
KfK 2874
April 1980

PCSL A Process
Control Software

Specification Language

J. Ludewig

Institut für Datenverarbeitung in der Technik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Datenverarbeitung in der Technik

KfK 2874

PCSL -

A process control software specification language

J. Ludewig

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH

ISSN 0303-4003

Abstract

This paper presents PCSL, a language for specification and design of pro

cess control software, and sketches analysis and reports based on this language.

As an example, a system for process-data-collection is specified using PCSL.

PCSL, DSL and EPOS are reviewed with respect to PCSL. Finally, the current

state of the project is depicted.

The appendix contains a short version of the PCSL-definition.

PCSL - Eine Prozeßrechner-Software-Spezifikationssprache

Zusammenfassung

Der Bericht beschreibt PCSL, eine Spezifikations- und Entwurfssprache für

Prozeßrechnersoftware; Prüfungen und Reports, die auf dieser Sprache basieren,

werden skizziert. Als Beispiel ist ein Datenerfassungssystem in PCSL beschrie

ben.

PSL, DSL und EPOS werden mit PCSL verglichen. Der Bericht schließt mit Angaben

zUm Stand der Arbeiten.

Eine Kurzfassung der PCSL-Definition ist als Anhang beigefügt.

Contents

1. Introduction

1.1 Needs of software-designers in our environment

1.1.1 Process control systems

1.1.2 Safety and security

1.2 History of PSL at the IDT

2. Basic principles of PCSL

1

1

1

2

2

3

2.1 The requirements a tool for process-control software-develop-
ment must meet 3

2.2 A concept for active system components 3

2.3 A concept for passive system components 6

2.4 A concept for time, synchronization, and interaction 8

2.5 Other elements of PCSL 9

3. Analysis and reports

3.1 Checks for semantic correctness

3.2 Checks for completeness and consistency

3.3 Simulation

4. PUES - a sampie application of PCSL

5. PCSL versus PSL, DSL and EPOS

5.1 PSL

5.2 DSL

5.3 EPOS

6. Current state of PCSL

6.1 The language

6.2 The Generalized Analyzer

6.3 Analysis-tools

7. References

Appendix: A PCSL-summary

10

10

11

12

13

27

27

28

28

30

30

30

30

31

33

- 1 -

1. Introduction

1.1 Needs of software-designers in our environment

Being apart of a nuclear research center, our task is to develop highly

reliable process control systems for various applications in the area of nu

clear power plants. Thus, any tool or method for our environment has to meet

two requirements:

it must reflect the particular needs of process control systems, and

safety and security of the systems to be developed has to be its very

first objective.

1.1.1 Process control systems

Process control systems differ from other computer systems, in particu

lar from commercial ones, while operating systems are similar.

A typical process control system

will work virtually forever, i.e. without a predetermined moment of ter

mination,

is event - or real-time-controlled, usually in several ways, making it

necessary to introduce asynchronous tasks, which are almost (but in most

cases only almost) independent from each other,

is not very complicated from a mathematical or logical point of view,

'but moves lots of data both internally and across its very wide and com

plicated interfaces to the technical process and to the operators (dia

logues) ,

is even less testable than other computer systems due to its indetermina

cy.

- 2 -

1.1.2 Safety and security

Our particular demand for safety and security makes it necessary

to prevent by virtually all means errors from getting into the software,

and

to detect errors which got there anyway.

The lack of generally accepted methods and tools for the early stages

of software development forced us to work in this field.

1.2 History of PSL at the IDT

In 1977, version 2.1 of the PSL/PSA-System /Teichroew, Hershey 77/ was.

installed on our IBM 370/168 which is used for batch-operationi it is usually

controlled via TSO running on our 370/158. (Recently, the 168 has been re

placed by a 3033, TSO is now on the 168.) In 1978, version 2.1 was replaced

by 4.2.

PSL/PSA was used for a few sampie applications. As a result, we found

that batch is not as disadvantageous as expected. Users rather suffered from

difficulties with the language: There are several data-types (set, entity,

group, element, and also input and output) which confused us because in our

field there is no application for them. On the other hand, we have many prob

lems with control and time which are difficult to describe in PSL if at all.

Thus, we were quite excited when we heard about the META-System because

we feit (and still feel) that this is our chance for a dedicated specifica

tion-system.

A first version of our language was designed in January 1978 /Ludewig,

Streng - March 1978 (b)/ and processed by the META-Generator in August, the

Generalized Analyzer was installed by the end of July this year (see 6. and

Appendix 2). A revised version (PCSL.2) was introduced in October 1979.

This paper is based on PCSL.3 which contains some minor improvements.

PCSL.3 is being prepared for installation.

- 3 -

2. Basic principles of PCSL

PCSL (Process fontrol Software ~pecification ~anguage) was designed

after reviewing the most popular approaches in this area /Ludewig, Streng

March 1978 (a) and April 1978/ and with our experiences with PSL and the

problems of process contra1 software in mind.

This chapter is not intended to encompass a complete description of

PCSL. Its point is only to show the basic ideas.

2.1 The requirements a tool for process-control software-development must

meet

Beyond generally used concepts like contra1 structures etc. we need

special means to express:

sequential and parallel action,

interaction of processes, in particular synchronization and start or

termination,

all relevants types of data flow in sufficient detail,

sharing and mutual exclusion of resources.

2.2 A concept for active system components

When a large software system is decomposed, a hierarchy of programs will

emerge.

Every node is an active system component. Vertically adjacent nodes

('father' and 'san') may be related in different ways:

The san may be part of the father or just used by hirn. In the latter

case, there may be several fathers for one san.

There are also different relations among 'brothers', i.e. sons of the

same father. They may be active in parallel or sequentially or only one san

is chosen for execution.

- 4 -

The approach of PCSL is restrictive in the way that every 'family' has

to be of exactly one type:

The sons of each father form either a parallel group (in which case they

are called ACTIVITIES) or a sequential group (then they are called STEPS) or

an alternative group. In any case the father may be either a STEP or an

ACTIVITY.

ACTIVITIES

parallel group

STEPS

sequential group

(Same type as father)

alternative group

Those three relations are restricted to tree-structure, i.e. no son may

have more then one father. Though such a tree-structure has many advantages,

it is not sufficient for the modeling of real systems because there are usual

ly some parts that do not belong to one branch or the other but to several

branches of the tree. (Error handling is a well-known example.) That is why

one more relation called 'utilize' is defined in PCSL:

STEPS and ACTIVITIES

utilize

ACTIVITY

Thus, the rules of PCSL concerning the structure of active system compo

nents can be summarized as follows:

Every STACT (which stands for STEP or ACTIVITY) may be decomposed into

a parallel or sequential ~ alternative group, ~ it may utilize an ACTIVITY.

Also, a STACT must not be a member of more than one group. If it is utilized,

it must not be in any group.

- 5 -

When this concept is applied to software systems in a top-down direction,

in the first step the whole system is represented by an ACTIVITY. In process

control, the global system willusually consist of coexisting parts which can

be represented by sub-ACTIVITIES (subact-relation). Refinement by subact-rela-

tion may be repeated in several levels until the sequence of execution becomes

more important. From then, step-, alternative-, and utilize-relations will be

preferred for decomposition.

Al

/1\
Sl S2 .. S3

/\ 1\
Sll"S12

• I
All A12

A

A22 A23
I

/
/

/
I

'....... I
.............. /

A4

A3

subact- and
substep-relations

next-relation

utilize-relation

When a STACT is terminated by some external event (e.g. an interrupt),

all dependents are terminated implicitely. So the terminate-relation must be

used with care.

When all active system components are represented in this way, it does

not make sense to say that a STACT is started, because its father and brothers

determine precisely the time it is started, and it cannot be started at any

other time. Termination, on the contrary, is weil defined.

However, for the sake of simplicitely a start-relation is allowed in PCSL

for a situation when a STACT has to be executed cyclically, triggered by some

event or condition.

Without the start-relation, this STACT had to be decomposed into two

STEPS, one of which is the waiting state that is terminated by the event.

- 6 -

2.3 A concept for passive system components

In all software-systems, two types of data can be distinguished:

'static' data which is once initialized and then read and rewritten in

an undefined order. Reading and writing does not change the quantity of

data.

'dynamic' data which moves through the system. Such data is produced and

consumed by reading and writing, i.e. if there is only space for one

item, every write-access must be followed by a read-access and vice versa.

Non-computer-examples are

information on a blackboard (static)

products in a buffer area between a producing and a consuming process

(dynamic).

Examples from process-control-software are

a table containing scaling factors of some measuring instrument (static),

values from the technical process, which are filtered, checked, stored,

printed etc. (dynamic).

In PCSL, the terms VARIABLE and BUFFER are used. VARIABLES contain static

data, BUFFERS contain dynamic data. STACTS can access VARIABLES by 'initialize',

'read', and 'write', BUFFERS by 'initialize', 'praduce', and 'consume'.

A VARIABLE may consist of subparts which, again, are VARIABLES, or it

may have a TYPE (like BUFFERS do).

TYPES, also, may be refined by other TYPES.

In process control systems, BUFFERS are used for many kinds of data:

- messages to and from system-components

- input and output

- queues, also event-queues

- all kinds of data to be processed.

- 7 -

VARIABLES represent scaling factors, state-variables, switches, date and

time.

BUFFERS are the links between cooperating STACTS. In a well structured

system, such STACTS are executing in parallel. Their synchronization is done

implicitely by communication via BUFFERS. A STACT should never consume from

and produce for the same BUFFER!

STACT
1

STACT
2

STACT
3

BUFFERS can differ in several ways. If a buffer is full, a producer

trying to deliver an item can either be blocked or not (in which case the item

is lost).

The same is true for a consumer accessing an empty buffer. This can be

expressed by the properties EMPTY and FULL, whose values can be either BLOCK

or SKIP.

The items in some BUFFERS may be delivered and/or removed by several

rather than just one access, e.g. messages to be output both on a screen and

on a printer. In such cases, an INPUT-FAN and/or an OUTPUT-FAN may be speci

fied in addition to the type of data in the BUFFER.

If a BUFFER can contain more than one item (CAPACITY), property ORDER

(FIFO, LIFO or RANDOM) can be specified.

STACTS may occupy RESOURCES, e.g. memory or tape units. This can be

stated in PCSL. Also, a VARIABLE or a BUFFER may be connected to a RESOURCE

by the device-relation.

- 8 -

2.4 A concept for time, synchronization, and interaction

Time, synchronization, and interaction cannot be treated separately, be

cause synchronization is a special case of interaction, and both deal with

time.

EVENTS may be used to describe influences from outside or inside the

system which terminate STACTS. (This means implicitly that either its succes

sor is started or the upper STACT terminates.) The use of a start-relation

has been restricted to cyclic STACTS, since we found that if allowed in other

applications it is hard to provide a clear meaning.

INTERRUPTS are special events frequently found in process control app

lications. Examples are sensors which evoke an interrupt when a certain state

transition has happened in the technical process, also the attention-key on

the terminal.

The real-time-clock is an important source of signals triggering STACTS

of the computer system. In PCSL, object-type TIMER is used to describe de

layed and/or cyclic events. If no delay is specified, the TIMER will send the

first pulse at the very begin of its activitYi if no cycle is given, only one

pulse is generated.

The time a TlMER or a STACT is active may be defined with respect to

other STACTS by the as-long-as-relation.

Explicit description of synchronization by means of semaphores

(Dijkstra 1968 (a» or even more primitive tools tends to cause many bugs

which are extremely difficult to detect. So we spent some time on the ques

tion which concepts might be both safe and easy to use.

In application software, most synchronization problems are either

mutual exclusion or

producer/consumer - access to some buffer or

reader/writer - access to some data.

We think a concept which follows those three schemes will be sufficient

and certainly safe and easy to use, because the user can just state what he

wants the system to do rather than how. So we associate a predefined scheme

of synchronization with all VARIABLES (reader/writer-scheme as described by

- 9 -

Courtois, Heyman, Parnas 1971), BUFFERS (producer/consumer-scheme, see e.g.

Dijkstra 1968 (b)), and RESOURCES (mutual exclusion, expressed by the occupy

relation).

INTERVALS are used to define delays, cycles, etc.

2.5 Other elements of PCSL

KEYWORDS, MEMOS, and ATTRIBUTES with ATTRIBUTE-VALUES are just copied

from PSL, also the text DESCRIPTION.

For alternatives and logical relations, CONDITIONS have been introduced.

Primitive conditions are the RANGE-objects (RANGE-INT, RANGE-CNT, •.•) which

are subranges of the ranges of primitive variables (INTEGER, COUNT, REAL,

BINARY, STRING).

E.g., a temperature Tl of type REAL may vary from 10 to 300 degree. If

some action is required when Tl rises above 200 degree, a RANGE-REAL Tl-nor

mal can be defined with 200 degree as its upper bound. A STEP normal-step

may depend on Tl-normal (while-relation). Whenever Tl is not within Tl-normal,

normal-step is terminated, allowing its successor action-step to start.

Primitive variables (INTEGER etc.) can be restricted either to a range

or to a list of values (BINARY and STRING only to a list).

PCSL contains also some elements intended for simulation-purposes,

e.g. property MAXIMUM-DEVIATION for INTERVALS.

- 10 -

3. Analysis and reports

PCSL is not designed to be just the input language of an analyzer; its

primary objective is to supply users with a set of concepts that allows simple

but correct statement of weil structured systems (thus preventing the design

of badly structured systems).

But, of course, many evaluations and reports are desirable; some are nec

essary simply because it is not possible (at least not yet) to state seman

tical restrictions in the META-definition (e.g. when a relation is required to

be tree-structured).

Simulation is a highly desirable but also very complicated way of analy-

sis.

Thus, three types of analysis can be distinguished:

checks for semantic correctness

checks for completeness and consistency

simulation.

3.1 Checks for semantic correctness

Since only very few semantical restrictions can be expressed in the META

language (namely in the CONNECTIVITY-statement), checks are necessary to en

sure the proper use of PCSL.

The semantical rules are concerned with

hierarchical structures of STACTS, VARIABLES and TYPES

(e.g. any STEP must be contained within one and only one STACT).

logical and numerical consistency

(e.g. the sum of the probabilities of several alternatives must not be

higher than 1.

A VARIABLE which is KEPT from one execution of the program until the next

one (property CREATION) cannot consist of VARIABLES which are LOST every

time) .

- 11 -

proper use of interdependent relations

(a STEP can be connected to its 'father' either by 'initstep' or by

'step' or by 'waitstep', but only one is allowed.

If it is connected by 'step', it must be mentioned in a next-relation of

at least one other STEP.)

All rules of this kind have been stated in /Ludewig 1978/ in a formal no

tation. Cp. the last example above:

(x, sO) E initstep A (x, sn) E (step u waitstep)

(s. l' s.) E (next u alternative) A sk=s ;
J- J n

which is more precise (and more restrictive) then the informal statement

above.

'initstep' is the set of ordered pairs the second of which is the

initial STEP of the first (the order is defined elsewhere) .

3.2 Checks for completeness and consistency

As far as possible completeness and consistency should be checked by au

tomated tools. In the PSA-system, many reports serve this purpose, e.g. the

data-process-interaction-report. In PCSL, we can check

if there is only one root in the hierarchy of STACTS,

if all VARIABLES are both written and read,

if all BUFFERS are both produced for and consumed from,

if all RESOURCES are occupied at least once, also if all other objects

are connected in any way,

if all BUFFERS with space for more than one item have a defined order

(e.g. FIFO) etc.

If an object is PERIPHERAL to the system (e.g. a display which is read

by a person not defined in the system) completeness is not required (e.g.

within the system the display may be only written). Thus the property POSITION

- 12 -

(PERIPHERAL or INTERNAL) determines which checks are necessary. The same ap

plies also to other properties.

Like the rules in 3.1, these rules are collected in /Ludewig 1978/.

3.3 Simulation

Since our ideas about simulation are still rather vage, only the outline

of our approach is sketched in the following.

All relations describing actions of any type, e.g. execution of STACTS,

reading and writing, etc., are defined as operations of a - virtual - PCSL

machine described in /Ludewig 1978/. In particular, this machine simulates

all synchronization implicitly defined by the use of VARIABLES, BUFFERS, and

RESOURCES (cp. 2.4) and the delays caused by program execution, transfers

and waiting conditions. At decision points, control is passed either to the

operator or to a random number generator which may be controlled by parameters

(e.g. property PROBABILITY of CRITERIA).

As a result of this simulation, we expect indications of bottle-necks,

of system parts which are critical with respect to execution time and others

which are not, and also indications of structures that are not safe against

deadlocks.

Simulation can also be used to compare different designs.

Many questions are not yet answered:

1. How shall the technical process be simulated?

(cp. /Baumann 1978/ for one possible way)

2. Should the simulation be restricted to actions as sketched above or

should it also include data handling (i.e. deal with the content of data

rather than with its mere existence)?

3. Should the simulator be implemented from scratch or on top of a system

based on Petri-nets that was developed in our institute (Schumacher

1978)?

- 13 -

4. PliES - a sampie application of PCSL

A good example should exhibit all characteristics in a real-life-appli

cation. It should nevertheless be small and understandable for everybody. In

this sense, we did not find a good example to date. The following one is a

compromise: PUES (Prozeß-Überwachungssystem = process monitoring system

/Borrmann 1978/) is being used as a test-object for PCSL in a master thesis

(/Vinzentz 1979/). PUES will be implemented at our institute for application

in the nuclear research center Karlsruhe.

14

nnn***k****************nnn
nnn nnn
nnn General remarks: nnn
nnn nnn
nnn Since this is areal application, it does not exhibit all nnn
nnn features of PCSL. Only ACTIVITY dialog-input-processing nnn
nnn has been extended to show the use of STEPS. (The example nnn
nnn did not contain any STEPS before because they usually do nnn
nnn not arise before a lower level of abstraction is reached.) nnn
nnn nnn
nnn We do not pretend that this is a correct description of a nnn
nnn correct design because the design is still in progress, nnn
nnn and there is no other formal specification as a reference. nnn
nnn nnn
nnn Though a similar description in PCSL.2 was successfully nnn
nnn supplied to the Generalized Analyzer, there may be syntac- nnn
nnn tical errors in this input because we do not yet hold the nnn
nnn META-tabels of PCSL.3, the improved language. nnn
nnn nnn
nnn nnn
nnn nnn
nnn The input is structured for the reader's convenience. nnn
nnn The most important objects are listed below: nnn
nnn nnn
nnn process monitoring-system O. nnn
nnn nnn
nnn technical process 1.1 nnn
nnn operator 1.2 nnn
nnn nnn
nnn measured-value-processing 2. nnn
nnn measured-value-logging 2.1 nnn
nnn data-preparation 2.2 nnn
nnn recording 2.3 nnn
nnn life-display 2.4 nnn
nnn error-handling 2.5 nnn
nnn nnn
nnn alarm-handling 3. nnn
nnn nnn
nnn dialogue 4. nnn
nnn dialogue-input-processing 4.1 nnn
nnn dialogue-output-processing 4.2 #nn
nnn #nn
nnn output-periphery 5. #nn
nnn #nn
nnn input-buffer 6.1 #nn
nnn raw-data-buffer 6.2 #nn
nnn result-buffer 6.3 #nn
nnn status-information-buffer 6.4 #nn
nnn output-buffer 6.5 #nn
nnn nn#
nnn control-information-block 7. #nn
nnn order-tabel 7.1 #nn
n#n parameter-tabel 7.2 #n#
nnn hardware-tabel 7.3 #nn
#nn #nn
nnn***7·**~~********************1rn*******************irn*****~~rn*nnn

15

**********7r****************1r********~rlh~**************~~*******##
TOP-LEVEL
1111 ******-I.-k**m'r**** 0 . m'r*****~'r*********1rlrir*******************7r**** 1111
DEF ACTIVITY process-monitoring-system;

DESCRIPTION;
This system monitors the state of the technical process
by cyclic aquisition of measured values and state-infor
mation. The values are transformed to physical units and
printed at the operator-terminal, also recorded on exter
nal memory.

SUBACTS ARE technical-process,
operator,
measured-value-processing,
alarm-handling,
dialogue,
output-periphery;

~r**************~'r***********~rn******~'r*******************##
ENVIRONMENT
**************** 1.1 **ID~r****m'r*************1r*********m'r**~'r*##
DEF ACTIVITY technical-process;

POSITION

PRODUCES FOR

EXECUTING

PERIPHERAL ;

input-buffer;

REPEATEDLY;

**************** 1.2 ***
DEF ACTIVITY operator;

EXECUTING

CONSUMES FROM

PRODUCES FOR

REPEATEDLY;

teletype-printer;

teletype-keyboard;

16

uH ***********~n~**********~~~*************************** ************** UD
DD MEASURED-VALUE-PROCESSING DD
UU ***********~Hrl(** 2. *************************************;h~*****uH
DEF ACTIVITY measured-value-processing;

SUBACTS ARE start-data-logging,
data-preparation,
recording,
life-display;

UU **~n~************ 2.1 *******1rln~**********~~*********************HU

DEF ACTIVITY

CARDINALITY

EXECUTING

STARTED BY

WRITES

UTILIZES
OCCUPIES

start-data-logging;

number-of-orders;

REPEATEDLY;

trigger;

index-of-order;

measured-value-logging;
measured-value-logging;

DESCRIPTION;

DEF TUIER

There is one trigger and one start-data-logging for every
order, but all are executed by measured-value-logging.
In the implementation, there will probably be only one
start-data-logging to handle all orders.

UD ~n~**************************~rlrl(******** UH
trigger;

CARDINALITY

LOCAL TO

CYCLE
DELAY

number-of-orders;

measured-value-processing;

cycle-of-order;
delay-of-order;

DEF VARIABLE
UU ***********~rkih~************************ UH

index-of-order;

LOCAL TO measured-value-processing;

DESCRIPTION;
index-of-order must be one of the order-identifications
which might be of type COUNT or STRING.

DEF ACTIVITY

DESCRIPTIONj

17

********************************AAAAAA*
measured-value-loggingj

Program that reads in process data and stores them ordered
in the raw-data-buffer.

The process data consists of the values measured and
converted to digital representation, and the status
information which is a true/false-statement about the
state of the process or plant. The data is supplied by
process-interfaces.

The program will get its particular task from the data
aquisition-order, the index of which was passed as a
parameter. In case of errors, the questionable data
are marked toavoid misinterpretation by the receiver.

DEF ACTIVITY

READS

PRODUCES FOR

ALTERNATIVE

DEPENDING ON

WRITES

UTILIZES

data-aquisition-order,
index-of-order,
time,
hardware-tabel,
prioritYj

raw-data-buffer;

error-proc-in-mvlj

error-proc-in-mvl;

error-in-mvl;

control-information-blockj

error-handling;

**********,~*** 2.2 ******************i~*****************m~****##
DEF ACTIVITY data-preparation;

DESCRIPTION;
Program that checks and converts the data read in. It is
controlled by the presence of data in the raw-data-buffer,
which are copied to a work-area and finally as physical
values put out to the result-buffer.

EXECUTING

READS

CONSUMES FROM

OCCUPIES

REPEATEDLY;

evaluation-parametersj

raw-data-bufferj

work-areaj

DEF ACTIVITY

PRODUCES FOR
FOR

WRITES

ALTERNATIVE

DEPENDING ON

WRITES

UTILIZES

18

result-buffer,
status-information-buffer;

previous-values;

error-proc-in-dpr;

error-proc-in-dpr;

error-in-dpr;

control-information-block;

error-handling;

DEF RESOURCE

DESCRIPTION;

UD ~rlrl(***7rn**1rn**********m~**m~**t~~****** UD
work-area;

Used to store intermediate results of da ta preparation.

LOCAL TO data-preparation;

DEF ACTIVITY

DESCRIPTION;

recording;

All da ta in the result-buffer will be recorded on a tape
or a disko

DEF ACTIVITY

EXECUTING

CONSUMES FROH

CONSUMES FROH

PRODUCES FOR

ALTERNATIVE

DEPENDING ON

WRITES

UTILIZES

REPEATEDLY;

result-buffer;

external-memory;

output-buffer;

error-proc-in-recording;

error-proc-in-recording;

error-in-recording;

control-information-block;

error-handling;

DEF BUFFER

DESCRIPTION;

19

HH ********7(********~~***************** HH
external-memory;

The external memory is treated as a buffer rather than
a reso~rce, because it is only occupied but not released
by this system.

LOCAL TO

POSITION

recording;

PERIPHERAL ;

HH ***IDrrr****,h~,~ 2.4 ************,W(*1rn***********************1rn* HH
DEF ACTIVITY life-display;

DESCRIPTION;
Output of a subset of all the values in the result-buffer.

'Characteristic values' are predetermined results which
are plotted or printed or displayed.

DEF ACTIVITY

EXECUTING

READS

CONSUMES FROM

PRODUCES FOR

ALTERNATIVE

DEPENDING ON

WRITES

UTILIZES

REPEATEDLY;

control-information-block;

result-buffer;

output-buffer;

error-proc-in-l-display;

error-proc-in-l-display;

error-in-l-display;

control-information-block;

error-handling;

HH ****************
DEF ACTIVITY

DESCRIPTION;

20

2.5 ***~k***1~******************************HH
error-handling;

Sends error-messages to the control-desk and handles those
error-situations that cannot be resolved by the programs
internally. May be calIed by any other system component.
All information about the error is passed via parameters
in the control-information-block.
This routine may influence the data-aquisition by changes
in the control-information-block.

An error is a situation in which the aquisition and trans
mission of data does not accord to the schedule. This may
be caused by one of the following two reasons:
1. breakdown of hardware-components,
2. wrong parameters supplied from the user that cannot be

identified by the checks for plausibility of the
dialogue-system.

In any case, the error must be handled by an operator's
action as soon as possible. An error-message is generated.

READS

PRODUCES FOR

control-information-block;

output-buffer;

HH **************** 3 . *******************"'';****~';******************* /Ni
DEF ACTIVITY

DESCRIPTION;

alarm-handling;

User-oriented routines that handles alarms from the
technical process. The steps to be taken may be either
independent (including 1/0), or may influence the actions
of the data-aquisition-system via the content of the
control-information-block.

EXECUTING

STARTED BY

WRITES

PRODUCES FOR

REPEATEDLY;

alarm;

control-information-block;

output-buffer;

HH *****7(********** 3.1 ***********"'';*7(***************************** HH

DEF INTERRUPT

LOCAL TO

alarm;

alarm-handling;

21

:.;." /(;. >'<********** 4 . ***********,'n"********-I,*******,'dd,*"In'rldririddc**," 11ft
DEF ACTIVITY dialogue;

DESCRIPTION;
Module for communication with the operator. Both control
and evaluation-parameters may be modified. The actual
state of the process and the system may be inquired.
The dialogue is triggered by input from the keyboard.

Users define and change orders for data-aquisition in a
dialogue, promted by the system.

DEF RESOURCE

SUBACTS ARE

LOCAL TO

dialogue-input-processing,
dialogue-output-processing;

teletype;

dialogue;

**********-1'***** 4.1 -Iric*"In"******************","************,'*-I,**1c*
DEF ACTIVITY dialogue-input-processing;

DEF INTERRUPT

EXECUTING

STARTED BY

INITSTEP
SUBSTEPS

LOCAL TO

REPEATEDLY;

attention-key;

read-input;
input-check;

attention-key;
alarm-handling;

DEF STEP

OCCUPIES
CONSUMES FROM
WRITES
NEXT STEP

read-input;

teletype;
teletype-keyboard;
line-buffer;
input-check;

**************** 4.1.2 ***********************~~**im****7n~*1~~ih~*##
DEF STEP

READS

ALTERNATIVES

input-check;
line-buffer;

input-error,
data-aquisition-order-proc,
evaluation-parameters-proc,
system-state-inquiry-proc;

NEXT STEP
DEF STEP

22

****AAAkk*******~~*********kAAk********##
input-error;
read-input;

DEF STEP

DEF STEP

DEF STEP

WRITES

WRITES

WRITES

data-aquisition-order-proc;
data-aquisition-order;

evaluation-parameters-proc;
evaluation-parameters;

system-state-inquiry-proc;
system-state-inquiry;

/11/ ***************~'rl, I< ,', k J, k k "***********.,(~'(/111
DEF BUFFER teletype-keyboard;

DESCRIPTION;
the keyboard is used to enter
* data-aquisition-orders
* evaluation-parameters
* system-state-inquiries

DEF TYPE

CONSUMED BY

PRODUCED BY

CAPACITY

CONSISTS OF

read-input;

operator;

1 OF input-line;

input-line;

80 OF input-character;

~~*******~~***** 4.2 ****************************"'(****~~******##
DEF ACTIVlry dialogue-output-processing;

EXECUTING

CONSUMES FROM

OCCUPIES

PRODUCES FOR

REPEATEDLY;

status-information-buffer;

teletype;

teletype-printer;

DEF BUFFER

DESCRIPTION;

23

/I/t ****'''********************************** /I/t
teletype-printer;

The teletype-printer is used to transmit
* status-informations
* error-messages

DEF TYPE

CONSUMED BY

CAPACITY

CONSISTS OF

operator;

1 OF output-line;

output-line;

120 OF output-character;

A*Axxx**** 5. ****************~~x*x*AxAAA**********xxAx***##
DEF ACTIVITY output-periphery;

SUBACTS ARE display-drive,
printer-drive;

*,~*****~hk**** 5.1 **********************************'~********##
DEF ACTIVITY display-drive;

DEF BUFFER

EXECUTING

CONSUMES FROM

PRODUCES FOR

POSITION

LOCAL TO

REPEATEDLY;

output-buffer;

display;

display;

PERIPHERAL ;

display-drive;

**************** 5.2 *,~*******************~~******~~*,hk*,~**~hk##
DEF ACTIVITY printer-drive;

DEF BUFFER

EXECUTING

CONSUMES FROM

PRODUCES FOR

POSITION

LOCAL TO

REPEATEDLY;

output-buffer;

printer;

printer;

PERIPHERAL ;

printer-drive;

24

********************;~******~~**ihk******m~**************;h~****** DU
UU DEFINITION OF MAIN-DATA-AREAS ##
DU *********i~***** 6.1 ******~~~***;h~*******i~~****************;H~***DU
DEF BUFFER input-buffer;

PRODUCED BY

CONSUMED BY

CAPACITY

technical-process;

measured-value-logging;

size-input-data-buffer OF input-data;

DESCRIPTION;
The input-data may be either
* measured values or
* status-information

H# **************7(* 6.2 ;hh~*7~***~~******;~***********************UD
DEF BUFFER

LOCAL TO

PRODUCED BY

CONSUMED BY

CAPACITY

raw-data-buffer;

measured-value-processing;

measured-value-logging;

data-preparation;

size-raw-data-buffer OF raw-data;

DEF TYPE
U# ;~***************;~h~****************** DU

raw-data;

CONSISTS OF time-record-2,
order-identification-2,
raw-data-2;

uu ***********;~*** 6.3 *******************;n~k*******************7h~DU
DEF BUFFER

DESCRIPTION;

result-buffer;

The output-fan indicates that both recording and life
display get every item in the buffer;

OUTPUT-FAN

LOCAL TO

PRODUCED BY

CONSUMED BY
BY

CAPACITY

2·,

measured-value-processing;

data-preparation;

recording,
life-display;

size-result-buffer OF result;

DEF TYPE

25

UD ********************1~~**********1~~***** UD
result;

CONSISTS OF time-record-l,
order-identification-l,
result-l;

DESCRIPTION;
The results are in physical units.

**************** 6.4 ***
DEF BUFFER

PRODUCED BY

CONSUMED BY

CAPACITY
OF

status-information-buffer;

data-preparation;

dialogue;

size-status-information-buffer
status-information;

DESCRIPTION;
status-information-buffer contains status-information.

UD *~~~************* 6.5 1m*** ##
DEF BUFFER

OUTPUT-FAN

PRODUCED BY
BY
BY
BY

CONSUMED BY

CAPACITY

output-buffer;

2',

life-display,
alarm-handling,
error-handling,
recording;

display-drive;

size-output-buffer OF output-data;

DESCRIPTION;
output-buffer may contain

* process-state-descriptions
~', sample-values
~.. event-messages

RH *************;~~*
DEF VARIABLE

DESCRIPTION;

7.

26

control-information-block;

Central information that specifies the monitoring and
processing to be done. In particular, the control~

information-block contains all parameters for control
contains all parameters for control and evaluation that
and evaluation that may be subject to modifications.
The content of the control-information-block may be
modified by alarm-handling, dialogue, and error-handling.

SUBPARTS ARE order-tabel,
parameter-tabel,
hardware-tabel;

UD ***********;n~***
DEF VARIABLE

7.1
order-tabel;

SUBPARTS data-aquisition-order;

DEF VARIABLE
DU ************~'m*********************~~~ UD

data-aquisition-order;

CARDINALITY

SUBPARTS ARE

number-of-orders;

list-of-measuring-points,
order-identification,
priority;

DU ****************
DEF VARIABLE

7.2
parameter-tabel;

SUBPARTS ARE tabel-of-standard-values,
previous-values,
scaling-factor;

DU *******~n~*******

DEF VARIABLE
7.3 7rn****************************~~~*****m~****HO

hardware-tabel;

SUBPARTS ARE hardware-adresses,
dma-numbers,
bit-numbers,
distorsion-factor;

##*************************************7n~***********1n~**7~~****~\k*****##
##******************************;h~*****1n~*****i~~****1ri~~******1~~****** U#

- 27 -

5. PCSL versus PSL, DSL and EPOS

In this chapter, PCSL is compared with PSL (its 'father'), (its 'older

brother') and EPOS, a system which is being developed at the Stuttgart-Univer

sity (its 'colleague').

PSL, DSL and PCSL are very similar as far as style and structure of the

languages are concerned, because they all have to be defined by the META-sys

tem which implies many restrictions (structure of sections and statements,

relations, etc.). Such similarities are not discussed here.

5.1 PSL

PCSL differs from PSL:

in the object-types for data: Instead of a large number of object types

related to data base terminology, only VARIABLES and BUFFERS are available;

(COUNT, INTEGER, REAL, BINARY, STRING are just primitive VARIABLES.)

in its means to handle time and synchronization which are very paar in

PSL;

in the distinction of two object types instead of PROCESS. This allows to

describe parallelism easily;

in the presence of logical relations (while, while not etc., object-types

CRITERION, RANGE-INT etc.); In PSL, logical relations are only described

by informal texts.

In general, PCSL is more restricted to a special area than PSL. As a

benefit from this restriction, a more precise meaning can be attached to all

elements of the language.

- 28 -

5.2 DSL

Similar to PCSL, DSL jBodart, Pigneur 1979 a, b/ is based on PSL. (Nei

ther PCSL nor DSL is a superset of PSL!) Also, DSL stresses the dynamic sys

tem aspects in order to allow more dynamic analysis and simulation which is

impossible with PSL as it iso PCSL and DSL differ slightly in their means and

goals:

PCSL is less analysis-ariented than DSL, we tried to develop a language which

is useful even if used without any tools for analysis, just by the concepts

which (hopefully) contribute to reliability because they are easy to under

stand and restrict their users to reliable constructions.

The focal point of DSL seems to be on analysis and simulation. EVENTS

and RESOURCES are most important, the use of RESOURCES can be described in

more detail than in PCSL, but there is no bias for contructs that hide details

of implementation within complex operations like 'praduce' and 'consume' in

PCSL da.

DSL consists of two levels, the one for the GA, and the so-called nested

language for simulation. A similar approach will be necessary for PCSL, though

we tried to have most information for simulation on the primary level.

5.3 EPOS

EPOS /Biewald et al. 1979/ is a system for specification and design of

process control software. It is directed towards PEARL, a process control pro

grarnrning language supported by our governrnent.

EPOS consists of a language (with different parts for requirements and

design), an analysis-system which encompasses a simulator, areport generator,

and a user interface for controlling the whole system.

EPOS is being implemented in PEARL on a minicomputer AEG 80-20. It is

planned to be used in life-size-applications in 1980.

- 29 -

EPOS-R, the subsystem for requirements, acts as a text- and graphic

editing facility with little relational and logical capabilities.

Such capabilities are found in EPOS-S. (This name is inconsistently used

for both the language and the system to process it.) Object-types are ACTION,

DATA, INTERFACE, EVENT, CONDITION.

There are relations for data-flow (INPUT,OUTPUT), control (TRIGGERED),

processing (PROCESSED) and decomposition.

ACTIONS are decomposed in a procedural way (sequence, if-then-else, etc.).

Apparently, relations can be specified only in one direction (not from

either end).

EPOS-A (analysis) and EPOS-D (documentation) correspond to the analysis

and report-generation-capabilities of PSA. In the paper cited above, seven

types of analysis are listed, including syntax check, consistency checks and

simulation. Much plotted output is planned.

Compared to PCSL, EPOS differs in many ways. Its major advantage is its

installation on a minicomputer. Also, the distinction (and tracing) between

requirements and design seems to be a good feature. Finally, the hierarchical

ly structured informal information (e.g. DESCRIPTION = PURPOSE + DATA + FULFILS

+ TEST + PERFORMANCE + NOTE) and the closed syntactical constructs (e.g. DE

SCRIPTION ••• DESCRIPTIONEND) should be noted.

On the other hand, the means of PCSL for data flow and resource alloca

tion are more elegant because they encompass all synchronization needed. The

PSL - like languages are more flexible because they allow for stepwise accumu

lation of the problem statement, 'complementary relations', and implicit de

claration.

- 30 -

6. Current state of PCSL

6.1 The language

PCSL was defined in August 1978 /Ludewig, Streng - Oct. 1978/; recently

(July 1979) a minor revision was made to remove some mistakes from the first

version and to change some keywords. (This paper is based on the revised

version.)

6.2 The Generalized Analyzer

By July 1979, the most important parts of the Generalized Analyzer (GA)

were operational at IDT /Berliner, Ludewig, Pozzi 1979/:

IP

DBSM

NS

FS

(Input PSL)

(Data Base Summary)

(Name Selection)

(Formated Statement).

DP and HP (Delete and Replace) will follow soon. Thus, PCSL is available

at IDT. A command-language interpreter for our batch-installation is being

developed.

6.3 Analysis-tools

No steps towards design and implementation of modules for analysis and

report-generation have been taken beyond the formal specifications given in

/Ludewig 1978/.

- 31 -

7. References

Baumann, R.: Computer-aided design and implementation of control algorithms.
in: A. Niemy (ed.): IFAC 78, Vol. I, p. 649-655, Helsinki, Juni 1978

Biewald, J., P. Göhner, R. Lauber, H. Schelling: EPOS - A specification and
design techniques for computer controlled real-time automation systems.
Proc. of the 4th Int. Conf. on Software Engineering, München, Sept. 1979,
p. 245-250

Bodart, F., Y. Pigneur: A model and a language for functional specification
and evaluation of information system dynamics. IFIP TC8 W.G. 8-1. Working
conf. on formal models and practical tools for information system design.
Oxford, April 1979

Bodart, F., Y. Pigneur: Dynamic specification language and a simulation model
analyzer for an information system. Inst. d'Informatique, FNDP, Namur,
Sept. 1979

Courtois, P.J., F. Heymans, D.L. Parnas: Concurrent control with 'readers'
and 'writers'. Commun. of the ACM, Vol. 14, No. 10 (1971), p. 667-668

Dijkstra, E.W.: The structure of the THE-multiprogramming-system.
Commun. of the ACM, Vol. 11, No. 5 (1968), p. 341-346

Dijkstra, E.W.: Cooperating sequential processes. in: Genuys, F. (ed.):
Programming languages. Academic Press, London, New York 1968, p. 43-112

Ludewig, J., W. Streng: Überblick und Vergleich verschiedener Mittel für die
Spezifikation und den Entwurf von Software. KfK 2506, March 1978

Ludewig, J., W. Streng: Methods and Tools for Software Specification and
Design - A Survey. European Purdue Workshop, TC for Safety and Security
(TC 7), Paper No. 149, Zürich, April 1978

Schumacher, F.: Beschreibung und Auswertung diskreter dynamischer Systeme.
KfK 2635, March 1978

Teichroew, D., E.A. Hershey III: PSL/PSA: a computer-aided technique for
structured documentation and analysis of information processing systems.
IEEE Trans. SE-3, No. 1 (1977), p. 41-48

Vinzentz, H.: Entwicklung zuverlässiger Prozeßrechner-Software durch den Ein
satz von Spezifikations- und Entwurfssprachen. Diplomarbeit, Universität
Karlsruhe 1979

- 32 -

The primary reports listed below contain information of a provisional

nature and were compiled primarily to promote the up-to-date internal ex

change of information among the institutes and external partners cooperating

with the Karlsruhe Nuclear Research Center. Any dissemination of these reports

or its contents requires the consent of the Patents and Licenses Department

of KfK.

Berliner, E., J. Ludewig, u. Pozzi: Die Installation des Generalized Ana
lyzers, April 1979

Borrmann, H.: Konzept der Meßwerterfassung und -bereitstellung im Rahmen
eines universellen Prozeßüberwachungssystems, August 1978

Ludewig, J.: Definition der Struktur und Semantik von PCSL, August 1978

Ludewig, J., W. Streng: Extensions of PSL/PSA for Process Control Applica
tions - AProposal, March 1978

Ludewig, J., W. Streng: META-Definition von PCSL, October 1978

- 33 -

Appendix: A PCSL-summary
--

H##############H###H##############H##################H######HH##H#######
#H#
This is a short but almost complete definition of PCSL; #H#
only the synonyms of keywords are missing. It was derived
from META-definition by deleting all information relevant #HH
for database-organisation and error-handling but not for #H#
'the language itself. All relevant parts have been compressed
without loss of information. #H#
#H#
The connectivity is stated in the headers corresponding to ##H
the sequence of components in the COMBINATION-statements.
(e.g. MANY,ONE means the 2nd component of the relation may #H#
be connected to several 1st components, but for every 1st
H## component, only one 2nd is allowed). ###.
HH#
Lines starting with a number in parentheses describe state- #H#
ments for the relation defined before; the number indicates·
H## the component to which the statement applies (i.e. in whose #H#
##H section the statement may appear). #H#
##H ###
H## ###
Parentheses indicate parts of statements that may be repeated #H#
n times, n = 0,1,2, ... Parts in square brackets are optional. #H#
##H #H#
###################H##########H##H######H#####/HI##########H#############

##H##########################H##H#
Table of contents of the appendix: #H#
#H#
H## App. 1 Noise-words #H#
App. 2 Object-types
##H App. 3 Texts #H#
##H App. 4 Properties #H#
.1 Properties for objects #H#
.2 Properties used only as types #H#
App. 5 Relations and statements #H#
.1 through .39 ordered by relation-names. All #H#
statements follow immediately after the relation. #H#
######H#########H##H###########################H######################H#

- 34 -

##
####### App. 1 NOISE-WORDS ######################################

ARE, IN, IS, OF, ON, TO;

Noise-words may be inserted in any statement without any meaning

##
####### App. 2 OBJECT-TYPES #####################################

ACTIVITY, STEP,

BUFFER, VARIABLE, RESOURCE, TYPE,

BINARY, COUNT, INTEGER, REAL, STRING,

EVENT, INTERRUPT, TIMER, INTERVAL,

CONDITION,

RANGE-BIN, RANGE-CNT, RANGE-INT, RANGE-REAL, RANGE-STR,

KEYWORD, MEMO, ATTRIBUTE, ATTRIBUTE~VALUE,

FUNCTION, PROCESS-VARIABLE;

H### Since object-type VARIABLE may be replaced by the simple-typed ####
variables BINARY, COUNT, INTEGER, REAL, and STRING, in most
applications, ANY-VARIABLE ist used for the whole set.

##
####### App. 3 TEXTS and the object-types they are allowed with ##

ALGORITHM

DESCRIPTION

OBJECTlVE

CODE

SIMULATION

(FUNCTION) ;

(ALL) ;

(ACTIVITY, STEP);

(ACTIVITY, STEP);

(ALL);

- 35

#####IHI###
####### App. 4 ### PROPERTIES #################################

.1 PROPERTIES and their values (object-types in parentheses)

BIAS: READER, WRITER

CREATION: SUPPLIED , KEPT, LOST

EMPTY: BLOCK, SKIP
FULL: BLOCK, SKIP

FAN-IN: INTEGER 1 THRU 1000000
FAN-OUT: INTEGER 1 THRU 1000000

ORDER: FIFO, LIFO,
RANDOM, BY-PRIORITY

POSITION: INTERNAL, PERIPHERAL

(ANY-VARIABLE);

(ANY-VARIABLE) ;

(BUFFER);
(BUFFER);

(BUFFER) ;
(BUFFER);

(BUFFER) ;

(ANY-VARIABLE,
BUFFER,
ACTIVITY, STEP) ;

EXECUTING:

PRIORITY:

STATUS:

ONCE, REPEATEDLY

INTEGER 1 THRU 1000000

NEW, EXISTING

(ACTIVITY, STEP) ;

(ACTIVITY ,STEP) ;

(ACTIVITY, STEP) ;

MAXIMUM-DEVIATION: NUMBER 0.0 THRU 1.0 (INTERVAL) ;

PROBABILITY: NUMBER 0.0 THRU 1.0 (CONDITION) ;

####### .2 PROPERTIES used only as types and their values ##########

BINARY-RANGE: STRING;

COUNT-RANGE: INTEGER 0 THRU 1000000;

INTEGER-RANGE: INTEGER;

REAL-RANGE: NUMBER;

STRING-RANGE: STRING;

TlME-UNIT-RANGE: M-SEC, SEC, MIN, HOURS,
DAYS, WEEKS, MONTHS, YEARS;

ARITH-COMPARATOR: EQ, NE, GE, LE, GT, LT;

LOGIC-COMPARATOR: EQ, NE;

- 36 -

#############################/#1###
####### App. 5 ### RELATIONS and STATEMENTS ###
##

##
####### App. 5.1 ### alternative-relation (ONE,MANY) #######

COMBINATION alternative-father ACTIVITY
WITR alternative-san ACTIVITY;

COMBINATION alternative-father STEP
WITR alternative-san STEP;

(1) ALTERNATIVES ARE alternative-san (, alternative-san);

(2) FACULTATIVE IN alternative-father;

##
####### App. 5.2 ### attribute-relation (MANY,MANY,ONE) ####

COMBINATION attribute-left-hand-part ALLBUT ATTRIBUTE
WITR attribute-part ATTRIBUTE
WITR attribute-value-part ATTRIBUTE-VALUE;

(1) ATTRIBUTE attribute-part attribute-value-part
(, attribute-part attribute-value-part);

(2) VALUES ARE attribute-value-part FOR attribute-left-hand-part
(, attribute-value-part FOR attribute-left-hand-part);

##/#1##########
####### App. 5.3 ### capacity-relation (MANY,MANY,ONE) #####

COMBINATION capacity-buffer BUFFER
WITR capacity-unit TYPE
WITR capacity-count COUNT VALUE-FOR COUNT-RANGE;

(1) CAPACITY capacity-count OF capacity-unit;

(2) capacity-count ITEMS IN capacity-buffer
(, capacity-count ITEMS IN capacity-buffer);

##
####### App. 5.4 ### cardinality-relation (MANY,ONE) #######

COMBINATION card-subject-part ACTIVITY, ANY-VARIABLE, BUFFER,
TIMER, RESOURCE

WITR cardinality-part COUNT VALUE-FOR COUNT-RANGE;

(1) CARDINALITY IS cardinality-part;

(2) APPLIES TO card-subject-part (, card-subject-part);

- 37

##
####### App. 5.5 ### consume-relation (MANY,MANY,ONE) ######

COMBINATION consumer ACTIVITY, STEP
WITR cons-buffer BUFFER
WITR cons-count COUNT VALUE-FOR COUNT-RANGE;

(1) CONSUMES [cons-count [OF BUFFER-UNIT]] FROM cons-buffer
(, [cons-count [OF BUFFER-UNIT]] FROM cons-buffer) ;

(2) CONSUMED [cons-count [OF BUFFER-UNIT]] BY consumer
(, [cons-count [OF BUFFER-UNIT]] BY consumer) ;

##
####### App. 5.6 ### contain-relation (MANY,MANY,ONE) ######

COMBINATION containing-part VARIABLE, TYPE
WITR contained-part TYPE
WITR con-repetition-part COUNT VALUE-FOR COUNT-RANGE;

COMBINATION containing-part INTERVAL
WITR contained-part INTERVAL VALUE-FOR TIME-UNIT-RANGE
WITR con-repetition-part COUNT VALUE-FOR COUNT-RANGE;

(1) CONSISTS OF [con-repetition-part] contained-part
(, [con-repetition-part] contained-part);

(2) CONTAINED [con-repetition-part [TIMES]] IN containing-part
(, [con-repetition-part [TIMES]] IN containing-part)j

##
####### App. 5.7 ### control-relation (MANY,MANY,ONE) ######

COMBINATION controled-var PROCESS-VARIABLE, ANY-VARIABLE
WITR controler ANY-VARIABLE
WITR control-fct FUNCTION;

(1) CONTROLED BY controler [USING control-fct]
(, controler [USING control-fct]) ;

(2) CONTROLS controled-var [USING control-fct]
(, controled-var [USING control-fct]) ;

##
####### App. 5.8 ### criterion-relation (MANY,ONE) #########

COMBINATION alternative-part ACTIVITY, STEP
WITR criterion-part CONDITION;

(1) DEPENDING ON criterion-part;

(2) APPLIES TO alternative-part (, alternative-part);

- 38 -

##
####### App. 5.9 ### cycle-relation (MANY,MANY,ONE) ########

COMBINATION cycle-timer TlMER
WITH cycle-time-unit INTERVAL VALUE-FOR TlME-UNIT-RANGE
WITH cycle-count COUNT VALUE-FOR COUNT-RANGE;

(1) CYCLE [cycle-count OF] cycle-time-unit;

##
####### App. 5.10 ### delay-relation (MANY,MANY,ONE) ########

COMBINATION delayed-timer TlMER
WITH delay-time-unit INTERVAL VALUE-FOR TlME-UNIT-RANGE
WITH delay-count COUNT VALUE-FOR COUNT-RANGE;

(1) DELAY [delay-count OF] delay-time-unit;

##################################/#/####################################
####### App. 5.11 ### device-relation (MANY,MANY) ###########

COMBINATION device-content ANY-VARIABLE, BUFFER
WITH device RESOURCE;

(1) DEVICE device (, device);

(2) HOUSES device-content (, device-content);

##########/HI##
####### App. 5.12 ### implies-relation (MANY,MANY) ##########

COMBINATION implies-step STEP, CONDITION
WITH implies-condition CONDITION,

RANGE-INT,
RANGE-CNT,
RANGE-REAL,
RANGE-BIN,
RANGE-STR;

(1) IMPLIES implies-condition (, implies-condition);

(2) IMPLIED BY implies-step (, implies-step);

- 39 -

##
####### App. 5.13 ### inhibit-relation (MANY,MANY) ##########

COMBINATION inhibiter ACTIVITY, STEP
WITH inhibited-event EVENT, TIMER, INTERRUPT;

(1) INHIBITS inhibited-event (, inhibited-event);

(2) INHIBITED BY inhibiter (, inhibiter);

##
####### App. 5.14 ### initiate-relation (MANY,MANY) #########

COMBINATION initiater ACTIVITY, STEP
WITH data-initiated ANY-VARIABLE;

(1) INITIATES data-initiated (, data-initiated);

(2) INITIATED BY initiater (, initiater);

##
####### App. 5.15 ### initstep-relation (ONE,ONE) ###########

COMBINATION init-father ACTIVITY, STEP
WITH init-son STEP;

(1) INITIAL-STEP IS init-son;

(2) FIRST-STEP OF init-father;

##
####### App. 5.16 ### intvl-def-relation (MANY,MANY,ONE) ####

COMBINATION defined-interval INTERVAL
WITR intvl-def-unit VALUE-FOR TIME-UNIT-RANGE
WITH intvl-def-count VALUE-FOR COUNT-RANGE;

(1) AVERAGE-LENGTR [intvl-def-count OF] intvl-def-unit;

##
####### App. 5.17 ### intvl-use-relation (MANY,ONE) #########

COMBINATION intvl-user ACTIVITY, STEP, BUFFER, EVENT, INTERRUPT
WITR used-interval INTERVAL;

(1) INTERVAL used-interval;

(2) APPLIES TO intvl-user (, intvl-user);

- 40 -

##
####### App. 5.18 ### keyword-relation (MANY,MANY) ##########

COMBINATION keyed-part ALLBUT KEYWORD
WITH keyword-part KEYWORD;

(1) KEYWORD ARE keyword-part (, keyword-part);

(2) APPLIES TO keyed-part (, keyed-part);

##
####### App. 5.19 ### local-relation (MANY,ONE) #############

COMBINATION local-object ALLBUT ACTIVITY, STEP
WITH local-stact ACTIVITY, STEP;

(1) LOCAL TO local-stact;

(2) LIMITS local-object (, local-object);

##
####### App. 5.20 ### memo-relation (MANY,MANY) #############

COMBINATION memo-part MEMO
WITH memoed-part ALLBUT MEMO;

(2) SEE-MEMO memo-part (, memo-part);

(1) APPLIES TO memoed-part (, memoed-part);

##
####### App. 5.21 ### next-relation (MANY,ONE) ##############

COMBINATION precessor STEP
WITH successor STEP;

(1) NEXT [STEP] IS successor;

(2) ENTERED FROM precessor (, precessor);

- 41 -

##
####### App. 5.22 ### observe-relation (MANY,MANY,ONE) ######

COMBINATION observed-var PROCESS-VARIABLE, ANY-VARIABLE
WITR observer ANY-VARIABLE
WITH observe-fct FUNCTION;

(1) OBSERVEDBY observer [USING observe-fct]
(,observer [USING observe-fct]);

(2) OBSERVES observed-var [USING observe-fct]
(, observed-var [USING observe-fct]);

##
####### App. 5.23 ### occupy-relation (MANY,MANY,ONE) #######

COMBINATION occupier ACTIVITY, STEP, BUFFER, VARIABLE
WITR occupied-resource RESOURCE, ACTIVITY
WITR occupy-count COUNT VALUE-FOR COUNT-RANGE;

(1) OCCUPIES [occupy-count OF] occupied-resource
(, [occupy-count OF] occupied-resource);

(2) OCCUPIED BY occupier [occupy-count ITEMS]
(, occupier [occupy-count ITEMS]);

##
####### App. 5.24 ### produce-relation (MANY,MANY,ONE) ######

COMBINATION producer ACTIVITY, STEP
WITR prod-buffer BUFFER
WITR prod-count COUNT VALUE-FOR COUNT-RANGE;

(1) PRODUCES [prod-count [OF BUFFER-UNIT]] FOR prod-buffer
(, [prod-count [OF BUFFER-UNIT]] FOR prod-buffer) ;

(2) PRODUCED [prod-count [OF BUFFER-UNIT]] BY producer
(, [prod-count [OF BUFFER-UNIT]] BY producer);

##
####### App. 5.25 ### read-relation (MANY,MANY,ONE) #########

COMBINATION reader ACTIVITY, STEP
WITR data-read ANY-VARIABLE
WITR read-interval INTERVAL;

(1) READS data-read [INTERVAL read-interval]
(, data-read [INTERVAL read-interval]);

(2) READ BY reader [INTERVAL read-interval]
(, reader [INTERVAL read-interval]);

- 42 -

########################/#1##
####### App. 5.26 ### start-relation (MANY,MANY) ############

COMBINATION starting-part EVENT, TIMER, INTERRUPT
WITR started-part ACTIVITY, STEP;

(1) STARTS started-part (, started-part);

(2) STARTED BY starting-part (, starting-part);

##
####### App. 5.27 ### step-relation (ONE,MANY) ##############

COMBINATION step-father ACTIVITY, STEP
WITR step-son STEP;

(1) SUBSTEPS ARE step-son (, step-son);

(2) STEP OF step-father;

##
####### App. 5.28 ### subact-relation (ONE,MANY) ############

COMBINATION activity-father ACTIVITY, STEP
WITH activity-son ACTIVITY;

(1) SUBACTS ARE activity-son (, activity-son);

(2) PARALLEL IN activity-father;

##
####### App. 5.29 ### subpart-relation (ONE,MANY) ###########

COMBINATION top-part VARIABLE
WITR sub-part ANY-VARIABLE;

(1) SUBPARTS ARE sub-part (, sub-part);

(2) PART OF top-part;

- 43 -

##
App. 5.30 ### subrange-relation (MANY,MANY,ONE,MANY)

COMBINATION range-object INTEGER
WITR range-name RANGE-INT
WITR cmp-operator VALUE-FOR ARITR-COMPARATOR
WITR cmp-value INTEGER VALUE-FOR INTEGER-RANGE;

COMBINATION range-object COUNT
WITR range-name RANGE-CNT
WITR cmp-operator VALUE-FOR ARITH-COMPARATOR
WITR cmp-value COUNT VALUE-FOR COUNT-RANGE;

COMBINATION range-object REAL
WITR range-name RANGE-REAL
WITR cmp-operator VALUE-FOR ARITR-COMPARATOR
WITR cmp-value REAL VALUE-FOR REAL-RANGE;

COMBINATION range-object BINARY
WITR range-name RANGE-BIN
WITR cmp-operator VALUE-FOR LOGIC-COMPARATOR
WITR cmp-value BINARY VALUE-FOR BINARY-RANGE;

COMBINATION range-object STRING
WITR range-name RANGE-STR
WITR cmp-operator VALUE-FOR LOGIC-COMPARATOR
WITR cmp-value STRING VALUE-FOR STRING-RANGE;

(1) SUBRANGE range-name IF cmp-operator cmp-value
(, range-name IF cmp-operator cmp-value);

(2) IF range-object cmp-operator cmp-value;

##
####### App. 5.31 ### terminate-relation (MANY,MANY) ########

COMBINATION terminating-part EVENT, TlMER, INTERRUPT
WITR terminated-part STEP, ACTIVITY;

(1) TERMINATES terminated-part (, terminated-part);

(2) TERMINATED BY terminating-part (, terminating-part);

.##
####### App. 5.32 ### true-while-not-relation (MANY,MANY) ###

COMBINATION twn-condition CONDITION
WITR twn-subrange CONDITION, RANGE-INT, RANGE-CNT,

RANGE-REAL, RANGE-BIN, RANGE-STR;

(1) TRUE-WHILE NOT twn-subrange (NOR twn-subrange);

(2) NEG-RELATED TO twn-condition (, twn-condition);

- 44 -

##
####### App. 5.33 ### true-while-relation (MANY,MAY) ########

COMBINATION tw-condition CONDITION
WITR tw-subrange CONDITION, RANGE-INT, RANGE-CNT,

RANGE-REAL, RANGE-BIN, RANGE-STR;

(1) TRUE-WHILE tw-subrange (AND tw-subrange);

(2) POS-RELATED TO tw-condition (, tw-condition);

##
####### App. 5.34 ### utilize-relation (MANY,MANY) ##########

COMBINATION utilizing-part ACTIVITY, STEP
WITR utilized-part ACTIVITY;

(2) UTILIZED BY utilizing-part (, utilizing-part);

(1) UTILIZES utilized-part (, utilized-part);

##
####### App. 5.35 ### value-list-reiation (MANY,MANY) #######

COMBINATION value-object INTEGER
WITR actual-value VALUE-FOR INTEGER-RANGE;

COMBINATION value-object COUNT
WITR actual-value VALUE-FOR COUNT-RANGE;

COMBINATION value-object REAL
WITR actual-value VALUE-FOR REAL-RANGE;

COMBINATION value-object BINARY
WITR actual-value VALUE-FOR BINARY-RANGE;

COMBINATION value-object STRING
WITR actual-value VALUE-FOR STRING-RANGE;

(1) VALUE-LIST IS actual-value (, actual-value);

##
####### App. 5.36 ### value-range-relation (MANY,ONE,ONE) ###

COMBINATION valued-are-part INTEGER
WITR valuel-part INTEGER VALUE-FOR INTEGER-RANGE
WITH value2-part INTEGER VALUE-FOR INTEGER-RANGE;

COMBINATION valued-are-part COUNT
WITR valuel-part COUNT VALUE-FOR COUNT-RANGE
WITR value2-part COUNT VALUE-FOR COUNT-RANGE;

COMBINATION valued-are-part REAL
WITR valuel-part REAL VALUE-FOR REAL-RANGE
WITH value2-part REAL VALUE-FOR REAL-RANGE;

(1) VALUE-RANGE valuel-part THROUGR value2-part ;

- 45 -

##
####### App. 5.37 ### waitstep-relation (ONE,ONE) ###########

COMBINATION wait-father ACTIVITY
WITH wait-son STEP;

(1) WAITING-STEP IS wait-son;

(2) WAITING IN wait-father;

##/#1##############################
####### App. 5.38 ### while-relation (MANY,MANY) ############

COMBINATION while-step STEP, CONDITION
WITH while-condition CONDITION,

RANGE-INT,
RANGE-CNT,
RANGE-REAL,
RANGE-BIN,
RANGE-STR;

(1) WHlLE while-condition (OR while-condition);

(2) GUARANTEES while-step (, while-step);

##
####### App. 5.39 ### write-relation (MANY,MANY,ONE) ########

COMBINATION writer ACTIVITY, STEP
WITH data-written ANY-VARIABLE
WITH write-interval INTERVAL;

(1) WRITES data-written [INTERVAL write-interval]
(, data-written [INTERVAL write-interval]);

(2) WRITTEN BY writer [INTERVAL write-interval]
(, writer [INTERVAL write-interval]);

##
##

