nA	15 nA

Table 1: Numbers showing the improvement of the ${ }^{6} \mathrm{Li}^{3+}$-source

Though no essential modification of the source has been carried out, the external ${ }^{6} \mathrm{Li}^{3+}$-beam current increased by a factor of 1500 . There are a number of small technical improvements at the source leading to this success. Fig. 1 shows the actual configuration of our source. In the first place, the position of the plasma was adjusted closer to the extraction slit by appropriate shim rings

Fig. 1: Actual mechanical structure of the externa1 ${ }^{6} \mathrm{Li}^{3+}$ hot filament penning source together with a photograph of a source disassembled for cathode exchange.
arround the bore in the magnet. In order to reduce impurities inside the source volume, the source is now excited without any buffer gas. The gas inlet is connected to the diffusion pump. The operation conditions of the source are as follows:

- temperature of the Li-oven about $600^{\circ} \mathrm{C}$ at $12-15 \mathrm{~A}$ heating current
- cathode heating current for start-up $500 \mathrm{~A}(300 \mathrm{~V})$ and in operation 100 A
- arc conditions for $3 \mu \mathrm{~A}$ of ${ }^{6} \mathrm{Li}^{3+}\left(250 \mathrm{e} \mu \mathrm{A}\right.$ of $\left.{ }^{6} \mathrm{Li}^{2+}\right)$ in the injection line are $I_{A}=1,2-1,4 \mathrm{~A}$ and $U_{A}=400-500 \mathrm{~V}$
- average life time about 36 h
- preparation time after spare parts replacement about 4 h

Based on the investigations on our test bench a new external Penning source with a higher magnetic field of 8 kG has been built up and is now tested. A recent photograph of this arrangement is shown in fig. 2

Fig. 2: A recent photograph of the new external Penning ion source. Strong plasma compression will be achieved by a homogeneous magnetic field of 8 kG

References

1) G. Schatz, F. Schulz; KFK-Ext. 18/73-1 (1973)

2.7 New Beam Line for the Irradiation of Machine Parts

G. Bauer, P. Kauther, Ch. Rämer

Institut für Angewandte Kernphysik/Zyklotron des Kerforschungszentrums Karlsruhe

In previous years about $500-700 \mathrm{~h}$ of irradiation time had been utilized annually to activate machine parts ${ }^{1,2)}$. Since these irradiations had to be performed in our large experimental hall, quite a number of nuclear physics experiments suffered from the background generated. Also, in many cases the space available was not sufficient to set up the components to be activated, some of them being rather large in size (e.g. motor engines). For this reason, it became necessary to build a separate room for experiments for this purpose.

Since mid-1976 this room together with a control room, both installed at the western side of the experimental hall, have become available. The beam line in channel I was extended by about 5 m . This made necessary the installation of additional beam handling elements to meet the requirements of the users (100% transmission from extraction to target position, beam spot $<5 \mathrm{~mm} \emptyset$). The optimum beam handling system was determined by our analog particle track computer. The best solution to be realized without major modifications is represented in fig. 1.

Fig. 1: Layout of the new irradiation room for wear measurements on machine components outside the main experimental ha11: (1), (5) x - y-bending elements, (3), (6) quadrupol doublet lenses, (7) diffusion pump, (2), (10) diagnostic boxes, (4), (8) beam scanners, (9) capacitive beam monitor, (11) machine parts

Besides the two quadrupole doublets the following additional devices for beam transport have been installed:

- two bending magnets to correct the beam direction by $\pm 0.2^{\circ}$ both horizontally and vertically
- two ZnS screen + beam stop units preceding the first doublet and the target position, respectively, for visual control of the beam and for measurement of the beam current
- two computer controlled $X-Y$ beam scanners to measure the beam position (fig. 2)
- one capacitive current monitor in front of the target position for the measurement of the relative intensity (current integral) during irradiation. The usual current measurement in a Farady cup is not possible here since the beam is shot through a thin vacuum sealing foil into air and then hits the target (fig. 3).

A valve behind the pumping system (oil diffusion pump) allows to replace the foil without vacuum brake down in the whole beam line. A fast-closing valve for all channels in front of the switching magnet protects the cyclotron in case of foil rupture.

Fig. 2: X-Y-Beam scanner driven by a DC-motor. The position is taken via an incremental position encoder. The right side shows a typical beam profile measurement with this unit

Fig. 3: Typical irradiation set-up for activation of a pinion

With this new beam line to the irradiation room, the experimental conditions in the large experimental hall have been considerably improved. Further improvement will be achieved by shielding this beam line in the experimental room.

References

1) F. Schulz, H. Schweickert; Operation Summary of the Kar1sruhe Isochronous Cyc1otron Annual Report KFK 2379
2) A. Gerve, G. Schatz; Applications of Cyclotrons in Technical and Analytical Studies 7. Intern. Conf. on Cyclotrons and their Applications, Zürich, August 19-22, 1975

2. 8 Nova-2-Computer-System for Nuclear Physics Experiments

W. Karbstein, B. Kögel

Institut für Angewandte Kernphysik/Zyklotron des Kernforschungszentrums Karlsruhe

A new computer configuration is now available to all experimentalists at the Karlsruhe cyclotron for on line data acquisition. The following hard- and software description gives an survey on the possibilities of the system.

Hardware

The hardware configuration is shown fig. 1. An ADC multiparametric system and data display allows the operator to choose the mode of operation and representation of data by hardware switches. The CAMAC branch offers a practically unlimited expansion possibility for all CAMAC devices which are available today. Since modular and computer independent ADC interfaces in CAMAC were not available we decided to develop the concept of a hardware multiparametric system which was built by Laben. Fig. 2 shows the system schematically together with the computer and increment unit in order to illustrate the operation of the whole system.

Software

Much convenience in programming and program-development is achieved by use of Data Generals' Real Time Disk Operating System (RDOS) 2). Some of its
features are: An interactive (via console). Command Line Interpreter (CLI) 3), which includes all necessary utilities for program-development (like editors, macroassembler, relocatable loaders, compilers etc.), intensive file handing, and the use of high level programming languages (FORTRAN, BASIC).

User programs are written in BASIC or FORTRAN. Besides these standard programming possibilities there exist a lot of fast assembler subroutines for the nonstandard peripheral equipment (CAMAC ${ }^{4)}$, Data Display 5), Inrement Unit ${ }^{6)}$. These subroutines can be used within BASIC by the CALL-mechanism.

Fig. 1: The left computer with 32 K of core memory (normally max. for Nova 2), hardware multiply/divide - and floating point processor, conventional input/output devices (console, 2 disks, 2 magnetic tapes, paper tape station, incremental plotter) represents a complete computing center for program development and data evaluation. The right one with the experimental periphery can be regarded as a multichannel analyser. Both computers are connected by their central busses, and so the second computer also serves as an expansion chassis for the additional 64 K core memory (data memory) as well as for other controllers (part of them are home made) for connecting on-line electronic devices (CAMAC branch, data display, ADC multiparametric system). Instead of a CPU, the second computer has as an essential part a microprogrammed double controller which operates as a memory switch and increment unit ${ }^{1)}$.

Fig. 2: The ADC multiparametric system as connected to the NOVA computers via the increment unit 1). This is a special NOVA controller, which allows the connection of additional 64 K -core memory and also opens three data channels in increment and list mode (16 or 32 bit each). The ADC multiparametric system uses one list channel for the coincidence data and one increment channel for the single spectra. A recent photograph of the whole system is shown on the right side

References

1) G. Ehret, H. Hanak; Report KFK 2183, p. 99
2) Data General Corp.: Realtime Disk Operating System, Ref. Man. 093-000075
3) Data General Corp.: RDOS-Command Line Interpreter, Ref, Man. 093-000109 (with further references to other standard software)
4) G. Ehret, W. Karbstein, W. Kneis; BASIC Subroutines for CAMAC on NOVA 2 Computers, 2. Intern. Symposium on CAMAC, Briusse1, 14-16 Oct. 1975
5) W. Karbstein; BASIC CALL's for the display, Internal. Report, März 1977
6) G. Ehret, B. Volk, Subroutine CALL's, to be published

2.9 First Attempts towards an Automatization of the Beam Guiding System

W. Kneis

Institut für Angewandte Kernphysik/Zyklotron des Kernforschungszentrums Karlsruhe

Attempts towards automatization and optimization of parameter settings in beam guiding systems are characterized by the problem of minimization of a variety of functions describing beam properties. The minimization is made by the variation of a number of parameters influencing these functions. This can be done either by theoretical simulation, by a more or less empirical treatment applying numerical optimization and least-squares techniques to measured beam data or by an appropriate combination of both methods. Since in our laboratory a variety of beam diagnostic tools like emittance measurement, beam-scanners etc. are ready for use ${ }^{1)}$ it is therefore necessary to provide the theoretical simulation facilities too.

Many computer programs for simulation of beam transport systems have been developed over the past decades. Compared with former programs 1,2) running on batch computers and printing long lists and matrices of beam lines, the programs offered today emphasize the graphic presentation of results and the provision of facilities allowing the user to interact with the program 3,4). The need for this can be understood by the fact that for all but the simplest problems there is no unique solution for beam optimization. So the user must have the means to impose the right constraints - also during the run - to his optimization to arrive at acceptable solutions. The possibility to interact with the program is also advantageous for finding initial values for iteration .

The beam optics design system, BOD, implemented on a Nova 2 computer consists of three programs:
BODIO - System Input/Output
BODIGA - Graphic Package
BODEONI - Optimization Program

The three programs available under BASIC are connected to each other by a common data base and are controllable via a switchboard with 24 individual switches (fig. 1). The system allows to describe a beam guiding system consisting of drift spaces, quadrupoles (electrical or magnetic), bending elements, edge angles, and coordinate rotation and to display either the resulting phase space ellipses (fig. 2) for the x - and y-subspaces at the desired point of the

BODIO1

Fig. 1: Function switches for the control of the BOD-systems.
a) program BODIO
b) program BODIGA
c) program BODEONI

Fig. 2: Specification and display of the horizontal and vertical phase space ellipses
z-axis or to show the beam envelopes in x and y along the beam guiding system (fig. 3). Furthermore it allows to optimize the settings of the optical elements by a least squares iteration method via nominal constraints of the phase space ellipse or boundary constraints. Ray tracing is performed by application of the conventional first order 4×4 transfer matrices ${ }^{1)}$ to the phase space ellipses. The elements of the phase space ellipse ore:

$$
\sigma=\left(\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & & \\
\sigma_{12} & \sigma_{22} & & \\
0 & & \sigma_{33} & \sigma_{34} \\
& & \sigma_{34} & \sigma_{44}
\end{array}\right)
$$

$$
\text { with } \begin{aligned}
\sigma_{11} & =\text { XMAX }^{2} & \sigma_{33} & =\text { YMAX }^{2} \\
\sigma_{12} & =\text { ALPHA } \mathrm{X} \text { XMAX } \mathrm{x} \text { X'MAX } & \sigma_{34} & =\text { ALPHA } \mathrm{X} \text { YMAX } \times Y^{\prime} M A X \\
\sigma_{22} & =\mathrm{X}^{\prime} \mathrm{MAX}^{2} & \sigma_{44} & =\mathrm{Y}^{\prime} \mathrm{MAX}^{2}
\end{aligned}
$$

(see fig. 2 and 3).

The desired coordinate system can be chosen by the specification of a beam centroid shift and a reference angle in the bending elements.

References

1) K.L. Brown, S.K. Howry; Report SLAC 91 (1970)
2) W. Gardner, D. Whiteside; Rutherford High Energy Laboratory, Report NIRL/M/21 (1961)
3) B.W. Davis; Nuc1. Inst. Meth. 105 (1972) 477
4) D.V. Amundson, J.W. Dawson; Particle Accelerators 4 (1972) 19

HORI ZONTAL
UERTICAL

Fig. 3: Graphical and numerical representation of the horizontal and vertical phase space ellipse at the END ($z=15.23 \mathrm{~m}$) of the beam guiding system and the beam envelopes through the system
K.H. Assmus, F. Schulz, R. Schütz, H. Schweickert

Institut für Angewandte Kernphysik/Zyklotron des Kernforschungszentrums Karlsruhe
F. Miche1, H. Münzel

Institut für Radiochemie des Kernforschungszentrums Kar1sruhe

In the past year we were asked by several hospitals in the southern part of Germany to produce useful quantities of ${ }^{123} \mathrm{~J}$ for application in nuclear medicine. Therefore, since December 1975 a group of the Institut für Radiochemie and the Cyclotron Laboratory is working on a routine production method for ${ }^{123} \mathrm{~J}$.

The nuclear reaction chosen is

$$
{ }^{124} \mathrm{Te}(\mathrm{p}, 2 \mathrm{n})^{123} \mathrm{~J}
$$

because the energy of our cyclotron is not high enough for the ${ }^{127} \mathrm{I}(\mathrm{d}, 6 \mathrm{n}){ }^{123} \mathrm{Xe}$ reaction, whereas high internal and external currents of protons at 26 MeV
are routinely available. The best target found is enriched tellurium (96\%) dioxide ${ }^{1)}$ irradiated behind the first electrostatic deflector. Fig. 1 shows the TeO_{2}-target on a platinum backing inside a so-called water target ${ }^{2}$) head. The beam passes through a 0.1 mm CuBe window and a 0.1 mm water film onto the target.

Fig. 1: Principle and photograph of the irradiation set-up for ${ }^{123} \mathrm{~J}$ production. The glassy $150 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{TeO}_{2}\left({ }^{124} \mathrm{Te} 96 \%\right)$ is melted into a thin platinum metal backing. The energy loss in the target is about 5 MeV . We have tested this kind of target several times at beam currents of $20 \mu \mathrm{~A}$ of protons without any problems

The extraction of iodine is achieved by dry destillation at $820^{\circ} \mathrm{C}$ in a glovebox (fig. 2).

Fig. 2: Apparatus for separation of iodine from the irradiated TeO_{2} target: (1) platinum with TeO ; (2) O_{2} gas flow ($20 \mathrm{ml} / \mathrm{min}$); (3) oven ($820^{\circ} \mathrm{C}$);
(4) 0.001 M NaOH solution; (5) quartz tubes

Typically, a 1 h bombardment at $10 \mu \mathrm{~A}$ of protons yields 85 mCi Iodine- 123 after chemical separation. The contamination of Iodin-124 is <1.2 \% at E.O.B. (end of bombardement). The radionuclidic purity of the NaJ-solution is analyzed using a $27 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector and the following relativ activities normalized to E.O.B. were found:

Iodine	$\mathrm{T}_{1 / 2}[\mathrm{~h}]$	Concentration $[\%$ of $\mathrm{I}-123]$
120	1.35	$<7 \cdot 10^{-3}$
121	2.12	0.2
123	13.2	100
124	-99.6	1.03
126	312.0	<0.02
128	0.42	4.1
130	12.4	<0.03

Since the middle of 1976 this production scheme has proved to be very reliable in a pilot study together with the Nuklearmedizinische Klinik rechts der Isar in München and the Deutsche Krebsforschungszentrum Heidelberg. A summary of Iodine- 123 production figures for 1976 is given in table 1.

Tab1e 1: ${ }^{123}$ J-production at Karlsruhe, 1976

References

1) R. van de Bosch, J.J.M. de Goeig, J.A. van der Heide, J.F.W. Terloolen, H.M.J. Theelen, C. Zegers; Eindhoven, private communication (1976)
2) F. Schulz, H. Bellemann; Report KFK 685 (1967)

3. BASIC NUCLEAR PHYSICS AT THE CYCLOTRON

3.1 Experiments using the $156 \mathrm{MeV}{ }^{6} \mathrm{Li}^{3+}$-Beam
3.1.1 Giant Resonance Excitation_by 156 MeV_ ${ }^{6}$ Li_Scattering
H.J. Gi1s, H. Rebe1, J. Buschmann

Institut für Angewandte Kernphysik des Kernforschungszentrums Karlsruhe H. Klewe-Nebenius

Institut für Radiochemie des Kernforschungszentrums Karlsruhe

Recent investigations of electron and hadron scattering have revealed a new type of giant resonance in nuclei which is ascribed to an isoscalar quadrupole oscillation. Generally the corresponding peak in the spectra of inelastically scattered particles occurs at 2 MeV lower in excitation energy than the well established giant dipole resonance. In (p, p^{\prime}), (d, d^{\prime}), (τ, τ^{\prime}) and (α, α^{\prime}) spectra it has been observed as a broad bump superimposed upon a considerable continuum background. This background arising from more complicated processes such as quasielastic reactions and preequilibrium decay is the origin of difficulties of the quantitative interpretation of the measured spectra.

As part of a general study of ${ }^{6}$ Li induced reactions at bombarding energies up to 156 MeV we report the observation of the giant quadrupole resonance (and possibly some components of different multipolarities hidden in the broad bump observed) excited by scattering of ${ }^{6}$ Li projectiles on ${ }^{208} \mathrm{~Pb}$. The excitation of highly excited states by inelastic scattering of more complex projectiles may be assumed to provide advantages concerning the reduction of the continuum background in the scattering spectra. ${ }^{6}$ Li projectiles ($T=0$) seem to be of particular interest since - in contrast to heavier projectiles ejectile excitation is suppressed due to the low lying $\alpha-d$ break-up threshold. In this experiment we used the $156 \mathrm{MeV}{ }^{6}$ Li beam of the Karlsruhe Isochronous Cyclotron. The inherent acceleration conditions require a charge to mass ratio $e / m=1 / 2$ so that ${ }^{6} \mathrm{Li}^{3+}$ ions injected from an external Penning ion source have to be accelerated ${ }^{1)}$. This implies severe restrictions to the beam current which was 1 imited to about 30 nA in the present measurements. The measurements were done in a scattering chamber ($130 \mathrm{~cm} \emptyset$) installed behind a deflecting magnet operated in non-dispersive mode. Because of the restricted intensity the ${ }^{6}$ Li beam has not been energy-analyzed, but the magnet provides some advantages for preparing a clean beam. The energy width of the beam was approximately 500 keV (FWHM). The particles scattered from a ${ }^{208} \mathrm{~Pb}$ target (thickness $8 \mathrm{mg} / \mathrm{cm}^{2}$,
isotopic enrichment 99.2 \%) were deteced with several surface barrier detectors telescopes which allowed to distinguish ${ }^{7}$ Li and ${ }^{6}$ Li particles from each other and from all other reaction products. Despite of the limited beam intensity the giant resonance bump could be detected very quickly as a distinct peak at the expected energy position ${ }^{4}$), clearly separated from peaks due to target impurities and with the correct kinematic behaviour when varying the scattering angle. Without any background subtraction fig. 1 displays the interesting

Fig. 1: Spectrum of inelastically scattered ${ }^{6}$ Li ions of 156 MeV from ${ }^{208} \mathrm{~Pb}$ showing the giant resonance region
part of one (${ }^{6} L i,{ }^{6} L i^{\prime}$) spectrum revealing the giant resonance bump as convincingly as in more tedious α-particle decay-particle coincidence experiments ${ }^{2}$). Approximating the background linearly we extracted the giant resonance cross sections (for excitation energies $E_{x}=7.5-16 \mathrm{MeV}$) for several scattering angles. The values obtained are compared to theoretical predictions on the basis of the phenomenological collective model for the quadrupole giant resonance centered around $\mathrm{E}_{\mathrm{x}}=11 \mathrm{MeV}$ (fig. 2). The coupled channel calculations which have been performed in a $0^{+}-2^{+}(G Q R)$-coupling scheme utilized the optical potential derived from elastic scattering of $156 \mathrm{MeV}{ }^{6} \mathrm{Li}$ particles from ${ }^{208} \mathrm{~Pb}$ 3). The $\beta_{2} R$-value was adopted from α-particle scattering results 4) In general, complex coupling has been used with equal coupling parameters for real and imaginary part (the latter assumption $\beta^{\text {Real }}=\beta^{\text {Imag }}$ does not influence the results very strongly). For the purpose of our exploratory calculations

Fig. 2: Differential cross sections for the excitation of the observed giant resonance in ${ }^{208} \mathrm{~Pb}\left(7.5<\mathrm{E}_{\mathrm{x}}<16 \mathrm{MeV}\right)$ compared to the theoretical cross sections of quadrupole transitions for different projectile energies. The solid curves were obtained by complex coupling, the dashed curve corresponds to real coupling
a spin-orbit term of the optical potential has been ignored. The calculations indicate that the cross sections are strongly decreasing at energies $\mathrm{E}_{\mathrm{Li}}<100 \mathrm{MeV}$. The experiment demonstrates that ${ }^{6} \mathrm{Li}$ scattering at sufficient1y high bombarding energy and with improved beam quality appears to be an excellent tool for more detailed studies of shape, components and multipolarities of giant resonance excitation peaks.

References

1) F. Schulz and H. Schweickert, KFK-Report 2298 (1976)
2) K.T. Knöpfle and G.J. Wagner, private communication
3) H.J. Gils, H. Rebel, J. Buschmann, H. Faust, H. Klewe-Nebenius and S. Zagromski, to be published
4) D.H. Youngblood, J.M. Moos, C.M. Rozsa, J.D. Bronson, A.D. Bacher and D.R. Brown, Phys. Rev. C13 (1976) 934

3.1.2 Investigation_of the Compound_Nuclear_Reactions $191+193$ Ir, $1 \overline{97} \mathrm{Au}\left({ }^{6} \mathrm{Li}, \mathrm{xn}+\mathrm{yP}\right)$ at $\mathrm{E}_{\mathrm{Li}}=48 _=156 \mathrm{MeV}$

J. Kropp, H. Faust, J. Rieder, Physikalisches Institut der Universität Heidelberg
H. Kiewe-Nebenius, Institut für Radiochemie des Kernforschungszentrums Karlsruhe H. Rebel, H.J. Gils and K. Wisshak, Institut für Angewandte Kernphysik des Kernforschungszentrums Karlsruhe

Studies of the compound nuclear reactions ${ }^{191+193} \operatorname{Ir},{ }^{197} \mathrm{Au}\left({ }^{6} \mathrm{Li}, \mathrm{xn}+\mathrm{yp}\right)$ at the $156 \mathrm{MeV}{ }^{6}$ Li-beam by means of in-beam γ-ray spectroscopy ${ }^{1)}$ have been continued and the analyses of the data have been extended especially to reactions with charged particles in the exit channel. Experimental excitation functions for a variety of compound nuclear reactions have been compared to predictions of a more refined preequilibrium model (hybrid model ${ }^{2}$), which - in contrast to models used previously - is able to calculate absolute cross sections, too. In fig. 1 experimental excitation functions (drawn as smooth curves through the experimental points) are compared to theoretical predictions. The calculated excitation functions reproduce shapes and thresholds of the experimental curves in most cases well, but show strong discrepancies in absolute cross sections. The reduction factors by which the theoretical curves have to be devided, have values up to 7 for (${ }^{6} \mathrm{Li}, \mathrm{xn}$)-reactions, but they are considerably smaller for the reactions with outgoing protons (${ }^{6}$ Li,xn+1(2)p).

Target					
${ }^{197} \mathrm{Au}$	R	$\begin{aligned} & 5 \mathrm{n} \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7 \mathrm{n} \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9 n \\ & 6.5 \end{aligned}$	
	R	$\begin{aligned} & 5 n+p \\ & 2.2 \end{aligned}$	$\begin{aligned} & 7 n+p \\ & 2 \end{aligned}$	$\begin{aligned} & 9 n+p \\ & 2,8 \end{aligned}$	$\begin{aligned} & 11 n+p \\ & 3.5 \end{aligned}$
	R	$\begin{aligned} & 6 n+2 p \\ & 0,15 \end{aligned}$	$\begin{array}{lc} 7 n+2 p & 8 n+2 p \\ 0.3 & 0.4 \end{array}$	$\begin{gathered} 9 n+2 p \\ 0.9 \end{gathered}$	$\begin{array}{cc} 10 n+2 p & 11 n+2 p \\ 1.8 & 3.7 \end{array}$
${ }^{191+193} \mathrm{Ir}$	R	$\begin{aligned} & (3+5) n(4+6) n \\ & 6.57 \end{aligned}$	$\begin{array}{cc} (5+7) \mathrm{n} & (6+8) \mathrm{n} \\ 6.9 & 6.8 \end{array}$	$\begin{gathered} (7+9) n \\ 5.1 \end{gathered}$	$\begin{array}{ccc} (9+11) n & (10+12) n & (11+13) n \\ 6.9 & 6.8 & 7.7 \end{array}$
	R	$\left\lvert\, \begin{array}{cc} (3+5) n+p & (5+7) n+p \\ 2 & 2.2 \end{array}\right.$			

Table 1: Reduction factors F for adjusting the calculated cross sections to the experimental excitation functions for all reactions R studied

Fig. 1: Examples of the measured (-_) excitation functions compared to the theoretical predictions. The theoretical cross sections have been reduced by the factors given in table 1

Since for (α, xn) reactions ${ }^{3)}$ no such discrepancies were observed, the strong deviations for the (${ }^{6} \mathrm{Li}, \mathrm{xn}$) reactions are probably due to a strong reaction channel correlated with the ${ }^{6}$ Li projectile which is not taken into account when calculating the total compound nucleus formation cross sections in theory.
We started, therefore, an investigation of ${ }^{6}$ Li break-up which is expected to have a large cross section. Particle specific spectra obtained from the analysis of data measured with an $E-\triangle E$ telescope are shown in fig. 2. Broad α-particle, deuteron, and proton bumps are observed, with maxima at energies corresponding to the velocity of the primary projectiles, clearly indicating

Fig. 2: Particle specific spectra from the reactions ${ }^{208} \mathrm{~Pb}\left({ }^{6} \mathrm{Li}, \mathrm{p}\right),\left({ }^{6} \mathrm{Li}, \mathrm{d}\right),\left({ }^{6} \mathrm{Li}, \alpha\right)$, $\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}^{\prime}\right)$ measured at $\mathrm{E}_{\mathrm{Li}}=156 \mathrm{MeV}$ and $\theta_{\mathrm{Lab}}=15^{\circ}$
the strong influence of the $\alpha-d-c l u s t e r ~ s t r u c t u r e ~ o f ~ * i . ~ T h e ~ a n g u l a r ~ d i s t r i-~$ butions of protons, deuterons and α-particles ejected from a ${ }^{208} \mathrm{~Pb}$ target are displayed in fig. 3.

Fig. 3: Measured cross sections of the reactions $\left({ }^{6} \mathrm{Li}, \mathrm{p}\right)$, ($\left.{ }^{6} \mathrm{Li}, \mathrm{d}\right)$, and $\left({ }^{6} \mathrm{Li}, \alpha\right)$ on ${ }^{208} \mathrm{~Pb}$

Comparing the cross sections of the α-particle and d-bumps at very forward direction there are conspicuously more α-particles than deuterons, an observation suggesting some contribution of the three particle break-up ${ }^{6} \mathrm{Li} \rightarrow \alpha+\mathrm{p}+\mathrm{n}$. At more backward angles, however, this behaviour changes and we observe more deuterons than α-particles. The reason for this behaviour is not yet completely understood, but it may, at least partly, originate from a "cluster transfer into highly excited states". This effect described in the following may also explain the enhancement of the ($\left.{ }^{6} \mathrm{Li}, \mathrm{xn}+1(2) \mathrm{p}\right)$-reactions as compared to (${ }^{6}$ Li, xn) reactions discussed above. The ${ }^{6}$ Li penetrating the nuclear field not completely looses the memory of its original structure and occupies with some preference cluster configurations in the beginning of the equilibration process from where one of the clusters is emitted by a direct stripping process while the other cluster and the target nucleus are fusing to a highly excited compound nucleus. With this view a (${ }^{6} \mathrm{Li}, \mathrm{xn}+\mathrm{pn}$) reaction e.g. may be regarded to contain a component of an ($\alpha,(x-j) n$) compound nuclear reaction accompanied by emission of a spectator deuteron (or $n-p$ pair). These reaction ways - being probable in particular when the ${ }^{6}$ Li projectile is penetrating deeply into the target nucleus and when therefore the second cluster is emitted under larger scattering angles - enthance the probability for (${ }^{6} \mathrm{Li}, \mathrm{xn}+1(2) \mathrm{p}$).

A further investigation of these processes which is necessary to clarify these hypotheses, is planned for the near future by measuring e.g. the coincidences between break-up particles and γ-rays of the final nuclei of compound nuclear reactions.

References

1) J. Kropp, J. Buschmann, H. Klewe-Nebenius, H. Rebe1, H. Faust, H.J. Gils, K. Wisshak, KFK-Report 2223 (1975) 42;
Z. Phys. A280 (1977) 61
2). M. Blann, Phys. Rev. Lett. 28 (1972) 757
2) P. Jahn, H.J. Probst, A. Djaloeis, W.F. Davidson, C. Mayer-Böricke, Nuc1. Phys. A209 (1973) 333
3.1.3 Scattering_of ${ }^{6}$ Li_on ${ }^{12} \mathrm{C},{ }^{40} \mathrm{Ca},{ }^{90} \mathrm{Zr}_{2},{ }^{208} \mathrm{~Pb}_{\text {at }} \mathrm{E}_{\mathrm{Li}}=156 \mathrm{MeV}$
H.J. Gils, H. Rebel, J. Buschmann, S. Zagromski

Institut für Angewandte Kernphysik des Kernforschungszentrums Karlsruhe H. K1ewe-Nebenius

Institut für Radiochemie des Kernforschungszentrums Karlsruhe
H. Faust

Physikalisches Institut der Universität Heidelberg

Up to now information on phenomenological interaction parameters for highenergetic ${ }^{6}$ Li-projectiles is very scarce. In order to obtain realistic optical potentials for ${ }^{6}$ Li-interaction with nuclei scattering experiments with the $156 \mathrm{MeV}{ }^{6}$ Li beam have been started at the Kar1sruhe Isochronous Cyclotron. The experiments used the big scattering chamber ($130 \mathrm{~cm} \emptyset$) installed at beam line 5 which includes the monochromator magnet. In order not to loose intensity in the external beam transport system the monochromator magnet was used in non-dispersive mode. Thus the energy spread of the primary beam amounted to about 500 keV FWHM. The beam spot on the target had a diameter of about 2 mm and the beam divergence was estimated to be less than 0.2° FWHM. The beam current on the target varied between 1 and 30 nA .

Scattered particles with masses between 6 and 9 amu were detected by four $\triangle E-E$ telescopes of Si surface barrier detectors mounted on the same movable arm in the scattering chamber with angular distances of 1.5° between each other. Each telescope consisted of one ΔE detector of $300 \mu \mathrm{~m}$ thickness and one E detector of 4 mm thickness being sufficient to stop ${ }^{6}$ Li ions up to their maximum energy. The electronic set-up consisting of standard NIM-modules enabled a preselection of ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}$ and Be events. The data were accumulated and stored on magnetic tape event by event. Final particle identification was performed by an off-1ine method 1) after the measurements. Natural targets of $\mathrm{C}\left(8.3 \mathrm{mg} / \mathrm{cm}^{2}\right.$) and of $\mathrm{Ca}\left(7.8 \mathrm{mg} / \mathrm{cm}^{2}\right.$) and highly enriched targets ($>99 \%$) of ${ }^{90} \mathrm{Zr}\left(3.8 \mathrm{mg} / \mathrm{cm}^{2}\right)$ and of ${ }^{208} \mathrm{~Pb}\left(8.0 \mathrm{mg} / \mathrm{cm}^{2}\right)$ were used. In fig. 1 some particle specific spectra are displayed for the ${ }^{12} \mathrm{C}$ and the ${ }^{208} \mathrm{~Pb}$ target, respectively. Angular distributions of elastic scattering were measured between $\theta_{\text {Lab }}=10-30^{\circ}\left({ }^{12} \mathrm{C},{ }^{90} \mathrm{Zr},{ }^{208} \mathrm{~Pb}\right)$ and between $\theta_{\text {Lab }}=7-45^{\circ}\left({ }^{40} \mathrm{Ca}\right)$ in steps of 0.5°.
Fig. 2 shows preliminary results of the measured cross sections for ${ }^{12} \mathrm{C}$ and ${ }^{40}$ Ca. The solid curves are the results of conventional optical model calculations with 6-parameter Saxon-Woods potential fitted to the measured data. A spin-orbit term has not yet been included. The resulting parameter values
of the optical potential are compiled in tab. 1.

Fig. 1: Particle specific spectra of ${ }^{6}$ Li induced nuclear reactions on ${ }^{12} \mathrm{C}$ and ${ }^{208} \mathrm{~Pb}$ targets, respectively

Target	V (MeV)	r_{v} (fm)	a_{v} (fm)	W (MeV)	r_{w} (fm)	a_{w} (fm)
${ }^{12} \mathrm{C}$	129.	1.21	0.89	28.	1.67	0.97
${ }^{40} \mathrm{Ca}$	170.	1.22	0.89	29.	1.73	0.90
${ }^{90} \mathrm{Zr}$	145.	1.19	0.93	19.	1.75	0.83
${ }^{208} \mathrm{~Pb}$	180.	1.22	0.78	20.	1.57	0.97

Tab. 1: Resulting parameters of Saxon-Woods optical potential for elastic ${ }^{6}$ Li scattering resulting from fit calculations. For ${ }^{208} \mathrm{~Pb}$ the depth of the real potential was fixed

Fig. 2: Measured cross sections of elastic and inelastic ${ }^{6}$ Li scattering on ${ }^{12} C$ and ${ }^{40}$ Ca. The solid curves through the elastic scattering points are the result of an optical model fit calculation. The curve of inelastic scattering to the 2_{1}^{+}-state of ${ }^{12} \mathrm{C}$ is a coupled channel prediction with $\beta_{2}=0.4$ based on the elastic scattering optical potential parameters

For the heavier nuclei ${ }^{90} \mathrm{Zr}$ and ${ }^{208} \mathrm{~Pb}$ the potential depth could not be determined unambiguously. The radius and diffuseness parameters of the real potential, however, are well determined and are nearly the same for all nuclei. One should note that the resulting diffuseness parameters of the imaginary part are rather large, which possibly can be ascribed to the influence of the strong ${ }^{6}$ Li-break-up channel.

Using these parameters and adopting a value of $\beta_{2}=0.4$ the inelastic scattering angular distribution of the 2^{+}-state in ${ }^{12} \mathrm{C}$ was calculated by the coupled channel method. The result is in good agreement with the experimental points.

References

1) F.S. Goulding, D.A. Landis, J. Cerny and R.H. Peh1, Nuc1. Instr. Meth. 31 (1964) 1
3.2 Experiments using the 52 MeV Polarized Deuteron Beam
3.2.1 Spin Determination of Selected Hole States by a Mesurement of
the Analysing Power of the $\left(\vec{d},{ }^{3}\right.$ He $)$ Reaction
H. Breuer, P. Doll, K.T. Knöpfle, G. Mairle, H. Riedesel and G.J. Wagner Max-P1anck-Institut für Kernphysik, Heidelberg
V. Bechtold, L. Friedrich

Institut für Angewandte Kernphysik des Kernforschungszentrums Kar1sruhe

The investigation of neutron and proton pick-up reactions which we performed in the past has yielded valuable spectroscopic information such as occupation numbers, separation energies and transferred ℓ-values. Unique assignments to the transferred spin j have become possible now by means of the vectorpolarized d-beam of 52 MeV . We sha11 demontrate in a few selected cases which are of particular importance for the structure of light nuclei how spins are determined from measuring the vector analysing power of the reaction products.

1. ${ }^{16} \mathrm{O}\left(\overrightarrow{\mathrm{d}},{ }^{3} \mathrm{He}\right)^{15} \mathrm{~N}$

In addition to the strongly populated $1 p_{1 / 2}$ and $1 p_{3 / 2}$ hole states at 0 and 6.32 MeV , two other 1 p hole states have been observed ${ }^{1)}$ at 9.94 and 10.71 MeV . Depending on their spins being $1 / 2^{-}$or $3 / 2^{-}$, the lp spin-orbit splitting could range between 4.32 and 6.88 MeV . By comparing the vector analysing powers of the states of unknown spins with the known ones (fig. 1), we conclude that $J=3 / 2$ for both the 9.94 and 10.71 MeV states leading to a 1p spin-orbit splitting of 6.88 MeV . Difficulties of the DWBA calculations to describe the analysing powers are evident.
2. ${ }^{28} \mathrm{Si}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{27} \mathrm{Al}$

In this reaction performed with unpolarized deuterons, two strong $\ell=1$ transitions to states at 4.05 and 5.16 MeV in ${ }^{27} \mathrm{~A} 1$ have been known long since 2,3) Originally attributed to the pick-up from the essentially empty $2 p$ shel1 ${ }^{2}$), the systematics of 1 p proton separation energies revealed their 1 p origin ${ }^{4)}$. The spins of the two states, however, remained undetermined, though their knowledge is essential for the deformation of the ${ }^{16} 0$ core in ${ }^{27} A 1$ and the $1 p$ spin-orbit splitting ${ }^{5)}$. They are determined now from the analysing powers as $1 / 2^{-}(4.05 \mathrm{MeV})$ and $3 / 2^{-}$(5.16 MeV); see fig. 2 .

Fig. 1: Measured angular distributions (top) and analysing powers (bottom) together with DWBA calculations

Fig. 2: Measured angular distributions (top) and analysing power (bottom) together with DWBA calculations

The absence of Q-value effects and the typical behaviour of the analysing powers for states of known spins is demonstrated in Fig. 3.

Fig. 3: Measured angular distributions (top) and analysing powers (bottom) together with DWBA calculations
3. ${ }^{40} \mathrm{Ca}\left(\overrightarrow{\mathrm{d}},{ }^{3} \mathrm{He}\right)^{39} \mathrm{~K}$

Besides a strong g.s. transition, which corresponds to pick-up from the $1 d_{3 / 2}$ shell, many $\ell=2$ transitions are observed ${ }^{6}$) above 5 MeV in ${ }^{39} \mathrm{~K}$, which were interpreted as pick-up from the $1 d_{5 / 2}$ shel1 on the basis of she11 model arguments. On the other hand, Seth attributes ${ }^{7}$) a spin $3 / 2^{+}$to a state at 6.322 MeV close to the energy where we observed a strong $\ell=2$ transition. According to the measured analysing power, the states at 5.27 , 5.61 and 6.34 MeV (the strongest $\ell=2$ states in this energy range with $C^{2} S>0.6$) have spins $5 / 2^{+}$.

References

1) G. Mairle and G.J. Wagner, Z. Physik 258 (1973) 321
2) B.H. Wildenthal and E. Newman, Phys. Rev. 167 (1968) 1027
3) H. Mackh, G. Mairle and G.J. Wagner, Z. Physik $\underline{269}$ (1974) 354
4) G.J. Wagner, Phys. Lett. 19 (1968) 1027
5) G. Mairle and G.J. Wagner, Phys. Lett. 50B (1974) 252
6) P. Do11, G.J. Wagner, K.T. Knöpfle and G. Mairle, Nucl. Phys. A263 (1976) 210
7) K.K. Seth, private communication on the basis of a ${ }^{41} K(p, t)$ experiment

3.2.2 Vector Analysing Power in $d-p$ and $d-d$ Elastic Scattering at 52 MeV

V. Bechtold, L. Friedrich

Institut für Angewandte Kernphysik des Kernforschungszentrums Karlsruhe
M.S. Abdel-Wahab, J. Bialy, M. Junge, F.K. Schmidt

Institut für Experimentelle Kernphysik des Kernforschungszentrums Kar1sruhe

The investigation of nuclear reactions involving few nucleons only are of considerable interest, since it provides a direct access to the nucleon-nucleon interaction. Its importance is increasing even now since on the one hand polarization observables can be measured to a high degree of accuracy using polarized ion sources, on the other hand the theorectical treatment has been highly successfull in the recent past ${ }^{1-3)}$. Especially, calculations of the three body problem have been made starting from the Fadeev equations. They give information about the N - N-Interaction beyond that obtainable from two body investigations alone when they are compared to the experimental results. Using potentials, which included both P -wave interactions and tensor forces, Doleschall could demonstrate that the nucleon vector polarization in the elastic $\mathrm{d}-\mathrm{N}$-scattering was sensitive to the tensor part of the interaction. The experimental data that are available till now ${ }^{3-6)}$, namely the angular distributions of the nucleon polarization and the deuteron vector analysing power show a remarkable agreement with the theoretical predictions with regard to the structure. The still existing deviations in the magnitude should disappear with further refinement of the potential. The four body problem of the elastic d-d-scattering cannot be treated theoretically in such an exact way. Even if approximate calculations are tried difficulties arise because of the low break up threshold. Nevertheless from an experimental point of view it seems meaningfull to measure the energy dependence of the deuteron vector analysing power, that shows unexpected large values with increasing energy ${ }^{7}$).

The measurements of the deuteron vector analysing power in $d-p$ and $d-d$ elastic scattering reported here were carried out at a deuteron energy of 52 MeV . Thus the energy range investigated up to now is extended to higher energies. The deuteron beam of about 20 nA was purely vector polarized ($\mathrm{P}_{\mathrm{y}}=0.45$). Gas targets were used in the main scattering chamber. In a second chamber the beam polarization was continuously monitored by counting the deuterons elastically scattered from ${ }^{12} \mathrm{C}$ at a lab. angle of 47°. The analysing power iT_{11} at this angle was taken to be $0.314 \pm 10 \%{ }^{8}$). NaJ scintillations detectors
were used. The particle identification was achieved by means of a time of flight method.

The results are shown graphically. The errors indicated there include those arising from counting statistics and background subtraction. The beam polarization uncertainty is not taken into account.

The angular distribution of the d-p-vector analysing power as shown in fig. 1 partly confirms the trend, that is already observed in the Berkeley data.

Fig. 1: The deuteron analysing power iT $_{11}$ in the elastic deuteron-proton scattering at $\mathrm{E}_{\mathrm{d}}=52 \mathrm{MeV}$

With increasing deuteron energy the minimum of the distribution has become deeper as compared to the maximum value and its position has been shifted to larger angles. The peak value $i T_{11}=0.25$ is the same as that measured at 45.4 MeV. Comparing the d-d distribution in fig. 2 to the Berkeley data taken at several lower energies a similar behavior is observed. The strong increase of the maximum analysing power between 20 and 40 MeV does not continue. Within the errors the value $i_{11}=0.32$ at 52 MeV agrees with that at 40 MeV . However at 52 MeV a second peak in the distribution seems to come into existence at forward angles.

Fig. 2: The vector analysing power iT_{11} in the elastic deuteron-deuteron scattering at $\mathrm{E}_{\mathrm{d}}=52 \mathrm{MeV}$

The authors wish to acknowledge the helpful assistance of P. Ziegler in operating the Lambshift-Source C-Laska.

References

1) P. Do1escha11, Nuc1. Phys. A2O1 (1973) 264
2) P. Doleschal1, Nuc1. Phys. A220 (1974) 491
3) P. Dolescha11, Proc. of the Fourth Intern. Symposium on Po1. Phenomena in Nuc1. Reactions, Zürich, 1975, p. 51
4) J.C. Faivre, D. Garreta, J. Jungermann, A. Papineau, J. Sura and A. Tarrats, Nuc1. Phys. A127 (1969) 169
5) J.S.C. McKee, H.E. Conzett, R.M. Larimer, and Ch. Leemann, Phys. Rev. Lett. 29 (1972) 1613
6) F.N. Rad, J. Birchall, H.E. Conzett, S. Chintalapudi, and R. Roy. Phys. Rev. Lett. 33 (1974) 1227
7) H.E. Conzett, W. Dahme, R.M. Larimer, Ch. Leemann, and J.S.C. McKee, Proc. of the Fourth Intern. Symposium on Pol. Phenomena in Nuc1. Reactions, Zürich, 1975, p. 566
8) E. Seibt and Ch. Weddigen, Nuc1. Inst. Meth. 100 (1972) 253

3.3 Nuclear Reactions with Unpolarized Deuterons and α-Particles
 3.3.1 Decay Properties of Nuclear Hole States

H. Breuer, P. Do11, K.T. Knöpfle, G. Mairle, H. Riedese1, K. Schindler and G.J. Wagner, Max-Planck-Institut für Kernphysik Heidelberg

The decay of nuclear hole states through coupling (i) with the continuum and (ii) with more complicated configurations in the $A-1$ nucleus has been investigated. To that aim, we have measured (i) the charged particle decay of highly excited hole states in ${ }^{16} 0$ and (ii) the systematics of hole strength distributions in the Ca-region.
(i) The ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t}){ }^{16} \mathrm{O}^{*}<{ }_{12}^{15} \mathrm{C}+\mathrm{p}+\mathrm{p} \quad$ reactions ${ }^{1)}$. The ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t})$ reaction ${ }^{2}$) at 52 MeV strongly populates particle-hole states in ${ }^{16} 0$ of the dominant configuration $\left|1 d_{5 / 2} \otimes 1 \mathrm{p}^{-1}\right|_{\mathrm{J}^{\pi}, \mathrm{T}^{\prime}} ;\left(\mathrm{J}^{\pi}=1^{-}, \ldots 4^{-} ; T=0,1\right)$. In a coincidence experiment using a miniature gas cell we have now measured the protons and α-particles emitted from these states. The spectra of the decay products, identified by their time-of-flight, are given in fig. 1. The α-emission of states identified ${ }^{2)}$ as $\mathrm{T}=1$ by a comparison with ${ }^{17} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N}$ spectra reveals their isospin impurity. In-plane angular correlations yielding Γ_{p} / Γ and Γ_{α} / Γ branching ratios have been taken. With the total widths Γ measured in a high-resolution ${ }^{17} 0\left({ }^{3} \mathrm{He}, \alpha\right){ }^{16} \mathrm{O}$ experiment ${ }^{3)}$, also reduced widths γ_{p}^{2} and γ_{α}^{2} were extracted. By comparison with DWBA angular correlation calculations, informations on spins and relative $1 p_{1 / 2}: 1_{1} / 2$ (d,t)-transition amplitudes were obtained. The coincidence requirement has revealed the existence of a strongly populated $(2,4)^{-}$state at 17.78 MeV , which was masked by the ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{t})^{15} \mathrm{O}(6.18 \mathrm{MeV})$ contaminant group in Ref. ${ }^{2)}$. An interesting result is the observation of a P_{o}-decay of the (4) ${ }^{-}, 1$ state at 18.97 MeV (see fig. 1). This dominant $\left|1 d_{5 / 2} \otimes 1 p_{3 / 2}{ }^{-1}\right| \rightarrow 1 p_{1 / 2}{ }^{-1}$ transition represents the first observation of a nuclear Auger effect. The corresponding reduced width of only $\gamma_{p}^{2} \approx 5 \mathrm{keV}$ is understood by treating the coupling with the $g_{9 / 2}$-continuum as a small perturbation.
(ii) $\mathrm{dd}_{5 / 2}$ hole states in Ar, Ca and Ti-nuclei

The $1 d_{5 / 2}$ hole strength for Ar and Ca target nuclei is spread among many final states 4). The intermediate structure of the strength distributions is understood 5) from the decay of the $\mathrm{ld}_{5 / 2}$ hole state into collective doorway states

Fig. 1: Energy spectra of protons (1eft) and α-particles (right) emitted from $\mathrm{ld}_{5 / 2^{-1}}$ p particlehole states in ${ }^{16} 0$

of the nature $\left|2^{+} \otimes(2 \mathrm{~s}, 1 \mathrm{~d})^{-1}\right|_{5 / 2^{+}}$, where 2^{+}represents the lowest quadrupole phonon state. We have continued the study by measuring the $46,48,50 \mathrm{Ti}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)$ reactions at 52 MeV up to excitation energies of 30 MeV . There, also $\left|3^{-} \otimes f / 2^{-1}\right|_{5 / 2}+$ configurations contribute to the decay. The measured 1 d -hole strength distributions averaged by folding with a Gaussian of 300 keV width are given by solid curves in fig. 2. The dashed curves result from a model calculation ${ }^{6}$) with the $1 d_{5 / 2}$ single particle energy as a free parameter. This calculation allows to study how single-particle properties depend on the unobservable high-energy tails of the strength distributions. E.g., deviations of up to 2 MeV (depending on the collectivity of the 2^{+}phonon) of the observed centroid energy from the "true" $1 d_{5 / 2}$ model energy are found.

Fig. 2: Experimental (solid curve) and model dashed curve) $1 d_{5 / 2}$ proton hole strength distributions versus excitation energy in the residual nucleus. Measured and calculated $1 d_{3 / 2}$ spectroscopic factors are denoted by solid and dashed bars, respectively. The arrows indicate experimental energy 1 imits

References

1) H. Breuer, thesis, Heidelberg (1976)
2) G. Mairle and G.J. Wagner, Phys. Lett. 50B (1974) 252
3) P. Doll, J.L.C. Ford, M. Goldschmidt, K.T. Knöpfle, G. Mairle, S.T. Thornton, G.J. Wagner and C.A. Wiedner, Proc. Int. Conf. on "Nuclear Structure and Spectroscopy", Amsterdam (1974), eds. H.P. Blok and A.E.L. Dieperink, Vo1. 2, p. 181
4) P. Doll, H. Mackh, G. Mairle and G.J. Wagner, Nuc1. Phys. A230 (1974) 329
P. Do11, G.J. Wagner, K.T. Knöpfle and G. Mairle, Nuc1. Phys. A263 (1976) 210
5) G.J. Wagner, P. Doll, K.T. Knöpfle and G. Mairle, Phys. Lett. 57B (1975) 413
6) P. Doll and G.J. Wagner, to be pub1ished

3.3.2 Particle Decay from the Giant Resonance Region in ${ }^{12} \mathrm{C}$

H. Breuer, P. Doll, K.T. Knöpfle, G. Mairle, H. Riedese1, K. Schindler, G.J. Wagner, Max-P1anck-Institut für Kernphysik Heidelberg

While the existence of an isoscalar giant resonance (GR) exhausting an appreciable fraction ($\sim 50 \%$) of the isoscalar E2 energy weighted sum rule (EWSR) has been reported ${ }^{1)}$ for 1 ight nuclei down to ${ }^{14} \mathrm{~N}$, in the case of ${ }^{12} \mathrm{C}$ no appreciable concentration of E 2 strength was observed in 150 MeV inelastic α scattering $\left(<(16 \pm 5) \%\right.$ at $\left.\mathrm{E}_{\mathrm{x}} \sim 27 \mathrm{MeV}\right)$. This result is at variance with 96 MeV inelastic α scattering data ${ }^{2}$) where a resonance structure around 27 MeV , which would exhaust $30-50 \%$ of the E 2 EWSR , is observed. In order to clarify this discrepancy, we have measured the ${ }^{12} \mathrm{C}\left(\alpha, \alpha^{\prime}\right)$ reaction at $E_{\alpha}=100 \mathrm{MeV}$. The spectra (Fig. 1a) are in complete agreement with the 96 MeV data, but we observed a dependence of the shape of the GR structure on scattering angle, which indicates either the existence of different multipolarities or unaccounted variations of the large underlying α continuum with angle.

Since the origin of this effect cannot be determined uniquely from our singles spectra, we started an investigation of the charged particle decay from the GR region. The inelastically scattered α particles were measured at 17°, the maximum of the $L=2$ angular distribution, while the decay products were detected in four surface barrier counters, which were moved in the reaction plane between -50° and -150°. Evaluation of the data is still in progress, but we can already state the following interesting conclusions:
(i) The coincidence requirement improves the peak-to-background ratio in the GR region considerably (fig. lb), which results in a clean picture of the isoscalar GR in ${ }^{12}$ C. In particular, we notea significant change of shape of the GR compared to the singles spectrum.
(ii) The origin of this change becomes evident from fig. lc which shows that α particles from the ${ }^{12} \mathrm{C}+\alpha \rightarrow{ }^{11} \mathrm{C}+{ }^{5} \mathrm{He} \rightarrow{ }^{11} \mathrm{C}+\alpha+\mathrm{n}$ and ${ }^{12} \mathrm{C}+\alpha \rightarrow{ }^{11_{\mathrm{B}+}{ }^{5} \mathrm{Li}} \rightarrow{ }^{11} \mathrm{~B}+\alpha+\mathrm{p}$ reactions emerge with a final energy which equals that of inelastically scattered α particles from the $G R$ region. In the singles spectra, these two processes cannot be separated, which may have simulated a large sum rule value ${ }^{2)}$. In our coincidence experiment, both processes are easily disentangled

Fig, la:
Spectrum of the ${ }^{12} C\left(\alpha, \alpha^{\prime}\right)$ reaction taken at 17° and at an incident energy of 104 MeV

1b: Spectrum of the ${ }^{12} C\left(\alpha, \alpha^{\prime} c\right)$ reaction taken in coincidence with all charged decay products $c(Z=1,2)$

1c: α spectrum of the
 ${ }^{12} \mathrm{C}+\alpha \rightarrow{ }^{11} \mathrm{C}+{ }^{5} \mathrm{He} \rightarrow{ }^{11} \mathrm{C}+\alpha+\mathrm{n}$ reactions measured by kinematic coincidence with the respective recoil nuclei 11_{B} and ${ }^{11} \mathrm{C}$

$$
\begin{aligned}
& \text { 1d: } \alpha \text { spectrum of the } \\
& 12 \mathrm{C}+\alpha \rightarrow{ }^{10} \mathrm{~B}+{ }^{6} \mathrm{Li}^{*} \rightarrow{ }^{10} \mathrm{~B}+\alpha+\mathrm{d} \text { reaction }
\end{aligned}
$$ measured by kinematic coincidence with the ${ }^{10}{ }_{B}$ recoil nucleus

by a kinematic coincidence with the respective ${ }^{11} \mathrm{C}$ and ${ }^{11} \mathrm{~B}$ recoil nuclei. (In case of $150 \mathrm{MeV} \alpha$ scattering, the energy of the α particles from ${ }^{5} \mathrm{He}$ and ${ }^{5}$ Li decay corresponds to higher excitations in ${ }^{12} \mathrm{C}$ and thus does not affect the analysis of the 27 MeV excitation region.)
(iii) Via similar kinematic coincidences we were able to explain a large part of the underlying continuum. Besides processes mentioned in (ii), there are a1so contributions from the ${ }^{12} \mathrm{C}+\alpha \rightarrow{ }^{10}{ }_{\mathrm{B}+}{ }^{6} \mathrm{Li}$ 米|2.19| $\rightarrow{ }^{10}{ }_{\mathrm{B}+\alpha+\mathrm{d}}$ (Fig. 1d), ${ }^{12} \mathrm{C}+\alpha \rightarrow{ }^{10} \mathrm{C}+{ }^{6} \mathrm{He}{ }^{*}|1.8| \rightarrow{ }^{10} \mathrm{C}+\alpha+2 \mathrm{n}$ and ${ }^{12} \mathrm{C}+\alpha \rightarrow{ }^{10} \mathrm{Be}+{ }^{6} \mathrm{Be}^{*} \rightarrow{ }^{10} \mathrm{Be}+\alpha+2 \mathrm{p}$ reactions.

The final analysis of our measured angular correlation functions for the different decay products should enable us to determine uniquely the spins and the partial decay widths of the observed highly excited ${ }^{12} \mathrm{C}$ states, which will give important information on their microscopic structure.

References

1) K.T. Knöpfle et al., Phys. Lett. 64B (1976) 263 and Annual Report of the MPI Heidelberg 1976
2) D.H. Youngblood, Proc. Intern. Symp. on Highly Excited States in Nuclei, Juilich 1975, Vol. II, p. 51

3.3.3 Nuclear Matter Sizes of $204,206,208 \mathrm{~Pb}$ from $104 \mathrm{MeV} \alpha$-Particle Scattering
H.J. Gils, H. Rebe1, J. Buschmann
Institut für Angewandte Kernphysik des Kernforschungszentrums Karlsruhe H. Klewe-Nebenius

Institut für Radiochemie des Kernforschungszentrums Karlsruhe

Gross properties of nuclei such as size, nucleon distribution or binding energy are of great importance for testing microscopic nuclear structure models. From electron scattering and mounic X-rays we have accurate information on charge and proton distributions, respectively. The experimental knowledge about neutron or total nucleon distributions, however, is scarce and less certain. In particular for heavier nuclei with a large neutron excess differences between proton and neutron distributions ${ }^{1)}$ may be expected. Hence a direct and unambiguous determination of neutron or total nucleon distributions is of great general interest.

Among the various methods which have been proposed for such an investigation α-particle scattering is a very promising approach. Due to the strong absorption in nuclear matter medium energy α-particle scattering has proved to be an excellent total for studying the nuclear surface. By folding models ${ }^{2)}$ which relate the interaction potential to the nucleon density a reliable reaction model is provided. Recent systematic studies and analyses ${ }^{3)}$ on the basis of such a model have shown that for lighter (not neutron rich) nuclei ($\mathrm{A} \leq 60$) the extracted rms radii and higher moments of nuclear matter are in excellent agreement with other investigations so that this method can be applied to heavy nuclei with some confidence.

With this view the differential cross sections for elastic α-particle scattering from $204,206,208 \mathrm{~Pb}$ have been measured using the scattering facilities at the Karlsruhe Isochronous Cyclotron. The sharp diffraction pattern in the forward hemisphere $\left(\theta_{\mathrm{CM}}<50^{\circ}\right.$) has been measured with high angular accuracy ($\Delta \theta<0.1^{\circ}$) and in small angular steps (0.5°) which is important for the intended analyses.

The experimental results were analysed on the basis of the semimicroscopic folding model in order to determine the nucleon distributions at the nuclear surface using several phenomenological parametrizations of the densities. Fig. 1 shows the measured differential cross sections and the results of analyses with 3-parameter modified Gaussian distributions which reproduce the

Fig. 1: Folding mode1 analyses of elastic α-particle scattering from $204,206,208 \mathrm{~Pb}$. The parameters c, a, w of the modified Gaussian nucleon distribution have been fitted to the measured data. The inset shows the resulting nucleon densities

experimental cross sections well. The corresponding nucleon distributions are inserted into the graph. Considering all analyses with different parametrization of the densities 4,5) the following rms radii of the total nucleon distributions were obtained:

${ }^{204} \mathrm{~Pb}$	$\left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{m}}^{1 / 2}=5.55 \pm 0.06 \mathrm{fm}$
${ }^{206} \mathrm{~Pb}$	$\left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{m}}^{1 / 2}=5.57 \pm 0.06 \mathrm{fm}$
${ }^{208} \mathrm{~Pb}$	$\left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{m}}^{1 / 2}=5.63 \pm 0.05 \mathrm{fm}$

From that one can calculate differences between neutron and proton distributions using e.g, the results of very precise electron scattering experiments ${ }^{6}$). The absolute values of the differences between neutron and proton density rms radii obtained by that way apparently depend on the particular procedure applied $4,5,7$). But in any case there remains a small "neutron skin" at the
nuclear surface of 0.05 to 0.30 fm thickness. This is in fair agreement with laborious Hartree-Fock calculations 1) performed for the case of ${ }^{208} \mathrm{~Pb}$ predicting the radius of the neutron density to be 0.23 fm larger than that of the proton density.

References

1) J.W. Negele; Comments Nuc1. Part. Phys. $\underline{6}$ (1974) 15
2) H. Rebel, Proceedings of the Int. Summer School of Nucl Phys. (Predeal Sept. 1974); KFK-Report 2065 (1974)
3) H.J. Gils and H. Rebe1, KFK-Report 2127 (1975); Z. Physik A274 (1975) 259
4) H.J. Gils and H. Rebe1, Phys. Rev. C13 (1976) 2159
5) H.J. Gils, H. Rebe1, J. Buschmann, H. Klewe-Nebenius, G.P. Nowicki, and W. Nowatzke, Z. Physic A279 (1976) 55
6) H. Euteneuer, J. Friedrich, and N. Voegler, Phys. Rev. Lett: 36 (1976) 129 and private communications
7) E. Friedman and C.J. Batty, preprint (1977)

3.3.4 Experimental Studies of Isoscalar Octupole Transition Rates and of Neutron Collectivities by α-Particle Scattering

H.J. Gils and H. Rebel
Institut für Angewandte Kernphysik des Kernforschungszentrums Karlsruhe

The usual tests of the validity of nuclear structure models relate to excitation energies, electromagnetic transition rates, multipole moments, and inelastic electron scattering form factors. Electromagnetic quantities, however, are dominated by the proton configurations. In general, for more extended tests of microscopic descriptions of nuclei additional information on the neutron configurations is of extreme interest. In particular for heavy nuclei with different proton and neutron numbers a different collective behavior of protons and neutrons may be expected. The current methods for investigating sụch features are particle scattering and reaction experiments.

As well known, α-particle scattering provides great advantages when investigating collective features of nuclei. Different from electromagnetic methods, this method is not only sensitive to neutron configurations but at medium high energies the penetrability of α-particles is sufficient to probe the tails of the transition densities. The strong absorption situation leads to a simplified and reliable reaction mode1 ${ }^{1)}$ providing the required information comparable to electromagnetic results. This is not often the case when working with strongly interacting probes.

We report here some studies of the strong collective 3_{1}^{-}-states of the even stable Pb isotopes $204,206,208 \mathrm{~Pb}$, especially of the 3_{1}^{-}-state of ${ }^{208} \mathrm{~Pb}$ $\left(E_{x}=2.615 \mathrm{MeV}\right)$ based on recent measurements of inelastic scattering of $104 \mathrm{MeV} \alpha$-particles ${ }^{2}$). The experiments were motivated by the search for differences in collective proton and neutron properties and aim at a determination of isoscalar octupole transition rates and transition radii $\left(\mathrm{R}_{\text {trans }}=\left|\left\langle\mathrm{r}^{\mathrm{L}+2}\right\rangle /\left\langle\mathrm{r}^{\mathrm{L}}\right\rangle\right|^{1 / 2}\right.$). The $204,206,208 \mathrm{~Pb}\left(\alpha, \alpha^{\prime}\right)$ cross sections have been analysed by the coupled channel method including Coulomb excitation in a $0^{+}-3_{1}^{-}$-coupling scheme. The coupling potentials were generated by the folding procedure using various different functional forms for the transition densities $\rho_{t r}(r):^{*}$)

[^0](i) The standard functional form used was a phenomenological parametrization of the matter transition density $\rho_{i f}^{m}$ according to the vibrational model (first derivate of a Fermi shape) following the procedure proposed for extracting isoscalar transition rates 4,5). The values of the radius parameter c_{m}, diffuseness parameter a_{m} and the "normalization" β_{3}^{m} have been adjusted by fitting the data. The results of this standard procedure are given in tab. 1 .

Target	$B\left(\right.$ IS $\left.3 ; 0^{+} \rightarrow 3^{-}\right)$ $\left(10^{5} \mathrm{e}^{2} \mathrm{fm}^{6}\right)$	(s.p.u.)	$R_{\text {trans }}$ (fm)
204	5.52 ± 0.35	31.9 ± 2.0	7.52 ± 0.06
206	6.11 ± 0.43	34.6 ± 2.4	7.50 ± 0.06
208	6.18 ± 0.68	34.3 ± 3.8	7.56 ± 0.08

Table 1: Transition probabilities $B\left(I S 3 ; 0^{+} \rightarrow 3^{-}\right)$and radii $R_{\text {trans }}$ derived by the standard procedure (vibrational-model form of the mass transition density)

The experimental and the theoretical scattering cross sections obtained by procedure (i) are displayed in fig. 1 for ${ }^{206} \mathrm{~Pb}$ as example.

Fig. 1: Measured differential cross sections ${ }^{206} \mathrm{~Pb}\left(\alpha, \alpha^{\prime}\right)$ at $\mathrm{E}_{\alpha}=104 \mathrm{MeV}$. The theoretical curves represent the results of a coupled channel analysis with the standard folding model

In view of our interest in proton-neutron differences the parametrization of the transition density by a common form for the proton and neutron part is less consistent and may obscure the information.
(ii) In order to decouple proton and neutron parts the quantity $\rho_{\text {if }}$ has been split into $\rho_{\text {if }}=\rho_{p}+\rho_{n}$, and both parts have been treated independently. Generally such a procedure improves the description of the measured cross sections. Confining our interest to the case of ${ }^{208} \mathrm{~Pb}$ we have adopted the proton part from a "model independent evaluation" of inelastic electron scattering data ${ }^{6}$). For the form of the neutron part of the transition density again the vibrational model form has been taken.

Applying this "modified vibrational model!" procedure we obtained the neutron transition density shown in fig. 2 revealing a larger transition radius compared to the proton part.

Fig. 2: Result of the 3^{-}-state cross section analysis adopting the proton transition density from a "model independent" analysis of (e, e') scattering (ref. 6) and fitting the phenomenologically parametrized neutron density to the experimental (α, α^{\prime}) cross sections

Table 2 compiles the octupole transition rates and transition radii calculated for mass, proton and neutron transitions from the various results of $\rho_{i f}(r)$ including results of microscopic nuclear structure calculations ${ }^{7,8 \text {). }}$ The values of the neutron transition radii indicate significant differences to the proton value.

As can be seen in tab. 2 the neutron collectivities seem to be underestimated by theoretical results. In order to discuss our experimental cross sections more directly in the 1 ight of the theoretical predictions of $\rho_{\text {if }}$ we introduce

Transition density $\rho_{3}(r)$	$\mathrm{m}^{\mathrm{G}_{3}}$	$\begin{gathered} {[\mathrm{s} . \mathrm{p} . \mathrm{u} .]} \\ \mathrm{p} \end{gathered}$	n	$\mathrm{R}_{\mathrm{trans}}$	$\begin{gathered} { }^{\mathrm{L}+2}>/< \\ \mathrm{p} \end{gathered}$	${ }_{\mathrm{n}}^{1 / 2}[\mathrm{fm}]$
$\begin{aligned} & \left(e, e^{\prime}\right)^{6)} \\ & \left(\alpha, \alpha^{\prime}\right) \end{aligned}$	34. ${ }^{ \pm}$- 3.8	33.5 ± 2.7	33.3	$\begin{gathered} 7.65 \pm 0.08 \\ 8.09 \end{gathered}$	7.28	8.58
MVN	33.4	(33.5)			(7.28)	
Theory Speth ${ }^{7)}$	31.1	34.0	29.3	7.55	7.24	7.76
Theory Knüpfer ${ }^{8)}$						
$\alpha_{n}=\alpha_{p}$	28.2	32.7	25.5	7.64	7.40	7.81
$\alpha_{n} \neq \alpha_{p}$	34.2	32.7	35.2	7.93	7.40	8.25

ST: Standard procedure ${ }^{3)}$, MVN: Modified vibrational model form for the neutron transition density

Table 2: Comparison of various results for transition rates G_{3} and radii $R_{\text {trans }}$ for ${ }^{208} \mathrm{~Pb}$
microscopically calculated transition densities into the expression generating the transition potential. The procedure can be considered to be a further way specifying the quantity $\rho_{i f}(r)$, in addition to the more phenomenological forms used above.
(iii) The transition densities are calculated in the framework of RPA on the basis of the model of a separable effective interaction ${ }^{8)}$. The proton part $\rho_{i f}$ agrees fairly well with all what we know from electron scattering in this case. For the calculations of the neutron part we allow some variation of the radius parameter α_{n} of the oscillator well generating the single particle basis.

The various theoretical neutron transition densities displayed in fig. 3 influence clearly the predicted cross sections and match the experimental cross section with $\alpha_{n}=0.39 \mathrm{fm}^{-1}$ (see the χ^{2} / F dependence of α_{n} in the inset of fig. 3). The corresponding neutron distribution leads to an enhancement in mass and neutron transition rate, to a larger value of the transition radius and to a shape of the relevant radial region consistent with the result from the purely phenomenological analysis.

Fig. 3: Effects of the radius parameter of the neutron oscillator well on the transition densities and differential cross sections of inelastic α-particle scattering

References

1) H. Rebe1, Proceedings of the Int. Summer Schoo1 of Nuc1. Phys. (Predea1 Romania, Sept. 1974); KFK-Report 2065 (1974)
2) H.J. Gils, H. Rebe1, H. Klewe-Nebenius, G.P. Nowicki, W. Nowatzke, Z. Physik A279 (1976) 55
3) H.J. Gils, H. Rebel and W. Knüpfer, Nuovo Cim. 36A (1976) 258
4) H.J. Gils and H. Rebel, Z. Physik A274 (1975) 259
5) H. Rebe1, Z. Physik A277 (1976) 35
6) H. Rothhaas, J. Friedrich, K. Mer1e, B. Dreher, Phys. L. 51B (1974) 23
7) P. Fröbrich, J. Speth, Phys. L. 44B (1973) 477, Proceedings of the Symposium on Nuclear Structure, Balatonfured, Hungary, 1.-6. Sept. 1975
8) E. Grecksch, W. Knüpfer and M.G. Huber, Lett. Nuov. Cim. 14 (1975) 505

$3.3 .5\left(\alpha, \alpha^{\prime} \gamma\right)$ Angular Correlation Measurements on sd-Shel1 Nuc1ei

W. Eyrich, A. Hofmann, U. Scheib, S. Schneider, F. Vogler, Physikalisches Institut der Universität Erlangen-Nürnberg

H. Rebel

Institut für Angewandte Kernphysik des Kernforschungszentrums Karlsruhe

Particle- γ angular correlations provide more detailed information about reaction mechanisms and nuclear structure than differential cross sections. In the special case of ($\alpha, \alpha_{1} \gamma$) angular correlations on even-even nuclei it is possible to determine the individual reaction amplitudes, which describe the transitions to the various magnetic substates of the excited residual state. Therefore ($\alpha, \alpha_{1} \gamma$) angular correlation measurements are especially suitable for the study of reaction- and structure-models and their parameters.

The "in-plane" angular correlation function for α-particle scattering and the spin sequence $0^{+}-2^{+}-0^{+}$is given by

$$
W\left(\Theta_{\alpha}=\frac{\pi}{2}, \phi_{\alpha} ; \Theta_{\gamma}=\frac{\pi}{2}, \phi_{\gamma}\right)=A\left(\phi_{\alpha}\right)+C\left(\phi_{\alpha}\right) \cdot \sin ^{2} 2\left(\phi_{\gamma}-\phi_{2}\left(\phi_{\alpha}\right)\right)
$$

The quantities A, C and ϕ_{2}, which depend on the α-particle scattering angle ϕ_{α} are simply related to reaction amplitudes ${ }^{1)}$. For the reaction ${ }^{24} \mathrm{Mg}\left(\alpha, \alpha_{1} \gamma\right)$-angular correlation it has been shown ${ }^{2}$), that coupled channels calculations based on the extended optical model (EOM) as well as on a semimicroscopic folding model ${ }^{3}$) which fit the differential cross sections, can also describe the individual reaction amplitudes. Moreover it turned out that compared with the differential cross section especially the correlation amplitude C is very sensitive to the sign of the nuclear quadrupole deformation. This is demonstrated for the EOM-analyses in fig. 1 and 2 . In fig. 1 the experimental differential cross sections are shown together with the best fits for prolate $\left(\beta_{2}>0\right)$ and oblate ($\beta_{2}<0$) deformation. Both fits can reproduce the data, favouring the positive sign of β_{2}. In fig. 2 the experimental values of the correlation amplitude C are compared with the calculations for $\beta_{2}>0$ and $\beta_{2}<0$ using the best fit parameters of the cross section analysis. There are large differences between both calculations and only the calculation with $B_{2}>0$ can reproduce the data.

Fig. 1: Coupled channels analysis of the ${ }^{24} \mathrm{Mg}\left(\alpha, \alpha^{\prime}\right)$ differential cross section

Fig. 2: The experimental correlation amplitude C of the reaction ${ }^{24} \mathrm{Mg}\left(\alpha, \alpha_{1} \gamma\right)$ and coupled channels predictions for prolate and oblate deformation

We have continued these studies measuring the ${ }^{28}$ Si ($\alpha, \alpha^{\prime} \gamma$)-angular correlation. The sign of the quadrupole deformation of ${ }^{28}$ Si was not as clearly assigned ${ }^{4}$) as in the case of ${ }^{24} \mathrm{Mg}$, although in most publications oblate deformation is favoured. Our experimental set-up was similar as in the case of the ${ }^{24} \mathrm{Mg}$-correlation experiment, which is described in detail in ${ }^{2}$). In contrast to this measurement however, the energy analysed beam has beeen used and the data have been acquired twodimensionally.

Again the analyses have been performed in terms of coupled channe1s on the basis of the symmetric rotator using the extended optical model (EOM) and the semimicroscopic folding model. The experimental cross sections are shown in fig. 3 together with the best fits for prolate and oblate deformation in the framework of the EOM. Both fits can reproduce the data favouring slightly the oblate deformation. In fig. 4 the correlation amplitude C is shown. Like in the case of ${ }^{24} \mathrm{Mg}$ large difference between both calculation occur. The experimental data allow an unambiguous decision for oblate deformation of ${ }^{28}$ Si. Similar results are obtained from the folding model analyses where at least in the diffraction region the correlation data can be well reproduced by the

Fig. 3: Coupled channels analysis of the ${ }^{28}$ Si (α, α^{\prime}) differential cross section

Fig. 4: The experimental correlation amplitude C of the reaction ${ }^{28}$ Si $\left(\alpha, \alpha_{1} \gamma\right)$ and coupled channels predictions for prolate and oblate deformation
calculations assuming oblate deformation for ${ }^{28}$ Si. In all analyses done so far the characteristic differences between prolate and oblate deformation prove to be independent of the potential parameters. They can be explained in the framework of Blair's diffraction mode1 ${ }^{5)}$ as shown in ${ }^{2)}$. Therefore $\alpha-\gamma$-angular correlations should provide a powerful tool to determine the sign of the quadrupole deformation of nuclei also in critical cases. Under this aspect work is in progress to study the $\alpha-\gamma$-angular correlation on ${ }^{26} \mathrm{Mg}$.

References

1) H. Wagner et al., Phys. Lett. 47B (1973) 497
2) W. Eyrich et a1., Phys. Lett. 63B (1976) 406 and submitted to Nucl. Phys.
3) H. Rebel, Proceedings of the Intern. Summer School of Nuc1. Phys. Predeal Romania (1974), ed. by A. Ciocanel KFK-2065 (1974), and further references therein
4) A. Nakada and Torizuka, H. Phys. Soc. (Japan) 32 (1972) 1,
H. Rebel et al., Nucl. Phys. Al82 (1972) 145
C.E. Ah1feld et a1., Nuc1. Phys. A191 (1972) 137
5) N. Austern and J.S. Blair, Ann. Phys. 3 (1965) $^{33} 5$

3.4 Nuclear Spectroscopy

3.4.1 Experimental Study of the Enhanced $L=4$ Transition in ${ }^{140} \mathrm{Ce}$
A. Hanser, H. Rebel, J. Buschmann and H.J. Gils

Institut für Angewandte Kernphysik des Kernforschungszentrum Karlsruhe
H. K1ewe-Nebenius

Institut für Radiochemie des Kernforschungszentrums Karlsruhe
H. Faust

Physikalisches Institut der Universität Heidelberg

L=4 transition probabilities are often deduced from inelastic scattering of electrons, protons, or α-particles in order to get information on hexadecapole motion in quasispherical or deformed nuclei. In many cases, however, a comparison of the results is influenced either by the model dependence of the analyses (especially when regarding earlier α-scattering data) or by the fact that α-scattering cross sections are determined by the isoscalar mass transition probabilities, while electron and proton scattering data imply electromagnetic isovectorial transition contributions. Therefore, the measurement of a quantity, which provides model independent information, is highly desirable.

Such a quantity informing on the charge transititon is given by the probability of the direct $4_{1}^{+} \rightarrow 0^{+} \gamma$-decay, which in cases of strong enhancement can be measured despite of the strongly competing E2-cascade.

We have observed this E4 γ-ray transition in ${ }^{140} \mathrm{Ce}$ following the β-decay of ${ }^{140}$ La. The competing lower energy E2 transitions were strongly reduced by means of a 5 cm lead absorber. In addition, the peak to background ratio in the γ-ray spectrum was increased by using an anticompton arrangement and electronic pile-up rejection. In fig. 1 the measured γ-ray spectrum together with a linear plotted part showing the 2083 keV E4 transition, the actual efficiency curve (including lead absorber, compton suppression, and pile-up rejector), and the relevant part of the ${ }^{140} \mathrm{Ce}$ level scheme are shown. The contribution of pile-up to the $2083 \mathrm{keV} \gamma$-ray was estimated from other pile-up peaks to be less than 1.5%.

Fig. 1: γ-ray spectrum (logarithmic scale) of the decay of ${ }^{140}$ La. The insets on top show the relevant part of the ${ }^{140}$ Ce level scheme, the actual efficiency curve of the detector arrangement, and a linearly plotted part of the spectrum in the region of the $E 4$ transition, respectively

Fig. 2: Angular distribution of α-particles of 104 MeV scattered to the ${ }^{140}$ Ce 4^{+}state. The upper solid curve is the result of fitting the theoretical calculations. The lower curve shows the calculated angular distribution when no $\mathrm{L}=4$ component is adopted. The inset demonstrates the excitation scheme on which the coupled channel calculations are based

From the intensity of the $2083 \mathrm{keV} \gamma$-ray a branching ratio of

$$
\frac{I_{\gamma}(E 4)}{I_{\gamma}(E 2)}=(2.52 \pm 0.14) \cdot 10^{-4}
$$

was obtained. Together with the half-1ife of (3.44 ± 0.03) ns of the ${ }^{140} \mathrm{Ce}$ 4^{+}level an enhancement factor of

$$
(11.9 \pm 0.7) \text { s.p.u. }
$$

is deduced for the $4_{1}^{+} \rightarrow 0^{+}$transition.

For comparison to (mass-sensitive) α-scattering data we have measured the angular distribution of inelastically scattered α-particles at $E_{\alpha}=104 \mathrm{MeV}$. The data were analyzed by use of a coupled channel code with a folding procedure for the optical potential. The results are shown in fig. 2. The 4^{+}peak could only be analyzed for scattering angles $\geq 18^{\circ}$ since at smaller angles it was superimposed by strong peaks originating from 0 - and C-impurities of the target. For the same reason the 2^{+}peak could not be evaluated. Thus, the β_{02} transition matrix element (see fig. 2) necessary for the analysis of the 4^{+}angular distribution, had to be taken from literature ${ }^{1)}$. Its absolute value, however, does not strongly affect the 4^{+}analysis.

We deduced an enhancement factor of

$$
(13 \pm 2) \text { s.p.u. }
$$

for the $L=4$ excitation which agrees well with the enhancement factor of the γ-ray transition and also with the value of (14 ± 2) s.p.u. obtained from a reanalysis of earlier $45 \mathrm{MeV} \alpha$-scattering data l) but differs clearly from electron scattering results ${ }^{2)}$ which revealed

$$
(20 \pm 4) \text { s.p.u. }
$$

We conclud that in the case of ${ }^{140}$ Ce no difference between charge and mass transition probability exists and that the model used for the analysis of the α-scattering data describes them very well and consistently.

References

1) F.T. Baker and T. Tickle, Phys. Rev. C5 (1972) 182
2) R. Pitthan, Z. Physik $\underline{260}$ (1973) 283

3.4.2 Shape Factor_Measurements on Short Lived ß-Emitters

W. Thies, H. Appel, R. Pesl

Institut für Experimentelle Kernphysik des Kernforschungszentrums Karlsruhe

H. Behrens

Zentralstelle fuir Atomkernenergie-Dokumentation des Kernforschungszentrums Karlsruhe

There is certainly need of new and improved measurements of β-spectra shapes. The motivations are, e.g.:

- to test the conserved vector current hypothesis and its degree of correctness. Theory offers definite predictions on the energy dependence of the shape factors in Gamow-Teller transitions
- to measure the shape factors of superallowed $0^{+} \rightarrow 0^{+}$transitions which should be constant. While the ft-values for some of these decays have again been thoroughly investigated recently by measuring half lives and Q-values (for the inverse reaction) no shape factor determination has been published so far. For principle reasons and with regard to the correctness of radiation corrections the shapes of $\mathrm{O}^{+} \rightarrow \mathrm{O}^{+}$spectra should be reliably analysed
- to proof that the scalar interaction does not contribute in addition to the vector interaction in allowed vector B-decay. Otherwise it could cause deviations from the statistical spectrum shape. Results from the observation of superallowed spectra allow a considerable improvement on the limit of the Fierz interference term.

Apart from these more principle aspects which refer to allowed transitions only, valuable information on the details of the relevant nuclear structure can be taken from the shape factors of forbidden transitions ${ }^{1)}$.

Since the lifetimes of $0^{+} \rightarrow 0^{+}$transitions lie typically in the range between some hundreds of milliseconds and seconds the investigations have to be carried out in beam. An iron free intermediate image spectrometer of the type described by Alburger ${ }^{2}$) has been installed at the Cyclotron (see fig. 1). Intermediate image spectrometers are very suitable for shape factor measurements, particularly with respect to background radiation at the detector, The iron free type offers the additional advantage of strict linearity between current and electron momentum. The energy range has been extended up to 17 MeV .

Fig. 1: Schematic diagram of the iron free intermediate image beta-spectrometer

A momentum resolution of about 2% has been chosen together with a transmission rate of approximately 1%.

Activation period (target position A in fig. 1) and measurement period are chosen with respect to the relevant half lives investigated. For the latter period the target is switched from position A to M. During each measurement period the whole range of β momenta is recorded. Since the current increase in the spectrometer coils is not sufficiently linear in time it is necessary to gain information on the time-momentum relation. This is achieved by measuring the in- or decreasing field with a Hall-probe with respect to a periodic pulse sequence. More details on the spectrometer and on some earlier results can be taken from former publications $3,4,5$).

Recently the superallowed $\mathrm{O}^{+} \rightarrow \mathrm{O}^{+}$transition in $\mathrm{K}^{38 \mathrm{~m}} \rightarrow \mathrm{Ar}^{38}(\tau=926 \mathrm{~ms})$ has been investigated. The production process $K^{39}(p, p n) K^{38 m}$ has been chosen. The Fermi-plot of the data is presented in fig. 2. A three parameter fit (K, E_{0}, and a or b) has been applied to the data (the quantities are explained in detail, e.g., in ref. (3)), and, of course, the model independent radiation corrections. The extracted end point energy of $\mathrm{E}_{\mathrm{o}}=(5026.5 \pm 11.5) \mathrm{keV}$ agrees well with the (necessarily more accurate) result from Q-value measurements, which is $\left.E_{o}=(5021.2 \pm 3.4) \mathrm{keV}^{6}\right)$.

The other parameters determined are

$$
\begin{aligned}
& \mathrm{a}=-0.0007 \pm 0.0018 \text { and } \\
& \mathrm{b}=-0.03 \pm 0.09
\end{aligned}
$$

Fig. 2: The linearized beta-spectrum of the $0^{+} \rightarrow 0^{+}$transition $\mathrm{K}^{38 \mathrm{~m}} \rightarrow \mathrm{Ar}^{38}$

Within the error, the quantity a turns out to be zero, the shape factor is consequently constant. The theoretical expectations on the shape factor are confirmed, including the influence of the radiative corrections. In addition the $3^{+} \rightarrow 2^{+}$Gamow-Teller-transition in $\mathrm{K}^{38} \rightarrow \mathrm{Ar}^{38}$ has been investigated. An exact model calculation on the basis of the CVC hypothesis including nuclear structure effects results in a change of the shape factor of $-0.42 \% / m_{o} c^{2}$. With a determined end point energy of $E_{o}=(2730.5 \pm 6.3) \mathrm{keV}$ the experimental value for the shape factor is $(-0,0064 \pm 0.0025) \% / m_{0} c^{2}$.

It is particularly advantageous that the latter results can be referred to the measurements of the $0^{+} \rightarrow 0^{+}$transitions, which guarantee that the trans ${ }^{-}$ mission of the spectrometer is constant and independent of the momentum. No effects of instrumental origin larger than the statistical error can therefore enter the results.

References

1) H.J. Gehrhardt, Thesis, University of Karlsruhe, 1977
2) D.E. Alburger, Rev. Sci. Instr. 27 (1956) 991
3) H. Behrens, M. Kobelt, W.G. Thies, and H. Appel, Z. Physik 252 (1972) 349
4) H. Behrens, M. Kobelt, L. Szybisz, and W.G. Thies, Nuc1, Phys. A246 (1975) 317
5) H. Behrens, M. Kobelt, L. Szybisz, and W.G. Thies, Nucl. Phys. A245 (1975)515
6) G.T.A. Squier, W.E. Burcham, J.M. Ereeman, R.J. Petty, S.D. Hoath, and J.S. Ryder, Nucl. Phys. A242 (1975) 62
3.5. Measurements of Nuclear Magnetic Moments
3.5.1 Determination of the Quadrupolemoment of the $\left(25 / 2^{+}\right)$Isomer in ${ }^{117} \mathrm{Sb}$
M. von Hartrott, K. Nishiyama, D. Quitmann, J. Rossbach and E. Weihreter Institut für Atom- und Festkörperphysik, Freie Universität Berlin

The measurement of nuclear quadrupole moments for isomeric states in the life time range between about 1 s and $10^{-5} \mathrm{~s}$ offers particular experimental problems. Therefore only few values have been determined combining several favourable circumstances prevailing for just the special cases. An example of this kind is the moment $Q^{117 \mathrm{~m}}$ of the $340 \mu s$ isomer in ${ }^{117} \mathrm{Sb}$. This can be deduced from the quadrupolar part T_{Q}^{-1} of the spin lattice relaxation observed by perturbed angular correlations after production and alignment by the reaction ${ }^{115} \operatorname{In}(\alpha, 2 n)^{117 m_{S b}}$ in a liquid InSb target. The explicit derivation of $Q^{117 \mathrm{~m}}$ rests on additional information in the following way: Due to the proportionality $T_{Q}^{-1} \alpha f(I) \cdot Q^{2} \quad 1$, the ratio R of the quantities $f(I) \cdot Q^{2}$ belonging to two different isotopes can be measured directly by comparing their respective quadrupolar relaxation rates in the same matrix at the same temperature ($f(I)$ spin factor, see ${ }^{1)}$). If one of the moments is unknown (here: ${ }^{117 \mathrm{~m}} \mathrm{Sb}$) it can be obtained by inserting the spins of both isotopes and the quadrupole moment of the reference isotope. The quadrupolar rates for stable ${ }^{121} \mathrm{Sb}$ and ${ }^{123} \mathrm{Sb}$ in liquid InSb have been determined in a conventional NMR experiment for a series of temperatures by isotopic separation ${ }^{2)}$. In the present experiment, $\mathrm{T}_{\mathrm{Q}}^{-1}$ was determined for $117 \mathrm{~m}_{\mathrm{Sb}}$ over almost the same range of temperatures. The ratio R averaged over temperature is

$$
\mathrm{R}\left({ }^{\left.117 \mathrm{~m}_{\mathrm{Sb}} /{ }^{121} \mathrm{Sb}\right)=0.30(3) ; ~}\right.
$$

the quoted error is mainly due to the systematic difference of the T_{Q}^{-1} curves in both experiments. With $\mathrm{I}\left({ }^{117 \mathrm{~m}} \mathrm{Sb}\right)=25 / 2$ as proposed in ref. 3), the ratio of the quadrupole moments becomes

$$
Q\left({ }^{117 m} \mathrm{Sb}\right) / \mathrm{Q}\left({ }^{121} \mathrm{Sb}\right)=2.1(1)
$$

Unfortunately, the ground state quadrupole moment of ${ }^{121} \mathrm{Sb}$ is not known very accurately ${ }^{4)}$; with $Q\left({ }^{121} \mathrm{Sb}\right)=0.26(10)$ barn, we obtain $\left|Q\left({ }^{117} \mathrm{Sb}\right)\right|=0.54(20)$ barn. This result may be compared with the prediction based on a three quasiparticle state with the configuration $\left\{\left(V_{11 / 2}\right)^{2} 10^{+}, \pi d_{5 / 2}\right\} \frac{25}{2} 3$). For the
quadrupole moment of the neutron part of the configuration we take that of the $\left(V_{11 / 2}\right)^{2} 10^{+}$isomeric state of the nucleus ${ }^{116} \mathrm{Sn}$, which is $-0.50(5)$ barn ${ }^{5}$). For the $d_{5 / 2}$ proton moment one would as a first guess take that of the groundstate ${ }^{117} \mathrm{Sb}$ which is -0.30 barn ${ }^{6}$). It is, however, to be noted that the quadrupole moment of this state does not fit into the systematics of the moments of the $\mathrm{d}_{5 / 2}$ groundstates in the odd neutron deficient Sb isotopes. One obtains the value $-0.20(4)$ barn by interpolating between the ground states of ${ }^{115} \mathrm{Sb}$ and ${ }^{119} \mathrm{Sb}$. Because of the stretched coupling, the moments of the two components add up, yielding for the isomer ${ }^{117 m_{S b}}$ a theoretically expected value of $-0.60 \ldots-0.80$ barn. Since the absolute value agrees within the limits of error with experiment, we adopt the negative sign and get as the final experimental result:

$$
Q\left({ }^{117 \mathrm{~m}} \mathrm{Sb}\right)=(-) 0.54(20) \text { barn }
$$

References

1) A. Abragam and R.V. Pound, Phys. Rev. 92 (1953) 943
2) W.W. Warren Jr. and W.G. Clark, Phys. Rev. 177 (1969) 600
3) W.D. Fromm, H.F. Brinckmann, F. Dönau, C. Heiser, F.R. May, V.V. Pashkevich and H. Rotter, Nuc1. Phys. A243 (1975) 9
4) S.L. Ruby, G.M. Kalvius, G.B. Beard and R.E. Snyder, Phys, Rev. 159 (1967) 239
5) F. Dimmling, D. Riegel, K.G. Rensfelt and C.J. Herrlander, Phys. Lett. 55B (1975) 293
6) V.S. Shirley, Hyperfine Interactions in Excited Nuclei IV, Editor G. Go1dring and R. Kalish; Gordon and Breach, New York, London, Paris, 1970, p. 1255-1336

3.5.2 Spins and Magnetic Moments of Neutron Deficient Rb Isotopes by In-Beam Optical Pumping

J. Collignon, F. Buchinger, R. Neugart

Institut für Physik der Universität Mainz
H. Schweickert

Institut fuir Angewandte Kernphysik/Zyk1otron des Kernforschungszentrums Karlsruhe

The method of in-beam optical pumping ${ }^{1)}$ has been applied to ${ }^{80} \mathrm{Rb}$ and ${ }^{82} \mathrm{Rb}$. Fig. 1 shows the principle of the experimental set up. Both isotopes are produced from enriched Kr targets by the respective (p, n) reactions. The target cell containing free Rb atoms in a Kr atmosphere is simultaneously used for the optical pumping experiment. Polarization achieved by irradiating the circularly polarized D_{1} resonance 1 ine is detected by the asymmetry in the β decay. Rf resonances between the hfs levels of the atomic ground state yield the spins, hfs splittings and magnetic moments.

The following results have been obtained

80		
$\mathrm{Rb}(30 \mathrm{~s}):$	$\mathrm{I}=1$	$\mu_{\mathrm{I}}=-0.0836(6) \mathrm{nm}$
${ }^{82} \mathrm{Rb}(1.3 \mathrm{~m}):$	$I=1$	$\mu_{\mathrm{I}}=0.554(3) \mathrm{nm}$

(including diamagnetic correction)

Abb. 1: Experimental setup for on-1ine optical pumping

In the case of ${ }^{80} \mathrm{Rb}$ a precision measurement of the hfs splitting has been performed yielding $\Delta \nu=233.936(2) \mathrm{MHz}$. This result combined with the direct measurement of the nuclear moment gives an upper limit of 1% for the hfs anomaly between ${ }^{80} \mathrm{Rb}$ and the stable ${ }^{87} \mathrm{Rb}$.

Both isotopes considered here lie in the transition region between the stable isotopes near the neutron she11 closure and a region of strong nuclear deformation. Ekström et al. ${ }^{2)}$ have contributed important information on the more neutron-deficient isotopes by using the atomic-beam magnetic resonance method. An optical pumping experiment has been performed on ${ }^{76} \mathrm{Rb}$ at ISOLDE/CERN ${ }^{2}$). A rather comprehensive set of nuclear ground state properties in the region of light Rb isotopes has thus been obtained.

References:

1) H. Schweickert, J. Dietrich, R. Neugart, E.W. Otten Nuc1. Phys. A246 (1975) 187-209
2) C. Ekström, S. Ingelman, G. Wannberg, M. Skarestad, Proc. 3rd Int. Conference on Nuc1ei far from Stability, Cagese, France, CERN 76-13 (1976) p. 193
3) H. Fischer, P. Dabkiewicz, P. Freilinger, H. -J. Kluge, H. Kremmling, R. Neugart, E.-W. Otten, Z. Physik, to be published

3.5.3 High Resolution Laser Spectroscopy of Radioactive Light Barium Isotopes

G. Nowicki, K. Bekk, S. Göring, A. Hanser, H. Rebel and G. Schatz Institut für Angewandte Kernphysik des Kernforschungszentrums Karlsruhe

The development of narrow band tunable dye lasers has provided a tool for high resolution optical spectroscopy measurements on very small amounts of atoms. Thereby it has become possible to investigate optical isotope shifts in a long isotopic row, including short-lived radioactive atoms, in order to get information on the change of nuclear charge radii ${ }^{1,2)}$.

We have build up a laser spectrometer for high resolution atomic spectroscopy of short lived nuclides produced with the cyclotron beam. The principle of the experimental arrangement is shown in fig. 1. We measure the resonance fluorescence of the respective radioactive atoms in a well collimated beam, using a single mode cw-dye laser as light source. The fluorescence intensity was detected by photon counting. The exact frequency of the exciting light was determined by an optical heterodyn method using a second single mode dye laser, whose frequency was stabilized to the known resonance transition frequency of a stable Ba isotope, as an optical reference oscillator, We obtained an experimental resolution of 24 MHz (FWHM) which is comparable to the natural line width of 19 MHz .

Fig. 1: Principle of the experimental arrangement

First we studied the isotope shifts and hyperfine structure of ${ }^{128}$ Ba and ${ }^{131} \mathrm{Ba}$. We produced ${ }^{128} \mathrm{Ba}_{\mathrm{Ba}}\left(\mathrm{T}_{1 / 2}=2.45 \mathrm{~d}\right)$ and ${ }^{131} \mathrm{Ba}\left(\mathrm{T}_{1 / 2}=11.5 \mathrm{~d}\right)$ via (d, xn) reactions and subsequent β^{+}decay from enriched ${ }^{130} \mathrm{Ba}$ and ${ }^{134} \mathrm{Ba}$, respectively, at the Karlsruhe Isochronous Cyclotron. ${ }^{131}$ Ba was also produced by neutron irradiations of enriched ${ }^{130} \mathrm{Ba}$ in the Karlsruhe Research Reactor FR2. The isotope in question was enriched using an electromagnetic mass separator. At the beginning of the measurements the atomic beam oven contained about 1 to 30 ng of the isotope to be investigated and an amount of stable Ba isotopes about 2 to 100 times as large.
We identified the ${ }^{1} S_{0}-{ }^{1} P_{1}$ transition of ${ }^{128}$ Ba by observing its decrease due to radioactive decay because it lies very close to one hyperfine component of ${ }^{137} \mathrm{Ba}$. The resulting isotope shift is $\Delta v\left({ }^{128} \mathrm{Ba}-{ }^{\left.130_{\mathrm{Ba}}\right)}=2.08 \pm 0.04 \mathrm{mK}\right.$. The ${ }^{1} S_{0}-{ }^{1} P_{1}$ transition of ${ }^{131}$ Ba should have two hyperfine components because of its nuclear ground state spin $I=1 / 2^{3}$). As one of these components coincides with the transition of ${ }^{138}$ Ba we measured the fluorescence spectrum changing the polarization direction of the incoming laser light in order to subtract the intensity of the ${ }^{138}$ Ba line. The results we got are $\Delta \nu\left({ }^{131} \mathrm{Ba}-{ }^{130} \mathrm{Ba}\right)=1.33 \pm 0.07 \mathrm{mK}$ and $\mathrm{A}=-8.33 \pm 0.05 \mathrm{mK}$. Using the well known hyperfine splittings of the stable isotopes ${ }^{135,137}$ Ba 4) and neglecting a possible hyperfine anomaly we obtain the magnetic moment of ${ }^{131} \mathrm{Ba}$ $\mu=-(0.714 \pm 0.006) \mu_{N}$.
The problem of determining differences of nuclear charge radii of Ba isotopes from optical isotope shifts is discussed in detail.by Fischer et al. ${ }^{5}$). Following their procedure we obtain the radius differences $\delta\left\langle\mathrm{r}^{2}\right\rangle\left({ }^{130} \mathrm{Ba}^{128_{\mathrm{Ba}}}\right)=$ 0.022 (3) fm^{2} which are shown in the fig. 2 together with the values of other isotopes 5,6). It can be seen that the large odd-even staggering is remarkably reduced at neutron number 75 .

Fig. 2: $\delta<r^{2}>$ values of light Barium isotopes. The straight line represents the values expected for the standard uniform sphere

References

1) C. Duke, H. Fischer, H. -J. Kluge, H. Kremmling, Th. Kuihl and E.W. Otten, Phys. Lett. 60A (1977) 303
2) R. Neumann, F. Träger, J. Kowalski and G. zu Put1itz, Z. Phys, A279 (1976) 249
3) D.J. Horen, J.M. Hollander and R.L. Graham, Phys. Rev, 135B (1964) 301
4) H.-J. Kluge and H. Sautter, Z. Phys. $\underline{270}$ (1974) 295
5) W. Fischer, M. Hartmann, H. Hühnermann and H. Vogg, Z. Phys. 267 (1974) 209
6) C. Höhle, H. Hühnermann, Th. Meier, H.R. Ihle and R. Wagner, Phys. Lett. 62B (1976) 390

3.5.4 Positron Trapping

G. Gräff and D. Richter

Institut für Physik der Universität Mainz

The aim of this experiment is the spectroscopic determination of Larmor frequency and cyclotron frequency of free positrons. In order to achieve a sufficient time of interaction between the rf field and the positrons, the latter must be trapped within a small volume under ultrahigh vacuum conditions. The trapping potential consists of an electrostatic quadrupole with superimposed homogeneous magnetic field. To confine a particle within the trap, the incoming particle has either to be decelerated or to be created inside the trap. We shall try the latter method. For this the trap is filled with radioactive positron emitting positive charged ions. Using strong magnetic fie1ds (60 kG) a reasonable number of positrons have sufficiently low momenta so that they will be trapped.

The positron emitting isotope ${ }^{84} \mathrm{Rb}$ is produced by the reaction ${ }^{84} \mathrm{Kr}(\mathrm{p}, \mathrm{n}){ }^{84} \mathrm{Rb}$. Those atoms are absorbed on the surface of a tungsten wire. The wire is then installed at one of the electrodes of the electrostatic quadrupole trap. When the wire is heated up to several hundred degrees most of the ${ }^{84} \mathrm{Rb}$ atoms leave the surface as ions and drift into the trapping region where they are stored. We expect that by this means up to several hundred positrons can be trapped within the storage region.

3.6 Measurements with the Large Neutron Spectrometer
 3.6.1 Isospin_Mixing_of $T=3 / 2$ Isobaric_Analog_States_in_Light
 $\mathrm{T}_{\mathrm{z}}=\mathbf{=} \underline{1 / 2}$ Nuclei

S. Cierjacks, I. Schouky

Institut für Angewandte Kernphysik des Kernforschungszenturms Karlsruhe
S.K. Gupta

Nuclear Physics Division, BARC, Bombay, India

The neutron decay of $T=3 / 2$ states in 1 ight $T_{z}=1 / 2$ nuclei is isospin forbidden and can proceed only via isospin impurities in either the initial or the final states. Thus the investigation of the neutron widths of $T=3 / 2$ resonances provides a good means to obtain information about the isospin purity of such states. Furthermore isospin admixtures are connected with charge-dependence effects in the nuclear states, i.e. are due to the fact that the nuclear interaction contains also a small charge-dependent contribution, produced by the Coulomb interaction and a charge-dependent part of the nucleon-nucleon interaction. This latter fact demonstrates the gain of information also expected from such studies with respect to the chargedependence of the nuclear force.

A first attempt to investigate isospin mixing of low lying $T=3 / 2$ states in light nuclei was made for the ${ }^{28}$ Si+n system. This study was initiated by a recent observation of Weigmann et al. 1) who demonstrated for a first time that $T_{>}$states can also be observed in neutron induced reactions.

By reanalyzing the measured total and differential scattering cross sections of ${ }^{28}$ Si in the energy range from $1.05-1.40 \mathrm{MeV}$ unambiguous resonance parameters were obtained for four resonances in this region. The experimental results and the calculations are shown in Fig. 1. This figure contains the total neutron cross section (top curve) and the differential elastic scattering cross sections at ten scattering angles between $20^{\circ} \leq \theta_{c . m} \leq 151^{\circ}$ (lower curves). Total neutron cross sections were measured with a total uncertainty of less than 2% data points are at about 0.6 keV apart from each other. The differential scattering cross sections having a statistical accuracy of $\sim 3 \%$ were measured in energy intervals of about 1 keV . All experimental data were obtained from measurement with the Karlsruhe fast neutron time-offlight spectrometer. The solid lines in the figure are the results of a

Fig. 1: The total neutron cross section and the differential scattering neutron cross section for natural silicon. The total cross section were measured with an accuracy of $\pm 2 \%$ while the energy steps are $\sim 0.6 \mathrm{keV}$. The differential cross section having statistical errors ranging below 3% and the energy steps are $\sim 1 \mathrm{keV}$. All these data were measured with the Karlsruhe neutron time-of-flight-spectrometer using the 57 m flight path. The solid curves is the result of a single channel, multi-level R-matrix calculation
simultaneous R-matrix multilevel fit. In the present case the optimum fit was obtained by a visual comparison of the measured and the calculated cross sections. R-matrix calculations were made with the Nebe-Kirouac code ${ }^{2}$) starting with parameters given in BNL-325 3). From the analysis the resonance at 1254 keV was identified as the isobaric analog of the first excited state $\left(J=1 / 2^{+} E_{x}=1.402 \mathrm{MeV}\right)$ in ${ }^{29}$ A1. This identification took also into account experimental radiative neutron capture data ${ }^{4}$) and shell-model calculations for the radiative width ${ }^{5}$). Using first order perturbation theory Weigmann et al. 1) have shown that a "zeroth order" guess of the average mixing matrix element $\left.\overline{\left\langle T=3 / 2 / V / t_{i}\right.}=1 / 2\right\rangle_{o}$ is defined by the equation

$$
\Gamma_{n}^{o}(T=3 / 2)=\left|\overline{\langle T=3 / 2| V\left|T_{i}=1 / 2\right\rangle}\right|^{2} \sum_{i} \frac{\Gamma_{n}(i)}{\left|E_{i}-E(T=3 / 2)\right|^{2}}
$$

where Γ_{n}^{O} is the reduced width and the average is over all $T=1 / 2$ states of the same J^{π} labelled by i.
A lower 1imit $\left.\overline{\langle T=3 / 2| V \mid T_{i}}=1 / 2\right\rangle_{\min }$ is obtained by assuming constructive interference of all resonances

$$
\Gamma_{n}^{o}(T=3 / 2)=\left.\left|\overline{\langle T=3 / 2| V\left|T_{i}=1 / 2\right\rangle} \min ^{2}\right| \sum_{i} \frac{\Gamma_{n}^{o}(i)}{E_{i}-E(T=3 / 2)}\right|^{2}
$$

The use of the results from our resonance analysis in addition to further results from BNL-325 for two $\mathrm{J}=1 / 2^{+}$resonance below 1 MeV provided the mixing matrix elements given in Tab. 1. From this table which also compares our

Quantity

$$
\begin{aligned}
& \quad{ }^{28} \text { Si+n } \\
& \text { For the assigned } \\
& \text { IAR at } 1254 \mathrm{MeV}
\end{aligned}
$$

$$
\begin{aligned}
& \quad{ }^{28} \mathrm{Si+n} \\
& \text { If } 1160 \mathrm{keV} \text { le- } \\
& \text { vel would be the } \\
& \text { IAR }
\end{aligned}
$$

${ }^{24} \mathrm{Mg}+\mathrm{n}$ For 1567 keV $\mathrm{J}=1 / 2^{+}, \mathrm{T}=3 / 21 \mathrm{e}-$ ve1 from ref. 1

$\underline{\Gamma_{n}^{O}(T=3 / 2)}$	14%	7%	18
$\Gamma_{n}^{O}(T=1 / 2)$			
$\begin{aligned} & \langle\mathrm{T}=3 / 2\| \mathrm{V}\|\mathrm{i}\rangle_{\mathrm{o}} \\ & \text { in keV } \end{aligned}$	112	58	150
$\begin{aligned} & \overline{\langle\mathrm{T}=3 / 2\| \mathrm{V}\|\mathrm{i}\rangle} \begin{array}{l} \text { min } \\ \text { in } \mathrm{keV} \end{array} \end{aligned}$	77	42	90

Table 1: Estimate of isospin impurity for ${ }^{28} \mathrm{Si}+\mathrm{n}$ and comparison with ${ }^{24} \mathrm{Mg}+\mathrm{n}$
results with Weigmann's data for the $T=3 / 2$ s-wave resonance of ${ }^{24} \mathrm{Mg}$, it can be seen that the isospin mixing matrix element for these two nuclei are comparable.

References

1) H. Weigmann, R.L. Macklin, J.A. Harvey, Phys. Rev. C14 (1976) 1328
2) G.J. Kirouac, J. Nebe, KFK 1069 (1969)
3) S.F. Mughabghab, D.I. Garber, BNL-325, Vo1. 1 (1973)
4) J.W. Boldeman, B.J. Allen, A.R. de L. Musgrove, R.K. Macklin, Nuc1. Phys. A252 (1975) 62
5) M.J.A. De Voigt, B.H. Wildentha1, Nuc1. Phys. A206 (1973) 705

3.6.2 Precision Measurements of Fission Cross Section Ratios for 239 Pu and ${ }^{240} \mathrm{Pu}$ Relative to $23 \bar{U}$

K. Kari, S. Cierjacks, D. Erbe, B. Leugers, G. Schmalz Institut für Angewandte Kernphysik des Kernforschungszentrums Karlsruhe

The fission cross sections of ${ }^{239} \mathrm{Pu}$ and ${ }^{240} \mathrm{Pu}$ are fundamental data in reactor technology. Precise values are important for optimizing the design of fast breeder reactors. Despite a large number of measurements, the cross sections for these nuclei are still unsufficiently known. Individual measurements still show deviations ranging between 10 and 15%. These discrepancies are mainly due to the fact that both nuclei have small α half-1ifes and thus are highly radioactive which complicates precise cross section measurements. A new measurement aiming at high precision was carried out for both Pu-isotopes between $0.5-20 \mathrm{MeV}$ employing time-of-flight techniques ${ }^{1)}$. The measurements were conducted using gas scintillation counters of a special design, capable to measure fission events in the presence of extremely high α-background. Since flux measurements in fast neutron spectra are difficult to perform, fission cross sections were measured relative to the fission cross section of ${ }^{235} U$, the internationally recommended standard. As a typical result Fig. 1 shows the fission cross section ratio for ${ }^{239} \mathrm{Pu}$ in the energy region from 0.1 - 20 MeV on a semilogarithmic scale. In this diagram our data are compared with the values of a recent measurement in the Lawrence Livermore Laboratory, carried out by Behrens et al. 2). It can be seen that rather good agreement exists between the two data sets, except in the range above about 16 MeV , which is, however, unimportant for a fast reactor spectrum. In the decay regions around 6 and 12 MeV there seems to exist also a small discrepancy between in both energy scales.

References

1) S.W. Cierjacks, B. Leugers, K. Kari, B. Brotz, D. Erbe, D. Gröschel, G. Schmalz, F. Voß, Proc. NEA-Specialist Meeting an Fast-Neutron Fission Cross Sections, Argonne, June 1976, Report ANL-76-90, p. 96
2) J.W. Behrens, C.W. Carlson, Proc. NEA-Specialists Meeting an Fast Neutron Fission Cross Sections, Argonne, June 1976, Report ANL-76-90, p. 47

Fig. 1: The fission cross section ratio of ${ }^{239} \mathrm{Pu} /{ }^{235} \mathrm{U}$. The present results (open circlesj are compared with data obtained in a recent experiment at the Lawrence Livermore Laboratory, ref. 2 (open triangles). There is good agreement between both data sets except above ~ 16 MeV . A slight difference in both absolute energy scales appears in the decay regions near 6 and 12 MeV

3.7 Measurements on Nuclear Fission

3.7.1 Determination of the Fission Barrier of ${ }^{232}$ Pu from ß-Delayed Fission
D. Habs, H. Klewe-Nebenius, B. Neumann and H.J. Specht Physikalisches Institut der Universität Heidelberg and V. Metag, Max-Planck-Institut für Kernphysik, Heide1berg

The investigation of β-delayed fission ${ }^{1)}$ allows to determine fission barrier heights in nuclei far off the stability line.
In the irradiation of ${ }^{237} \mathrm{~Np}$ with α-particles of 104 MeV a delayed fission activity with a half-1ife of $(55 \pm 7) \mathrm{s}$ and a cross section of (5 $\pm 1) \mathrm{nb}$ has been observed. Reaction products recoiling from a $100 \mu \mathrm{~g} / \mathrm{cm}^{2}$ thick target were stopped 5 mm downstream in a $100 \mu \mathrm{~g} / \mathrm{cm}^{2}$ thick carbon foil. After an irradiation of 200 s the catcher foil was moved pneumatically in between two closely spaced surface barrier detectors positioned 60 cm away from the activated target for registration of correlated fission fragments and α-partic1es.

From a detailed α-spectroscopy involving $\alpha-\alpha$ coincidences to clarify motherdaughter relations the production cross sections of all final nuclei have been determined. A comparison with calculated cross sections using an evaporation model code allows to assign the observed activity to the fission of ${ }^{232} \mathrm{Pu}$ following the electron capture decay of ${ }^{232} \mathrm{Am}{ }^{2}$).

The fission probability can be determined experimentally by measuring the cross section for the delayed fission activity and the cross section for the electron capture decay of the precursor nucleus. The latter has been inferred from the observation of the α-decay chain of ${ }^{232}$ Am using predicted $\alpha /$ EC branching ratios 3)

On the other hand, the probability for fission following electron capture decay may also be calculated from

The product of the integrated Fermi function f and the B-strength function S_{B} accounts for the population of excited states in the daughter nucleus, and the ratio $\frac{\Gamma_{f}}{\Gamma_{\gamma}+\Gamma_{f}}$ describes the competition between fission and γ cascades leading to ${ }^{\gamma} f$ the ground state.

Considering the near constancy of Γ_{γ} and S_{ε} together with the weak (quadratic) energy dependence of the Fermi function the main energy dependence of the integrand in (l) stems from the exponential variation of Γ_{f} for subbarrier fission. Thus, the folded fission probability is essentially determined by the barrier parameters (heights E_{A}, E_{B} and curvature energies $\hbar \omega_{A}$, $\hbar \omega_{B}$) and Q_{E}-value for the electron capture decay which is rather reliably predicted by mass formulae.
The fission probability $P_{E C, F}=(1.3 \pm 4,4) \%$ found for the observed fission activity yields a fission barrier height of (5.3 ± 0.4) MeV for ${ }^{232} \mathrm{Pu}$ according to eq. (1). The systematic and smooth trend of experimentally determined barrier heights shows that this value refers to the inner barrier. The newly determined fission barrier height exceeds theoretical predictions using the shell correction approach of Strutinsky by about 2 MeV . The discrepancy between theoretical and experimental fission barrier heights previously observed in particular for U and $T h$ isotopes ${ }^{4}$) points to severe defects in the procedure of calculating static fission barriers and, at the same time, rises doubts in the predicted stability of superheavy nuclei.

References

1) N.K. Skobelev, Sov. J. Nuc1. Phys. 15 (1972) 249
2) B. Neumann, Diplomarbeit, Universität Heidelberg (1977)
3) H. Münzel and K.A. Keller, KFA Report 1059 (1969)
4) H.J. Specht, Nukleonika 20 (1975) 717

Fig. 1: Decay curve of a fission activity produced in the irradiation of ${ }^{237} \mathrm{~Np}$ with $104 \mathrm{MeV} \alpha$-particles

Publications in 1976 using the Karlsruhe Isochronous Cyclotron

Nuclear Reactions

Eyrich, W.; Hofmann, A.; Scheib, U.; Schneider, S.; Vogler, F.; Rebel, H. Study of Prolate-Qblate Effects by Use of Particle - γ Angular Correlations in the Reaction ${ }^{24} \mathrm{Mg}(\alpha, \alpha,)^{24} \mathrm{Mg}$
2. Conference on Radial Shape of Nuclei, Cracow, Poland, June 22-25, 1976

Gils, H.J.
Isoskalare Übergangswahrscheinlichkeiten aus Streuexperimenten mit α-Teilchen und Untersuchungen der Neutronenkollektivität in 208 Pb Expertentreffen der Kernphysiker, Schleching, 2.-12. März, 1976

Rebe1, H.; Gils, H.J.; Knüpfer, W. Experimental Studies of Neutron Collectivities by α-particle Scattering and Some Implications for Giant Resonance Excitations 14. Internat. Winter-Meeting on Nuclear Physics, Bormio/Italien, Januar 19-24, 1976

Rebel H .
Realistische Coulomb-Potentiale bei Coupled-Channel-Rechnungen für die Streuung von α-Teilchen und ${ }^{160}$-Ionen an deformierten Kernen KFK-2247 (Januar 1976)

Gils, H.J.; Rebe1, H.; Buschmann, J.; Klewe-Nebenius, H.; Nowicki, G.; Nowatzke, W.
Experimentelle Untersuchungen der Unterschiede 'zwischen den kollektiven Eigenschaften von Protonen und Neutronen in $204,206,208 \mathrm{~Pb}$ durch $\alpha-T e i 1 c h e n-$ Streuung: RMS-Radien und Oktupol-Übergangsraten Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Oesterr., 29. März - 2. April 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 857-58

Bechtold, V.; Friedrich, L.; Strassner, G.; Breuer, H.; Do11, P.; Knöpfle, K.T.; Mairle, G.; Sessler, A,; Wagner, G.J.
Spinbestimmung von 1 p -Lochzuständen in 15 N mit vektorpolarisierten Deuteronen Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März-2, April 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 860

Kropp. J.; Buschmann, J.; Wisshak, K.; Faust, H.; Klewe-Nebenius, H.; Rebe1, H.
Anregungsfunktionen von (${ }^{6} \mathrm{Li}, \mathrm{xn}+\mathrm{p}$)-Reaktionen bei Energien bis $\mathrm{E}(\mathrm{Li})=156 \mathrm{MeV}$ Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2, April 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 891

Eyrich, W.; Gerbig, V.; Hofmann, A.; Scheib, U.; Schneider, S.; Vogler, F.; Rebel, H.
Teilchen- γ-Winke1korrelationen als Mittel zur Untersuchung von Kernreaktionen Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. April 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 895

Abdel-Wahab, M.S.; Bialy, J.; Junge, M.; Schmidt, F.K.; Bechtold, V.; Friedrich, L.
Experimentelle Untersuchung der Aufbruchreaktion $d p \rightarrow p p n$ am vektorpolarisierten Deuteronenstrah1 des Karlsruher Isochronzyklotrons
Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. Apri1 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 965

Abdel-Wahab, M.S.; Bechtold, V.; Bialy, J.; Friedrich, L.; Junge, M.; Schmidt, F.K.; Strassner, G.
Vektoranalysierstärken der elastischen Deuteron-Proton- und Deuteron-DeuteronStreuung bei 52 MeV .
Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. Apri1
1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 966

Gils, H.J.; Rebe1, H.
Differences between neutron and proton density RMS-radii of $204,206,208 \mathrm{~Pb}$ determined by $104 \mathrm{MeV} \alpha$-particle scattering
2. Conference on Radial Shape of Nuclei, Cracow, Poland; June 22-25, 1976 Physical Rev. C, 13 (1976) S. 2159-165

Kropp, J.; Klewe-Nebenius, H.; Buschmann, J.; Rebe1, H.; Faust, H.; Gils, H.J.; Rieder, J.; Wisshak, K. Excitation functions of ${ }^{191+193} \mathrm{Ir},{ }^{197} \mathrm{Au}\left({ }^{6} \mathrm{Li}, \mathrm{xn}+\mathrm{yp}\right)$ compound nuclear reactions at $\mathrm{E}(\mathrm{Li})=48-156 \mathrm{MeV}$
KFK 2342 (August 76)

Eyrich, W.; Hofmann, A.; Scheib, U.; Schneider, S.; Vogler, F.; Rebe1, H. Alpha-gamma angular correlation measurements as a sensitive method determining the sign of the nuclear quadrupole deformation
Phys. Lett. 63B (1976) S. 406-8

Gils, H.J.; Rebe1, H.; Buschmann, J.; Klewe-Nebenius, H.; Nowicki, G.; Nowatzke, W.
Nowatzke, W. from $104 \mathrm{MeV} \alpha$-particle scattering
Zeitschrift für Physik A, 279 (1976) S. 55-68

Boschitz, E.T.; Hefter, E.F.; Heidt, V.; Weddigen, Ch.
Die $14 \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}$ Reaktion
Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. Apri1 1976, Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 932

Kluge, W.; Matthaey, H.; Sakamoto, Y.; Schlüfter, R.; Schneider, H. Experimentelle und theoretische Analyse der Deuteronenaufbruchreaktion ${ }^{2} \mathrm{H}(\mathrm{d}, \mathrm{pd}) \mathrm{n}$ bei $\mathrm{T}(\mathrm{d})=52 \mathrm{MeV}$
Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. Apri1 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 966

Neutron Physics

Voss, F.
Neutron Energy Calibration at the Karlsruhe Time-of-F1ight Facility
Neutron Interlab. Seminar CBNM, Gee1/Be1gien, November 12-14, 1975

Cierjacks, S.; Schouky, I.

Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. April 1976. Verhand1ungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 823-24

Leugers, B.; Kari, K.
Eine Gasszintillator-Anordnung zur Messung von Spaltfragmenten bei hohem α-Untergrund
Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. April 1976, Verhandlungen der Deutschen Physika1ischen Gese11schaft, R.6, Bd 11 (1976) S. 843

Voss, F.; Schmalz, G.
Praezisionsmessungen der Energien von Neutronenresonanzen im MeV-Bereich Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. Apri1 1976. Verhandlungen der Deutschen Physikalischen Gese11schaft, R.6, Bd 11 (1976) S. 917

Cierjacks, S.; Leugers, B.; Kari, K.; Brotz, B.; Erbem D.; Gröschel, D.; Schmalz, G.; Voss, F.
Measurements of neutron induced fission cross section ratios at the Karlsruhe Isochronous Cyclotron.
Specialists Meeting on Fast Neutron Fission Cross Sections, Argonne, Ill., June 28-30, 1976

Leugers, B.; Cierjacks, S.; Brotz, P.; Erbe, D.; Grösche1, D.; Schmalz, G.; Voss, F.
The 235 U and ${ }^{238}$ U neutron induced fission cross sections relative to the $H(n, p)$ cross section
Specialists Meeting on Fast Neutron Fission Cross Sections, Argonne, Ill., June 28-30, 1976

Cierjacks, S.; Erbe, D.; Kari, K.; Leugers, B.; Schmalz, G.; Schouky, 0.;
Voss, F .
Messung von Wirkungsquerschnitten
In: Projekt Schne11er Briiter. 2. Vierte1jahresbericht 1976.
KFK-1276/2 (November 1976) S. 121/1-5

Materials research

Ehrlich, K.; Gross, R.
Zyklotronbestrahlungen zur Simulation der Porenbildung in metallischen Werkstoffen
Frühjahrstagung DPG, Festkörperphysik, Freudenstadt, 5.-9. Apri1 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) 632

Herschbach, K.
Simulationsversuche am Zyklotron zum In-Pile-Kriechen von metallischen Werkstoffen
Frühjahrstagung DPG, Festkörperphysik, Freudenstadt, 5. -9. April 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 632-33

Maier, P.; Ruoss, H. Seibt; E.
Strahlenresistenzverhalten von Al5 Supraleitern
Frühjahrstagung DPG, Festkörperphysik, Freudenstadt, 5.-9. Apri1 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) S. 712-13

Seibt, E.; |HRSG.|; Dustmann, C.H.; Jüngst, K.P.; Komarek, P.; Krafft, G.; Krauth, H.; Maier, P.; Ries, G.; Schauer, W.; Schmidt, C.; Seibt, E.; Turowski, P.; |MITARB.|
Supraleitertechnologie für Fusionsmagnete
KFK-2359 (November 76)

Solid State Physics

Kri11, G.; Lapierre, M.F.; Gautier, F.; Robert, C.; Czjzek, G.; Fink, J.; Schmidt, H .
Electronic and Magnetic Properties of the Pyrite-Structure Compound NiS N_{2} : Influence of Vacancies and Copper Impurities
Journal of Physics C, 9 (1976) S. 761-82

Czjzek, G.; Fink, J., Schmidt, H.; Blanckenhagen P. von; Kri11, G.; Lapierre, M.F.; Robert, C.; Panissod, P.; Gautier, F. Untersuchungen von magnetischen Strukturen und Phasenübergängen in NiS (2-x)Se(x) durch Moessbauerspektroskopie an ${ }^{61}$ Ni und Neutronenbeugung Frühjahrstagung DPG, Festkörperphysik, Freudenstadt, 5.-9. April 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) 533

Czjzek, G.; Fink, J.; Schmidt, H.; Krill, G.; Lapierre, M.F., Panissod, P.; Gautier, F.; Robert, C.
An investigation of magnetic structures and phase transitions in NiS(2-x)Se(x) by 61 Ni-Moessbauer spectroscopy
Journal of Magnetism and Magnetic Materials, 3 (1976) S. 58-60

Fink, J.; Czjzek, G.; Schmidt, H.; Kril1, G.; Lapierre, M.F.; Gautier, F.; Robert, C.
An investigation of NiS_{2} by ${ }^{61}$ Ni-Moessbauer spectroscopy: influences of vacancies and copper impurities
Journal of Magnetism and Magnetic Materials, 3 (1976) S. 202-203

Hartrott, M. von; Hadijuana, J.; Nishiyama, K.; Quitmann, D.; Riegel, D.; Schweickert, H.
Nuclear spin relaxation of Xe in liquid Te
Zeitschrift für Physik A278 (1976) S. 303-308

Crecelius, G.; Maletta, H.; Hauck, J.; Institut für Festkörperforschung der Kernforschungsan1age Juilich GmbH Fink,J.; Czjzek, G.; Schmidt, H.; Morariu, M. Elektronische Struktur und Hyperfeinfeldwechselwirkungen in der Mischreihe $\mathrm{Dy}(\mathrm{Fe}(\mathrm{x}) \mathrm{Ni}(1-\mathrm{x}))_{3}$
Frühjahrstagung DPG, Festkörperphysik, Freudenstadt, 5.-9. Apri1 1976.
Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd 11 (1976) 625

Krill, G.; Panissod, P.; Lapierre, M.F.; Czjzek, G.; Fink, J.; Schmidt, H.; Küntzler, R.
Physical properties of the NiS(2-x)Se(x) compounds with pyrite structure: occurence of an antiferromagnetic metallic phase.
5. Internat. Conference on Solid Compounds of Transition Elements, Uppsala, June 21-25, 1976

Krill, G.; Lapierre, M.F.; Panissod, P.; Robert, C.; Gautier, F.; Czjzek, G.; Fink, K.; Schmidt, H.; Blankenhagen, P. von;
Covalency effects and the metal-insulator transition in NiS(2-x)Se(x)
Internat. Conference on the Applications of the Moessbauer Effect, Corfu, September 13-17, 1976

Engineering

Essig, G.
Zur Aktivierung von Maschinenteilen für Abtragsmessungen
Kerntechnik, 18 (1976) S. 470-74

Nuclear Medicine

Michel, F.; Münzel, H.; Schulz, F.; Schweickert, H.
Statusbericht über die 123J-Produktion am Kar1sruher Isochron Zyklotron
Jod-123-Pane1, Jülich, 13. Februar, 1976

Nuclear Spectroscopy

Faust, H.; Wisshak, K.; Klewe-Nebenius, H.; Rebe1, H, ; Gils, H.J.; Hanser, A. Die $L=4$ Übergangswahrscheinlichkeit aus der inelastischen α-Streuung an ${ }^{60} \mathrm{Ni}$ und der direkten Beobachtung des $41+\rightarrow 0^{+}$-Übergangs nach dem Zerfall von ${ }^{60} \mathrm{Co}$
Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. Apri1 1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6, Bd ll (1976) S. 840-41

Wisshak, K.; Hanser, A.; Klewe-Nebenius, H.; Buschmann, J.; Rebe1, H.; Faust, H.; Toki, H.; Faessler, A.
Das Niveauschema von ${ }^{143} \mathrm{Eu}$
Frïhjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. April
1976. Verhandlungen der Deutschen Physika1ischen Gesellschaft, R.6, Bd 11
(1976) S. 912

Wisshak, K.; Hanser, A.; Klewe-Nebenius, H.; Buschmann, J.; Rebel, H.; Faust, H.; Toki, H.; Faessler, A.
Experimental studies of the level scheme of ${ }^{143}$ Eu and a generalized decoupling model description Zeitschrift für Physik A277 (1976) S. 129-39

Collignon, J.
Messung der HFS-Aufspaltung und des $g(I)$-Faktors zur Bestimmung der HFS-Anomalie von 80 Rb
Diplomarbeit, Universität Mainz, 1976

Nuclear Chemistry
Misaelides, P.
Untersuchung der Anregungsfunktionen für ${ }^{3} \mathrm{He}$ - und α-Reaktionen mit ${ }^{107} \mathrm{Ag}$ und 109 Ag
Dissertation, Universität Karlsruhe 1976; KFK-2311 (June 76)
Münzel, H.; Miche1, F.; Coetzee, P.P.; Krivan, V.
Utilization of cyclotron produced fast neutrons for the activation analysis of oxygen
1976 Internat. Conference: Modern Trends in Activation Analysis, München, September 13-17, 1976

$\underline{\text { Technical Development }}$

Kappe1, W.; Karbstein, W.; Kneis, W.; Möllenbeck, J.; Schweickert, H.; Volk, B.
CICERO, ein interaktives Programmsystem für den rechnerunterstützten Zyklotronbetrieb unter Verwendung von CAMAC
Frühjahrstagung der Studiengruppe für Nukleare Elektronik, Arbeitsgemeinschaft der Großforschungseinrichtungen, Stuttgart, 22.-24. März, 1976

Haushahn, G.; Möllenbeck, J.; Schatz, G.; Schulz, F.; Schweickert, H. Status Report of the Axial Injection System at the Karlsruhe Isochronous Cyclotron
Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. April
1976. Verhandlungen der Deutschen Physikalischen Gesellschaft, R.6. Bd 11 (1976) S. 809

Cierjacks, S.; Schmalz, G.; Erbe, D.; Voss, F.
Das verbesserte Neutronen-Flugzeitspektrometer am Karlsruher Isochronzyklotron
Frühjahrstagung DPG und OEPG, Kernphysik, Baden/Österr., 29. März - 2. April
1976. Verhandlungen der Deutschen Physikalischen Gese11schaft, R.6, Bd 11
(1976) S. 916-17

Schweickert, H.
Status report on the Karlsruhe isochronous cyclotron
13. European Cyclotron Progress Meeting, Milano, May 6-8, 1976

Schulz, F.; Schweickert, H.; |HRSG.|
Operation of the Karlsruhe Isochronous Cyclotron in 1975
KFK-2298 (June 76)

[^0]: *) Details of the procedures are given in refs. 2,3 .

