KfK 2947 Mai 1980

Auslegung, Bestrahlung und Nachuntersuchung der (U, PU) C-Prüflinge der Kapselversuchsgruppe FR 2-6d

F. Bauer, W. Ernst, P. Weimar Institut für Material- und Festkörperforschung Projekt Schneller Brüter

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Material- und Festkörperforschung Projekt Schneller Brüter

kfk 2947

Auslegung, Bestrahlung und Nachuntersuchung der (U,Pu)C-Prüflinge der Kapselversuchsgruppe FR 2-6d

- F. Bauer
- W. Ernst
- P. Weimar

Kernforschungszentrum Karlsruhe GmbH., Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

> Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Zusammenfassung

Auslegung, Bestrahlung und Nachuntersuchung der (U,Pu)C-Prüflinge der Kapselversuchsgruppe FR 2-6d

Es wurden – im Rahmen der Kapselversuchsgruppe FR 2-6d – 3 Mischkarbidbrennstäbe (92 % th.D. Tablettendichte) mit großem Radialspalt (250 µm) im thermischen Fluß des FR 2 bestrahlt. Das Hüllmaterial bestand aus dem Stahl der Werkstoff-Nr. 1.4988. Die Standzeit im Reaktor betrug max. 680 Tage, der Abbrand max. 7,4 %. Die Stäbe waren an der Hülloberfläche mit 6 Thermoelementen bestückt.

Während der Bestrahlung in der NaK-Kapsel konnten keine nennenswerten Unregelmäßigkeiten der Temperaturanzeige festgestellt werden. Bei dem Entladen der Kapsel in den Karlsruher Heißen Zellen stellte sich heraus, daß alle 3 Stäbe z.T. beachtliche Hüllrisse aufwiesen.

Die Profilometrie der Stäbe zeigte Durchmesserzunahmen von 4,5 bis 6,0 %. Die Aufkarburierungswerte der Hüllen lagen in der bisher beobachteten erträglichen Größenordnung für Stäbe, die mit moderierter Stableistung gefahren wurden ($T_{clad} \approx \leq 600^{\circ}$ C). Die keramografische Untersuchung erbrachte keine neuen Erkenntnisse im Vergleich zu den Beobachtungen der übrigen Stäbe dieser Serie (KfK 2577). Abstract

Design, irradiation and post-irradiation examination of the (U,Pu)C fuel pins of the test group FR 2-6d

In the frame of the capsule group 6d three mixed carbide pins (pelletdensity 92 % T.D.) with a big radial gap (250 µm) were irradiated in the thermal neutron flux of FR 2. The cladding material consisted of the austenitic steel No. 1.4988. The exposure time in the reactor was up to 680 days, the burnup was 7.4 at %. The pins were instrumented on their surface with 6 thermocouples each. During irradiation in the NaK capsule no bigger irregularities in temperature readings were found. During dismantling in Karlsruhe Hot Cells the capsules it was found that all 3 pins showed cracks on their clads. The profilometry of the pins showed diameter increases from 4.5 to 6.0 %. The carburization of the cladding proved the same tolerable magnitude as found for pins irradiated with moderate rod powers (T_{clad} ≤ 600 °C). Comparing ceramography with that of other pins of the same capsule group (KfK 2577) no bigger differences in structure were found.

Inhalt:

- 1. Einleitung
- 2. Aufgabe und Ziel des Experiments
- 3. Auslegung
 - 3.1 Auslegungsdaten
 - 3.2 Thermische Auslegung
 - 3.3 Mechanische Auslegung der Brennstäbe
- 4. Spezifikationen
 - 4.1 Brennstoffspezifikation
 - 4.2 Hülle
 - 4.3 Brennstab
- 5. Herstellung
 - 5.1 Brennstoff
 - 5.2 Brennstab
- 6. Bestrahlungseinrichtung
- 7. Ablauf der Bestrahlung
 - 7.1 Reaktorzyklen und Neutronenfluß
 - 7.2 Temperatur und Stableistung
- 8. Zerstörungsfreie Nachuntersuchung
 - 8.1 Äußere Vermessung
 - 8.2 Durchleuchtung
 - 8.3 Gamma-Profile
- 9. Zerstörende Nachuntersuchung
 - 9.1 Spaltgase
 - 9.2 Keramografie
- 10. Diskussion der Ergebnisse

Literatur

Anhang I

1. Einleitung

Als Vorläufer verschiedener Bündelexperimente im DFR, PFR und in der KNK stellt die Versuchsgruppe Vg.6 einen breit angelegten Parametertest dar, bei dem erste Ergebnisse zum Schwellverhalten, zur Spaltgasfreisetzung und zur Verträglichkeit zwischen Brennstoff und Hülle in Abhängigkeit der interessierenden Parameter gewonnen werden sollen. Es handelt sich dabei um einen Kapselversuch im FR 2, also im thermischen Fluß. In der folgenden Übersicht werden die 4 Versuchsgruppen des Experiments Vg. 6 dargestellt.

Experiment	Vg.6a	Vg.6c	Vg.6d	Vg.6e	
Zahl der Prüflinge	7	6	3	3	
Bindung	Не	Ar	He	Na	
Brennstoff:	· · · · · · · · · · · · · · · · · · ·				
Pu/U+Pu	(%)	15	15	15	15
TablDurchmesser	(mm)	8 , 85	8,81	8,40	8,40
Sinterdichte	(% th.D.)	83/87	85/88	92	92
Schmierdichte	(% th.D.)	82/86	83/86	82	82
Spaltbreite diam. (µm)		50	90	500	500
Hülle:					
Werkstoff		1.4988	1.4988	1.4988	1.4988
Wandstärke	(mm)	0 , 55	0 , 55	0,55	0,55
Bestrahlungsbedingungen:					
lin. Stableistung	(W/cm)	1100-1400	1200	800-1000	800-1200
max. Hülltemperatur	([°] C)	650	600	450-550	450-600
max. Abbrand	(MWd/kg Me)	13-48	23-70	70/80	70

Die Nachuntersuchungsergebnisse der Versuchsgruppen 6a und 6c wurden bereits in KfK 2577 /1/ dokumentiert.

Der vorliegende Bericht beinhaltet alle Einzelheiten von Auslegung, Spezifikation und Prüflingsherstellung der Vg. 6d. Weiterhin werden der Bestrahlungsablauf sowie die zerstörungsfreie und zerstörende Nachuntersuchung beschrieben. In der folgenden Übersicht ist der Zeitablauf des Experiments dargestellt. Es sind dabei die für die einzelnen Experimentabschnitte verantwortlichen Stellen und Personen angegeben.

Zeitraum	Teilarbeit	Institution / Beteiligte
1969/70	Versuchsauslegung	AEG-Telefunken, TU-I A. Gerken, R. von Jan, H. Meisner, K. Richter
1972/74	Herstellung des Brennstoffs Herstellung der Stäbe Organisation der Bestrah- lung und Betreuung	TU-I / K. Richter Fa. ALKEM / AEG IMF / G. Senski, H. Häfner
1974/77	Bestrahlung im FR 2	Abt. Reaktorbetriebe FR 2
1979	Organisation der Nachunter- suchung und Betreuung	IMF / P. Weimar
1979	Zerstörungsfreie Nachunter- suchung	RBT/HZ / H. Enderlein, M. Scheeder
1979	Keramografie	RBT/HZ / S. Weih
1979/80	Dokumentation der Ergebnisse	IMF / F. Bauer, W. Ernst, P. Weimar

2. Aufgabe und Ziel des Experiments

Im Rahmen des PSB-Bestrahlungsprogramms für Karbid-Brennstäbe wurden im thermischen Fluß des FR 2 drei Stäbe mit (U,Pu)C-Brennstoff der Versuchsgruppe 6d bestrahlt /2/. Entsprechend dem niederen Flußniveau im FR 2 wurde die Bestrahlung bei ca. 1000 W/cm durchgeführt, was – bezogen auf den Temperaturabfall im Brennstoff – bei einer Flußabsenkung von 0,67 einer Stableistung von 670 W/cm im schnellen Fluß entspricht. Dadurch wird die Aussagekraft der Experimente für spätere Bestrahlungen unter realistischen Schnellbrüterbedingungen etwas eingeschränkt.

Das Versuchsziel lag darin, erste Erfahrungen über das Verhalten des gasgebundenen hochdichten Karbidkonzepts zu gewinnen. Im Vordergrund stand dabei die Frage nach dem Brennstoffschwellen und der Spaltgasfreisetzung.

- 2 -

Da bei der geplanten Bestrahlung im FR 2 der maximale Abbrand zweckmäßigerweise auf 8 % FIMA zu begrenzen war, wurde eine hohe Tablettendichte und eine große Fertigungsspaltbreite gewählt. Inwiefern eine Erhöhung der Brennstofftemperatur sich günstig auf das Brennstoffschwellen auswirkt, mußte durch den vorliegenden Versuch beantwortet werden.

Zum einen soll sich zwar durch diese Maßnahme die Spaltgasfreisetzung steigern lassen, zum andern wird aber das Wachstum der Blasen und Poren im Brennstoff durch höhere Diffusion von Spaltgasen und geringere mechanische Festigkeit desselben beschleunigt. Durch die Wahl einer sehr kriechfesten Hülle hoffte man, das Schwellen des Brennstoffs in die Porosität hinein zu lenken.

3. Auslegung

Die Auslegung der Versuchsgruppen 6a, 6c, 6d und 6e wurde auf der Grundlage der 1969 bekannten Stoffdaten für karbidische Brennstoffe und des verwendeten Hüllmaterials 1.4988 mit Hilfe von einfachen Handformeln und mit Hilfe des Rechenprogramms CRASH /3/ durchgeführt. Sie ist in /2/ zu finden.

3.1 Auslegungsdaten

Die für die Auslegung und die Spezifikation erforderlichen Grunddaten sind in Tabelle 1 zusammengestellt.

3.2 Thermische Auslegung

Die zur Auslegung verwendeten Stoffdaten für Wärmeleitfähigkeit und thermische Dehnung von Brennstoff und Hülle sind in /2/ detailliert erläutert, so daß hier darauf verzichtet werden kann. In Ermangelung eines zuverlässigen Modells zur Berechnung der Wärmedurchgangszahl im Spalt zwischen Brennstoff und Hülle stützt man sich auf experimentelle Daten, die allerdings noch einen großen Streubereich aufweisen.

$$h_{qap}^{He} = 1.0 - 1.3 - 2.0 \text{ W/cm}^{2} \text{ °C}$$

Dabei ist ein leichter Kontaktdruck angenommen.

Tabelle 1: Auslegungsparameter der Kaps	selversuchsgruppe 6d im FR 2
Brennstoff:	
Material	(U,Pu)C unter Vakuum hergestellt
Anreicherung:	
Pu (Gew%)	.15
Theoretische Dichte (g/cm 3)	13,6
Tablettendichte (% th.D.)	92
Tablettendurchmesser (mm)	8,4
Tablettenhöhe (mm)	10,0
Hülle:	
Material	1.4988
Außendurchmesser (mm)	10,0
Wandstärke (mm)	0,55
Brennstab:	
Bindung	He
Fülldruck (at)	1
Schmierdichte (% th.D.)	82
Radialspalt (µm)	250
Stabteilung:	
Oberer Endstopfen (mm)	25
Spaltgasraum (mm)	128
Spaltstoff (mm)	300
Rh-Plättchen (mm)	1
Unterer Endstopfen (mm)	27
Gesamtlänge (mm)	475
Betriebsbedingungen:	
Nominelle Stableistung $(W/cm)^{+)}$	1000
Maximale Stableistung $(W/cm)^{++}$	1150
Maximale Hülltemperatur innen (^O C)	725
Abbrand (MWd/kg Me)	80 (45)

+) örtl. Maximum der über den Zyklus gemittelten Stableistung

++) max. zulässige Stableistung zu Beginn eines Zyklus

() spezifizierter Wert

Bei einer bestimmten Hüllaußentemperatur T_{Ha} ist die Brennstoffrandtemperatur T_{fa} durch folgende Gleichung bestimmt:

$$T_{fa} = T_{Ha} + \frac{\chi}{2 \cdot \Pi} \left[\frac{1}{\lambda_{H}} \ln (r_{Ha}/r_{Hi}) + \frac{1}{r_{Hi} \cdot h_{gap}} \right]$$

Die Flußabsenkung wurde mit 0,67 angenommen.

3.3 Mechanische Auslegung der Brennstäbe

Die Hüllrohre werden durch Innendruck und durch thermische Spannungen zyklisch beansprucht. Der Temperaturabfall in der Hülle beträgt 94^OC bei einer Stableistung von 1150 W/cm. Eine Innendruckbelastung kommt sowohl aufgrund des Spaltgasdruckaufbaus als auch aufgrund von Festkörperdruck zustande. Der Spaltgasdruckaufbau ist eine Funktion der Freisetzung. Für die He-gebundenen Stäbe wird eine solche von 20 % angenommen. Bei einem Zielabbrand von 45 MWd/kg Me hat man einen Gasdruck von 15 bar. Über den Brennstoffschwelldruck läßt sich noch keine exakte Aussage machen. Bei der Berechnung der Hüllrohrverformung nach CRASH /3/ wurde deshalb der Innendruck (Gas + Schwellen) variiert. Die Materialdaten sind dabei aus /4/ übernommen. Der Innendruck wird als linear mit dem Abbrand wachsend angenommen. Die Beurteilung des Hüllrohrstandzeitverhaltens erfolgt nach drei Kriterien:

- 1. max. Hüllrohraufweitung durch Kriechen
- 2. max. plastische Verformung einer Randfaser
- max. Wechseldehnung einer Randfaser je Zyklus (gegen Ermüdungsbruch).

Durch die max. Hüllrohraufweitung wird im wesentlichen der zulässige Innendruck bestimmt. Die Kriterien 2 und 3 erlauben eine Beurteilung der thermischen Spannungen. Die Ergebnisse der CRASH-Rechnungen für eine Standzeit von 8400 h entsprechend einem Zielabbrand von 45 MWd/kg Me sind in Tabelle 2 aufgeführt und zwar für Innendrücke von 40, 80, 120 und 160 bar.

Tabelle 2:	Ergebnisse der CRASH-Rechnung für eine Standzeit v	von
	8400 h (45000 MWd/t Me Abbrand)	

Innendruck (Gas + Schw am Ende der Standzeit	40	80	120	160		
Hüllrohraufweitung	tats.	olo	0 , 027	0,044	0,070	0,15
durch Kriechen	zul.	00	0,15	0,15	0,15	0 , 15
plast. Verformung	tats.	olo	0,054	0,054	0 , 054	0 , 054
im 1. Zyklus	zul.	00	0,2	0,2	0,2	0,2
Wechseldehnung je	tats.	olo	0,1	0,1	0,1	0,1
Zyklus	zul.	9 0	1	1	1	1

Dabei sind zulässige und berechnete Dehnungen einander gegenübergestellt. Gemäß den Ergebnissen der Rechnung sollten die thermischen Spannungen allein noch keine Gefahr für die Hülle darstellen. Die zulässige Kriechaufweitung der Hülle wird bei einem Innendruck von 160 bar erreicht. Dies bedeutet, daß sich bei He-Bindung ein Schwelldruck von maximal 145 bar aufbauen darf.

4. Spezifikationen

Die Einhaltung der Spezifikationen wird durch Prüfprotokolle nachgewiesen.

4.1 Brennstoffspezifikation

-	Tablettendichte	92 % th.D.
-	Tablettendurchmesser	8,40 mm
	rad. Spalt	250 µm
-	Brennstofflänge	300 <u>+</u> 2 mm

-	Tablettenlänge	10 + 1 mm
-	Anreicherung	Pu/U+Pu = 15 % <u>+</u> 0,5
		U = Natururan
-	Isotopenzusammensetzung:	Pu-239 90,9 <u>+</u> 0,2 w/o
		Pu-240 8,15 <u>+</u> 0,15 w/o
		Pu-241 0,83 <u>+</u> 0,05 w/o
		Pu-242 0,04 <u>+</u> 0,01 w/o
-	Chemische Zusammensetzung	Produkt II 15 % M ₂ C ₃
-	Kohlenstoffäquivalent	$C + \frac{12}{16} O + \frac{12}{14} N$
		Produkt II 4,75 - 5,10 <u>+</u> 0,1 Gew%
-	Freier Kohlenstoff	O % (Leitfähigkeitsmessung)
	Grenze Analysengenauigkeit	≃ 500 ppm
-	U-Pu-Metall	0 %
	Grenze Analysengena u igkeit	(Metallografie)
-	MC ₂	0 %
	Grenze Analysengenauigkeit	(Metallografie)
_	Sauerstoffgehalt	(Gaschromatographie)
	Produkt II	< 4000 ppm
_	Stickstoffgehalt	(Gaschromatographie)
	Produkt II	< 500 ppm
-	Metall. Verunreinigungen	Total < 2000 ppm
	(ppm <u>+</u> 15 % rel.)	jedoch jedes Element < 500 ppm
	(Emissionsspektrographie)	Ausnahme Fe < 2000 ppm und
		Bor < 2 ppm
-	Boräquivalent	< 5 ppm
	Chlor- und Fluorgehalt	< je 20 ppm
-	U-Pu Homogenität	(α-Autoradiografie)
	Pu-Partikel	< 300 μm

4.2 <u>Hülle</u>

Die Rohre sollen nach einem einheitlichen Schema durchgehend numeriert werden. Für jedes Rohr wird ein Prüfzeugnis erstellt. Die Prüfzeugnisse des Herstellerwerkes müssen den Werksabnahmezeugnissen nach DIN 50049/3B entsprechen und von unabhängigen Sachverständigen ausgestellt werden.

Material:

X8NiMoVNb 1613 (Werkstoff Nr. 1.4988)

Herstellungsverfahren:

Das Material soll im Vakuum erschmolzen und umgeschmolzen werden. Chemische Zusammensetzung (Gew.-%):

-	Kohlenstoff	max. 0,1
-	Nickel	12,5 - 14,5
-	Chrom	15,5 - 17,5
-	Eisen	Rest
-	Molybdän	1,1 - 1,5
-	Niob	max. 10xC+0,4 %
-	Vanadin	0,60 - 0,85
	Mangan	1,0 - 1,5
-	Schwefel	max. 0,02
-	Silizium	0,3 - 0,6
	Bor	max. 20 ppm
-	Stickstoff	0,1 %

Abmessungen:

Außendurchmesser 10,0 \pm 0,03 mm oder \leq 0,5 % bzw. mit geeigneten pneumatischen oder mechanischen Verfahren kontinuierlich über die ganze Rohrlänge.

Innendurchmesser: $8,9 \pm 0,03$ mm oder $\leq 0,5$ %. Über die ganze Rohrlänge kontinuierlich mit pneumatischen, mechanischen oder elektromechanischen Verfahren.

Wanddicke: 0,55 + 0,03 mm

Ovalität: Innerhalb der Außendurchmessertoleranz.

Wanddicken-Exzentrizität: < 0,03 mm, bezogen auf die Wanddicke, Messungen in jeweils 30 cm Abstand mit dem Ultraschall-Vidigage-Verfahren. Geradheit: 1:1500, bezogen auf jeweils 30 cm Länge.

Oberflächenbeschaffenheit:

Rauhigkeit innen und außen: max. 2 μ m (R_V) Prüfung mit Perth-O-Meter (längs und quer).

Oberflächenriefen und Fehler: max. 20 µm oder kleiner 5 % der Wandstärke. Definition: Riefen > 10 mm lang; Fehler < 10 mm lang. Prüfung mit Ultraschall-Vidigage-Verfahren in Längs- und Querrichtung mit folgenden vorgegebenen Testfehlern:

Längsfehler:
$$\lambda = 10 \text{ mm}$$

 $\chi = 60^{\circ}$
Tiefe: 5 % der Wandstärke
Querfehler: umlaufend, innen und außen
 $\chi = 60^{\circ}$
Tiefe: 5 % der Wandstärke

Prüfgeschwindigkeit: Steigung der Prüfspirale ca. 1 - 2 mm, Drehzahl ca. 2 /sec.

- Oberflächenrisse: nicht zulässig Definition: Risse 10 % der Wandstärke

Prüfung mit Farbeindringverfahren, Diffutherm.

Oberflächenbeschaffenheit: Innere und äußere Oberfläche muß frei von Anlauffarben, Öl, Schmutz, Metallspänen und sonstigen Fremdkörpern sein. Prüfung mit geeigneten optischen Verfahren, z.B. ausgeleuchteter Großlupe bzw. Lichtschnittmikroskop.

Materialbedingungen

Vorbehandlung: 10 - 20 % kaltverformt - Wärmebehandlung Korngröße: Mindestens ASTM 7 entsprechend ASTM E 112-63

Mechanische Eigenschaften: Zugfestigkeit, Streckgrenze, Bruchdehnung, max. und min. Werte bei Raumtemperatur und 650 ^OC.

Spannungs- und Dehnungsdiagramm an mindestens 5 % der Rohre.

Innere Fehler: Kleiner 5 % der Wandstärke (Ultraschall-Vidigage). Einschlüsse: Kleiner 0,05 mm oder 10^{-3} mm². Mit Ultraschall- Vidigage-Verfahren bzw. metallographisch, entsprechend Methode A ASTM 45-63, Tabelle I, Class I. Abdrückversuch: nach DIN 50 104 mit \leq 100 bar Druck. Jedes Rohr wird mit Wasser auf \leq 100 bar Innendruck während zwei Minuten geprüft. Es dürfen keine bleibenden Verformungen auftreten. Querfaltversuch: Pro Rohr wird ein Stück von 25 mm geprüft. Die Prüfung und Begutachtung erfolgt nach DIN 50 136.

Aufweitversuch: Pro Rohr ein Versuch. Die Prüfung und Begutachtung erfolgt nach DIN 50 135.

4.3 Brennstab

Komponenten der Brennstäbe:

- Brennstoff:

Der Brennstoff aus (U,Pu) Mischkarbid-Sinterkörpern wurde vom TU-I in Form von fertiggelegten und vermessenen Brennstoffsäulen geliefert. Für jede Säule sind vom Hersteller Lage, Gewicht, Durchmesser und Höhe aller Tabletten sowie Länge und Gewicht der Säule zu messen und zu protokollieren. Der Brennstoff kann nur unter Schutzgas oder Vakuum gehandhabt werden.

Fertigung der Brennstäbe:

- Identifizierung:

Die fertigen Brennstäbe müssen den Angaben der Tabelle 1 unter 3.1 entsprechen.

Die Bezeichnung der Stäbe erfolgt an dafür vorgesehenen Flächen am unteren Endstopfen. Fertigungsbegleitkarten sollen angelegt werden. Die Nummern von Hülle und Brennstoffsäule sind für jeden Stab zu registrieren.

- Schweißen:

Alle Schweißungen sind nach dem neuesten Stand der Technik auszuführen. Die Schweißnähte sollen im Durchmesser nicht mehr als 0,2 mm erhöht sein. Die Zusammensetzung des Schutzgases ist anzugeben.

Qualifikationsschweißungen:

In Vorversuchen ist festzulegen, ob unter Helium oder Argon geschweißt wird. In einer Versuchsreihe sind optimale Schweißnahtformen zu ermitteln. Zwecks Optimierung und zur Aufstellung einer Standardreihe sind die Schweißnähte röntgenografisch, nach dem Farbeindringverfahren und metallografisch zu untersuchen. Die Schweißparameter aller Schweißungen sind zu registrieren.

- Produktionsschweißungen:

Die Schweißparameter aller Schweißungen sind zu registrieren. Eventuelle Unregelmäßigkeiten sind gesondert auszuweisen.

- Gasfüllung:

Die gefüllten Brennstäbe sind unter leichtem Überdruck (800 -850 Torr) mit trockenem 99,995 % He zu fluten. Im fertigen Brennstab soll der Edelgasgehalt 95 % betragen.

5. Herstellung

5.1 Brennstoff

Der Brennstoff wurde beim TU-I hergestellt /5/. Die Herstellung geschah in Handschuhkästen unter Argon-Atmosphäre für das Produkt II. Die Analysenwerte sind in Tabelle 3 zu finden.

Tabelle 3: Analysendaten des Brennstofftyps D

Reaktions-Produkt: O(Gew%)	0,45
Gesinterte Tabletten	
Sinteratmosphäre	Vakuum
Chargen Nr.	C32-3.8
Pu/U+Pu	0,152
C (Gew%)	4,65 - 4,73
0 (" ")	0,25 - 0,45
N (" ")	0,05
Röntgen-Analyse (Hauptphase MC)	14 % M ₂ C ₃
Tablettendichte (% th.D.)	92,1

Die Analysenwerte der metallischen Verunreinigungen der Charge C32-3.8 sind in der nachfolgenden Tabelle 4 aufgeführt. Stichprobenmessungen betr. des F- und Cl-Gehaltes an einigen Proben erbrachten das folgende Ergebnis:

> Cl < 5 ppm ; F = 4 bis 6 ppm

Tabollo 1.	Motallische	
Labelle 4:	Melallische	

ische Verunreinigungen des Brennstoffs

(ppm)	
Element	Charge Nr. C32-3.8
Cđ	< 0,2
Al	< 5
В	< 0,2
Si	10
Fe	20
Mg	5
Mn	< 2
Pb	< 1
W	< 5
Cr	< 5
Ni	< 2
Bi	< 1
Мо	< 1
Sn	< 2
V	< 1
Ag	0,2
Zn	< 50

5.2 Brennstab

Die Stabfertigung erfolgte bei der Firma ALKEM /6/. In Tabelle 5 werden die wichtigsten Herstellungsdaten der 3 Brennstäbe der Versuchsgruppe 6d wiedergegeben.

KVE	Stab Nr.	Charge Nr.	Säulen Nr.	Brennstoff- säulenlänge (mm)	Brennstoff- gewicht (g)	Tabletten- dichte (% th.D.)	Tabletten- durchm. (mm)
127	6D2	ω	425/2	300,12	208,631	92,1	8,40
128	6D3	2-3.	425/3	300,58	20 8, 838	92,1	8,40
130	6D1	C3	425/1	300,38	208,886	92,1	8,40

Tabelle 5: Herstellungsdaten der Brennstäbe der Versuchsgruppe 6d

Abb. 1 zeigt den Aufbau des Brennstabs.

6. Bestrahlungseinrichtung

Die Bestrahlung der Prüflinge wird in einwandigen NaK-Kapseln durchgeführt. Diese Kapseln zeigen den in Abb. 2 dargestellten Aufbau. Sie setzten sich aus drei Baueinheiten zusammen: Der Bestrahlungskapsel, dem Oberteil und der Kühlwasserführung. Die Bestrahlungskapsel besteht aus einem nahtlos gezogenen Rohr aus einer hochwarmfesten Niob-Legierung mit 1 % Zr. Diese Niob-Kapsel ist mit der eutektischen Na-78-K-Legierung gefüllt. Im NaK-Raum befindet sich ein Zwischenrohr aus derselben Nb-Legierung, um einmal den gewünschten Kapseldurchmesser einstellen zu können und zum anderen eine nennenswerte Konvektion im NaK-Spalt zu vermeiden. Das Zwischenrohr ist innen glatt, so daß aufsteigende Gasblasen möglichst nicht haften bleiben und später im Betrieb einen "burnout" verursachen können.

Maximal 6 Thermoelemente, die direkt auf die Hülle aufgeheftet sind, dienen zur Messung der Hülltemperatur in jeder Kapsel. Sie sind in den oberen Endstopfen hart eingelötet. Die Bestimmung der Stableistung und der Hülloberflächentemperaturen erfolgt über die kapselspezifische Temperaturstableistungscharakteristik (Abb. 3). In der Abb. 4 ist der Vollständigkeit halber der radiale Temperaturverlauf für eine Stableistung von 1150 W/cm dargestellt.

7. Ablauf der Bestrahlung

7.1 Reaktorzyklen und Neutronenfluß

Die Bestrahlung der Prüflinge der Versuchsgruppe 6d begann mit Einbau der KVE 127 und 128 am 13.5.1974 in Zyklus C/74 und endete mit dem Ausbau des KVE 130 nach Zyklus A/77 am 14.3.1977. In Tabelle 6 sind die wesentlichen Informationen über die relevanten Zyklen sowie die mittleren Neutronenflüsse in den jeweiligen Bestrahlungspositionen zusammengestellt. Neben der Zahl der Vollasttage sind die der Schnellschlüsse und Abschaltungen für alle Zyklen im einzelnen aufgeführt. Des weiteren sind in Tabelle 6 die betreffenden Bestrahlungspositionen zu finden. Die Lage der Kapselversuchseinsätze im FR 2-Core geht aus der Positionskarte des FR 2 (Abb. 5) hervor.

7.2 Temperatur und Stableistung

Wie in Abschnitt 6 näher beschrieben wird die Hülltemperatur durch 6 Thermoelemente bestimmt. Diese Thermoelemente sind zwar direkt auf die Hülle aufgeheftet, aufgrund ihrer endlichen Dicke messen sie aber nicht die Hüllaußentemperatur. Diese Größe kann aber über die kapselspezifische Temperatur-Stableistungscharakteristik aus der Meßtemperatur gewonnen werden (siehe Abb. 3), desgleichen auch die Stableistung /7/. Die Verteilung der Thermoelement-Meßstellen über die Stablänge ist der Stabzeichnung (Abb. 1) zu entnehmen.

Als entscheidendes Ergebnis der Meßwert-Auswertung sind die zeitlichen Verläufe der Hülloberflächentemperatur in den Abb. 6 bis 16 aufgetragen. In den Tabellen 7 bis 9 sind die aus einer linearen Approximation gewonnenen Werte für Stableistung und Hülltemperatur zu Beginn und Ende eines jeden Zyklus sowie für den Abbrand dargestellt. Aufgrund des sägezahnartigen Betriebsverlaufes sind dies die wesentlichen Kennwerte für eine modelltheoretische Auswertung. Die Stableistungen lagen etwa zwischen 800 und 1100 W/cm und die Hüllaußentemperaturen zwischen 450 und 600 ^OC, womit ein Bereich überstrichen wurde, der für ein Karbid-Brennelement repräsentativ ist.

Tabelle 6:Bestrahlungspositionen der Kapselversuchsgruppe 6d mit den jeweiligen mittleren Flüssen $\overline{\phi}$ (10¹³ n/cm²sec)

Jahr		:	197	4						197	5						197	6		1977
Zyklus	С	D	Е	F	G	A	в	С	D	Е	F	G	A	в	С	D	E	F	G	А
Vollast- tage	50,2	0	45,5	45	45,5	38,3	45,3	44,3	0	44,4	44,6	44,6	45 , 4	37,4	42 , 3	· 0	42,9	42,1	30,1	42,3
ss ⁺⁾	3	a.	0	4	0	2	1	2	0	1	1	2	0	3	2	a.	4	3	3	2
А	6	Betr	0	3	1	ο	0	2	0	2	1	1	1	2	2	Betr.	1	4	4	1
KVE 127	49	-	49	53	53	53	53	53	_	45	45	45	45	45	45					
	5	-	5	11	11	11	11	11	-	23	23	23	23	23	23					
φ	3,15		4,66	7,62	7,14	7,05	7,40	8,15		8,44	8,78	7,62	8,01	7,80	9,04					
KVE 128	37	_	37	57	41	53	49	49	-	49	49	49	49	49	49	0	49	49		
	11	-	11	11	31	23	23	23	_	23	23	23	23	23	23	0	23	23		
$\overline{\Phi}$	3,33		4,71	6,19	8,55	8,20	9,07	9,31		8,98	9,35	8,37	8,61	8,41	9,39		8,46	8,63		
KVE 130			41	41	41	57	57	57	_	57	53	53	53	53	53	0	53	53	53	53
			31	31	31	23	23	23	-	23	11	23	23	23	23	0	23	23	23	23
$\overline{\Phi}$			6,05	6,25	6,09	6,90	6,80	7,64		6,51	7,12	7,42	7,92	7,70	8,78		7,85	8,09	7,91	8,12

+) SS = Schnellschluß; A = Abschaltung

Ja	Jahr 197 4					1975							1976						1977			
ZY	klu	ıs	С	D	Е	F	G	A	в	с	D	E	F	G	А	в	с	D	Е	F	G	A
Prüf- ling	TE- Nr.	Stabl. (W/cm)																				
	5	X _A X _E	693 654	-	712 595	1028 880	981 893	965 882	903 .815	916 821	-	1032 844	1025 813	803 707	745 693	768 717	794 717					
-	6	X _A X _E	857 668	-	747 641	1035 907	982 897	961 884	888 812	894 814	-	972 813	959 786	744 697	700 685	734 707	787, 731					
5-0	7	X _A X _E	779 720	-	730 629	1018 972	981 974	990 971	924 878	952 904	-	1040 934	1095 861	788 755	737 730	740 739	809 787					
6D2	8	X _A X _E	579 692	-	667 604	932 875	863 863	854 832	802 778	824 801	-	871 851	958 847	743 728	634 662	717 741	803 803					
	9	X _A X _E	732 671	-	670 593	1020 944	917 909	944 953	860 846	846 813	-	893 827	921 813	691 678	688 716	665 692	755 763					
	10	X _A X _E	698 598		635 575	872 962	866 924	857 825	813 802	841 814	-	905 777	886 758	684 678	602 639	649 677	740 757					
	5	X _A X _E	566 586	- -	607 531	832 733	1107 923	943 826	962 848	941 783	-	942 790	953 784	807 731	757 712	788 734	859 758	-	732 634	734 622		
	6	X _A X _E	612 688		627 534	820 719	1039 885	904 810	929 839	913 773	-	902 773	'915 758	757 702	708 662	712 679	778 695	-	650 571	652 554		
	7	X _A X _E	548 598	-	619 556	831 793	1076 952	921 853	939 885	938 823		917 812	933 824	803 757	736 .717	745 734	830 779	-	716 659	736 640		
6D3	8	X _A X _E	745 695	-	653 592	781 721	1040 961	966 948	962 926	965 859	-	928 837	949 798	742 725	667 669	670 669	733 700	-	625 578	632 565	i	
	9	X _A X _E	552 529	-	523 474	787 779	979 921	861 830	858 867	906 827		885 803	903 730	688 684	634 644	638 644	718 700	-	617 570	624 557		
	10	X _A X _E	735 650	-	572 503	729 704	1048 956	937 909	941 917	952 858	-	920 845	949 818	768 746	694 704	706 713	776 745	-	660 616	668 604		
	5	X _A X _E	-	-	1028 833	1063 866	1102 894	979 856	888 803	961 839	-	896 780	894 694	806 733	743 675	679 615	739 635	-	632 586	673 598	642 580	641 591
	6	× _A		- -	900 709	912 745	936 784	831 758	772 736	8 75 787	-	822 71 3	809 681	765 723	703 645	686 640	730 636	-	603 579	642 573	602 547	596 557
	7	X _A X _E		-	924 _. 758	937 800	959 837	860 816	798 788	915 847	-	831 750	871 716	755 769	739 714	742 708	805 722	-	670 663	712 651	651 617	645 635
6D1	8	X _A X _E	-		873 792	928 800	927 815	817 789	723 741	839 794		741 690	783 669	719 712	661 660	662 664	736 674	-	612 614	646 596	588 560	581 575
	9	X _A X _E	- -	- - -	766 728	879 753	872 811	806 787	717 730	800 789		745 697	744 657	705 713	645 627	648 633	730 667	-	595 600	628 584	572 554	573 570
	10	X _A X _E	-	- -	81 2 723	842 730	843 725	673 638	607 624	723 688		620 574	704 538	625 622	577 628	622 63 3	685 635	-	577 581	624 590	578 558	577 569

Tabelle 7: Stableistung der Prüflinge am Anfang und Ende des Zyklus für jedes TE der Vg. 6d

 $\chi_{A} = \chi_{Anfang}$; $\chi_{E} = Ende$

Jah	Jahr 1974								19	75		,				19	76			1977		
Zyk	lu	s	С	D	Е	F	G	A	в	с	D	Е	F	G	A	в	с	D	Е	F	G	A
Prüf- ling	TE- Nr.	Temp. ^O C																				
	5	T _A T _E	408 389	-	418 360	574 501	551 507	543 502	512 469	519 472	-	576 483	573 468	463 415	435 409	446 420	459 421					
	6	T _A T _E	490 397	-	435 383	577 514	551 509	541 503	505 467	509 468	-	546 468	540 455	434 411	412 405	429 416	455 427					
6D2	7	T _A T _E	451 422	-	427 377	569 546	551 547	555 546	522 500	536 512	-	580 528	607 491	456 439	431 427	432 431	466 455					
	8	T _A T _E	352 408	-	396 365	526 499	492 493	488 477	462 450	473 462	-	496 487	540 484	433 426	379 393	421 432	463 463					
	9	T _A T _E	428 398	-	397 360	570 532	519 515	533 537	491 484	484 468	-	507 475	521 468	408 401	406 420	395 408	439 443					
	10	т _а т _Е	411 362	-	380 350	497 541	494 523	489 474	468 463	482 469	1	513 450	504 441	404 401	364 382	387 401	432 440					
	5	T _A T _E	346 356	-	367 329	477 428	613 522	532 474	541 485	531 453	-	531 457	537 454	465 427	440 418	456 429	490 440	-	427 379	429 374		
	6	TA T _E	369 406	-	376 330	472 421	579 503	513 466	525 481	517 448	1 1	512 448	518 441	440 413	416 393	418 402	450 410	-	387 349	389 340		
	7	T _A T _E	337 362	-	372 341	477 458	597 537	521 487	530 503	530 473	-	519 467	527 473	463 440	430 421	434 429	476 451	-	420 392	430 383		
6D3	8	T _A T _E	434 410	-	389 359	452 422	580 540	543 534	541 524	543 491	-	525 480	535 460	433 424	396 397	397 397	428 412	-	375 352	379 346		
	9	T _A T _E	339 328	-	3 25 301	455 451	550 521	492 476	490 494	514 475	-	503 463	512 427	406 404	380 385	382 384	421 412	-	371 348	375 342		
	10	T _A T _E	429 388	-	349 315	427 414	584 538	529 520	531 519	536 490	-	521 484	535 471	445 435	409 414	415 419	450 434		392 371	396 365		
	5	T _A T _E	-	-	574 478	591 494	610 508	550 489	505 463	541 481	-	509 452	508 409	464 428	433 400	402 370	431 380	-	379 356	399 362	383 353	383 358
	6	T _A T _E	-	-	511 417	517 434	528 454	476 441	448 430	499 455	-	472 419	466 403	444 423	413 385	405 383	427 380	-	365 352	383 350	364 337	361 342
	7	T _A T _E	-	-	523 441	529 461	540 480	491 469	460 456	518 485	-	477 437	496 420	439 446	432 419	433 416	464 423	-	397 394	418 388	388 371	385 380
6D1	8	T A T _E	-	-	497 457	524 461	524 469	470 456	423 432	481 458	-	432 407	453 397	421 418	393 393	393 394	430 399		369 369	385 361	357 343	354 350
	9	T _A T _E	-	·	445 426	500 438	497 467	464 455	421 427	462 456	-	434	434 391	414 419	385 376	386 379	427 396	-	360 363	377 355	349 340	350 348
	10	T _A T _E			468 424	482 427	482 424	399 382	366 374	423 406		373 350	414 332	375 374	352 377	374 379	405 380	-	352 354	374 358	352 342	352 347

Tabelle 8: Anfangs- und Endtemperatur der Prüflinge an der Hüllaußenwand für jedes TE der Vg. 6d

 $T_A = T_{Anfang}; T_E = T_{Ende}$

.

Jahı	c			19	74		-		1 :	975						1	976	-			1977]
Zykl	lus	С	D	Е	F	G	А	В	с	D	E	F	G	A	В	C.	D	E	F	G	A		
Prüf-	TE-																					Ages	1
ling	Nr.																					5	
	5	5,10	0	4,49	6 , 48	6 , 43	5 , 34	5 , 87	5,81	0	6,29	6,19	5,09	4,93	4,19	4,83						71,05]
	6	5 , 77	0	4,77	6,60	6,45	5 , 34	5,81	5 , 71	0	5,99	5 , 88	4,86	4,75	4 , 07	4 , 85						70 , 84	
670	7	5,68	0	4 , 67	6 , 76	6 , 72	5 , 67	6,16	6,21	0	6,63	6 , 59	5,20	5,04	4,18	5,10						74 , 59	
6D2	8	4,82	0	4,37	6 , 14	5 , 93	4,88	5,40	5 , 44	0	5 , 78	6,08	4,96	4,44	4,12	5,13						67 , 48	
	9	5,31	0	4,34	6 , 67	6 , 27	5 , 49	5 , 83	5 , 55	0	5,77	5 , 84	4,62	4,82	3,83	4 , 85						69,20	1
	10	4,90	0	4,16	6 , 24	6,15	4 , 87	5 , 52	5 , 54	0	5 , 64	5,54	4,59	4,26	3 , 75	4 , 78					-	65 , 93	18
	5	4,36	0	3,92	5 , 32	6 , 97	5,12	6,19	5 , 77	0	5,81	5 , 85	5,18	5,04	4,30	4,16	0	4,43	4,31			77 , 73]
	6	4,93	0 <u>.</u>	3,99	5,23	6 , 61	4,96	6,05	5 , 64	0	5,62	5 , 64	4,92	4,70	3,93	4 , 70	0	3,96	3,84			74 , 70	
	7	4,34	0	4,04	5 , 52	6,96	5,13	6 , 23	5 , 89	0	5,80	5,92	5 , 26	4,99	4,18	5 , 14	0	4,46	4,38			78 , 25	
6D3	8	5,45	0	4 , 28	5 , 10	6 , 87	5 , 54	6 , 46	6,10	0	5 , 93	5 , 89	4,95	4,59	3,78	4 , 58	0	3,90	3,81			77,22	
	9	4,10	0	3,43	5 , 33	6 , 53	4,89	5 , 90	5 , 80	0	5,66	5 , 50	4,63	4,39	3 , 62	4 , 53	0	3,85	3,76			71,91	
	10	5,24	0	3,69	4 , 87	6,88	5,34	6,35	6,06	0	5 , 92	5,96	5,10	4,80	4,01	4 , 86	0	4,14	4,04			77 , 28	
	5	-	-	6,40	6,56	6,86	5,31	5 , 78	6,03	0	5,63	5,35	5,19	4,87	3,66	4,39	0	3,95	4,04	2 , 78	3,94	80,74]
-	6	-	_	5 , 53	5 , 63	5 , 91	4,60	5,16	5 , 57	ο	5,15	5 , 02	5,02	4,63	3,75	4,36	0	3,84	3,87	2,62	3,69	74 , 34	
	7	-		5 , 79	5,91	6,17	4,85	5,43	5,90	0	5,31	5 , 35	5,14	4,99	4,10	4,88	0	4,33	4,34	2,88	4,10	79 , 47	
6D1	8	-	-	5 , 73	5 , 87	5 , 98	4,65	5,01	5,47	0	4,81	4,90	4,83	4,54	3 , 75	4,51	0	3,98	3,95	2,61	3,70	74 , 27	
	9	-	-	5,14	5 , 55	5, 78	4,61	4 , 95	5 , 32	ο	4,84	4,72	4,78	4,37	3,62	4,47	0	3,88	3,86	2,56	3 , 66	72,12	
	10	-	–	5 , 28	5,35	5 , 39	3,80	4,21	4,73	0	4,01	4,19	4,21	4,14	3 , 55	4,22	0	3,76	3,86	2,59	3 , 67	66 , 94	

Tabelle ⁹: Lokaler Abbrand A (MWd/kg M) für jedes TE und Zyklus der Vg. 6d

8. Zerstörungsfreie Nachuntersuchung

8.1 Äußere Vermessung

Die Stabdurchmesser wurden vor und nach der Bestrahlung mittels sog. Wendelschrieben aufgezeichnet. Hierbei wird ein Tastkopf mit induktivem Wegaufnehmer mit einem Vorschub von 5 mm/Umdrehung an dem rotierenden Prüfling vorbeigeführt. Der Meßschneidenradius beträgt 0,6 mm. Es können so Durchmesserveränderungen bis zu<u>+</u>1 µm genau angezeigt werden. In den Abb. 17 bis 19 werden die prozentualen Durchmesserveränderungen der Stäbe 6D1, 6D2 und 6D3 wiedergegeben. Wie man den Abbildungen entnehmen kann, traten recht beachtliche Durchmesserveränderungen von 5 bis 6 % infolge Brennstoffschwellens auf. Stab 6D1 war an 2 Stellen beim Entnehmen aus der Kapsel gebrochen. Alle Stäbe hatten starke Hüllschäden in Form von Rissen (s. Tabelle 10). Erstaunlich bleibt die Tatsache, daß aus den TE-Verläufen während der Bestrahlung nicht auf einen Stabschaden (ebenfalls nicht auf den Zeitpunkt!) geschlossen werden konnte.

Tabelle 10: Rißlängen der 3 Stäbe

KVE/	Anzahl der	Risse für eine	Rißlänge von	Bemerkungen
Stab	<20 mm	>30 mm	>50 mm	Demotivangen
127/D2	8	2	2	
128/D3	4	4	1	
130/D1	2	4	2	bei Demontage an 2 Stellen gebrochen

In den Abb. 20 bis 22 werden die Hüllrisse dokumentiert. Die Form der Hüllanrisse läßt auf eine stärkere plastische Verformung schließen. Die Durchleuchtung der 3 Stäbe wurde wegen der höheren Schwermetalldichte im Vergleich zu oxidischen Brennelementen mittels eines Betatrons vorgenommen. Das Betatron bedient sich einer 18 MeV-Bremsstrahlung, die auch Brennstäbe hoher Brennstoffdichte durchdringt. Es können so die Abkühlrisse und Tablettenstöße (s. Abb. 23 bis 26) gut sichtbar gemacht werden. Infolge der moderaten Stableistung von ca. 766 W/cm kam es zu keinen größeren Porositätsansammlungen im Stabinnern.

8.3 γ -Profile

Zur Charakterisierung der Brennstoffsäulen hinsichtlich der Rißstruktur, des axialen Leistungsverlaufes der Brennstoffverlagerung und der Spaltproduktwanderung wurden die Prüflinge γ-spektrometrisch untersucht. In dieser Untersuchung wurden die γ-Aktivität entlang der Stabachse als γ-Profil erstellt. Als Detektor diente hierzu ein Halbleiterkristall (GeLi) mit nachgeschaltetem 2000-Kanal-Analysator. Profile und Spektren wurden mit einem schlitzförmigen Kollimator mit den Maßen 0,5 mm x 20 mm x 700 mm durch die Abschirmwand der Heißen Zellen aufgenommen.

Infolge der langen Abklingzeiten von 849 d bis 1094 d konnten neben einem integralen γ -Scan nur noch die axialen γ -Profile des Cs-137 und Ru-106 aufgenommen werden (Abb. 27 bis 29).

Gut sichtbar sind die Tablettenstöße der Stäbe (Aktivitäts-Senken) 6D2 und 6D3 anhand der Cs-137-Profile, während beim gebrochenen Stab 6D1 der Cs-137-Scan sich wesentlich mehr geglättet darstellt. Offensichtlich ist hier ein größerer Betrag des Spalt-Cäsiums vom eindringenden Na herausgelöst worden.

9. Zerstörende Nachuntersuchung

9.1 Spaltgase

Da die 3 Prüflinge während der Bestrahlung Hüllrisse erlitten, konnten keine freigesetzten Spaltgase ($V_{\rm p}$) gemessen werden.

Die sog. gebundenen Gase, bestehend aus Porengas (V_p) und Gitterspaltgas (V_G), wurden nach der bewährten Methode / 1 / an kleinen Brennstoffproben von ca. 5 g Gewicht ermittelt und dann unter Berücksichtigung des Abbrandprofils auf den gesamten Spaltstoffgehalt hochgerechnet.

Tabelle 11 gibt die Messung der Porengase und Gittergase wieder.

Prüf- ling	Abbrand gerechnet	Poreng	as (cm	³)	Gitterg	as (cm ³)	Gesamtgas gerechnet
	(MWd/kg Me)	Xe	Kr	Σ	Xe	Kr	Σ	(cm ³)
D1	74,67	53 , 30	3,11	56 , 41	355,12	20,21	375 , 33	414 (431)
D2	69,87	73 , 84	4,36	78 , 20	221,69	12,67	234,36	410
D3	76,21	84,49	4,68	89,17	278 , 72	15,25	29 3, 97	423

Tabelle 11: Gebundene Spaltgase (cm³)

() gemessen = $\Sigma V_{G} + V_{P}$

Auffallend an Tabelle 11 sind die verhältnismäßig hohen Gittergasanteile, die bisher an Karbidprüflingen noch nicht beobachtet wurden. Es muß weiteren Experimenten vorbehalten bleiben, zu klären, ob dies mit den hochdichten Karbidpellets (~ 92 % th.D.)korreliert werden muß.

In Tabelle 12 sind die Kr/Xe-Verhältnisse und die spezifischen Spaltgaswerte nochmals aufgeführt.

Tabelle 12:	Kr/Xe-Verhältnisse	und spez.	Spaltgaswerte
	•	<u> </u>	

Prüfling	$V_{\rm P} (\rm cm^3/g)$	Kr/Xe	V _G (cm ³ /g)	Kr/Xe
D1	0,27	1:17,1	1,80	1:17,6
D2	0,37	1:16,9	1,12	1:17,5
D3	0,43	1:18,0	1,41	1:18,3

Die Kr/Xe-Werte zeigen den gewohnten Wert von ca. 1:17, der bereits in früheren Experimenten für thermische Bestrahlung gefunden und erklärt werden konnte / 8 /.

9.2 Keramografie

Es wurden pro Prüfling 3 bzw. 4 Querschliffe angefertigt (s. Anhang I). Bei einigen Prüflingen mit sichtbarem Hüllinnenangriff wurden die Hüllrohre geätzt und anschließend ein Mikrohärteprofil (MHV 50) über die Hüllwandstärke aufgenommen. In den Abb. 30 bis 36 werden diese Bilder wiedergegeben. Die Aufkarburierungstiefen werden mit der Hüllinnentemperatur in der nachfolgenden Tabelle 13 verglichen. Wie man der Abb. 11 entnehmen kann, hat eine nennenswerte Aufkarburierung nur bei Prüfling D2 stattgefunden. Letzteres bestätigt die schon im KfK 2577 festgehaltene Erkenntnis, daß eine nennenswerte Reaktion der Hülle mit dem Karbidbrennstoff erst ab Temperaturen größer 600 ^OC auftritt.

Tabelle 13	: Mikrohärten	der	Stäbe	der	Vg.	6d
------------	---------------	-----	-------	-----	-----	----

KVE Nr./Prüfl.	Stand- zeit (d)	т _{на} (°с)	Τ _{Hi} ([°] C)	MHV ₅ außen/innen (kp/mm ²)	Aufkarb tiefe t (%)	Lokale Stabl.χ (W/cm)	Gesamt- abbrand (Mwd/kg M)
127/D2	573	492	572	330/800 270/400	36-50	862	69,8
128/D3	658	455	528	300/400	11	788	76,2
130/D1	680	421	488	450/700	39	718	74,2

Im Anhang I werden die keramografischen Schliffe der 3 Prüflinge wiedergegeben.

Schon bei den Übersichtsaufnahmen ist die starke Verdichtung der hüllnahen Bereiche zu erkennen. Die β/γ -Autoradiografien zeigen die starke Flußabsenkung im thermischen Fluß; diese Isotherme ist

häufig identisch mit konzentrischen Pu-Anreicherungen (siehe a-Autoradiografie).Bei Prüfling D1 zeigt sich bei Schliff 3 ein exzentrischer Zentralkanal, weiterhin fällt bei dieser Probe der mit losen Karbidpartikeln aufgefüllte Spalt zwischen Hülle und Brennstoff auf. Die an einigen Stellen der Querschliffe angefertigten Panoramaaufnahmen zeigen sehr gut den Weg der Spaltgasporen im Brennstoff. Einige Querschliffe dieser Serie wurden quantitativ hinsichtlich ihrer radialen Porenverteilung untersucht. Abb. 37 zeigt für die 3 Prüflinge die gemessenen radialen Porositätsprofile. Die Pelletdichte vor der Bestrahlung betrug 92 % th.D., der diametrale Spalt 500 $\mu\text{m},$ die Schmierdichte somit 82 % th.D. Da bei allen 3 Prüflingen der Spalt durch Brennstoffschwellen voll aufgebraucht ist, sollte der Wert 1 - P wieder die Schmierdichte ergeben. Die für die 3 Prüflinge ermittelten Werte lauten wie folgt: 84,3 - 75,8 - 80,4 % th.D. Unter Berücksichtigung einer gemessenen Hüllrohraufweitung von 2,5% ergibt sich eine Soll-Schmierdichte von 78,6 % th.D. oder eine gemittelte Porosität von 21,4 %. Der Vergleich mit den gemessenen Werten zeigt, daß dies für die Prüflinge D2 und D3 in etwa zutrifft. Prüfling D1 zeigt hingegen eindeutig eine Erhöhung der mittleren Schmierdichte um ca. 5 %, was nur durch einen axialen Brennstofftransport erklärbar ist.

Generell ist bei den Prüflingen D2 und D3 in der Außenzone eine Erhöhung der Dichte auf ca. 95 % th.D. feststellbar, bei r/2 und r = 0 kann man eine Abnahme derselben auf ca. 70 % feststellen. Eine Ausnahme stellt hier der kältere Stab D1 ($T_{HA} = 405^{\circ}C$) dar, bei dem das Profil von 15 % außen, 80 % Mitte, auf 70 % innen variiert. Die entsprechenden Querschliffe, an denen die Porosität mittels Quantimet gemessen wurde, sind in den Abbildungen im Anhang I dargestellt.

10. Diskussion der Ergebnisse

Die Bestrahlung der 3 Mischkarbidstäbe mit hoher Tablettendichte und großem Diametralspalt zeigte eindeutig, daß es bei Stableistungen von 800 - 1000 W/cm nicht genügt, einen größeren Spalt zwischen Hülle und Tablette vorzusehen, um schadenfrei hohe Abbrände erzielen zu können. Bei Schmierdichten von größer gleich 80 % th.D. sind im betroffenen Stableistungsbereich moderate Tablettendichten (85 % th.D.) besser geeignet, das Karbidschwellen bis zu Abbränden von 7 bis 8 at % aufzufangen. Ein Konzept mit hochdichtem Tablettenbrennstoff ist nur brauchbar, wenn man mit der Schmierdichte deutlich unter 80 % th.D. geht, was allerdings zu extrem großen Fertigungsspalten Brennstoff/Hülle führt /9/.

Es muß bei der vorliegenden Bestrahlung berücksichtigt werden, daß es sich um eine rein thermische Bestrahlung handelte. Mit Hilfe der β/γ -Autoradiographien ist leicht feststellbar, daß die Spaltungen überwiegend im äußeren Drittel des Brennstabquerschnitts auftreten. Es ist denkbar, daß bei Bestrahlung mit schnellen Neutronen infolge der Ausnutzung der gesamten Querschnittsfläche zur Spaltung das Stabverhalten verbessert würde.

Danksagung

Wir danken Herrn Dr. Steiner für einige anregende Diskussionen und Fr. Hauth für die Reinschrift des Manuskriptes.

Literatur:

- /1/ H. Steiner, P. Weimar: Auslegung, Bestrahlung und Nachuntersuchung der (U,Pu)C-Prüflinge der Kapselversuchsgruppen 6a und 6c, KfK-Bericht Nr. 2577 (1978)
- /2/ A. Gerken: unveröffentlichte Ergebnisse
- /3/ M. Guyette: CRASH, Computer-program for the analysis of creep and plasticity in fuel pin sheets, KfK-Bericht Nr. 1050 (1969)
- /4/ K.D. Cloß: unveröffentlichte Ergebnisse
- /5/ G. Kramer, et al.: unveröffentlichte Ergebnisse
- /6/ H. Seidel: unveröffentlichte Ergebnisse
- /7/ M. Heck: unveröffentlichte Ergebnisse
- /8/ H. Zimmermann: Spaltgasverhalten in Oxid-Brennstäben für Schnelle Brüter, KfK-Bericht Nr. 2057 (1975)
- /9/ H. Steiner: Die Bestrahlungserfahrungen mit Karbidbrennstäben im Rahmen des KfK-Karbid-Bestrahlungsprogramms, Reaktortagung Berlin (1980)

.

Brennstababmessungen der Versuchsgruppe 6D

Abb. 1

Typ 7

FR2-Kapselversuchseinsatz für die Versuchsgruppe 6D

АЬЬ. 2

Abb. 4 Temperaturverlauf innerhalb der Bestrahlungskapsel vom Typ 7 (Stableistung $\chi = 1150$ W/cm)

- Drimm Abschaltstab
- 🔕 Feinregelstab
- 🔲 Isotopenkanal-Position
- zu Flußmessungen benutzte Isotopenkanal-Positionen

<u>Abb. 5:</u> Positionskarte FR 2 – Core

.....

Bestrahlungszeit	[Voilasttage] -	
------------------	-----------------	--

Thermoelement Nr.	5	6	7	8	9	10
Zeichen	0		\diamond	+	×	8

Bestrahlungszeit [Voilasttage] —

Thermoelement	Nr.	5	6	7	8	9	10
Zeichen		0		\diamond	+	×	8

30°

Schnittplan und Orientierung der Hüllrisse Stab Nr. 6D1

0 °

1

120°

120°

Stab Nr. 6D2 Schnittplan und Orientierung der Hüllrisse

40 °

340°

310°

Stab Nr. 6D3 Schnittplan und Orientierung der Hüllrisse

90° Betatron-Durchleuchtung von Stab 6D1

АЬЬ. 24

Betatron-Durchleuchtung von Stab 6D2

Betatron-Durchleuchtung von Stab 6D 3

 $\gamma\text{-}Profile$ von Prüfling 6D.1

Y-Profile von Prüfling 6D.2

KERNFORSCH	HUNGSZENTF	RUM KARLSRUHE	GMBH	HEISSE ZE	ELLEN	
DATUM:	6.11.79	UNTERSCHRIF	T: Huf	Blatt:	von:	
PROJEKT	3в	KVE	130	6D.1	2	
Mi Pr Pr	krohärteprü ojekt Nr.: üflast: 490	fung n. Vickers HZ N (50 p) Härteprofil:	außen – innn 453 MHV 50 386	en		
			321 303 280 277 271 293		,	
			293 280 280 340 441 584 603			
		ðullf för at stander og skiller som	593 666 701 ◆	а а	-	
		HZ-3B-KVE 130-	•6D.1-2/12 200	Dx geätzt	μm(
				At	ob. 30	

KERNFORSCHUNGSZENTRUM KARLSRUHE	GMBH, HEISSE ZELLEN
DATUM: 6.11.79 UNTERSCHRIF	T: Helf Blatt: von:
PROJEKT 3B KVE 1	27 $\frac{7}{$
Mikrohärteprüfung n. Vickers Projekt Nr.: HZ Prüflast: 490 N (50 p)	
Härteprofil:	außen - innen
	376 мну 50
	271
	257
	254
	257
	268
	310
	332
	435 Foo
	509
	603
	633
	677
	689
	713
	713
	701

KERNFORSCH	IUNGSZENTR	UM KARLSRUHE GM	BH	HEISSE ZEL	LEN
DATUM:	6.11.79	UNTERSCHRIFT:	totaf	Blatt:	von:
PROJEKT	3в	KVE 127	<u> </u>		- 1
Mi Pro Pro	krohärteprüf ojekt Nr.: üflast: 490	ung n. Vickers HZ N (50 p)			

Härteprofil außen - innen

50

332	MHV
257	
236	
236	-
236	
244	
249	
257	
265	
299	
303	
332	
362	
441	
501	
666	
713	
795	

HZ-3B-KVE 127-6D.2-1/14 200x geätzt 100 μm

KERNFORSCHU	JNGSZENTR	UM KARLSRUHE	GMBH	HEIS	se zeli	_EN
DATUM:	6.11.79	UNTERSCHRIF	T: All	Bla	tt:	von:
PROJEKT	3в	KVE 12	7	6D.2		2
Mikro Proj Prüf	ohärteprüfu ekt Nr.: HZ last: 490 N	ng n. Vickers (50 p) Härteprofil:	außen - innen			
			303 MHV 50 257 236 244 232 239 249 262 257 262 260 260 260 260 265 274 280 286 286 321			·

KERNFORSCH	UNGSZENTR	UM KARLSR	UHE GMBH	1		HEISSE	ZELLE	EN
DATUM:	6.11.79	UNTERSCH	RIFT:	heif		Blatt	:	von:
PROJEKT	3в	NUCCESSION OF THE DAY	KVE 127	<u> </u>	6D.2			2
Mi) Pro	rohärteprü: ojekt: HZ	fung n. Vic	kers					
Pri	iflast: 490	N (50 р)						
		Härtepro	fil: außer	n - inner	n			
			271 M 274	4HV 50				

KERNFORSCH	UNGSZENTR	UM KARLSRUHE	GMBH	HEIS	SE ZELLEN
DATUM:	6.11.79	UNTERSCHRIF	T: Hill	Bla	tt: von:
PROJEKT	3в	KVE 12	28	6D.3	2
Mik: Pro Prü:	rohärteprüfu jekt Nr.: H2 flast: 490 I	ung n. Vickers Z N (50 p) Härteprofil:	außen - inne	n	-
			321 MHV 50 286 274 277 265 271 257 262 268 271 268 271 268 262 286		

KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH

HEISSE ZELLEN

DATUM:	6.11.79	UNTERSCHRIFT:
--------	---------	---------------

- KVE128

PROJEKT ^{3B}

Blatt: von: 6D.3 2

Mikrohärteprüfung n. Vickers Projekt Nr.: HZ Prüflast: 490 N (50 p)

Härteprofil: außen - innen

286	MHV	60
277		
274		
268		
271		
268		
268		
265		
271		
271		
293		
286		
289		
286		
293		
286		
286		
299		

Gemessene radiale Porositätsprofile

Abb. 37

ANHANG I

Zerstörende

Nachuntersuchung

- I/1 -

Vg. 6 Prüfling 6D.1

- I/4 -

-I/7-

Stab 6D.1 Schnitt 2

- 1/9-

Vg. 6 Prüfling 6D.1

-I/10-

- I/11-

-I/15-

Stab 6D.2 Schnitt 1

HZ-3B-KVE 127-6D.2-1/20 500x geätz

-1/21-

- I/22-

Stab 6D.2 Schnitt 2

Stab 6D,2 Schnitt 2

HZ-3B-KVE 127-6D.2-2/20 500x geätzt

_40 µm

Stab 6D.2 Schnitt

 \sim

I/24-

-I/26-

Stab 6D.2 Schnitt 3

-I/29-

- I/30-

Stab 6D.3 Schnitt 1

- I/32-

-I/35-

-I/36-

Vg. 6 Prüfling 6D.3

Stab 6D.3 Schnitt 3

-I/43-

Stab 6D.3 Schnitt 4

-I/44-