KfK 2789 Juni 1979

# HEXAGA-II-120, -60, -30 Two-dimensional Multi-group Neutron Diffusion Programmes for a Uniform Triangular Mesh with Arbitrary Group Scattering

Z. Woźnicki Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Kernforschungszentrum Karlsruhe

#### KERNFORSCHUNGSZENTRUM KARLSRUHE

# Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

KfK 2789

H E X A G A - II - 120, -60, -30 TWO-DIMENSIONAL MULTI-GROUP NEUTRON DIFFUSION PROGRAMMES FOR A UNIFORM TRIANGULAR MESH WITH ARBITRARY GROUP SCATTERING

by

Zbigniew Wożnicki \*

.

This work is supported in part by International Atomic Energy Agency under the Research Contract No. 1236/R1/RB

\* Permanent Address:

Institute of Nuclear Research CYFRONET 05-400 Otwock-Świerk, POLAND

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor .

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

#### Summary

This report presents the AGA two-sweep iterative methods belonging to the family of factorization techniques in their practical application in the HEXAGA-II two-dimensional programme to obtain the numerical solution to the multi-group, time-independent, (real and/or adjoint) neutron diffusion equations for a fine uniform triangular mesh. An arbitrary group scattering model is permitted.

The report written for the users provides the description of input and output. The use of HEXAGA-II is illustrated by two sample reactor problems.

## HEXAGA II - Ein Rechenprogramm für die IBM-Anlage/370-168 zur Lösung der Multigruppen-Neutronen-Diffusionsgleichung in 2 Raumdimensionen für regelmäßige Dreiecksmaschengitter mit beliebiger Neutronenstreuung über die Energiegruppen

### Zusammenfassung

Der Bericht enthält die Beschreibung der "AGA Two Sweep Iterative Methods", die zur Familie der Faktorisierungsverfahren gehören, und ihre Anwendung im Rechenprogramm HEXAGA-II für zwei Raumdimensionen. HEXAGA-II liefert die numerische Lösung der zeitunabhängigen Multigruppen-Neutronendiffusionsgleichungen für feine, regelmäßige Dreiecksmaschengitter für den reellen und den adjungierten Neutronenfluß. Im Rahmen des betrachteten Modells können die Neutronen beliebig über die Energiegruppen gestreut werden.

Der Bericht ist für die Benutzer von HEXAGA-II zusammengestellt und enthält die Beschreibungen der Programm-Ein- und Ausgabe. Zwei Sample Probleme für Reaktorberechnungen sollen die Anwendung von HEXAGA-II verdeutlichen.

### Streszczenie

W raporcie przedstawiono dwuprzebiegowe metody iteracyjne AGA, należące do rodziny technik faktoryzacyjnych, w ich praktycznym zastosowaniu w dwuwymiarowym programie HEXAGA-II dostarczającym numerycznego rozwiązania wielogrupowych, czasowo niezależnych (rzeczywistych i/albo sprzężonych) równań dyfuzji neutronów w drobnej jednorodnej siatce trójkątnej. Możliwe jest stosowanie dowolnego modelu rozpraszania neutronów. Raport ten, przeznaczony dla użytkowników, zawiera opis inputu i outputu. Użycie programu HEXAGA-II jest zilustrowane dwoma przykładami problemów reaktorowych.

## CONTENTS \*\*\*\*\*\*\*

|       |                                                                                                       | Page |
|-------|-------------------------------------------------------------------------------------------------------|------|
| I.    | INTRODUCTION                                                                                          | 1    |
| 11.   | THE MATHEMATICAL MODEL                                                                                | 4    |
|       | 1. The Multi-Group Neutron Diffusion Equation                                                         | 4    |
|       | 2. The Geometrical Representation                                                                     | 5    |
|       | 3. Difference Equations                                                                               | 7    |
| III.  | THE METHOD OF SOLUTION                                                                                | 9    |
|       | 1. A General Iteration Scheme                                                                         | 9    |
|       | 2. The AGA Two-Sweep Iterative Method                                                                 | 11   |
|       | 3. The AGA Single Successive Overrelaxation Two-Sweep<br>Iterative Method (the AGA Single SOR Method) | 15   |
|       | 4. The AGA Double Successive Overrelaxation Two-Sweep<br>Iterative Method (the AGA Double SOR Method) | 16   |
|       | 5. The Derivation of Recursive Formulae used in HEXAGA-II                                             | 17   |
|       | 6. The Iteration Process                                                                              | 26   |
|       | 7. The Estimate of Iteration Process Parameters                                                       | 28   |
| IV.   | INPUT DESCRIPTION                                                                                     | 30   |
| V.    | OUTPUT DESCRIPTION                                                                                    | 46   |
| VI.   | PROGRAMMING INFORMATION                                                                               | 47   |
|       | 1. Description of the HEXAGA-II Programme                                                             | 47   |
|       | 2. Memory Requirements                                                                                | 48   |
|       | 3. External File Space Requirements                                                                   | 49   |
| VII.  | NUMERICAL EXAMPLES                                                                                    | 50   |
|       | 1. Sample Problem Bl                                                                                  | 51   |
|       | 2. Sample Problem B2                                                                                  | 78   |
|       | 3. Fine Mesh Problems                                                                                 | 94   |
| VIII. | APPENDIX                                                                                              | 97   |
|       | 1. Description of the INPREP Programme                                                                | 97   |
|       | 2. The Description of the HEXI-22 and HEXI-23 Programmes                                              | 101  |

e

CONTENTS \_\_\_\_\_\_ (cont.)

|     | I                               | age |
|-----|---------------------------------|-----|
| IX. | REMARKS ON THE USE OF HEXAGA-II | 02  |
|     | REFERENCES                      | 04  |

104

## Acknowledgement

The author would like to express his gratitude to Dr. G. Buckel and Mr. K. Küfner for their significant contributions to the development of the present versions of HEXAGA-II and to Dr. R. Fröhlich and Prof. J. Mika for their continued interest in this programme.

#### I. INTRODUCTION

This report contains the description of numerical methods utilized in twodimensional multi-group neutron diffusion programmes HEXAGA-II-120, -60 and -30 and their user's manual.

All the three programmes written in FORTRAN-IV with dynamic storage allocation are implemented recently on IBM-370/168 and CDC-CYBER-73 computers for real and/or adjoint calculations with a uniform triangular mesh. They are an extension of the former version of HEXAGA-II /3/ in which the domain of solution is an arbitrary 120°-parallelogram. In the present versions of HEXAGA-II called by HEXAGA-II-120, -60 and -30 the last numbers -120, -60 and -30 are related to the domain of solution which are  $120^{\circ}$ parallelogram, 60°-triangle and 30°-triangle, respectively. In HEXAGA-II-120 arbitrary logarithmic boundary conditions can be used on each of four external boundaries. In HEXAGA-II-60 and -30 the triangular domain of solution corresponds to the part of the reactor for which the solution has the 60-degree and 30-degree symmetry. Thus, logarithmic boundary conditions can be used only on the side of triangle corresponding to the outer boundary of a reactor and on two remaining sides of triangle the null flux derivative is used in a boundary condition. Despite of the different geometries the same input/output is used for all programmes and specified for the part of the reactor being 120°-parallelogram /or rhombus/. However, the number of unknowns representing a discrete numerical solution is approximately decreased by factor 2 in HEXAGA-II-60 and 4 in HEXAGA-II-30 with respect to those in HEXAGA-II-120. This reduces storage requirements and CPU time. In all versions of HEXAGA-II there exist the input check of 60-degree and 30-degree symmetry of solution and if required symmetry is not satistied in HEXAGA-II-60 or -30 for a given reactor problem, programme is stopped with printing information about a mesh point in which an expected symmetry did not occur.

In order to simplify the preparation of the HEXAGA-II input data, which in the case of preparation by hand for reactor problems with a fine refinement of mesh is too much time-consuming, three auxiliary subprogrammes INPREP-II, HEXI-22 and HEXI-23 have been written. The first of them, INPREP-II provides the same picture of a hexagonal mesh as this printed in

- 1 -

the HEXAGA-II output but without the specification of material composition numbers representing particular hexagons in the layout of mesh and these numbers can be written by user according to the material arrangement of a given reactor problem /see Appendix/. Two remaining subprogrammes HEXI-22 and HEXI-23 serve to producing the new HEXAGA-II input data for a given reactor problem in which the mesh step of uniform triangular mesh is decreased by factor 2 in the case of use HEXI-22 and by factor 3 for HEXI-23. Both subprogrammes use the same input as the HEXAGA-II input without introducing any additional input information. Thus, preparing the HEXAGA-II input by hand for a given reactor problem which can be described by the minimal number of mesh points and using an arbitrary combination of output/ input from HEXI-22 and HEXI-23 we can produce the HEXAGA-II input data for arrangements of mesh points for this problem with the mesh step decreased by the following factors: 2,3,4,8,9,12 etc. /see Appendix/.

In HEXAGA-II the group equations are approximated for a uniform 60-degree triangular mesh using a seven-point difference formula at the points of intersection of the triangular mesh lines, where the smallest homogeneous diffusion region has the form of a triangle \*). The obtained linear system of finite difference equations is solved by means of the AGA two-sweep iterative method proposed recently by the author for multidimensional critical reactor calculations /1, 4/. The application of the AGA method, which belongs to the family of factorization methods, leads to increasing the rate of convergence for <u>inner spatial flux interations</u>. In order to accelerate the rate of inner convergence in HEXAGA-II even further, two independent techniques based on a successive overrelaxation process are applied: the AGA Single and Double SOR methods /1, 4/. It turned out that the latter method is especially effective for solving large reactor problems with a fine mesh and when the method is not specified by the user the programme uses the AGA Double SOR method.

\*) It should be mentioned that the new version of the programme called HEXAGA-II-O is under development in which the seven-point formula couples the points of the mesh coinciding with the centers of seven uniform hexagons. Thus, the smallest homogeneous diffusion region has the form of a hexagon representing an individual fuel element or hexagonal fuel assembly.

- 2 -

The solution of multi-group neutron diffusion equations called the <u>outer iterations</u> is carried out by the power method accelerated by means of usual relaxation. The strategy of inner-outer iterations realized in HEXAGA-II consists of a fixed number of inner iterations for all neutron groups in a given outer iteration and for the majority of problems a few /2 or 3/ inner iterations per outer iteration provides the minimum CPU time and costs. It should be mentioned that another technique for the acceleration of outer iterations in HEXAGA-II is presently under development.

A four-energy group problem with about 20000 mesh points representing a model of the SNR 300 reactor as a typical fast reactor requires about 6 minutes of CPU time and 1000 k core storage on the IBM-370/168 computer with the following convergence criteria:  $\varepsilon_{k_{eff}} \leq 10^{-6}$  and  $\varepsilon_{\phi} \leq 10^{-5}$ .

## 1. The Multi-Group Neutron Diffusion Equation

HEXAGA-II provides an approximation to the solution of the following multi-group, time independent, neutron diffusion equations

$$-\nabla D_{g}(\underline{x}) \nabla \phi_{g}(\underline{x}) + \Sigma_{g}^{T}(\underline{x}) \phi_{g}(\underline{x}) = S_{g}(\underline{x})$$
(1)

$$S_{g}(\underline{x}) = \frac{\gamma_{g}}{k_{eff}} \sum_{g'=1}^{G} \nabla \Sigma_{g'}^{F}(\underline{x}) \phi_{g}(\underline{x}) + \sum_{g'=1}^{G} \Sigma_{g' \to g}^{S}(\underline{x}) \phi_{g'}(\underline{x}) \qquad (1a)$$

for g = 1, 2, ..., G

where g - group index - spatial point х Δ - gradient operator <sup>φ</sup>g - neutron flux Dg - diffusion coefficient  $\boldsymbol{\Sigma}_g^T$ - macroscopic total removal cross section vΣF - macroscopic fission production cross section  $\Sigma_{g' \rightarrow g}^{S}$  - macroscopic scattering cross section from group g' to group g ≁<sub>g</sub> - value of fission spectrum k<sub>eff</sub> - effective multiplication factor

These equations are supplemented by group-dependent logarithmic boundary conditions at the external boundaries of the reactor

$$\frac{1}{\phi_{g}(\underline{x})} \quad \frac{\partial \phi_{g}(\underline{x})}{\partial n} = -\frac{\alpha_{g}(\underline{x})}{D_{g}(\underline{x})}$$
(2)

where  $\alpha_g$  is a non-negative constant and the derivative is taken normal to the boundary outward to the reactor.

The adjoint solution required for supplementary perturbation calculations is made in HEXAGA-II with a little extra effort devoted to the algorithm for the real solution. In fact, it is only necessary to transpose the scattering matrix and invert the order in which the group equations are solved, interchanging the roles of the fission spectrum fractions,  $\psi_g$ , and the fission production cross section terms  $v\Sigma_g^F$ , in each equation.

As the real system is defined by Eqs. (1 and 1a) the corresponding adjoint system can be written in the following form

$$-\nabla D_{g}(\underline{x}) \nabla \phi_{g}^{*}(\underline{x}) + \Sigma_{g}^{T}(\underline{x}) \phi_{g}^{*}(\underline{x}) = S_{g}^{*}(\underline{x}) \qquad (1^{*})$$

$$S_{g}^{*}(\underline{x}) = \frac{1}{k_{eff}} \sum_{g'=1}^{G} \nu \Sigma_{g}^{F}(\underline{x}) \not_{g'} \phi_{g'}(\underline{x}) + \sum_{g'=1}^{G} \Sigma_{g \to g'}^{S}(\underline{x}) \phi_{g'}^{*}(\underline{x}) (1^{*}a)$$

for g = G, G-1, ...., 1 where  $\phi_{\sigma}^{*}$  is adjoint neutron flux.

#### 2. The Geometrical Representation

The solution is approximated over a parallelogram area that is composed of uniform triangular elementary subregions. The uniform grid of mesh lines is imposed upon this parallelogram area (see Fig. 1). The constant distance between mesh lines is chosen such that the boundaries of the area and the interfaces determining subregions (containing elementary triangles with the same material compositions) coincide exactly with the mesh lines. Both axes x and v in the assumed oblique coordinate system coincide with the boundary lines of the parallelogram area of the solution.

The discrete solution of Eq. (1) (and/or Eq. (1\*)) consists of the effective multiplication factor and of values approximating (real and/or adjoint) neutron flux and fission sources at the points of intersections of the mesh lines called mesh points.



Fig. 1

## 3. Difference Equations

To obtain a solution, Eq. (1) is approximated by seven-point difference equations at mesh points. Consider the mesh point (m,n) at the intersection of two mesh lines m and n, as illustrated in Fig. 1. It is assumed that the smallest homogeneous diffusion region has the form of a triangle representing one material composition. Therefore, the following difference expression for a given group, g, is used at the corner point between six different triangles numbered from 1 to 6, as in Fig. 1.

$$k_{n}^{m}\phi_{n}^{m} = c_{n}^{m} + e_{n}^{m}\phi_{n-1}^{m} + 1_{n}^{m}\phi_{n-1}^{m-1} + g_{n}^{m}\phi_{n}^{m-1} + \phi_{n+1}^{m+1} + u_{n}^{m}\phi_{n}^{m+1} + w_{n}^{m}\phi_{n+1}^{m}$$
(3)

where 
$$k_n^m = \frac{2}{a} \sum_{i=1}^{6} (D_i + \frac{h^2}{4} \Sigma_i^T)$$
  
 $e_n^m = \frac{1}{a} (D_4 + D_5)$   
 $l_n^m = \frac{1}{a} (D_5 + D_6)$   
 $g_n^m = \frac{1}{a} (D_6 + D_1)$   
 $u_n^m = \frac{1}{a} (D_3 + D_4)$   
 $w_n^m = \frac{1}{a} (D_1 + D_2)$   
 $c_n^m = \frac{6h^2}{a} \left\{ \frac{4g}{k_{eff}} \sum_{g'=1}^{G} \left[ (\sum_{i=1}^{6} \nabla \Sigma_i^F)_{g'} (\phi_n^m)_{g'} \right] + \frac{2}{g'_{eff}} \left[ (\sum_{i=1}^{6} \Sigma_{g'+g,i}^S)_{g'} (\phi_n^m)_{g'} \right] \right\}$ 

 $a = D_2 + D_3$ 

h - is spacing of the uniform triangular mesh.

Eq. (3) is normalized such that the coefficient with  $\phi_{n+1}^{m+1}$  equals unity. Similar difference equations are used at the mesh points lying on the external boundaries; the term  $\frac{2\sqrt{3}}{a} h \alpha_n^m$  is added to  $k_n^m$ , where  $\alpha_n^m$  is defined by Eq. (2), whereas the other coefficients of the difference equations (Eq. (3)) are calculated with appropriate modifications.

#### III. THE METHOD OF SOLUTION

A new approach to the numerical solution of the multidimensional neutron diffusion equation has recently been proposed by the author /1,4/. The method of solution used in HEXAGA-II is an application of this so-called AGA twosweep iterative method.

Accepting the conventional scheme of fission source iterations one must repeatedly solve the inhomogeneous two-dimensional difference equations for G groups

$$A_{g} \phi_{g} = c_{g}, \quad g = 1, 2, \dots G$$
 (4)

where  $A_g$  is a non-singular matrix sxs and s is equal to the total number of mesh points, that is, s = MxN. In this matrix notation, the matrix  $A_g$ contains the difference coefficients of Eq. (3), the components of the vector  $c_g$  are the coefficients,  $c_n^m$ , of Eq. (3) and  $\phi_g$  is the solution vector in a given group, g. Thus, the discrete solution of Eq. (1) consists of a series of outer iterations, each of them running over all energy groups. The fission sources are recalculated before each outer iteration, and the scattering sources before each group calculation. In each energy group, the inner iterations to solve Eq. (4) can be repeated I times. In HEXAGA-II the value of I, specified in the input, is fixed for all energy groups in a given outer iteration.

To solve Eq. (4), the AGA two-sweep iterative method is employed with the application of either the Single SOR or Double SOR process /1,4/. It will be described in the next sections of this Chapter.

#### 1. A General Iteration Scheme

The non-singular sxs matrix A of Eq. (4) can be expressed in the following form (suppressing index g)

$$A = M - N \tag{5}$$

- 9 -

where M and N are also sxs matrices. If M is non-singular, we say that this expression represents a <u>splitting</u> of A, and associated with this splitting is an iterative method

$$M\phi^{(j+1)} = N\phi^{(j)} + c, j \ge 0$$
 (6)

$$\phi^{(j+1)} = M^{-1} N \phi^{(j)} + M^{-1} c, \quad j \ge 0$$
(7)

where j denotes the iteration index and a guess is made of the inital vector  $\phi^{(0)}$ . The above equations represent the general scheme of the iterative method and  $M^{-1}N$  is the iteration matrix associated with this method.

Particular iterative methods differ in the choice of the matrices M and N. For a given iterative method,  $\phi^{(j+1)}$  tends to  $\phi$  (the exact solution of Eq. (4)) with  $j \rightarrow \infty$  for all  $\phi^{(0)}$  if, and only if, the spectral radius  $\rho(M^{-1}N)$  of the iteration matrix  $M^{-1}N$  is less than unity /2/. Moreover, the smaller the spectral radius of the iteration matrix, the better is the convergence asymptotically of a given iterative method.

Let us define the sxs matrix  $A = (a_{i,j})$  of Eq. (4) as a sum of the following sxs matrices

$$A = K - L - U \tag{8}$$

where

$$K = (k_{i,j}) = \text{diag} \{A_g\} \ge 0, \quad k_{i,j} = \begin{cases} a_{i,j} \text{ for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$
$$L = (1_{i,j}) \ge 0 \qquad \qquad 1_{i,j} = \begin{cases} -a_{i,j} \text{ for } i > j \\ 0 & \text{for } i < j \end{cases}$$
$$U = (u_{i,j}) \ge 0 \qquad \qquad u_{i,j} = \begin{cases} 0 & \text{for } i \ge j \\ -a_{i,j} \text{ for } i < j \end{cases}$$

Thus, K, L and U are diagonal, strictly lower triangular and strictly upper triangular matrices, respectively.

Referring to Eq. (3) we have the following interpretation of the matrix A: The coefficients  $k_n^m$  are the entries of the positive main diagonal of K;  $e_n^m$ ,  $l_n^m$  and  $g_n^m$  are respectively the entries of the three non-negative diagonals of L; and  $u_n^m$ ,  $w_n^m$  and units are respectively the entries of the three non-negative diagonals of U. For the above interpretation of the matrix A it was assumed that the numbering of mesh points in the mesh grid shown in Fig. 1 increases successively along every mesh line in the axial direction x, and successively from a given mesh line to the next one in the axial direction of v. Since A is an irreducibly diagonally dominant matrix satisfying the definition (8),  $\Lambda^{-1} > 0 /2/$ .

With the above definition of A the classical iterative methods are represented by the following splittings.

a) The point Jacobi method

$$A = M_J - N_J, \quad M_J = K \text{ and } N_J = L + U$$

$$B = K^{-1}(L+U) \ge 0$$
(9)

b) The point Gauss-Seidel method

$$A = M_{G} - N_{G}, \quad M_{G} = K - L \text{ and } N_{G} = U$$

$$\mathcal{L}_{1} = (I - K^{-1}L)^{-1}K^{-1}U \ge 0 \quad (10)$$

where  $\mathcal{B}$  and  $\mathcal{L}_1$  are iteration matrices, respectively, in these methods.

#### 2. The AGA Two-Sweep Iterative Method

The non-singular sxs matrix A of Eq. (4) can be expressed as follows:

$$A = K - P - (L+H) - (U+Q) + P + H + Q$$
(11)

on the assumption that P, H and Q are diagonal, strictly lower triangular and strictly upper triangular non-negative sxs matrices, respectively.

We assume that the diagonal matrices  $K = (k_{i,j})$  and  $P = (p_{i,j})$  satisfy the following condition

$$K \ge P \ge 0 \tag{12}$$

where  $k_{i,j} > p_{i,j} \ge 0$  for all  $1 \le i \le s$ , so that

$$D = K - P \ge 0 \tag{13}$$

is a non-singular non-negative matrix and Eq. (11) can be written equivalently as

$$A = D - (L+H) - (U+Q) + P + H + Q$$
(14)

We apply the following identity

$$D - (L+H) - (U+Q) \equiv [I - (L+H)D^{-1}]D[I - D^{-1}(U+Q)] - (L+H)D^{-1}(U+Q)$$
(15)

with the following required relation

$$(L+H)D^{-1}(U+Q) = P + H + Q + T$$
 (16)

where P is the main diagonal of  $(L+H)D^{-1}(U+Q)$ , that is

$$P = diag \{ (L+H)D^{-1}(U+Q) \}$$
(17)

and H + Q + T has zero entries on the main diagonal and its off-main diagonal entries are those of  $(L+H)D^{-1}(U+Q)$ .

$$A = \left[I - (L+H)D^{-1}\right]D\left[I - D^{-1}(U+Q)\right] - T \equiv M_{A} - N_{A}$$
(18)

where

1. J. . . .

$$M_{A} = \left[I - (L+H)D^{-1}\right]D\left[I - D^{-1}(U+Q)\right] \text{ and } N_{A} = T$$
(19)

The iterative method associated with this splitting can be written as follows

$$\phi^{(j+1)} = \left[I - D^{-1}(U+Q)\right]^{-1}D^{-1}\left[I - (L+H)D^{-1}\right]^{-1}T\phi^{(j)} + \left[I - D^{-1}(U+Q)\right]^{-1}D^{-1}\left[I - (L+H)D^{-1}\right]^{-1}c, \quad j \ge 0$$
(20)

and

$$\mathcal{A}_{1} = \left[ \mathbf{I} - \mathbf{D}^{-1} (\mathbf{U} + \mathbf{Q}) \right]^{-1} \mathbf{D}^{-1} \left[ \mathbf{I} - (\mathbf{L} + \mathbf{H}) \mathbf{D}^{-1} \right]^{-1} \mathbf{T} \ge 0$$
(21)

is the iteration matrix for this method.

This method can easily be implemented by applying the two-sweep procedure (for any initial vector  $\phi^{(0)}$ ) which eliminates the calculation procedure for the inversion of triangular matrices. Let us multiply (20) on the left by  $[I-D^{-1}(U+Q)]$  and shift  $D^{-1}(U+Q)\phi$  on the right hand-side; we obtain

$$\phi^{(j+1)} = D^{-1}\{(U+Q)\phi^{(j+1)} + [I - (L+H)D^{-1}]^{-1}(T\phi^{(j)}+c)\}.$$

Denoting

$$\beta^{(j+1)} = \left[ I - (L+H)D^{-1} \right]^{-1} (T\phi^{(j)}+c)$$

and again multiplying this expression on the left by  $\left[I-(L+H)D^{-1}\right]$  we finally have

$$\begin{array}{c} -14 - \\ \beta^{(j+1)} = (L+H)D^{-1}\beta^{(j+1)} + T\phi^{(j)} + c, \\ \phi^{(j+1)} = D^{-1}\left[ (U+Q)\phi^{(j+1)} + \beta^{(j+1)} \right], \ j \ge 0 \end{array} \right\}$$

$$(22)$$

Since  $(L+H)D^{-1}$  and  $D^{-1}(U+Q)$  are lower and upper strictly triangular matrices, respectively, successive components of  $\beta^{(j+1)}$  can be calculated recursively for increasing indices in the <u>forward elimination sweep</u> and successive components of  $\phi^{(j+1)}$  can be calculated recursively for decreasing indices in the backward substitution sweep.

This method is called the <u>AGA two-sweep iterative method</u> and the matrix  $\mathcal{H}_1$ , defined in Eq. (21), the <u>AGA matrix</u> associated with the matrix A of Eq. (4).

The AGA method represented by Eqs. (22) is a general form of the twosweep iterative methods. Special versions of the AGA method differ in the choice of the matrices H and Q, where D, P and T are the resultant matrices.

Finally, it should be mentioned that when A is an irreducibly diagonally dominant matrix satisfying Def. (8), the following inequality (proved in Reference 1 and 4) is valid

$$0 < \rho \left( \partial \mathcal{L}_{1} \right) < \rho \left( \partial \mathcal{L}_{1} \right) < 1$$
(23)

Moreover, Beauwens /5/ proved that in this case matrix D has always positive diagonal entries.

The application of the successive overrelaxation process in the AGA method and a certain choice of the relaxation factor reduces the spectral radius of the iteration matrix, which in many cases results in a considerable acceleration of convergence. A process of this kind can be applied to one or both sweeps simultaneously. Both cases are described in the next sections.

# 3. The AGA Single Successive Overrelaxation Two-Sweep Iterative Method (the AGA Single SOR Method)

Using the overrelaxation process to the backward substitution sweep, we directly obtain from the two-sweep Equations (22).

$$\beta^{(j+1)} = (L+H)D^{-1}\beta^{(j+1)} + T\phi^{(j)} + c$$

$$\phi^{(j+1)} = \omega D^{-1} \left[ (U+Q)\phi^{(j+1)} + \beta^{(j+1)} \right] - (\omega-1)\phi^{(j)}, \ j \ge 0$$
(24)

and by analogy to Eq. (20)

$$\phi^{(j+1)} = \left[I - \omega D^{-1} (U+Q)\right]^{-1} \{\omega D^{-1} \left[I - (L+H) D^{-1}\right]^{-1} T - (\omega-1) I\}\phi^{(j)} + \omega \left[I - \omega D^{-1} (U+Q)\right]^{-1} D^{-1} \left[I - (L+H) D^{-1}\right]^{-1} c, \quad j \ge 0$$
(25)

for any initial vector  $\phi^{(0)}$ .

For brevity's sake we shall call this method the <u>AGA single SOR method</u> and the matrix,

$$\mathcal{A}_{\omega} = \left[ \mathbf{I} - \omega \mathbf{D}^{-1} (\mathbf{U} + \mathbf{Q}) \right]^{-1} \{ \omega \mathbf{D}^{-1} \left[ \mathbf{I} - (\mathbf{L} + \mathbf{H}) \mathbf{D}^{-1} \right]^{-1} \mathbf{T} - (\omega - 1) \mathbf{I} \},$$
(26)

the <u>AGA single SOR matrix</u>. Assuming  $\omega = 1$  we see that this method reduces exactly to the AGA method expressed by Eq. (20) and  $\mathcal{A}_{\omega=1} = \mathcal{A}_1$ .

The question now arises whether there exists any value of the relaxation factor,  $\omega$ , which minimizes the spectral radius  $\rho(\mathcal{A}_{\omega})$ . It has been proved /1,4/ that  $\omega$ =1 minimizes  $\rho(\mathcal{A}_{\omega})$  for the range  $0 < \omega \leq 1$ . This suggests that the use of  $\omega$  greater than unity would decrease the spectral radius  $\rho(\mathcal{A}_{\omega})$ . Unfortunately, there is no exact formula for an optimum value of  $\omega$  which gives the minimum of  $\rho(\mathcal{A}_{\omega})$  in the general case. However, it has been observed experimentally that there is an optimum value,  $\overline{\omega}$ , greater than unity, and the following inequality is fulfilled:

$$1 < \overline{\omega} < \omega_{\max} < 2$$
 (27)

where  $\omega_{\max}$  is the value of  $\omega$  for which the spectral radius of  $\mathcal{H}_{\max}^{\omega}$  equals unity.

- 16 -

It was observed in many numerical examples that in the case of a triangular geometry,  $\omega_{max} \approx 1.33$ .

# 4. The AGA Double Successive Overrelaxation Two-Sweep Iterative Method (the AGA Double SOR Method)

We can use the overrelaxation process simultaneously to both sweep equations of AGA method Eqs. (22), that is

$$\beta^{(j+1)} = \Omega_{\beta} \left[ (L+H) D^{-1} \beta^{(j+1)} + T \phi^{(j)} + c \right] - (\Omega_{\beta}^{-1}) \beta^{(j)} \\ \phi^{(j+1)} = \Omega_{\phi} D^{-1} \left[ (U+Q) \phi^{(j+1)} + \beta^{(j+1)} \right] - (\Omega_{\phi}^{-1}) \phi^{(j)}, \quad j \ge 0$$
(28)

for any initial vectors  $\phi^{(0)}$  and  $\beta^{(0)}$ .

The above equations can be condensed to the following iteration scheme

$$\phi^{(j+1)} = \mathcal{H}_{\Omega_{\beta}\Omega_{\phi}}\phi^{(j)} - \mathcal{H}_{\Omega_{\beta}\Omega_{\phi}}\phi^{(j-1)} + m, \quad j > 0$$
<sup>(29)</sup>

where the iteration matrices  $\mathcal{H}_{\Omega_{\beta}\Omega_{\phi}}$  and  $\mathcal{J}_{\Omega_{\beta}\Omega_{\phi}}$  and the vector m have the following form

$$\mathcal{H}_{\Omega_{\beta}\Omega_{\phi}} = \left[\mathbf{I} - \Omega_{\phi}\mathbf{D}^{-1}(\mathbf{U}+\mathbf{Q})\right]^{-1} \{\mathbf{D}^{-1}\left[\mathbf{I} - \Omega_{\beta}(\mathbf{L}+\mathbf{H})\mathbf{D}^{-1}\right]^{-1}\left[\Omega_{\beta}\Omega_{\phi}\mathbf{T}\right] - \left(\Omega_{\beta}^{-1}\right)\mathbf{D}\left[\mathbf{I} - \Omega_{\phi}\mathbf{D}^{-1}(\mathbf{U}+\mathbf{Q})\right] - \left(\Omega_{\phi}^{-1}\right)\mathbf{I}\}$$
(30)

$$\mathscr{I}_{\Omega_{\beta}\Omega_{\phi}}^{\Omega} = (\Omega_{\beta}^{-1})(\Omega_{\phi}^{-1})\left[I - \Omega_{\phi}^{D^{-1}}(U+Q)\right]^{-1}D^{-1}\left[I - \Omega_{\beta}(L+H)D^{-1}\right]^{-1} (31)$$

$$\mathbf{m} = \Omega_{\beta}\Omega_{\phi} \left[\mathbf{I} - \Omega_{\phi}\mathbf{D}^{-1}(\mathbf{U}+\mathbf{Q})\right]^{-1}\mathbf{D}^{-1}\left[\mathbf{I} - \Omega_{\beta}(1+\mathbf{H})\mathbf{D}^{-1}\right]^{-1}\mathbf{c}$$
(32)

For brevity's sake we shall call this method the <u>AGA double SOR method</u>. With  $\Omega_{\beta} = 1$ , this method reduces to the AGA single SOR method; and

$$\mathcal{H}_{\Omega_{\beta}=1,\Omega_{\phi}} = \mathcal{A}_{\omega=\Omega_{\phi}} \text{ and } \mathcal{N}_{\Omega_{\beta}=1,\Omega_{\phi}} = 0.$$

In reactor calculations it was observed that this method, with the proper choice of relaxation parameters  $\Omega_{\beta}$  and  $\Omega_{\phi}$ , converges faster than the AGA single SOR method and is more effective for large reactor problems with a fine mesh. The best results are obtained when the following relation holds:

$$\Omega_{\beta} = \Omega_{\phi} = \overline{\Omega} + \frac{(\omega - 1)}{2}$$
(33)

where  $\omega$  is the optimum relaxation factor in the AGA single SOR method.

It should be mentioned that a special subroutine for estimating a priori the optimum  $\overline{\Omega}$  is included in HEXAGA-II. This estimate of  $\overline{\Omega}$  is based on an empirical formula giving a good approximation of the optimum  $\overline{\Omega}$  for the problems considered up to now (see Section 7 of this Chapter).

#### 5. Derivation of Recursive Formulae Used in HEXAGA-II

In this section the derivation of the recursive formulae for the version of the AGA two-sweep iterative method taken in HEXAGA-II is shown.

We postulate the following formula for the backward substitution sweep at the mesh point (m,n) (see Fig. 1)

$$\phi_{n}^{m} = \frac{\beta_{n}^{m} + \phi_{n+1}^{m+1} + U_{n}^{m}\phi_{n}^{m+1} + W_{n}^{m}\phi_{n+1}^{m}}{D_{n}^{m}}$$
(34)

The corresponding formula at the mesh point (n-1,n-1) can be written as follows

$$\phi_{n-1}^{m-1} = \frac{\beta_{n-1}^{m-1} + \phi_n^m + U_{n-1}^{m-1}\phi_{n-1}^m + W_{n-1}^{m-1}\phi_n^{m-1}}{D_{n-1}^{m-1}}$$

Substituting this formula in the difference equation (3) we have

$$(k_n^m - \frac{1_n^m}{p_{n-1}^{m-1}}) \phi_n^m = c_n^m + \frac{1_n^m}{p_{n-1}^{m-1}} \beta_{n-1}^{m-1} + (e_n^m + \frac{1_n^m}{p_{n-1}^{m-1}} U_{n-1}^{m-1}) \phi_{m-1}^m + + (e_n^m + \frac{1_n^m}{p_{n-1}^{m-1}} W_{n-1}^{m-1}) \phi_n^{m-1} + \phi_{n+1}^{m+1} + u_n^m \phi_n^{m+1} + w_n^m \phi_{n+1}^m$$

Again writing the formulae for  $\phi_{n-1}^m$  and  $\phi_n^{m-1}$ , that is, at the mesh points (m,n-1) and (m-1,n) (according to Eq. (34) and substituting them in the last equation and introducing an iteration index, j, we finally obtain the following recursive formulae

$$(\beta_{n}^{m})^{(j+1)} = c_{n}^{m} + L_{n}^{m} (\beta_{n-1}^{m-1})^{(j+1)} + E_{n}^{m} [(\beta_{n-1}^{m})^{(j+1)} + U_{n-1}^{m} (\phi_{n-1}^{m+1})^{(j)}] + + G_{n}^{m} [(\beta_{n}^{m-1})^{(j+1)} + W_{n}^{m-1} (\phi_{n+1}^{m-1})^{(j)}]$$

$$(\phi_{n}^{m})^{(j+1)} = \frac{(\beta_{n}^{m})^{(j+1)} + (\phi_{n+1}^{m+1})^{(j+1)} + U_{n}^{m} (\phi_{n}^{m+1})^{(j+1)} + W_{n}^{m} (\phi_{n+1}^{m})^{(j+1)}}{D_{n}^{m}} \quad j \ge 0$$

$$(35)$$

where

$$L_{n}^{m} = 1_{n}^{m} / D_{n-1}^{m-1}$$

$$E_{n}^{m} = (e_{n}^{m} + L_{n}^{m} U_{n-1}^{m-1}) / D_{n-1}^{m}$$

$$G_{n}^{m} = (g_{n}^{m} + L_{n}^{m} W_{n-1}^{m-1}) / D_{n}^{m-1}$$

$$D_{n}^{m} = k_{n}^{m} - L_{n}^{m} - E_{n}^{m} W_{n-1}^{m} - G_{n}^{m} U_{n}^{m-1}$$

$$U_{n}^{m} = u_{n}^{m} + E_{n}^{m}$$

$$W_{n}^{m} = w_{n}^{m} + G_{n}^{m}$$

The above recursive formulae represent the version of the AGA two-sweep iterative method, defined by the two-sweep equations (22), which is taken in HEXAGA-II. Thus, for a given iteration j+l and an energy group g the values of  $\beta$  are calculated recursively in the forward elimination sweep for successively increasing mesh indices m and n (m=1, n=1,2,...N; m=2, n=1,2,...N, etc.) using the values of  $\phi$  from iteration j. With calculated values of  $\beta$  existing in all mesh points, the values of  $\phi$  are calculated recursively in the backward substitution sweep for successively decreasing mesh indices m and n (m=M, n=N, N-1,...1; m=M-1, n=N,N-1,...1,etc.). The values of coefficients L, E, G, U and W are calculated (also recursively for successively increasing mesh indices m and n) only once for all mesh points and all energy groups and stored for the whole iteration process.

Similar recursive formulae can be derived in the same way for the mesh points belonging to outer boundaries. However, in this case some terms of Eqs. (35) must disappear according to a given outer boundary.

By relating Eq. (35) to the matrix notation of the AGA two-sweep iterative method defined by Eqs. (22) we can give the following interpretation of difference coefficients of Eqs. (35) under the assumption that the indices of the components of both vectors  $\beta$  and  $\phi$ , i, are related to the mesh indices m and n by the following formula: i = (m-1)N + n (where N is the number of mesh points in x-direction, see Fig. 1). Thus, coefficients  $L_n^m U_{n-1}^{m-1}$ and  $\lim_{n \to -1} m = 1$  are the respective entries of two non-negative subdiagonals of the matrix H coinciding with the non-negative subdiagonals of the matrix L. Coefficients  $E_n^m$  and  $G_n^m$  are the respective entries of two non-negative superdiagonals of the matrix Q coinciding with the nonnegative superdiagonals of the matrix U.  $D_n^m$  are the entries of the diagonal matrix D, and terms  $L_n^m + E_n^m W_n^m + G_n^m U_n^{m-1}$  are the entries of the diagonal matrix P. Coefficients  $E_{n n-1}^m = 1$  and  $G_n^m W_n^{m-1}$  are the respective entries of two diagonals of the diagona two diagonals of the matrix T located symmetrically with respect to the main diagonal. The pictures of matrices A, H, Q and T (where non-zero entries are marked by crosses) are shown for the example in which M=N=5 for three versions of HEXAGA-II-120, -60 and -30. Black and numbered mesh points in the pictures of the point mesh denote these mesh points which are included in the domain of solution in particular versions of HEXAGA-II.

- 19 -

ļ



|     |                                                       | ×  | × |   |   |   | × | × |   |    |   |   |   |   |   |   |            |   |   |          |          |    |   |   |   |          |
|-----|-------------------------------------------------------|----|---|---|---|---|---|---|---|----|---|---|---|---|---|---|------------|---|---|----------|----------|----|---|---|---|----------|
| •   |                                                       | ×  | × | × |   |   |   | × | × |    |   |   |   |   |   |   |            |   |   |          |          |    |   |   |   |          |
| 200 | symmetry                                              |    | × | × | × |   | ļ |   | × | ×  |   |   |   |   |   |   |            |   |   |          |          |    |   |   |   |          |
|     |                                                       |    |   | × | × | × |   |   |   | ×  | × |   |   |   |   |   | ]          |   |   |          |          |    |   |   |   |          |
|     |                                                       |    |   |   | × | × |   |   |   |    | × |   |   |   |   |   |            |   |   |          |          |    |   |   |   |          |
|     |                                                       | ×  |   |   |   |   | × | × |   |    |   | × | × |   |   |   |            |   |   |          |          |    |   |   |   |          |
|     |                                                       | ×  | × |   |   |   | × | × | × |    |   |   | × | × |   |   |            |   |   |          |          | ĺ  |   |   |   |          |
|     |                                                       |    | × | × |   |   | { | × | × | ×. |   |   |   | × | × |   |            |   |   |          |          | !  |   |   |   |          |
|     |                                                       |    |   | × | × |   |   |   | × | ×  | × | ĺ |   |   | × | × |            |   |   |          |          | İ  |   |   |   |          |
|     |                                                       |    |   |   | × | × | ţ |   |   | ×  | × |   |   |   |   | × |            |   |   |          |          | 1  |   |   |   |          |
|     |                                                       | 1  |   |   |   |   | × |   |   |    |   | × | × |   | - |   | ×          | × | - |          |          |    |   |   |   |          |
|     |                                                       |    |   |   |   |   | × | × |   |    |   | × | × | × |   |   |            | × | × |          |          |    |   |   |   |          |
|     | $\mathbf{A} = \mathbf{K} - \mathbf{L} - \mathbf{U} =$ |    |   |   |   |   |   | × | × |    |   |   | × | × | × |   |            |   | × | ×        |          |    |   |   |   |          |
|     |                                                       |    |   |   |   |   |   |   | × | ×  |   |   |   | × | × | × |            |   |   | ×        | ×        |    |   |   |   |          |
|     |                                                       |    |   |   |   |   |   |   |   | ×  | × |   |   |   | × | × |            |   |   |          | ×        |    |   |   |   |          |
|     |                                                       | 1- |   |   |   |   |   |   |   |    | - | × |   |   |   |   | ×          | × |   |          |          | ×  | × |   |   |          |
|     |                                                       |    |   |   |   |   |   |   |   |    |   | × | × |   |   |   | ×          | × | × |          |          |    | × | × |   |          |
|     |                                                       |    |   |   |   |   |   |   |   |    |   |   | × | × |   |   |            | × | Ŷ | ¥        |          |    |   | x | ¥ |          |
|     |                                                       |    |   |   |   |   |   |   |   |    |   |   | ~ | Ŷ | ¥ |   | ŀ          | ~ | Ŷ | Ŷ        | ¥        |    |   | ~ | Ç |          |
|     |                                                       |    |   |   |   |   |   |   |   |    |   | } |   | ~ | Ç | v | ŀ          |   | Ŷ | Ç        | Û        |    |   |   |   | Ĵ        |
|     |                                                       | -  |   |   |   |   | ┣ |   |   |    |   | - |   |   |   | - |            |   |   | <u> </u> | <u> </u> | ┢  |   |   |   | <u> </u> |
|     |                                                       |    |   |   |   |   |   |   |   |    |   |   |   |   |   |   | 10         | J |   |          |          | 10 | Ĵ | J |   |          |
|     |                                                       |    |   |   |   |   |   |   |   |    |   |   |   |   |   |   | <b> </b> ^ | Ĵ | J |          |          | 1  | Ĵ | Ĵ | J |          |
|     |                                                       |    |   |   |   |   |   |   |   |    |   |   |   |   |   |   |            | ^ | Ĵ |          |          |    | ~ | Ĵ | Š |          |
|     |                                                       | 1  |   |   |   |   | } |   |   |    |   |   |   |   |   |   |            |   | X | ×        |          |    |   | × | × | ×        |
|     |                                                       | 1  |   |   |   |   |   |   |   |    |   |   |   |   |   |   | L          |   |   | ×        | ×        |    |   |   | × | ×        |

|                 | × | × |   |   |   | × |   |   |   |   |   |   |   |   |   |
|-----------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|                 | × | × | × |   |   | × | × |   |   |   |   |   |   |   |   |
|                 |   | × | × | × |   |   | x | × |   | [ |   |   |   |   |   |
|                 |   |   | × | × | × |   |   | × | × | [ |   |   |   |   |   |
|                 | 1 |   |   | × | × |   |   |   | × |   |   |   |   |   |   |
|                 | × | × |   |   |   | × | × |   |   | × |   |   |   |   |   |
|                 | { | × | × |   |   | × | × | × |   | × | x |   |   |   |   |
| A = K - L - U = | [ |   | x | × |   |   | × | × | × |   | × | × | ŀ |   |   |
|                 |   |   |   | × | × |   |   | × | × |   |   | × |   |   |   |
|                 | [ |   |   |   |   | × | × |   |   | × | × |   | × |   |   |
|                 |   |   |   |   |   |   | × | × |   | × | x | × | × | × |   |
|                 |   |   |   |   |   |   |   | × | × |   | × | × |   | × |   |
|                 | _ |   |   |   |   |   |   |   |   | × | × |   | × | × | × |
|                 |   |   |   |   |   |   |   | _ |   |   | x | × | × | × | × |
|                 | 1 |   |   |   |   |   |   |   |   |   |   |   | × | × | × |

A = K-L-U =

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x

60° symmetry

30° symmetry





30° symmetry

60° symmetry





60° symmetry



× ×

× × × ×

Q =

30° symmetry







30° symmetry

60° symmetry

For the AGA single SOR and the AGA double SOR method, the corresponding recursive formulae have the following forms:

For the AGA single SOR method:

$$(\beta_{n}^{m})^{(j+1)} = c_{n}^{m} + L_{n}^{m}(\beta_{n-1}^{m-1})^{(j+1)} + E_{n}^{m} \left[ (\beta_{n-1}^{m})^{(j+1)} + U_{n-1}^{m}(\phi_{n-1}^{m+1})^{(j)} \right] + + G_{n}^{m} \left[ (\beta_{n}^{m-1})^{(j+1)} + W_{n}^{m-1}(\phi_{n+1}^{m-1})^{(j)} \right]$$

$$(\phi_{n}^{m})^{(j+1)} = \frac{\omega}{D_{n}^{m}} \left[ (\beta_{n}^{m})^{(j+1)} + (\phi_{n+1}^{m+1})^{(j+1)} + U_{n}^{m}(\phi_{n}^{m+1})^{(j+1)} + + W_{n}^{m}(\phi_{n+1}^{m})^{(j+1)} \right] - (\omega^{-1})\phi^{(j)}, \quad j \ge 0$$

$$(36)$$

For the AGA double SOR method:

$$(\beta_{n}^{m})^{(j+1)} = \Omega_{\beta} \{c_{n}^{m} + L_{n}^{m}(\beta_{n-1}^{m-1})^{(j+1)} + E_{n}^{m} [(\beta_{n-1}^{m})^{(j+1)} + U_{n-1}^{m}(\phi_{n-1}^{m+1})^{(j)}] + G_{n}^{m} [(\beta_{n}^{m-1})^{(j+1)} + W_{n}^{m-1}(\phi_{n+1}^{m-1})^{(j)}] \} - (\Omega_{\beta}^{-1})(\beta_{n}^{m})^{(j)}$$

$$(\phi_{n}^{m})^{(j+1)} = \frac{\Omega_{\phi}}{D_{n}^{m}} [(\beta_{n}^{m})^{(j+1)} + (\phi_{n+1}^{m+1})^{(j+1)} + U_{n}^{m}(\phi_{n}^{m+1})^{(j+1)} + H_{n}^{m}(\phi_{n}^{m+1})^{(j+1)} + H_{n}^{m}(\phi_{n}^{m})^{(j+1)} + H_{n}^{m}(\phi_{n}^{m+1})^{(j+1)} + H_{n}^{m}(\phi_{n}^{m+1})^{(j+1)} + H_{n}^{m}(\phi_{n}^{m})^{(j+1)} + H_{n}^{m}(\phi_{n}^{m+1})^{(j+1)} + H_{n}^{m}(\phi_{n}^{m}$$

Finally, it should be mentioned that these methods require more arithmetic operations per mesh point compared with the point SOR method. In the case of HEXAGA-II, the AGA single SOR method needs 10 multiplications and 8 additions per mesh point; the AGA double SOR method needs 12 multiplications and 10 additions per mesh point whereas, in the point SOR method, these numbers are 8 and 7, respectively. A special strategy of outer-inner iterations is used in HEXAGA-II, in which a number of inner iterations, I, given as an input value  $(1 \le I \le 8)$ , are fixed for all energy groups, G, in a given outer iteration. The scattering sources are recalculated after each group calculation, that is, after I inner iterations each. The fission sources  $S_n^m$  and  $k_{eff}$  are recalculated after each outer iteration, j, that is,

$$(S_n^m)^{(j)} = \sum_{g=1}^G \left[ \nu \Sigma_g^f(\phi_n^m)_g^{(j)} \right]$$
(38)

and in recent versions of HEXAGA-II the convergence rate of sources is accelerated by means of usual relaxation technique, as follows

$$(S_{n}^{m})_{*}^{(j)} = \omega_{s}(S_{n}^{m})^{(j)} - (\omega_{s}^{-1})(S_{n}^{m})^{(j-1)}$$
(38a)

and

$$k_{\text{eff}}^{(j)} = \int_{\mathbf{v}} S_{*}^{(j)} d\mathbf{v}$$
(39)

where  $\omega_s$  is a relaxation factor specified in the input (it is recommended to use  $\omega_s = 1.5$  for all cases) and the integration of sources is approximated by the trapezoidal method. For the next outer iteration, new sources are renormalized, as follows

$$(S_{n}^{m})^{\binom{j+1}{n}} = \frac{1}{k_{eff}} (S_{n}^{m})_{*}^{\binom{j}{n}}$$
(40)

To start the iteration process, a zero initial guess is made for vectors  $\beta^{(0)}$  and  $\phi^{(0)}$  (all components of both vectors  $\beta^{(0)}$  and  $\phi^{(0)}$  are set equal to zero in all energy groups). For the calculation of initial sources S<sup>(0)</sup> a flat flux  $\phi$ , which is the same in all energy groups, is taken for the whole core region. It has been observed that such initial guesses for both vectors  $\phi^{(0)}$ ,  $\beta^{(0)}$  and S<sup>(0)</sup> minimize the number of outer iterations in most reactor problems.

The outer iteration index, j, coincides with the inner iteration index, I, only for I=1. For I>1, the inner iterations for spatial flux performed by the two-sweep equations (either Eqs. (36) or Eqs. (37) are repeated I times for every energy group, g (g=1,...G). Thus, for any convergent iteration process up to the outer iteration  $j_0$  the total number of inner iterations is equal to  $j_0 \cdot I \cdot G$ . It has been observed in all problems considered up to now that using a few inner iterations per outer iteration  $(1 \le I \le 3)$  provides the minimum time of a central processor unit (CPU), and very often the best results are obtained for 2 or 3 inner iterations per outer iteration. In principle, the optimal number of inner iterations per outer iteration is determined by programme for a given problem, however, it can be also specified by user in the input (see explanation given in Chapter IV).

The iterative process continues until the following convergence criteria are fulfilled:

- Either the maximum number of outer iterations has been reached

- or the following inequalities are satisfied:

$$\frac{k_{eff}^{(j+1)} - k_{eff}^{(j)}}{k_{eff}^{(j+1)}} < \varepsilon_k$$
(42)

and

$$\frac{\phi_{(1)}^{(j+1)} - \phi_{(1-1)}^{(j+1)}}{\phi_{(1)}^{(j+1)}} < \varepsilon_{\phi}$$
(43)

for all energy-space mesh points, where values of  $j_{max}$ , I,  $\varepsilon_k$  and  $\varepsilon_{\phi}$  are specified in the input data. In the case where I=1,  $\phi(j+1)$  is replaced by  $\phi(j)$ .
A special subroutine for estimating optimum relaxation factors,  $\Omega_{\beta}$  and  $\Omega_{\phi}$ , and the number of inner iterations per outer iteration, I, before starting the iteration process is applied in HEXAGA-II. This estimate, which provides a good approximation of optimum relaxation factors, is based on an empirical formula derived from the analysis of numerical results obtained up to now. Since the AGA Single SOR method turned out to be less effective than the AGA Double SOR method, the latter is applied and the following relations hold in particular versions of HEXAGA-II:

HEXAGA-11-120

$$\bar{\Omega} = \Omega_{\beta} = \Omega_{\phi} = \frac{1.223295 - 1.126367\rho(\mathbf{A})}{1.080925 - \rho(\mathbf{A})}$$
(44)

HEXAGA-II-60

$$\bar{\Omega} = \Omega_{\beta} = \Omega_{\phi} = \frac{1.209731 - 1.132879\rho(\mathbf{A})}{1.064632 - \rho(\mathbf{A})}$$
(45)

HEXAGA-11-30

$$\bar{\Omega} = \Omega_{\beta} = \Omega_{\phi} = \frac{1.230149 - 1.110274\rho(\mathbf{A})}{1.100132 - \rho(\mathbf{A})}$$
(46)

where

$$\rho(\mathbf{A}) = \max_{\substack{1 \leq \mathbf{g} \leq G}} \rho(\mathbf{A}_{\mathbf{g},\omega=1})$$

The values of I are determined by means of the following inequalities. In the case of HEXAGA-II-120 and -30

$$I = 1 \text{ for } \rho(\mathcal{A}) \leq 0.80$$
  
2 for 0.80 <  $\rho(\mathcal{A}) \leq 0.95$   
3 for 0.95 <  $\rho(\mathcal{A}) \leq 0.99$   
4 for 0.99 <  $\rho(\mathcal{A})$ ,

and for HEXAGA-II-60

$$I = 1 \text{ for } \rho(\mathcal{A}) \leq 0.80$$
  
2 for 0.80 <  $\rho(\mathcal{A}) \leq 0.90$   
3 for 0.90 <  $\rho(\mathcal{A}) \leq 0.97$   
4 for 0.97 <  $\rho(\mathcal{A}) \leq 0.985$   
5 for 0.985 <  $\rho(\mathcal{A}) \leq 0.992$   
6 for 0.992 <  $\rho(\mathcal{A})$ .

The time of the estimate of  $\overline{\Omega}$  by the programme amounts to a few per cent of the total time of calculations for a given reactor problem. It should be mentioned that there exist a possibility of using the values of  $\Omega_{\beta}$  and  $\Omega_{\phi}$ (not necessary  $\Omega_{\beta} = \Omega_{\phi}$ ) and I specified by user in the input with omitting the estimation of these parameters by the programme (see, explanations given in Chapters IV and VI.4).

Finally, it should be noted that the exact estimate of optimum relaxation factors is a very important problem and difficult to solve both in HEXAGA-II and in other diffusion programmes. Unfortunately, there are no theoretical considerations which would allow to predict these factors a priori for the AGA method. However, the above empirical formulae provide a good approximation of optimum relaxation factors for the majority of reactor problems. The values of  $\bar{\Omega}$  evaluated by Eq. (45) are very close to the optimum value of  $\Omega_{opt}$  for large reactor problems with 20000 - 40000 mesh points. For smaller problems these values of  $\bar{\Omega}$  can sometimes be slightly underestimated which, in the effect, results in an increase in CPU time by about 10 to 20 percent. However, even with such underestimate of  $\Omega_{opt}$ , CPU time is many times less than it would be if improper values of  $\Omega$  had been used. Moreover, for the overestimated values of  $\Omega_{opt}$  non-convergence can be obtained in HEXAGA-II.

- 29 -

### **IV. INPUT DESCRIPTION**

The HEXAGA-II input data prepared mainly in the form of a card deck and the same for all versions of programme (-120, -60 and -30) consist of a series of input variables describing, for a given reactor problem, successively its size, the distribution of material compositions in the mesh, material composition group constants and parameters determining the iteration process. HEXAGA-II also offers the possibility of transmission of cross sections extracted from an SIGMN Block /6/ stored on an external file; this feature is due to G. Buckel of INR (Karlsruhe Nuclear Research Center).

Though HEXAGA-II is a code for a triangular geometry, the description of the material distribution inside the mesh is given in the input basically as for a hexagonal geometry. That is, six adjacent triangles are grouped in one hexagon. The layout of the reactor must be enclosed by a parallelogram. The left upper corner of this parallelogram is taken as the origin of an oblique coordinate system x - v (see Fig. 1). Now a mesh of regular hexagons is superimposed upon this parallelogram. The boundaries of the parallelogram cut some hexagons in pieces. These cut hexagons are also referred to as hexagons in the following text. As illustrated in Figs. 2, 3 and 4, there are three possibilities for choosing the location of hexagons relative to the origin of the coordinate system. These three arrangements of the hexagonal mesh will be called the lst, 2nd and 3rd spatial models, corresponding to Figs. 2, 3 and 4, respectively.

In this hexagonal description of the triangular mesh we specify, line by line, from top to bottom, only the indices x and v of hexagon centers coinciding with mesh points of these lines. If there are ununiform hexagons, that is, hexagons containing more than one material composition, one has to create a new composition number for this type of material arrangement and to indicate this number in the input together with a specification of the material compositions corresponding to the six triangles.

To simplify the preparation of HEXAGA-II input data an auxiliary programme INPREP is available. It prints the arrangement of hexagons in the parallelogram mesh for any example considered and furnishes information



- 31 -



- 32 -



- 33 -

about computer storage requirements. The use of this programme is described in Appendix.

It should be mentioned that there is the possibility with HEXAGA-II to calculate a sequence of reactor problems with optional forms of output and storage of results.

The two sample problems presented in this report provide a good illustration of the possibilities of HEXAGA-II input data.

In the table below, formats and the meaning of input variables together with comments on their use are described in the sequence in which they occur in particular cards (or card sets).

| Card<br>Card<br>numbe | (or<br>set)<br>er | Format       | Name                  | Description                                                                                                                                                                                                                                               |
|-----------------------|-------------------|--------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1/                    |                   | (10A8)       | Title card<br>mitted) | (80 alphanumerical characters are per-                                                                                                                                                                                                                    |
| 2/                    |                   | (1614,F11.5) | NOM                   | Spatial model number, $1 \le NOM \le 3$ ,<br>depending on the location of hexagons<br>at the origin of the coordinate oblique<br>system x - v; the value of NOM<br>corresponds to one of the spatial<br>model numbers represented in<br>Figs. 2, 3 and 4. |
|                       |                   |              | м                     | Number of mesh lines parallel to the axes x.                                                                                                                                                                                                              |
|                       |                   |              | N                     | Number of mesh lines parallel to the axes v.                                                                                                                                                                                                              |
|                       |                   |              |                       | Note: In the case of using HEXAGA-II-60 or $-30$ , M = N                                                                                                                                                                                                  |
|                       |                   |              | NOG                   | Number of energy groups,<br>$2 \leq NOG \leq 40$ .                                                                                                                                                                                                        |
|                       |                   |              | MDS                   | Maximum number of energy groups<br>throughout which neutrons are<br>downscattered, 1 ≤ MDS ≤ NOG - 1.                                                                                                                                                     |
|                       |                   |              | NOTHG                 | Number of thermal groups,<br>$1 \leq \text{NOTHG} \leq \text{NOG} - 1$ .                                                                                                                                                                                  |
|                       |                   |              | NOC                   | Number of different material compo-<br>sitions, NOC <u>&lt;</u> 999.                                                                                                                                                                                      |
|                       |                   |              | NOFC                  | Number of different fissionable<br>material compositions, NOFC < NOC<br>(if macroscopic cross sections are<br>transferred from SIGMN block:<br>NOFC = NOC).                                                                                               |

- NBASIC Basic material composition number, 0 ≤ NBASIC ≤ NOC. Dependent on the value of NBASIC, there are two possibilities for the description of the distribution of material compositions in the mesh (see explanations on card 3).
- NOUH Number of different kinds of uniform hexagons, NOUH < NOC

Number of all kinds of (uniform and non-uniform) hexagons, NOH > NOUH. Note: In a uniform hexagon, all triangles have the same material composition; in a non-uniform hexagon, triangles may have different material compositions. Hexagons cut by the outer boundaries are counted as full hexagons and their triangles lying outside outer boundary can be specified by an arbitrary material composition.

- NLC Left boundary condition indicator.
- NTC Top boundary condition indicator.
- NRC Right boundary condition indicator.
- NBC Bottom boundary condition indicator. These indicators may have one of the following values:

0 - corresponds to zero flux

- 1 corresponds to zero current
- 2 corresponds to a logarithmic
   derivative boundary condition
   where the parameter α of

NOH

Eq. (1a) is taken to be constant along the corresponding outer boundary.

- 3 corresponds to a logarithmic derivative boundary condition, but the parameter α is given pointwise for the corresponding outer boundary.
- Note: Parameters α, if any, are specified groupwise after the specification of group constants.

In the case of using HEXAGA-II-60 or -30, NLC = NTC = 1 and NRC = NBC.

NAD

0 - real flux calculation only

O < NAD < 2

 I - both real and adjoint flux calculations

2 - adjoint flux calculation only.

H

Mesh width given in centimeters.

The data specifying the location of material compositions in the hexagonal description of the mesh must be provided according to the value of NBASIC; if NBASIC = 0, continue with card set number 3/1'/.

If  $1 \le NBASIC \le NOC$ , all hexagons must be uniform, NOH = NOUH = NOC. Material composition NBASIC is assumed in all locations of the mesh that are not specified otherwise in the card subset below. For j = 1, NOC - 1 the whole sequence from 3/1/1/ to 3/1/3/ must be indicated as follows

(214) NSP Material composition number  $1 \le NSP \le NOC$  and NSP  $\neq$  NBASIC given in an arbitrary order.

3/

3/1/

3/1/1/

|         |          | NL                                                                                                                     | Number of mesh lines parallel<br>to the x-axes which pass through<br>centers of hexagons containing<br>material composition NSP. For i = 1,<br>NL 3/1/2/ and 3/1/3/ must be<br>indicated.                                                                                                                                                                                                                   |
|---------|----------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3/1/2/  | (214)    | LNR                                                                                                                    | Index number of one of these NL mesh lines.                                                                                                                                                                                                                                                                                                                                                                 |
|         |          | NP                                                                                                                     | Number of points on this mesh<br>line LNR coinciding with the<br>centers of hexagons containing<br>composition NSP.                                                                                                                                                                                                                                                                                         |
| 3/1/3/  | (2014)   | NCR (NP)                                                                                                               | Array of the point indices<br>(on the mesh line LNR) coin-<br>ciding with the centers of<br>hexagons containing composition<br>NSP.                                                                                                                                                                                                                                                                         |
|         |          | After con<br>the inpu                                                                                                  | mpletion of the material distribution,<br>t continues with card set 4.                                                                                                                                                                                                                                                                                                                                      |
| 3/1'/   | (2014)   | If NBASI<br>specifie<br>to botton<br>treated<br>If NOH =<br>correspon<br>If NOH ><br>NH (NH ><br>of non-un<br>specifie | C = O, all hexagons in the mesh are<br>d by their centers linewise from top<br>m. The input of each mesh line is<br>as one card set. NOUH < NOC.<br>NOUH, the hexagon composition numbers<br>nd to the material composition numbers NSF<br>NOUH, new hexagon composition numbers<br>NOC) have to be created for each type<br>niform hexagon and each of them must be<br>d additionally in card set 3/1'/1/. |
| 3/1'/1/ | (614,16) | If NOH ><br>of six t<br>triangle<br>hexagon n                                                                          | NOUH, the material composition numbers<br>riangles (corresponding to the order of<br>s shown in Fig. 1) for each non-uniform<br>must be given followed by the newly                                                                                                                                                                                                                                         |

- 38 -

created hexagonal type of composition number NH, NH = NOUH + 1, NOUH + 2,  $\dots$  NOH.

Group constant specifications must be provided for each material composition. Two possibilities are allowed:

- a) Input as a card deck or from an external file stored in the card image format. Mixing of these two input forms is allowed.
- b) Transmission of group constants from a SIGMN block /6/, stored on an external file. In this case, bucklings must be given according to 4/2'/-4/4'/.

Indicator for reading in group constants

- = 1 group constants given as a card deck.
- < 0 group constants given on an external file in card image format with data set reference number | INCS | and | INCS | > 1.
- = 0 group constants must be transformed from SIGMN block.
- NSP - material composition number,  $1 \leq \text{NSP} \leq \text{NOC}$ , if INCS  $\neq 0$ - data reference number of SIGMN block, if INCS = 0.

If INCS = 0, turn to card sets 4/2'/...4/4'/.

DIF(NOG) Array of diffusion coefficients D for all energy groups.

4/

4/1/

(214)

(6E13.6)

INCS

4/2/

SIGT (NOG)

4/3/

Array of macroscopic total removal cross sections  $\Sigma_g^T$  for all energy groups

 $\Sigma_{g}^{T} = \Sigma_{g}^{A} + \sum_{\substack{g=1\\g\neq g}}^{G} \Sigma_{g \rightarrow g}^{S} + D_{g}B^{2}$ where  $\Sigma_{g}^{A} - \text{macroscopic absorption}$ cross section

 $\Sigma_{g \to g}^{S}$ , -macroscopic scattering cross section from group g to g'.

B - transverse buckling

If a given value of NSP corresponds to a fissionable material composition, that is, NSP  $\leq$  NOFC, two arrays for  $v\Sigma^F$  and  $\neq$  must be specified. It should be noticed that all fissionable material compositions must be denoted by the numbers from 1 to NOFC. For NSP > NOFC, both arrays are omitted in the input. However, if a given material composition is in reality unfissionable but was declared a fissionable composition, zero values of  $v\Sigma_g^F$  and values of  $\neq$  with  $\Sigma_g^{\neq} = 1$  must be specified for all energy groups in the input.

NUSIGF(NOG) Array of macroscopic production fission cross sections  $v\Sigma_g^F$  for all energy groups.

CHI(NOG) Array of fission source fractions  $\mathscr{P}_{g}$  for all energy groups.

SIGDS(NOG-1,MDS) Array of macroscopic downscattering cross sections  $\Sigma_{g \rightarrow g}^{ds}$ , whose values for MDS > 1 are specified as follows:

4/4/

4/4/1/

4/4/2/

4/5/

$$\begin{aligned}
 1/ & \Sigma_{1+2}^{ds}, \Sigma_{1+3}^{ds}, \dots, \Sigma_{1+MDS}^{ds} + 1 \\
 \Sigma_{2+3}^{ds}, \Sigma_{2+4}^{ds}, \dots, \Sigma_{2+MDS}^{ds} + 2 \\
 \Sigma_{2+3}^{ds}, \Sigma_{2+4}^{ds}, \dots, \Sigma_{2+MDS}^{ds} + 2 \\
 NOG-2/ & \Sigma_{NOG-2+NOG-1}^{ds}, \Sigma_{NOG-2+NOG}^{ds} \\
 NOG-1/ & \Sigma_{NOG-1+NOG}^{ds} \\
 If there is more than one thermal group, NOTHG > 1, \\
 we must provide the following triangular array: \\
 SIGUS (NOTHG-1, NOTHG-1) Array of macroscopic \\
 upscattering cross sections \\
 \Sigma_{g'+g}^{us} whose values in a general \\
 case are specified as follows: \\
 1/ & \Sigma_{I+1+I}^{us}, \Sigma_{I+2+I}^{us}, \dots, \Sigma_{NOG+1}^{us}$$

 $\Sigma_{1+2 \rightarrow 1+1}^{us}, \Sigma_{1+3 \rightarrow 1+1}^{us}, \dots, \Sigma_{NOG \rightarrow 1+1}^{us}$  $\Sigma_{NOG-1 \rightarrow NOG-2}^{us}$ ,  $\Sigma_{NOG \rightarrow NOG-2}^{us}$ Σ<sup>us</sup> NOG≁NOG-1

where I = NOG - NOTHG + 1

Note: The above sequence of data beginning from 4/1/ must be repeated NOC times, that is, for each material composition. However, if |INCS| > 1, the data from 4/2/ to 4/6/ are omitted for this composition in the card deck, because they are stored on an external file with the data set number equal to |INCS|.

Turn to 5/

- 41 -

4/5/

4/5/2

4/5/1

4/5/N

4/6/

4/6/

4/6/2/

4/6/NOTHG-2/

4/6/NOTHG-1/

| 4/2'/ | (14)     | IBUCK                                           | <pre>Buckling indicator = 1 - uniform buckling = 2 - material dependent buckling = 3 - group dependent buckling = 4 - group and material dependent buckling.</pre> |
|-------|----------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4/3'/ | (14)     | МХ                                              | <ul> <li>= 1 for IBUCK = 1</li> <li>= NOC for IBUCK = 2 or IBUCK = 4</li> <li>= NOG for IBUCK = 3.</li> </ul>                                                      |
| 4/4'/ | (6E13.6) | B2 (MX)                                         | Values of B <sup>2</sup> .                                                                                                                                         |
|       |          | Note: If IBU<br>be rep                          | CK = 4, card 4/3'/ and 4/4'/ must<br>eated NOG times.                                                                                                              |
| 5/    |          | If at least<br>and NBC is $\geq$<br>Eq. (la) as | one of the values of NLC, NTC, NRC 2, we specify the parameters $\alpha$ of follows:                                                                               |
| 5/1/  | (E11.5)  | If NLC = 2, If NLC = 3,                         | Parameter $\alpha$ constant along the left outer boundary.                                                                                                         |
| 5/1'/ | (7E11.5) | ALFAL (M)                                       | Array of parameters $\alpha$ for all mesh points along the left outer boundary.                                                                                    |
|       |          | If NTC = $2$ ,                                  |                                                                                                                                                                    |
| 5/2/  | (E11.5)  | PART                                            | Parameter $\alpha$ constant along the top outer boundary.                                                                                                          |
|       |          | If NTC = $3$ ,                                  |                                                                                                                                                                    |
| 5/2'/ | (7E11.5) | ALFAT(N)                                        | Array of parameters $\alpha$ for all mesh points along the top outer boundary.                                                                                     |

|   |         |                                         | If NRC = 2,                                |                                                              |
|---|---------|-----------------------------------------|--------------------------------------------|--------------------------------------------------------------|
|   | 5/3/    | (E11.5)                                 | PARR                                       | Parameter $\alpha$ constant along the                        |
|   |         |                                         | s.                                         | right outer boundary.                                        |
|   |         |                                         | IF NRC = $3$ ,                             |                                                              |
|   | 5/3'/   | (7E11.5)                                | ALFAR(M)                                   | Array of parameters $\alpha$ for all                         |
|   |         |                                         |                                            | mesh points along the right outer                            |
|   |         |                                         |                                            | boundary.                                                    |
|   | E / / / |                                         | If NBC = $2$ ,                             | Demonstrant along the                                        |
|   | 5/4/    | (E11.5)                                 | PARD                                       | Parameter $\alpha$ constant along the bottom outer boundary. |
| 1 |         |                                         |                                            | bottom outer boundary.                                       |
|   | 5/41/   | (7E11.5)                                | $\frac{11 \text{ NBC}}{41 \text{ FAR}(N)}$ | Array of parameters a for all                                |
|   | 5/4 /   | (////////////////////////////////////// |                                            | mesh points along the bottom outer                           |
|   |         |                                         |                                            | boundary.                                                    |
|   |         |                                         | Note: This s                               | equence of data beginning from 5/1/,                         |
|   |         |                                         | if it                                      | exists, must be repeated successively                        |
|   | 4       |                                         | for al                                     | l energy groups.                                             |
|   | 6/      | (414, 2F8,4                             | INIT                                       | = 0 - fluxes and sources are not                             |
|   |         | 2E9.1, 2I4, F                           | 78.4)                                      | stored on an external file.                                  |
|   |         |                                         |                                            | = 1 - first fluxes and next sources                          |
|   | ·       |                                         |                                            | are stored on the external                                   |
|   |         |                                         |                                            | file with data set reference                                 |
|   |         |                                         |                                            | number 21.                                                   |
|   |         |                                         |                                            | = 2 - only fluxes are stored on                              |
|   |         |                                         |                                            | the external file with data                                  |
|   |         |                                         |                                            | set reference number 21.                                     |
|   |         |                                         | MAXO                                       | Maximum number of outer iterations,                          |
|   | .e      |                                         | MAXI                                       | Maximum number of inner iterations.                          |
|   |         |                                         |                                            | $1 \leq MAXI \leq 8.$                                        |
|   |         |                                         | MINI                                       | Minimum number of inner iterations.                          |
|   |         |                                         |                                            | $1 \leq MINI \leq 8.$                                        |
|   |         |                                         |                                            |                                                              |

- 43 -

Note: If MAXI = MINI = 1 the values of MAXI and MINI are recalculated by the programme with the assumption that MAXI = MINI. If MAXI = 1 and MINI > 1 the programme runs with the values of MAXI = MINI = 1. If MAXI = MINI > 1, the number of inner iterations equal to MAXI is performed in all outer iterations. For MAXI > MINI, the following strategy is used: In the first MAXI - MINI outer iterations the number of inner iterations (fixed for all energy groups) is decreased by one from outer to outer iteration starting with MAXI. This is continued until the number of inner iterations reaches the value of MINI; then this number of inner iterations is fixed for the remaining outer iterations.

| OMB | Relaxation factor $\Omega_{\beta}$ (see explanations |
|-----|------------------------------------------------------|
|     | given below for NOMEGA).                             |
| OMF | Relaxation factor $\Omega_{\phi}$ (see explanations  |
|     | given below for NOMEGA).                             |
| EPS | Point convergence criterion for                      |
|     | neutron flux (see Eq. (43)).                         |
| EPL | Convergence criterion for k                          |
|     | (see Eq. (42)).                                      |

## NOMEGA

NCON

= 0 - values of  $\Omega_{B}$  and  $\Omega_{\phi}$ specified in the input are used in the iteration process.

= 2 - values of  $\Omega_{\beta}$  and  $\Omega_{\phi}$  are calculated by programme for the iteration process independent of their values specified in the input.

= 0 - fluxes and sources are printed without starting a new problem.

- = 1 fluxes and sources are printed and then reading of a new problem is started.
- = 2 printing of fluxes and sources is omitted in the output, but a new problem is started.

OMS

Relaxation factor  $\omega_{\alpha}$  for the acceleration of the convergence rate of sources,  $1 \leq \omega_{a} < 2$ . It is recommended to use  $\omega_{e} = 1.5$  for all cases.

#### V. OUTPUT DESCRIPTION

The output of HEXAGA-II (for a printer with 132 characters per line) begins with the title information and the list of parameters describing a given reactor problem. Next, the picture of the reactor in the form of a parallelogram area is printed. The corners of hexagons are marked by stars and numbers printed inside each hexagon describe the type of material composition. Each type of material composition is specified for each type of hexagon behind the picture of the reactor. A table of group constants for all material compositions is included. If logarithmic boundary conditions are used, the values of the parameters  $\alpha$  for all mesh points in each energy group are printed.

If optimum relaxation factors are estimated by the programme, the following information is printed: The preliminary estimate of the energy group in which the spectral radius reaches a maximum, the calculation of this spectral radius performed by the power method, and the values of  $\Omega_{\beta}$  (OMEGAB) and  $\Omega_{\phi}$  (OMEGAF) evaluated by means of the empirical formula given in Chapter III.

During the iteration process, the values of relaxation factors  $\Omega_{\beta}$  and  $\Omega_{\phi}$ , the eigenvalue  $k_{eff}$  and its relative error, and the maximum relative error of the neutron flux in inner iterations are printed for each outer iteration. The printing of neutron fluxes and sources is the last optional output information.

The sample problems presented in this report provide an illustration of the output form.

- 46 -

### VI. PROGRAMMING INFORMATION

## 1. Description of the HEXAGA-II Programme

HEXAGA-II consists of six main subroutines

INPUT MATREL REORD EIGEN ITERAT ADITER

wich are called by the main programme in the above sequence.

INPUT provides the description of problem to be solved and prints the distribution of material compositions in the parallelogram area represented by a hexagonal mesh.

In MATREL, coefficients of Eq. (3 and 35) are calculated, that is, the coefficients of difference equations, coefficients used with the calculation of scattering and fission terms, and coefficients of recursive formulae used in the two-sweep equations (35).

REORD reorders all records on external files in a sequence suitable for the iteration processes executed in EIGEN, ITERAT and ADITER.

EIGEN provides the estimate of the relaxation parameter based on the empirical formula (45) with the calculation of the spectral radius  $\rho(\mathcal{R})$  by means of the power method.

In ITERAT, the real system of difference equations is solved by means of the AGA Double SOR two-sweep iteration method.

In ADITER, the adjoint system of difference equations is solved also by means of the AGA Double SOR two-sweep iteration method.

HEXAGA-II uses eight external files with dataset reference numbers 12, 13, 14, 15, 16, 17, 18 and 20 for real flux calculations and two auxiliary files 22 and 23 for adjoint flux calculations. In the case of storage of neutron fluxes and fission sources and/or adjoint fluxes, file 21 is used.

The above files used in ITERAT or ADITER serve as stores of the following data:

- File 12 coefficients used in the recurrence formulae of the AGA method (Eqs. (35)).
- File 13 coefficients used with the calculation of scattering terms and fission sources (vector c in Eq. 8).

File 14 - components of  $\beta$  (for former or current outer iteration). File 15 - components of  $\phi$  (for former or current outer iteration). File 16 - components of  $\beta$  (for current or former outer iteration). File 17 - components of  $\phi$  (for current or former outer iteration). File 18 - fission sources (for former or current outer iteration). File 20 - fission sources (for current or former outer iteration). Files 14, 16, 15, 17 and 18, 20 are used in the flip-flop form. In the case of adjoint calculations, the data stored on files 12 and 13 are reordered and restored on files 22 and 23, respectively.

## 2. Memory Requirements

HEXAGA-II is a module of the INR programme library NUSYS at the computer center of GfK, Karlsruhe. With a (mild) overlay structure, this module takes 60 K bytes of fast memory. Up to now it has been impossible to translate the source deck of HEXAGA-II with the FORTRAN IV H-Ext. Compiler (of the IBM/360system) into a correctly working load module. So the above value corresponds to the version translated with the FORTRAN IV G1 Compiler. Without overlay the module occupies 90 K bytes of core region.

For any special case considered one has to take into account further storage requirements for

- (a) dynamic storage: 36 time the number of mesh points in bytes,
- (b) buffers: 16 buffers for real flux calculations,

20 buffers for adjoint flux calculations

2 additional buffers, if fluxes and/or sources have to be stored. The sizes of the buffers depend (for the IBM/360 and IBM/370 systems, respectively) on the DCB subparameter BLKSIZE on the DD-(Data-Definition) cards for each file /7/ (see also sample problems).

### 3. External File Space Requirements

For data storage a space has to be reserved on particular external files. This space can be calculated for each file as follows:

File 12:  $S_{12} = (24 \times NOG + 1) \times (M \times N + 1)$ File 13:  $S_{13} = 8 \times NOG \times (M \times N+1)$ +  $2 \times MDS \times (2 \times NOG - MDS - 1) \times (M \times N + 2 \times M)$ +  $2 \times \text{NOTHG} \times (\text{NOTHG} - 1) \times (M \times N + 2 \times M)$ File 14:  $S_{14} = \max \{8 \times NOG \times (M \times N+1)\}$ ;  $2 \times MDS \times (2 \times NOG - MDS - 1) \times (M \times N + 2 \times M)$ File 15:  $S_{15} = \max \{8 \times NOG \times (M \times N+1);$  $2 \times \text{NOTHG} \times (\text{NOTHG} - 1) \times (\text{M} \times \text{N} + 2 \times \text{M})$ File 16:  $S_{16} = \max \{4 \times NOG \times (M \times M+1);$  $2 \times MDS \times (2 \times NOG - MDS - 1) \times (M \times N + 2 \times M);$  $2 \times \text{NOTHG} \times (\text{NOTHG} - 1) \times (\text{M} \times \text{N} + 2 \times \text{M})$ File 17:  $S_{17} = S_{16}$ File 18:  $S_{18} = 4 \times (M \times N + 1)$ File 20:  $S_{20} = S_{18}$ File 21:  $S_{21}^{-} = 4 \times (2 \times \text{NOG} + 1) \times (M \times N + 1)$ File 22:  $S_{22} = S_{12}$ File 23:  $S_{23} = S_{13}$ 

The values of S are expressed in bytes and M, N, NOG, MDS and NOTHG denote the number of mesh points in the x direction, the number of mesh points in the v direction (see Fig. 1), the number of energy groups, the maximum number of energy groups throughout which neutrons are downscattered and the number of thermal groups, respectively.

### VII. NUMERICAL EXAMPLES

HEXAGA-II is illustrated by two four-group sample problems, B1 and B2, both based on a fast reactor problem similar to the prototype breeder reactor SNR-300.

Both sample problems represent the same physical configuration of the reactor and have the same group constants; they differ only in the stepsize of the discretization mesh. The area of solution is restricted to one third of the reactor with the following boundary conditions: on the left and top boundaries the current is equal to zero, and on the right and bottom boundaries the logarithmic derivative boundary condition is taken.

In the sample problem B1 with the triangular mesh the step width equals 6.4665 cm, all hexagons are uniform and the total number of mesh points amounts to 324. In the sample problem B2 the mesh step corresponds to the mesh step of B1 divided by the factor of 2. This twofold decrease of the mesh step results in 1225 mesh points and the simultaneous appearance of some number of non-uniform hexagons in the mesh of B2.

Both sample problems are illustrated by job cards, external file specifications, input data sheets and the printout of the output.

## 1. Sample Problem Bi

Real and adjoint flux calculations with the full printout of results. One inner iteration per outer iteration is assumed. In the case of using IBM/370-168 computer the following data were obtained:

CPU time: 42.4 sec Total costs: 30.98 DM

| Programm  | HEXA       | GA - <u>I</u>                                | SAMP                  | LE PR    | POBLEN  | H B1     | Datum              |          | Nam      | e        |          |           | _ Blatt-M  | \r                                           |          |
|-----------|------------|----------------------------------------------|-----------------------|----------|---------|----------|--------------------|----------|----------|----------|----------|-----------|------------|----------------------------------------------|----------|
| <br>      | 101        | L                                            | 204                   | 1        | 30!     |          | 401                | 1        |          | <b></b>  | 601      | ]         |            |                                              |          |
| 11        | Jø         | BCA                                          | RD                    | <u></u>  | <u></u> | <u> </u> | <u></u>            |          |          | <u>l</u> | <u> </u> |           | I          | ·                                            | <u>_</u> |
| 11 REG    | 1¢N=30     | 0K, T                                        | I ME= 2               |          |         |          | <u> </u>           |          |          | برسارین  |          |           |            |                                              |          |
| /*F\$RM   | AT PR,     | DDNAI                                        | HE=FTO                | 6 F 00 1 | , ØVIFL | = ØN     |                    |          |          |          | <u>l</u> | <u>l_</u> | <u></u>    |                                              |          |
| 11 EXE    | C FGG,     | L1 B1=1                                      | VUSYS,                | NAME=    | HEXAG   | <b>A</b> |                    |          |          | <u></u>  | <u></u>  |           | <u>l</u>   | <u></u>                                      |          |
| 11.545,11 | V DD +     | <u> </u>                                     | <u></u>               |          |         |          | <u> </u>           |          | <u>l</u> |          | <u> </u> |           | <u></u>    |                                              |          |
| 11G.FT    | 12 FQ0 1   | <i></i>                                      | JNITES                | YSDA,    | SPACE   | F=(729   | <u>[4,5])</u>      | DCB= (   | BLKSIZ   | 2E= 72   | 94, REC  | FM=V      | <u>85)</u> | <u></u>                                      | <u> </u> |
| 1/G. FT   | 13 FQ0 1   | , בכ                                         | UNIT = S              | YSDA,    | SPACE   | = (729   | <u>4,3</u> ),      | DC8=*,   | FT.12    | FUQ1     |          | <u>l</u>  |            | <u></u>                                      | ı<br>1   |
| 116. FT   | 14F001     | , כס                                         |                       | YSDA,    | SPACE   | = (729   | 4,2),              | DCB=*    | . FT 12  | F001     |          |           |            | I                                            |          |
| 11G.F     | 15 FO0 1   | ם, מ                                         | UNITI=E               | SYSDA,   | SPACE   | - (729   | <u>, 4, 2),</u>    | DCB=*    | .FT 12   | F001     |          | <u>l</u>  | <u></u>    | <u>, , l , ,</u>                             |          |
| 11 G. F.T | 16 F. 00 1 | DD                                           | UNIT = S              | SYSDA    | SPACE   | ==(729   | <u>, ( 2, 4, 8</u> | DCB=*    | .FT12    | FOQ1     |          | <u></u>   |            | <u></u>                                      |          |
| 1/G.FT    | 17 F001    |                                              | JNIT = S              | SYSDA    | SPACE   | 5= (729  | 4,2),              |          | .FT12    | FU01     |          | <u></u>   |            | <u></u>                                      |          |
| IIG.FT    | 18FQ01     | DD                                           | UNIT=                 | SVSQA    | SPACE   | F=(729   | 14,1),             | DCB = *  | .FT12    | F001     | <u></u>  |           |            | <u></u>                                      |          |
| 1/G.FT    | 20F001     |                                              | UNIT <sub>I</sub> = S | SYSDA    | SPACE   | =e (729  | <u>34, 1)</u> ,    | D.C.BI=* | .FT 12   | F.001    |          | <u></u>   |            | <u></u>                                      | لمعمد    |
| 11G.FT    | 21 FOO 1   |                                              | UNIT=                 | SYSDA,   | SPACE   | == (729  | 94,5),             | DCB = *  | . FT 12  | FU01     |          |           |            |                                              |          |
| 11.G.F.T  | 22 FQ0 1   | DD                                           | UNITE                 | SYSDA    | SPACE   | F=(729   | <u>34,3)</u> ,     | D.C.BI=* | •FT12    | FUU1     |          | <u>i</u>  |            | <u>.                                    </u> |          |
| 11G.SY    | SINIDL     | <b>)                                    </b> | <u></u>               |          | <u></u> |          |                    | <u> </u> |          |          |          | <u></u>   |            |                                              | ]        |

| Program | HE       | XAGA     | <u>-ī</u> | SAMPL      | EP           | ROB       | EM      | B1             | Datum           |                        | Nam                                         | e            | ~                                     |                                                 | _ Blatt-1 | Nr1_                 |                                         |
|---------|----------|----------|-----------|------------|--------------|-----------|---------|----------------|-----------------|------------------------|---------------------------------------------|--------------|---------------------------------------|-------------------------------------------------|-----------|----------------------|-----------------------------------------|
|         |          |          | INPL      | TDA        | ATA          |           |         |                |                 |                        |                                             |              |                                       |                                                 |           |                      |                                         |
| }       | L        | 101      | l         | 20)        | l            |           | 01      | 1              | 401             | <u>.</u> l             | 50                                          | . · <b>l</b> | 601                                   | I                                               | 701       | <b>I</b>             | _ 801                                   |
| 1/      | <u>L</u> |          |           | <u></u>    |              | -1 1 .11  |         | <u> </u>       | <u></u>         |                        | l                                           | <u></u>      | L. J. L.                              |                                                 | <u> </u>  | <u>l</u>             | لــــــــــــــــــــــــــــــــــــــ |
|         | L        | SAM      | PLE       | PROB       | LEM          | B1        |         |                | 1 .             | l.a                    |                                             |              |                                       | _,,                                             |           |                      | ا ا                                     |
| 2/      |          |          | 1         |            |              | _1_111    | 1       |                | l               |                        | <u> </u>                                    |              |                                       |                                                 | <u> </u>  |                      |                                         |
| 1       | 18       | 18       | 4         | 3,         | . 1          | 5         | .3      | , j <b>O</b> , | <u>5</u>        | <u>5</u>               | 1 1                                         |              | 2                                     | 1                                               | 6.466     | 550                  |                                         |
| 3/11/   | 1        | . (      |           |            |              |           | Li      | <u></u>        | ·               |                        |                                             |              |                                       | i                                               |           |                      | لب                                      |
| 1       | 1        | 1        | 2         | . 2        | <b>3</b> . I |           | 1       |                | 1 .             |                        | [                                           | .            | .                                     |                                                 | !         |                      |                                         |
| 1       | 1        | . 1      | . 2       | 3          | 3            |           |         |                | I .             |                        |                                             | .            | 1                                     | 1 .                                             |           |                      |                                         |
| 1       | 1        | . 1      | 4         | 2          | 3            |           | 1       |                | 1 .             |                        |                                             |              |                                       |                                                 |           |                      |                                         |
| 1       | 1        | 5        | 1         | 2          | 3            |           | 1       |                |                 |                        |                                             |              | 1 .                                   |                                                 |           | 1                    | <del>د</del> .                          |
| 1       | 1        | 1        | 2         | 3          | 3            |           | 1       | 1              |                 |                        |                                             |              |                                       | 1 .                                             |           |                      |                                         |
| 1       | 1        | 1        | ,2        | 2          | 3            |           | 1       | 1              | ·               |                        |                                             |              | · · · · · · · · · · · · · · · · · · · | - <u></u>                                       |           | 1                    | <del>بر</del>                           |
| 1       | 5        | 1        | 1         | 2          | 3            | ·····     | <br>    | ] .            | · · · · · · · · |                        |                                             |              | · · · · · · ·                         | · · · · · ·                                     | . ]       |                      | لــــــــــــــــــــــــــــــــــــ   |
| 1       | 1        | 1        | ,2        | 3          | 3            |           | 1       |                | <u> </u>        |                        |                                             |              | <u> </u>                              | - <u>,                                     </u> |           |                      | <b>⊷</b> ⊾                              |
| 1       | 1 1      | 1        | 4         | 2          | 3 .          |           |         | · ·            | ·-····          | ,                      | <br>l                                       |              | <del>د ا ارسا</del>                   | ـــــــــــــــــــــــــــــــــــــ           | · 1       |                      | <b>ہے۔۔۔۔</b><br>۱                      |
| 2       | 1 1      | <u> </u> | 2         | <b>2</b> i | 3 1          | - <u></u> | <u></u> |                | ۰۰۰۰۰۰۰۰۰<br>۱  | <del>ب ا در در ا</del> | <del>م من الم الم الم الم الم الم الم</del> |              | ···                                   | ـــــــــــــــــــــــــــــــــــــ           | <u> </u>  | - <u>· · ·</u> · · · | لىرىمى<br>1                             |
| 4       | 2        | . 4      | 2         | 3          | 3            |           |         | ! .            |                 | 1                      |                                             |              |                                       |                                                 | · · · · · | <u> </u>             | <del>لىنى</del><br>ا                    |

| Programm                                | . Datum      | Name       | Blatt-Nr <u>2</u>                     |
|-----------------------------------------|--------------|------------|---------------------------------------|
|                                         |              |            |                                       |
| 101 1 201                               | <u> </u>     | Da I 601 I | <u>. 701 i 80</u> j                   |
| 2 2 2 2 2 3                             | <u></u>      | <u></u>    | ·····                                 |
| 2 2 2 2 2 3                             | <u></u>      | <u> </u>   |                                       |
| 2 2 2 2 3 3                             | <u></u>      | <u> </u>   | <u></u>                               |
| 3 3 3 3 3                               |              | <u> </u>   |                                       |
| 3 3 3 3                                 |              |            |                                       |
| 3 3 3 3 3                               |              |            |                                       |
| 3 3 3 3 3                               |              | <u> </u>   | · · · · · · · · · · · · · · · · · · · |
| 4/                                      |              | <u> </u>   | <u></u>                               |
| 1. 1. 1. 1                              |              | <u></u>    | <u></u>                               |
| .28 7629 E+01 .157085 E+01 .7 22486 E   | +00 .964199E | <i>400</i> |                                       |
| .28 2040 E-01 .5274 70 E-02 .1 76 120 E | -01 .265460E | -01        | <u> </u>                              |
| .118780E-01 .532520E-02 .104710E.       | 01 .266110E  | -01        |                                       |
| .768000E+00 .232000E+00 0.              | <b>0.</b>    | <u></u>    | <u></u>                               |
| .23 5970E-01 .407910E-05 .444930E       | - 07         | <u> </u>   |                                       |
| .161530E-02 1.423090E-07                |              |            | ····                                  |
| .468380E-02                             |              |            | ·····                                 |

\_\_\_\_\_

----

| Programm                                   |           | Datum                                          | Nam        | ie       |           |          | Blatt - Ni    | <u>. 3</u> | -          |
|--------------------------------------------|-----------|------------------------------------------------|------------|----------|-----------|----------|---------------|------------|------------|
| 101 201                                    | 30        |                                                | L          | l        | 601       |          | 701           |            | 801        |
| 1. 2                                       |           | <u></u>                                        | <u> </u>   | <u></u>  |           |          |               | <u></u>    | _          |
| . 28 76 54 E+ 01  . 1571 36 E+01           | .712708E+ | 001.94                                         | 2978E+00   |          |           |          | . <u></u>     | <u> </u>   | _ <b>_</b> |
| . 28 78 20E-01 . 6049 10 E-02              | .195100E- | 01 .33                                         | 140E-01    |          |           |          |               |            | 1          |
| .149430E-01 .768870E-02                    | .148090E- | 01 .38                                         | 1590E-01   | <u> </u> | <u></u>   |          |               |            | _          |
| .768000E+00 1.232000E+00                   | <b>0.</b> |                                                |            |          |           | <u></u>  |               |            |            |
| . 23 2 6 2 0 E - 0 1 . 4 6 4 5 1 0 E - 0 5 | .499680E- | 07                                             |            |          |           |          |               |            | _J .       |
| .157180E-02                                |           |                                                | <u> </u>   |          | <u> </u>  | <u></u>  |               |            | 55         |
| .434140E-02                                |           | <u>, , , l , , , , , , , , , , , , , , , ,</u> | <u></u>    | <u>l</u> |           | <b>.</b> |               |            | י<br>      |
| 1 3                                        |           |                                                | 1          |          |           | . 1      |               |            | -          |
| . 2285615+01 . 1171935+01                  | . 632475E | 00 81                                          | 8357E+100  |          | <u> </u>  |          | . <u> </u>    | <u></u>    |            |
| . 35 9590 6-01 . 588550 6-02               | .160410E- | 01 .13                                         | 31490E-101 | <u>.</u> | <u></u>   |          |               |            |            |
| . 774270E-02 . 108250E-03                  | .297420E- | -03 .84                                        | 6870E-03   | <u></u>  | <u>  </u> |          |               |            |            |
| .768000E+00 . 232000 E+00                  | 0         |                                                | . <u></u>  |          | <u> </u>  |          |               |            |            |
| .3207105-01 .3888005-05                    | .450390E- | -07                                            |            | <u></u>  | 1         |          |               |            | _1         |
| .27177605-02 1.900180E-07                  |           |                                                |            |          |           |          |               |            | -<br>-     |
| .5897106-02                                |           |                                                | <u> </u>   |          |           |          | · · · · · · · | . ]        | 1          |

| Programm                          | . Datum       | _ Name                                    | Blatt-Nr4 |
|-----------------------------------|---------------|-------------------------------------------|-----------|
|                                   |               |                                           |           |
| 101 201 301 1                     | 40)           | 5011 601 1                                |           |
| 1. 4                              | <u></u>       |                                           |           |
| .250307E+01 .131468E+01 .574277E+ | 00 6153698    | 5+100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1     |
| 24,8140E-01 164120E-01 721220E-   | 01 168680     | E-00                                      |           |
| 229460E-01 103200E-05 104890E-    | -07           |                                           | <u> </u>  |
| 2768205-02 203640F-14             |               | <u></u>                                   |           |
|                                   | <u> </u>      | <u></u>                                   |           |
| <u>868150E-02</u>                 |               |                                           |           |
| 1 5                               |               |                                           |           |
| .461642E+01 .290183E+01 .102118E  | +01 . 1729632 | E+01                                      |           |
| .131590E-01 .145590E-02 .460010E- | -02 · 786600E | <u>5-103</u>                              |           |
| .129420E-01 .687800E-06 .699030E- | -08           |                                           |           |
| . 128710E-02 1. 436330 E-11       |               |                                           |           |
|                                   | ·····         |                                           |           |
| 5/ 1. 1. 1. 1. 1. 1. 1.           |               |                                           |           |
| .46948E+00                        |               |                                           |           |
| .4694 8 5+00                      |               | <u> </u>                                  |           |
| . 46948E+00                       |               |                                           |           |

| ~   |
|-----|
| Ш   |
| F   |
| Ľ   |
| 4   |
| Y   |
|     |
| 7   |
| ~   |
| 1.1 |
| ш   |
| E   |
| ATE |

| rogramm – – – – – –           |                  |                  | 1          | ,<br> <br> <br> |             | )atum      | 1<br> <br> <br>1                      | Name        | <br> <br> <br>                        |                  |                  | Blatt - Nr | ر<br>ا |
|-------------------------------|------------------|------------------|------------|-----------------|-------------|------------|---------------------------------------|-------------|---------------------------------------|------------------|------------------|------------|--------|
| - 1 <mark>0</mark> 1          | _                | ន                | -          | R               | -           | 19         | -                                     | ਭ           | -                                     | ଥା               | _                | -<br>R     | 3      |
| .4694 8 E +00                 | -<br>-<br>-<br>- |                  |            |                 |             |            |                                       |             |                                       |                  |                  |            |        |
| .4694 8 E + 90                |                  |                  |            |                 |             |            |                                       |             | · · ·                                 | +<br>+<br>+<br>+ | •<br>•<br>•<br>• | 1          |        |
| .46948E+00                    |                  |                  |            |                 |             | -<br>-<br> |                                       | -<br>-<br>- |                                       |                  |                  | 1          |        |
| .46948E+00                    |                  |                  |            |                 |             |            |                                       |             | <u>-</u>                              |                  | · · · ·          |            |        |
| .46948E+00                    | <u></u>          |                  |            |                 | •<br>•<br>• |            | · · · · · · · · · · · · · · · · · · · | -<br>-<br>- | · · · · · · · · · · · · · · · · · · · |                  | •<br>•<br>•<br>• |            |        |
| 6/                            |                  | ,<br>,<br>,<br>, |            |                 |             |            |                                       |             |                                       | •                | •<br>•<br>•<br>• | 1          |        |
| 0 100 1                       | 1                | 1.0000           | 1.1        | 0000            | 1.06        | 05         | 1. OE-                                | 0.6         | 2 0                                   | 1.0              | 000              |            |        |
|                               |                  |                  |            |                 |             |            |                                       |             |                                       |                  |                  |            |        |
|                               |                  |                  |            | •<br>-1<br>•-1  |             |            |                                       |             | -<br>-<br>                            |                  | •<br>•<br>•      |            | -      |
|                               | و الم            |                  |            |                 |             |            |                                       |             | مغمطيم                                |                  |                  | 1          |        |
|                               | مسلمت            |                  |            |                 |             |            |                                       |             |                                       | +<br>+<br>-<br>- |                  | 1          |        |
|                               |                  |                  |            |                 |             |            |                                       |             |                                       |                  |                  | 1          |        |
|                               |                  |                  |            |                 |             |            |                                       |             |                                       |                  |                  |            |        |
| • • [ • • • • • • • • • • • • | •••              |                  |            |                 |             |            |                                       |             |                                       |                  |                  |            |        |
|                               |                  |                  |            |                 |             |            |                                       |             |                                       |                  |                  | 1          |        |
|                               |                  |                  | <br>  <br> | بالم            | ب<br>۲<br>۲ |            | للمعالمة                              |             |                                       |                  |                  |            |        |

- 57 -

H E X A G A - II WRITTEN BY ZBIGNIEW WOZNICKI, FEB. 1975

SAMPLE PROBLEM B1

1 TYPE OF HEXAGONAL MESH ARRANGEMENT

324 MESH POINTS

4 NEUTRON GR.

1 THERMAL GR.

3 NEUTRON GR. THROUGHOUT WHICH NEUTRONS ARE DOWN-SCATTERED

5 MATERIAL COMP.

3 FISSIONABLE CCMP.

6.4665 CM - MESH STEP

OUTER BOUNDARY COND: LEFT - FLUX DERIVATIVE EQUAL TO ZERO TOP - FLUX DERIVATIVE EQUAL TO ZERO RIGHT - LOGARITHMIC BOTTOM - LOGARITHMIC

.

## THE LOCATION OF HEXAGONS

## THE MATERIAL SPECIFICATION OF HEXAGONS



| HNR | Τ1 | Τ2 | <b>T</b> 3 | Τ4 | Τ5 | Τ6 |
|-----|----|----|------------|----|----|----|
| 1   | 1  | 1  | 1          | 1  | 1  | 1  |
| 2   | 2  | 2  | 2          | 2  | 2  | 2  |
| 3   | 3  | 3  | 3          | 3  | 3  | 3  |
| 4   | 4  | 4  | 4          | 4  | 4  | 4  |
| 5   | 5  | 5  | 5          | 5  | 5  | 5  |

| COMP | GR NR                 | DIF                                                      | SIGT                                                     | NU SI GF                                                 | СНІ                                      |  |
|------|-----------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------|--|
| 1    | G<br>1<br>2<br>3<br>4 | 2.87679E+00<br>1.57085E+00<br>7.22486E-01<br>9.64199E-01 | 2.82040E-02<br>5.27470E-03<br>1.76120E-02<br>2.65460E-02 | 1.18780E-02<br>5.32520E-03<br>1.04710E-02<br>2.66110E-02 | 7.68000E-01<br>2.32000E-01<br>0.0<br>0.0 |  |
|      |                       | SIGDS                                                    |                                                          |                                                          |                                          |  |
|      | G<br>1<br>2<br>3      | G>G+1<br>2.35970E-02<br>1.61530E-03<br>4.68380E-03       | G>G+2<br>4.07910E-06<br>4.23(90E-08                      | G>G+3<br>4.44930E-08                                     |                                          |  |
| COMP | GR NR                 | DIF                                                      | SIGT                                                     | NUSIGF                                                   | CHI                                      |  |
| 2    | G<br>1<br>2<br>3<br>4 | 2.87654E+00<br>1.57136E+00<br>7.12708E-01<br>9.42978E-01 | 2.87820E-02<br>6.04910E-03<br>1.95100E-02<br>3.37140E-02 | 1.49430E-02<br>7.68870E-03<br>1.48090E-02<br>3.81590E-02 | 7.68000E-01<br>2.32000E-01<br>0.0<br>0.0 |  |
|      |                       | SIGDS                                                    |                                                          |                                                          |                                          |  |
|      | G<br>1<br>2<br>3      | G>G+1<br>2.32620E-02<br>1.57180E-03<br>4.34140E-03       | G>G+2<br>4.64510E-06<br>4.07240E-08                      | G>G+3<br>4•99680E-08                                     |                                          |  |
| COMP | GR NR                 | DIF                                                      | SIGT                                                     | NUS I GF                                                 | СНІ                                      |  |
| 3    | G<br>1<br>2<br>3<br>4 | 2.28561E+00<br>1.17193E+00<br>6.32475E-01<br>8.18357E-01 | 3.59590E-02<br>5.88550E-03<br>1.60410E-02<br>1.33490E-02 | 7.74270E-03<br>1.08250E-04<br>2.97420E-04<br>8.46870E-04 | 7.68000E-01<br>2.32000E-01<br>0.0<br>0.0 |  |
|      |                       | SIGDS                                                    |                                                          |                                                          |                                          |  |
|      | G<br>1<br>2<br>3      | G>G+1<br>3.20710E-02<br>2.77760E-03<br>5.89710E-03       | G>G+2<br>3.88800E-06<br>9.00180E-08                      | G>G+3<br>4•50390E-08                                     |                                          |  |
| COMP | GR NR                 | DIF                                                      | SIGT                                                     | NUSIGF                                                   | СНІ                                      |  |
| 4    | G<br>1<br>2<br>3<br>4 | 2.50307E+00<br>1.31468E+00<br>5.74277E-01<br>6.15369E-01 | 2.48140E-02<br>1.64120E-02<br>7.21220E-02<br>1.68680E-01 | 0.0<br>0.0<br>0.0<br>0.0                                 | 0.0<br>0.0<br>0.0<br>0.0                 |  |
|      |                       | SIGDS                                                    |                                                          |                                                          |                                          |  |
|      | G<br>1<br>2<br>3      | G>G+1<br>2.29460E-02<br>3.76870E-03<br>8.68150E-03       | G>G+2<br>1.03200E-06<br>7.03610E-12                      | G>G+3<br>1.04890E-08                                     |                                          |  |
| СПМР | GR NR                 | DIF                                                      | SIGT                                                     | NUSIGF                                                   | CHI                                      |  |
| 5    | G<br>1<br>2<br>3<br>4 | 4.61642E+00<br>2.90183E+00<br>1.02118E+00<br>1.72963E+00 | 1.31590E-02<br>1.45590E-03<br>4.60010E-03<br>7.86600E-04 | 0.0<br>0.0<br>0.0<br>0.0                                 | 0.0<br>0.0<br>0.0<br>0.0                 |  |
|      |                       | SIGDS                                                    |                                                          |                                                          |                                          |  |
|      | G<br>1<br>2<br>3      | G>G+1<br>1.29420E-02<br>1.28710E-03<br>3.45330E-03       | G>G+2<br>6.87800E-07<br>4.36330E-12                      | G>G+3<br>6.99030E-09                                     |                                          |  |

LEGARITHMIC BOUNDARY CONDITION PARAMETERS

| GR NR | PT NR  | LEFT | тор | RIGHT                    | BOTTOM     |
|-------|--------|------|-----|--------------------------|------------|
|       |        |      |     |                          |            |
| 1     | 1      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 2      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 3      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 4      |      |     | 4.6948F-01               | 4.6948E-01 |
|       | 5      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 6      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 7      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 8      |      |     | 4.6548E-01               | 4.6948E-01 |
|       | 9      |      |     | 4.6948F-01               | 4.6948E-01 |
|       | 10     |      |     | 4.6948E-J1               | 4.6948E-01 |
|       | 11     |      |     | 4.6948E-01               | 4.69481-01 |
|       | 12     |      |     | 4.6948E-UI               | 4.09485-01 |
|       | 13     |      |     | 4.69486-01               | 4.69485-01 |
|       | 14     |      |     | 4.69405-01               | 4.69496-01 |
|       | 15     |      |     | 4.6948E-01               | 4-6948E-01 |
|       | 17     |      |     | 4-6948E-01               | 4-6948E-01 |
|       | 18     |      |     | 4.6948E-01               | 4.6948E-01 |
| 2     |        |      |     |                          |            |
|       | 1      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 2      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 3      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 4      |      |     | 4.5548E-01               | 4.6948E-01 |
|       | 5      |      |     | 4.6948E-UI               | 4.69485-01 |
|       | 5      |      |     | 4.6948E-01<br>4.6048E-01 | 4.0940E-01 |
|       | . /    |      |     | 4.0940E-UI<br>4.4048E-01 | 4.6948E=01 |
|       | 0<br>0 |      |     | 4.6948E-01               | 4.6948E=01 |
|       | 10     |      |     | 4-6948E-01               | 4.6948E-01 |
|       | 11     |      |     | 4-6948E-01               | 4.6948E-01 |
|       | 12     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 13     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 14     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 15     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 16     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 17     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 18     |      |     | 4.6948E-01               | 4.6948E-01 |
| 3     | 1      |      |     | 4.6548F-01               | 4-6948F-01 |
|       | 2      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 7      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 4      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 5      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 6      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 7      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 8      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 9      |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 10     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 11     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 12     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 13     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 14     |      |     | 4.6548E-01               | 4.6948E-01 |
|       | 15     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 16     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 17     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 18     |      |     | 4.6948E-01               | 4.69486-01 |

- 62 -

| 1  | 4.6948E-01 4.6948E-01 |
|----|-----------------------|
| 2  | 4.6948E-01 4.6948E-01 |
| 3  | 4.6948E-01 4.6948E-01 |
| 4  | 4.6948E-01 4.6948E-01 |
| 5  | 4.6948E-01 4.6948E-01 |
| 6  | 4.6948E-01 4.6948E-01 |
| 7  | 4.6948E-01 4.6948E-01 |
| 8  | 4.6948E-01 4.6948E-01 |
| 9  | 4.6948E-01 4.6948E-01 |
| 10 | 4.6948E-01 4.6948E-01 |
| 11 | 4.6948E-01 4.6948E-01 |
| 12 | 4.6948E-01 4.6948E-01 |
| 13 | 4.6948E-01 4.6948E-01 |
| 14 | 4.6948E-01 4.6948E-01 |
| 15 | 4.6948E-01 4.6948E-01 |
| 16 | 4.6948E-01 4.6948E-01 |
| 17 | 4.6948E-01 4.6948E-01 |
| 18 | 4.6948E-01 4.6948E-01 |
|    |                       |

4
| NG                                                                 | NC                                        | 1 R M                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               |
|--------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4                                                   | 0.37<br>0.58<br>C.16<br>0.16              | 4871<br>9447<br>95770<br>96291                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               |
| NG                                                                 | IT                                        | NI                                                                                                       | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ER/ER                                                                                         |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.589447<br>0.645163<br>0.663563<br>0.673531<br>0.679565<br>0.683284<br>0.635576<br>0.686981<br>0.687834 | $0.967253 \\ -0.094522 \\ -0.028520 \\ -0.015021 \\ -0.008359 \\ -0.005472 \\ -0.003354 \\ -0.002048 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.021240 \\ -0.02$ | 0.967253<br>-0.097722<br>0.301726<br>0.526701<br>0.596407<br>C.61C815<br>0.612931<br>0.610748 |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               | 9<br>10<br>11<br>12<br>13<br>14           | 0.687834<br>0.688350<br>0.688659<br>0.688841<br>0.688949<br>0.689010                                     | -3.001245<br>-3.000751<br>-0.030447<br>-3.000264<br>-3.000155<br>-3.000389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.605385<br>0.595934<br>0.590618<br>0.538448<br>0.570552                                      |

DMEGAB=1.1236 DMEGAF=1.1236

## ITERATION PROCESS

FLUX CONV IN INNER ITERS -->

1

| ŢΤ | NR | OMEGAB | OMEGAF | K-EFF    | K-EFF CONV.         | GR NR            |                                              |
|----|----|--------|--------|----------|---------------------|------------------|----------------------------------------------|
|    | 1  | 1.1236 | 1.1236 | 0.810501 | 5.1775E+02          | 1<br>2<br>3<br>4 | 1.00E+00<br>1.00E+00<br>1.00E+00<br>1.00E+00 |
|    | 2  | 1.1236 | 1.1236 | 1•089722 | 2.5623E-01          | 1<br>2<br>3<br>4 | 3.84E+00<br>5.04E-01<br>6.27E-01<br>9.67E-01 |
|    | 3  | 1.1236 | 1.1236 | 1.098463 | 7.9579E-03          | 1<br>2<br>3<br>4 | 5.58E-C1<br>2.67E-01<br>3.59E-01<br>5.34E-01 |
|    | 4  | 1.1236 | 1.1236 | 1.088725 | 8.9436E-03          | 1<br>2<br>3<br>4 | 3.11E-01<br>1.98E-01<br>2.74E-01<br>3.41E-01 |
|    | 5  | 1.1236 | 1.1236 | 1.096784 | 7 <b>.</b> 3475E-03 | 1<br>2<br>3<br>4 | 1.29E-01<br>1.28E-01<br>7.06E-02<br>6.01E-02 |
|    | 6  | 1.1236 | 1.1236 | 1.107114 | 9.3307E-03          | 1<br>2<br>3<br>4 | 5.99E-02<br>5.54E-02<br>3.99E-C2<br>3.27E-02 |
|    | 7  | 1.1236 | 1.1236 | 1.114005 | 6.1861E-03          | 1<br>2<br>3<br>4 | 3.45E-02<br>2.86E-02<br>2.25E-02<br>1.75E-02 |
|    | 8  | 1.1236 | 1.1236 | 1.117773 | 3.3710E-03          | 1<br>2<br>3<br>4 | 1.93E-02<br>1.53E-02<br>1.12E-02<br>8.79E-C3 |
|    | 9  | 1.1236 | 1.1236 | 1.119725 | 1.7435E-03          | 1<br>2<br>3<br>4 | 1.09E-02<br>7.91E-C3<br>5.83E-C3<br>4.47E-03 |
|    | 10 | 1.1236 | 1.1236 | 1.120701 | 8.7059E-C4          | 1<br>2<br>3<br>4 | 5.28E-03<br>4.04E-03<br>2.91E-03<br>2.50E-03 |
|    | 11 | 1.1235 | 1.1236 | 1.121181 | 4.2790E-04          | 1<br>2<br>3<br>4 | 2.96E-C3<br>2.05E-03<br>1.50E-03<br>1.14E-03 |
|    | 12 | 1.1236 | 1.1236 | 1.121419 | 2.1261E-04          | 1<br>2<br>3      | 1.48E-03<br>1.06E-03<br>7.64E-04             |

- 65 -

|    |        |        | <del></del> | 66 -       |                  |                                              |
|----|--------|--------|-------------|------------|------------------|----------------------------------------------|
|    |        |        |             |            | 4                | 5.54E-04                                     |
| 13 | 1.1225 | 1.1236 | 1.121544    | 1.11405-04 | 1<br>2<br>3<br>4 | 7.45E-C4<br>5.34E-C4<br>3.87E-O4<br>2.91E-C4 |
| 14 | 1.1236 | 1,1236 | 1.121609    | 5.7876E-05 | 1<br>2<br>3<br>4 | 3.78E-04<br>2.74E-04<br>1.99E-04<br>1.44E-04 |
| 15 | 1.1236 | 1.1236 | 1.121638    | 2.6405F-05 | 1<br>2<br>3<br>4 | 1.89E-04<br>1.36E-04<br>9.73E-05<br>7.36E-05 |
| 16 | 1.1235 | 1.1236 | 1.121654    | 1.3649E-05 | 1<br>2<br>3<br>4 | 9.35E-05<br>7.10E-05<br>5.17E-05<br>3.96E-05 |
| 17 | 1.1236 | 1.1236 | 1.121664    | S.3579E-06 | 1<br>2<br>3<br>4 | 4.53E-05<br>3.56E-05<br>2.63E-05<br>2.10E-05 |
| 13 | 1.1236 | 1.1236 | 1.121667    | 2.5630E-06 | 1<br>2<br>3<br>4 | 2.39E-05<br>1.76E-05<br>1.24E-05<br>1.05E-C5 |
| 19 | 1.1236 | 1.1236 | 1.121671    | 3.4571E-06 | 1<br>2<br>3<br>4 | 1.14E-05<br>5.89E-06<br>7.57E-06<br>7.93E-06 |
| 20 | 1.1236 | 1.1236 | 1.121671    | 0.0        | 1<br>2<br>2<br>4 | 7.63E-06<br>5.72E-06<br>4.77E-06<br>5.72E-06 |

|     | 1                   | 2                   | 3          | 4          | 5                   | 6                   | 7                   | . 8         | 9          | 10         |
|-----|---------------------|---------------------|------------|------------|---------------------|---------------------|---------------------|-------------|------------|------------|
| 1   | 6.0389E-03          | 5.9802E-03          | 5.8052E-03 | 5.5235E-03 | 5.1729E-03          | 4.7955E-C3          | 4.3816E-03          | 3.9C27E-03  | 3.4129E-03 | 2.9999E-03 |
| 2   | 5.9802E-03          | 5.9802E-03          | 5.8622E-03 | 5.6242E-03 | 5.2775E-03          | 4.9030E-03          | 4.5417E-03          | 4.1198E-03  | 3.5986E-C3 | 3.024CE-C3 |
| 3   | 5.8052E-03          | 5.8622E-03          | 5.8052E-03 | 5.6242E-03 | 5.2906E-03          | 4.7717E-03          | 4.4820E-03          | 4.2475E-03  | 3.8134E-03 | 3.1849E-03 |
| 4   | 5.5235E-03          | 5.6242E-03          | 5.6242E-03 | 5.5235E-03 | 5.2775E-03          | 4.7717E-03          | 4.3663E-03          | 4.2354E-03  | 3.9897E-03 | 3.5568E-C3 |
| 5   | 5.1729E-03          | 5.2775E-03          | 5.2906E-03 | 5.2775E-03 | 5.1730E-03          | 4.9030E-03          | 4.4820E-03          | 4.2354E-03  | 4.0517E-03 | 3.8064E-03 |
| 6   | 4.7955E-03          | 4.90305-03          | 4.7717E-03 | 4.7717E-03 | 4.9030E-03          | 4.7955E-03          | 4.5417E-03          | 4+2475E-03  | 3.9897E-C3 | 3.8064E-C3 |
| 7   | 4.3816E-03          | 4.5417E-03          | 4.4820E-03 | 4.3663E-03 | 4.4820E-03          | 4.5417E-03          | 4.3816E-03          | 4.1199E-03  | 3.8134E-03 | 3.5568E-03 |
| 8   | 3.9027E-03          | 4.1199E-03          | 4.2475E-03 | 4.2354E-03 | 4.2354E-03          | 4.2475E-03          | 4.11998-03          | 3.9027E-C3  | 3.5986E-03 | 3.1849E-03 |
| 9   | 3.4129E-03          | 3.59868-03          | 3.8134E-03 | 3.9897E-03 | 4.0517E-03          | 3.9897E-03          | 3.8134E-03          | 3.5986E-03  | 3.4129E-C3 | 3.C24CE-C3 |
| 10  | 2.9999E-03          | 3.0240E-03          | 3.1849E-03 | 3.5568E-03 | 3.8064E-03          | 3.8064E-03          | 3.5568E-03          | 3.1849E-03  | 3.0240E-03 | 2.9999E-03 |
| 11  | 2.64480-03          | 2.6463E-03          | 2.5418E-03 | 3.0045E-03 | 3.4400E-03          | 3.6054E-03          | 3.4400E-03          | 3.0045E-03° | 2.5418E-03 | 2.6463E-03 |
| 12  | 2.2679E-03          | 2.4164E-03          | 2.3936E-03 | 2.5779E-03 | 2.58C5E-03          | 3.1949E-03          | 3.1949E-03          | 2.9805E-03  | 2.5779E-03 | 2.3936E-03 |
| 13  | 1.7338E-03          | 1.9836E-03          | 2.1191F-03 | 2.2431E-03 | 2 <b>.</b> 4511E-03 | 2.6368E-03          | 2.6981E-03          | 2.6368E-03  | 2.4511E-03 | 2.2431E-C3 |
| 14  | 1.J224E-03          | 1.3551E-03          | 1.5801E-03 | 1.6503E-03 | 1.7841E-03          | 1.9672E-03          | 1 <b>.977</b> 5E-03 | 1.9775E-03  | 1.9672E-C3 | 1.7841E-C3 |
| 15  | 4 <b>.</b> 5877E-34 | 6.5171E-04          | 9.0733E-04 | 1.0053E-03 | 9.8341E-04          | 1.1755E-03          | 1.2258E-03          | 1.1198E-03  | 1.2258E-03 | 1.1755E-03 |
| 16  | 2.0518E-04          | 2 <b>.97</b> 07E-C4 | 4.02C2E-04 | 4.8596E-04 | 5.2392E-04          | 5.6770E-04          | 6.1450E-04          | 6.1528F-04  | 6.1528E-C4 | 6.145CE-C4 |
| 17  | 8.5646E-05          | 1.2853E-04          | 1.7582E-C4 | 2.2029E-04 | 2.5213E-04          | 2 <b>.7</b> 493E-04 | 2.9564E-04          | 3.0739E-04  | 3.0939E-04 | 3.0739E-C4 |
| 13  | 2.8717E-05          | 4.5696E-05          | 6.4646E-05 | 8.37726-05 | 9•9835E-05          | 1.11626-04          | 1.2086E-04          | 1.2761E-04  | 1.3061E-04 | 1.3061E-04 |
|     | 11                  | 12                  | 13         | 14         | 15                  | 16                  | 17                  | 18          |            |            |
| l   | 2.6448E-03          | 2.2679E-03          | 1.7338E-03 | 1.0224E-03 | 4.5876F-04          | 2.0518E-04          | 8.5646E-05          | 2.8717E-C5  |            |            |
| 2   | 2.6463E-03          | 2.4164E-03          | 1.9836E-03 | 1.3551E-03 | 6.5171E-04          | 2.9707E-04          | 1.2852E-04          | 4.5695F-05  |            |            |
| 3   | 2.5418E-03          | 2.3936E+03          | 2.1191E-03 | 1.58016-03 | 9.0733E-04          | 4.0201E-04          | 1.7582E-04          | 6.4646E-05  |            |            |
| 4   | 2.0045E-03          | 2.5779E-C3          | 2.2431E-03 | 1.6503E-03 | 1.0053E-03          | <b>4.8596E-04</b>   | 2.2029E-04          | 8.3772E-C5  |            |            |
| 5   | 3.440CE-03          | 2.9805E-03          | 2.4511E-03 | 1.7841E-03 | 9.8341E-04          | 5.2391E-04          | 2.5213E-04          | 9.9835E-05  |            |            |
| 6   | 3.6054E-03          | 3 <b>.</b> 1949E-03 | 2.6368E-03 | 1.9672E-03 | 1.1755E-03          | 5.6770E-04          | 2.7493E-04          | 1.1162E-C4  |            |            |
| 7   | 3.440CE-03          | 3 <b>.1949E-0</b> 3 | 2.6981E-03 | 1.9775E-03 | 1 <b>.</b> 2258E-03 | 6.1450E-04          | 2.9564E-04          | 1.2086E-C4  |            |            |
| 8   | 3.0045E-03          | 2.9805E-03          | 2.6363E-03 | 1.9775E-03 | 1.1199E-03          | 6.1528F-04          | 3.C739E-04          | 1.2761E-C4  |            |            |
| Э   | 2.5418E-03          | 2.5779E-03          | 2.45118-03 | 1.9672E-03 | 1.2258E-03          | 6.1528E-04          | 3.0939E-04          | 1.3061E-04  |            |            |
| 10  | 2.6463E-03          | 2.3936E-03          | 2.2431E-C3 | 1.7841E-03 | 1.1755E-03          | 6.1450E-04          | 3.0739E-04          | 1.3061E-04  |            |            |
| 11  | 2.5448E-03          | 2.4164E-03          | 2.1191E-03 | 1.6503E-03 | 9.8341E-04          | 5.6770E-04          | 2.5564E-04          | 1.2761E-04  |            |            |
| 12  | 2.4164E-03          | 2.2679E-03          | 1.9836E-03 | 1.58C1E-03 | 1.0053E-03          | 5.2392E-04          | 2.7493E-04          | 1.2086E-04  |            |            |
| 13  | 2.1191E-03          | 1.9836E-03          | 1.73385-03 | 1.3551E-03 | 9.0733E-04          | 4.85968-04          | 2.5213E-C4          | 1.1162E-C4  |            |            |
| 14  | 1.6503E-03          | 1.5801E-03          | 1.35511-03 | 1.02246-03 | 6.51/12-04          | 4.0201E-04          | 2.2029E-04          | 9.9834E-05  |            |            |
| 15  | 9.8341E-04          | 1.0053E-03          | 9.0733E-04 | 6.51/1E-04 | 4.5877E-04          | 2.5707E-04          | 1.7582E-04          | 8.3772E-05  |            |            |
| 16  | 5.677CE-04          | 5.2352E-04          | 4.85961-04 | 4.U2U2E-04 | 2.5/0/E-04          | 2.0518E-04          | 1.28526-04          | 0.4646t-05  |            |            |
| 10  | 2.9564t-04          | 2.74935-04          | 2.52135-04 | 2.20298-04 | 1.75822-04          | 1.23526-04          | 0.5646E-05          | 4.56951-05  |            |            |
| r a | 1.27615+04          | 1.20805-04          | 1.11621-04 | 7.78325-05 | 0.31121-05          | 0.40402-05          | 4.00505-05          | 2.8/1/E-05  |            |            |
|     |                     |                     |            |            |                     |                     |                     |             |            |            |

- 67 -

|     | 1          | 2          | 3          | 4          | 5           | 6                   | 7          | 8          | 9          | 10         |
|-----|------------|------------|------------|------------|-------------|---------------------|------------|------------|------------|------------|
| 1   | 3.0079E-02 | 2.9811E-02 | 2.9C21E-02 | 2.77576-02 | 2.6130E-02  | 2.4210E-02          | 2.1917E-02 | 1.9179E-02 | 1.6113E-02 | 1.3327E-C2 |
| 2   | 2.98115-02 | 2.9811E-02 | 2.9280E-02 | 2.8235E-C2 | 2.6742E-02  | 2.5001E-02          | 2.2987E-02 | 2.0493E-02 | 1.7496E-02 | 1.4096E-02 |
| 3   | 2.9321E-02 | 2.928JE-C2 | 2.9021E-02 | 2.8235E-02 | 2.6907E-02  | 2.5076E-02          | 2.3633E-C2 | 2.1511E-C2 | 1.8771E-C2 | 1.5317E-02 |
| 4   | 2.7757E-02 | 2.8235E-C2 | 2.8235E-02 | 2.7757E-02 | 2.6742E-C2  | 2.5076E-02          | 2.3754E-02 | 2.2314E-02 | 1.9782E-C2 | 1.6989E-C2 |
| 5   | 2.613CE-02 | 2.6742E-02 | 2.6907E-02 | 2.6742E-02 | 2.6130E-C2  | 2.5001E-02          | 2.3633E-02 | 2.2314E-C2 | 2.C168E-02 | 1.7864E-02 |
| 6   | 2.421CE-02 | 2.5001E-02 | 2.5076E-02 | 2.5076E-02 | 2.5001E-02  | 2.4210E-02          | 2.2987E-02 | 2.1511E-02 | 1.9782E-C2 | 1.7864E-C2 |
| 7   | 2.1917E-02 | 2.2987E-02 | 2.3633E-C2 | 2.3754E-02 | 2.3633E-02  | 2.2987E-02          | 2.1917E-02 | 2.0493E-02 | 1.8771E-02 | 1.6990E-02 |
| 3   | 1.9179E-C2 | 2.C493E-02 | 2.1511E-02 | 2.2314E-02 | 2.2314E-02  | 2.1511E-J2          | 2.0493E-02 | 1.9179E-02 | 1.7496E-02 | 1.5317E-02 |
| 9   | 1.6113E-02 | 1.7496E-02 | 1.8771E-02 | 1.9782E-02 | 2.0168E-02  | 1.9782E-02          | 1.8771E-02 | 1.7496E-02 | 1.6113E-02 | 1.4096E-02 |
| 10  | 1.3327E-J2 | 1.4096E-02 | 1.5317E-02 | 1.6990E-02 | 1.7864E-02  | 1.7864E-02          | 1.699CE-C2 | 1.5317E-02 | 1.4096E-02 | 1.3327E-02 |
| 11  | 1.13475-02 | 1.1684E-02 | 1.1735E-02 | 1.3782E-02 | 1.5382E-02  | 1.5858E-02          | 1.5382E-02 | 1.3782F-02 | 1.1735E-C2 | 1.1684E-C2 |
| 12  | 9.7350E-03 | 1.0377E-02 | 1.0525E-02 | 1.1413E-02 | 1.2949E-02  | 1.3737E-02          | 1.3737E-02 | 1.2949E-02 | 1.1413E-02 | 1.0525E-02 |
| 13  | 7.9701E-03 | 8.7797E-03 | 9.3697E-03 | 9.9988E-03 | 1.C827E-02  | 1.1558E-02          | 1.1838E-02 | 1.1558E-C2 | 1.0827E-C2 | 9.9988E-C3 |
| 14  | 6.0381E-03 | 6.9802E-03 | 7.5984E-03 | 8.2514E-03 | 8.8932E-03  | 9.3515E-03          | 9.7706E-03 | 9.7706E-03 | 9.3515E-03 | 8.8932E-03 |
| 15  | 3.82116-03 | 4.7348E-03 | 5.6260E-03 | 6.1486E-03 | 6.4982E-03  | 7.1106E-03          | 7.3925E-03 | 7.3218E-03 | 7.3925E-03 | 7.1106E-03 |
| 16  | 2.1461E-03 | 2.8210E-03 | 3.43CCE-03 | 3.9183E-C3 | 4.2651E-03  | 4.5824E-03          | 4.8438E-03 | 4.9393E-03 | 4.9393E-C3 | 4.8438E-C3 |
| 17  | 9.4707E-04 | 1.3841E-03 | 1.7568E-03 | 2.0720E-03 | 2.3189E-03  | 2.5144E-03          | 2.6736E-C3 | 2.7728E-03 | 2.8026E-03 | 2.7728E-C3 |
| 13  | 2.0014E-04 | 3.5488E-04 | 4.8012E-04 | 5.8624E-04 | 6.731JE-04  | 7.4162E-04          | 7.9618E-04 | 8.3565E-04 | 8.5546E-C4 | 8.5546E-C4 |
|     | 11         | 12         | 13         | 14         | 15          | 16                  | 17         | 18         |            |            |
| 1   | 1.13470-02 | 9.7350E-C3 | 7.97C1E-03 | 6.0381E-03 | 3.8211E-03  | 2.1461E-C3          | 9.4707E-04 | 2.C014E-C4 |            |            |
| 2   | 1.1684E-J2 | 1.0377E-02 | 8.7797E-03 | 6.9802E-03 | 4.7348E-03  | 2.8210E-03          | 1.3841E-03 | 3.5488E-04 |            |            |
| 3   | 1.1735E-02 | 1.0525E-02 | 9.3697E-03 | 7.5984E-03 | 5.6259E-03  | 3.430CE-C3          | 1.7568E-C3 | 4.8Cl1E-C4 |            |            |
| 4   | 1.3782E-J2 | 1.14138-02 | S.SS88E→03 | 8.2514E-03 | 6.1486E-03  | 3.9183F-03          | 2.0720E-03 | 5.8624E-04 |            |            |
| 5   | 1.5332E-02 | 1.29495-02 | 1.0827F-02 | 8.8932E-03 | 6.4982E-03  | 4.2651E-03          | 2.3189E-03 | 6.7310E-04 |            |            |
| 6   | 1.5858F-02 | 1.3737E-02 | 1.1558E-02 | 9.3515E-03 | 7.1106E-03  | 4.5824E-03          | 2.5144E-03 | 7.4162E-C4 |            |            |
| 7   | 1.5382E-02 | 1.3737E-02 | 1.1838E-02 | 9.77C6E-03 | 7.3925E-03  | 4.8438E-03          | 2.6736E-03 | 7.9618E-04 |            |            |
| 3   | 1.3782E-02 | 1.2949E-02 | 1.1558E-02 | 9.7706E-03 | 7.3217E-03  | 4.9393E-03          | 2.7728F-03 | 8.3564F-C4 |            |            |
| •)  | 1.17358-02 | 1.1413E-02 | 1.C827E-02 | 9.3515E-J3 | 7.3925E-03  | 4 <b>.93</b> 93E-03 | 2.8026F-03 | 8.5546E-C4 |            |            |
| 10  | 1.16845-02 | 1.0525E-02 | 9.99385-03 | 8.8932E-03 | .7.1106E-03 | 4.8438E-03          | 2.7728F-C3 | 8.5546E-C4 |            |            |
| 11  | 1.13475-02 | 1.0377E-02 | 9.3697E-03 | 8.2514E-03 | 6.4982E-03  | <b>4.5824E-03</b>   | 2.6736E-03 | 8.3564E-04 |            |            |
| 12  | 1.0377E-02 | 9.7350E-03 | 8.7797E-03 | 7.5984E-03 | 6.1486E-03  | 4.26518-03          | 2.5144E-03 | 7.5618E-04 |            |            |
| د 1 | 5.3697E-03 | 8.7797E-03 | 7.97015-03 | 6.9802E-03 | 5.6260E-03  | 3.9183E-C3          | 2.3189E-03 | 7.4162E-04 |            |            |
| 14  | 8.2514E-03 | 7.5984E-03 | 6.9802E-03 | 6.C381E-C3 | 4.7348E-03  | 3.4300E-03          | 2.07208-03 | 6.7310E-04 |            |            |
| 15  | 6.4782E-J3 | 6.1486F-03 | 5.6260E-03 | 4.7348E-03 | 3.8211F-03  | 2.8210E-03          | 1.7568E-03 | 5.8624E-C4 |            |            |
| 16  | 4.5824E-03 | 4.2651E-03 | 3.9183E-J3 | 3.4300E-03 | 2.9210E-03  | 2 <b>.</b> 1461E-03 | 1.3841E-03 | 4.8011E-04 |            |            |
| 17  | 2•6736E-03 | 2.5144E-03 | 2.3189E-03 | 2.J720E-03 | 1.75685-03  | 1-3841E-03          | 9.4707E-04 | 3.5488E-04 |            |            |
| 13  | 8.2564F-04 | 7.96188-04 | 7.4162E-04 | 6.7310E-04 | 5.8624E-04  | 4.8011E-04          | 3.5488E-04 | 2.CO14E-04 |            |            |

- 68 -

-

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                           | 9          | 10         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5836+-33                                                                                                                                                                                                                                                                                                                                                     | 2.06C4F-03                                                                                                                                                                                                                                      | 2.6024F-03                                                                                                                                                                                                                                                     | 2.5129F-03                                                                                                                                                                                                                                                                   | 2.3885E+03                                                                                                                                                                                                                                                     | 2.2101E-03                                                                                                                                                                                                                                                    | 1.9674E-03                                                                                                                                                                                                                                                     | L-6652E-03                                                                                                                                                                                                                                                                  | 1.3042E-C3 | 9.936CE-C4 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.66035-03                                                                                                                                                                                                                                                                                                                                                     | 2.66030-05                                                                                                                                                                                                                                      | 2.6217F-03                                                                                                                                                                                                                                                     | 2.5526E-03                                                                                                                                                                                                                                                                   | 2.4647F-03                                                                                                                                                                                                                                                     | 2.3322F-03                                                                                                                                                                                                                                                    | 2.1115F-03                                                                                                                                                                                                                                                     | 1.8194E-C3                                                                                                                                                                                                                                                                  | 1.4678E-03 | 1.0242E-C3 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.60245-03                                                                                                                                                                                                                                                                                                                                                     | 2.6217F-03                                                                                                                                                                                                                                      | 2.6024E-03                                                                                                                                                                                                                                                     | 2.5526E-03                                                                                                                                                                                                                                                                   | 2.5025E-C3                                                                                                                                                                                                                                                     | 2.5160E-03                                                                                                                                                                                                                                                    | 2.3605F-03                                                                                                                                                                                                                                                     | 1.9829F-03                                                                                                                                                                                                                                                                  | 1.6286E-C3 | 1.1546E-C3 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.51295-03                                                                                                                                                                                                                                                                                                                                                     | 2.5526E-03                                                                                                                                                                                                                                      | 2.5526E-03                                                                                                                                                                                                                                                     | 2.5129F-03                                                                                                                                                                                                                                                                   | 2.4647E-03                                                                                                                                                                                                                                                     | 2.516CE-03                                                                                                                                                                                                                                                    | 2.5556E-03                                                                                                                                                                                                                                                     | 2.2123E-C3                                                                                                                                                                                                                                                                  | 1.779CE-C3 | 1.4242E-C3 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.38855-03                                                                                                                                                                                                                                                                                                                                                     | 2.4647E-03                                                                                                                                                                                                                                      | 2.5C25F-03                                                                                                                                                                                                                                                     | 2.4647E-03                                                                                                                                                                                                                                                                   | 2.3895F-03                                                                                                                                                                                                                                                     | 2.3322E-03                                                                                                                                                                                                                                                    | 2.36058-03                                                                                                                                                                                                                                                     | 2.2123E-03                                                                                                                                                                                                                                                                  | 1.8421E-03 | 1.5285E-03 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2101E-03                                                                                                                                                                                                                                                                                                                                                     | 2.33225-03                                                                                                                                                                                                                                      | 2.51602-03                                                                                                                                                                                                                                                     | 2.516CE-C3                                                                                                                                                                                                                                                                   | 2.3322E-03                                                                                                                                                                                                                                                     | 2.21J1E-03                                                                                                                                                                                                                                                    | 2.1115E-03                                                                                                                                                                                                                                                     | 1,9829E-03                                                                                                                                                                                                                                                                  | 1.7790E-03 | 1.5285E-03 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5674E-03                                                                                                                                                                                                                                                                                                                                                     | 2.1115E-03                                                                                                                                                                                                                                      | 2.3605E-03                                                                                                                                                                                                                                                     | 2.5556E-03                                                                                                                                                                                                                                                                   | 2.36C5E-03                                                                                                                                                                                                                                                     | 2.1115E-03                                                                                                                                                                                                                                                    | 1.9674E-C3                                                                                                                                                                                                                                                     | 1.8194E-03                                                                                                                                                                                                                                                                  | 1.6286E-03 | 1.4242E-C3 |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.66525-03                                                                                                                                                                                                                                                                                                                                                     | 1.8194E-03                                                                                                                                                                                                                                      | 1.9829E-03                                                                                                                                                                                                                                                     | 2.2123E-C3                                                                                                                                                                                                                                                                   | 2.2123E-03                                                                                                                                                                                                                                                     | 1.9829E-03                                                                                                                                                                                                                                                    | 1.8194E-03                                                                                                                                                                                                                                                     | 1.6652E-03                                                                                                                                                                                                                                                                  | 1.4678E-C3 | 1.1546E-03 |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3043E-03                                                                                                                                                                                                                                                                                                                                                     | 1.4678E-03                                                                                                                                                                                                                                      | 1.6286F-03                                                                                                                                                                                                                                                     | 1.7790E-03                                                                                                                                                                                                                                                                   | 1.8421E-03                                                                                                                                                                                                                                                     | 1.7790E-03                                                                                                                                                                                                                                                    | 1.6286E-C3                                                                                                                                                                                                                                                     | l.4678E-C3                                                                                                                                                                                                                                                                  | 1.3042E-03 | 1.0242E-C3 |
| lu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.9360F-04                                                                                                                                                                                                                                                                                                                                                     | 1.0242E-03                                                                                                                                                                                                                                      | 1.1546E-03                                                                                                                                                                                                                                                     | 1.4242E-J3                                                                                                                                                                                                                                                                   | 1.5285E-03                                                                                                                                                                                                                                                     | 1.5285E-03                                                                                                                                                                                                                                                    | 1.4242F-03                                                                                                                                                                                                                                                     | 1.1546E-03                                                                                                                                                                                                                                                                  | 1.0242E-C3 | 9.9359E-C4 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.4756E-04                                                                                                                                                                                                                                                                                                                                                     | 3 <b>.113</b> 4E-04                                                                                                                                                                                                                             | 7.4795E-J4                                                                                                                                                                                                                                                     | 1.0067E-03                                                                                                                                                                                                                                                                   | 1.2414E-03                                                                                                                                                                                                                                                     | 1.2877E-03                                                                                                                                                                                                                                                    | 1.2414E-03                                                                                                                                                                                                                                                     | 1.0067E-03                                                                                                                                                                                                                                                                  | 7.4795E-04 | 8.1133E-04 |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.71515-04                                                                                                                                                                                                                                                                                                                                                     | 7.91CBE-C4                                                                                                                                                                                                                                      | 7.4033E-04                                                                                                                                                                                                                                                     | 8 <b>.1163E-04</b>                                                                                                                                                                                                                                                           | 1.0106E-03                                                                                                                                                                                                                                                     | 1.1013E-03                                                                                                                                                                                                                                                    | 1.I013E-03                                                                                                                                                                                                                                                     | 1.0106E-C3                                                                                                                                                                                                                                                                  | 8.1163E-04 | 7.4032E-C4 |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0777E-04                                                                                                                                                                                                                                                                                                                                                     | 7.34355-04                                                                                                                                                                                                                                      | 7.6328E-04                                                                                                                                                                                                                                                     | 8.1079E-C4                                                                                                                                                                                                                                                                   | 8.8432E-04                                                                                                                                                                                                                                                     | 5.6091E-04                                                                                                                                                                                                                                                    | 9.9517E-04                                                                                                                                                                                                                                                     | 9.6C91E-04                                                                                                                                                                                                                                                                  | 8.8431E-04 | 8.1079E-04 |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7• 01 2 2F - 04                                                                                                                                                                                                                                                                                                                                                | 7.J962E-94                                                                                                                                                                                                                                      | 7.0944E-04                                                                                                                                                                                                                                                     | 8.C730E-04                                                                                                                                                                                                                                                                   | 8.6602E-04                                                                                                                                                                                                                                                     | 8.6568E-04                                                                                                                                                                                                                                                    | 9.5837E-04                                                                                                                                                                                                                                                     | 9.5837E-04                                                                                                                                                                                                                                                                  | 8.6568E-04 | 8.6602E-04 |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.6244E-04                                                                                                                                                                                                                                                                                                                                                     | 6.45526-04                                                                                                                                                                                                                                      | 6.7551E-04                                                                                                                                                                                                                                                     | 7.3385E-04                                                                                                                                                                                                                                                                   | 8.3246E-C4                                                                                                                                                                                                                                                     | 8.4046E-04                                                                                                                                                                                                                                                    | 8.7602E-04                                                                                                                                                                                                                                                     | 9.3711E-04                                                                                                                                                                                                                                                                  | 8.76025-04 | 8.4047E-C4 |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.45855-04                                                                                                                                                                                                                                                                                                                                                     | 4.3928E-04                                                                                                                                                                                                                                      | 5.C839E-04                                                                                                                                                                                                                                                     | 5.64156-04                                                                                                                                                                                                                                                                   | 6.1887E-04                                                                                                                                                                                                                                                     | 6.6220E-04                                                                                                                                                                                                                                                    | 6.9101E-04                                                                                                                                                                                                                                                     | 7.1369E-C4                                                                                                                                                                                                                                                                  | 7.1369E-04 | 6.9101E-04 |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.506?E-04                                                                                                                                                                                                                                                                                                                                                     | 2.2113E-04                                                                                                                                                                                                                                      | 2.7391E-04                                                                                                                                                                                                                                                     | 3.1568E-04                                                                                                                                                                                                                                                                   | 3.5045E-04                                                                                                                                                                                                                                                     | 3.7954E-04                                                                                                                                                                                                                                                    | 4.01815-04                                                                                                                                                                                                                                                     | 4.1663E-04                                                                                                                                                                                                                                                                  | 4.222CE-04 | 4.1663E-C4 |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.90545-05                                                                                                                                                                                                                                                                                                                                                     | 3.76C9E-05                                                                                                                                                                                                                                      | 5.03888-05                                                                                                                                                                                                                                                     | 6.02560-05                                                                                                                                                                                                                                                                   | 6.82458-05                                                                                                                                                                                                                                                     | 7.4847E-05                                                                                                                                                                                                                                                    | 8.C140E-05                                                                                                                                                                                                                                                     | 8.3956E-05                                                                                                                                                                                                                                                                  | 8.6022F-05 | 8.6022E-05 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                                                                          |            |            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11<br>8.475€E-04                                                                                                                                                                                                                                                                                                                                               | 12<br>7 <b>.7</b> 151E-04                                                                                                                                                                                                                       | 13<br>7.0777E-04                                                                                                                                                                                                                                               | 14<br>7.0122E-04                                                                                                                                                                                                                                                             | 15<br>5.6244E-04                                                                                                                                                                                                                                               | 16<br>3.4585E-04                                                                                                                                                                                                                                              | 17<br>1.5063E-04                                                                                                                                                                                                                                               | 18<br>1.9053E-05                                                                                                                                                                                                                                                            |            |            |
| 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11<br>8.475 <del>6</del> E-04<br>8.1134E-04                                                                                                                                                                                                                                                                                                                    | 12<br>7•7151E-04<br>7•9108E-04                                                                                                                                                                                                                  | 13<br>7.0777E-04<br>7.3435E-04                                                                                                                                                                                                                                 | 14<br>7.0122E-04<br>7.0861E-04                                                                                                                                                                                                                                               | 15<br>5.6244E-04<br>6.4552E-04                                                                                                                                                                                                                                 | 16<br>3.4585E-04<br>4.3928E-C4                                                                                                                                                                                                                                | 17<br>1.5063E-04<br>2.2118E-C4                                                                                                                                                                                                                                 | 18<br>1.9053E-05<br>3.76C9F-05                                                                                                                                                                                                                                              |            |            |
| 1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>8.475 <del>6</del> E-04<br>8.1134E-04<br>7.4795E-04                                                                                                                                                                                                                                                                                                      | 12<br>7.7151E-04<br>7.9109E-04<br>7.4032E-04                                                                                                                                                                                                    | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-04                                                                                                                                                                                                                   | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04                                                                                                                                                                                                                                 | 15<br>5.6244E-04<br>6.4552E-04<br>6.7561E-04                                                                                                                                                                                                                   | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04                                                                                                                                                                                                                  | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04                                                                                                                                                                                                                   | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05                                                                                                                                                                                                                                |            |            |
| 1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>8.4756E-04<br>8.1134E-04<br>7.4795E-04<br>1.0067E-03                                                                                                                                                                                                                                                                                                     | 12<br>7.7151E-04<br>7.9109E-04<br>7.4032E-04<br>8.1163E-04                                                                                                                                                                                      | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04                                                                                                                                                                                                     | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.)730E-04                                                                                                                                                                                                                   | 15<br>5.6244E-04<br>6.4552E-04<br>6.7561E-04<br>7.3385E-04                                                                                                                                                                                                     | 16<br>3.4585E-04<br>4.3928E-C4<br>5.0839E-04<br>5.6415E-04                                                                                                                                                                                                    | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04                                                                                                                                                                                                     | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.C256E-05                                                                                                                                                                                                                  |            |            |
| 1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11<br>8.4756E-04<br>8.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03                                                                                                                                                                                                                                                                                       | 12<br>7.7151E-04<br>7.9109E-04<br>7.4032E-04<br>9.1163E-04<br>1.0106E-03                                                                                                                                                                        | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-34                                                                                                                                                                                       | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04                                                                                                                                                                                                     | 15<br>5.6244E-04<br>6.4552E-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04                                                                                                                                                                                       | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04                                                                                                                                                                                      | 17<br>1.5063E-04<br>2.2118E-04<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04                                                                                                                                                                                       | 18<br>1.9053E-05<br>3.7609F-05<br>5.0388E-05<br>6.0256E-05<br>6.8245E-05                                                                                                                                                                                                    |            |            |
| 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11<br>8.4756E-04<br>8.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2877E-03                                                                                                                                                                                                                                                                         | 12<br>7.7151E-04<br>7.9109E-04<br>7.4032E-04<br>9.1163E-04<br>1.0106E-03<br>1.1013E-03                                                                                                                                                          | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-34<br>9.6090E-04                                                                                                                                                                         | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04                                                                                                                                                                                       | 15<br>5.6244E-04<br>6.4552E-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04                                                                                                                                                                         | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04                                                                                                                                                                        | 17<br>1.5063E-04<br>2.2118E-04<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04                                                                                                                                                                         | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.C256E-05<br>6.8245E-05<br>7.4847E-05                                                                                                                                                                                      |            |            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11<br>8.4756E-04<br>8.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2877E-03<br>1.2414E-33                                                                                                                                                                                                                                                           | 12<br>7.7151E-04<br>7.9109E-04<br>7.4032E-04<br>9.1163E-04<br>1.0106E-03<br>1.1013E-03<br>1.1013F-03                                                                                                                                            | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-34<br>9.6090E-04<br>9.9517E-04                                                                                                                                                           | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04                                                                                                                                                                         | 15<br>5.6244E-04<br>6.4552E-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.7601E-04                                                                                                                                                           | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.5101E-04                                                                                                                                                          | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.C181E-C4                                                                                                                                                           | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.C256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140F-C5                                                                                                                                                                        |            |            |
| 12345679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>8.4756E-04<br>8.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2877F-03<br>1.2414E-33<br>1.0067F-03                                                                                                                                                                                                                                             | 12<br>7.7151E-04<br>7.9109E-04<br>7.4032E-04<br>9.1163E-04<br>1.0106E-03<br>1.1013E-03<br>1.0103E-03<br>1.0103E-03                                                                                                                              | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-34<br>9.6090E-04<br>9.9517E-04<br>5.6091E-04                                                                                                                                             | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04                                                                                                                                                           | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.7601E-04<br>9.3713E-04                                                                                                                                             | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.9101E-04<br>7.1369E-04                                                                                                                                            | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.C181E-C4<br>4.1663E-04                                                                                                                                             | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.C256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140F-C5<br>8.3955E-05                                                                                                                                                          |            |            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11<br>8.4756E-04<br>8.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2877E-03<br>1.2414E-33<br>1.0067E-03<br>7.4795E-34                                                                                                                                                                                                                               | 12<br>7.7151E-04<br>7.9109E-04<br>7.4032E-04<br>9.1163E-04<br>1.0106E-03<br>1.1013E-03<br>1.013F-03<br>1.0106E-03<br>8.1163E-04                                                                                                                 | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-34<br>9.6090E-04<br>9.9517E-04<br>5.6C91E-04<br>8.8432E-04                                                                                                                               | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04<br>8.6568E-04                                                                                                                                             | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.7601E-04<br>9.3710E-04<br>8.7602F-04                                                                                                                               | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.9101E-04<br>7.1369E-04<br>7.1368E-04                                                                                                                              | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.C181E-C4<br>4.1663E-04<br>4.2220E-04                                                                                                                               | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.C256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140F-C5<br>8.3955E-05<br>8.6022E-05                                                                                                                                            |            |            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>8.4756E-04<br>8.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2414E-03<br>1.2414E-33<br>1.0067F-03<br>7.4755E-34<br>E.113E-C4                                                                                                                                                                                                                  | 12<br>7.7151E-04<br>7.9109E-04<br>7.4032E-04<br>9.1163E-04<br>1.0106E-03<br>1.1013E-03<br>1.013E-03<br>1.0106E-03<br>8.1163E-04<br>7.4032E-04                                                                                                   | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-34<br>9.6090E-04<br>9.9517E-04<br>5.6C91E-04<br>8.8432E-04<br>8.1C79E-04                                                                                                                 | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04<br>8.6568E-04<br>8.6602E-04                                                                                                                               | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.7601E-04<br>9.3710E-04<br>8.7602F-04<br>3.4046E-04                                                                                                                 | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.5101E-04<br>7.1369E-04<br>7.1368E-04<br>6.9101E-04                                                                                                                | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.0181E-C4<br>4.1663E-04<br>4.220E-04<br>4.1663E-04                                                                                                                  | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.2256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140E-C5<br>8.3955E-05<br>8.6022E-C5<br>8.6022E-C5                                                                                                                              |            |            |
| 123456789011<br>112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11<br>8.4756E-04<br>8.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2414E-03<br>1.2414E-33<br>1.0067F-03<br>7.4755E-34<br>E.1133E-04<br>8.4756E-04                                                                                                                                                                                                   | 12<br>7.7151E-04<br>7.9108E-04<br>7.4032E-04<br>8.1163E-04<br>1.0106E-03<br>1.1013E-03<br>1.013E-03<br>1.0106E-03<br>8.1163E-04<br>7.4032E-04<br>7.9108E-04                                                                                     | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-34<br>9.6090E-04<br>9.9517E-04<br>5.6C91E-04<br>8.8432E-04<br>8.1C79E-04<br>7.6329E-04                                                                                                   | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04<br>8.6568E-04<br>8.6602E-04<br>8.6602E-04<br>8.6602E-04                                                                                                   | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.7601E-04<br>9.3710E-04<br>8.7602F-04<br>8.4046E-04<br>8.3246E-04                                                                                                   | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.9101E-04<br>7.1368E-04<br>6.9101E-04<br>6.920E-04<br>6.920E-04                                                                                                    | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.0181E-C4<br>4.1663E-04<br>4.0181E-04<br>2.2005-04                                                                                                                  | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.2256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140F-C5<br>8.3955E-05<br>8.6022E-C5<br>8.3955E-05<br>8.6022E-05<br>8.3955E-05                                                                                                  |            |            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>1<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11<br>8.4756E-04<br>R.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2414E-03<br>1.2414E-33<br>1.0067F-03<br>7.4755E-34<br>E.1133E-04<br>8.4756E-04<br>7.5108E-04                                                                                                                                                                                     | 12<br>7.7151E-04<br>7.9108E-04<br>7.4032E-04<br>8.1163E-04<br>1.0126E-03<br>1.1013E-03<br>1.0126E-03<br>1.0126E-03<br>8.1163E-04<br>7.4032E-04<br>7.9108E-04<br>7.5151E-04                                                                      | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-34<br>9.6090E-04<br>9.9517E-04<br>5.6C91E-04<br>8.8432E-04<br>8.1C79E-04<br>7.6328E-04<br>7.3435E-04                                                                                     | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04<br>8.6568E-04<br>8.6568E-04<br>8.6602E-04<br>8.6730E-04<br>7.0944E-04                                                                                     | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.76C1E-04<br>9.3713E-04<br>8.76C2F-04<br>3.4046E-04<br>8.3246E-04<br>7.3385E-04                                                                                     | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.9101E-04<br>7.1369E-04<br>7.1368E-04<br>6.9101E-04<br>6.6220E-04<br>6.6220E-04<br>6.1387E-04                                                                      | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.0181E-C4<br>4.1663E-04<br>4.1663E-04<br>4.1663E-04<br>4.0181E-04<br>3.7954E-04<br>3.7954E-04<br>3.7954E-04                                                         | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.2256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140F-C5<br>8.3955E-05<br>8.6022E-C5<br>8.3955E-05<br>8.6140F-05<br>8.675-05                                                                                                    |            |            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>1<br>1<br>2<br>3<br>1<br>1<br>2<br>3<br>1<br>1<br>2<br>1<br>1<br>2<br>3<br>1<br>1<br>1<br>2<br>3<br>1<br>1<br>2<br>1<br>1<br>2<br>3<br>1<br>1<br>2<br>3<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>8.4756E-04<br>8.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2414E-03<br>1.2414E-33<br>1.0067F-03<br>7.4755E-34<br>E.1133E-04<br>8.4756E-04<br>7.5108E-04<br>7.6328E-04                                                                                                                                                                       | 12<br>7.7151E-04<br>7.9108E-04<br>7.4032E-04<br>8.1163E-04<br>1.0126E-03<br>1.1013E-03<br>1.0126E-03<br>8.1163E-04<br>7.4032E-04<br>7.4032E-04<br>7.9108E-04<br>7.7151E-04<br>7.3435E-04                                                        | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-34<br>9.6090E-04<br>9.9517E-04<br>5.6C91E-04<br>8.8432E-04<br>8.1C79E-04<br>7.6328E-04<br>7.3435E-04<br>7.3435E-04                                                                       | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04<br>8.6568E-04<br>8.6602E-04<br>8.6602E-04<br>8.6730E-04<br>7.0944E-04<br>7.0944E-04                                                                       | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.7601E-04<br>9.3710E-04<br>8.7602F-04<br>8.4046E-04<br>8.3246E-04<br>7.3385E-04<br>6.7561F-04                                                                       | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.9101E-04<br>7.1368E-04<br>6.9101E-04<br>6.9101E-04<br>6.6220E-04<br>6.1387E-04<br>5.66415E-04                                                                     | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.0181E-04<br>4.0181E-04<br>4.0181E-04<br>3.7954E-04<br>4.0181E-04<br>3.7954E-04<br>4.0181E-04<br>3.7954E-04                                                         | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.2256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140E-C5<br>8.3955E-05<br>8.6022E-C5<br>8.3955E-05<br>8.6022F-C5<br>8.3955E-05<br>8.C140E-05<br>7.4847E-05<br>6.626E-05                                                         |            |            |
| $\frac{1}{2} \frac{3}{4} \frac{5}{5} \frac{6}{6} \frac{7}{7} \frac{9}{9} \frac{9}{9} \frac{11}{12} \frac{13}{14} \frac{15}{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11<br>8.4756E-04<br>R.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2414E-03<br>1.2414E-33<br>1.0067F-03<br>7.4755E-34<br>8.4756E-04<br>7.51C8E-04<br>7.51C8E-04<br>9.3256E-04<br>8.3256E-04                                                                                                                                                         | 12<br>7.7151E-04<br>7.9108E-04<br>7.4032E-04<br>8.1163E-04<br>1.0126E-03<br>1.1013E-03<br>1.0126E-03<br>1.0126E-03<br>8.1163E-04<br>7.4032E-04<br>7.9108E-04<br>7.9108E-04<br>7.3435E-04<br>7.3946E-04<br>7.3385E-04                            | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-04<br>9.6090E-04<br>9.9517E-04<br>5.6C91E-04<br>8.8432E-04<br>8.8432E-04<br>8.1C79E-04<br>7.6329E-04<br>7.3435E-04<br>7.0861E-04<br>6.7561E-04                                           | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04<br>8.6568E-04<br>8.6568E-04<br>8.6602E-04<br>8.6730E-04<br>7.0944E-04<br>7.0122E-04<br>6.6552E-04                                                         | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.76C1E-04<br>9.3710E-04<br>8.76C2F-04<br>8.4046E-04<br>8.3246E-04<br>7.3385E-04<br>6.7561F-04<br>5.626E-04                                                          | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.9101E-04<br>7.1369E-04<br>7.1368E-04<br>6.9101E-04<br>6.920E-04<br>6.1387E-04<br>5.6415E-04<br>5.0839E-04                                                         | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.0181E-C4<br>4.1663E-04<br>4.1663E-04<br>4.1663E-04<br>4.0181E-04<br>3.7954E-C4<br>3.5045E-04<br>3.1568E-C4                                                         | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.2256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140F-C5<br>8.3955E-05<br>8.6022E-C5<br>8.3955E-05<br>8.6022F-C5<br>8.3955E-05<br>8.6140E-05<br>7.4847E-05<br>6.8245E-C5<br>6.6245E-C5                                          |            |            |
| 12345673901123450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11<br>8.475 €E - 04<br>R.113 4E - 04<br>7.4795E - 04<br>1.006 7E - 03<br>1.241 4E - 03<br>1.241 4E - 03<br>1.241 4E - 03<br>1.241 4E - 03<br>1.006 7F - 03<br>7.4755E - 04<br>8.4756E - 04<br>7.51C & E - 04<br>7.51C & E - 04<br>8.3246F - 04<br>8.3246F - 04<br>6.6220E - 04                                                                                 | 12<br>7.7151E-04<br>7.9108E-04<br>7.4032E-04<br>8.1163E-04<br>1.0126E-03<br>1.1013E-03<br>1.0126E-03<br>1.0126E-03<br>8.1163E-04<br>7.4032E-04<br>7.9108E-04<br>7.9108E-04<br>7.3435E-04<br>7.3385E-04<br>6.1887E-04                            | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-04<br>9.6090E-04<br>9.9517E-04<br>5.6C91E-04<br>8.8432E-04<br>8.1C79E-04<br>7.6328E-04<br>7.3435E-04<br>7.0861E-04<br>6.7561E-04<br>5.561E-04                                            | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04<br>8.6568E-04<br>8.6568E-04<br>8.6602E-04<br>8.6602E-04<br>8.0730E-04<br>7.0944E-04<br>7.0122E-04<br>6.4552E-04<br>5.0838E-04                             | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.76C1E-04<br>9.3710E-04<br>8.76C2F-04<br>8.76C2F-04<br>8.3246E-04<br>7.3385E-04<br>6.7561F-04<br>6.4552E-04<br>5.6244E-04                                           | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.9101E-04<br>7.1369E-04<br>7.1368E-04<br>6.9101E-04<br>6.9101E-04<br>6.6220E-04<br>6.1387E-04<br>5.6415E-04<br>5.0839F-04<br>4.3928E-04<br>3.6585E-04              | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.0181E-C4<br>4.1663E-04<br>4.0181E-04<br>4.0181E-04<br>3.7954E-04<br>3.5045E-04<br>3.5045E-04<br>3.1568E-C4<br>2.7391E-04                                           | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.2256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140F-C5<br>8.3955E-05<br>8.6022E-C5<br>8.3955E-05<br>8.6022F-C5<br>8.3955E-05<br>8.6140E-05<br>7.4847E-05<br>6.8245E-C5<br>6.6256E-05<br>5.0388E-05                            |            |            |
| $\frac{12}{34} \frac{56}{56} \frac{7}{8} \frac{901}{11} \frac{12}{14} \frac{15}{15} \frac{5}{6} \frac{7}{11} \frac{12}{11} \frac{15}{11} \frac{5}{11} \frac{1}{11} \frac{1}$ | 11<br>8.4756E-04<br>R.1134E-04<br>7.4795E-04<br>1.0067E-03<br>1.2414E-03<br>1.2414E-03<br>1.2414E-03<br>1.2414E-03<br>1.0067F-03<br>7.4755E-04<br>8.4756E-04<br>7.51C8E-04<br>7.6328F-04<br>8.3246F-04<br>8.3246F-04<br>6.6220E-04<br>4.0181E-04                                                                                                               | 12<br>7.7151E-04<br>7.9108E-04<br>7.4032E-04<br>8.1163E-04<br>1.0126E-03<br>1.1013E-03<br>1.0126E-03<br>1.0126E-03<br>8.1163E-04<br>7.4032E-04<br>7.9108E-04<br>7.9108E-04<br>7.3385E-04<br>7.3385E-04<br>6.1387E-04                            | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-04<br>9.6090E-04<br>9.9517E-04<br>5.6C91E-04<br>8.8432E-04<br>8.1C79E-04<br>7.6329E-04<br>7.6329E-04<br>7.3435E-04<br>7.0861E-04<br>6.7561E-04<br>5.6415E-04                             | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04<br>8.6568E-04<br>8.6568E-04<br>8.6602E-04<br>8.6602E-04<br>8.6730E-04<br>7.0944E-04<br>7.0122E-04<br>6.4552E-04<br>5.0839E-04<br>3.1568E-04               | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.76C1E-04<br>9.3710E-04<br>8.76C2F-04<br>8.76C2F-04<br>8.3246E-04<br>7.3385E-04<br>6.7561F-04<br>6.4552E-04<br>5.6244E-04<br>4.3928E-04<br>2.7391E-04               | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.9101E-04<br>7.1369E-04<br>7.1368E-04<br>6.9101E-04<br>6.9101E-04<br>6.6220E-04<br>6.1387E-04<br>5.6415E-04<br>5.0839E-04<br>4.3928E-04<br>2.2118E-04              | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.0181E-C4<br>4.1663E-04<br>4.0181E-04<br>3.7954E-04<br>4.0181E-04<br>3.7954E-C4<br>3.5045E-04<br>3.1568E-C4<br>2.7391F-04<br>2.2118F-04<br>1.5063E-04               | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.2256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140F-C5<br>8.3955E-05<br>8.6022E-C5<br>8.3955E-05<br>8.6022F-C5<br>8.3955E-05<br>8.6245E-C5<br>6.8245E-C5<br>6.8245E-C5<br>5.0388E-05<br>3.7665E-05                            |            |            |
| $\frac{123456739012345678}{111111111111111111111111111111111111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $11$ 8.475 $\in$ - 04<br>R.113 4E - 04<br>7.4795E - 04<br>1.006 7E - 03<br>1.241 4E - 03<br>1.25E - 04<br>8.4756E - 04<br>7.6326E - 04<br>8.3246E - 04<br>8.3246E - 04<br>8.3256E - 04<br>4.0181E - 04<br>8.3955E - 05 | 12<br>7.7151E-04<br>7.9108E-04<br>7.4032E-04<br>8.1163E-04<br>1.0126E-03<br>1.1013E-03<br>1.013E-03<br>1.0126E-03<br>8.1163E-04<br>7.4032E-04<br>7.4032E-04<br>7.9108E-04<br>7.3151E-04<br>7.3385E-04<br>7.3385E-04<br>6.1887E-04<br>3.7954E-04 | 13<br>7.0777E-04<br>7.3435E-04<br>7.6328E-34<br>8.1079E-04<br>8.8431E-04<br>9.6090E-04<br>9.9517E-04<br>5.6C91E-04<br>8.8432E-04<br>8.8432E-04<br>8.1C79E-04<br>7.6329E-04<br>7.3435E-04<br>7.0861E-04<br>6.7561E-04<br>5.6415E-04<br>3.5045E-34<br>7.4847E-05 | 14<br>7.0122E-04<br>7.0861E-04<br>7.0944E-04<br>8.0730E-04<br>8.6602E-04<br>8.6568E-04<br>9.5837E-04<br>9.5837E-04<br>8.6568E-04<br>8.6568E-04<br>8.6602E-04<br>8.6602E-04<br>8.6730E-04<br>7.0944E-04<br>7.0122E-04<br>6.4552E-04<br>5.0839E-04<br>3.1568E-04<br>6.8245E-05 | 15<br>5.6244E-04<br>6.4552F-04<br>6.7561E-04<br>7.3385E-04<br>8.3246E-04<br>8.4046E-04<br>8.76C1E-04<br>9.3710E-04<br>8.76C2F-04<br>8.76C2F-04<br>8.3246E-04<br>7.3385E-04<br>6.7561F-04<br>6.4552E-04<br>5.6244E-04<br>4.3928E-04<br>2.7391E-04<br>6.6256E-05 | 16<br>3.4585E-04<br>4.3928E-04<br>5.0839E-04<br>5.6415E-04<br>6.1887E-04<br>6.6220E-04<br>6.9101E-04<br>7.1369E-04<br>7.1369E-04<br>7.1368E-04<br>6.9101E-04<br>6.6220E-04<br>6.9101E-04<br>5.6415E-04<br>5.0839E-04<br>4.3928E-04<br>2.2118E-04<br>5.088E-05 | 17<br>1.5063E-04<br>2.2118E-C4<br>2.7391E-04<br>3.1568F-04<br>3.5045E-04<br>3.7954E-04<br>4.0181E-C4<br>4.1663E-04<br>4.0181E-04<br>4.0181E-04<br>3.7954E-04<br>3.5045E-04<br>3.5045E-04<br>3.1568E-C4<br>2.7391F-04<br>2.2118E-04<br>1.5063E-04<br>3.7609E-05 | 18<br>1.9053E-C5<br>3.76C9F-C5<br>5.0388E-05<br>6.2256E-05<br>6.8245E-05<br>7.4847E-05<br>8.C140F-C5<br>8.3955E-05<br>8.6022E-C5<br>8.3955E-05<br>8.6022F-C5<br>8.3955E-05<br>8.622E-C5<br>6.8245E-C5<br>6.8245E-C5<br>6.8245E-C5<br>5.0388E-05<br>3.76C9E-C5<br>1.9053E-05 |            |            |

|                | 1           | 2                  | 3          | 4          | 5          | 6                   | 7                   | 8          | 9          | 10         |
|----------------|-------------|--------------------|------------|------------|------------|---------------------|---------------------|------------|------------|------------|
| 1              | 4.64705-04  | 4.6231E-04         | 4.5591E-04 | 4.4647E-04 | 4.2977E-04 | 2.9624E-04          | 3.4239E-04          | 2.7134E-04 | 1.82695-04 | 1.1389F-04 |
| $\overline{2}$ | 4.62318-04  | 4.6231E-04         | 4.5814E-04 | 4.5233E-04 | 4.4685E-04 | 4.2825E-04          | 3.7978E-04          | 3.0946F-04 | 2.2261E-04 | 1.0935E-04 |
| 3              | 4.55918-04  | 4.5814E-04         | 4.5591E-04 | 4.5233E-C4 | 4.5756E-04 | 4.8730E-04          | 4.5845E-04          | 3.5625E-04 | 2.6436E-04 | 1.3557F-04 |
| 4              | 4.46476-04  | 4.5233E-04         | 4.5233E-04 | 4.4647E-04 | 4.4685E-04 | 4.8730E-04          | 5.C922E-04          | 4.2914E-C4 | 3.C723E-04 | 2.1532E-04 |
| 5              | 4.2977E-J4  | 4.4685E-04         | 4.5756E-04 | 4.4685E-04 | 4.2977E-04 | 4.2825E-04          | 4.5845E-04          | 4.2914E-04 | 3.2565E-C4 | 2.41C8E-C4 |
| 5              | 3.96245-04  | 4.2825E-04         | 4.8730E-04 | 4.8730F-04 | 4.2825E-04 | 3.9624E-04          | 3.7978E-C4          | 3.5625E-C4 | 3.0723E-04 | 2.4108E-04 |
| 7              | 3.4238F-04  | 3.7978E-04         | 4.5845E-04 | 5.C922E-04 | 4.58458-04 | 3.7978 -04          | 3.4238E-04          | 3.C946E-04 | 2.6436E-04 | 2.1532E-C4 |
| Ŗ              | 2.71346-04  | 3.0946E-04         | 3.5625E-04 | 4.2914E-04 | 4.2914E-04 | 3.5625E+04          | 3.C946E-04          | 2.7134E-04 | 2.2261E-04 | 1.3557E-04 |
| 9              | 1.8269F-04  | 2.2261E-04         | 2.6436E-04 | 3.0723E-04 | 3.2565E-04 | 3.0723E-04          | 2.6436E-04          | 2.2261E-C4 | 1.8269E-04 | 1.0935E-04 |
| 10             | 1.1389E-04  | 1.0935F-04         | 1.3557E-04 | 2.1532E-04 | 2.4108E-04 | 2.4108E-04          | 2.1532E-04          | 1.3557E-04 | 1.0935E-C4 | 1.1389E-04 |
| 11             | 9.7681E-05  | 7.6368E-05         | 5.37168-05 | 1.0888E-04 | 1.7261E-04 | 1.8187E-C4          | 1.7261E-C4          | 1.C888E-C4 | 5.3716E-C5 | 7.6368E-05 |
| 12             | 1.3207E-34  | 9.58248-05         | 7.22920-05 | 8.15286-05 | 1.2929E-04 | 1.4990E-04          | 1.4990E-04          | 1.2929E-04 | 8.1528E-05 | 7.2252E-C5 |
| 13             | 1.1424E-04  | 1.0745E-04         | 1.0549E-04 | 1.1009E-04 | 1.22685-04 | 1.3824E-04          | 1.4560E-04          | 1.3824E-04 | 1.2268E-04 | 1.1009E-04 |
| 14             | 1.5316E-04  | 1.3352E-C4         | 1.2245E-04 | 1.4092E-04 | 1.5032E-04 | 1.4628E-04          | 1.6819E-04          | 1.6819E-04 | 1.4628F-04 | 1.5032E-04 |
| 15             | 1.5986F-04  | 1.6703E-04         | 1.5389E-04 | 1.6323E-C4 | 1.9447E-04 | 1.8415E-04          | 1.9214E-04          | 2.1829E-04 | 1.9214E-04 | 1.8415E-04 |
| 16             | 1.1192E-04  | 1.3466E-04         | 1.4617E-04 | 1.5555E-04 | 1.7010E-04 | 1.8074E-04          | 1.8637E-C4          | 1.9439E-04 | 1.9439E-04 | l.8637E-04 |
| 17             | 5.2147E-05  | 7.4182E-05         | 8.9C01E-05 | 9.7624E-05 | 1.0641E-C4 | 1.1450E-04          | 1.2043E-04          | 1.2473E-C4 | 1.2667E-C4 | 1.2473E-C4 |
| 18             | 7.9306F-96  | 1.4943E-05         | 1.9339E-05 | 2.22595-05 | 2.4543E-05 | 2.6591E-05          | 2.8288E-05          | 2.9527E-C5 | 3.0264E-05 | 3.0264E-05 |
|                | 11          | 12                 | 13         | 14         | 15         | 16                  | 17                  | 18         |            |            |
|                | 9.76815-05  | 1.02075-04         | 1.1424E-C4 | 1.5316E-C4 | 1.5986E-04 | 1.1192E-04          | 5.2147E-05          | 7.9805E-06 |            |            |
| 2              | 7.6368F-05  | 9.5823E-05         | 1.J7459-04 | 1.3352E-04 | 1.6703E-04 | 1.3466E-04          | 7.4182E-05          | 1.4943E-C5 |            |            |
| :              | 5.371 EE-05 | 7.2292E-05         | 1.0549E-04 | 1.2246E-04 | L.5389E-04 | 1.4617E-04          | 8.8001E-05          | 1.9339E-C5 |            |            |
| 4              | 1.08886-04  | 8.1528E-05         | 1.1009E-04 | 1.4092E-04 | 1.6323E-04 | 1.5555E-C4          | 9.7623E-05          | 2.2259E-C5 |            |            |
| 5              | 1.72615-04  | 1.2929E-04         | 1.2269E-04 | 1.5032E-04 | 1.9447E-04 | 1.7010E-04          | 1.0641E-04          | 2.4543E-05 |            |            |
| 6              | 1.31875-04  | 1.4990E-04         | 1.3824E-04 | 1.4628E-04 | 1.8415E-04 | 1.8074E-04          | 1.1450E-04          | 2.6591E-05 |            |            |
| 7              | 1.7261E-04  | 1.499JE-04         | 1.4560E-04 | 1.6819E-04 | 1.9214E-04 | 1.8637E-04          | 1.2043E-04          | 2.E288E-05 |            |            |
| 8              | 1.0888E-04  | 1.2929E-04         | 1.3824E-04 | 1.6819E-04 | 2.1329E-04 | <b>1.94</b> 39E-04  | 1.2473E-04          | 2.9527E-05 |            |            |
| 9              | 5.3716E-05  | 9 <b>.1528E-05</b> | 1.2268E-04 | 1.4628E-04 | 1.9214E-04 | 1.9439E-04          | 1.2667E-04          | 3.C264E-C5 |            |            |
| 1)             | 7.6368E-05  | 7.2292E-05         | 1.1CC9F-04 | 1.5032E-04 | 1.8415E-04 | 1.8637E-04          | 1.2473E-04          | 3.0264E-05 |            |            |
| 11             | 9.768CE-05  | 9.5823E-05         | 1.0549E-04 | 1.4092F-04 | 1.9447E-04 | 1.8074E-C4          | 1.2043E-04          | 2.9527E-C5 |            |            |
| 12             | 5.5323E-05  | 1.02C7E-04         | 1.0745E-04 | 1.2246E-04 | 1.6323E-04 | 1 <b>.7010E-0</b> 4 | 1 <b>.145</b> 0E-04 | 2.8288E-C5 |            |            |
| 13             | 1.05495-04  | 1.0745E-04         | 1.1424E-04 | 1.3352E-C4 | 1.5389E-04 | 1.55558-04          | 1.C641E-04          | 2.6591E-05 |            |            |
| 14             | 1.40920-04  | 1.2246E-04         | 1.3352E-04 | 1.5316E-04 | 1.6703E-04 | 1.4617E-04          | 9.7623E-05          | 2.4543E-05 |            |            |
| 15             | 1.9447E-04  | 1.6323E-04         | 1.5389E-C4 | 1.67C3E-04 | 1.5986E-04 | 1.3466E-04          | 8.8001E-05          | 2.2259E-05 |            |            |
| 16             | 1.2074E-)4  | 1.7010E-04         | 1.5555E-04 | 1.4617E-04 | 1.3466E-04 | 1.1192E-04          | 7.4181E-C5          | 1.9339E-05 |            |            |
| 17             | 1.2043E-04  | 1.1450E-C4         | 1.3641E-04 | 9.7623E-05 | 8.8001E-05 | 7.4181E-05          | 5.2147E-05          | 1.4943E-05 |            |            |
| 13             | 2.95275-05  | 2.9288E-05         | Z.6591E-05 | Z.4543E-05 | Z.2259E-05 | 1.9339E-05          | 1.4943E-05          | 7.9805E-06 |            |            |

SOURCES

|                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                  | 9                                     | 10          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|
| 1                                                                                                                                                                                                      | 2.7234E-04                                                                                                                                                                                                                        | 2.6994E-04                                                                                                                                                                                                                                      | 2.6288E-04                                                                                                                                                                                                                                                    | 2.5161E-04                                                                                                                                                                                                                                                        | 2.3704E-04                                                                                                                                                                                                                                       | 2.1957E-04                                                                                                                                                                                                                                                         | 1.9847E-04                                                                                                                                                                                                                                       | 1.7315E-04                                                                                                                                                                                                                                         | 1-6364E-04                            | 1-6636E-04  |
| 2                                                                                                                                                                                                      | 2.6994F-04                                                                                                                                                                                                                        | 2.6994E-04                                                                                                                                                                                                                                      | 2.6520E-04                                                                                                                                                                                                                                                    | 2.5592E-04                                                                                                                                                                                                                                                        | 2.4279E-04                                                                                                                                                                                                                                       | 2.2719E-04                                                                                                                                                                                                                                                         | 2.0858E-04                                                                                                                                                                                                                                       | 1.8535E-04                                                                                                                                                                                                                                         | 1.572CE-C4                            | 9.9177E-C5  |
| 3                                                                                                                                                                                                      | 2.6288E-04                                                                                                                                                                                                                        | 2.6520E-04                                                                                                                                                                                                                                      | 2.6288E-04                                                                                                                                                                                                                                                    | 2.5592E-04                                                                                                                                                                                                                                                        | 2.4451E-04                                                                                                                                                                                                                                       | 1.53025-04                                                                                                                                                                                                                                                         | 1.4400E-04                                                                                                                                                                                                                                       | 1.9524E-04                                                                                                                                                                                                                                         | 1.6934E-04                            | 9.0061E-05  |
| 4                                                                                                                                                                                                      | 2.5161E-04                                                                                                                                                                                                                        | 2.5592E-04                                                                                                                                                                                                                                      | 2.5592E-04                                                                                                                                                                                                                                                    | 2.5161E-04                                                                                                                                                                                                                                                        | 2.4279E-04                                                                                                                                                                                                                                       | 1.5302E-04                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                              | 1.3581E-04                                                                                                                                                                                                                                         | 1.7954E-04                            | 1.5336E-04  |
| 5                                                                                                                                                                                                      | 2.3704E-04                                                                                                                                                                                                                        | 2.4279E-04                                                                                                                                                                                                                                      | 2.4451E-C4                                                                                                                                                                                                                                                    | 2.4279E-04                                                                                                                                                                                                                                                        | 2.37C4E-04                                                                                                                                                                                                                                       | 2.2719E-04                                                                                                                                                                                                                                                         | 1.4400E-04                                                                                                                                                                                                                                       | 1.3581E-04                                                                                                                                                                                                                                         | 1.8348E-04                            | 1.8386E+04  |
| 6                                                                                                                                                                                                      | 2.1957E-04                                                                                                                                                                                                                        | 2.2719E-04                                                                                                                                                                                                                                      | 1.5302E-04                                                                                                                                                                                                                                                    | 1.5302E-04                                                                                                                                                                                                                                                        | 2.2719E-04                                                                                                                                                                                                                                       | 2.1957E-04                                                                                                                                                                                                                                                         | 2.0858E-04                                                                                                                                                                                                                                       | 1. 5524E-04                                                                                                                                                                                                                                        | 1.7954E-04                            | 1.8386E-C4  |
| 7                                                                                                                                                                                                      | 1.9847E-J4                                                                                                                                                                                                                        | 2.0859E-04                                                                                                                                                                                                                                      | 1.44C0E-C4                                                                                                                                                                                                                                                    | 0.C                                                                                                                                                                                                                                                               | 1.44C0E-04                                                                                                                                                                                                                                       | 2.0858E-04                                                                                                                                                                                                                                                         | 1.9847E-04                                                                                                                                                                                                                                       | 1.8535E-04                                                                                                                                                                                                                                         | 1.6934E-C4                            | 1.5336E-C4  |
| 8                                                                                                                                                                                                      | 1.7315E-04                                                                                                                                                                                                                        | 1.8535E-04                                                                                                                                                                                                                                      | 1.9524E-04                                                                                                                                                                                                                                                    | 1.3581E-04                                                                                                                                                                                                                                                        | 1.3581E-04                                                                                                                                                                                                                                       | 1.9524E-04                                                                                                                                                                                                                                                         | 1.8535E-C4                                                                                                                                                                                                                                       | 1.7315E-C4                                                                                                                                                                                                                                         | 1.5720E-04                            | 9.0061E-05  |
| 9                                                                                                                                                                                                      | 1.63646-04                                                                                                                                                                                                                        | 1.5720E-04                                                                                                                                                                                                                                      | 1.6934E-04                                                                                                                                                                                                                                                    | 1.7954E-04                                                                                                                                                                                                                                                        | 1.8348E-04                                                                                                                                                                                                                                       | 1.7954E-04                                                                                                                                                                                                                                                         | 1.6934E-04                                                                                                                                                                                                                                       | 1.5720E-04                                                                                                                                                                                                                                         | 1.6364E-C4                            | 9.9177E-C5  |
| 10                                                                                                                                                                                                     | 1.5636E-04                                                                                                                                                                                                                        | 9.9177E-05                                                                                                                                                                                                                                      | 9.0C61E-C5                                                                                                                                                                                                                                                    | 1.5336E-04                                                                                                                                                                                                                                                        | 1.8386E-04                                                                                                                                                                                                                                       | 1.8386E-04                                                                                                                                                                                                                                                         | 1.5336E-04                                                                                                                                                                                                                                       | 9.0061E-05                                                                                                                                                                                                                                         | 9.9177E-05                            | 1.6636E-04  |
| 11                                                                                                                                                                                                     | 1.43C4E-04                                                                                                                                                                                                                        | 9.62C6E-C5                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                           | 9 <b>.7</b> 483E-05                                                                                                                                                                                                                                               | 1.7655E-04                                                                                                                                                                                                                                       | 2.0182E-C4                                                                                                                                                                                                                                                         | 1.7655E-04                                                                                                                                                                                                                                       | 9.7483E-C5                                                                                                                                                                                                                                         | 0.C                                   | 9.6206E-05  |
| 12                                                                                                                                                                                                     | 1.2406E-04                                                                                                                                                                                                                        | 1.3127E-04                                                                                                                                                                                                                                      | 8.6943E-05                                                                                                                                                                                                                                                    | 9.4266E-05                                                                                                                                                                                                                                                        | <b>1.6400E-04</b>                                                                                                                                                                                                                                | 1.7539E-04                                                                                                                                                                                                                                                         | 1.7539E-04                                                                                                                                                                                                                                       | 1.6400E-04                                                                                                                                                                                                                                         | 9.4266E-05                            | 8.6943E-05  |
| 1.3                                                                                                                                                                                                    | 1.0203E-04                                                                                                                                                                                                                        | 1.1212E-04                                                                                                                                                                                                                                      | 1.1904E-04                                                                                                                                                                                                                                                    | 1.2660E-04                                                                                                                                                                                                                                                        | 1.3765E-04                                                                                                                                                                                                                                       | 1.4778E-04                                                                                                                                                                                                                                                         | 1.5163E-04                                                                                                                                                                                                                                       | 1.4778E-C4                                                                                                                                                                                                                                         | 1.3765E-04                            | 1.2660E-04  |
| 14                                                                                                                                                                                                     | 3.19165-05                                                                                                                                                                                                                        | 6.•3529E-05                                                                                                                                                                                                                                     | 9.7212E-05                                                                                                                                                                                                                                                    | 7.4968E-05                                                                                                                                                                                                                                                        | 8.C786E-05                                                                                                                                                                                                                                       | 1.1970E-04                                                                                                                                                                                                                                                         | 8.9121E-05                                                                                                                                                                                                                                       | 8.9121E-05                                                                                                                                                                                                                                         | 1.1970E-C4                            | 8.C786E-C5  |
| 15                                                                                                                                                                                                     | 4.2684E-06                                                                                                                                                                                                                        | 5.8920E-06                                                                                                                                                                                                                                      | 2.9541E-05                                                                                                                                                                                                                                                    | 3.2335E-05                                                                                                                                                                                                                                                        | 8.7299E-06                                                                                                                                                                                                                                       | 3.7422E-05                                                                                                                                                                                                                                                         | 3.8964E-05                                                                                                                                                                                                                                       | 9.9263E-06                                                                                                                                                                                                                                         | 3.8964E-05                            | 3.7422E-05  |
| 16                                                                                                                                                                                                     | 2.C186E-C6                                                                                                                                                                                                                        | 2.85C2E-C6                                                                                                                                                                                                                                      | 3.7590E-06                                                                                                                                                                                                                                                    | 4.4863E-06                                                                                                                                                                                                                                                        | 4.8463E-06                                                                                                                                                                                                                                       | 5.2416E-06                                                                                                                                                                                                                                                         | 5.6456E-06                                                                                                                                                                                                                                       | 5.6755E-C6                                                                                                                                                                                                                                         | 5.6755E-06                            | 5.6456E-C6  |
| 17                                                                                                                                                                                                     | 8 <b>.546</b> 1E-07                                                                                                                                                                                                               | 1.2736E-06                                                                                                                                                                                                                                      | 1.7075E-06                                                                                                                                                                                                                                                    | 2.1065E-06                                                                                                                                                                                                                                                        | 2.3975E-06                                                                                                                                                                                                                                       | 2.6108E-06                                                                                                                                                                                                                                                         | 2.80C0E-06                                                                                                                                                                                                                                       | 2.9098E-06                                                                                                                                                                                                                                         | 2.9317E-06                            | 2.9098E-06  |
| 18                                                                                                                                                                                                     | 2.5644E-07                                                                                                                                                                                                                        | 4.1606F-07                                                                                                                                                                                                                                      | 5.8387E-07                                                                                                                                                                                                                                                    | 7.4886F-07                                                                                                                                                                                                                                                        | 8-8693F-07                                                                                                                                                                                                                                       | 5.8927E-07                                                                                                                                                                                                                                                         | 1.0697F-06                                                                                                                                                                                                                                       | 1.1285E-C6                                                                                                                                                                                                                                         | 1.1551E-06                            | 1.1551F-C6  |
| 1.0                                                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |                                       |             |
| 1.17                                                                                                                                                                                                   | .11                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |             |
| 1                                                                                                                                                                                                      | 11<br>1.4304E-04                                                                                                                                                                                                                  | 12<br>1.2406E-04                                                                                                                                                                                                                                | 13<br>1.0203E-04                                                                                                                                                                                                                                              | 14<br>3•1916E-05                                                                                                                                                                                                                                                  | 15<br>4•2684E-06                                                                                                                                                                                                                                 | 16<br>2.0186E-06                                                                                                                                                                                                                                                   | 17<br>8.5461E-07                                                                                                                                                                                                                                 | 18<br>2.5644E-C7                                                                                                                                                                                                                                   |                                       |             |
| 1 2                                                                                                                                                                                                    | 11<br>1.4304E-04<br>5.6206E-05                                                                                                                                                                                                    | 12<br>1.2406E-04<br>1.3127E-04                                                                                                                                                                                                                  | 13<br>1.0203E-04<br>1.1212E-04                                                                                                                                                                                                                                | 14<br>3•1916E-05<br>6•3529E-05                                                                                                                                                                                                                                    | 15<br>4.2684E-06<br>5.892JE-06                                                                                                                                                                                                                   | 16<br>2.0186E-06<br>2.8502E-06                                                                                                                                                                                                                                     | 17<br>8.5461E-07<br>1.2736E-06                                                                                                                                                                                                                   | 18<br>2.5644E-C7<br>4.1606E-07                                                                                                                                                                                                                     |                                       |             |
| 1<br>2<br>3                                                                                                                                                                                            | 11<br>1.4304E-04<br>5.6206E-05<br>0.0                                                                                                                                                                                             | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05                                                                                                                                                                                                    | 13<br>1.0203E-04<br>1.1212E-04<br>1.1903E-04                                                                                                                                                                                                                  | 14<br>3•1916E-05<br>6•3529E-05<br>9•7212E-05                                                                                                                                                                                                                      | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05                                                                                                                                                                                                     | 16<br>2•C186E-06<br>2•8502E-06<br>3•7590E-06                                                                                                                                                                                                                       | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06                                                                                                                                                                                                     | 18<br>2.5644E-C7<br>4.1606E-07<br>5.8387E-07                                                                                                                                                                                                       |                                       |             |
| 1<br>2<br>3<br>4                                                                                                                                                                                       | 11<br>1.4304E-04<br>5.6206E-05<br>0.0<br>5.7483E-05                                                                                                                                                                               | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05                                                                                                                                                                                      | 13<br>1.0203E-04<br>1.1212E-04<br>1.1903E-04<br>1.2660E-04                                                                                                                                                                                                    | 14<br>3•1916E-05<br>6•3529E-05<br>9•7212E-05<br>7•4968E-05                                                                                                                                                                                                        | 15<br>4.2684E-06<br>5.8920E-06<br>2.9541E-05<br>3.2335E-05                                                                                                                                                                                       | 16<br>2•C186E-06<br>2•8502E-06<br>3•7590E-06<br>4•4863E-06                                                                                                                                                                                                         | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06                                                                                                                                                                                       | 18<br>2.5644E-C7<br>4.1606E-07<br>5.8387E-07<br>7.4886E-C7                                                                                                                                                                                         | · ·                                   |             |
| 1<br>2<br>3<br>4<br>5                                                                                                                                                                                  | 11<br>1.4304E-04<br>5.6206E-05<br>0.0<br>5.7483E-05<br>1.7655E-04                                                                                                                                                                 | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04                                                                                                                                                                        | 13<br>1.0203E-04<br>1.1212E-04<br>1.1903E-04<br>1.2660E-04<br>1.3765E-04                                                                                                                                                                                      | 14<br>3•1916E-05<br>6•3529E-05<br>9•7212E-05<br>7•4968E-05<br>8•0786E-05                                                                                                                                                                                          | 15<br>4.2684E-06<br>5.8920E-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06                                                                                                                                                                         | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06                                                                                                                                                                                           | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06                                                                                                                                                                         | 18<br>2.5644E-C7<br>4.1606E-07<br>5.8387E-07<br>7.4886E-C7<br>8.8693E-07                                                                                                                                                                           | · ·                                   |             |
| 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                             | .11<br>1.4304E-04<br>5.6206E-05<br>0.0<br>5.7483E-05<br>1.7655E-04<br>2.0182E-04                                                                                                                                                  | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04                                                                                                                                                          | 13<br>1.0203E-04<br>1.1212E-04<br>1.1903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04                                                                                                                                                                        | 14<br>3.1916E-05<br>6.3529E-05<br>9.7212E-05<br>7.4968E-05<br>8.0786E-05<br>1.1970E-04                                                                                                                                                                            | 15<br>4.2684E-06<br>5.8920E-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05                                                                                                                                                           | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06<br>5.2416E-06                                                                                                                                                                             | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6                                                                                                                                                           | 18<br>2. 5644E-C7<br>4.1606E-07<br>5.8387E-07<br>7.4886E-C7<br>8.8693E-07<br>5.6926E-07                                                                                                                                                            | · ·                                   |             |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                        | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7483E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04                                                                                                                                     | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.7539E-04                                                                                                                                            | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04                                                                                                                                                           | 14<br>3.1916E-05<br>6.3529E-05<br>9.7212E-05<br>7.4968E-05<br>8.0786E-05<br>1.1970E-04<br>8.9121E-05                                                                                                                                                              | 15<br>4.2684E-06<br>5.8920E-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05                                                                                                                                             | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06<br>5.2416E-06<br>5.6456E-06                                                                                                                                                               | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.8000E-06                                                                                                                                             | 18<br>2. 5644E-C7<br>4.1606E-07<br>5.8387E-07<br>7.4886E-C7<br>8.8693E-07<br>5.6926E-07<br>1.0697E-06                                                                                                                                              |                                       |             |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                   | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7483E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05                                                                                                                       | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.6400E-04                                                                                                                                            | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04                                                                                                                                             | 14<br>3.1916E-05<br>6.3529E-05<br>9.7212E-05<br>7.4968E-05<br>8.0786E-05<br>1.1970E-04<br>8.9121E-05<br>8.9121E-05                                                                                                                                                | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>9.9263E-06                                                                                                                               | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06<br>5.2416E-06<br>5.6456E-06<br>5.6755E-06                                                                                                                                                 | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.8000E-06<br>2.9098E-06                                                                                                                               | 18<br>2. 5644E-C7<br>4.1606E-07<br>5.8387E-07<br>7.4886E-C7<br>8.8693E-07<br>5.6926E-07<br>1.0697E-06<br>1.1285E-06                                                                                                                                |                                       |             |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                              | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7483E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05<br>C.C                                                                                                                | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.7539E-04<br>1.6400E-04<br>9.4266E-05                                                                                                                | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04<br>1.3765E-04                                                                                                                               | 14<br>3.1916E-05<br>6.3529E-05<br>9.7212E-05<br>7.4968E-05<br>8.0786E-05<br>1.1970E-04<br>8.9121E-05<br>8.9121E-05<br>1.1970E-04                                                                                                                                  | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>9.9263E-06<br>3.8964E-05                                                                                                                 | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06<br>5.2416E-06<br>5.6456E-06<br>5.6755E-06<br>5.6755E-06                                                                                                                                   | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.8000E-06<br>2.9098E-06<br>2.9317E-06                                                                                                                 | 18<br>2. 5644E-C7<br>4.1606E-07<br>5.8387E-07<br>7.4886E-C7<br>8.8693E-07<br>5.6926E-07<br>1.0697E-06<br>1.1285E-06<br>1.1551E-C6                                                                                                                  |                                       |             |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                              | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7483E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05<br>C.C<br>9.6206E-05                                                                                                  | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.7539E-04<br>1.6400E-04<br>9.4266E-05<br>8.6943E-05                                                                                                  | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04<br>1.3765E-04<br>1.2660E-04                                                                                                                 | 14<br>3.1916E-05<br>6.3529E-05<br>9.7212E-05<br>7.4968E-05<br>8.0786E-05<br>1.1970E-04<br>8.9121E-05<br>8.9121E-05<br>1.1970E-04<br>8.0786E-05                                                                                                                    | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>9.9263E-06<br>3.8964E-05<br>3.7422E-05                                                                                                   | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06<br>5.2416E-06<br>5.6456E-06<br>5.6755E-06<br>5.6755E-06<br>5.6456E-06                                                                                                                     | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.8000E-06<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06                                                                                                   | 18<br>2. 5644E-C7<br>4.1606E-07<br>5.8387E-07<br>7.4886E-C7<br>8.8693E-07<br>5.6926E-07<br>1.0697E-06<br>1.1285E-06<br>1.1551E-C6<br>1.551E-06                                                                                                     |                                       |             |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                  | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7483E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05<br>C.C<br>9.6206E-05<br>1.4304E-04                                                                                    | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.7539E-04<br>1.6400E-04<br>9.4266E-05<br>8.6943E-05<br>1.3127E-04                                                                                    | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04<br>1.3765E-04<br>1.2660E-04<br>1.904E-04                                                                                                    | 14<br>3.1916E-05<br>6.3529E-05<br>9.7212E-05<br>7.4968E-05<br>8.0786E-05<br>1.1970E-04<br>8.9121E-05<br>8.9121E-05<br>1.1970E-04<br>8.0786E-05<br>7.4968E-05                                                                                                      | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>9.9263E-06<br>3.8964E-05<br>3.7422E-05<br>8.7299E-06                                                                                     | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06<br>5.2416E-06<br>5.6456E-06<br>5.6755E-06<br>5.6456E-06<br>5.6456E-06<br>5.2416E-06                                                                                                       | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.8000E-06<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06<br>2.8000E-06                                                                                     | 18<br>2. 5644E-C7<br>4. 1606E-07<br>5. 8387E-07<br>7. 4886E-C7<br>8. 8693E-07<br>5. 6926E-07<br>1. 0697E-06<br>1. 1285E-06<br>1. 1551E-C6<br>1. 1285E-C6                                                                                           |                                       | -<br>-<br>- |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                                                            | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7483E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05<br>C.C<br>9.6206E-05<br>1.4304E-04<br>1.3127E-04                                                                      | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.7539E-04<br>1.6400E-04<br>9.4266E-05<br>8.6943E-05<br>1.3127E-04<br>1.2406E-04                                                                      | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04<br>1.3765E-04<br>1.2660E-04<br>1.904E-04<br>1.1212E-04                                                                                      | 14<br>3.1916E-05<br>6.3529E-05<br>9.7212E-05<br>7.4968E-05<br>8.0786E-05<br>1.1970E-04<br>8.9121E-05<br>8.9121E-05<br>1.1970E-04<br>8.0786E-05<br>7.4968E-05<br>9.7212E-05                                                                                        | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>9.9263E-06<br>3.8964E-05<br>3.7422E-05<br>8.7299E-06<br>3.2335E-05                                                                       | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06<br>5.2416E-06<br>5.6456E-06<br>5.6755E-06<br>5.6456E-06<br>5.6456E-06<br>5.2416E-06<br>4.8463E-06                                                                                         | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.8000E-06<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06<br>2.80C0E-C6<br>2.6108E-06                                                                       | 18<br>2. 5644E-C7<br>4.1606E-07<br>5.8387E-07<br>7.4886E-C7<br>8.8693E-07<br>5.6926E-07<br>1.0697E-06<br>1.1285E-06<br>1.1551E-C6<br>1.1285E-C6<br>1.285E-C6<br>1.0697E-06                                                                         |                                       | -<br>-      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                                      | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7483E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05<br>C.C<br>9.6206E-05<br>1.4304E-04<br>1.3127E-04<br>1.1904E-04                                                        | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.7539E-04<br>1.6400E-04<br>9.4266E-05<br>8.6943E-05<br>1.3127E-04<br>1.2466E-04<br>1.1212E-04                                                        | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04<br>1.3765E-04<br>1.2660E-04<br>1.904E-04<br>1.1212E-04<br>1.0203E-04                                                                        | 14<br>3.1916E-05<br>6.3529E-05<br>9.7212E-05<br>7.4968E-05<br>8.0786E-05<br>1.1970E-04<br>8.9121E-05<br>8.9121E-05<br>1.1970E-04<br>8.0786E-05<br>7.4968E-05<br>9.7212E-05<br>6.3529E-05                                                                          | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>9.9263E-06<br>3.8964E-05<br>3.7422E-05<br>8.7299E-06<br>3.2335E-05<br>2.9541E-05                                                         | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06<br>5.2416E-06<br>5.6456E-06<br>5.6755E-06<br>5.6456E-06<br>5.6456E-06<br>5.2416E-06<br>4.8463E-06<br>4.4863E-06                                                                           | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.8000E-06<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06<br>2.80C0E-C6<br>2.6108E-06<br>2.3975E-C6                                                         | 18<br>2. 5644E-C7<br>4.1606E-07<br>5.8387E-07<br>7.4886E-C7<br>8.8693E-07<br>5.6926E-07<br>1.0697E-06<br>1.1285E-06<br>1.1551E-C6<br>1.1285E-C6<br>1.285E-C6<br>1.0697E-06<br>5.8926E-C7                                                           |                                       | -           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>112<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>112<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>112 | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7483E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05<br>C.C<br>9.6206E-05<br>1.4304E-04<br>1.3127E-04<br>1.904E-04<br>7.4568E-05                                           | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.6400E-04<br>9.4266E-05<br>8.6943E-05<br>1.3127E-04<br>1.2466E-04<br>1.212E-04<br>9.7212E-05                                                         | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04<br>1.3765E-04<br>1.2660E-04<br>1.904E-04<br>1.1212E-04<br>1.0203E-04<br>6.3529E-05                                                          | 14<br>3. 1916E-05<br>6. 3529E-05<br>9. 7212E-05<br>7. 4968E-05<br>8. C786E-05<br>1. 1970E-04<br>8. 9121E-05<br>8. 9121E-05<br>1. 1970E-04<br>8. C786E-05<br>7. 4968E-05<br>9. 7212E-05<br>6. 3529E-05<br>3. 1916E-05                                              | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>9.9263E-06<br>3.8964E-05<br>3.7422E-05<br>8.7299E-06<br>3.2335E-05<br>2.9541E-05<br>5.8920E-06                                           | 16<br>2.0186E-06<br>2.8502E-06<br>3.7590E-06<br>4.4863E-06<br>4.8463E-06<br>5.2416E-06<br>5.6456E-06<br>5.6755E-06<br>5.6456E-06<br>5.6456E-06<br>5.2416E-06<br>4.8463E-06<br>4.8463E-06<br>3.7590E-06                                                             | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.8000E-06<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06<br>2.80C0E-C6<br>2.6108E-06<br>2.3975E-C6<br>2.1065E-06                                           | 18<br>2. 5644E-C7<br>4. 1606E-07<br>5. 8387E-07<br>7. 4886E-C7<br>8. 8693E-07<br>5. 6926E-07<br>1. 0697E-06<br>1. 1285E-06<br>1. 1551E-C6<br>1. 1285E-C6<br>1. 285E-C6<br>1. 0697E-06<br>5. 8926E-C7<br>8. 8693E-07                                |                                       |             |
| 1234567890112345<br>11234567890112345                                                                                                                                                                  | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7482E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05<br>C.C<br>9.6206E-05<br>1.4304E-04<br>1.3127E-04<br>1.904E-04<br>7.4968E-05<br>8.7299E-06                             | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.7539E-04<br>1.6400E-04<br>9.4266E-05<br>8.6943E-05<br>1.3127E-04<br>1.2406E-04<br>1.212E-04<br>9.7212E-05<br>3.2335E-05                             | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04<br>1.3765E-04<br>1.2660E-04<br>1.2060E-04<br>1.1212E-04<br>1.0203E-04<br>6.3529E-05<br>2.9541E-05                                           | 14<br>3. 1916E-05<br>6. 3529E-05<br>9. 7212E-05<br>7. 4968E-05<br>8. C786E-05<br>1. 1970E-04<br>8. 9121E-05<br>8. 9121E-05<br>1. 1970E-04<br>8. C786E-05<br>7. 4968E-05<br>9. 7212E-05<br>6. 3529E-05<br>3. 1916E-05<br>5. 892CE-06                               | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>9.9263E-06<br>3.8964E-05<br>3.7422E-05<br>8.7299E-06<br>3.2335E-05<br>2.9541E-05<br>5.8920E-06<br>4.2684E-06                             | 16<br>2 • C186E-06<br>2 • 8502E-06<br>3 · 7590E-06<br>4 • 4863E-06<br>5 • 2416E-06<br>5 • 6456E-06<br>5 • 6755E-06<br>5 • 6755E-06<br>5 • 6456E-06<br>5 • 2416E-06<br>4 • 8463E-06<br>4 • 8463E-06<br>3 • 7590E-06<br>2 • 8502E-66                                 | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06<br>2.80C0E-C6<br>2.6108E-06<br>2.3975E-C6<br>2.1065E-06<br>1.7075E-06                             | 18<br>2. 5644E-C7<br>4. 1606E-07<br>5. 8387E-07<br>7. 4886E-C7<br>8. 8693E-07<br>5. 6926E-07<br>1. 0697E-06<br>1. 1285E-06<br>1. 1285E-06<br>1. 1285E-C6<br>1. 1285E-C6<br>1. 0697E-06<br>5. 8926E-C7<br>8. 8693E-07<br>7. 4886E-07                |                                       | -<br>-      |
| 123456789011234567                                                                                                                                                                                     | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7482E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05<br>C.C<br>9.6206E-05<br>1.4304E-04<br>1.3127E-04<br>1.904E-04<br>7.4968E-05<br>8.7299E-06<br>5.2416E-06               | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.7539E-04<br>1.6400E-04<br>9.4266E-05<br>8.6943E-05<br>1.3127E-04<br>1.2406E-04<br>1.212E-04<br>9.7212E-05<br>3.2335E-05<br>4.8463E-06               | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04<br>1.3765E-04<br>1.2660E-04<br>1.2060E-04<br>1.1212E-04<br>1.0203E-04<br>6.3529E-05<br>2.9541E-05<br>4.4863E-06                             | 14<br>3. 1916E-05<br>6. 3529E-05<br>9. 7212E-05<br>7. 4968E-05<br>8. C786E-05<br>1. 1970E-04<br>8. 9121E-05<br>8. 9121E-05<br>1. 1970E-04<br>8. C786E-05<br>7. 4968E-05<br>9. 7212E-05<br>6. 3529E-05<br>3. 1916E-05<br>5. 892CE-06<br>3. 7590E-06                | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>3.8964E-05<br>3.7422E-05<br>8.7299E-06<br>3.2335E-05<br>2.9541E-05<br>5.8920E-06<br>4.2684E-06<br>2.8502E-06                             | 16<br>2 • C186E-06<br>2 • 8502E-06<br>3 · 7590E-06<br>4 • 4863E-06<br>5 • 2416E-06<br>5 • 6456E-06<br>5 • 6755E-06<br>5 • 6755E-06<br>5 • 6456E-06<br>5 • 2416E-06<br>4 • 8463E-06<br>4 • 8463E-06<br>3 • 7590E-06<br>2 • 9502E-C6<br>2 • 0186E-C6                 | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06<br>2.80C0E-C6<br>2.6108E-06<br>2.3975E-C6<br>2.1065E-06<br>1.7075E-06<br>1.2736E-06               | 18<br>2. 5644E-C7<br>4. 1606E-07<br>5. 8387E-07<br>7. 4886E-C7<br>8. 8693E-07<br>5. 6926E-07<br>1. 0697E-06<br>1. 1285E-06<br>1. 1285E-06<br>1. 1285E-C6<br>1. 2697E-06<br>5. 6926E-C7<br>8. 8693E-07<br>7. 4886E-07<br>5. 6387E-C7                |                                       | -<br>-<br>- |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                              | 11<br>1.4304E-04<br>5.62C6E-05<br>0.0<br>5.7482E-05<br>1.7655E-04<br>2.0182E-04<br>1.7655E-04<br>9.7483E-05<br>C.C<br>9.6206E-05<br>1.4304E-04<br>1.3127E-04<br>1.904E-04<br>7.4966E-05<br>8.7299E-06<br>5.2416E-06<br>2.800CE-06 | 12<br>1.2406E-04<br>1.3127E-04<br>3.6943E-05<br>9.4266E-05<br>1.6400E-04<br>1.7539E-04<br>1.6400E-04<br>1.6400E-04<br>9.4266E-05<br>8.6943E-05<br>1.3127E-04<br>1.2406E-04<br>1.212E-04<br>9.7212E-05<br>3.2335E-05<br>4.8463E-06<br>2.6108E-06 | 13<br>1.0203E-04<br>1.1212E-04<br>1.903E-04<br>1.2660E-04<br>1.3765E-04<br>1.4778E-04<br>1.5163E-04<br>1.4778E-04<br>1.5163E-04<br>1.3765E-04<br>1.2660E-04<br>1.1904E-04<br>1.1212E-04<br>1.0203E-04<br>6.3529E-05<br>2.9541E-05<br>4.4863E-06<br>2.3975E-06 | 14<br>3. 1916E-05<br>6. 3529E-05<br>9. 7212E-05<br>7. 4968E-05<br>8. C786E-05<br>1. 1970E-04<br>8. 9121E-05<br>8. 9121E-05<br>1. 1970E-04<br>8. C786E-05<br>7. 4968E-05<br>9. 7212E-05<br>6. 3529E-05<br>3. 1916E-05<br>5. 892CE-06<br>3. 7590E-06<br>2. 1065E-06 | 15<br>4.2684E-06<br>5.892JE-06<br>2.9541E-05<br>3.2335E-05<br>8.7299E-06<br>3.7421E-05<br>3.8964E-05<br>9.9263E-06<br>3.8964E-05<br>3.7422E-05<br>8.7299E-06<br>3.2335E-05<br>2.9541E-05<br>5.8920E-06<br>4.2684E-06<br>2.8502E-06<br>1.7075E-06 | 16<br>2 • C186E-06<br>2 • 8502E-06<br>3 • 7590E-06<br>4 • 4863E-06<br>4 • 8463E-06<br>5 • 2416E-06<br>5 • 6456E-06<br>5 • 6456E-06<br>5 • 6456E-06<br>5 • 2416E-06<br>4 • 8463E-06<br>4 • 8463E-06<br>3 • 7590E-06<br>2 • 8502E-C6<br>2 • 0186E-C6<br>1 • 2736E-06 | 17<br>8.5461E-07<br>1.2736E-06<br>1.7075E-06<br>2.1065E-06<br>2.3975E-06<br>2.61C8E-C6<br>2.8000E-06<br>2.9098E-06<br>2.9098E-06<br>2.9098E-06<br>2.80C0E-C6<br>2.6108E-06<br>2.3975E-C6<br>2.1065E-06<br>1.7075E-06<br>1.2736E-06<br>8.5461E-07 | 18<br>2. 5644E-C7<br>4. 1606E-07<br>5. 8387E-07<br>7. 4886E-C7<br>8. 8693E-07<br>5. 6926E-07<br>1. 0697E-06<br>1. 1285E-06<br>1. 1285E-06<br>1. 1285E-C6<br>1. 0697E-06<br>5. 8926E-C7<br>8. 8693E-07<br>7. 4886E-07<br>5. 6387E-C7<br>4. 1606E-07 |                                       |             |

- 71 -

## ITERATION PROCESS (ADJOINT CALCULATIONS)

## FLUX CGNV IN INNER ITERS --> 1

| Ţ | T NR | OMEGAB | OMEGAF | K-EFF           | K-EFF CONV.         | GR NR            |                                              |
|---|------|--------|--------|-----------------|---------------------|------------------|----------------------------------------------|
|   | 1    | 1.1236 | 1.1236 | <b>∂.67506C</b> | 1.5502E+04          | 4<br>3<br>2<br>1 | 1.00E+CO<br>1.00E+CO<br>1.00E+CO<br>1.COE+CO |
|   | 2    | 1.1236 | 1.1236 | 1.019657        | 3 <b>.</b> 3795E-01 | 4<br>3<br>2<br>1 | 2.55E+00<br>3.79E+C0<br>7.55E-01<br>1.29E+00 |
|   | 3    | 1.1236 | 1.1236 | 1.087386        | 6.2286E-02          | 4<br>3<br>2<br>1 | 6.24E-01<br>8.76E-C1<br>3.55E-C1<br>2.48E-01 |
| , | 4    | 1.1236 | 1.1236 | 1.088963        | 1.4477E-03          | 4<br>3<br>2<br>1 | 5.92E-01<br>5.49E-01<br>1.35E-01<br>1.30E-01 |
|   | 5    | 1.1236 | 1.1236 | 1.094199        | 4.7858E-03          | 4<br>3<br>2<br>1 | 1.C2E-C1<br>1.66E-01<br>9.12E-02<br>8.88E-C2 |
|   | 6    | 1.1236 | 1.1236 | 1.104280        | 9 <b>.</b> 1285E-03 | 4<br>3<br>2<br>1 | 9.82E-02<br>1.42E-01<br>7.66E-02<br>5.54E-C2 |
|   | 7    | 1.1236 | 1.1236 | 1.112272        | 7.1860E-03          | 4<br>3<br>2<br>1 | 4.31E-02<br>3.36E-02<br>3.45E-02<br>3.03E-02 |
|   | 8    | 1.1236 | 1.1236 | 1.116875        | 4.12C8E-03          | 4<br>3<br>2<br>1 | 2.08E-02<br>1.92E-02<br>1.94E-02<br>1.61E-02 |
|   | 9    | 1.1226 | 1.1236 | 1.119236        | 2.1098E-03          | 4<br>3<br>2<br>1 | 1.14E-C2<br>1.04E-O2<br>1.03E-O2<br>8.35E-C3 |
|   | 10   | 1.1236 | 1.1236 | 1.120432        | 1.0674E-03          | 4<br>3<br>2<br>1 | 6.31E-03<br>5.77E-03<br>5.40E-03<br>4.34E-03 |
|   | 11   | 1.1226 | 1.1236 | 1.121037        | 5.3936E-04          | 4<br>3<br>2<br>1 | 3.41E-03<br>3.12E-03<br>2.78E-03<br>2.25E-03 |
|   | 12   | 1.1236 | 1.1236 | 1.121345        | 2.7472E-04          | 4<br>3<br>2      | 1.81E-03<br>1.65E-C3<br>1.44E-03             |

.

|    | ,      |        |          |                     | 1                | 1.17E-C3                                     |
|----|--------|--------|----------|---------------------|------------------|----------------------------------------------|
| 13 | 1.1236 | 1.1236 | 1.121504 | 1.4204E-04          | 4<br>3<br>2<br>1 | 9.30E-04<br>8.47E-C4<br>7.40E-04<br>5.98E-04 |
| 14 | 1.1236 | 1.1236 | 1.121586 | 7 <b>.</b> 3135E-05 | 4<br>3<br>2<br>1 | 4.75E-04<br>4.31E-C4<br>3.79E-04<br>3.07E-04 |
| 15 | 1.1236 | 1.1236 | 1.121625 | 3.4869E-05          | 4<br>3<br>2<br>1 | 2.41E-04<br>2.19E-04<br>1.94E-04<br>1.54E-04 |
| 16 | 1.1236 | 1.1236 | 1.121647 | 1.9610E-05          | 4<br>3<br>2<br>1 | 1.19E-04<br>1.09E-04<br>9.94E-05<br>8.11E-05 |
| 17 | 1.1225 | 1.1236 | 1.121660 | 1.1921E-05          | 4<br>3<br>2<br>1 | 6.10E-05<br>5.53E-05<br>4.99E-05<br>4.10E-05 |
| 18 | 1.1236 | 1.1236 | 1.121665 | 4.29155-06          | 4<br>3<br>2<br>1 | 3.43E-05<br>3.15E-05<br>2.55E-05<br>1.91E-C5 |
| 19 | 1.1236 | 1.1236 | 1.121668 | 2.5630E-06          | 4<br>3<br>2<br>1 | 1.43E-05<br>1.34E-C5<br>1.23E-05<br>1.06E-05 |
| 20 | 1.1236 | 1.1236 | 1.121668 | C.O                 | 4<br>3<br>2<br>1 | 1.05E-05<br>1.05E-05<br>7.63E-06<br>5.72E-06 |
| 21 | 1.1236 | 1,1236 | 1.121669 | 8.94C7E-07          | 4<br>3<br>2      | 6.08E-06<br>6.14E-06<br>4.77E-06             |

4.29E-06 1

- 20 I.I

.

4 ACJEINT FLUX GROUP

|    | 1          | 2          | 3          | 4              | 5          | 6          | 7            | 8          | 9          | 10         |
|----|------------|------------|------------|----------------|------------|------------|--------------|------------|------------|------------|
| 1  | 2-11725-04 | 2.)980E-04 | 2.0407E-04 | 1.9486E-04     | 1.8301E-04 | 1.6896E-04 | 1.5128E-04   | 1.27036-04 | 9.6336E-05 | 7.5501E-05 |
| >  | 2.C98CE-34 | 2.0980E-04 | 2.0595E-04 | 1.9829E-04     | 1.8720E-04 | 1.7435E-04 | 1.5944E-04   | 1.3863E-04 | 1.0554E-C4 | 5.0809E-05 |
| 3  | 2.04076-04 | 2.0595E-04 | 2.04076-04 | 1.5829E-C4     | 1.8816E-C4 | 1.7334E-04 | 1.6259E-04   | 1.4750E-04 | 1.2019E-04 | 5.5559E-05 |
| 4  | 1.9486E-04 | 1.93296-04 | 1.9829E-04 | 1.9486E-04     | 1.8720E-04 | 1.7334E-C4 | 1.6219E-04   | 1.5297E-04 | 1.3514E-04 | 1.0577E-04 |
| 5  | 1.3301E-04 | 1.9720E-04 | 1.8816E-04 | 1. 872 CE - C4 | 1.83C1E-04 | 1.7435E-04 | 1.6259E-04   | 1.5297E-04 | 1.403CE-04 | 1.2651E-C4 |
| 5  | 1.6996E-04 | 1.7435E-04 | 1.7334E-04 | 1.7334E-04     | 1.74356-04 | 1.6896E-04 | 1.5944E-04   | 1.475CE-C4 | 1.3514E-C4 | 1.2651E-04 |
| 1  | 1.51285-04 | 1.59448-04 | l.6259E-04 | 1.62205-04     | 1.6259E-04 | 1.5944E-04 | 1.5128E-04   | 1.3863E-04 | 1.2019E-04 | 1.C577E-C4 |
| 5  | 1.2703E-04 | 1.3863E-04 | 1.4750E-C4 | 1.5297E-04     | 1.5297E-04 | 1.475CE-04 | 1.38 63 E-04 | 1.2703E-04 | 1.0554E-04 | 5.5559E-05 |
| 9  | 5.6337E-05 | 1.0554E-C4 | 1.2019E-04 | 1.3514E-04     | 1.4030E-04 | 1.3514E-04 | 1.2019E-04   | 1.0554E-C4 | 9.6337E-05 | 5.C810E-05 |
| 1) | 7.55010-05 | 5.0810E-05 | 5.5559E-05 | 1.C577E-04     | 1.2651E-04 | 1.2651E-04 | 1.0577E-04   | 5.5559E-05 | 5.0810E-05 | 7.5501E-05 |
| 11 | 7.2455E-05 | 4.33958-05 | 1.2346E-05 | 5.2685E-05     | 1.C669E-04 | 1.13915-04 | 1.06695-04   | 5.26856-05 | 1.2346E-05 | 4.3395E-05 |
| 12 | 7.13776-05 | 6.8237E-05 | 3.9795E-05 | 4.4094E-05     | 8.7725E-05 | 1.0443E-C4 | 1.0443E-04   | 8.7725E-05 | 4.4094E-C5 | 3.9795E-C5 |
| 13 | 5.814CE-05 | 6.4491F-05 | 6.3939E-05 | 6.4284E-05     | 7.4897E-05 | £.6506E-05 | 9.0102E-05   | 8.6506E-05 | 7.4896E-05 | 6.4284E-C5 |
| 14 | 2.3941E+05 | 4.5485E-C5 | 5.2831F-05 | 5.2927E-05     | 5.7305E-05 | 6.5803E-05 | 6.6164E-05   | 6.6164E-05 | 6.5803E-C5 | 5.7305E-05 |
| 15 | 1.4539E-05 | 2.10478-05 | 3.0017E-05 | 3.289CE-05     | 3.1067E-05 | 3.8405E-05 | 4.C478E-05   | 3.6319E-05 | 4.0478E-05 | 3.8405E-05 |
| 15 | 6.1062E-06 | 9.1005E-06 | 1.25318-05 | 1.5178E-05     | 1.61278-05 | 1.7481E-05 | 1.9173F-05   | 1.9183E-C5 | 1.9183E-05 | 1.9173E-05 |
| 17 | 2.1618E-06 | 3.493DE-06 | 4.8925E-06 | 6.178CE-06     | 7.C329E-06 | 7.6272E-06 | 8.24388-06   | 8.6110E-06 | 8.6658E-C6 | 8.611CE-C6 |
| 13 | 3.26035-07 | 6.45582-07 | 9.5556E-07 | 1.2570E-06     | 1.49835-06 | 1.6660E-36 | 1.8036E-C6   | 1.9132E-C6 | 1.5619E-06 | 1.9619E-06 |
|    | 11         | 12         | 13         | 14             | 15         | 16         | 17           | 18         |            |            |
| 1  | 7.24546-05 | 7.1377E-05 | 5.814CE-C5 | 3.3941E-05     | 1.4539E-05 | 6.1063E-06 | 2.1618E-06   | 3.2603E-07 |            |            |
| 2  | 4.339-E-05 | 6.3237E-C5 | 6.4491E-05 | 4.5485E-05     | 2.1047E-05 | 9.1005E-06 | 3.4930E-06   | 6.4558E-C7 |            |            |
| 3  | 1.2346E-05 | 3.9795E-05 | 6.3939E-05 | 5.2331E-05     | 3.CO17F-05 | 1.2531E-05 | 4.8925E-06   | 9.55556-07 |            |            |
| 4  | 5.2685F-05 | 4.4094E-05 | 6.4284E-05 | 5.2926E-05     | 3.2890E-05 | 1.5178E-05 | 6.178CE-C6   | 1.2570F-C6 |            |            |
| 5  | 1.0669E-04 | 8.7725E-05 | 7.4896E-05 | 5.7305E-05     | 3.1057E-05 | 1.6127E-05 | 7.0329E-06   | 1.4988E-C6 |            |            |
| 6  | 1.1391E-04 | 1.0443E-04 | 8.6506E-05 | 6.5803E-05     | 3.8405E-05 | 1.7481E-05 | 7.6271E-06   | 1.6660E-06 |            |            |
| 7  | 1.06£9E-04 | 1.0443E-C4 | 9.0102E-05 | 6.6163E-05     | 4.0478E-05 | 1.9173E-05 | 8.2439E-06   | 1.8036E-C6 |            |            |
| 9  | 5.2685E-05 | 8.7725E-05 | 8.65C6E-05 | 6.6163E-05     | 3.6319E-05 | 1.9183E-05 | 8.6110E-06   | 1.9132E-06 |            |            |
| Э  | 1.2346E-05 | 4.4094E-05 | 7.4896E-05 | 6.5803E-05     | 4.0478E-05 | 1.9183E-C5 | 8.6657E-C6   | 1.9619E-C6 |            |            |
| 10 | 4.3395E-05 | 3,97956-05 | 6.42940-05 | 5.7305E-05     | 3.84C5E-05 | 1.9173E-C5 | 8.6110E-06   | 1.9619E-06 |            |            |
| 11 | 7.2454E-05 | 6.8236E-05 | 6.3939E-05 | 5.2926E-05     | 3.1367E-05 | 1.7481E-05 | 8.2438E-C6   | 1.9132E-C6 |            |            |
| 12 | €•823€E+05 | 7.1377E-05 | 6.4491E-05 | 5.2831E-05     | 3.2890E-05 | 1.61278-05 | 7.6271E-06   | 1.8C36E-C6 |            |            |
| 13 | 6.3939E-05 | 6.4491E-05 | 5.8140E-05 | 4.5485E-05     | 3.C017E-05 | 1.5178E-C5 | 7.C329E-06   | 1.6660E-06 |            |            |
| 14 | 5.2926E-05 | 5.2331E-05 | 4.5485E-05 | 3.3941E-05     | 2.1047E-05 | 1.2531E-C5 | 6.178CE-06   | 1.4988E-06 |            |            |
| 15 | 2.1067E-05 | 3.2890E-05 | 3.0017E-05 | 2.1047E-C5     | 1.4539E-C5 | 5.1004E-06 | 4.8925E-06   | 1.2570E-06 |            |            |
| 16 | 1.74815-35 | 1.61270-05 | 1.5178E-05 | 1.2531E-05     | 9.1004E-06 | 6.1062E-06 | 3.493CE-C6   | 5.5555E-C7 |            |            |
| 17 | 8.2438E-06 | 7.6271E-06 | 7.0329E-06 | 6.1780E-06     | 4.8925E-06 | 3.4930E-06 | 2.1618E-06   | 6.4558E-07 |            |            |
| 13 | 1.9132E-06 | 1.8036E-06 | 1.6660F-06 | 1.4988E-06     | 1.25706-06 | 9.5555E-07 | 6.4558E-07   | 3.2603E-07 |            |            |

3 ADJEINT FLUX GROUP

|    | 1          | 2          | 3                   | 4                   | 5          | 6          | 7                   | 8          | 9          | 10         |
|----|------------|------------|---------------------|---------------------|------------|------------|---------------------|------------|------------|------------|
| ł  | 1.7942E-04 | 1.7778E-04 | 1.7291E-04          | 1.6506E-04          | 1.5485E-04 | 1.4261E-04 | 1.2718E-04          | 1.0653E-04 | 8.1623E-05 | 6.4420E-05 |
| 2  | 1.7778E-04 | 1.7778E-04 | 1.7450E-04          | 1.6800E-04          | 1.5858E-04 | 1.4743E-04 | 1.3432E-04          | 1.1645E-04 | 8.9876E-C5 | 5.1379E-C5 |
| 3  | 1.7291E-04 | 1.7450E-04 | 1.72916-04          | 1.6800E-04          | 1.5951E-04 | 1.4736E-04 | 1.3720E-04          | 1.2401E-C4 | 1.018CE-04 | 5.68158-05 |
| 4  | 1.65C6E-04 | 1.6800E-04 | 1.6800E-04          | 1.6506E-04          | 1.5858E-04 | 1.4736E-04 | 1.3687E-04          | 1.2819E-04 | 1.1361E-04 | 9.0464E-05 |
| 5  | 1.5485E-04 | 1.5858E-04 | 1.5951E-04          | 1.5858E-04          | 1.5485E-04 | 1.4743E-04 | 1.3720E-04          | 1.2819E-04 | 1.1782E-04 | 1.0630E-04 |
| 6  | 1.4261E-04 | 1.4743E-04 | 1.4736E-04          | 1.4736E-04          | 1.4743E-04 | 1.4261E-04 | 1.3432E-04          | 1.24C1E-04 | 1.1361E-C4 | 1.0630E-04 |
| 7  | 1.2718E-04 | 1.3432E-04 | 1.3720E-04          | 1.3687E-04          | 1.3720E-04 | 1.3432E-04 | 1.2718E-04          | 1.1645E-04 | 1.018CE-C4 | 9.C464E-C5 |
| 8  | 1.0653E-04 | 1.1645E-04 | 1.2401E-04          | 1.2819E-04          | 1.2819E-04 | 1.2401E-C4 | 1.1645E-C4          | 1.C653E-C4 | 8.9876E-05 | 5.6815E-C5 |
| 9  | 8.1623E-05 | 8.9876E-05 | 1.0180E-04          | 1.1361E-04          | 1.1782E-04 | 1.1361E-04 | 1.0180E-04          | 8.9876E-05 | 8.1623E-C5 | 5.1379E-05 |
| 10 | 6.4420E-05 | 5.1380E-05 | 5.6816E-05          | 9.C464E-05          | 1.0630E-04 | 1.0630E-C4 | 9.0464E-05          | 5.6815E-05 | 5.1379E-05 | 6.4420E-C5 |
| 11 | 6.C796E-05 | 4.3487E-C5 | 2.1713E-05          | 5.3534E-05          | 9.0238E-05 | 9.9819E-05 | 9.0238E-05          | 5.3534E-C5 | 2.1713E-05 | 4.3487E-C5 |
| 12 | 5.8990E-05 | 5.7251E-05 | 3.9971E-05          | 4.4419E-05          | 7.4429E-05 | 8.7615E-05 | 8.7615E-05          | 7.4429E-05 | 4.4419E-05 | 3.9970E-05 |
| 13 | 4.77C7E-05 | 5.3113E-05 | 5.3091E-05          | 5.3901E-05          | 6.2616E-05 | 7.2122E-05 | 7.52C5E-05          | 7.2122E-C5 | 6.2615E-05 | 5.3900E-C5 |
| 14 | 2.7655E-05 | 3.7011E-05 | 4.3J88E-05          | 4.3242E-05          | 4.6945E-05 | 5.4112E-05 | 5.4572E-05          | 5.4572E-05 | 5.4112E-05 | 4.6945E-C5 |
| 15 | 1.2168E-05 | 1.7466E-05 | 2.4331E-05          | 2.6718E-05          | 2.58C7E-05 | 3.1333E-05 | 3.3135E-05          | 3.0357E-05 | 3.3135E-05 | 3.1333E-05 |
| 16 | 5.1548E-06 | 7.6596E-06 | 1.0449E-05          | 1.2601E-05          | 1.3475E-05 | 1.4628E-05 | 1.6007E-05          | 1.6112E-05 | 1.6112E-05 | 1.6007E-05 |
| 17 | 1.7873E-06 | 2.9151E-06 | 4.C742E-C6          | 5.1295E-06          | 5.8446E-06 | 6•3535E-06 | 6.8709E-06          | 7.1883E-06 | 7.2462E-06 | 7.1883E-06 |
| 19 | 2.138CE-J7 | 4.4450E-C7 | 6.6039E-07          | 8.6 <b>761</b> E-07 | 1.0341E-06 | 1.1509E-06 | 1.2477E-C6          | 1.3252E-C6 | 1.36C8E-06 | 1.3608E-06 |
|    | 11         | 12         | 13                  | 14                  | 15         | 16         | 17                  | 18         |            |            |
| 1  | 6.0796E-05 | 5.8990E-05 | 4.7707E-05          | 2.7655E-05          | 1.2168E-05 | 5.1548E-06 | 1.7873E-06          | 2.1380E-C7 |            |            |
| 2  | 4.3487E-05 | 5.7251E-05 | 5.3112E-05          | 3.7011E-05          | 1.7466E-05 | 7.6596E-06 | 2.9151E-06          | 4.4450E-07 |            |            |
| 3  | 2.1713E-05 | 3.9970E-05 | 5.3C91E-05          | 4.3088E-05          | 2.4331E-05 | 1.0449E-05 | 4.0742E-06          | 6.6039E-07 |            |            |
| 4  | 5.3534E-05 | 4.4419E-05 | 5.39008-05          | 4.3242E-05          | 2.6718E-05 | 1.2601E-05 | 5.1295E-06          | 8.6761E-07 |            |            |
| 5  | 9.0238E-05 | 7.4429E-05 | 6.2615E-05          | 4.6945E-05          | 2.5807E-05 | 1.3475E-05 | 5.8445E-06          | 1.0341E-06 |            |            |
| 6  | 9.9818E-05 | 8.7615E-05 | 7.2122E-05          | 5.4112E-05          | 3.1333E-05 | 1.4628E-05 | 6.3535E-06          | 1.15C9E-C6 |            |            |
| 7  | 9.0238E-05 | 8.7615E-05 | 7.5205E-05          | 5.4572E-05          | 3.3134E-05 | 1.6007E-05 | 6.8709E-06          | 1.2477E-06 |            |            |
| 8  | 5.3534F-05 | 7.4429E-05 | 7.2122E-05          | 5.4572E-05          | 3.0357E-05 | 1.6112E-05 | 7.1883E-C6          | 1.3252E-C6 |            |            |
| 9  | 2.1713E-05 | 4.4419E-05 | 6.2615E-05          | 5.4112E-05          | 3.3134E-05 | 1.6112E-05 | <b>7.</b> 2461E-06  | 1.3608E-06 |            |            |
| 10 | 4.3487E-05 | 3.9970E-05 | 5.3900E-05          | 4.6945E-05          | 3.1333E-05 | 1.6007E-05 | 7.1883E-06          | 1.3608E-C6 |            |            |
| 11 | 6.C796E-05 | 5.7250E-05 | 5.3C91E-05          | 4.3242E-05          | 2.5807E-05 | 1.4628E-05 | 6.8709E-06          | 1.3252E-06 |            |            |
| 12 | 5.72505-05 | 5.8990E-05 | 5.3112E-05          | 4.3088E-05          | 2.6718E-05 | 1.3475E-05 | 6 <b>.</b> 3535E-06 | 1.2477E-06 |            |            |
| 13 | 5.3091E-05 | 5.3112E-05 | 4.77C7E-05          | 3.7011E-05          | 2.4331E-05 | 1.26C1E-05 | 5.8445E-06          | 1.1509E-06 |            |            |
| 14 | 4.32428-05 | 4.3088E-05 | 3.7011E-05          | 2.7655E-05          | 1.7466E-05 | 1.0449E-05 | 5.1295E-06          | 1.0341E-06 |            |            |
| 15 | 2.58C7E-05 | 2.6718E-05 | 2.4331E-05          | 1.7466E-05          | 1.2168E-05 | 7.6596E-06 | 4.0742E-C6          | 8.6761E-C7 |            |            |
| 16 | 1.4628E-05 | 1.3475E-C5 | 1.2601E-05          | 1.0449E-05          | 7.6596E-06 | 5.1548E-06 | 2.9151E-06          | 6.6039E-07 |            |            |
| 17 | 6.8709E-06 | 6.3535E-06 | 5 <b>.</b> 8445E-06 | 5.1295E-06          | 4.C742E-06 | 2.9151E-06 | 1.7873E-06          | 4.4450E-07 |            |            |
| 18 | 1.32525-06 | 1.2477E-C6 | 1.1509E-06          | 1.0341E-06          | 8.6761E-07 | 6.6039E-07 | 4.4450E-07          | 2.1380E-C7 |            |            |

- 75 -

2 ADJOINT FLUX GROUP

|    | 1          | 2          | 3                   | 4          | 5          | 6                   | 7          | 8                   | 9          | 10         |
|----|------------|------------|---------------------|------------|------------|---------------------|------------|---------------------|------------|------------|
| 1  | 2.1831E-04 | 2.1632E-04 | 2.1043E-04          | 2.0100E-04 | 1.8894E-04 | 1.7493E-04          | 1.5836E-04 | 1.3857E-04          | 1.1682F-C4 | 9.7847E-C5 |
| 2  | 2.1632E-04 | 2.16325-04 | 2.1236E-04          | 2.0452E-04 | 1.9328E-04 | 1.8039E-04          | 1.6591E-04 | 1.4801E-04          | 1.2619E-04 | 1.0142E-04 |
| 3  | 2.1043E-04 | 2.1236E-04 | 2.1043E-04          | 2.0452E-04 | 1.9435E-04 | 1.7990E-04          | 1.6946E-04 | 1.5515E-04          | 1.3556E-C4 | 1.0965E-04 |
| 4  | 2.0100E-04 | 2.0452E-04 | 2.0452E-04          | 2.C1C0E-04 | 1.9328E-04 | 1.7990E-04          | 1.6956E-04 | 1.6010E-04          | 1.4329E-04 | 1.2349E-C4 |
| 5  | 1.3894E-04 | 1.9328E-04 | 1.9435E-04          | 1.9328E-04 | 1.8894E-04 | 1.8039E-04          | 1.6946E-C4 | 1.6C1CE-C4          | 1.4623E-04 | 1.3124E-04 |
| 6  | 1.7493E-04 | 1.8039E-04 | 1.7990E-C4          | 1.7990E-04 | 1.8039E-04 | 1.7493E-04          | 1.6591E-04 | 1.5515E-04          | 1.4329E-C4 | 1.3124E-C4 |
| 1  | 1.5336E-04 | 1.6591E-04 | 1.6946E-04          | 1.6956E-04 | 1.6946E-04 | 1.6591E-04          | 1.5836E-04 | 1.4801E-04          | 1.3556E-04 | 1.2349E-C4 |
| 8  | 1.3357E-04 | 1.48C1E-04 | 1.5515E-04          | 1.6010E-04 | 1.6010E-04 | 1.5515E-04          | 1.4801E-04 | 1.3857E-C4          | 1.2619E-04 | 1.0965E-04 |
| 9  | 1.1682E-04 | 1.2619E-04 | 1.3556E-04          | 1.4329E-04 | 1.4623E-C4 | 1.4329E-04          | 1.3556E-04 | 1.2619E-04          | 1.1682E-04 | 1.0142E-C4 |
| 10 | 9.7847E-05 | 1.0142E-C4 | 1.C965E-04          | 1.2349E-04 | l.3125E-04 | 1.3125E-04          | 1.2349E-04 | 1.C965E-C4          | 1.0142E-C4 | 5.7847E-C5 |
| 11 | 3.4497E-05 | 8.5226E-05 | 8.2663E-05          | 1.0005E-04 | 1.1422E-04 | 1.1875E-04          | 1.1422E-04 | 1.0005E-04          | 8.2662E-C5 | 8.5226E-C5 |
| 12 | 7.30C7E-05 | 7.7402E-05 | 7.6948E-05          | 8.35026-05 | 9.6733E-05 | 1.0356E-C4          | 1.0355E-04 | 5.6733E-C5          | 8.35C2E-C5 | 7.6948E-C5 |
| 13 | 5.8754E-05 | 6.5323E-05 | 6.9470E-05          | 7.3837E-05 | 8.0503E-05 | 8.6567E-05          | 8.8796E-05 | 8.6567E-05          | 8.C5C2E-C5 | 7.3837E-C5 |
| 14 | 4.1670E-05 | 4.9878E-05 | 5.5190E-05          | 5.9247E-05 | 6.3990E-05 | 6.8307E-05          | 7.0815E-05 | 7.0815E-05          | 6.8307E-05 | 6.3990E-05 |
| 15 | 2.43215-05 | 3.1043E-05 | 3.8288E-05          | 4.1926E-05 | 4.3446E-05 | 4.8710E-05          | 5.0755E-05 | 4.9280E-C5          | 5.0755E-05 | 4.E71CE-05 |
| 16 | 1.2996E-05 | 1.7436E-05 | 2.1650E-05          | 2.5003E-05 | 2.7143E-05 | 2.9236E-05          | 3.1104E-05 | 3.1621E-05          | 3.1621E-05 | 3.1104E-05 |
| 17 | 5.5535E-06 | 8.2334E-06 | 1.0608E-05          | 1.2647E-05 | 1.4203E-05 | 1.5415E-05          | 1.6441E-05 | 1.7076E-05          | 1.7252E-05 | 1.7076E-05 |
| 13 | 1.1589E-06 | 2.07C6E-06 | 2.8375E-06          | 3.5029E-06 | 4.0463F-06 | 4.4675E-06          | 4.8052E-06 | 5.0535E-C6          | 5.1762E-C6 | 5.1762E-C6 |
|    | 11         | 12         | 13                  | 14         | 15         | 16                  | 17         | 18                  |            |            |
| 1  | 8.4496E-05 | 7.30C7F-C5 | 5.8753E-05          | 4.1669E-05 | 2.43218-05 | 1.2996E-35          | 5.5535F-06 | 1.1589F-C6          |            |            |
| 2  | 8.5226E-05 | 7.7402E-05 | 6.5333E-05          | 4.5878E-05 | 3.1043E-05 | 1.7436E-05          | 8.2334E-06 | 2.0706E-06          |            |            |
| 3  | 8.2662E-05 | 7.6943E-05 | 6.9469E-05          | 5.5189E-05 | 3.8288E-05 | 2.1650E-C5          | 1.0608E-05 | 2.E375F-C6          |            |            |
| 4  | 1.0005E-34 | 8.35026-05 | 7.3837E-05          | 5.9247E-05 | 4.1926E-05 | 2.5003E-05          | 1.2647E-05 | 3.5029E-C6          |            |            |
| 5  | 1.14225-04 | 9.6733E-05 | 8.0502E-05          | 6.3990E-05 | 4.3446E-05 | 2.7143E-C5          | 1.4203E-05 | 4.C463E-C6          |            |            |
| 5  | 1.1875E-04 | 1.0355E-04 | 8.6567E-05          | 6.8306E-05 | 4.8709E-05 | 2.9236E-05          | 1.5415E-05 | 4.4675E-06          |            |            |
| 1  | 1.14228-04 | 1.0355E-04 | 9.8796E-C5          | 7.0814E-05 | 5.C755E-05 | 3.11046-05          | 1.6441F-05 | 4.8052E-06          |            |            |
| 8  | 1.0CC5E+04 | 9.6733E-05 | 8.6567E-05          | 7.0814E-05 | 4.9280E-05 | 3.1621E-05          | 1.7076F-05 | 5.0535E-06          |            |            |
| 9  | 8.2662E-05 | 8.3502E-05 | 8.05025-05          | 6.8306E-05 | 5.C755E-05 | 3.1621E-05          | 1.7252E-05 | 5.1762E-06          |            |            |
| 10 | 8.52268-05 | 7.6948E-05 | 7.3837E-05          | 6.3990E-05 | 4.87C9E-05 | 3.1104E-05          | 1.7076E-C5 | 5.1762E-C6          |            |            |
| 11 | 8.4496E-05 | 7.7402E-05 | 6.9469E-05          | 5.9247E-05 | 4.3446E-05 | 2.9236E-05          | 1.6441E-05 | 5.0535E-06          |            |            |
| 12 | 7.74025-05 | 7.3007E-05 | 6.53335-05          | 5.5189E-05 | 4.1926E-05 | 2.7143E-C5          | 1.5415E-05 | 4.8052E-06          |            |            |
| 13 | 6.9469E-05 | 6.5333E-05 | 5.8753E-05          | 4.5878E-05 | 3.8288E-05 | 2.5003E-05          | 1.4203E-05 | 4.4675E-C6          |            |            |
| 14 | 5.9247E-05 | 5.5189E-05 | 4 <b>.</b> 9878E-05 | 4.1669E-05 | 3.1043E-05 | 2.1650E-05          | 1.2647E-05 | 4 <b>.</b> 0462E-06 |            |            |
| 15 | 4.3446E-35 | 4.1926E-05 | 3.8288E-05          | 3.1043E-05 | 2.4321E-05 | 1.7436E-C5          | 1.0608E-05 | 3.5C29E-C6          |            |            |
| 15 | 2.9236E-05 | 2.7143E-05 | 2.50038-05          | 2.1650E-C5 | 1.7436E-05 | 1.2996E-05          | 8.2333E-06 | 2.8375E-06          |            |            |
| 17 | 1.64415-35 | 1.5415E-05 | 1.42J3E-05          | 1.2647E-05 | 1.06038-05 | E-2333E-06          | 5.5535E-C6 | 2.C7C6E-C6          |            |            |
| 13 | 5.0535E-06 | 4.3052E-06 | 4.4675E-06          | 4.0463E-06 | 3.50298-06 | 2 <b>.8375E-</b> 06 | 2.0706E-06 | 1.1589E-C6          |            |            |

1 76

Т

1 ADJCINT FLUX GROUP

|    | 1           | 2          | 3          | 4          | 5           | 6          | 7                   | 8          | 9          | 10         |
|----|-------------|------------|------------|------------|-------------|------------|---------------------|------------|------------|------------|
| 1  | 2.5228E+04  | 2.5001E-04 | 2.4329E-04 | 2.3256E-04 | 2.1893E-04  | 2.0339E-04 | 1.8566E-04          | 1.6532E-04 | 1.4357E-C4 | 1-230CE-C4 |
| 2  | 2.5001E-04  | 2.5001E-04 | 2.4549E-04 | 2.3656E-04 | 2.2380E-04  | 2.C925E-04 | 1.9344E-C4          | 1.7482E-C4 | 1.5334E-C4 | 1.3053E-04 |
| 3  | 2.4329E-34  | 2.4549E-04 | 2.4329E-04 | 2.3656F-04 | 2.2499E-04  | 2.0864E-04 | 1.9638E-04          | 1.8153E-C4 | 1.6203E-C4 | 1.3921F-C4 |
| 4  | 2.3256E-04  | 2.3656E-04 | 2.3656E-C4 | 2.3256E-04 | 2.2380E-04  | 2.0864E-04 | 1.9592E-04          | 1.8535E-04 | 1.6846E-04 | 1.4875E-04 |
| 5  | 2.1893E-04  | 2.2380E-C4 | 2.2499E-04 | 2.2380E-04 | 2.1893E-04  | 2.C925E-C4 | 1.9638E-04          | 1.8535E-04 | 1.7084E-C4 | 1.5455E-C4 |
| 6  | 2.0339E-04  | 2.09255-04 | 2.0964E-04 | 2.C864E-04 | 2.C925E-04  | 2.0339E-04 | 1.9344E-04          | 1.8153E-04 | 1.6846E-04 | 1.5455E-04 |
| 7  | 1.3566E-04  | 1.9344E-04 | 1.9638E-04 | 1.9592E-04 | 1.9638E-04  | 1.9344E-C4 | 1.85668-04          | 1.7482F-C4 | 1.62C3E-04 | 1.4875E-04 |
| 8  | 1.6532E-04  | 1.7482E-04 | 1.8153E-04 | 1.8535F-04 | 1.8535E-04  | 1.8153E-04 | 1.7482E-04          | 1.6532E-04 | 1.5334E-04 | 1.3921E-C4 |
| Ð  | 1.4357E-04  | 1.5334E-04 | 1.6203E-04 | 1.6846E-04 | 1.7084E-04  | 1.6846E-04 | 1.62C3E-04          | 1.5334E-04 | 1.4357E-04 | 1.3053E-04 |
| 10 | 1.230CE-04  | 1.3053E-04 | 1.3921E-04 | 1.4875E-04 | 1.5455E-04  | 1.5455E-04 | 1.4875E-04          | 1.3921E-04 | 1.3053E-04 | 1.23CCE-C4 |
| 11 | 1.0513E-04  | 1.1087E-04 | 1.15C9E-04 | 1.2692E-04 | 1.3623E-04  | 1.3957E-04 | 1.3623E-04          | 1.2692E-04 | 1.1509E-04 | 1.1087E-04 |
| 12 | 8.8585E-05  | 9.5724E-05 | 9.9867E-05 | 1.0716E-04 | 1.1680E-04  | 1.2202E-04 | 1.22C2E-04          | 1.168CE-C4 | 1.C716E-04 | 9.9866E-05 |
| 13 | 7.08386-05  | 7.8981E-05 | 8.5152E-05 | 9.C999E-05 | 9.7450E-05  | 1.C269E-04 | 1.0464F-04          | 1.0269E-04 | 9.745CE-C5 | 9.C998E-C5 |
| 14 | 5.1742E-05  | 6.0815E+05 | 6.7174E-05 | 7.2684E-05 | 7.8050E-05  | €.2150E-05 | 8.4859E-C5          | 8.4859E-C5 | 8.2150E-05 | 7.8049E-C5 |
| 15 | 2.2359E-05  | 4.0213E-05 | 4.8103E-05 | 5.2764E-05 | 5.5550E-05  | 6.0777E-05 | 6.3050E-05          | 6.2199E-05 | 6.3049E-C5 | 6.C777E-C5 |
| 16 | 1.8522E-05  | 2.41C6E-05 | 2.9295E-05 | 3.35C9E-05 | 3.6472E-05  | 3.9139E-05 | 4.1322E-05          | 4.2084E-05 | 4.2083E-05 | 4.1321E-05 |
| 17 | 8.9743E-06  | 1.2582E-05 | 1.5834E-05 | 1.8644E-05 | 2.0862E-05  | 2.2610E-05 | 2.4016E-05          | 2.4886E-C5 | 2.5146E-05 | 2.4886E-C5 |
| 18 | 3.J743E-06  | 4.7521E-06 | 6.2772E-06 | 7.6215E-06 | 8.7390E-06  | 9.6252E-06 | 1.0325E-05          | 1.0826E-05 | 1.1077E-05 | 1.1077E-05 |
|    | 11          | 12         | 13         | 14         | 15          | 16         | 17                  | 18         |            |            |
| 1  | 1.05138-04  | 3.3584F-05 | 7.0838F-05 | 5.1742E-05 | 3.2359E-05  | 1.8522E-05 | 8.9742E-06          | 3.0742E-06 |            |            |
| 2  | 1.1087E-04  | 9.5724E-05 | 7.8981E-05 | 6.0815E-05 | 4.0212E-05  | 2.4106E-05 | 1.2582E-05          | 4.7521E-06 |            |            |
| 3  | 1.150 SE-04 | 9.9866E-05 | 8.5151E-05 | 6.7174E-05 | 4.8103E-05  | 2.9295E-05 | 1.5834E-05          | 6.2772E-CE |            |            |
| 4  | 1.2692E-04  | 1.0716E-04 | 9.CSS8E-05 | 7.2684E-05 | 5.2763E-05  | 3.35C9E-05 | 1.8644E-05          | 7.6214E-06 |            |            |
| 5  | 1.3623E-04  | 1.1680E-C4 | 9.7450E-05 | 7.8049E-05 | 5.5550E-05  | 3.6472E-05 | 2.0862E-05          | 8.7390E-06 |            |            |
| 6  | 1.3957F-34  | 1.22C2E-04 | 1.0269E-04 | 8.2150E-05 | 6.C777E-05  | 3.9139E-05 | 2.2610F-05          | 9.6252E-C6 |            |            |
| ?  | 1.3623E-04  | 1.2202E-04 | 1.0464E-04 | 8.4859E-05 | 6.3049E-05  | 4.1321E-05 | 2.4016E-05          | 1.C325E-C5 |            |            |
| 3  | 1.2692E-04  | 1.1680E-04 | 1.0269E-04 | 8.4859E-05 | 6.2199E-05  | 4.2083E-05 | 2.4885E-05          | 1.0826E-C5 |            |            |
| 9  | 1.1509E-04  | 1.0716E-04 | S.7450E-C5 | 8.215CE-05 | 6.3049E-05  | 4.2083E-05 | 2.5146E-05          | 1.1077E-05 |            |            |
| 10 | 1.10876-04  | 9.9866E-05 | 9.C998E-05 | 7.8049E-05 | 6.0777E-05  | 4.1321E-05 | 2.4885E-05          | 1.1077E-05 |            |            |
| 11 | 1.0513E-04  | 9.5724E-05 | ∂.5151E-05 | 7.2684E-05 | 5.5550E-05  | 3.9139E-05 | 2.4016E-05          | 1.0826E-05 |            |            |
| 12 | 9.57245-05  | 8.8584E-05 | 7.8981E-05 | 6.7174E-05 | 5.2763E-05  | 3.6472E-05 | 2.2610E-C5          | 1.C325E-C5 |            |            |
| 13 | 8.51516-05  | 7.8981E-05 | 7.C838E-05 | 6.C814F-05 | 4.8103E-05  | 3.3509E-05 | 2.0862E-05          | 9.6252E-06 |            |            |
| 14 | 7.26845-05  | 6.7174E-05 | 6.0814E-05 | 5.1742E-05 | 4.0212E-05  | 2.9295E-05 | 1.8644E-05          | 8.7390E-06 |            |            |
| 15 | 5.555CE-05  | 5.2763E-05 | 4.8103E-05 | 4.0212E-05 | 3.2359E-05  | 2.4106E-05 | 1.5834E-05          | 7.6214E-C6 |            |            |
| 16 | 3.9139E-05  | 3.6472E-05 | 3.3509E-05 | 2.9295E-05 | 2-41 C6E-05 | 1.8522E-05 | 1.2581E-05          | 6.2772E-06 |            |            |
| 17 | 2.4016E-05  | 2.2610E-05 | 2.C862E-05 | 1.8644E-05 | 1.5834E-05  | 1.2581E-C5 | 8.9742E-06          | 4.7521E-C6 |            |            |
| 18 | 1.03268-05  | 1.J325E-05 | 9.6252E-C6 | 8.7390E-06 | 7.6214E-06  | 6.2772E-06 | 4 <b>.7</b> 521E-06 | 3.0742E-06 |            |            |

- 77 -

2. Sample Problem B2

Only flux calculations without the printing of fluxes and sources. The following strategy is assumed in the iteration process: five inner iterations, in the first outer iteration, four inner iterations in the second outer iteration, three inner iterations in the third outer iteration, and two inner iterations in the next outer iteration. In the case of using IBM/370-168 computer the following data were obtained:

CPU time: 58.72 sec Total costs: 41.53 DM

| 1 <u>10</u> 11         | 201                                           | _ 1     | _301         |                                       | 401                                           | 1        | 501      | I                |          | <u>I</u>                                      |                       | <u>I</u>    | <u>- 80</u> j        |
|------------------------|-----------------------------------------------|---------|--------------|---------------------------------------|-----------------------------------------------|----------|----------|------------------|----------|-----------------------------------------------|-----------------------|-------------|----------------------|
| 11                     | <b>?</b>                                      |         | •••••••)•••• |                                       |                                               |          |          | <u></u>          | <u>l</u> | <u></u>                                       | 1                     | <u></u>     | <u></u> ]            |
| 11 REGIÓN = 300 K, TII | <u>1E=1</u>                                   |         |              |                                       |                                               | <u> </u> |          |                  |          |                                               | ]                     |             | 1                    |
| I . FØRMAT RR, DDNAM   | 5 = FT06                                      | F001,0  | ØNFL =       | ØN .                                  | 1                                             |          |          |                  |          |                                               |                       |             | 1                    |
| 11 EXEC FGG, LIB= N    | /sy <sub>i</sub> s , n,                       | AME=H   | EXAGA        |                                       | ·                                             |          | <u></u>  | <u></u>          | <u></u>  |                                               |                       | <u></u>     | ]                    |
| IISYSIN DO *           | 1                                             |         |              |                                       |                                               | !        |          |                  | <u> </u> |                                               |                       |             |                      |
| 11 G. FT 12 FOO1 DD U  | V <i>IT</i>  =Sy:                             | SDA . S | PACE         | (7294                                 | (,17)                                         | DG8=     | (BLKS)   | Z <i>E</i> ] = 7 | 294, RI  | ECFM=                                         | v <u>as)</u>          |             |                      |
| IIG. FT 13 FOOT DD UI  | VITI=SY                                       | SDA S   | PACE =       | (7294                                 | (,10)                                         | DCB=     | *. FT12  | 2F001            |          | 1                                             |                       | 1           | 1                    |
| 11 G. FT 14 FOOT DD U  | VITI=SY                                       | SDA,S   | PACE =       | (7294                                 | 4.6).1                                        | DC8= *.  | FT12     | F0Q1             | 1        | <br>                                          | <u></u>               | 1           |                      |
| 11 G. FT 15F001 DD U   | VIT=SY                                        | SDA,S   | PACES        | (7294                                 | 4,6),1                                        | DC8=*.   | FT.121   | =0Q1             |          | <u></u>                                       |                       |             |                      |
| IIG. FT16 FOOT DD V    | VITI=SYS                                      | SDA, S  | PALE =       | (7294                                 | 4.5).1                                        | DCB=*    | . FT 121 | =001             | 1        | 1                                             |                       |             | <i>د</i> ـــــد<br>۱ |
| 1/ G. FT 17 FOO1 DD U  |                                               | SDA . S | DACE         | (72944                                | 4.51).1                                       | DCR=*.   | ET12     | FU01             |          | <u>, , , , , , , , , , , , , , , , , , , </u> |                       |             | المسلمية.            |
| // G. FT 18FOO1 DD U   | VIT = SY.                                     | SDA S   | PA(E=        | (7294                                 | 4, <b>1</b> 1), 1                             | )(R=*    | .FT12    | <b>F0U1</b>      | <u></u>  | lkk                                           | - 4 4 4 4 4 4 4 4 4 4 | . <u></u> . | ن <u>ب</u>           |
| //G.FT 20F001 DD U     | $V   T_i = S V_i$                             | SDA, S  | PACE =       | (7294                                 | 4 . 11) . I                                   | DCR=¥.   | FT.12    | =001             |          | <u></u><br>1                                  |                       | <u> </u>    | d                    |
| // C SVS/ N DD X       | <u>, , , , , , , , , , , , , , , , , , , </u> |         |              |                                       | , , , , <u>, , , , , , , , , , , , , , , </u> |          | ·····    |                  | ·        |                                               | <u> </u>              |             | المحمد م             |
|                        | <br>                                          |         |              | · · · · · · · · · · · · · · · · · · · | - <u></u> ]                                   |          |          | <u>l</u> ı       |          | · · ·                                         | <u>_</u> ,            | <u></u>     | ا <u>لـــــــ</u>    |
|                        |                                               |         | <u> </u>     | ·/ ·                                  |                                               |          | l        | · · · · · ·      | <u></u>  | · · · · · · · ·                               |                       | <u></u>     | ]                    |

| Programm | HE           | XAG       | <u>A-∏</u>          | SAM            | PLE        | PRC        | BLEM       | <u>B</u> 2 | Datum    |                    |              | _ Name                                | ·                                             |                                               |                | Blo                                           | att - Nr      |                |               |
|----------|--------------|-----------|---------------------|----------------|------------|------------|------------|------------|----------|--------------------|--------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------|-----------------------------------------------|---------------|----------------|---------------|
| I        |              |           | ΙΝΡί                | IT DA          | TA         |            |            |            |          |                    |              |                                       |                                               |                                               |                |                                               |               |                |               |
| L_       | 1            | 01        | 1                   | 204            |            | 1          | 301        | l          | 401      |                    | L            | 501                                   | I                                             | <u>    60                                </u> | 1              | 701                                           |               | I              | 801           |
| 1/       |              | <u> </u>  | <u></u>             |                |            | <u> </u>   | _ <b>_</b> |            |          |                    | l            |                                       | <u>.</u>                                      |                                               |                |                                               |               | I              |               |
|          |              | <u>SA</u> | 1PLE                | PRQE           | BLEM       | B2         |            |            | <u>_</u> | ·                  | L            |                                       |                                               |                                               | <u></u>        |                                               | مراجع المراجع | 1              | ]             |
| 2/       |              |           |                     |                | 4          | <u> </u>   |            |            | 1 .      |                    | 1_,,         |                                       |                                               |                                               | 1              | 1                                             | ·             | I              |               |
| 2        | 35           | 35        |                     | . <b>. 3</b> 1 | . 1.       | · . 5      | <u>, </u>  |            | . 5      | 21                 | 1            | <u> </u>                              | , <b> 2</b> , ,                               | <b>.</b> 2                                    | <i>. 0</i>     | 3.1                                           | 23323         | <b>ī</b>       | ]             |
| 3/11/    | -4. 1 1 1    | 1         |                     | 1              |            | I          |            |            |          |                    | L            | _, } ,                                |                                               |                                               | 1 :            |                                               |               | 1              |               |
| 1        | 1            | 1.1       | . 1                 | . <b>1</b>     | <b>.</b> 9 | 2          | . 2        | . 2        | 3        | 3.                 | . 3          |                                       |                                               |                                               |                | 1                                             |               | 1              | .   1         |
| 1        | 1            | 1         | 1                   | . <b>1</b>     | 1          | 2          | 2          | 2          | 3        | 3                  | 3            |                                       | 1                                             |                                               | ł .            | [                                             |               | 1              | 8             |
| 1        | 1            | 1         | 1                   | 1              | 1          | 17         | 1 2        | 20         | 3        | 3                  | 1            |                                       | 1                                             | <br>                                          | 1              |                                               |               |                |               |
| 1        | 1            | 1.        | . 1                 | 1              | 1          | 4          | 12         | 2          | 3        | 3                  | 3            |                                       | I                                             |                                               | <u> </u>       |                                               |               | 1              |               |
| 1        | 1            | 1         | 1                   | <b>6</b> i     | 1          | 11         | i 4        |            | 2        | 3                  | <u> </u>     | <br>                                  | ،                                             |                                               | <u></u> .      | ·····                                         |               | 1              | <b>ن</b> ــــ |
| 1        | 1            | 1 1       | 1 <b>5</b>          | ,,<br>1,       | 1          | , 4        | 2          |            | 3        |                    | i            | 1                                     | ·                                             |                                               |                | ا…لم∟ <sup>1</sup> ،1                         |               | ,              | <b>ب</b>      |
| 1        | 1            | · · · ·   | 8                   |                |            | . <b>1</b> | 16         |            | 21       | 3                  | · 3          |                                       | <u> </u>                                      | _ <u></u>                                     | <u></u>        | لـــــــــــــــــــــــــــــــــــــ        | <u>k</u> kk   | 1<br>1         |               |
| 1        | 1            | <b>1</b>  | <u>_</u>            | .5             |            |            | <br>, 2    | ,2         | .3       | <u></u><br>3       | <u> </u>     | ·                                     | <u>,                                     </u> |                                               | - <del>1</del> | <b>ل</b> ــــــــــــــــــــــــــــــــــــ |               | . <del>!</del> |               |
| 1        | 1            |           | !*•                 | 21             |            | . 12       | . 2        | 2.0        | 3,       | <u>، ، ، ج</u> ـــ |              | · · · · · · · · · · · · · · · · · · · | · . •                                         |                                               | ·····          |                                               | II            |                | ]<br>_,       |
| A.       | ',<br>       | . 1       | <u>ماريد.</u><br>۸. |                |            |            |            |            | <u></u>  | <u>.</u>           |              | <u>.</u>                              | ·                                             | <u>.</u>                                      | <u> </u>       | لـــــ                                        | <u> </u>      |                |               |
|          | <sup>1</sup> |           |                     |                | /<br>A     | <u> </u>   | <u></u>    | , <u> </u> | <u></u>  | <u>, )</u><br>)    | <u>ر ا</u>   | ·l                                    |                                               | <u> </u>                                      |                |                                               |               | <u> </u>       | <u> </u>      |
|          | 7            | 0         | <u> </u>            | 71.            | 1          | <u> </u>   | <u> </u>   | <b></b>    | <u> </u> | <u> </u>           | L_ <b>_3</b> | <u> </u>                              | L                                             |                                               |                |                                               |               | <u> </u>       | ]             |



| Programm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Do                 | atum         | _ Name                                        | Blatt-i  | Nr <u>3</u>                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|-----------------------------------------------|----------|-----------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30}1               | <u>-40</u> 1 | 501 601                                       |          | <b>80</b> 1                                   |
| 3, 2, 3, 2, 3, 2, 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                  | 3, 3, 3      |                                               | <u></u>  | · · · · · · · · · · · · · · · · · · ·         |
| 3 3 21 3 21 3 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 21               | 3, 3, 3      |                                               |          |                                               |
| 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 3                | 3, 3,        |                                               | 1 1      | ] ]                                           |
| 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , 3 <sub>,</sub> 3 | 3 3 3        | 1                                             |          | ·····                                         |
| 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · 3 · 3            | 3 3 3        |                                               |          | i I                                           |
| 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 3, 3             | 3 3          | <u> </u>                                      |          | 1 J                                           |
| 3, 3, 3, 3, 3, 3, 3, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 3 .3             | 3 3 3        | <u>, , , , , , , , , , , , , , , , , , , </u> | <u> </u> | ······································        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | a. a. a      | •l                                            |          | ·                                             |
| $\frac{3}{2} \frac{1}{4} \frac{3}{4} \frac{3}$ |                    | <u> </u>     | <u> </u>                                      | ·····    |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ]                |              | <u>.                                    </u>  |          | <u>h</u>                                      |
| 1, 1, 1, 5, 5, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                  |              |                                               |          | <u>, , , , , , , , , , , , , , , , , , , </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                  |              | <u> </u>                                      |          | <u> </u>                                      |
| 5 5 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                  |              | ·                                             |          | · · · · · · · · · · · · · · · · · · ·         |
| 2 2 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>9</u>           |              |                                               |          | <u></u>                                       |
| 1 1 2 2 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                  |              | <u> </u>                                      |          | <u></u>                                       |
| 4 4 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>1</b>           |              |                                               |          |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                  |              |                                               |          |                                               |



H E X A G A - II WRITTEN BY ZBIGNIEW WOZNICKI, FEB. 1975

### SAMPLE PROBLEM B2

2 TYPE OF HEXAGONAL MESH ARRANGEMENT

1225 MESH POINTS

4 NELTRON GR.

1 THERMAL GR.

3 NEUTRON GR. THROUGHOUT WHICH NEUTRONS ARE DOWN-SCATTERED

5 MATERIAL COMP.

3 FISSIONABLE COMP.

3.2332 CM - MESH STEP

OLTER BOUNDARY COND: LEFT - FLUX DERIVATIVE EQUAL TO ZERO TOP - FLUX DERIVATIVE EQUAL TO ZERO RIGHT - LOGARITHMIC BOTTOM - LOGARITHMIC THE LOCATION OF HEXAGONS

l- \*l \* \* l \* \* l \* \* i \* \* l \* \* 9 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 - 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* 3- \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 2 \* \*20 \* \* 3 \* \* 3 \* \* - \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 4 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 5-1 \* \* 1 \* \* 1 \* \* 1 \* \* 6 \* \* 1 \* \*11 \* \* 4 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* - \* \* 1 \* \* 1 \* \* 1 \* \* 5 \* \* 1 \* \* 1 \* \* 4 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 7- \* 1 \* \* 1 \* \* 1 \* \* 8 \* \* 5 \* \* 1 \* \* 1 \* \* 16 \* \* 2 \* \*21 \* \* 3 \* \* 3 - 1 \* \* 1 \* \* 1 \* \* 1 \* \* 5 \* \* 1 \* \* 1 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 \* 9- \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 7 \* \* 1 \* \*12 \* \* 2 \* \*20 \* \* 3 \* \* 3 \* \* - \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 11- 1 \* \* 1 \* \* 6 \* \* 1 \* \* 1 \* \* 1 \* \* 5 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* - \* \* 1 \* \* 5 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 \* \* 13- \* 1 \* \* 8 \* \* 5 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 2 \* \* 2 \* \* 21 \* \* 3 \* \* 3 - 1 \* \* 1 \* \* 5 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 \* 15- \* \* 1 \* \* 1 \* \* 7 \* \* 1 \* \* 1 \* \* 1 \* \*13 \* \* 2 \* \*20 \* \* 3 \* \* 3 \* \* 1 - \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 4 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 85 17-10 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 4 \* \* 4 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* - \* \* 1 ☆ \* 1 \* \* 1 \* \* 1 \* \* 1 \* \* 2 \* \* 4 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 19- \* 2 \* \*15 \* \* 1 \* \*10 \* \* 1 \* \*13 \* \* 2 \* \*16 \* \* 2 \* \*21 \* \* 3 \* \* 3 - 2 \* \* 4 \* \* 1 \* \* 2 \* \* 1 \* \* 4 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 \* 21- \* \*18 \* \* 4 \* \*12 \* \* 2 \* \*14 \* \* 4 \* \* 2 \* \* 2 \* \*20 \* \* 3 \* \* 3 \* \* - \* 2 \* \* 4 \* \* 2 \* \* 2 \* \* 2 \* \* 4 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 23- 2 \* \* 2 \* \* 16 \* \* 2 \* \* 2 \* \* 2 \* \* 16 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* - \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 25- \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 - 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 2 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* 27- \* \*19 \* \* 2 \* \*19 \* \* 2 \* \*19 \* \* 2 \* \*19 \* \* 2 \* \*21 \* \* 3 \* \* 3 \* \* - \* 3 \* \* 2 \* \* 3 \* \* 2 \* \* 3 \* \* 2 \* \* 3 \* \* 2 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 - \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 31- \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 - 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 33- \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 - \* 3 \* \* 3 \* \* J \* \* 3 \* \* 3 **\* \*** 3 **\* \*** 3 **\* \*** 3 **\* \*** 3 **\* \*** 3 **\*** \* 3 **\*** \* 3 **\*** \* 3 **\*** \* 3 35- 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \* \* 3 \*

THE MATERIAL SPECIFICATION OF HEXAGONS



| HNR | T1 | ۳2 | Т3 | Τ4 | T 5 | <b>T</b> 6 |
|-----|----|----|----|----|-----|------------|
| 1   | 1  | 1  | 1  | 1  | 1   | 1          |
| 2   | 2  | 2  | 2  | 2  | 2   | 2          |
| 3   | 3  | 3  | 3  | 3  | 3   | 3          |
| 4   | 4  | 4  | 4  | 4  | 4   | 4          |
| 5   | 5  | 5  | 5  | 5  | 5   | 5          |
| 6   | 1  | 1  | 5  | 5  | 1   | 1          |
| 7   | 1  | 1  | 1  | 1  | 5   | 5          |
| 8   | 5  | 5  | 1  | 1  | 1   | 1          |
| 9   | 2  | 2  | 1  | 1  | 1   | 1          |
| 10  | 1  | 1  | 2  | 2  | 1   | 1          |
| 11  | 4  | 4  | 1  | L  | 1   | 1          |
| 12  | 2  | 2  | 2  | 2  | 1   | 1          |
| 13  | 2  | 2  | 4  | 4  | l   | 1          |
| 14  | 4  | 4  | 2  | 2  | 1   | 1          |
| 15  | 1  | 1  | 4  | 4  | 1   | 1          |
| 16  | 2  | 2  | 2  | 2  | 4   | 4          |
| 17  | 2  | 2  | 4  | 4  | 2   | 2          |
| 18  | 4  | 4  | 2  | 2  | 2   | 2          |
| 19  | 2  | 2  | 3  | 3  | 2   | 2          |
| 20  | 3  | 3  | 2  | 2  | 2   | 2          |
| 21  | 3  | 3  | 3  | 3  | 2   | 2          |

## MATERIAL SPECIFICATION

| COMP | GR NR       | DIF                                       | SIGT                       | NUSIGF                     | CHI                        |
|------|-------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|
| 1    | G<br>1<br>2 | 2.87679E+00<br>1.57085E+00                | 2.82040E-02<br>5.27470E-03 | 1.18780E-02<br>5.32520E-03 | 7.68000E-01<br>2.32000E-01 |
|      | 4           | 7.222486E-01<br>9.564199E-01              | 176120E-02<br>265460E-02   | 1.04710E-02<br>2.66110E-02 | 0•0<br>0•0                 |
|      | c           | SIGDS                                     |                            | 6>6+3                      |                            |
|      | 1<br>2<br>3 | 2.35970E-02<br>1.61530E-03<br>4.68380E-03 | 4.07910E-06<br>4.23090E-08 | 4.44930E-08                |                            |
| COMP | GR NR       | DIF                                       | SIGT                       | NUSIGF                     | CHI                        |
| 2    | 1           | 2 •87654E+00                              | 2.87820E-02                | 1.49430E-02                | 7.68000E-01                |
|      | 2           | 1.571365+00                               | 6.04910E-03                | 7-68870E-03                | 2.32000F-01                |
|      | 4           | 9•42978E-01                               | 3.37140E-02                | 3.81590E-02                | 0.0                        |
|      |             | SILOS                                     |                            |                            |                            |
|      | G           | G>G+1<br>2 376205-07                      | G>G+2                      | G>G+3                      |                            |
|      | 2<br>3      | 1.57180E-03<br>4.34140E-03                | 4.07240E-08                | 4.998802-08                |                            |
| COMP | GR NR       | DIF                                       | SIGT                       | NUSIGE                     | CHI                        |
| د    | 1           | 2 = 28561E+00                             | 3.59590E-02                | 7.74270E-03                | 7.68000E-01                |
|      | 2           | 1.17193E+00                               | 5.885505-03                | 1.08250E-04                | 2-32000E-01                |
|      | خ<br>4      | 6.32475E-01<br>8.18357E-01                | 1.33490E-02                | 2•97420E-04<br>8•46870E-04 | 0.0                        |
|      |             | SIGDS                                     |                            |                            |                            |
|      | G           | G>G+1                                     | G>G+2                      | G>G+3                      |                            |
|      | 1<br>2<br>3 | 2.77760E-03<br>5.89710E-03                | 9.00180E-08                | 4.503902-08                |                            |
| COMP | GR NR       | DIF                                       | SIGT                       | NUSIGE                     | CHI                        |
| 4    | G<br>1      | 2.50307E+00                               | 2.48140E-02                | 0.0                        | 0.0                        |
|      | 2           | 1.31468F+00                               | 1.64120F-02                | 0.0                        | 0.0                        |
|      | 3<br>4      | 5.74277E-01<br>6.15369E-01                | 7.21220E-02<br>1.68680E-01 | 0 • 0<br>0 • 0             | 0 • 0<br>0 • 0             |
|      |             | SIGDS                                     |                            |                            |                            |
|      | G           | G>C+1                                     | G>G+2                      | G>G+3                      |                            |
|      | 1           | 2.294605-02                               | 1.03200E-06                | 1 <b>.04890E-0</b> 8       |                            |
|      | 2<br>3      | 3.76870E-03<br>8.68150E-03                | / D3610E-12                |                            |                            |
| COMP | GR NR       | DIF                                       | SIGT                       | NUSIGF                     | CHI                        |
| 5    | G           |                                           |                            |                            |                            |
|      | 2           | 4.061542E+00<br>2.90183E+00               | 1.315908-02                | 0.0                        | 0.0                        |
|      | 3           | 1.02118E+00                               | 4.600105-03                | 0.0                        | 0.0                        |
|      | 4           | 1.72963E+00                               | 7-86600E-04                | 0.0                        | 0.0                        |
|      | _           | SIGDS                                     |                            |                            |                            |
|      | G           | G>G+1                                     | G>G+2<br>6.57800=-07       | G>G+3                      |                            |
|      | 1           | 1.287108-03                               | 4-363305-12                | 00770305719                |                            |
|      | 3           | 3.453302-03                               | y ser i wiye si dada       |                            |                            |

### LOGARITHMIC BOUNDARY CONDITION PARAMETERS

| GR NR | PT NR | LEFT | TOP | RIGHT                    | BOTTOM     |
|-------|-------|------|-----|--------------------------|------------|
|       |       |      |     |                          |            |
| 1     | 1     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 2     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 3     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 4     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 5     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 6     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 7     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 8     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 9     |      |     | 4.69488-01               | 4.6948E-01 |
|       | 10    |      |     | 4.69486-01               | 4.69482-01 |
|       | 11    |      |     | 4.0940E-UI               | 4.0940E-UI |
|       | 12    |      |     | 4 60740E-01              | 4.69400-01 |
|       | 14    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 15    |      | 1   | 4.6948E-01               | 4.6948E-01 |
|       | 16    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 17    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 18    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 19    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 20    |      |     | 4.6948E+01               | 4.6948E-01 |
|       | 21    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 22    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 23    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 24    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 25    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 26    |      |     | 4.69488-01               | 4.6948E-01 |
|       | 27    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 20    |      |     | 4.09485-01               | 4.09400-01 |
|       | 29    |      |     | 4.6948E-01               | 4.6948E+01 |
|       | 20    |      |     | 4-6948E-01               | 4.6948E-01 |
|       | 32    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 33    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 34    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 35    |      |     | 4.6948E-01               | 4.6948E-01 |
| 2     | 1     |      |     | 4 4049E-01               | 6 6068E-01 |
|       | 1     |      |     | 4.0940E-U1<br>4.6048E-01 | 4.69465-01 |
|       | 2     |      |     | 4.6948E-01               | 4-6948E-01 |
|       | 4     |      |     | 4.6948E-01               | 4-6948E-01 |
|       | 5     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 6     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 7     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 8     |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 9     |      |     | 4.6948E-01               | 4.6949E-01 |
|       | 10    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 11    |      |     | 4.6948E-01               | 4.6948F-01 |
|       | 12    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 13    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 14    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 15    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 16    |      |     | 4.6948E-01               | 4.69481-01 |
|       | L /   |      |     | 4.0948E-01<br>4.4048E-01 | 4.09482-01 |
|       | 10    |      |     | 4.0340F-UI<br>4.66485-01 | 4 6049E-01 |
|       | 20    |      |     | 4.69495-01               | 4.6948E-01 |
|       | 20    |      |     | 4.6948E-01               | 4.6948E-01 |
|       | 4. L  |      |     |                          |            |

.

| 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01 | 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                                                     | 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                                                     |
| 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                                       | 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                         |
| 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                                       | 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                                       |
| 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                                       | 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                                       |
| 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                                                                   | 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                                                                                                 |
| 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                                           | 4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01<br>4.6948E-01                             |

| 14 | 4.6948E-01 | 4.6948E-01 |
|----|------------|------------|
| 15 | 4.6948E-01 | 4.6948E-01 |
| 16 | 4.6948E-01 | 4.6948E-01 |
| 17 | 4.6948E-01 | 4.6948E-01 |
| 18 | 4.6948E-01 | 4.6948E-01 |
| 19 | 4.6948E-01 | 4.6948E-01 |
| 20 | 4.6948E-01 | 4.6948E-01 |
| 21 | 4.6948E-01 | 4.6948E-01 |
| 22 | 4.6948E-01 | 4.6948E-01 |
| 23 | 4.6948E-01 | 4.6948E-01 |
| 24 | 4.6948E-01 | 4.6948E-01 |
| 25 | 4.6948E-01 | 4.6948E-01 |
| 26 | 4.6948E-01 | 4.6948E-01 |
| 27 | 4.6948E-01 | 4.6948E-01 |
| 28 | 4.6948E-01 | 4.6948E-01 |
| 29 | 4.6948E-01 | 4.6948E-01 |
| 30 | 4.6948E-01 | 4.6948E-01 |
| 31 | 4.6948E-01 | 4.6948E-01 |
| 32 | 4.6948E-01 | 4.6948E-01 |
| 33 | 4.6948E-01 | 4.6948E-01 |
| 34 | 4.6948E-01 | 4.6948E-01 |
| 35 | 4.6948E-01 | 4.6948E-01 |
|    |            |            |

| NG               | NC                           | RM                           |           |
|------------------|------------------------------|------------------------------|-----------|
| 1<br>2<br>3<br>4 | 0.71<br>0.83<br>C.51<br>0.50 | 9727<br>6721<br>1508<br>9477 |           |
| NG               | ΙT                           | NI                           | ER        |
| 2                | 1                            | 0.836721                     | 0.976094  |
| <u>^</u>         | 2                            | 3 967133                     | -3 036346 |
| 2                | 2                            | 0 074414                     |           |
| 2                | <u> </u>                     | 0.070014                     |           |
| 2                | 4                            | J.882126                     | -0.006288 |
| 2                | 5                            | 0.885935                     | -3.004317 |
| 2                | 6                            | 0.898813                     | -0.003247 |
| 2                | 7                            | <b>p.</b> 891101             | -0.002574 |
| 2                | 8                            | 0.892983                     | -0.002111 |
| 2                | 9                            | 0.894562                     | -0.001768 |
| 2                | 10                           | 0.895904                     | -0.001499 |
| 2                | 11                           | 0.897055                     | -0.001285 |
| 2                | 12                           | 0.898047                     | -0.001105 |
| 2                | 13                           | 0.898902                     | -0.000952 |
| 2                | 14                           | 0.899643                     | -0.000824 |
| 2                | 15                           | 0.900285                     | -0.000713 |
| 2                | 16                           | J•900840                     | -0.000616 |
| 2                | 17                           | 0.901321                     | -0.000533 |
| 2                | 18                           | 0.901739                     | -0.000463 |

3.902099

0.902412

0.902683

0.902916

0.903119

0.903293

0.903445

0.903576

0.903689

0.903786

0.903870

-0.010399

-0.000346

-0.000299

-0.000258

-0.000224

-0.000192

-0.000168

-0.000144

-0.000125

-0.000107

-0.000093

OMEGAF=1.1687

2

2

2

2

2

2

2

2

2

2

2

19

20

21

22

23

24

25

26

27

28

29

CMEGAB=1.1687

THE ESTIMATION OF OPTIMUM OMEGA

ER/ER

0.976094 -0.037237 0.300798 0.575105 0.686637 0.752154 0.792658 C.820304 0.837398 0.847896 0.856870 0.860431 C.861087 0.865731 0.865741 0.863636 C.865325 0.869410

0.860082

C.868421

0.865014

0.863057

0.867159

0.855319

0.875622

0.857955

0.867550

0.875000

- 91 -

```
ITERATION PROCESS
```

|       |        |        | FL<br>IN | UX CONV IN<br>INER ITERS> |       | 1         | 2                    | 3        | 4        | 5        |
|-------|--------|--------|----------|---------------------------|-------|-----------|----------------------|----------|----------|----------|
| JT NR | OMEGAB | OMEGAF | K-EFF    | K-EFF CONV.               | GR NR |           |                      |          |          |          |
| 1     | 1.1687 | 1.1687 | 1.099779 | 3.8126E+02                | 1     | 1.00E+00  | 6.25E-01             | 2.33E-01 | 1.99E-01 | 1.89E-01 |
|       |        |        |          |                           | 2     | 1.00E+00  | 6.528-01             | 3.72E-01 | 2.19E-01 | 1.02E-01 |
|       |        |        |          |                           | 3     | 1.00E+00  | 5.97E-01             | 4.57E-01 | 2.46E-01 | 9.63E-02 |
|       |        |        |          |                           | 4     | 1.00E+00  | 6.73E-01             | 3.86E-01 | 2.41E-01 | 1.36E-01 |
| 2     | 1.1687 | 1.1687 | 1.093054 | 6.1522E-03                | 1     | 4.64E+00  | 1.09E+00             | 4.12E-01 | 1.79E-01 |          |
|       |        |        |          |                           | 2     | 4.61E-01  | 2.35E-01             | 1.26E-01 | 5.67E-02 |          |
|       |        |        |          |                           | 3     | 8.95E-01  | 3.48E-01             | 1.40E-01 | 7.22E-02 |          |
|       |        |        |          |                           | 4     | 4.215-01  | 1.86E-01             | 8.01E-02 | 4.98E-02 |          |
| 3     | 1.1687 | 1.1687 | 1.092194 | 7.8678E-04                | 1     | 2.92E-01  | 2.36E-01             | 1.40E-01 |          |          |
|       |        |        |          |                           | 2     | 8.08E-02  | 0.54t-02             | 4-10E-02 |          |          |
|       |        |        |          |                           |       | 2.596-01  | 1.165-01             | 5.40E-02 |          |          |
|       |        |        |          |                           | 4     | 2.195-01  | 1.105-01             | 4.975-02 |          |          |
| 4     | 1.1687 | 1.1687 | 1.103693 | 1.0419E-02                | 1     | 1.14E-01  | 4.92E-02             |          |          |          |
|       |        |        |          |                           | 2     | 7.11E-02  | 2.085-02             |          |          |          |
|       |        |        |          |                           | 4     | 7.98E-02  | 1.97E-02             |          |          |          |
| 5     | 1.1687 | 1.1687 | 1.114928 | 1.0077F-02                | 1     | 6-14E-02  | 6.56E-02             |          |          |          |
| -     |        |        |          |                           | 2     | 2.98E-02  | 2.09E-02             |          |          |          |
|       |        |        |          |                           | 3     | 4.80E-02  | 1.63E-02             |          |          |          |
|       |        |        |          |                           | 4     | 4.35E-02  | 1.78E-02             |          |          |          |
| 6     | 1.1687 | 1.1637 | 1.120794 | 5.2339E-03                | 1     | 2.40E-02  | 1.99E-02             |          |          |          |
|       |        |        |          |                           | 2     | 1.65E-02  | 9.82E-03             |          |          |          |
|       |        |        |          |                           | 3     | 2.45E-C2  | 4.34E-03             |          |          |          |
|       |        |        |          |                           | 4     | 1.978-02  | 4.472-03             |          |          |          |
| 7     | 1.1687 | 1.1687 | 1.123072 | 2.02785-03                | 1     | 1.26E-C2  | 1.26E-02             |          |          |          |
|       |        |        |          |                           | 2     | 7.908-03  | 4.37E-C3             |          |          |          |
|       |        |        |          |                           | 2     | 9 636-03  | 2 895-03             |          |          |          |
|       |        |        |          |                           |       |           | 2.070 05             |          |          |          |
| 8     | 1.1687 | 1.1687 | 1.123827 | 6.7210E-04                | 1     | 6.27E-03  | 5.34E-03             |          |          |          |
|       |        |        |          |                           | 2     | 3.48E-03  | 2.02E-03             |          |          |          |
|       |        |        |          |                           | 3     | 4.712-03  | 1.39E-03<br>8 80E-04 |          |          |          |
|       |        |        |          |                           | 7     | 7.715-07  | 0.091-04             |          |          |          |
| 9     | 1.1687 | 1.1687 | 1.124104 | 2.4688E-04                | 1     | 2.81E-03  | 2.25E-03             |          |          |          |
|       |        |        |          |                           | 2     | 1.48E-03  | 8.C9E-04             |          |          |          |
|       |        |        |          |                           | 5     | 2.016-03  | 6.54t-04             |          |          |          |
|       |        |        |          | •                         | 4     | 1.000-00  | 4.000-04             |          |          |          |
| 10    | 1.1687 | 1.1687 | 1.124236 | 1.1712E-04                | 1     | 1.34E-03  | 1.27E-03             |          |          |          |
|       |        |        |          |                           | 2     | 6.22E-04  | 3.46E-04             |          |          |          |
|       |        |        |          |                           | 3     | 8.58E-04  | 2.761-04             |          |          |          |
|       |        |        |          |                           | -1    | U# 910-04 | 1.555-04             |          |          |          |
| 11    | 1.1687 | 1.1687 | 1.124329 | 8.2314E-05                | 1     | 8.64E-04  | 6.74E-04             |          |          |          |
|       |        |        |          |                           | 2     | 2.72E-C4  | 1.57E-04             |          |          |          |
|       |        |        |          |                           | 5     | 3.70E-04  | 1.24E-04             |          |          |          |
|       |        |        |          |                           | 4     | 5.002-04  | 1.555-05             |          |          |          |
| 12    | 1.1687 | 1.1687 | 1.124377 | 4.3273E-05                | 1     | 5.42E-04  | 3.31E-04             |          |          |          |
|       |        |        |          |                           | 2     | 1.1/E-C4  | 0.81E-05             |          |          |          |
|       |        |        |          |                           | 2     | 79476-04  | 70702702             |          |          |          |

.

.

.

.

|    |        |        |          |                                       | 4   | 1.15E-04 | 3.72E-05      |
|----|--------|--------|----------|---------------------------------------|-----|----------|---------------|
| 13 | 1.1687 | 1.1687 | 1-124383 | 5-1260E-06                            | 1   | 3-12E-04 | 1-73E-04      |
| 12 | 1.1007 | 1.1007 | 10121303 | J.12002 00                            | · • |          | 2 695-05      |
|    |        |        |          |                                       | 2   | 5 345-05 | 2 0 4 5 - 0 5 |
|    |        |        |          |                                       | 4   | 4 77E=05 | 2 86E-05      |
|    |        |        |          |                                       | Ţ.  | 4.112-05 | 2.002-05      |
| 14 | 1.1687 | 1.1687 | 1.124372 | 8.5831E-06                            | 1   | 1.75E-04 | 8.89E-05      |
|    |        |        |          |                                       | 2   | 2.57E-C5 | 1.72E-05      |
|    |        |        |          |                                       | 3   | 3.05E-05 | 1.72E-05      |
|    |        |        |          |                                       | 4   | 2.19E-05 | 2.00 E-05     |
| 15 | 1.1687 | 1.1687 | 1,124375 | 2-5630E-06                            | I   | 8-96F-05 | 5-69F-05      |
|    |        |        |          |                                       | 2   | 1.72E-05 | 8.88E-06      |
|    |        |        |          |                                       | 2   | 8.46E+06 | 4.65E-06      |
|    |        |        |          |                                       | - L | 1 026-05 | 7 27 8-06     |
|    |        |        |          |                                       | ,   | 1.02.000 |               |
| 16 | 1.1687 | 1.1687 | 1.124377 | 1.7285E-C6                            | 1   | 4.01E-05 | 3.26E-05      |
|    | ~      |        |          |                                       | 2   | 8.46E-06 | 6.68E-06      |
|    |        |        |          |                                       | 3   | 7.33E-06 | 3.81E-06      |
|    |        |        |          |                                       | 4   | 6.85E-06 | 2.98E-06      |
| 17 | 1.1687 | 1-1687 | 1,124378 | 8-9407E-07                            | 1   | 2-38E-05 | 1 - 44E - 05  |
|    |        |        | 10121310 |                                       | 2   | 5 72E-06 | 5 36 5-06     |
|    |        |        |          |                                       | 2   |          | 2 925-06      |
|    |        |        |          |                                       | 4   | 4 235-06 | 1 975-06      |
|    |        |        |          |                                       | Т.  | 4.2JL 00 |               |
| 18 | 1.1687 | 1.1687 | 1.124378 | 0.0                                   | 1   | 1.24E-05 | 8.40E-06      |
|    |        |        |          |                                       | 2   | 3.87E-06 | 3.99E-06      |
|    |        |        |          |                                       | 3   | 3.81E-C6 | 4.47E-06      |
|    |        |        |          |                                       | 4   | 3.58E-C6 | 2.86E-06      |
|    |        |        |          | • • • • • • • • • • • • • • • • • • • |     |          |               |
|    |        |        |          |                                       |     |          |               |
|    |        |        |          |                                       |     |          |               |
|    |        |        |          | г                                     |     |          |               |
|    |        |        |          |                                       |     |          |               |
|    |        |        |          | ·                                     |     |          |               |
|    |        |        |          |                                       |     |          |               |
|    |        |        |          | •                                     |     |          |               |
|    | 1 - P  | н<br>1 |          | · · · · ·                             |     |          |               |
|    |        |        |          |                                       |     |          |               |
|    |        |        |          |                                       |     |          |               |

#### 3. Fine Mesh Problems

In this section all three versions of HEXAGA-II-120, -60 and -30 are illustrated by results of calculations for a series of problems (B1, 2, 3, 4, 6 and 8) derived from the reactor problem described in the previous sections of this Chapter. These problems differ only with the size of mesh step. B1 corresponds to the original problem (Section 1) with the mesh step equal to 6.4665 cm, B2-mesh step divided by factor 2 (Section 2), and in B3, B4, B6 and B8 these factors are 3, 4, 6 and 8, respectively. All results of calculations summarized in two tables given on the next pages are obtained with the values of  $\bar{\Omega} = \Omega_{\beta} = \Omega_{\phi}$  estimated by the programme but without the acceleration of sources ( $\omega_s = 1$ ) and for the following convergence criteria:  $\varepsilon_{\phi} < 10^{-5}$  and  $\varepsilon_{k_{eff}} < 10^{-6}$ .

It is seen from the tables that HEXAGA-II-120 and -30 have the same behaviour of convergence whereas in the case of HEXAGA-II-60 the rate of convergence decreases stronger as the number of mesh points increases; this effect is rather difficult to explain. The increase of number of inner iterations per outer iteration above 4 or 5 (for HEXAGA-II-120 and -30) does not decrease the number of outer iterations which for this problem is equal to about 20 independently of the number of mesh points in particular examples. This means that a few inner iterations in all examples of this problem is equivalent to the case in which the direct method would be used for solving inner iterations. Moreover, it should be mentioned that HEXAGA-II is especially effective for problems with a large number of mesh points, CPU time per mesh point per inner iteration decreases more than ten times passing from B1 to B8. In addition, increasing the number of mesh points is accompanied by the reduction of costs per mesh point, for instance, in the case of HEXAGA-II-120 costs per mesh point equal to 0.051 DM for Bl reduce to 0.022 DM for B8 and for HEXAGA-II-30 from 0.157 DM to 0.021 respectively. In all problems it is observed the strong stability of k eff independently of the number of inner iterations per outer iteration.

| Problem     | HEXAGA<br>-II- | No.of<br>mesh<br>points | Core<br>region | ā      | No.of<br>inner<br>per<br>outer<br>iter. | No.of<br>outer<br>iters                                        | Total<br>no.of<br>inner<br>iters                     | k <sub>eff</sub>                                                                                                     | CPU<br>time<br>in sec                                        | Time per<br>mesh pt.<br>per inner<br>iter. in<br>msec                         | CPU<br>costs<br>in DM                                        | Total<br>costs<br>in DM                                      |
|-------------|----------------|-------------------------|----------------|--------|-----------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
|             | 120            | 324                     | 214            | 1.1411 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 21<br>20<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24       | 84<br>160<br>288<br>384<br>480<br>576<br>672<br>768  | 1.121673<br>1.121672<br>1.121671<br>1.121671<br>1.121671<br>1.121671<br>1.121671<br>1.121671<br>1.121671<br>1.121671 | 18.7<br>18.9<br>23.2<br>26.6<br>27.4<br>27.9<br>28.7<br>29.7 | 0.688<br>0.365<br>0.249<br>0.214<br>0.176<br>0.150<br>0.132<br>0.132          | 6.8<br>6.9<br>8.5<br>9.7<br>10.0<br>10.2<br>10.5<br>10.8     | 16.5<br>16.2<br>19.5<br>20.9<br>21.2<br>21.4<br>21.7<br>22.1 |
| В1          | 60             | 171                     | 196            | 1.1421 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 21<br>22<br>26<br>25<br>24<br>24<br>25<br>24                   | 84<br>176<br>312<br>400<br>480<br>576<br>700<br>768  | 1.121672<br>1.121671<br>1.121672<br>1.121671<br>1.121671<br>1.121669<br>1.121669<br>1.121670<br>1.121670             | 19.2<br>22.0<br>26.5<br>26.1<br>25.2<br>24.9<br>27.4<br>26.5 | 1.336<br>0.732<br>0.497<br>0.381<br>0.307<br>0.253<br>0.229<br>0.202          | 7.0<br>8.1<br>9.7<br>9.5<br>9.2<br>9.1<br>10.0<br>9.7        | 16.0<br>17.5<br>20.7<br>20.2<br>19.5<br>19.4<br>20.7<br>20.0 |
|             | 30             | 90                      | 194            | 1.1287 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 17<br>23<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24 | 68<br>184<br>288<br>384<br>480<br>576<br>672<br>768  | 1.121677<br>1.121675<br>1.121675<br>1.121675<br>1.121675<br>1.121675<br>1.121675<br>1.121675<br>1.121675             | 18.9<br>25.4<br>26.2<br>26.5<br>27.1<br>28.3<br>28.9<br>26.0 | 3.092<br>1.536<br>1.012<br>0.767<br>0.626<br>0.547<br>0.478<br>0.376          | 6.9<br>9.3<br>9.6<br>9.7<br>9.9<br>10.4<br>10.6<br>9.5       | 14.1<br>18.7<br>19.3<br>19.4<br>19.6<br>20.1<br>20.4<br>19.2 |
|             | 120            | 1275                    | 246            | 1.1590 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 33<br>22<br>26<br>23<br>23<br>24<br>24<br>24<br>24             | 132<br>176<br>312<br>368<br>460<br>576<br>672<br>768 | 1.124375<br>1.124370<br>1.124373<br>1.124372<br>1.124372<br>1.124372<br>1.124373<br>1.124372<br>1.124373             | 43.2<br>33.2<br>43.8<br>43.3<br>47.5<br>47.8<br>51.6<br>55.3 | 0.267<br>0.154<br>0.114<br>0.096<br>0.084<br>0.068<br>0.063<br>0.063          | 15.8<br>12.2<br>16.0<br>15.8<br>17.4<br>17.5<br>18.9<br>20.2 | 42.0<br>30.6<br>31.6<br>35.4<br>37.2<br>37.9<br>39.5<br>41.1 |
| _ <b>B2</b> | 60             | 630                     | 212            | 1.1550 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 34<br>26<br>21<br>22<br>23<br>24<br>24<br>24<br>23             | 136<br>208<br>252<br>352<br>460<br>576<br>672<br>736 | 1.124372<br>1.124371<br>1.124371<br>1.124371<br>1.124371<br>1.124370<br>1.124370<br>1.124370<br>1.124368             | 38.4<br>31.1<br>27.0<br>29.6<br>33.3<br>36.7<br>38.5<br>39.3 | 0.448<br>0.237<br>0.170<br>0.133<br>0.115<br>0.101<br>0.091<br>0.085          | 14.0<br>11.4<br>9.9<br>10.8<br>12.2<br>13.4<br>14.1<br>14.4  | 33.4<br>26.7<br>22.7<br>24.3<br>26.2<br>28.1<br>28.9<br>28.7 |
|             | 30             | 324                     | 218            | 1.1520 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 30<br>22<br>21<br>22<br>23<br>24<br>24<br>24<br>24             | 120<br>176<br>252<br>352<br>460<br>576<br>672<br>736 | 1.124381<br>1.124380<br>1.124379<br>1.124379<br>1.124379<br>1.124379<br>1.124380<br>1.124380<br>1.124380             | 31.8<br>24.5<br>24.2<br>26.8<br>26.1<br>27.8<br>29.0<br>30.1 | 0.817<br>0.430<br>0.297<br>0.235<br>0.175<br>0.149<br>0.133<br>0.126          | 11.6<br>9.0<br>8.6<br>9.8<br>9.5<br>10.2<br>10.6<br>11.0     | 25.3<br>19.6<br>19.1<br>20.5<br>20.6<br>21.6<br>22.2<br>22.6 |
|             | 120            | 2704                    | 406            | 1.1720 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 44<br>28<br>23<br>21<br>20<br>21<br>21<br>23                   | 176<br>224<br>276<br>336<br>400<br>504<br>588<br>736 | 1.124961<br>1.124960<br>1.124961<br>1.124960<br>1.124960<br>1.124960<br>1.124960<br>1.124959<br>1.124959             | 64.8<br>54.8<br>54.7<br>55.7<br>56.0<br>63.4<br>68.6<br>81.3 | 0,136<br>0,091<br>0,073<br>0,061<br>0,052<br>0,047<br>0,043<br>0,041          | 23.7<br>20.0<br>20.0<br>20.7<br>20.5<br>23.2<br>25.1<br>29.7 | 62.7<br>46.8<br>43.2<br>42.3<br>41.7<br>45.6<br>48.0<br>55.0 |
| B3          | 60             | 1378                    | 238            | 1.1655 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 58<br>35<br>26<br>23<br>22<br>22<br>24<br>23                   | 240<br>280<br>312<br>388<br>440<br>528<br>672<br>736 | 1.124950<br>1.124950<br>1.124951<br>1.124951<br>1.124949<br>1.124950<br>1.124949<br>1.124950<br>1.124950<br>1.124950 | 61.3<br>44.0<br>42.3<br>41.5<br>43.3<br>47.5<br>57.0<br>58.6 | 0.185<br>0.114<br>0.098<br>0.078<br>0.072<br>0.065<br>0.065<br>0.062<br>0.058 | 22.4<br>16.1<br>15.5<br>15.2<br>15.8<br>17.4<br>20.8<br>21.4 | 68.9<br>45.7<br>38.7<br>36.2<br>36.3<br>38.1<br>43.4<br>43.3 |
|             | 30             | 702                     | 220            | 1.1685 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 41<br>29<br>24<br>21<br>21<br>21<br>23<br>23                   | 164<br>312<br>288<br>336<br>420<br>504<br>644<br>736 | 1.124977<br>1.124977<br>1.124976<br>1.124975<br>1.124975<br>1.124975<br>1.124975<br>1.124974<br>1.124976<br>1.124975 | 50.4<br>36.6<br>32.5<br>29.3<br>32.9<br>34.9<br>39.9<br>42.0 | 0.438<br>0.167<br>0.161<br>0.124<br>0.112<br>0.099<br>0.088<br>0.081          | 18.4<br>13.4<br>11.9<br>10.7<br>12.0<br>12.8<br>14.6<br>15.3 | 42.3<br>30.9<br>26.9<br>24.2<br>25.6<br>26.5<br>29.5<br>30.4 |

|            |                         |                         |                | <b></b> |                                         | r                                                         | T                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                | r ··                                                                 |                                                                      |                                                                      |                                                                      |
|------------|-------------------------|-------------------------|----------------|---------|-----------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Problem    | H <b>RX</b> AGA<br>-II- | No.of<br>mesh<br>points | Core<br>region | ā       | No.of<br>inner<br>per<br>outer<br>iter. | No.of<br>outer<br>iters                                   | Total<br>no.of<br>inner<br>iters                      | k <sub>eff</sub>                                                                                                     | CPU<br>time<br>in sec                                                | Time per<br>mesh pt.<br>per inner<br>iter. in<br>msec                | CPU<br>costs<br>in DM                                                | Total<br>costs<br>in DM                                              |
|            | 120                     | 4761                    | 506            | 1.1795  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 59<br>33<br>25<br>23<br>21<br>21<br>19<br>20              | 236<br>264<br>300<br>368<br>420<br>504<br>532<br>640  | 1.125108<br>1.125096<br>1.125095<br>1.125097<br>1.125097<br>1.125097<br>1.125095<br>1.125095<br>1.125095             | 96.8<br>74.7<br>72.9<br>78.7<br>85.8<br>96.2<br>95.0<br>110.2        | 0.086<br>0.059<br>0.051<br>0.045<br>0.043<br>0.040<br>0.038<br>0.036 | 33.4<br>27.3<br>26.6<br>28.8<br>31.4<br>35.2<br>34.7<br>40.3         | 119.8<br>78.3<br>67.8<br>68.1<br>69.0<br>73.7<br>70.8<br>79.0        |
| В4         | 60                      | 2415                    | 406            | 1.1720  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 80<br>48<br>31<br>28<br>24<br>23<br>21<br>21              | 320<br>384<br>372<br>448<br>480<br>552<br>588<br>672  | 1.125072<br>1.125076<br>1.125073<br>1.125076<br>1.125076<br>1.125076<br>1.125075<br>1.125072<br>1.125073             | 133.1<br>89.3<br>66.0<br>78.9<br>73.2<br>77.6<br>77.1<br>83.4        | 0.172<br>0.096<br>0.074<br>0.073<br>0.063<br>0.058<br>0.054<br>0.051 | 48.7<br>32.6<br>24.1<br>28.8<br>26.8<br>28.3<br>28.2<br>30.5         | 115.4<br>74.7<br>53.1<br>56.8<br>51.6<br>53.0<br>51.4<br>54.2        |
|            | 30                      | 1225                    | 254            | 1.1775  | î<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 57<br>33<br>26<br>23<br>20<br>20<br>20<br>20<br>21        | 228<br>354<br>312<br>388<br>400<br>480<br>560<br>672  | 1.125124<br>1.125120<br>1.125119<br>1.125119<br>1.125119<br>1.125117<br>1.125116<br>1.125116<br>1.125118             | 70.0<br>46.8<br>41.2<br>40.7<br>37.9<br>42.1<br>44.5<br>45.7         | 0.251<br>0.108<br>0.086<br>0.078<br>0.072<br>0.065<br>0.056          | 25.6<br>17.1<br>15.1<br>14.9<br>13.9<br>15.4<br>16.3<br>16.7         | 70.0<br>44.5<br>37.7<br>35.4<br>32.3<br>34.0<br>35.0<br>36.2         |
|            | 120                     | 10609                   | 696            | 1.1867  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 84<br>44<br>33<br>28<br>24<br>22<br>21<br>19              | 336<br>352<br>396<br>448<br>480<br>528<br>578<br>608  | 1.125215<br>1.125196<br>1.125190<br>1.125192<br>1.125192<br>1.125191<br>1.125191<br>1.125191<br>1.125191             | 201.2<br>166.2<br>159.5<br>167.1<br>186.5<br>185.0<br>202.8<br>205.7 | 0.056<br>0.045<br>0.038<br>0.035<br>0.037<br>0.033<br>0.033<br>0.033 | 73.5<br>60.8<br>58.3<br>61.1<br>68.2<br>67.6<br>74.1<br>75.2         | 327.7<br>205.7<br>173.5<br>164.2<br>163.4<br>157.4<br>163.6<br>159.8 |
| вб         | 60                      | 5356                    | 496            | 1.1785  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 135<br>77<br>50<br>41<br>33<br>29<br>26<br>24             | 540<br>616<br>600<br>656<br>660<br>736<br>728<br>736  | 1.125123<br>1.125133<br>1.125132<br>1.125133<br>1.125133<br>1.125133<br>1.125132<br>1.125132<br>1.125132<br>1.125131 | 248.6<br>172.1<br>146.3<br>147.8<br>138.8<br>140.4<br>143.2<br>148.1 | 0.086<br>0.052<br>0.046<br>0.042<br>0.039<br>0.036<br>0.037<br>0.038 | 83.6<br>62.9<br>53.7<br>54.0<br>50.7<br>51.3<br>52.4<br>54.2         | 291.1<br>187.2<br>139.7<br>128.2<br>113.4<br>108.8<br>106.1<br>105.8 |
|            | 30                      | 2704                    | 426            | 1.1858  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 80<br>44<br>32<br>29<br>23<br>21<br>20<br>19              | 320<br>352<br>384<br>464<br>460<br>504<br>560<br>608  | 1.125230<br>1.125217<br>1.125215<br>1.125213<br>1.125212<br>1.125212<br>1.125212<br>1.125212<br>1.125212             | 165.1<br>91.8<br>78.0<br>79.6<br>76.3<br>77.1<br>79.6<br>79.2        | 0.191<br>0.097<br>0.075<br>0.063<br>0.061<br>0.057<br>0.053<br>0.048 | 60.3<br>33.6<br>28.5<br>29.1<br>27.9<br>28.2<br>29.1<br>29.0         | 135.2<br>76.7<br>62.0<br>60.5<br>54.8<br>53.7<br>54.1<br>52.2        |
|            | 120                     | 18769                   | 976            | 1.1900  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 114<br>59<br>40<br>36<br>29<br>25<br>25<br>25<br>25<br>22 | 456<br>472<br>480<br>556<br>580<br>600<br>700<br>704  | 1.125121<br>1.125112<br>1.125102<br>1.125108<br>1.125103<br>1.125103<br>1.125102<br>1.125109<br>1.125103             | 493.4<br>373.7<br>330.6<br>369.1<br>358.5<br>359.8<br>395.8<br>395.8 | 0.058<br>0.042<br>0.037<br>0.035<br>0.033<br>0.032<br>0.030<br>0.030 | 180.4<br>136.6<br>120.9<br>134.9<br>131.0<br>131.5<br>144.7<br>142.6 | 810.8<br>490.8<br>379.4<br>381.7<br>343.5<br>325.7<br>345.3<br>328.2 |
| <b>B</b> 8 | 60                      | 9453                    | 656            | 1.1818  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 207<br>114<br>72<br>58<br>45<br>41<br>34<br>34            | 828<br>912<br>864<br>828<br>900<br>984<br>952<br>1088 | 1.125003<br>1.125011<br>1.125006<br>1.125010<br>1.125008<br>1.125011<br>1.125007<br>1.125014                         | 499.1<br>406.2<br>328.0<br>327.3<br>307.9<br>316.8<br>313.0<br>335.7 | 0.064<br>0.047<br>0.040<br>0.042<br>0.036<br>0.034<br>0.035<br>0.033 | 182.4<br>148.5<br>119.9<br>119.6<br>112.6<br>115.8<br>114.4<br>122.7 | 710.4<br>459.6<br>328.7<br>297.4<br>259.3<br>254.7<br>237.4<br>248.5 |
|            | 30                      | 4761                    | 466            | 1.1895  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8    | 105<br>58<br>41<br>34<br>29<br>25<br>23<br>22             | 420<br>464<br>492<br>544<br>580<br>600<br>644<br>704  | 1.125151<br>1.125148<br>1.125146<br>1.125146<br>1.125147<br>1.125142<br>1.125144<br>1.125143<br>1.125141             | 156.2<br>126.6<br>113.8<br>112.8<br>113.6<br>112.6<br>115.6<br>121.5 | 0.078<br>0.057<br>0.049<br>0.044<br>0.041<br>0.039<br>0.038<br>0.036 | 57.1<br>46.3<br>41.6<br>41.2<br>41.5<br>41.5<br>41.2<br>42.3<br>44.4 | 203.2<br>133.2<br>107.1<br>98.4<br>92.8<br>87.5<br>86.5<br>88.0      |

#### VIII. APPENDIX:

#### 1. Description of the INPREP Programme

The INPREP-II programme, written in FORTRAN IV and available in a card deck for IBM/370-168 computer, is intended as an auxiliary programme allowing to simplify considerably the preparation of that part of the HEXAGA-II input data which is concerned with the specification of material compositions inside a triangular mesh.

As input data INPREP-II uses only the first two cards of the HEXAGA-II input data, that is, card numbers 1/ and 2/ (see Chapter IV) where the value of NOH (number of all different hexagons) is ignored by the programme.

In the INPREP output, the picture of empty hexagonal mesh bounded by a parallelogram area of a given reactor problem is printed according to the value of NOM given in the input. In other words, INPREP-II provides the same picture of mesh (called "THE LOCATION OF HEXAGONS") as HEXAGA-II, but without the specification of material composition numbers representing particular hexagons in the mesh. However, these numbers can now be written by the user according to the material arrangement of a given reactor problem. With such specification of material compositions in the mesh prepared in advance it is possible in an easy way to prepare input cards for HEXAGA-II.

Moreover, INPREP-II in the output provides the specification of space (in bytes) which must be reserved on particular files used by HEXAGA-II.

The maximum CPU time amounts to a few seconds and a standard core region is sufficient (122 K). As an illustration of INPREP the output for sample problem B2, completed by hand writing, is presented. INPREP-II WRITTEN BY ZBIGNIEW WOZNICKI, FEB. 1975

.

SAMPLE PROBLEM B2

2 TYPE OF HEXAGONAL MESH ARRANGEMENT

1225 MESH POINTS

4 NEUTRON GR.

1 THERMAL GR.

3 NEUTRON GR. THROUGHOUT WHICH NEUTRONS ARE DOWN-SCATTERED

5 MATERIAL COMP.

3 FISSIONABLE COMP.

3.2332 CM - MESH STEP

OUTER BOUNDARY COND: LEFT - FLUX DERIVATIVE EQUAL TO ZERO TOP - FLUX DERIVATIVE EQUAL TO ZERO RIGHT - LOGARITHMIC BOTTOM - LOGARITHMIC

•

THE DETERMINATION OF DISC SPACE

FILE NR SPACE IN BYTES

| 12 | 117696 |
|----|--------|
| 13 | 70336  |
| 14 | 39232  |
| 15 | 39232  |
| 16 | 31104  |
| 17 | 31104  |
| 18 | 4904   |
| 20 | 4904   |
| 21 | 44136  |
| 22 | 117696 |
| 23 | 70336  |

DIMENSION SPACE: 16520 BYTES



.......


## THE MATERIAL SPECIFICATION OF HEXAGONS

As was mentioned early in order to simplify the preparation of the HEXAGA-II input data for reactor problems with a fine mesh refinement two auxiliary programmes HEXI-22 and HEXI-23 are available. Both programmes serve to reproducing the first part of the HEXAGA-II input data (concerned with the description of the material-geometrical configuration of point mesh) for a given reactor problem in which the step of uniform triangular mesh is decreased by factor 2 in the case of HEXI-22 and by factor 3 for HEXI-23. They use the same input data as the HEXAGA-II input data without introducing any additional input information. Each HEXI output can be used as a new HEXI input. Thus, having the HEXAGA-II input data describing a given reactor problem with the minimum number of mesh points and using an arbitrary combination of output/input from HEXI-22 and -23 we can produce the HEXAGA-II input data for arrangements of mesh points for this problem with the step of mesh decreased by the following factors:  $2^i \cdot 3^k$  for arbitrary integers i,k > 0.

In principle, with the creation of a new HEXAGA-II input data all changes of data are concerned with the first part of HEXAGA-II input data describing the material-geometrical configuration of triangular mesh (card sets from 1/ to 3/). Therefore, HEXI-22 and -23 can be only used for producing the first part of the HEXAGA-II input data. However, if the second part of input data specifing group constants, logarithmic boundary parameters  $\alpha$  and iteration strategy parameters (card sets from 4/ to 6/) are included to the HEXI input then these data are also reproduced by HEXI without any changes.

## IX. REMARKS ON THE USE OF HEXAGA-II

Since HEXAGA-II is a programme based on a relatively new iterative method of solution and not experienced by many users, it seems reasonable to include some indications helpful for users.

In all versions of HEXAGA-II there exists the input check of 60- and 30degree symmetry of solution and if required symmetry of solution is not satisfied in HEXAGA-II-60 or -30 for a given problem, programme is stopped with printing information about the first met mesh point at which an expected symmetry did not occur. It is possible to use HEXAGA-II-120 for problems with 60- and 30-degree symmetry and HEXAGA-II-60 for 30-degree symmetry, however, in this case recommendations for using the proper version of HEXAGA-II for next calculations of this problem are printed in the output.

In reactor problems solved by means of HEXAGA-II for the first time, it is recommended to use the iteration strategy selected by the programme putting in the input data MAXO = 50 or 100, MAXI = MINI = 1, NOMEGA = 2 and OMS = 1.5. With the above values of input parameters the programme finds the number of inner iterations per outer iteration and relaxation factors  $\Omega_{R} = \Omega_{\Delta} = \overline{\Omega}$  as a function of the spectral radius of iteration matrix. In reactor problems which can be solved by HEXAGA-II with 50 ÷ 100 outer iterations the iteration strategy selected by the programme is very often sufficient and close to the optimum. In subsequent calculations of a given problem and differing with small changes of material-geometrical configuration the estimate of  $\overline{\Omega}$ , MAXI and MINI (MAXI = MINI) by the programme can be avoided by putting in the input data: NOMEGA = 0 and the values of  $\Omega$ , MAXI and MINI taken from previous calculations. Moreover, user can try to check or find the optimum iteration strategy by introducing insignificant changes of the values of  $\overline{\Omega}$ , MAXI and MINI in the relation to those used previously and the comparison of obtained results. However, it should be remembered that as was shown in Chapter VII.3. only a few (maximum 3 ÷ 5) inner iterations per outer iteration (considered as equivalent to the Gaussian direct method) provides the best iteration strategy.

In the reactor problem presented in Chapter VII it was observed that without the acceleration of convergence of sources ( $\omega_s = 1$ ) about 20 outer

iterations allow to calculate k eff with the relative accuracy less than  $10^{-6}$ . The application of the acceleration of sources does not provide a greater reduction of the number of outer iterations for this problem. However, in some problems, in which the ratio of keff to the next (greatest in moduli) eigenvalue is very close to unity, a very slow convergence of  $k_{off}$  occurs and the acceleration of the power source method becomes an important problem. In HEXAGA-II outer iterations are accelerated by means of the usual relaxation method (see Chapter III.6.) where the value  $\omega_{1}$  = 1.5 (OMS in the input) is recommended for using in all problems. In one example, typical for a modular design of a large heterogeneous LMFBR, described by 1225 mesh points in 120-degree parallelogram using  $\Omega_{\beta} = \Omega_{\phi} = \Omega \approx 1.14$  estimated by the programme,  $\omega_s = 1$  and the convergence criteria  $\varepsilon_{\phi} \leq 10^{-5}$  and  $\varepsilon_{keff} \leq 10^{-5}$  $10^{-6}$  it was possible to obtain the solution after 340 outer iterations and only with the assumption of one inner iteration per outer iteration. The value of  $\Omega = \Omega_{\beta} = \Omega_{\phi}$  found experimentally which minimizes the number of outer iterations to 82 is equal to 1.1825 (but with  $\omega_s = 1$ ). It is a well known effect of influence of increased values of relaxation factor over the optimum value in inner iterations on the acceleration of convergence of outer iterations. The same result was obtained with using  $\overline{\Omega}$  = 1.13 (as close to the optimum value) but with  $\omega_s = 1.5$ . It is interesting to notice that the above results could be obtained only with the assumption one inner/ outer iteration. Using 2 or more inner/outer iterations caused always a drastic decrease of the rate of convergence. In such problems, like this, it is recommended to use only one inner/outer iteration by putting in the input data MAXI = 1 and MINI = 2 and for estimating  $\overline{\Omega}$  by the programme NOMEGA = 2 with  $\omega_{e}$  = 1.5 for all problems.

## REFERENCES

/1/ Z. Wożnicki "Two-sweep iterative methods for solving large linear systems and their application to the numerical solution of multi-group multidimensional neutron diffusion equation", Doctoral Dissertation, Report No. 1447/CYFRONET/PM/A, Institute of Nuclear Research, Swierk-Otwock, POLAND (1973) /2/ R.S. Varga "Matrix iterative analysis" Prentice-Hall (1962) /3/ Z. Wożnicki "HEXAGA-II, A Two-dimensional Multi-group Neutron Diffusion Programme for a Uniform Triangular Mesh with Arbitrary Group Scattering for the IBM/370-168 Computer" Report KFK-2293 (1976) /4/ Z. Wożnicki "AGA Two-sweep Iterative Methods and their Application in Critical Reactor Calculations", Nukleonika, 9 (23) pp. 941 - 968, (1978) /5/ R. Beauwens "On the Analysis of factorization iterative procedures", unpublished (1973) /6/ D. Woll "GRUCAL - Ein Programmsystem zur Berechnung makroskopischer Gruppenkonstanten" Report KFK-2108 (1975) /7/ IBM System/360 Operating System FORTRAN IV (H Extended). Compiler Programmer's Guide Programme

Numbers: 5734-F03, 5734-LM3.