KfK 3023 September 1980

Spectral Reflectivity and Emissivity Measurements of Solid and Liquid UO₂ at 458, 514.5 and 647 nm as a Function of Polarization and Angle of Incidence

M. Bober, J. Singer, K. Wagner Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

KfK 3023

Spectral Reflectivity and Emissivity Measurements of Solid and Liquid UO₂ at 458, 514.5 and 647 nm as a Function of Polarization and Angle of Incidence

M. Bober, J. Singer, K. Wagner

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor S.

.

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Abstract

The directional spectral reflectivity of UO2 was measured in the temperature range between 2000 and 4000 K with an integratingsphere laser reflectometer. The measurements were carried out with monochromatic light polarized parallel and perpendicular, respectively, to the plane of incidence at the three wavelengths of 458, 514.5 and 647 nm, and at the angles of incidence of 35, 45 and 72°. The reflectivity shows a slight decrease with increasing wavelength and a distinct decrease with increasing temperature above the melting point. The directional emissivity is related to the reflectivity by Kirchhoff's law. An evaluation of the hemispherical emissivity yielded values by 5% lower than the nearnormal directional emissivity. From the reflectivity measured vs. the angle of incidence and the polarization, the optical constants n, k of liquid UO, were computed. Preliminary values of n=2.0 and k=0.6 were obtained for the temperature range between 3000 and 3500 K at the wavelength of 514.5 nm. The value of k=0.6 corresponds to a penetration depth of radiation of about 0.1 μ m in UO₂. An estimation shows that internal radiative heat transfer cannot cause a significant increase of the thermal conductivity of liquid UO2.

Messungen des spektralen Reflexions- und Emissionsgrades von festem und flüssigem UO₂ bei 458, 514,5 und 647 nm als Funktion der Polarisation und des Einfallswinkels

Zusammenfassung

Der gerichtete spektrale Reflexionsgrad von UO₂ wurde im Temperaturbereich zwischen 2000 K und 4000 K mit einem integrierenden Laser-Kugelreflektometer gemessen. Die Messungen wurden sowohl mit parallel als auch mit senkrecht zur Einfallsebene polarisiertem monochromatischem Licht bei den Wellenlängen 458, 514,5 und 647 nm und den Reflexionswinkeln von 35,45 und 72[°] durchgeführt. Der resultierende Reflexionsgrad von UO₂ erweist sich nur schwach wellenlängenabhängig. Er wird mit wachsender Wellenlänge geringfügig kleiner und nimmt mit zunehmender Temperatur oberhalb des Schmelzpunktes deutlich ab.

Aus dem spektralen Reflexionsgrad läßt sich mit Hilfe des Kirchhoff'schen Gesetzes der spektrale Emissionsgrad errechnen. Die Berechnung des halbräumlichen Emissionsgrades aus der gemessenen Winkelabhängigkeit des gerichteten Emissionsgrades führt zu Werten die 5% kleiner sind als die des gerichteten Emissionsgrades bei nahezu senkrechter Emission. Aus dem in Abhängigkeit vom Einfallswinkel und von der Polarisation gemessenen Reflexionsgrad lassen sich die optischen Konstanten n und k für flüssiges UO₂ berechnen. Erste Auswertungen bei der Wellenlänge 514,5 nm liefern für den Temperaturbereich zwischen 3000 K und 3500 K die Werte n=2,0 und k=0,6. Dem Wert k=0,6 entspricht eine Eindringtiefe der Strahlung in UO₂ von etwa 0,1 μ m. Eine Abschätzung zeigt, daß innerer Strahlungswärmetransport nicht wesentlich zu einem Anstieg der Wärmeleitfähigkeit von flüssigem UO₂ beitragen kann.

1. Introduction

The safety analysis of nuclear reactors requires knowledge of the thermal radiation properties of the nuclear fuel materials at high temperatures. In order to make accurrate radiative transfer calculations, the spectral emittance and the optical constants of the fuel must be known up to temperatures well in excess of its melting point. The spectral emittance determines the radiative heat transfer from the fuel to adjacent vapor spaces, while the optical constants determine the radiative heat transfer in the condensed phase. The latter contributes to the thermal conductivity of the fuel. Besides, information on the optical constants could help to determine the unknown physical structure of the liquid fuel and its chemical bonding character. The knowledge of the spectral emissivity also allows reliable pyrometric measurements of the temperature of fuel melts to be made in high-temperature experiments.

Referring to thermal diffusivity measurements with liquid UO $_2$ /1/ a significant increase in the thermal conductivity is assumed for UO2 upon melting. This could be attributed to electronic and radiative contributions respectively. To estimate the possible amount of the radiative contribution, the spectral course of the absorption coefficient has to be taken into account from the infrared to the visible wavelengths. However, the only data available for UO, are the low temperature values of the refractive index determined in the visible range /2/ and of the spectral absorption coefficient measured from the near infrared down to the absorption edge in the visible red /3-5/. No experimental data exist for molten UO2. Previous theoretical studies on the contribution of the internal radiative heat transfer to the thermal conductivity of UO2 have been based on the lower temperature absorption data for single crystal UO, extrapolated in the liquid state /5-7/. Up to now the question has not been answered definitely whether electronic or radiative thermal transport is dominant in liquid UO2. For reliable calculations of the radiative transfer in molten UO_2 there is an urgent need of high temperature spectral absorption data in particular at wavelengths in the visible range.

-- 1 ---

Only a few measurements of the spectral reflectance and emittance of UO, were reported. The reflectivity of single crystal UO_2 was determined by Schoenes /8/ in a wide spectral range at room temperature. Spectral emissivities of sintered UO2 measured in the infrared and visible red at temperatures up to 2400 K were published by Cabannes et al /9/ and by Held and Wilder /10/. Recently, we measured the normal spectral reflectivity and emissivity of molten UO, up to temperatures of 4000 K at the wavelengths of 0.63 and 10.6 μm /11/. All experimental results reported indicate that the emittance of sintered UO2 does not appreciably depend on the temperature, surface roughness, density, or stoichiometric deviations. The emissivity of liquid UO, measured at 0.63 µm shows a distinct increase with temperature, whereas at 10.6 μm it decreases with increasing temperature. The measured reflectivity of the refrozen sample surface shows good agreement with Schoenes' results obtained with single crystal UO2.

Our reflectance measurements on molten UO_2 were made with an integrating sphere reflectometer in which laser beam heating of the sample material is used. These measurements have been continued and extended to various wavelengths in the visible spectral range. The dependence of the reflectivity of the heated sample on the angle of incidence and the polarization of the incident light have been included in the investigation. It has been an objective of these measurements to estimate the total thermal emittance of the liquid material and to evaluate approximately its optical constants. Preliminary results for liquid UO_2 have been reported /12/.

2. Basic relations for the measurements

Reflectance measurements performed with polarized monochromatic radiation, particularly with non-normal incidence, allow both to determine the spectral emissivity of the sample surface and to evaluate the optical constants of the bulk material provided that the specimen surface is optically smooth. Precise values of the spectral emittance can be obtained from reflectance measurements if the transmittance of the sample considered approaches zero. This applies to the thickness of the surface layer of UO₂ heated up quasi-isothermally in the laser reflectometer /13/.

-- 2 ---

The spectral directional emittance $\epsilon_{\lambda,T}(\theta)$ of the flat specimen surface irradiated from the desired direction is related to the directional-hemispherical reflectance $\rho_{\lambda,T}(\theta;2\pi)$ by Kirchhoff's law,

$$\varepsilon_{\lambda,\mathrm{T}}(\theta) = 1 - \rho_{\lambda,\mathrm{T}}(\theta; 2\pi). \tag{1}$$

If the surface is smooth so that only specular reflection occurs, the directional emissivity equals 1 minus the specular reflectivity $\rho_{\lambda,T}(\theta)$ in that direction.

With the values of the spectral directional emittance measured at various angles of incidence the hemispherical emittance $\varepsilon_{\lambda,T}^{h}$ is obtained by integrating the directional emittance over the hemispherical space. Assuming that an azimuthal dependence of the emittance does not exist, we obtain

$$\varepsilon_{\lambda,T}^{h} = 2 \int_{0}^{1} \varepsilon_{\lambda,T}(t) \cdot t \cdot dt; \qquad t = \cos\theta. \qquad (2)$$

For a given wavelength interval (λ_1, λ_2) an average value of the emittance can be defined as

$$\varepsilon_{\Delta\lambda,\mathbf{T}} = \int_{\lambda_1}^{\lambda_2} \varepsilon_{\lambda,\mathbf{T}} \cdot \mathbf{I}_{\lambda,\mathbf{T}} d\lambda / \int_{\lambda_1}^{\lambda_2} \mathbf{I}_{\lambda,\mathbf{T}} d\lambda$$
(3)

where $I_{\lambda,T}$ is the Planck black body radiation function, and $\epsilon_{\lambda,T}$ is the directional or hemispherical emittance, respectively.

The optical constants, i.e. the refractive index n and the absorption coefficient k, are the real and imaginary parts of the complex index of refraction of the absorbing material:

$$N_{\lambda,T} = n - ik.$$

Both n and k are functions of the temperature and the wavelength. The absorption coefficient is related to the absorption constant $\alpha_{\lambda,T}$, as measured by the transmission method, by the equation

$$\alpha_{\lambda,T} = 4\pi k/\lambda.$$
 (4)

The reciprocal of $\alpha_{\lambda,T}$ is the penetration depth of radiation in the material. This is the characteristic quantity which enters in a spectrally averaged form the expression for the radiative thermal conductivity in the optically thick limit approximation (see for example Özisik /14/).

- 4 ---

The optical constants can be found by analysing the state of elliptical polarization which appears when plane polarized radiation is reflected obliquely from an optically smooth surface or by evaluating the respective variation of the polarized components of reflected energy with the angle of incidence. Various measuring methods are described in the literature indicated in the review by Shestakov et al /15/. The most suitable parameters to measure are the reflectances ρ_s and ρ_p for the incident radiation polarized perpendicular and parallel, respectively, to the plane of incidence, the intensity ratio of ρ_s and ρ_p , and the relative phase difference.

One method introduced by Avery /16/ is based on the measurement of the intensity ratio of $\rho_{\rm p}$ and $\rho_{\rm s}$ for at least two different angles of incidence. This method is assumed to be appropriate for evaluation of the reflectivity measurements performed on molten UO_2 in an integrating sphere reflectometer since it is based solely on energy measurements without regard of phase relations /17/. By measuring the ratio ρ_p / ρ_s the accuracy of the experiments is improved as this ratio varies more rapidly with the angle of incidence than ρ_p and ρ_s alone and because, in principle, absolute reflectance measurements are not necessary. In order to get sufficiently sensitive to the amounts of n and k, Avery's method requires a suitable choice of the measurement angles /18/. The angles of incidence should be chosen such that one is just below and one just above the principle angle of incidence at which $\rho_{\rm p}$ and $\rho_{\rm s}$ differ in phase by 90°. This angle is near the angle where ρ_p/ρ_s is minimum.

Based on the generalized Fresnel reflection equations, mathematical expressions of the reflectivity components are obtained for the perpendicular and parallel polarizations, respectively, which are related to the optical constants and to the angle of incidence θ (see, for example, Born and Wolf /19/):

$$\rho_{s}(\theta) = \frac{(a - \cos\theta)^{2} + b^{2}}{(a + \cos\theta)^{2} + b^{2}}, \qquad (5)$$

$$\rho_{\rm p}(\theta) = \rho_{\rm s}(\theta) \frac{(a - \sin\theta \tan\theta)^2 + b^2}{(a + \sin\theta \tan\theta)^2 + b^2}$$
(6)

where

$$a^{2} = 0.5 \left[(n^{2}-k^{2}-\sin^{2}\theta) + \sqrt{(n^{2}-k^{2}-\sin^{2}\theta)^{2}+4n^{2}k^{2}} \right]$$

$$b^{2} = 0.5 \left[-(n^{2}-k^{2}-\sin^{2}\theta) + \sqrt{(n^{2}-k^{2}-\sin^{2}\theta)^{2}+4n^{2}k^{2}} \right].$$

The principal angle of incidence θ_o is related to n and k by /20/

$$(n^{2}+k^{2})^{2}-2(n^{2}-k^{2})\sin^{2}\theta_{o} = (\tan^{4}\theta_{o}-1)\sin^{4}\theta_{o}.$$
 (7)

There is a useful relation between ρ_s and ρ_p for the angle of incidence θ =45[°] which allows to check experimental data:

$$\rho_{\rm s}^2 = \rho_{\rm p} \quad . \tag{8}$$

For normally impinging radiation there is no preferred plane of incidence and $\rho(0) = \rho_s = \rho_p$. From equation (5) follows the familar relation:

$$\rho(0) = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} .$$
(9)

With measured values of ρ_s and ρ_p , the reflectance $\rho(\theta)$ of the natural or unpolarized radiation can easily be obtained for each angle θ . $\rho(\theta)$ is defined by

$$\rho(\theta) = 0.5 \left(\rho_{s}(\theta) + \rho_{p}(\theta) \right). \tag{10}$$

3. Measuring method

For measurement of the spectral reflectance of liquid ceramic materials, an integrating-sphere laser reflectometer was developed which operates on laser-beam heating. The experimental set-up has been described in detail elsewhere /13,21/.

Figure 1 shows schematically the principle of the measuring method. A small specimen is located in an integrating sphere of 200 mm diameter. With a focused CO_2 laser beam of 500 W power the surface of the specimen is heated for millisecond intervals to temperatures between 3000 and 4000 K. The size of the heated surface area, 0.5 to 0.6 mm in diameter, depends on the temperature and heating rate which can be varied by variation of the CO_2 -laser power density. Parallel with heating, the center of the heated surface area is irradiated by the light beam of a reference laser set at the measurement wavelength λ . The reflected portion of the reference light is isotropically scattered by the diffuse-reflective integrating sphere and measured with a spectral photomultiplier detector placed at a small aperture in the sphere wall.

Placing a spectral line filter of the wavelength λ in front of the detector together with high-frequency modulation of the incident reference light allows to detect the reflected light in the presence of the thermal radiation background emitted from the heated sample. The demodulated reflection signal then yields the reflectance of the sample by means of an additional calibration measurement where the specimen is replaced by a perfectly reflecting mirror of the same size. From equation (1) the corresponding emittance of the sample is obtained.

Figure 1: Principle of the measuring method

The surface temperature of the heated sample is determined by means of a fast micropyrometer working at the wavelength of 633 nm at which the spectral emittance of liquid UO₂ is known as a function of the radiance temperature /22/. During the reflection measurements a pure inert gas atmosphere is maintained in the sphere at \sim 2 bar pressure level to suppress surface evaporation of the sample. The angle of incidence θ can be set between 5 and 75[°] by altering the inclination of the sample. By use of a half-wave retarder of the wavelength λ together with an analyser, the plane of polarization of the incident reference light is precisely adjusted with respect to the plane of incidence. Reference light sources are Kr-ion and Ar-ion lasers of some 100 mW power modulated at 200 kHz, which allow measurements at about 10 wavelengths in the visible range between 400 and 750 nm.

4. Measurements and results

The specimen material used was nuclear-reactor grade, stoichiometric UO₂ sintered to 96% of the theoretical density with residual impurities of less than 100 ppm C and 200 ppm Si + Cr + Fe. For the reflectance measurements, polished disks were prepared which were 6 mm in diameter and 1 mm thick. Some additional experiments were made with single crystalline material. Smooth surfaced samples were generated by degassing and liquefying the surface layer of the specimens, applying surface heating with the CO_2 laser beam immediately before measurements.

Reflectance measurements have been carried out on liquid and refrozen sample surfaces in the temperature range between 2000 and 4000 K at the three wavelengths of 647, 514.5 and 458 nm, and at angles of incidence of 35, 45 and 72° . Figure 2 shows examples of oscilloscope recordings of reflectivity signals and pyrometer signals measured on UO₂. The plateau in the pyrometer signal which follows the steep temperature decrease indicates the freezing point. The reflectivity signals reveal a decrease of reflectivity with increasing temperature above the melting point.

 $\theta = 17^{\circ}, \lambda = 647 \text{ nm}, T_{\text{max}} = 3780 \text{ K}$ $\rho_{s} : 0,035 \text{ units/cm}$

 $\theta = 17^{\circ}, \lambda = 647 \text{ nm}, T_{\text{max}} = 3760 \text{ K}$ $\rho_{\text{p}}; 0,035 \text{ units/cm}$

 $\theta = 45^{\circ}$, $\lambda = 458 \text{ nm}$, $T_{\text{max}} = 3780 \text{ K}$ ρ_s : 0,075 units/cm

 $\theta = 45^{\circ}, \lambda = 514,5 \text{ nm}, T_{\text{max}} = 3700 \text{ K}$ $\rho_{p}: 0,035 \text{ units/cm}$

 $\theta = 72^{\circ}, \lambda = 514,5 \text{ nm}, T_{\text{max}} = 3770 \text{ K}$ $\rho_{s}: 0,20 \text{ units/cm}$

 $\theta = 72^{\circ}, \lambda = 458 \text{ nm}, T_{\text{max}} = 3700 \text{ K}$ ρ_{p} : 0,035 units/cm

Figure 2: Digital oscilloscope recordings of reflectivity signals (upper trace) and pyrometer signals (lower trace) measured on UO₂ at three wavelengths λ and various angles of incidence θ , sweep time 5 ms.

About 25 series of measurements have been evaluated for each wavelength and each angle of incidence. The resulting reflectivities obtained for the polarized components ρ_s and ρ_p (polarized perpendicular and parallel to the plane of incidence, respectively) are shown in tables 1a-i and figures 3a-i as a function of the temperature. Tables are given in the Appendix. The scattering of the experimental values indicated in figures 3a-i by the circles and cross marks along the average curves of ρ_s and ρ_p , respective-ly, represents the range of uncertainty of the single measurements. The reflectivity curves for the unpolarized radiation ρ have been obtained from ρ_s and ρ_p with equation (10). Tables 2a-c give values for ρ_s , ρ_p , ρ_p/ρ_s , and ρ averaged at different temperatures for the three wavelengths and angles of incidence. The results of the additional measurements on single crystal material are in agreement with those obtained for the premolten, sintered material(cf. table 1b).

Figure 3a: Spectral directional reflectivity of UO₂ for polarized radiation as a function of the temperature. λ =647 nm, θ =35.5°. FP=freezing point.

Figure 3b: Spectral directional reflectivity of UO₂ for polarized radiation as a function of the temperature. λ =647nm, θ =45°. FP=freezing point.

Figure 3c: Spectral directional reflectivity of UO₂ for polarized radiation as a function of the temperature. λ =647nm, θ =72°. FP=freezing point.

Figure 3d: Spectral directional reflectivity of UO for polarized radiation as a function of the temperature. λ =514.5nm, θ =35°. FP=freezing point

Figure 3e: Spectral directional reflectivity of UO₂ for polarized radiation as a function of the temperature. λ =514.5nm, θ =45°. FP=freezing point.

Figure 3f: Spectral directional reflectivity of UO₂ for polarized radiation as a function of the temperature. λ =514.5 nm, θ =72°. FP=freezing point.

Figure 3g: Spectral directional reflectivity of UO₂ for polarized radiation as a function of the temperature. λ =458 nm, θ =35.5°. FP=freezing point.

Figure 3h: Spectral directional reflectivity of UO₂ for polarized radiation as a function of the temperature. λ =458nm, θ =46°. FP=freezing point.

Figure 3i: Spectral directional reflectivity of UO₂ for polarized radiation as a function of the temperature. λ =458 nm, θ =73°. FP=freezing point.

As shown by the diagrams of the figures 3a-i there is little variation of the reflectivity of UO₂ with the wavelength in the spectral range considered. Only a slight increase in reflectivity is indicated with decreasing wavelength. All reflectance curves show a similar dependence on the temperature. Below the melting point the reflectivity is nearly independent of the temperature, whereas at temperatures above the melting point it clearly decreases with the temperature. Most striking is the variation of the reflectivity for the polarized components with the angle of incidence. In accordance with the Fresnel reflection equations, the reflectivity for the component ρ_s increases with increasing angle of incidence whereas the reflectivity for the component ρ_p decreases. At the angle of incidence of 72°, that's near the principal angle of incidence, ρ_p approaches a minimum.

Using the values of the directional spectral emissivity for the unpolarized radiation, which have been determined from the values of ρ with equation (1), and taking into account their angular

dependence, the hemispherical spectral emittance has been estimated from equation (2). The results for the near-normal emissivity ϵ^n obtained from the 35° measurements and for the respective hemispherical emittance ϵ^h are given in table 3 and figure 4 as a function of the temperature. The bars along the curves shown in figure 4 represent the ranges of uncertainty including both experimental scattering and possible systematic errors. At the three wavelenghts investigated the hemispherical spectral emittance is by about 5% lower than the normal emissivity. The difference decreases slightly with increasing temperature. A similar course is found for the emittance averaged over the wavelength interval $\Delta\lambda$ (458 nm, 647 nm) by means of equation (3) (cf. table 4). Considering the small variation of the spectral emissivity with the wavelength, the averaged emittance can give a hint on the total thermal emittance of liquid UO2, at least for the highest temperatures near 4000 K where the maximum thermal emittance is shifted towards the visible spectral range.

To evaluate the optical constants of UO₂, the ratios ρ_p/ρ_s have been determined for several temperatures from the reflectivity curves measured at the angles of incidence of 45° and 72°, respectively (cf. tables 2a-c). For each temperature these values have been introduced in equation (6) and the corresponding values of n and k have been computed which satisfy the equation for both ratios ρ_p/ρ_n . Results for the temperature range between 3000 and 3500 K are given below.

	λ=6	47 nm	λ=	514.5 nm	$\lambda = 458$ nm	
Т/К	n	k	n	k	n	k
3000	2.09	0.72	2.04	0.68	1.89	0.89
3200	2.08	0.68	2.02	0.62	1.89	0.87
3500	2.03	0.61	1.98	0.58	1.84	0.80

The calculated values indicate only a little temperature dependence of n whereas k shows a tendency to decrease with increasing temperature. Toward the blue spectral range the values of k increase with decreasing wavelength. A discontinuity at the solid-liquid phase transition (3120 K) was not detected.

Figure 4: Normal (ϵ^n) and hemispherical (ϵ^h) spectral emissivities of UO₂ obtained at the wavelengths of 647, 514.5 and 458 nm and in the wavelength interval (458 nm, 647 nm) as a function of the temperature. FP=freezing point.

There are two criteria which give an indication of the reliability of the values obtained for n and k. Equation (8) allows to check the accuracy of ρ_s and ρ_p measured at $\theta=45^{\circ}$. With equation (9) theoretical values of ρ (0) can be calculated from n and k which can be compared with the respective experimental values deduced by equation (10) from the reflectivity measurements at 35° . The experimental values of ρ (35°) are practically identical with ρ (0°) as demonstrated by figure 5. The best agreement has been obtained between the theoretical and experimental quantities for the measurements made at 514.5 nm so that the values of

n = 2.0 and k = 0.6

represent best preliminary values of the optical constants of UO_2 for the visible spectral range averaged in the temperature range between 3000 and 3500 K. Considering the scatter in the measured points of the reflectance curves, the uncertainty range of n and k can be estimated to be \pm 10% and \pm 40%, respectively.

Figure 5 shows theoretical reflectivity curves calculated from the equations (5) and (6) for n = 2 and k = 0.6. With these values of n and k the principle angle of incidence is $\theta_0 = 65^{\circ}$ as obtained from equation (7). The bars along the reflectivity curves for ρ_p and ρ_s which are indicated at the angles of 35° , 45° and 72° represent the reflectivities measured at 3200 K for $\lambda = 514.5$ nm. The lengths of the bars show the experimental scattering. Figure 6 shows for several values of k the spectral normal reflectivity $\rho(0)$ calculated from equation (9) as a function of n. The case of n=2 and k=0.6 is indicated by the dotted lines; the respective value of $\rho(0)$ is in agreement with our experimental results for $\rho(0)$.

To desmonstrate the influence of n and k on the course of the reflectivity curves figure 7 shows theoretical reflectivity curves vs. the angle of incidence for several pairs of n and k. With decreasing values of n the principle angle of incidence is shifted towards smaller angles, whereas with decreasing values of k the minima of r_p and r_p/r_s are lowered.

Figure 5: Theoretical reflectivity curves for n=2, k=0.6. The bars along the curves for ρ_p and ρ_s denote experimental results.

Figure 6: Theoretical normal reflectivity as a function of n; k being the parameter.

— 19 —

Figure 7: Theoretical reflectivity curves for several pairs of n and k. (cf. figure 5.)

5. Discussion

The scattering of the experimental values shown in figure 3a-i can be mainly attributed to the imperfections of the reflecting surface and to the spreading of the angle of incidence caused by the formation of a meniscus in the heated area. With increasing temperature, oscillations of the liquid surface as well as vaporization and gas bursts affect the angle of incidence and disturb the smoothness of the surface, which results in a certain amount of diffuse reflection. This appears from the check of the measurements at 45° incidence: Equation (8) is fulfilled at temperatures up to 3500 K but less well fulfilled at temperatures above 3500 K. At lower temperatures recrystallization takes place in the refrozen sample surface and cracks appear which likewise cause diffuse scattering of light.

The evaluation of the reflectivity and emissivity of unpolarized radiation on the basis of equations (1) and (10) turns out to be little affected by a certain amount of diffuse reflection whereas the evaluation of the optical constants is limited to temperatures up to 3500 K. To overcome this shortcoming further experiments are planned with dense, single crystal UO_2 and by use of larger heated areas to improve the measurements at a very oblique incidence.

The results of the reflectivity measurements shown in figures 3a-i are in agreement with previous measurements made at 633 nm /22/ except for the small discontinuity at the solid-liquid phase transition observed at 633 nm which could not be clearly confirmed. The wavelength dependence is similar to that found by Schoenes /8/ at room temperature but it is less distinct. An extension of the reflection measurements to longer wavelengths up to 1060 nm is planned in further experiments.

Figure 4 reveals a deviation of the UO_2 emissivity from Lambert's cosine law shown by the fact that the normal emissivity of UO_2 is about 5% higher than its hemispherical emittance. This behaviour of UO_2 is typical for smooth surfaced ceramics at wave-

lengths of weak absorption /23/. To estimate more reliably the total thermal emittance of liquid UO₂ from its spectral emittance, the extension of the spectral emissivity measurements to the near infrared is indispensable.

Regarding the evaluation of n and k from reflectivity measurements, the highest sensitivity is reached if the angles of incidence are chosen near the principle angle of incidence. This appears from the isoreflectance curves for ρ_p/ρ_n shown in figure 8 for the case of n=2.0 and k=0.6 in the n-k plane at eight different angles of incidence. For each angle those values for n and k are plotted which fulfil equation 6 in the ranges of 1.7 \leq n \leq 2.3 and 0.3 \leq k \leq 0.9 Maximum accuracy in evaluation is obtained if the angles of incidence are chosen such that the respective isoreflectance curves intersect nearly perpendicularly.

The results obtained for the optical constants of UO, should be considered as preliminary values. Although the criteria of equation (8) and (9) are fairly well satisfied for the averaged reflectivity curves, the scatter in the measured points causes a considerable uncertainty in n and k. The sensitivity of n and k to the errors of the reflectivity measurements depends on the values of n and k and on the chosen angles of incidence (cf. figure 7 and 8). For UO_2 , the accuracy of k in this case is more influenced than that of n. Further measurements should include a third intermediate angle near the principal angle of incidence. With this third angle the measurements could be averaged for n and k and the consistency of the three values of n and k obtained could serve as a control for the accuracy of the measurements. A limit of the reflection method is reached when the reflectivity signal at the critical angle is so small that the signal-to-noise ratio of the detector prevents accurate measurements to be made. In the present measurements, this limit corresponds to values of k of about 0.2 or less.

The values of the refractive index of n=2.0 found for the molten UO₂ is smaller than that of n=2.3 reported by Ackermann et al. /2/ for room temperature. This reduction

Figure 8: Isoreflectance curves for n=2 and k=0.6 at different angles of incidence

of n could be explained plausibly by assuming a decrease of the electronic polarizability of liquid $UO_2 / 7/.$ One additional reflection measurement at room temperature was performed at 647 nm on a smooth-surfaced singly crystal of UO_2 which yielded n = 2.25 and confirmed the value of Ackermann /2/.

The preliminary value of k = 0.6 evaluated for the absorption coefficient of liquid UO₂ yields an absorption constant of $\alpha \approx 1.5 \cdot 10^5$ cm⁻¹ as follows from equation(4). This value of α corresponds to a penetration depth of radiation of about 0.1 μ m. Based on this value of α , which has been assumed to be valid for the whole visible spectral range up to 700 nm, and on the lower temperature absorption data of single crystal UO2 measured in the near infrared spectral range /4, 5/, the contribution of the radiative heat transfer to the thermal conductivity of liquid UO, was estimated. This estimation shows that the contribution of the radiative heat transfer cannot cause a significant increase of the thermal conductivity of liquid UO2. Based on the result of thermal diffusivity measurements /1/ an increase of the thermal conductivity from ~ 0.04 to $\sim 0.11 \text{ Wcm}^{-1} \text{K}^{-1}$ is expected for UO₂ upon melting, but only 10% to 20% of this increase can be explained by radiative heat transfer. At high temperatures near 4000 K the maximum of thermal radiation is shifted towards the visible spectral range. Therefore, with increasing temperature an appreciable augmentation of the internal radiative heat transfer cannot appear because of the high value of α in the visible range.

To substantiate the contribution of the radiative heat transfer to the thermal conductivity of liquid UO₂, the preliminary value for the absorption coefficient k and its spectral course must be proved in further experiments. Particularly the course of the absorption coefficient from the visible red towards longer wavelengths is important. At lower temperatures the absorption edge of single crystal UO₂ was found near 650 nm /3,8/. An estimate of the absorption edge of liquid UO₂ calls for further measurements to be performed at longer wavelengths from 650 nm up to the near infrared.

Acknowledgement

The authors wish to thank R. Eggmann for the development of electronic equipment, S. Gaukel for mechanical constructions, and I. Schub and R. Huber for ceramographic preparations.

- -- --

References

1. C.S. Kim, R.A. Blomquist, J. Haley, R. Land, J. Fischer, M.G. Chasanov, L. Leibowitz, in Proceedings of the Seventh Symposium on Thermophysical Properties, Ed. A. Cezairliyan (New York: American Society of Mechanical Engineers), (1977), pp. 338-343 2. R.J. Ackermann, R.J. Thorn, G.H. Winslow, J. Opt. Soc. Am. 49 (1959) 1107-1112 3. J.L. Bates, Nucl. Sci. Eng. 21 (1965) 26-29 4. M.J. Davies Ph. D. Thesis, University of Leeds, Leeds, England, 1970 5. P. Browning, Report AERE-M 3034, Chemistry Division AERE Harwell, Oxfordshire, England OX11 ORA (1979) 6. E.E. Anderson, Nuclear Technology 30(1976) 65-70 7. R.A. Young J. Nucl. Mater 87 (1979) 283-296 8. J. Schoenes, J. Appl. Phys. 49 (1978) 1463-1465 9. F. Cabannes, J.P. Stora, J. Tsakiris, C.R. Acad. Sci. Ser. B (1967) 45-48 10. P.C. Held, D.R. Wilder, J. Am. Ceram. Soc. 52 (1969) 182-186 11. M. Bober, H.U. Karow, K. Müller, High Temperatures - High Pressures 12 (1980) 161-168 12. M. Bober, in Proceedings of the Seventh European Thermophysical Properties Conference, Antwerpen (Belgium) June 30 - July 4, 1980, to be published in High Temperatures - High Pressures 13. M. Bober, H.U. Karow, in Proceedings of the Seventh Symposium on Thermophysical Properties, Ed. A. Cezairliyan (New York: American Society of Mechanical Engineers), (1977) pp. 334-350

14. M.N. Özisik, "Radiative Transfer", Wiley, New York, 1973 15. E.N. Shestakov, L.N. Latyev, V. Ya. Chekhovskoi, High Temperature 16 (1978) 140-151 (Translated from Russian, Teplofizika Vysokikh Temperatur 16 (1978) 178-189 16. D. G. Avery, Proc. Phys. Soc. B65 (1952) 425-428 17. H.U. Karow, Report KfK 2653, Kernforschungszentrum Karlsruhe, Federal Republic of Germany, (1979) 18. W.R. Hunter, J. Opt. Soc. Am. 55 (1965) 1197-1204 19. M. Born, E. Wolf, "Principles of Optics", Pergamon Press, Oxford, 1975 20. H.B. Holl, in Proceedings of the Symposium On Thermal Radiation of Solids, Ed. S. Katzoff (Washington DC, USA: National Aeronautics and Space Administration) Report NASA SP-55 (1965) pp. 45-61 21. K. Müller, Report KfK 2803, Kernforschungszentrum, Karlsruhe, Federal Republic of Germany, (1979) 22. H.U. Karow, M. Bober, in Proceedings of the IAEA Symposium on Thermodynamics of Nuclear Materials, Jülich 1979 (Vienna: IAEA), to be published 23. R.L. Cox,

in Proceedings of the Symposium on Thermal Radiation of Solids, Ed. S. Katzoff (Washington DC. USA: National Aeronautics and Space Administration) Report NASA SP-55 (1965) pp. 83-101

Appendix

Table 1a: Measured reflectivities of UO $_2$ for the perpendicular (ρ_s) and the parallel (ρ_p) components at the wavelength of 647.1 nm and the angle of incidence of 35.5 degrees

тско	ρ _s	текј	ρ _s	тско	ρ _p	TEKJ	ρ _p
3862	0.096	2914	0.196	3849	0.042	2709	0.105
3859	0.094	2868	0.202	3823	0.044	2613	0.121
3855	0.117	2803	0.210	3809	0.050	2507	0.096
3828	0.118	2792	0.201	3799	0.056	2408	0.114
3821	0.111	2744	0.207	3794	0.055	2329	0.119
3773	0.131	2702	0.199	3787	0.053	2301	0.104
3770	0.128	2671	0.216	3771	0.051	2228	0.115
3749	0.130	2661	0.198	3760	0.063	2186	0.118
3744	0.125	2658	0.201	3758	0.066	2163	0.111
3744	0.116	2572	0.202	3744	0.063		
3722	0.125	2515	0.216	3734	0.063		
3718	0.157	2474	0.205	3733	0.056		
3717	0.148	2375	0.201	3731	0.055		
3705	0.162	2334	0.205	3731	0.072		
3703	0.162	232 0	0.209	3707	0.068		
3649	0.169	2296	0.203	3694	0.073		
3638	0.163	2286	0.207	3685	0.078		
3637	0.165	2275	0.220	3642	0.085		
3623	0.169	2264	0.215	3628	0.082		
3621	0.156	2171	0.206	3614	0.083		
3579	0.163	2154	0.210	3612	0.072		
3560	0.178			3605	0.088		
3549	0.178			3569	0.077		
3540	0.189			3534	0.085		
3524	0.182			3509	0.100		
3514	0.186			3502	0.087		
3495	0.1/3			3479	0.085		
3485	0.185			3434	0.09/		
34/6	0.187			3420	0.076		
344/ সক্র	0.203			3307	40.4073		
3432 7403	W.101			3303	0.077		
3402	0.171 0.170			3274	0.107		
7776	0.177			7740	0 1073		
3370 7748	0.103			3200	0,102		
3329	0 197			3140	0.070		
3275	0 198			3128	0 103		
3237	0 204			3112	0 092		
3117	0.215			3108	0.112		
3113	0.197			3105	0.109		
3111	0.203			3083	0.120		
3106	0.208			3081	0.102		
3105	0.214			2986	0.118		
3102	0.195			2943	0.103		
3099	0.191			2900	0.117		
3075	0.207			2829	0.099		
2996	0.197			2807	0.111		
297 0	0.213			2797	0.114		
2952	0.215			2740	0.106		
2945	0.200			2721	0.116		

Table 1b: Measured reflectivities of UO $_2$ for the perpendicular (ρ_s) and the parallel (ρ_p) components at the wavelength of 647.1 nm and the angle of incidence of 45.0 degrees

тека	ρ _s	тека	ρ _s	тско	ρ _p	тскэ	ρ _p
3777	0.134	2812	Ø.278×	3767	0.045	2469	0.087
3743	0.158	2770	0.269	3748	Ø.044×	2394	0.072
3740	0.163	2752	0.258	3721	0.047	2394	0.085
3732	Ø. 163 x	2693	0.273	3695	Ø.047 x	2269	0.087
3699	0 191	2663	0 273	3673	0 054	2240	0 079
7494	07 194 v	2000	0.281	7441	0 057	2194	0 081
3674	0.178	2007 7600	0.201 A 0 254 V	7457	0.052	21/4 7144	0.001
72072	0.170	2007	0.200 ~	7474	0.054	2140	0.073.
3670	0.171 ~	2071	10.207 10 ウフマッ	3034	0.034×	2000	4.400
3007	0.107 *	2001	0.2/3/	3033	0.054		
3003	0.102	2307	10.200 0.054	302/	0.054		
30/4		2302	20.204 20.204	301/	0.036 X		
3647	0.197	2412	0.260 ×	3600	0.000 0.000		
3644	0.185 ×	2386	0.272	33/9	0.061		
3637	0.210×	2306	0.276	3579	0.057		
3632	0.197	2306	Ø.279 ×	3560	10.1058 ×		
3619	Ø.196 x	2269	0.258	3558	0.059		
3608	0.219	2208	0.277	3557	0.059		
3593	Ø.205×	2171	0.259	3528	0.057		
3591	0.215	2163	0.268	3525	0.060 ×		
3561	Ø.228 x	2097	Ø.266 ×	3499	0.060 x		
3560	0.214			3472	0.062 ×		
3552	0.201			3460	0.061		
3545	0.220			3443	0.063		
3519	0.228			3431	0.063		
3517	Ø.216 ×			3398	0.062		
3510	0 224			3378	0 062		
3485	0.231			3365	0.064		
3465	0 241			3360	0 067		
3457	0 223 x			3359	0 067 4		
3457	0 236			3330	0 073		
3437	0 238			3299	0 048		
7477	0 747 1			3769	0 067		
3354	0.243~			3207	0 049		
7776	0.277 0 770			3205	0 048		
7710	0.207			7170	0.000		
7070	0,270			31/7	0.072		
32/0	0.200			7117	0.077 0.097		
3242	0.243 X			3113	9.002 0.075		
3113	0.240			3112	40.0073		
311/	0.200			3103	0.071		
2112	10.248 X			3044	0.0/9×		
3111	0.236			2992	0.077		
3111	0.251 ×			2876	0.081		
3107	0.257			2862	0.089		
3025	0.268			2844	Ø.076 ×		
341/	0.245			2739	0.086		
2975	0.271 ×			2736	0.077		
2957	0.264			2681	0.082		
2936	0.269			2625	0.074		
2892	Ø.253 ×			2574	0.088		
2839	0.254			2523	Ø.076 ×		
		x) sing	gle crystal	_ UO ₂			

Table 1c: Measured reflectivities of UO₂ for the perpendicular (ρ_s) and the parallel (ρ_p) components at the wavelength of 647.1 nm and the angle of incidence of 72.0 degrees

текј	ρ _s	тека	ρ _Ρ
3816	0.263	3802	0.035
3798	0.231	3799	0.027
3761	0.311	3796	0.024
3754	0.281	3791	0.027
3747	0.302	3747	0.023
3741	0.279	3689	0.032
3694	0.339	3638	0.037
3686	0.358	3627	0.033
3671	0.394	3611	0.035
3656	0.356	3535	0.033
3644	0.374	3519	0.025
3644	0.370	3434	0.025
35/2	0.366	3406	0.037
3560	0.401	3375	0.030
3341	0.436	3303	0.040
3314	0.441	3261	0.039
3313	0.434	3242	0.027
3437	0.437	3163	0.037
3427	0.430	3132	0.027
3231	0.477 0.471	3100	0.042
3714	0.471	20/3	0.077
3205	0.458	3000	0.030
3200	0 458	2924	0 040
3140	0.495	2847	0.042
3112	0.492	2839	0.044
3108	0.469	2798	0.030
3103	0.484	2706	0.042
3101	0.482	2645	0.038
3015	0.497	2617	0.041
3011	0.465	2505	0.029
3010	0.500	2425	0.027
2944	0.483	2355	0.035
2913	0.489	2252	0.039
2816	0.481	2228	0.040
2778	0.471	2215	0.025
2768	0.486	2137	0.038
2747	0.512		
2/10	0.4/4		
23/8 2552	0.400		
2000 7477	10.477/ 17.494		
ፈታፈፈ ጋፈወና	0.404 0 407		
2700 7726	0.402 0 502		
2301	0.300 0 A74		
2280	0 518		
2179	0.487		
==:::			

Table 1d: Measured reflectivities of UO₂ for the perpendicular (ρ_s) and the parallel (ρ_p) components at the wavelength of 514.5 nm and the angle of incidence of 35.0 degrees

тека	ρ _s	тека	ρ _s	тско	ρ _ρ
3799	0.070	2154	0.218	3822	0.051
3787	0.085			3814	0.051
3782	0.091			3811	0.055
3759	0.117			3802	0.053
3755	0.095			3783	0.061
3736	0.097			3756	0.069
3734	0.096			3754	0.060
3721	0.118			3753	0.055
3678	0.127			3751	0.063
3671	0.134			3711	0.072
3652	0.140			3682	0.075
3620	0.160			3656	0.086
3610	0.161			3621	0.087
3610	0.166			3610	0.091
3604	0.168			3603	0.083
3544	0.166			3578	0.089
3534	0.172			3509	0.101
3528	0.183			3498	0.090
3422	0.193			3495	0.093
3414	0 180			3477	0.086
3410	0.188			3471	0.094
3308	0 199			3387	0.105
3237	0 198			3369	0.078
3177	0 205			3307	0.071
3167	0.192			3260	0.097
3165	0 199			3259	0.099
3155	0.178			3244	0.105
3119	0 207			3146	0.103
3118	0.204			3125	0.103
3117	0.207			3123	0.103
3115	0.210			3121	0.102
3111	0.198			3116	0.106
3107	0.195			3112	0.113
3088	0.217			3112	0.095
3028	0.202			3110	0.116
2991	0.227			3109	0.112
2913	0.198			2982	0.115
2911	0.216			2919	0.119
2811	0.222			2891	0.112
2691	0.213			2797	0.117
2619	0.214			2727	0.112
2593	0.207			2658	0.104
2556	0.232			2585	0.119
2542	0.208			2457	0.115
2463	0.219			2386	0.117
2408	0.216			2351	0.119
2394	0.210			2296	0.119
2296	0.226			2137	0.117
224 0	0.210				
2215	0.223				

Table 1e: Measured reflectivities of UO2 for the perpendicular (ρ_s) and the parallel (ρ_p) components at the wavelength of 514.5 nm and the angle of incidence of 45.0 degrees

тскј	ρ _s	τεκα	ρ _p
3785	0.134	3764	0.043
3751	0.154	3751	0.042
3747	0.147	3703	0.051
3730	0.171	3686	0.047
3707	0.181	3642	0.050
3667	0.209	3606	0.058
3663	0.192	3576	0.053
3659	0.209	3553	0.044
3617	0.220	3526	0.057
3580	0.219	3523	0.054
3565	0.215	3518	0.053
3529	0.235	3466	0.072
3524	0.226	3422	0.058
3496	0.234	3398	0.061
3464	0.250	3359	0.066
3375	0.237	3168	0.063
3372	0.253	3148	0.069
3366	0.251	3120	0.067
3331	0.253	3118	0.059
3312	0.261	3115	0.069
3275	0.261	3114	0.070
3197	0.265	3040	0.063
3182	0.262	3020	0.070
3123	0.265	2704	0.0/4
3123	0.230	2643	0.074
3121	0.2/1	2/4/	0.0/3
3110	0.270	2034	0.071
3112	0,236	2071	
3010	0.270	2063	0.000
2734	0.200	2000 7447	0.001
2720 7011	0.207	2403	0.074
2796	0 275	23/1	0 075
2794	0 286	2179	0 066
2785	0 273	21/7	0.000 0.074
2719	0.269		0.0/+
2658	0.276		
2507	0 282		
2491	0.274		
2489	0.264		
2386	0.280		
2371	0.272		
2306	0.288		
2264	0.275		
2146	0.278		

.

2146 0.272

Table 1f: Measured reflectivities of UO₂ for the perpendicular (ρ_s) and the parallel (ρ_p) components at the wavelength of 514.5 nm and the angle of incidence of 72.0 degrees

тскј	ρ _s	ТЕКЭ	ρ _s	тско	$ ho_{ m p}$
3789	0.223	2944	0.529	3796	0.036
3771	0.267	2886	0.553	3736	0.037
3766	0.261	2883	0.531	3712	0.038
3756	0 273	2844	0 529	3678	0.032
7757	0.286	2727	0 550	3645	0 047
3733	0.200	2727	0.500	7457	0.075
3/41	VU.2/7	2/23	0.542	7494	0.033
3733	0.207	2030	0.574	3020	0.037
3/10	0.333	2323	0.334	3002 7500	U.UJO 0 047
3714	0.317	2302	0.537	3370	0.043
3/08	12.330 2.330	24/4	10.330 0.5/5	3002	0.037
3677	0.343	2401	0.363	3232	0.038
3680	0.341	23/5	0.53/	3316	0.043
3671	0.373	2296	0.551	35102	0.039
3670	0.329	2258	0.532	3463	0.039
3664	0.364	2246	0.537	3429	0.032
3641	0.417	2240/	0.567	3385	0.046
3639	0.392	2221	0.558	3323	0.044
3637	0.382	2075	0.564	3304	0.038
3627	Ø.371	2062	0.539	3274	0.038
3624	0.436			3246	12.044
3598	0.417			3198	0.034
3590	0.414			3190	0.039
3574	0.453			3112	0.051
3570	0.399			3106	0.045
3561	0.448			3050	0.042
3554	0.431			2981	0.043
3540	0.449			2944	0.046
3540	0.455			2909	0.047
3514	0.427			2857	0.040
3483	0.488			2844	0.040
3433	0.476			2826	0.045
3387	0.496			2806	0.048
3356	0.498			2685	0.048
3349	0.510			2574	0.039
3302	0.510			2542	0.042
3300	0.517			2505	0.041
3298	0.525			2444	0.036
3278	0.533			2418	0.043
3235	0.510			2338	0.043
3207	0.511			2306	0.039
3199	0.525			2246	0.045
3171	0.540			2171	0.044
3113	0.523			2137	0.042
3112	0.526			2108	0.047
3112	0.529				
3109	0.509				
3101	0.530				
3098	0.547				
3025	0.539				
2989	0.551				

тско	ρ _s	текј	ρ _s	тскј	ρ _p	тскэ	ρ _p
3796	0.107	2701	0.233	3938	0.028	2146	0.114
3768	0.137	2652	0.220	3844	0.058		
3747	0.124	2585	0.241	3801	0.065		
3744	0.130	2561	0.233	3773	0.059		
3710	0.160	2502	0.249	3761	0.070		
3705	0.141	2477	0.228	3754	0.062		
3704	0.166	2472	0.232	3725	0.077		
3692	0.150	2355	0.227	3703	0.075		
3641	0.172	2338	0.237	3688	0.085		
3631	0.174	2221	0.243	3654	0.088		
3622	0.177	2171	0.238	3648	0.082		
3603	0.173	2154	0.223	3585	0.093		
3596	0.186	2086	0.235	3584	0.095		
3592	0.199			3538	0.092		
3581	0.179			3490	0.101		
3576	0.189			3467	0.098		
3575	0.181			3459	0.103		
3549	0.195			3428	0.102		
3533	0.191			3424	0.099		
3493	0.206			3416	0.103		
3465	0.200			3387	0.107		
3445	0.204			3375	0.103		
3445	0.209			3353	0.104		
3420	0.205			3294	0.111		
3402	0.216			3262	0.107		
3360	0.219			3255	0.108		
3335	0.219			3176	0.108		
3330	0.220			3168	0.116		
3325	0.217			3108	0.112		
3305	0.212			3107	0.124		
3235	0.220			3107	0.105		
3227	0.225			3103	0.113		
3195	0.223			3099	0.112		
3129	0.228			3019	0.119		
3116	0.219			2 999	0.129		
3109	0.221			2960	0.117		
3108	0.224			2918	0.112		
3105	0.233			2846	0.121		
3105	0.224			277 0	0.113		
3097	0.218			2752	0.116		
3021	0.235			2743	0.119		
3016	0.234			2665	0.120		
2981	0.228			2556	0.126		
2954	0.235			2540	0.120		
2875	0.250			2441	0.117		
2873	0.234			2363	0.113		
2843	0.226			2351	0.121		
2824	0.233			2258	0.113		
2824	0.234			2252	0.134		
2731	0.227			2154	0.118		

Table 1h: Measured reflectivities of UO₂ for the perpendicular (ρ_s) and the parallel (ρ_p) components at the wavelength of 458.0 nm and the angle of incidence of 46.0 degrees

тско	ρ _s	ТЕКЭ	ρ _s	тека	ρ _Ρ	тека	ρ _Ρ
3832	0.138	3028	0.268	3883	0.019	2505	0.085
3812	0.149	3015	0.291	3855	0.032	2469	0.080
3804	0.156	3015	0.288	3851	0.031	2401	0.076
3803	0.164	2966	0.283	3824	0.033	2363	0.089
3771	0.165	2904	0.274	3649	0.059	2311	0.086
3761	0.175	2900	0.283	3613	0.061	2228	0.075
3748	0.175	2872	0.283	3579	0.065	2201	0.089
3737	0.174	2807	0.281	3576	0.065	2097	0.072
3733	0.191	2792	0.271	3533	0.065		
3713	0.193	2783	0.296	3522	0.054		
3674	0.222	2724	0.288	3500	0.067		
3668	0.194	2593	0.297	3481	0.058		
3667	0.198	2593	0.283	3462	0.058		
3628	0.220	2563	0.268	3462	0.063		
3624	0.211	2530	0.297	3442	0.067		
3621	0.234	2489	0.268	3427	0.063		
3577	0.235	2463	0.272	3396	0.071		
3569	0.232	2363	0.296	3372	0.071		
3563	0.230	2351	0.285	3337	0.071		
3551	0.244	2315	0.275	3291	0.069		
3547	0.226	2163	0.286	3281	0.067		
3543	0.252	2154	0.290	3279	0.066		
3533	0.253	2062	0.278	3230	0.074		
3527	0.243			3223	0.069		
3321	0.258			3216	0.070		
3303	0.247			3178	0.0/4		
3483	0.243			31/0	0.070		
34/3	10.200 10.250			3137	0.071		
340/	0,232			3113	10.000 0.079		
3440	0,237 0,257			3107	0.070		
7610	0.200			3107	0.075		
3410	0,250			3107	0.073		
3400	0.261			70021	0 097		
3352	0,201			2987	0 073		
3338	0 270			2966	0 089		
3331	0.250			2924	0.091		
3322	0 274			2907	0 075		
3307	0.270			2888	0.085		
3301	0.269			2861	0.074		
3215	0.275			2807	0.083		
3162	0.258			2768	0.081		
3162	0.283			2759	0.073		
3119	0.283			2725	0.076		
3114	0.273			2716	0.085		
3111	0.256			2649	0.089		
3110	0.266			2632	0.085		
3107	0.278			2595	0.077		
3107	0.273			2576	0.088		
3106	0.276			2549	0.076		

Table 11: Measured reflectivities of UO₂ for the perpendicular (ρ_s) and the parallel (ρ_p) components at the wavelength of 458.0 nm and the angle of incidence of 73.0 degrees

текј	ρ _s	тскэ	ρ _p
3798	0.212	3786	0.048
3767	0.237	3770	0.057
3764	0 225	3764	0 048
3764	0 204	3744	0 051
3762	0 206	37/04	0 054
3735	0 292	3701	0.051
3731	0 220	3696	0 042
3701	0.220	3644	0 057
3699	0.264	3677	0 055
3690	0 779	3615	0.000 0.044
7689	0 347	3010	0.040
7484	0.347	7577	0 047
7451	0 314	3000	0.000
7615	0.317	7511	0.057
3013	0.362	3311 7504	10.033 17 17 54
7505	0.000	7420	0.01
3373	0.421	3407	0,000
7510	0.371	3480	0.012
3312 7505	0,431	7784	U.U07 0 055
3262	0,400	3004	10.055 0.055
346/	U.432	3310	0.000
3404	20.434 0.4/0	3170	0.000
3427 7707	0.460	3120	0.007
2373	U.4/7	3111	0.004
33//	(U.4/3) (N.497	3103	0.003
327/	0.400	3070	0.000
3246	0.477	3078	0.064
3162	0.477	3071	0.0/4
3112	0.306	3028	0.065
29/2	10.535	2780	0.0/4
2763	0.516	2758	0.061
2909	0.476	28/6	0.0/5
2060	0.336	2/9/	0.064
2044	0.308	26/1	0.068
2/34	0.514	2615	0.068
2/40	0.540	2542	0.065
2630	0.478	2375	0.071
2613	0.516	2355	0.062
2578	0.541	2351	0.066
2480	0.513	2269	0.071
2448	0.544	2208	0.068
2405	0.521		
2325	0.517		
2269	0.498		
2258	0.541		
2240	0.530		

21630.53521180.508

Table 2a: Reflectivity of UO₂ at the wavelength of 647 nm averaged at different temperatures for three angles of incidence

т [к]	θ ⁰	ρ _s	ρ _p	^ρ p ^{/ρ} s	ρ
2 500	35.5	0.206	0.111	0.539	0.159
	45.0	0.268	0.078	0.291	0.173
	72.0	0.489	0.035	0.072	0.262
2800	35.5	0.205	0.110	0.537	0.158
	45.0	0.266	0.078	0.293	0.172
	72.0	0.488	0.035	0.072	0.262
3000	35.5	0.204	0.109	0.534	0.156
	45.0	0.262	0.075	0.286	0.169
	72.0	0.486	0.035	0.072	0.260
3 200	35.5	0.200	0.105	0.525	0.152
	45.0	0.255	0.071	0.278	0.163
	72.0	0.480	0.034	0.071	0.257
3 500	35.5	0.184	0.091	0.495	0.138
	45.0	0.230	0.060	0.261	0.145
	72.0	0.437	0.032	0.073	0.235
3700	35.5	0.151	0.069	0.457	0.110
	45.0	0.180	0.047	0.261	0.113
	72.0	0.344	0.028	0.081	0.186

Table 2b: Reflectivity of UO₂ at the wavelength of 514.5 nm averaged at different temperatures for three angles of incidence.

т [к]	0 O	ρ _s	qq	ρ _p /ρ _s	ρ
2500	35.0	0.215	0.113	0.526	0.164
	45.0	0.274	0.074	0.270	0.174
	72.0	0.547	0.041	0.075	0.294
2800	35.0	0.213	0.112	0.526	0.163
	45.0	0.272	0.072	0.265	0.172
	72.0	0.545	0.041	0.075	0.293
3000	35.0	0.210	0.109	0.519	0.160
	45.0	0.270	0.071	0.263	0.170
	72.0	0.538	0.041	0.076	0.289
3200	35.0	0.203	0.105	0.517	0.154
	45.0	0.263	0.066	0.251	0.164
	72.0	0.527	0.040	0.076	0.283
3 500	35.0	0.181	0.094	0.519	0.138
	45.0	0.238	0.057	0.239	0.147
	72.0	0.465	0.037	0.080	0.251
3700	35.0	0.131	0.074	0.565	0.103
	45.0	0.182	0.045	0.247	0.114
	72.0	0.336	0.034	0.101	0.185
3700	35.0 45.0 72.0	0.131 0.182 0.336	0.074 0.045 0.034	0.565 0.247 0.101	0.251 0.103 0.114 0.185

Table 2c: Reflectivity of UO₂ at the wavelength of 485 nm averaged at different temperatures for three angles of incidence.

т К	θ ο	ρ _s	q ^q	$\rho_{\rm p}/\rho_{\rm s}$	ρ
2500	35.5	0.234	0.117	0.500	0.176
	46.0	0.283	0.081	0.286	0.182
	73.0	0.524	0.066	0.126	0.295
2800	35.5	0.233	0.116	0.498	0.175
	46.0	0.282	0.080	0.284	0.181
	73.0	0.522	0.066	0.126	0.294
3000	35.5	0.229	0.114	0.498	0.172
	46.0	0.280	0.077	0.275	0.179
	73.0	0.515	0.065	0.126	0.290
3200	35.5	0.224	0.110	0.491	0.167
	46.0	0.275	0.074	0.269	0.174
	73.0	0.502	0.063	0.125	0.282
3500	35.5	0.199	0.098	0.492	0.148
	46.0	0.248	0.062	0.250	0.155
	73.0	0.443	0.058	0.131	0.250
3700	35.5	0.155	0.077	0.497	0.116
	46.0	0.199	0.046	0.231	0.123
	73.0	0.310	0.051	0.165	0.180

i	λ =	647 nm	m $\lambda = 514.5$ nm		$\lambda =$	458 nm
Т(К)	ε ⁿ	ε ^h	ε ε	ε ^h	ε ⁿ	ε ^h
2500	0.842	0.801	0.836	0.792	0.825	0.791
2800	0.845	0.805	0.838	0.792	0.826	0.790
3000	0.849	0.807	0.841	0.794	0.829	0.791
3200	0.855	0.810	0.846	0.811	0.833	0.794
3500	0.871	0.830	0.863	0.819	0.852	0.817
3700	0.891	0.858	0.898	0.875	0.884	0.859
3800	0.910	0.888	0.934	0.901	0.912	0.890

Table 3: Spectral near-normal (ϵ^n) and hemispherical (ϵ^h) emissivity of UO₂ at three wavelengths λ .

Table 4: Spectral near-normal (ϵ^n) and hemispherical (ϵ^h) emittance of UO₂ averaged over the wavelength interval $\Delta\lambda$ (458 nm, 647 nm)

т(к)	ε ⁿ	ε ^h
2500	0.838	0.797
2800	0.841	0.799
3000	0.844	0.800
3200	0.849	0.813
3500	0.865	0.823
3700	0.894	0.866
3800	0.922	0.895