KfK 2784 Dezember 1980

Test of the EG&G Two-Phase Mass Flow Rate Instrumentation at Kernforschungszentrum Karlsruhe

Data Report Vol. 1: Test Results from LOFT Production DTT and a LOFT Type Gamma Densitometer

> J. Reimann, H. John, R. Löffel C. W. Solbrig, G. B. Shull, R. R. Good, L. L. Chen

> > Institut für Reaktorbauelemente Laboratorium für Isotopentechnik Projekt Nukleare Sicherheit

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Reaktorbauelemente Laboratorium für Isotopentechnik Projekt Nukleare Sicherheit

KfK 2784

Test of the EG&G Two-Phase Mass Flow Rate Instrumentation at Kernforschungszentrum Karlsruhe

Data Report Vol. 1: Test Results from LOFT Production DTT and a LOFT Type Gamma Densitometer

J. Reimann^{*} H. John^{*}

1. 00111

R. Löffel^{**}

C. W. Solbrig G. B. Shull R.R. Good L.L. Chen

Kernforschungszentrum KarlsruheEG&G Idaho Inc.*Institut für ReaktorbauelementeIdaho National Engineering*XLaboratorium für IsotopentechnikLaboratory

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Abstract

For many experiments which investigate the Loss-of-Coolant Accident (LOCA) in nuclear reactors, proper measurement of the two-phase mass flow rate is of great importance. This report presents the experimental description and the data of experiments designed to understand the behaviour of a free field drag disc turbine transducer (DTT) and a three beam gamma densitometer in steady-state horizontal steam-water and air-water flow. The pressure was varied between 2 and 75 bars, the experiments were made at a mass flow rate and void fraction range where various quite separated flow regimes occurred. Two different test sections with 103 mm ID (5" pipe) and 66 mm ID (3" pipe) were used.

Information on flow regime and phase distribution in the cross section was obtained with local impedance probes, measurements of the axial distribution of phase velocities in the test section piping were made with the radiotracer technique. These techniques are of great help for the physical interpretation of the single instrument readings. The results of detailed data analyses are given in another report.

Zusammenfassung

Test der EG&G-Zweiphasenmassenstrom-Instrumentierung im Kernforschungszentrum Karlsruhe

Analysebericht Nr. 1: Ergebnisse der Tests des LOFT-DTT-und eines LOFT-Gamma-Densitometers

In vielen Experimenten zum Kühlmittelverlustunfall von Kernreaktoren ist die genaue Messung des zweiphasigen Massenstromes von großer Bedeutung. Dieser Bericht enthält eine Beschreibung der Instrumentierung und die Daten von Experimenten zur Untersuchung des Verhaltens eines lokal messenden Drag Disc-Turbine-Transducers (DTT) und eines Dreistrahl-Gamma-Densitometers in stationärer, horizontaler Dampf-Wasser sowie Luft-Wasser-Strömung. Der Druck wurde variiert zwischen 2 und 75 bar, die Experimente wurden in einem Massenstromund Dampfvolumenanteils-Bereich durchgeführt, bei denen verschiedene, recht stark separierte Strömungsformen vorhanden waren. Zwei verschiedene Teststrecken mit Innendurchmessern von 103 mm (5" Teststrecke) sowie 66 mm (3" Teststrecke) wurden verwendet.

Lokale Impedanz-Sonden dienten zur Bestimmung der Strömungsform sowie zur Messung der Phasenverteilung im Strömungsquerschnitt, die Verteilung der Phasengeschwindigkeiten längs der Rohrachse wurde mit Radiotracer-Verfahren gemessen. Diese Meßtechniken sind sehr hilfreich für die physikalische Interpretation der einzelnen Meßsignale. Die Ergebnisse einer detaillierten Datenanalyse sind in einem weiteren Bericht enthalten.

ACKNOWLEDGEMENT

The authors wish to acknowledge the loop operators L. Pawlak and E. Wanner, the investigators who obtained the data D.J. Barnum, J. Colson, R.L. Crumley, A. Demski, V.W. Hansen, H.J. Helbert, R.D. Meininger and A. Stephens and R.L. Hoskinson who contributed in compiling and reviewing the experimental data.

Last but not least, the support given to this project by the US NRC and the German BMFT and the coordination by J.P. Hosemann from the KfK Project Nuclear Safety is gratefully acknowledged.

Nomenclature

.

Α	pipe cross-sectional area
D	pipe diameter
G	mass flux
Н	height of water
h	enthalpy
ħ	mass flow rate
р	pressure
р ₃ , р ₅	percent of DTT height covered by liquid for the
	three-inch, five inch pipe
S	slip
S	entropy
Т	temperature
۷	velocity
۷ _s	superficial velocity
X	quality
α	void fraction
ρ	density
ρV ²	momentum flux
Θ	angle for water level determination

- -----

Subscripts

А	A-Beam of LOFT-Gamma Densitometer
В	B-Beam of LOFT-Gamma Densitometer
С	c-Beam of LOFT-Gamma Densitometer
DD	Drag Disk
H ·	homogeneous flow
1	liquid
R	Radiotracer Technique
ref	reference instrumentation
т	Turbine Meter
t	test section
γ	LOFT Gamma Densitometer

Abstract/Zusammenfassung

Contents

Acknowledgement

Nomenclature

		page
1.	Introduction	1
2.	Test Program Summary, Test Loop Description,	2
	Instrumentation and Data Acquisition	
2.1	Test Program Summary	3
2.2	Test Loop Description	4
2.3	Test Sections	5
2.4	Experimental Instruments	6
2.5	Data Acquisition	8
3.	Equations for the Primary and the Computed Variables	23
3.1	Primary Engineering Unit Data	23
3.1.1	Reference Flow Rates	23
3.1.2	Advanced Instrumentation Data	25
3.2	Computed Variables	26
3.2.1	Mass Fluxes	26
3.2.2	Superficial Velocity or Volumetric Flux	27
3.2.3	Pipe Averaged Density and Void Fraction Calculations	28
3.2.4	Phase Velocity Comparisons	29
3.2.5	Comparisons to Single Instruments	29
3.2.6	The Dependence of Measurement Error on Void Fraction	30
3.3	Flow Regime Determination	30
3.3.1	Standard Flow Regime Map	30
3.3.2	LOFT Three Beam Gamma Densitometer Technique	31
3.3.3	Impedance Probe Technique	31
3.3.4	Reference Gamma Densitometer Technique	32
3.3.5	Water Level Estimation	32

4. Calibration

33

5.	Five-Inch Air-Water 2 Bar	page 3 9
6.	Five-Inch Steam-Water 4 Bar	51
7.	Five-Inch Steam-Water 40 Bar	61
8.	Five-Inch Steam-Water 70 Bar	73
9.	Three-Inch Steam-Water 40 Bar	85
10.	Three-Inch Steam-Water 70 Bar	97
11.	Conclusions	10 9
12.	References	110
Appen Appen 1. Th 2. Th 2.1 2.2	dix I: Impedance Probe dix II: The EG&G Reference Densitometer (Scanning Densitometer) dix III: The Radioactive TracerVelocity Measurement Technique e Equipment for Radiotracer Velocity Measurement e Control of Tracer Injection Valve Control Unit Specific Activities, Count Rates Obtained	111 123 135 135 136 136 136
3.	Detection	137
4. 4.1	Data Acquisition Recording Technique	137 138
5.	Data Evaluation Technique	138

1. INTRODUCTION

As part of the United States Nuclear Regulatory Commission (NRC) sponsored research efforts in pressurized water reactor safety, EG&G Idaho, Inc. is conducting loss-of-coolant experiments (LOCE) in the Loss-of-Fluid Test (LOFT) facility at the Idaho National Engineering Laboratory (INEL). One of the basic variables measured during the LOFT-LOCE is the two-phase mass flow rate. The flow measurement transducers used in LOFT were designed to measure the mass flow rates at discrete points in a transient two-phase flow field (free field measurement configuration) and were calibrated in steady state single phase water in full flow configuration. The single-phase full-flow calibrations are used with two-phase free field measurement models to compute two-phase mass flow rates.

-1-

In LOFT, two-phase flow is measured with an array of three drag disk turbine transducers (DTTs) and a three-beam gamma densitometer (GD). The DTT is a combination of a drag disk, a turbine and a thermocouple in a single unit. The drag disk measures momentum flux, the turbine measures velocity and the gamma densitometer measures fluid density. The mass flow rates will than be evaluated from the combined measurements of DTT and densitometer by using a measurement model. A proper measurement model should correlate the transducer outputs to the pipe flow rates via the physical behavior of the transducer. the local flow quantities measured by the transducers and the overall flow field.

To evaluate and understand the DTT behavior in a known two-phase flow field, a LOFT test program consisting of two-phase calibrations in two different test sections, one a five-inch pipe, and the other a three-inch pipe, was conducted in Germany during 1977. The instruments intended for calibration were the LOFT production Drag Disc Turbine Transducer (DTT) and a three-beam gamma densitometer. The DTT is representative of the type used in the LOFT L1 (nonnuclear) series. Both test sections provide free field calibrations. That is, the DTT is smaller than the inside diameter of both test sections. The gamma densitometer is a three-beam unit representative of the configuration used in LOFT, but modified to fit on a smaller pipe.

All testing was done in the Two-Phase Flow Instrumentation Test Facility of the Institut für Reaktorbauelemente (IRB) of the Kernforschungszentrum Karlsruhe (KfK) West Germany. The major objectives of this work are:

1. Provide calibration data for the LOFT drag disk turbine transducer (DTT) and the LOFT gamma densitometer for future instrument improvement.

- Determine if air-water calibration data can be used to predict steamwater calibration.
- 3. Provide data for future analysis development.
- 4. Correlate LOFT gamma densitometer data to flow regime determination.
- 5. Determine the effect of pipe size, pressure, and vapor fraction on mass flow rate determination.
- 6. Determine any other parametric effects upon the calibration.
- Determine if there is any method of calculating flow rates better than the current method used by LOFT or if one method currently used is better than others.
- 8. Determine the accuracy of the LOFT mass flow determination.

The work reported on in this volume was conducted to supply horizontal performance calibration data for LOFT instruments used to measure two-phase mass flow in pipes.

The instruments tested in this phase of the experiments included a DTT of the plenum type used primarily in the L1 series and a three-beam gamma densitometer of the LOFT type which was built to fit on three or five inch schedule 160 pipe.

This report presents the experimental description and the data obtained. Also included are brief sections on data obtained with the Radiotracer Measurement System, the Transversing Impedance Probe and the Scanning Densitometer Instruments. This report is the summarized version of the report /1/ which additionally contains operation log and setup sheets, IRB computer listings of reference values, instrument calibration data, EG&G strip chart recordings (voltages), EG&G time averaged digitized analog data (voltages), EG&G reference densitometer data (scanning densitometer) and more advanced instruments results.

A detailed analysis of data is given in another report /2/.

2. <u>TEST PROGRAM</u> SUMMARY, TEST LOOP DESCRIPTION, INSTRUMENTATION AND DATA ACQUISITION

To achieve the test objectives within the facility capabilities, tests were specified by the following independent variables:

1. The size of the test section relative to that of the DTT. The flow area ratio of the 5-inch test section to the DTT is 4.24 and that of the

3-inch test section 1.77.

- 2. The superficial gas velocity
- 3. The superficial liquid velocity
- 4. The test section pressure.

Six test series were conducted; four in the five-inch pipe and two in the three-inch pipe. In the five-inch pipe, an air-water series at a nominal pressure of 2 bars and three steam-water series at nominal pressures of 4 bar, 40 bar, and 70 bar, respectively, were conducted. In the three-inch pipe, two steam-water series were run at 40 bar and 70 bar nominal pressures. The reference mass flow rates were measured with orifices in single phase flow before mixing. In some experiments, radiotracer measurements were available which were able to measure the velocity of each phase, and, in combination with the reference mass flow data, are capable of providing an estimate of the void fraction. A vertically traversing impedance probe was used to provide void fraction distribution data on the five-inch pipe and a traversing reference gamma densitometer was used for this information on the three-inch pipe.

2.1 Test Program Summary

The five-inch test section was installed and initial instrument calibration was accomplished on October 18, 1977. The final day of testing was November 4, 1977. In addition to the single-phase calibrations the following nominal test points were run during this period: superficial gas velocity, V_{sg} =1; 5; 10 m/s; superficial liquid velocity, V_{sl} =0.05; 0.1; 0.5 m/s; test section pressure = 2 bar for air water, 4; 40; 70 bar for steam-water; the maximum mass flux was 600 kg/m²s.

The three-inch test section was installed and tests were run from November 9 through November 18, 1977. The turbine stuck during the first test point on November 17. A second DTT was installed on November 18, and the new turbine again stuck when the DTT was operated at high velocity (12 m/s) in slightly superheated steam. Testing was continued that day (November 18) with only the drag disk and densitometer operable since radioactive tracer information was also being obtained. The final day of loop utilization was Monday, November 21, 1977, when the replaced drag disk was calibrated.

During the three-inch pipe testing, radioactive tracer data was taken on November 10, 15 and 18, 1977. A part of the desired steam-water points in the low pressure (4 bar) region were not performed due to the unfavorable loop operating range. In addition to the single phase calibrations, the nominal test points were conducted at V_{sg} between 1 and 10 m/s, V_{sl} between 0.5 and 1.7 m/s and at pressures of 40 and 75 bar. The maximum mass flux was 1500 kg/m²s. Most of the tests were at 1000 kg/m²s.

2.2 Test Loop Description

A schematic of the facility is shown in Figure 2.1 and Figure 2.2. The facility is capable of either air water (low pressure and temperature) operation or steam-water (high pressure, high temperature) operation. Different supply lines are used for the air-water system but the same mixer and test sections (described later) are used for both. The air-water system is supplied by a high volume water pump and four air compressors. After the air-water mixture goes through the test section, the individual phases are seperated with the air being exhausted to the atmosphere and the liquid being recirculated. The steam-water mixture is supplied by two boilers. Two methods of operation are available. In the first, termed mixing runs, either boiler may be used to supply the steam. In the second method, either one or both boilers may be used to supply high pressure saturated liquid which is then flashed to a steam-water mixture. The mass flow rate through the test section can be controlled by the pump speed and air compressor control system in the air-water operation and by the boilers in the steam-water operation. Additional control is achieved in the steam-water operation by use of the boiler bypass. Details of the facility is given in /3/.

For air-water flow testing, the published maximum loop capability is 30 kg/s water and 1.0 kg/s air at a pressure of 4 bar. Operating pressure can be increased to 10 bar at reduced maximum flow. For steam-water testing, two steam generators are used. The lower limits of flow are approximately 0.164 kg/s for water and 0.024 kg/s for steam at 25 bar pressure. At lower pressures and flows, accuracy of flow measurement decreases. With both steam generators producing steam, the upper flow limit is 3.75 kg/s. With both steam generators producing hot water, the upper flow limit is 5.5 kg/s. Throttling of the hot liquid alone can be used to produce qualities up to 20 %. The flow rate capabilities versus quality are shown in Figure 2.3.

The two-phase loop consists of air-water and steam-water supply sections, mixing section and test sections. The reference flow measurement orifices are installed in the supply sections before the phase mixing.

Both the air input section and the water input section of the air-water loop have three orifices with different measuring ranges. Both "NW 100" orifices

remain fixed, but the "NW 50 " orifices are interchanged.

The steam water-loop uses two boilers, the Henschel Boiler and the Benson Boiler. For mixing runs, either of two combinations may be used: NW 65 (steam line from Henschel) and NW 50 (water line from Benson) or NW 100 (steam line from Benson) and NW 32 (water line from Henschel). For throttling runs, the water lines from both boilers, NW 50 and NW 32, are combined.

Figure 2.4 shows the mixing section. Mixing of the phases is accomplished by means of a perforated tube. This tube has a wall thickness of 3 mm and contains about 600 drilled holes (diameter 2mm) which are inclined slightly in the direction of the flow. For some tests, these holes are partly closed by a sleeve to make sure that even at low volumetric flows the pressure drop across the holes was big enough to ensure stable behaviour of the mixing chamber. There are two methods of operating the mixing chambers. In the first method, steam flows through the center pipe and water is injected from the outher annulus into steam. In the second method, the mixing chamber is revolved by 180⁰ so that water flows through the center pipe and steam is injected into the water from the outher annulus. The first method of operation may be used with other inserts for special purposes. For example, another insert is available to help promote a well developed annular mist flow in the test section. For the testing reported here, the second method of operation was used where steam is dispersed into water. This method of operation allows a closer approach to steam-water thermal equilibrium at the mixing chamber outlet.

There are two mixing chamber inserts available with outlet diameters of 50 or 80 mm. Between the mixing chamber outlet and the test section entrance, a connecting pipe (length 1.36 m; diameter 50 or 80 mm) was positioned which contained the junction to the bypass. In all the tests reported on in this volume, the 50 mm insert with the 50 mm connecting pipe was used.

2.3 Test Sections

The loop test sections are 6.50 meters in length including adapters. For the five inch test section, 0.65 m was used to diverge from the 50 mm I.D. piping to the five inch (103.2 mm I.D.) test pipe and 0.65 m to converge back to the 50 mm loop piping. A schematic of the five inch test section is shown in Figure 2.5. The first two sections consist of two adapters, one from 50 mm pipe to three inch pipe, and the other from three inch to five inch pipe. The third section is 384 cm long and contains the radiotracer injectors and detectors and the LOFT three beam gamma densitometer. The next pipe section is 69 cm long and houses the traversing impedance probe. The fifth section contains the DTT. The DTT is mounted in a spool piece which has an insert which

has the same internal diameter as the rest of the five inch pipe. The gamma densitometer is 125.3 cm upstream of the DTT. It could not be mounted closer because of the interference with the traversing impedance probe. The entrance length from the adapters up to the DTT is 453 cm, corresponding to 43.9 diameters. The remaining three sections consist of a 50.8 cm length of five inch pipe and two adapters which reduce to the 50 mm outlet pipe. The inlet and outlet adapters were made so that the bottom of the pipes were in line to prevent damming. The entire test section (as well as the rest of the loop) was well insulated whereever possible to minimize heat loss. Those parts of the test sections, the LOFT gamma densitometer, and the top of the pipe at the traversing impedance probe.

The three inch test section is shown in Figure 2.6. The total length including adapters is 649 cm. The 50 mm pipe to three inch pipe adapters are the same as those used in the five inch test section. The second and third pipe sections contain the radiotracer injectors and detectors and two fixed impedance probes. The fourth pipe section contains two gamma densitometers. The first is the LOFT three beam system. Because of support interference, the densitometer was mounted upside down on the three inch test section. This is discussed later in the instrumentation section. The second is a scanning reference densitometer which was intended to supply the same density distribution information on the three inch pipe that the traversing impedance probe supplied on the five inch pipe. The next three sections house the DTT and consist of the same three inch to five inch adapters used on the five inch pipe and the DTT spool piece. A pipe insert has been added which keeps the internal diameter through these test sections the same as the rest of the three inch pipe. A radiotracer detector is placed on the last section of three inch pipe. Another is placed on the 50 mm pipe which should give further information on change in void fraction through a contraction.

Figure 2.7 shows a photograph of a part of the test loop containing the 3" test section.

2.4 Experimental Instruments

The advanced instruments which were used in these experiments were supplied by LOFT, Semiscale, Institut für Reaktor Bauelemente (IRB), and Laboratorium für Isotopentechnik (LIT). The advanced instruments supplied by LOFT, the drag disk turbine transducer (DTT) and the three beam gamma densitometer (γ), were being calibrated in these tests. The other advanced instruments were used as supplementary measurements of the two-phase flow in the test section.

Schematics of the DTT installed in the test spool for both the five inch and the three test sections are shown in Figure 2.8. The drag disk is installed upstream of the turbine for all of the tests reported here. The same test spool was used for both test sections. A sleeve was inserted in each installation so that no pipe diameter changes occurred in the test spool.

Most of the DTT data was taken by a DTT of the plenum type used primarily in the LOFT L1 test series. The diameter of the drag disc is 1.52 cm (0.6 in.)and that of the turbine 3.05 cm (1.2 in.). The drag disc is located approximately 3.56 cm (1.4 in.) upstream of the turbine. Both of the drag disc and turbine are housed in a 3.56 cm diameter housing and enclosed in the upstream and downstream by 0.56 cm square grids. The ridge of the grids is in approximately tapered rectangular shape ($0.02 \text{ in.} \times 0.25 \text{ in.}$). The leading and tailing edges are of 0.18 mm in thickness. The drag disk (DD) force is measured by a linear variable differential transformer mechanically coupled to the drag disk. The turbine (T) rotation rate is measured by an induction coil pick-up which senses passage of the blade. Detail drawings of the DTT are shown in Figure 2.9.

The LOFT three-beam gamma densitometer beam orientations for the five-inch and three-inch test sections are shown in Figures 2.10 and 2.11, respectively. The methods of averaging the beams to obtain an average density are also indicated in these figures. Both a beam length weighting method and a vertical beam span weighting method are used. Both methods usually produce similar averages. The beam orientation desired includes one beam through the bottom of the pipe, one beam through the center, and one beam near the top of the pipe which would measure the water film thickness in annular flow. The beam size is approximately 1.27 cm in diameter. The source is located above the pipe in LOFT installations. It was necessary to mount the source below the three-inch test section because of interference between the detectors and the support structure.

To detect the flow regimes impedance probes supplied by IRB were used. Two fixed probes were installed upstream of the gamma densitometer on the three-inch pipe test section. One of these probes was installed 10 mm from the top of the pipe flow channel and the other 15 mm from the bottom of the pipe flow channel. In the five inch-test section a traversing impedance probe was used (shown in Figure 2.12) which additionally enabled measurements of the vertical void distribution. Details of this equipment are described in Appendix 1.

The scanning reference densitometer supplied by Semiscale was used on some of the experiments in the three-inch section to supply void fraction information.

--- 7 ----

This system uses a single source and a single detector (also shown in Figure 2.13). The source detector combination rates about a fixed point at the source location. In actual operation, diskrete readings are taken at 68 different radial positions to cover the pipe cross section. Details of this equipment are described in Appendix 2.

The radioactive tracer injection technique which was used to measure the individual vapor and liquid velocities was supplied by the LIT. Figure 2.14 shows the radioisotope injection ports and some radiotracer detectors to detect the passage of the radioisotope clouds. Details of this technique are described in Appendix 3.

2.5 Data Acquisition

All reference values such as pressures and temperatures in the test section and upstream of the single phase orifices, and the pressure differences of the orifices are recorded analog by two H.u.B. (Hartmann und Brown) 12 point printers and digitally by the KFK PDP11/40 computer. The PDP11 also reports the calculated single-phase mass flow rates and the total flow, and the temperature differences between the single phase and the saturation temperature. The quality (χ) , the homogeneous void fraction (α) , and the superficial steam and water velocities are calculated for the condition of the test section.

The LOFT data aquisition system consisted of Bay Laboratories signal conditioners and amplifiers, Ampex FR 1300 analog tape recorders, and Honeywell Strip Chart Recorders as well as all the peripheral specialized signal conditioning and monitoring and calibration equipment required for data aquisition. The outputs of the Bay Lab amplifiers were also input to a Hewlett-Packard 2100 computer with data printed out on a type 33 teletype printer.

FIGURE 2.1: TWO-PHASE AIR-WATER LOOP

FIGURE 2.3 FLOW RATE CAPABILITIES

FIGURE 2.4: MIXING SECTION

FIGURE 2.5: LOFT FIVE INCH TEST SECTION

14

FIGURE 2.6: LOFT THREE INCH TEST SECTION

FIGURE 2.7: PHOTOGRAPH OF INSTRUMENTED TEST-SECTION

FIGURE 2.8: DTT IN FIVE AND THREE INCH PIPE

Side View

All dimensions are in centimeters.

2.0

0

0

0

0

3.0

End View

FIGURE 2.9: LOFT DRAG DISK, TURBINE FLOW METER ASSEMBLY

FIGURE 2.10: BEAM ORIENTATION ON THE FIVE INCH TEST SECTION

FIGURE 2.11: BEAM ORIENTATION ON THE THREE INCH TEST SECTION

FIGURE 2.12: PHOTOGRAPH OF TRAVERSING IMPEDANCE PROBE

FIGURE 2.13: PHOTOGRAPH OF THREE BEAM DENSITOMETER AND SCANNING DENSITOMETER

FIGURE 2.14: PHOTOGRAPH OF RADIOTRACER INCECTION PORTS AND DETECTORS

3. EQUATIONS FOR THE PRIMARY DATA AND THE COMPUTED VARIABLES

The data in terms of computed variables are included in Sections 5 to 10 inclusive. The first sheet of each section presents all of the primary time average data in engineering units. That is, calibration equations have been applied to all the voltage readings to produce engineering units. All data manipulations such as calculation of average density from the three line average density values are referred to as computed variables and are included in all the pages other than the first. This section describes the computation procedures used for both the primary engineering unit data and the computed variables data.

3.1 Primary Engineering Unit Data

The first portion of these data sheets consists of the pressure, temperature, and reference flow rates. The second consists of advanced instrumentation data.

3.1.1 Reference Flow Rates

The reference mass flow rates for the air-water runs are calculated as described in Section 3.2.1 with no other corrections required. On the other hand, the steamwater mass flow rates of each phase must be corrected for phase change effects. Although the total mass flow is unchanged by these corrections, the total volumetric flow rate (or superficial velocity), the quality χ , and the homogeneous void fraction α are affected by them. The method of correcting these mass flow rates includes the following:

- (1) The flow rate and thermodynamik conditions are given at the metering section for each stream. The liquid supply is subcooled and the vapor supply is superheated enough to insure that each stream is single phase through the measuring orifice. A check is made to ascertain that two-phase conditions are not encountered in the orifice.
- (2) Each stream is throttled is enthalpically to the test section pressure

— 23 —

(3) The two streams are mixed assuming infinite heat transfer rate

 ${}^{\circ}_{m_{t}} {}^{h_{t}} {}^{=} {}^{\circ}_{m_{1}} {}^{h_{1}} {}^{+} {}^{\circ}_{m_{2}} {}^{h_{2}}$

where h_t is the mixture enthalpy neglecting the heat loss. (4) The heat loss is subtraced from the mixture at constant pressure

$$m_t^{\circ} h_t = m_t^{\circ} h_t - (0.1 T_t - 7^{\circ}C)_{3600}^{860}$$

where T = saturation temperature corresponding to $P_t^{},\,h$ is in Kcal/Kg, and $\overset{o}{m}$ is in Kg/s.

The heat loss calibration is often a small correction.

(5) The resultant quality, χ , can be calculated for the test section since h_{+} is related to χ by

$${\stackrel{\circ}{m}}_{t} {}^{h}_{t} = {\stackrel{\circ}{m}}_{t} {}^{\chi} {}^{h}_{g} (P_{t}) + {\stackrel{\circ}{m}}_{t} {}^{(1-\chi)} {}^{h}_{\ell} (P_{t})$$

where h_g and h_{ℓ} refer to saturation properties of the gas and liquid phases at pressure $P_t^{}.$

Solving for $\boldsymbol{\chi}$ yields

$$\chi = \frac{h_t - h_{\ell}}{h_g - h_{\ell}}$$

The mass flow rate of each phase in the test section can be calculated from the quality with the following equations except when χ is outside of the range 0 to 1

A quality outside of the range of 0 to 1 means that the flow was single phase, in which case the total mass flow, m_t° would represent the single phase flow rate.

The superficial velocities, V_s , which represent the volumetric velocity divided by the full pipe area, are obtained by the equations

$$V_{s_g} = \frac{m_g}{\rho_g A}$$

and
$$V_{S_{\ell}} = \frac{m_{\ell}}{\rho_{\ell} A}$$

where $\rho_{\mbox{g}}$ and $\rho_{\mbox{l}}$ are the saturation densities of gas and liquid respectively corresponding to the test section pressure, and A is the pipe cross-sectional area.

The homogeneous void fraction referring to a two-phase mixture without slip is:

$$\alpha = \frac{\chi \cdot \rho_g}{(1 - \chi) \cdot \rho_\ell + \chi \cdot \rho_q}$$

If both boilers are delivering saturated water and steam is produced in the throttle valves before the mixing section by flashing, the same equations are used to calculate the superficial velocities, the steam quality and the homogeneous void fraction in the test section.

3.1.2 Advanced Instrumentation Data

The equation used to relate turbine velocity (V_{τ}) values to output voltages (T) is given by the equation

$$V_T = 0.1547 \text{ m/s} + 1.337 \frac{\text{m}}{\text{s} \cdot \text{volts}}$$
. Volts Turbine

Two different equations were used to relate the momentum flux measured by the drag disk $((\rho V^2)_{DD})$ to output voltages.

Air-water (ambient temperature)

$$(\rho V^2)_{DD} = -449.649 \text{ kg/ms}^2 + 591.307 \frac{\text{kg}}{\text{m s}^2 \cdot \text{volts}}$$
. Volts DD steam-water (higher temperature)

(pV

$$V^2)_{DD} = -396.58 \text{ kg/ms}^2 + 458.15 \frac{\text{kg}}{\text{m/s}^2} \cdot \text{volts}$$
 Volts_{DD}

The calibration of these instruments in single phase flow is described in Section 5. The air-water coefficients were based on a cold water calibration. The selection of the coefficients used for the steam-water was based upon the single phase steam calibration.

The calibration equations for each gamma densitometer beam in the five-inch pipe are related to the output voltage by

$$\rho_{A} = 81.103 \text{ ln} (10.02/\text{volts}_{A \text{ beam}}) \cdot 16.01846$$

 $\rho_{B} = 69.881 \text{ ln} (10.02/\text{volts}_{B \text{ beam}}) \cdot 16.01846$
 $\rho_{C} = 106.42 \text{ ln} (10.02/\text{volts}_{C \text{ beam}}) \cdot 16.01846$

The calibration equations for the gamma densitometer beams in the three-inch pipe are related to the output voltage by

 ρ_{A} = 124.82 ln (10.01/volts_{A beam}) . 16.01846 ρ_{B} = 107.09 ln (10.01/volts_{B beam}) . 16.01846 ρ_{C} = 180.71 ln (10.01/colts_C beam) . 16.01846

The radiotracer technique is based upon measurement of the time that it takes a radiotracer to traverse a known distance. Thus, the velocity of a phase i, V_i , is estimated as where $D_n - D_{n-1}$ = distance between two detectors n and n-1 and t_i = time required for the radiotracer of phase "i" to traverse the distance between the two detectors.

The primary data in engineering units extrapolated for the gamma densitometer location are shown in Table 1 for each series. These velocities are used for further calculations.

The radiotracers may be injected at a rate of 10 injections per second so it is possible to determine the change in velocity with time. The phase velocities at different axial locations of the test section are shown in Appendix III.

3.2 Computed Variables

Most of the computed variables fall into four categories: the mass fluxes, the superficial velocities (volumetric flow rates), the vapor fraction, and the phase velocities. Other parameters are also calculated.

3.2.1 Mass Fluxes

The mass flux (G) can be calculated in three different ways by combining three instrument readings of density (ρ_{γ}) , turbine celocity (V_{T}) , and drag disk momentum flux $((\rho V^{2})_{DD})$.

 $G_{\gamma-DD} = \frac{M_{\gamma} - DD}{A} = (\rho_{\gamma} \cdot (\rho V^{2})_{DD})^{0.5}$ $G_{\gamma-T} = \frac{M_{\gamma} - T}{A} = \rho_{\gamma} \cdot V_{T}$ $G_{T-DD} = \frac{M_{\tau} - DD}{A} = \frac{(\rho V^{2})_{DD}}{V_{T}}$

and

Each of these methods depends upon two of the measurements and not the third. The total reference mass flux is calculated by adding the mass flow rates of the two phases and dividing by the pipe area.

The average density calculation is described in Section 3.2.3. The beam length averaged density is used in these calculations since it is negligibly different from the vertical beam span average.

The tabular values of the mass fluxes are given in Table 2 of each series. Comparisons of each of these mass fluxes to the reference mass flux is given in Figures 2 to 4 of each series. The numbers plotted on these figures and all others are the last two digits of the Test ID.

3.2.2 Superficial Velocity or Volumetric Flux

The total volumetric flux is calculated by adding the volumetric flow rates of each phase together and dividing by the pipe area. This is equivalent to adding the superficial velocities of both phases.

Two velocities are measured by the LOFT advanced instruments. The first is measured directly by the turbine (V_T) . This is the only measurement which can be compared directly to a reference measurement. The second velocity is calculated from a combination of the drag disk and gamma densitometer as

$$V_{DD-\gamma} = \left(\frac{(\rho V^2)_{DD}}{\rho_{\gamma}}\right)^{0.5}$$

The tabular values of these velocities are with reference values in Table 3 for each series. Figures 5 and 6 compare these velocities to the reference volumetric flux.
3.2.3 Pipe Averaged Density and Void Fraction Calculations.

The average density is calculated by weighted average of the densities calculated for each beam. The procedure recommended in the L1 series consists of selecting between two different averages. If the density of the upper beam is less than the middle beam and if the middle beam is also less than the lower beam, then stratified flow is assumed. The average to be used in this instance is based upon weighting the vertical component of the beam length passing through the pipe (vertical beam span averaging). The average for homogeneous flow regimes is recommended as a weighting of the length of each beam (beam length averaging). Both of the beam averages are included in Section 2.3 for each test section. Both of these averages are included in Table 4 of each series for all data points. Since these averages are very close, the beam length averaged density is used in all the following calculations of computed variables. The densities measured by gamma densitometer vs reference densities are shown in Figure 10.

The vapor fraction in the test section may be calculated from the densities measured by the gamma densitometer:

$$\alpha_{\gamma} = \frac{\rho_{\gamma} - \rho_{\ell}}{\rho_{g} - \rho_{\ell}}$$

where ρ_{g} and ρ_{ℓ} are the saturated densities of the gass and liquid respectively. The homogeneous void fraction, in the following called thermodynamic vapor fraction (or vapor volumetric flow ratio, a flow quantity), α_{T} , can be calculated by the equation

$$\alpha_{T} = \frac{V_{sg}}{(V_{sg} + V_{sl})} = \frac{\alpha_{\gamma} V_{g}}{(\alpha_{\gamma} v_{g} + (1 - \alpha_{\gamma}) V_{l})} = \frac{\alpha_{\gamma} S}{\alpha_{\gamma} S + (1 - \alpha_{\gamma})}$$

where V_g and V_l are the phase velocity of the gas and liquid phase. The ratio of α_{γ} and α_{T} is a measure of the slip between phases. As the slip ratio increases, the vapor fraction α_{γ} decreases.

The vapor fraction can also be calculated from the radiotracer velocities measured for each phase and the superficial velocity of each phase. The vapor fraction calculated from the vapor phase is

$$\alpha$$
Rg = 1 - $\frac{V_{sg}}{V_{g}}$

- 29 ----

The vapor fraction calculated from the liquid phase is

$$\alpha_{R\ell} = 1 - \frac{V_{S\ell}}{V_{\ell}}$$

Agreement between α_{Rg} and $\alpha_{R\ell}$ provides a measure of the accuray of the radiotracer velocities and the reference flow rates. If these two values agree, then the agreement between α_R and α_γ provides a measure of the accuracy of the gamma densitometer vapor fraction.

Table 4 of each test series presents the comparison between these vapor fractions. A comparison of the radiotracer vapor fractions are presented in Figure 7.

3.2.4 Phase Velocity Comparisons

The velocity of each phase can be calculated from the superficial velocities and the gamma densitometer vapor fractions as

$$V_{\gamma g} = \frac{V_{sg}}{\alpha_{\gamma}}$$
$$V_{\gamma g} = \frac{V_{sg}}{1 - \alpha_{\gamma}}$$

and

A comparison of these velocities to the radiotracer velocities are presented in Table 5.

The slip ratio is calculated for sets of velocities by the equations

$$S_{\gamma} = \frac{V_{\gamma g}}{V_{\gamma g}}$$

and

$$S_{R} = \frac{V_{g}}{V_{\ell}}$$

3.2.5 Comparisons to Single Instruments

Three quantities were calculated to attempt to evaluate individual instruments. The turbine is evaluated directly by comparing it to the total superficial velocity shown in Figure 5. A reference density can be calculated from reference values assuming equal phase velocities by the equation

$$\rho_{\rm H} = \frac{{\rm G}_{\rm ref}}{{\rm V}_{\rm s\ell} + {\rm V}_{\rm sg}}$$

The value of the length averaged gamma densitometer density is plotted versus $\rho_{\rm H}$ in Figure 10.

Two different reference momentum fluxes can be calculated. The first is obtained using only reference measurements assuming that the velocities are equal.

$$(\rho V^2)_{H} = (G)_{ref} (V_{sl} + V_{sg})$$

The other momentum flux which can be calculated depends upon the densitometer measured void fraction (α_v) by using the definition

$$(\rho V^{2})_{\gamma} = (\alpha_{\gamma} \rho_{g} V_{g}) V_{g} + ((1 - \alpha_{\gamma}) \rho_{\ell} V_{\ell}) V_{\ell}$$
$$(\rho V^{2})_{\gamma} = G_{g} \cdot \frac{V_{sg}}{\alpha_{\gamma}} + G_{\ell} \cdot \frac{V_{s\ell}}{(1 - \alpha_{\gamma})}$$

or

The drag disk value is evaluated by comparing the drag disk outputs with $(\rho V^2)_H$ in Figure 11 and with ρV_γ^2 in Figure 12. These values are presented in Table 8.

3.2.6 The Dependence of Measurement Error On Void Fraction

The interested measurement quantities, mass flux and velocity, is thought to be dependent on void fraction. The deviations of the measured mass flux and velocity plotted versus void fraction are shown in Figure 8 and 9 respectively for the turbine and gamma densitometer.

3.3 Flow Regime Determination

The flow regime can be estimated from three techniques; (1) a standard flow regime map, (2) the LOFT three-beam gamma densitometer, and (3) the IRB impedance probe and the Semiscale reference gamma densitometer on the three-inch test section.

3.3.1 Standard Flow Regime Map

The flow regime map used was taken from Govier and Aziz /4/ and converted to metric units. This flow regime map requires knowledge of the superficial

velocities of each phase. The coordinates of each data point are plotted on a flow regime map in Figure 1 a in each series and the flow regime indicated is listed in Table 6.

3.3.2 LOFT Three Beam Gamma Densitometer Technique

The gamma densitometer used in these tests provided three beams, from which three chordal average densities were calculated. These values can be processed with the three-beam densitometer reduction model /5/ to obtain flow regime and pipe cross-sectional average density. This model was applied for those three-inch pipe tests where reference densitometer measurements were made (see Appendix 2). In those tests the model /5/ always predicted stratified flow.

The frequency response of the densitometer is limited only by count rate statistics. The densitometer, as used in these tests, was capable of a minimum frequency response of 100 Hz. The accuracy of the densitometer is also a function of count rate statistics, as well as other factors. A 2 σ accuracy of ±20 kg/m³ should be applied to the data obtained with the three beam densitometer in these tests.

3.3.3 Impedance Probe Technique

The impedance probe data on the five-inch tests were obtained with the traversing impedance probe which was able to give experimental data as a function of Vertical position over the whole pipe. At a given location in the pipe, the probe gives the vapor fraction versus time. This allows the determination of an average vapor volume fraction at that location as well as an indication of the size of the bubbles, droplets, or slugs passing by a point. Combining the data at all vertical positions yields a good idea of the flow structure details as well as the average void fraction over the pipe. In the three-inch tests two fixed impedance probes were used with a distance of 5mm above the bottom and below the top of the pipe, respectively. Because two measuring positions do not give the same amount of information as a traversable probe, for flow regime determination the time dependent signals of the gamma densitometer and the DTT were sometimes also used. The flow regime map obtained from this technique as well as the definition of the flow regimes are also described in Appendix 1. Figure 1b in each data section presents the data on the revised flow regime map based on the data of the 40 and 75 bar experiments.

3.3.4 Reference Gamma Densitometer Technique

The reference densitometer is characterized by a fixed source, a small exposed detector area, and a traversing mechanism to move the detector in an arc about the source point to obtain the density at many chordal positions over the flow field. These densities also can be processed with a special data reduction model /8/ to give flow regime and pipe cross-sectional average density. Appendix 2 contains the results of the density distribution in the vertical direction.

3.3.5 Water Level Estimation

The assumption can be made that there is a collapsed water level to estimate whether single-phase or two-phase is flowing through the DTT. The location of the water level can be determined by knowing the vapor fraction α_{γ} . The value of α_{γ} can be determined as

$$\alpha_{\gamma} = \frac{vapor area}{total area}$$

or (compare Fig. 3.1)

$$\alpha_{\gamma} = 1 - \frac{1}{2\pi} (\theta - \sin \theta)$$

Fig. 3.1 : Water Level Determination

The height of the water level with respect to the bottom of the pipe is

$$H = \frac{D}{2} (1 - \cos (\frac{\theta}{2}))$$

The percent of the DTT height covered by the liquid can be calculated by

$$P_3 = \frac{H-1.427 \text{ cm}}{3.81 \text{ cm}} \times 100 \%$$

for the three-inch pipe, and

$$P_5 = \frac{H-3.255 \text{ cm}}{3.81 \text{ cm}} \times 100 \%$$

for the five-inch pipe. These values are included in Table 6.

4. CALIBRATION

The majority of the data in this report were taken with DTT Serial Number 16. The specified limits of this instrument are turbine from 0.46 to 9.15 m/s and drag disc from 373 to 5215 kg/ms². The calibration of the instruments in this device in single-phase flow are reported in this section. There were eight series of calibrations performed. These were:

- The calibration performed at ARA in all water in a pipe of the same area as the DTT (referred to here as full flow).
- (2) An all water calibration in the five-inch test section (cold).
- (3) An all steam calibration at 75 bar in the five-inch pipe.
- (4) An all steam calibration at 40 bar in the five inch pipe. (The accuracy of this run is suspect.)
- (5) Repeat of all steam 40 bar in the five-inch pipe.
- (6) An all steam calibration at 40 bar in the three-inch pipe.
- (7) An all water calibration under hot conditions at 70 bars in the three inch-pipe.
- (8) An all water calibration under hot conditions at 40 bars in the three-inch pipe.

There were no calibrations performed in single-phase air flow or steam flow at low pressure.

Turbine data are plotted in Figure 4.1 and the drag disk data are plotted in Figure 4.2. Continuous lines were drawn visually through the test points for each of the series. The coefficients which were used to obtain turbine velocities and drag disk momentum fluxes from voltage outputs were given in Section 3.1.2. These equations are shown as dashed lines in Figure 4.1 and 4.2, resepectively.

The turbine calibrations show that although each data set appears to be self consistent within each series, there is a difference between each series. However, the difference does not seem to be significant (except for the 40 bar five inch pipe points which are suspect) and the single curve fits all of the data well within the two-phase data variation. Consequently, the error

in calculations made with the turbine output should be close to zero for vapor fractions of both zero and one. There is no clear variation of the data with pipe size, pressure, or fluid. The drag disk calibrations show a large variation in the momentum flux output versus voltage output from the drag disc. The curve which appears to deviate the most from the other data is the all water calibration in full flow done at ARA before taking the unit to Karlsruhe. It has been discovered that there is a large installation factor associated with the drag disc and that variation in length of leads to the unit will cause a difference in calibration. Hence, the data obtained at ARA for this unit are not usefull and are not considered part of the relevant calibration for the Karlsruhe data. The rest of the calibration curves show an interesting variation. Each one of the calibrations is different from each other, but again, the variation between them is small. Each of the data sets seem quite consistent within each other and most of them fall on a straight line. The calibration which shows the greatest variation from a straight line is the all water calibration which was done at low temperature. This variation may be due to a greater amount of friction at low temperature. This calibration also seems to show the greatest deviation from the other curves particulary at high flow rates. There is no clear variation between the all steam calibrations with either pipe size or pressure. In fact, the four calibration points which were taken at high temperature in all water also fall in this same general area. Hence, it is concluded that the drag disk is not sensitive to calibrations in all steam or all liquid, but it appears to be sensitive to the temperature at which it is calibrated. Hence, one calibration line was used for the air-water data reduction which, of course, is done at low temperature and a different curve (as shown in Figure 4.2) was used for the calibration coefficients for all of the data taken in steam-water at the higher temperatures.

Reference instrumentation at KfK supplied by INEL consisted of pressure, temperature, differential pressure and density instruments. Table 4.1 summarizes the uncertainties associated with this instrumentation. Calibrations for the pressure, temperature and differential pressure instrumentation were conducted at INEL facilities prior to shipment to the KfK test facility. The gamma densitometers were calibrated prior to each day of testing. The calibration of the densitometer consisted of setting the gain and zero offset of each beam such that a predetermined calibration equation was correct. The reference conditions for the densitometer calibration were obtained by filling the test section with steam and then water. Shim calibrations were not used. No calibrations of other reference instrumentation were conducted at the KfK facility.

TABLE 4.1

INEL REFERENCE INSTRUMENTATION AT GFK TWO PHASE TESTS

Instrument Type	Serial Number	Uncertainty*
Pressure		
CEC 1000	2611	
	2613	
CEC 2500	2353	± · 1% RD RSS 11 psi
	2734	
Differential Pressure		• •
BLH 50"	42694	± · 16% RD RSS.07 psid
BLH 20"	39192	
Temperature		
Туре К ТС	none	± 4.2% RD
Density		
3-beam	none	± 23.9 kg/m ³ single beam
gamma densitometer		± 78.0 kg/m ³ pipe average density
Scanning Gamma	none	about 1%
Densitometer		
 * Uncertainty is 2 limits Uncertainty Analysis TRE RD - Reading 	from LOFT Experiment EE-NUREG-1089	al Measurements

RSS- Root Sum Square

36

-

Figure 4.2. Drag Disk Calibration in Single Phase

,

5.

FIVE-INCH AIR-WATER 2 BAR

ι

.

,

FLUID: AIR - NATER PIPE SIZE= 5 INCH DOUBLE EXTRA STRONG NOMINAL PRESSURE= 2 BARS	INSIDE DIAMETER= 0.10320 M Turb. DIA.= 0.0301 M PIPE Arem= 0.0003647 M12	
FLON RATES RUN AIR H ID PRESS. TEMP. SUP-VEL MASS SUP-VE TSN (BARS) (DEG C) (M/S) (KG/S) (M/S)	GANNA DEASITOMETEP DRAG A BEAN 8 SEAM C BEAN IMP ATER TUPB. DISK LONER MIDDLE UPPER L MRSS VEL (KG/ (KG/ (KG/ (KG/S) (M/S) M*St2) N*3) M*3> M*3)	FADIOTRACER EDANCE FROBE VELOCITIES INSERTION AIR WATER Comments (NH) (M/S) (M/S) (AT GAMMA DEN3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ 0.415 3.21 - 260 45 33 \\ 0.415 0.31 - 474 232 32 \\ 1.863 0.39 532 361 134 45 \\ 1.053 6.87 934 176 36 39 \\ 1.693 7.07 935 170 36 38 \\ 1.038 6.43 720 165 34 38 \\ 1.038 6.61 720 164 32 37 \\ 1.038 6.61 720 164 31 32 37 \\ 1.038 6.61 720 164 31 38 10.038 100$	0 00 below range 0 T, DD below range 0 T below range 20 50 90 90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.415 7.01 600 145 31 41 0.415 7.17 591 142 29 40 2.075 7.16 1879 127 42 47 2.075 7.15 1831 132 43 51 2.075 7.20 1340 123 37 34 2.075 6.44 553 131 42 48 2.075 7.02 1653 128 37 33 2.075 6.73 952 128 38 37	0 20 40 30 70 50 90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95 90 90 95 40 60 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 10 95 50 10 30 50 50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.275 2.71 957 112 62 40 4.275 0.72 1023 356 183 43 4.275 0.71 991 362 189 25 4.275 0.82 1083 353 178 28 4.275 0.73 969 349 179 28 4.275 0.76 1030 350 174 29 4.275 0.76 963 356 173 31 4.275 0.76 928 226 191 24	70 20 10 50 40 70 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.275 0.83 1047 360 199 26 4.275 0.88 1116 380 199 26 4.275 0.91 1124 376 198 27 4.275 0.33 1121 370 191 6 4.275 6.38 1121 370 191 6 4.275 6.84 1140 376 204 49 4.275 0.90 1243 372 193 39 4.275 0.90 1243 372 193 39	80 10 30 40 50 60 70 Dash indicates error in data. 80 Blank indicates no data
4216 2.0 23.6 0.62 0.010 0.515 4216 2.0 23.6 0.62 0.010 0.515	4.275 0.94 1399 372 199 32 4.275 0.93 1477 377 262 29	Blank indicates no data.

TABLE 5.1: PRIMARY ENGINEERING UNIT DATA

4-1

5 INCH 2 BAR

5 INCH 2 BAR	5 INCH 2 BAR	DENSITIES (KGZMAS) VAFC ACTIONS
RUN GDOT GDOT GDOT GDOT ID REF G-T G-DD T-DD TSN (KG/M†2*S) (KG/M†2*S) (KG/M†2*S)	RUN TURB, VEL. ID VSL+VSG VEL DD-G TSN (M/S) (M/S) (M/S)	ID VERT AVG LEN AVG ALPHA ALPHA TSN GAMMA GAMMA GAMMA THERMO (LEN)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4206 4.597 3.213 4207 0.648 0.310 4209 1.584 0.394 1.755 4209 9.859 6.868 3.373 4209 9.859 6.868 3.373 4209 9.859 6.605 3.029 4210 10.444 7.014 2.871 4210 10.444 7.169 2.889 4210 10.444 7.169 2.889 4211 10.644 7.169 2.889 4211 10.644 7.204 5.301 4211 10.644 7.204 5.301 4211 10.644 6.734 3.717 4211 10.644 6.734 3.717 4211 10.644 6.564 3.550 4211 10.644 6.564 3.495 4212 6.476 4.918 4212 6.476 5.232 3.084 4212 6.476 5.232 2.979 4212 6.476 5.232 2.979 4212 6.476 5.232 2.979 4212 6.476 5.232 3.084 4212 6.476 5.232 3.091 4212 6.476 5.232 3.091 4212 6.476 5.193 2.946 4213 10.794 8.650 6.418 4214 4.413 2.907 3.974 4214 4.413 2.706 3.608 4215 1.634 0.712 $2.$	4206 123.56 115.90 0.88 0.99 4207 278.30 263.70 0.72 0.92 4209 199.54 189.01 0.80 0.86 4209 89.33 84.70 0.91 0.99 4209 86.63 82.19 0.91 0.99 4209 84.39 80.10 0.92 0.99 4210 76.26 72.75 0.92 1.00 4210 74.27 78.53 0.92 0.99 4210 74.27 78.75 0.92 0.98 4211 74.92 72.25 0.92 0.98 4211 74.92 72.25 0.92 0.98 4211 74.92 72.25 0.92 0.98 4211 76.88 74.11 0.92 0.98 4211 76.88 74.11 0.92 0.98 4211 75.47 72.24 0.92 0.96 4212 76.50 72.68 0.92 0.96 4212 80.40 77.08 0.92
TABLE 5.2: MASS FLOW RATE COMPARISON	TABLE 5,3: TOTAL VELOCITY COMPARISON	TADLE 514: VOLD FRACTION COMPARISON

42 —

	5 INCH								INCH		
RUN ID TSN	V GAS G DENS (M/S)	V LIQ. G DENS (M/S)	SLIP G DENS			<u>From Gam</u>	ma Densitometer	RUN ID TSN	ALPHA GAMMA	GDOT-GDOT G-T REF (KG/M†2*S)	V:-(VSL+VSG) (M/S)
4206 4207	5.181 0.820	0.409 0.178	12.675 4.607	RUN ID TSN	From Govier & Aziz _Flow Regime_Map	Flow <u>Regime</u>	Interface Location(%)*	4206 4207 4208	0.88 0.72 0.80	313.69 31.02 -151.60	-1.38 -0.33 -1.19
4208	10.200	1.094	1.564	4206	Wave Flow		-36.81	4209	0.91	438.24	-2.99
4209	10.652	1.451	7.343	4207	Stratified Flow		2.19	4209	0.71 0.92	437.41	-3.43
4209	10,625	1.491	7.128	4208	Slug Flow		-16.80	4209	0.92	374.99	-3.25
4209 4210	10.506	0.658	6.972 17. 09 5	4209	Annular Mist		-46.28	4210 4210	0.92 0.93	439.88 437.37	-3.43 -3.28
4210	11.224	0.676	16.598	4210	Annular Mist		-52.26	4211	0.92	244.17	-3.54
4211 4211	11.242	3.314 3.172	3.557	4211	Slug Flow		-52.26	4211 4211	0.92 0.93	270.26	-3.49
4211	11.154	3.666	3.043	4212	Slug Flow		-49 09	4211	0.92	208.65	-4.20
4211	11.266	3.227	3.491	4212	Stug Flow		-43.03	4211	0.93	203.22	-3.62
4211	11.199	3.477	3.221	4213	Slug Flow		-59.83	4211	0.93	195.19	-3.91
4211	11.262	3.243	3,472	4214	Slug Flow		-50.47	4211	0.92	210.85	-4.00
4211	11.242	3.312	3.394	4215	Slug Flow		-11.43	4212			-1.56
4212	C 70C	2 001	3 340	4215			0.01	4212	0.92	118.17	-1.65
4212	6.785	2 961	2.340	4216	Slug Flow		- 9.01	4212	0.92	129.09	-1.39
4212	6.808	2.786	2.443					4212	0.92	182.00	-1.24
4212	6.829	2.594	2.535					4212	0.92	172.62	-1.28
4212	6.829	2.696	2.533					4213	0.95	-95.74	-2.44
4213	10.858	9.628	1.128		*Pipe Empty: 0.0 cm 1	iquid level	is -85.43%	4213	0.95	-223.66	-5.18
4213	10.880	9.277	1.173		Dipe Full: 10 32 cm	liquid level	is 185,43%	4213	0.94	-27.83	-2.14
4213	10.934	8.543	1.280		Fipe fulli. 10.52 cm	inquita rever		4214	0.93	-330.98	-1.58
4214	4.187	7.462	0.561		Bottom of DTT Housing	1: 3.255 cm	liquid level is 0.0%	4214	0.93	-349.22	-2.00
4214	4.206	7.017	0.397		Ton of DIT Housing.	7 07 cm liqu	id level is 100.0%	4214	0.93	-352.85	-2.05
4214	4.200	6 746	0.377		Top of bit housing.			4214	0.92	-306.38	-1.51
4214	4.220	6 711	0.620					4214	0.72	-319.99	-1.71
4215	1 434	2.344	0.642					4215	0.70	-363.17	-0.92
4215	1.438	2.320	a. 620					4215	0.79 0.79	-348 90	-0.92
4215	1.420	2.428	0.585					4215	0.79	-368.10	-0.90
4215	1.418	2.442	0.581					4215	.0.79	-363.09	-0.87
4215	1.416	2.454	0.577					4215	0.79	-361.82	-0.88
4215	1.421	2.426	0.586					4215	0.77	-330.73	-0.77
4215	1.446	2.281	0.634					4215	0.78	-343.05	-0.80
4215	1.432	2.358	0.607					4216	0.77	-320.63	-0.25
4216	0.802	2.231	0.359					4216	0.77	-315.63	-0.22
4216	0.800	2.247	0.300					4216	0.78	-331.79	-0.25
4216	0.700	2.363	0.333					4216 4216	0.75	-320.93	-0.28
4210	0.012	2.171	й. 372					4210 2215	0.15 a 77	-323.21	-0.29
4216	0.802	2.226	0.360					4216	0.77	-310 13	-0.23 -0 19
4216	0.800	2,246	0.356					4216	0.77	-310.01	-0.20
4216	0.803	2.223	0.361								0.20

TABLE 5.5: PHASE VELOCITY COMPARISON

TABLE 5.6: FLOW REGIME COMPARISON

TABLE 5.7: ERROR CALCULATIONS

5 INCH 2 BAR

- 43 -

LTR LO 00 79-109

LTR LO 00 79-10! KFK 2784

FIGURE 5.1A: GOVIER AND AZIZ FLOW REGIME MAP

.

-- 45 ---

- 46 ---

FIGURE 5.4: MASS FLUXES CALCULATED FROM TURBINE AND DRAG DISC MEASUREMENTS AT DIFFERENT REFERENCE VALUES

FIGURE 5.5: THE VELOCITIES MEASURED BY TURBINE AT VARIOUS VOLUMETRIC FLUXES

FIGURE 5.6: THE VELOCITIES CALCULATED FROM DRAG DISC AND DENSITO-METER MEASUREMENTS AT DIFFERENT REFERENCE VOLUMETRIC FLUXES

6000-

.....

•

·

. . 6,

FIVE-INCH STEAM-WATER 4 BAR

FLUID: STEAM - WATER PIPE SIZE= 5 INCH DOUBLE EXTRA STRONG NONINAL PRESSURE= 4 BARS INSIDE DIAMETER= 0.10320 M TURB. DIA.= 0.0331 M PIPE AREA= 0.0083647 M*2

RUN			SI	FLOW	RATES	ATER	TURB.	DRAG DISK	GAMMA A BEAM LOWER	DENSITO B BEAM MIDDLE	DMETER C BEAM UPPER	IMPED PROBE	RADIOTRACER VELOCITIES STEAM WATER	Comments
ID	PRESS.	TEMP.	SUP-VEL	MASS	SUP-VE	MASS	VEL	(KG/	(KG/	(KG/	(KG/	(KG/	(M/S) (M/S)	
TSN	(BARS)	(DEG C)	(M/S)	(KG/\$)	(M/S)	(KG/S)	(M/S)	M*S+2)	M43)	M+3)	M43)	M73)	(AT GAMMA DENS)	
5031	4.4	121.8	5.84	0.115	0.478	3.681	1.13	494	172	56 ·	42	122		
5032	2 5.6	121.0	10.42	0.257	0.238	1.822	3.74	603	59	19 ·	39	49		
5033	3 5.6	155.7	0.83	0.020	0.227	1.736	0.16	69	285	132	25	227		T, DD below range
5034	4.2	142.9	0.82	0.015	0.484	3.734	0.45	283	-	-	-			T, DD below range
5035	5 4.4	146.0	4.49	0.089	0.090	0.693	0.15	133	150	32	38	113		T. DD below range
5050	9 4.6	144.7	9.90	0.202	0.119	0,915	4.65	784	104	30	47	76		
5051	1 4.3	145.8	4.53	0.088	0.246	1.899	0.29	206	175	43	39	140		T, DD below range
5052	2 4.9	154.2	0.76	0.017	0.109	0.837	0.14	288	527	351	54	360		T, DD below range

Dash indicates error in data Blank indicates no data

TABLE 6.1: PRIMARY ENGINEERING UNIT DATA

ន៍

5 INCH	4 BAR		
RUN GBOT ID REF TSN (KG/M†2*8	GDOT G−T > (KG/M†2*S)	GDOT G≁DD (KG∕M↑2¥S)	GDOT T−DD (KG/M†2*S)
5031 453.81 5032 248.54 5033 209.93 5034 448.19 5035 93.48 5050 133.53 5051 237.54 5052 102.09	2 104.562 4 142.268 0 25.875 3 11.199 7 277.072 6 25.483 6 48.503	213.510 151.397 104.377 99.523 216.045 134.177 310.679	435.974 161.112 421.052 634.409 884.409 168.459 706.502 1989.987

TABLE 6.2: MASS FLOW RATE COMPARISON

4 BAR

V LIQ. G DENS

(M/S)

4.879

6.188

1.342

1.149

1.911

2.664

0.300

TABLE 6.5: PHASE VELOCITY COMPARISON

SLIP

G DENS

 $1.326 \\ 1.752$

0.744

4.243

5.526

1.872

3.977

5 INCH

RUN

TSN

5031

5032

5033

5034 5035 5050

5051

5052

ID

V GRS G Dens (M/S)

6.472

0.999

4.875

1.194

10.559

10.838

	5 INCH	4	BAR	
RUN ID TSN	VSL+VSG (M/S)		TURB. -VEL (M/S) (VEL. DD-G M/S)
5031 5032 5033 5034 5035 5050	6.316 10.659 1.057 1.301 4.583 10.021		1.133 2 3.741 3 0.165 0 0.445 0.151 1 4.654 3	.313 .981 .665 .339 .629
5051 5052	4.772 0.869		0.292 1 0.145 0	.536 .927
TABLE	6.3: TO	TA	L VELOCIT	Y COMPARISON

5 INCH 4 BAR

DENSITI	ES (KG∕M↑3)	VAPOR FRI	ACTIONS
ID VERT AVG TSN GAMMA	LEN AVG IMPED Gamma probe	ALPHA T	ALPHA ALPHA IMPD THERMO PROBE
5031 96.68 5032 38.73 5033 165.68	92.31 121.75 38.03 48.53 157.08 221.73	0. 0.56 0.83	0.87 0.92 0.95 0.93 0.76 0.79
5034 5035 78.13 5050 61.44 5051 91.90 5052 350.70	74.32 112.57 59.53 75.85 87.35 140.12 335.26 359.66	0.92 0.94 0.91 0.54	0.88 0.98 0.92 0.99 0.85 0.95 0.85 0.95 0.61 0.87
TABLE 6.4: VO	ID FRACTION COM	PARISON	

		From Gamm	na Densitom <u>eter</u>	From Impedance Probe			
RUN ID	From Govier & Aziz Flow Regime Map	Flow Regime	Interface Location(%)*	Flow Regime	Interface Location(%)*		
5031 5032 5033 5034 5035 5050 5051	Slug Flow Slug Flow Slug Flow Slug Flow Wave Flow Annular Mist Slug Flow		-43.38 -63.28 -23.74 -49.09 -55.73 -46.28				
5051	Stratified		19.68				

*Pipe Empty: 0.0 cm liquid level is -85.43% Pipe Full: 10.32 liquid level is 185.43% Bottom of DTT Housing: 3.255 cm liquid level is 0.0% Top of DTT Housing: 7.07 cm liquid level is 100.0%

TABLE 6.6: FLOW REGIME COMPARISON

!	5 INCH	4 BAR			5 INCH	4 BAR			
RUN ID TSN	ALPHA GAMMA	GDOT-GDOT G-T REF (KG∕M↑2*S)	VT-(VSL+VSG) (M/S)	RUN ID TSN	LEN AVG GRMMA (KG/M†3)	GDOT/(VSL+VSG) REF (KG/M↑3)	DRAG DISK (KG/M*S†2)	(GDOT)X(VSL+VSG) REF (KG/M*S↑2)	(SUM MV/ Alpha)/Area (KG/M*S†2)
5031 5032 5033 5034	0.90 0.96 0.83	-349.25 -1 0 6.28 -184.06	-5.18 -6.92 -0.89 -0.86	5031 5032 5033 5033	92.31 38.03 157.08	71.85 23.32 198.69 344.38	494 603 69 283	2866.19 2649.27 221.81 583.31	2236.26 1681.01 280.85
5035 5050 5051 5052	0.92 0.94 0.91 0.64	-82.29 143.53 -212.06 -53.59	-4.43 -5.37 -4.48 -0.72	5035 5050 5051 5052	74.32 59.53 87.35 335.26	20.40 13.33 49.77 117.49	133 784 206 288	428.42 1338.19 1133.69 88.72	146.91 464.04 657.13 32.40
TABLE	6.7: ER	ROR CALCULAT	TONS	TABLE	6.8: S	INGLE INSTRUMEN	T CALCULATI	ON	

54

FIGURE 6.1B: IMPEDANCE PROBE FLOW REGIME MAP

55

FIGURE 6.2: MASS FLUXES CALCULATED FROM GAMMA DENSITOMETER AND TURBINE MEASUREMENTS AT DIFFERENT REFERENCE VALUES

- 56 -

FIGURE 6.4: MASS FLUXES CALCULATED FROM TURBINEAND DRAG DISC MEASUREMENTS AT DIFFERENT REFERENCE VALUES

.

FIGURE 6.10: DENSITY COMPARISON

7.

FIVE-INCH STEAM-WATER 40 BAR

.

FLUID:STEAM - WATERINSIDE DIAMETER= 0.10320 MPIPE SIZE= 5 INCH DOUBLE EXTRA STRONGTURB. DIA.= 0.0301 MNOMINAL PRESSURE= 40 BARSPIPE AREA= 0.0083647 M*2

RUN ID Press TSN (Bars)	. TEMP.) (DEG C)	STEI SUP-VEL (H/S) (I	FLOW Am Mass Kg/s)	RATES Wf SUP-YEL (M/S)	TER Mass (KG/S)	TURB. VEL (M/S)	DRAG DISK (KG/ M*S†2)	GAMMA A BEAM LOWER (KG/ M†3)	DENSITO B BEAM MIDDLE (KG/ M†3)	DMETER C BEAM UPPER (KG/ M+3)	IMPED PROBE (KG/ M†3)	RADIO VELOC Sterm (M/8) (At gam	TRACER ITIES WATER (M/S) MA DENS)	Comments
5001 42.1	244.5	9.81 1	.742	0.229	1.509	11.13	2533	•146	46	33	98			T ahove manage
5002 41.9	247.4	4.91 0	.868	0.232	1.531	5.29	607	197	65	40	144			i above range
5004 41.3	244.9	9.83 1	.709	0.110	0.730	10.68	2348	96	45	42	59			T above range
5005 41.4	246.0	9.75 1	.703	0.054	0.359	10.84	2384	54	37	44				T above range
5037 40.0	-247.7	4.77 0	. 803	0.125	0.833	5.19	577	152	33	8	98			
5038 40.7	248.8	4.83 0	.828	0.057	0.377	5.05	571	107	25	10	67			
5039 40.1	247.0	5.07 0	.836	0.031	0.208	5.21	514	73	12	2	43			
JU40 37.7	241.1	0.77 0	.166	0.037	0.377	0.37	126	272	134	10				T. DD below range
5041 40.0	240.0	0.72 0	124	0.130	0.872	0.36	178	226	95	21	78			T. DD below range
5042 40.5	240.0	1.00 0	625	0.244	1.017	0.23	181	238	114	37				T. DD below range
5044 40 5	240 5	7.01 1	•020 •020	0.011	0.301	10.00	6000	14	31	41				T above range
5045 40 7	240.3	4.02 0	153	0.470	3.304	0,14	070	223	92	2	160			
5045 39 9	248 8	9.47 0	070	0.505	3,331	0.30	102	273	153	24	206			T, DD below range
5050 00.0	240.0	9 49 1	621	0.303	1 401	10 27	2121	330	182	25	229			T, DD below range
5054 40.0	248 1	4 90 0	021	0 220	1 512	10.21	527	129	30	. 15	98	11.10	3.30	T above range
5056 40.8	250.3	4.57 0	.785	B. 122	0.809	4 70	516	163	40	20	130	4 60	1 10	-
5057 40.8	251.2	4.78 0	.821	0.054	0.356	4 49	519	122	30	13	67	4.60	1.40	
5058 40.2	248.1	9.54 1	616	0.063	0.417	10.31	2169	91	32	24	01 51	3,10	1.30	
5059 40.0	246.7	9.44 1	.588	0.116	0 769	10.20	2196	112	32	27	. 74	10.00	2.30	T above range
5060 40.0	247.0	1.08 0	. 182	0.127	0.842	0.19	107	247	79	2	102	1 30	2.00	I above range
5061 40.0	248.5	0.91 0	.153	0.057	0.377	0.18	92	298	153	24	214	1 20	0.70	1. UD below range
5062 40.8	248.5	1.08 0	. 186	0.232	1.536	0.24	85	242	196	40	183	1 40	0.30	I. UU Delow range
										-10	100	1.40	1.90	I, UU Delow range

Dash indicates error in data. Blank indicates no data.

TABLE 7.1: PRIMARY ENGINEERING UNIT DATA
	5 INCH 4	BAR .				5 INCH 4	0 BAR		р -	а тирн	40 BAR						
DUN	CDOT	CDOT	CDOT	CDOT	-		-			DENSITI	ES (KGZM	(£4)		VAP	OR FRAC	TIONS	
ID TSN (GDOT REF KG∕M†2*S)	G_T (KG/M↑2*S)	GDOT G−DD (KG∕M↑2*S)	GDOT T−DD (KG/M↑2*S)	RUN ID TSN	VSL+VSG (M∕S)	VEL (M/S)	DD-G (M/S)	RUN ID VI TSN (ERT AVG JAMMA	LEN AVG GAMMA	IMPED PROBE	ALPSA GAMMA (LEN)	ALPHA IMPD PROBE	Tr.	RADIO APOR FR TEAM	FRACER RACTION WATER
500024 500033890123555555555555555555555555555555555555	388.657 286.800 291.582 195.584 144.055 195.584 147.201 64.916 213.877 493.3812 410.512 370.844 278.193 140.710 243.045 243.045 140.7159 122.365 205.865 7.2. MAS	857.165 550.693 662.674 484.071 350.428 248.849 158.730 55.746 43.890 31.110 505.155 659.954 60.913 30.069 624.354 433.072 345.032 267.532 518.259 592.189 22.043 29.805 33.114 \$ FLOW RATE	441.670 251.356 381.607 326.349 197.472 167.744 125.243 137.136 146.894 157.267 313.703 281.609 190.775 191.203 359.208 217.371 194.630 176.081 330.251 349.637 111.812 125.360 107.304 COMPADISON	227.579 114.729 219.752 220.016 111.279 113.073 98.821 337.361 491.636 795.810 120.165 597.496 1215.809 206.663 109.104 109.7891 210.446 206.431 567.269 347.714	5001 50024 50057 50037 50039 50040 50043 50041 50043 50044 50043 50044 50057 50057 500567 500567 500567 500561 50061 50061	10.043 5.139 9.806 4.896 4.896 4.896 1.046 0.854 1.247 9.671 5.319 1.396 0.976 9.699 5.028 4.699 5.028 4.835 9.606 9.551 1.209 0.965 1.314 7.3.101 7.5.101 7.5	11.131 5.289 10.684 10.837 5.189 5.050 5.206 0.373 0.362 0.228 10.598 5.743 0.363 0.151 10.265 4.920 4.703 4.483 10.306 10.202 4.188 10.306 0.175 0.175 0.244	5.736 2.414 6.152 7.306 2.924 3.404 4.108 0.917 1.211 1.150 6.581 2.451 1.136 0.958 5.906 2.469 2.653 2.950 6.567 6.024 0.738 0.738 0.738	12457890123456456789012 555555555555555555555555555555555555	886188456657 889.389.456657 899.349.356657 899.342.2883.897.16647 899.342.2883.897.1684 11144.144.142 11144.983.2895 11244.2126.893.955 11244.2126.976 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.14121.697.652.955 11244.1414.14121.697.652.955 11244.1414.14121.697.652.955 11244.1414.14121.697.652.955 11244.1414.1414.14121.697.652.955 11244.1414.1414.1414.1414.1414.1414.141	$\begin{array}{c} 77.06\\ 104.12\\ 62.03\\ 44.63\\ 44.65\\ 45.29\\ 125.627\\ 125.627\\ 125.627\\ 125.627\\ 125.627\\ 125.627\\ 125.627\\ 125.627\\ 125.627\\ 125.629\\ 55$	98.15 144.28 59.37 97.62 65.87 43.38 97.81 159.62 229.38 229.38 97.81 159.62 229.38 136.37 66.91 51.21 74.37 182.85 213.84 182.81	83574693756817513565715 8889999469375681759999999888 8889999998899887999999999888 888988988799999999	0.904 904 904 994 994 997 997 997 90 997 90 997 90 997 90 997 95 946 997 95 946 997 90 997 95 946 997 90 90 90 97 97 90 90 97 90 90 97 90 90 97 90 90 97 90 90 97 90 90 90 97 90 90 97 90 90 97 90 90 97 90 90 97 90 90 90 90 90 90 90 90 90 90 90 90 90		0.85 8.994 8.994 8.995 8.994 8.995 8.995 8.836 8.837 8.947 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.837 8.957 8.837 8.9577 8.9577 8.9577 8.9577 8.9577 8.9577 8.95777 8.95777 8.957777 8.95777777777777777777777777777777777777	0.93 0.91 0.97 0.97 0.97 0.861 0.88 0.88
TABLE	/.2: MAS	S FLUW RATE	L COMPARISON		I ABLE	7.3: TOT	AL VELOCIT	Y COMPARISON	TABLE	7.4: \	/OID FRAG	CTION COM	PARISON	0.11	9.02	9.17	0.00
	:	5 INCH 40	BAR							_							
	RUN ID TSN	V GAS V G DENS P (M/S) ('GAS VLIQ ADIO GDENS M/S) (M/S)	. V LIQ." S RADIO () (M/S)	SLIP J DENS	SLIF RADIO	RUN I TSN	D From Govier Flow Regim	& Aziz e Map	<u>From</u> Flow Regim	i Gamma Dei le Li	nsitometer Interface ocation(%)*	Fro Flo Regi	m Imped w me L	<u>ance Pro</u> Interfa ocation(<u>be</u> ce %)*	
	5001 5002 5004 5005 5032	10.583 5.502 10.382 10.063 5.082	3.147 2.147 2.060 1.756	2 2 3 5	3.363 2.562 5.039 5.731		5001 5002 5004 5005 5037	Slug Flow Slug Flow Annular Mis Annular Mis Wave Flow	w w st st			-52.26 -40.40 -59.83 -67.53 -55.73	Strat. Wa Strat. Strat. Wa	Mist ve Mist Mist ve	-64 -42 -66 -75 -53		

TABLE 7.5: PHASE VELOCITY COMPARISON

TABLE 7.6: FLOW REGIME COMPARISON

- 64 -

5 INCH 40 BAR

5 INCH 40 BAR

.

RUN ID	ALPHA	GDOT-GDOT G-T REF	VT-(VSL+VSG)	RUN I D	LEN AVG GAMMA	GDOT/(VSL+VSG) REF	DRAG Disk	(GDOT)X(VSL+VSG) REF	(SUM MV/ ALPHA)/AREA
TSN	GAMMA	(KG∕M†2¥S)	(M/S)	TSN	(KG/M†3)	(KG/M†3)	(KG∕M¥S↑2)	(KG/M*S↑2)	(K G∕M *S↑2)
5001	0.93	468.51	1.09	5001	77.00	38.70	25 33	3903.15	2771.62
5002	0.89	263.89	0.15	5002	104.12	55.80	607	1473.98	963.70
5004	0.95	371.09	0.75	5004	62.03	29.34	2348	2897.32	2301.18
5005	0.97	237.56	1.03	5005	44.67	25.14	2384	2417.32	2124.25
5037	0.94	154.84	0.29	5037	67.53	39.95	577	957.53	691.66
5038	0.96	104.79	0.16	5038	49.28	29.48	571	704.04	565.47
5039	0.99	31.53	0.10	5039	30.49	24.91	514	649.51	584.68
5040	0.83	-9.17	-0.67	5040	149.60	62.07	126	67.90	38.87
5041	0.87	-77.57	-0.49	5041	121.27	142.18	178	103.76	122.29
5042	0.85	-182.76	-1.02	5042	136.71	171.49	181	266.74	337.50
5043	0.96	265.34	0.93	5043	47.67	24.80	2065	2319.33	2009.65
5044	0.88	166.57	0.42	5044	114.91	92.75	690	2624.49	2149.00
5045	0.81	-355.60	-1.03	5045	167.99	298.39	217	581.39	1067.50 8
5046	0.77	-380.82	-0.83	5046	199.55	420.82	183	401.20	880.95
5054	0.95	253.51	0.57	5054	60.82	38.24	2121	3596.72	2694.11
5055	0.91	154.88	-0.11	5055	88.02	55.33	537	1398.73	982.06
5056	0.93	154.47	0.01	5056	73.37	40.63	516	893.75	632.63
5057	0.95	126.82	-0.35	5057	59.68	29.10	519	680.32	539.61
5058	0.96	275.21	0.70	5058	50.29	25.30	2169	2334.70	1998.82
5059	Ø.95	310.41	0.65	5059	58.04	29.50	2106	2691.33	2100.60
5060	0.87	-100.38	-1.02	5060	117.17	101.22	107	148.05	128.67
5061	0.81	-33.56	-0.79	5061	169.90	65.66	92	61.14	33.81
5062	0.85	-172.75	-1.07	5062	135.93	156.73	85	270.41	312.96

TABLE 7.7: ERROR CALCULATIONS

-

TABLE 7.8: SINGLE INSTRUMENT CALCULATION

- 65

TR LO 00 79-109 K 2784

FIGURE 7.1A: GOVIER AND AZIZ FLOW REGIME MAP

FIGURE 7,1B: IMPEDANCE PROBE FLOW REGIME MAP

FIGURE 7.2: MASS FLUXES CALCULATED FROM GAMMA DENSITOMETER AND TURBINE MEASUREMENTS AT DIFFERENT REFERENCE VALUES

FIGURE 7.3: MASS FLUXES CALCULATED FROM GAMMA DENSITOMETER AND DRAG DISC MEASUREMENTS AT DIFFERENT REFERENCE VALUES

— 67 —

FIGURE 7.4: MASS FLUXES CALCULATED FROM TURBINE AND DRAG DISC MEASUREMENTS AT DIFFERENT REFERENCE VALUES

FIGURE 7.5: THE VELOCITIES MEASURED BY TURBINE AT VARIOUS VOLUMETRIC FLUXES

-- 68 ---

FIGURE 7.7: COMPARISON OF RADIOTRACER VAPOR FRACTIONS

- 69 ---

FIGURE 7.8: ERROR IN GAMMA DENSITOMETER - TURBINE MASS FLOW CALCULATION

FIGURE 7.9: ERROR IN TURBINE VELOCITY

FIGURE 7.11: MOMENTUM FLUX COMPARISONS

FIGURE 7.13: MASS FLUX CALCULATION FROM RADIOTRACER AND DENSITO-METER MEASUREMENTS AT DIFFERENT REVERENCE VALUES

FIVE-INCH STEAM-WATER 70 BAR

FLUII PIPE NOMII	DI ST SIZE= NAL PRE	EAM - WI 5 INCH 1 SSURE= 1	ATER DOUBLE E 70 BARS	XTRA ST	RONG	INSID TURB. PIPE	E DIAM DIA.= AREA=	ETER= (0.038 0.0083(0.10320 1 M 547 M†2	⊢ M					
RUN ID I TSN	PRESS. (BARS)	TEMP. (DEG C)	SI SUP-VEL (M/S)	FLOW TEAM . MASS (KG/S)	RATES Wf SUP-YEL (M/S)	NTER MASS (KG/S)	TURB. VEL (M/S)	DRAG DISK (KG/ M*S†2)	GAMMA A BEAM LOWER (KG/ M†3)	DENSITO B BEAM MIDDLE (KG/ M†3)	DMETER C BEAM UPPER (KG/ M†3)	IMPED PROBE (KG/ M†3)	RADIO VELOC STEAM (M/S) (AT GAM	TRACER ITIES WATER (M/S) MA DENS)	Comments
5014 5015 5016 5017	74.8 75.0 75.3 75.2	288.3 288.0 287.6 288.7 288.7	5.76 5.12 5.12 0.97	1.895 1.689 1.696 0.323	8.033 0.063 0.135 0.127	0.201 0.389 0.828 0.780	6.19 5.61 5.83 0.68	1334 1104 1183 61	76 109 136 223	27 32 41 101	29 37 37 37	60 81 109			D0 4-1
5021 5022 5023 5024	74.8 74.8 74.6 75.0	288.0 288.0 288.0	7.60 7.72 7.69 7.67	2.499 2.539 2.524 2.533	0.233 0.126 0.054 0.035	1.435 0.773 0.332 0.212	0.52 8.73 8.58 8.36 8.21	99 2777 2689 2523 2475	247 113 90 65 50	118 48 44 39 37	39 39 46 39 44				DD below range DD below range Rerun of 5020
5025 5047 5048 5049 5066 5067	75.3 74.2 74.9 74.4 75.5 76.0	288.0 288.7 289.4 289.0 288.7 289.4	4.82 2.07 0.89 0.47 4.79 4.76	1.596 0.675 0.292 0.154 1.594 1.595	0.243 0.497 0.496 0.492 0.229 0.124	1.490 3.060 3.049 3.025 1.407 0.762	5.59 1.87 0.47 0.26 5.35 5.23	1155 350 192 152 1106 1102	165 309 310 328 181 147	66 183 173 196 76	48 43 43 44 51	144	5.30	2.40	DO below range DO below range T, DD below range
5068 5069 5070 5071	75.9 75.5 76.1 76.1	290.1 288.3 290.1 288.0	1.05 1.18 1.20 5.36	0.351 0.393 0.402 1.797	0.129 0.241 0.055 0.055	0.793 1.479 0.334 0.340	0.53 0.31 0.72 5.59	86 110 147 1291	232 244 206 109	105 116 90 51	47 40 38 55	186 179 165 82	5.19 1.00 1.10 1.30 5.70	2.70 1.00 1.70 0.60 2.10	T. DD below range T. DD below range DD below range

Dash indicates error in data Blank indicates no data

TABLE 8.1: PRIMARY ENGINEERING UNIT DATA

- 75 -

									5 INCH	70 BAR		
	5 INCH 70	I BHR				5 INCH 7	Ø BAR		DENSITI	ES (KG∠M⊄3)	VAPOR FOR	TIONS
RUN ID TSN (GDOT REF KG∕M≁2*S)	GDOT G−T (KG/M↑2*S)	GDOT G−DD (KG/M↑2*S)	GDOT T−DD (KG/M↑2*S)	RUN ID TSN	VSL+VSG (M∕S)	TURB. VEL (M/S)	VEL. DD-G (M/S)	RUN ID VERT AVG TSN GAMMA	LEN AVG IMPED GAMMA PROBE	ALPHE ALPHA GAMMA IMPD TH (LEN PROBE	ADIOTRACER DR FRACTION AM WATER
5014 5015 5017 50112 502234 502234 502234 502234 502234 502234 502247 502247 502247 502247 502247 502667 502667 502667 500667 500667 500667 50077 50067 50077 50067 50077 50067 50077 50067 50077	$\begin{array}{c} 250.577\\ 248.425\\ 301.744\\ 131.864\\ 211.245\\ 470.310\\ 395.950\\ 341.435\\ 328.165\\ 368.931\\ 446.519\\ 395.970\\ 380.049\\ 358.770\\ 281.779\\ 136.765\\ 223.798\\ 87.989\\ 255.478\end{array}$	274.481 334.535 422.364 85.479 73.344 595.414 517.882 400.285 353.318 533.323 356.7330 52.495 566.3400 429.696 429.696 43.168 83.856 400.856	$\begin{array}{c} 243.103\\ 256.599\\ 292.68\\ 87.568\\ 118.606\\ 435.147\\ 402.7594\\ 326.362\\ 331.906\\ 258.076\\ 199.415\\ 175.294\\ 342.154\\ 300.97.321\\ 124.420\\ 130.808\\ 304.241 \end{array}$	$\begin{array}{c} 215.311\\ 196.820\\ 202.819\\ 89.708\\ 191.800\\ 318.019\\ 313.271\\ 301.839\\ 301.463\\ 206.558\\ 186.700\\ 410.363\\ 585.347\\ 206.713\\ 210.813\\ 206.713\\ 210.8325\\ 358.605\\ 204.049\\ 230.912 \end{array}$	5014 5015 5017 5021 50223 50223 50223 50225 50225 5024 5025 5048 5048 5048 5066 5066 50668 50668 50668 50668 50670 5071	5.792 5.180 5.2552 1.073 7.83446 7.705 2.5684 0.9622 4.8869 1.423 1.4231 1.4251 5.415	6.194 5.6100. 5.8320 0.516 8.5367 8.5324 8.2594 1.8768 9.5942 0.2594 5.3209 5.3299 5.3299 5.3299 5.3297 0.591 0.591	5.486 4.303 4.042 0.693 0.834 6.381 6.7677 7.2583 3.481 1.3514 0.865 3.482 0.885 1.200 4.243	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	44.31 60.42 59.64 81.38 72.42 109.44 126.42 42.22 68.19 60.33 47.90 43.04 95.34 190.56 186.72 202.70 105.88 144.40 82.18 109.72 133.80 186.32 140.56 179.28 116.75 165.44 21.70 81.90	0.99 0.97 $0.990.97$ 0.94 $0.990.95$ 0.90 $0.970.87$ $0.880.85$ $0.770.96$ $0.970.97$ $0.980.99$ $0.990.99$ $0.990.99$ $0.990.99$ $0.850.78$ $0.810.79$ $0.640.77$ $0.490.94$ 0.96 $0.970.85$ $0.800.97$ $0.890.92$ $0.850.990.94$ 0.90 $0.970.85$ $0.800.920.95$ 0.94 0.99	0.90 0.90 0.93 0.95 1.05 0.87 1.08 0.86 0.92 0.91 0.94 0.97

TABLE 8.2: MASS FLOW RATE COMPARISON

TABLE 8.3: TOTAL VELOCITY COMPARISON TABLE 8.4: VOID FRACTION COMPARISON

								RUN ID TSN	From Govier & Aziz Flow Regime Map	<u>From Gamma</u> Flow Regime	Uensitometer Interface Location(%)*	<u>From Imp</u> Flow Regime	edance Probe Interface Location(%)*
	5 INCH	70 BAR						5014	Annular Mist		-77.22	Wave	-77
RUN	V GAS	V GAS	V LIQ.	V LIQ.	SLIP	SLIP		5015	Wave Flow		-67.19	Wave	
ID	G DENS	RADIO	G DENS	RADIO	G DENS	RADIO		5016	Wave Flow		-59.83	Wave	-66
TSN	(M/S)	(MZS)	(M/S)	(M/S)				5017	Wave Flow		-34.72	Wave	-32
5014	5 201		4 560		1 279			5021	Slug Flow		-29.33	Wave	-29
5015	5.269		2.181		2.416			5022	Wave Flow		-67 19		
5016	5.374		2.853		1.884			5023	Annular Mist		-77.22		
5017	1.114		1.016		1.097	•		5024	Annular Mist		-77.22		
5019	0.974		1.646		0.592			5025	Slug Flow		-49.09		
5021	7,725 7 959		5.625		1.409			5047	Slug Flow		-11.43		
5022	7.789		4.334		1.711			5048	Slug Flow		-13.83		
5024	7.710		6.729		1.146			5066			-9.01	Maria	45
5025	5.237		3.024		1.732			5067	Wave Flow		-43.30	Wave	-40
5047	2.646		2.285		1.158			5068	Wave Flow		-32 59	Strat - Wave	-20
3048 5049	1.127 0.514		2.341		0.481			5069	Slug Flow		-29.33	Wave	-29
5066	5.297	5.30	2.093	2 40	0.273	0 000		5070	Stratified		-40.40	Wave	-37
5067	5.070	5.10	2.044	2.70	2.481	1.889	/	5071	Wave Flow		-59.83	Wave	-66
5068	1.214	1.00	0.955	1.00	1.270	1.000							
5069	1.383	1.10	1.659	1.70	0.834	0.647							
5070 5071	$1.345 \\ 5.616$	1.30 5.70	0.493 1.214	0.60 2.10	2.726 4.624	$2.167 \\ 2.714$			*Pipe Empty: 0.0 cm	liquid level i	s -85.43%		

*Pipe Empty: 0.0 cm liquid level is -85.43% Pipe Full: 10.32 cm liquid level is 185.43% Bottom of DTT Housing 3.255 cm liquid level is 0.0% Top of DTT Housing 7.07 cm liquid level is 100.0%

TABLE 8.5: PHASE VELOCITY COMPARISON

TABLE 8.6: FLOW REGIME COMPARISON

76

5 INCH 70 BAR

5 INCH 70 BAR

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VT-(VSL+VSG) (M/S)
5061 5162 1102 1102 1102 1102 1002	0.40 0.43 0.543 0.553 0.553 0.553 0.553 0.553 0.553 0.334 0.123 0.115 0.0 0.115 0.150000000000

TABLE 8.8: SINGLE INSTRUMENT CALCULATION

TABLE 8.7: ERROR CALCULATIONS

LTR LO 00 79-109 KFK 2784

FIGURE 8.1A: GOVIER AND AZIZ FLOW REGIME MAP

FIGURE 8,1B: IMPEDANCE PROBE FLOW REGIME MAP

FIGURE 8.2: MASS FLUXES CALCULATED FROM GAMMA DENSITOMETER AND TURBINE MEASUREMENTS AT DIFFERENT REFERENCE VALUES

DRAG DISC MEASUREMENTS AT DIFFERENT REFERENCE VALUES

9-9

FIGURE 8.7: COMPARISON OF RADIOTRACER VAPOR FRACTIONS

FIGURE 8.9: ERROR IN TURBINE VELOCITY

- 82 ---

FIGURE 8.13: MASS FLUX CALCULATION FROM RADIOTRACER AND DENSITO-METER MEASUREMENTS AT DIFFERENCE REFERENCE VALUES

- 84 ---

9.

THREE-INCH STEAM-WATER 40 BAR

FLUID: STEAM - WATER PIPE SIZE= 3 INCH SCHEDULE 160 NOMINAL PRESSURE= 40 BARS	INSIDE DIAMETER≖ 0.06665 M TURB. DIA.= 0.0381 M PIPE AREA= 0.0034889 M↑2	
		1

RUN Id F TSN (°RESS. (BARS)	TEMP. (DEG C)	SI SUP-VEL (M/S)	FLOW TEAM MASS (KG/S)	RATES Wf SUP-VEL (M/S)	NTER MASS (KG/S)	TURB. VEL (M/S)	DRAG DISK (KG/ M*S†2)	GANMA A BEAM UPPER (KG/ M†3)	DENSITO B BEAM MIDDLE (KG/ M†3)	METER C BEAM LOWER (KG/ M†3)	SCAN Dens (Kg/ M†3)	RADIO VELOC Steam (M/S) (At gam	TRACER ITIES WATER (M/S) MA DENS)	Comments
6003	40.5	247.7	4.73	0.336	1.210	3.348	3.67	2125	208	310	499				
6004	40.7	247.0	9.15	0.654	1.212	3.350	6.55	3484	123	188	300				
6005	40.5	246.7	8.97	0.639	1.274	3.523	7.72	3716	122	166	265				
6013	40.2	248.5	10.15	0.717	1.017	2.815	9.61	3755	46	126	198	137	12.70	9.80	T above range
6014	41.0	248.8	4.11	0.296	1.048	2.896	4.18	1713	143	267	439	265	6.20	3.20	·j-
6015	40.0	247.4	0.79	0.055	1.008	2.792	1.40	1459	369	507	746		1.80	1.70	
6016	40.2	248.5	0.83	0.058	0.508	1.407	0.93	565	295	421	648	370	1.70	0.90	
6017	40.4	248.5	5.23	0.371	0.516	1.427	6.33	1189	99	229	315	188	7.00	2.20	
6018	40.2	247.4	9.56	0.675	0.527	1.460	11.55	3281	18	117	163		10.60	4.80	T above range
6019	40.6	248.8	1.16	0.083	1.321	3.653	1.75	2524	386	515	752	476	2.20	2.10	·
6020	40.0	248.1	1.32	0.093	1.251	3.465	1.83	2697	340	486	727	463	2.40	2.20	
6021	40.1	248.5	5.71	0.402	1.261	3,491	5.36	2618	. 91	257	400		8.50	4.70	
6022	40.2	248.3	2.72	0.192	1.235	3.419	2.82	2257	200	368	584		4.40	3.00	
6023	40.0	240.7	4.67	0.329	1.228	3.403	4.00	2200	119	279	448		6.90	3.70	
6024	20 0	240.0	0.70	0.474	1.223	3.383	0.30	3207	34	209	344		8.90	5.70	
6025	37.7	240.1	0117	0.015	1.233	3.422	5 40	3721	34	163	261	173	11.00	7.90	
6927	40.5	249 4	2 94	0.720	1.331	3.001	2 10	2014	301	241	371		7.80	5.30	
6048	20.2	246 3	5 89	0.202	1 649	3.000 1 574	4 70	2300	201	300	371 597		5.10	3.30	
6066	40.1	249.9	0 93	0.330	0 103	A 205	- 1 + F	2700	127	300	316				T failed
6067	39.9	249.5	0.75	0.000	0.103	0.203	_	462	272	223	510				I Talled
6068	40.7	250.6	4 91	0.004	9 247	0.700	_	901	91	177	522		•		T failed
6969	40.1	249.5	10.29	0.725	0.262	0.726	_	4749	-	£2	- 0/	60			I TATIED
6070	40.1	249.5	5.31	0.375	0.268	0.741	-	1744	35	145	100	07			i talled
6071	40.1	249.5	4.95	0.348	0.131	0.363	-	1401	-	119	91	113			i failed T failed

Dash indicates error in data. Blank indicates no data.

TABLE 9.1: PRIMARY ENGINEERING UNIT DATA

- 87

O DOE				א נארט א	19 DOD		3 INCH	40 BAR			
o par crot	a be t	CROT	E N LIN	S INCH 4			DENSITI	ES (KG/M*	37	-24 (* 15 5)	FRONTIONS
свот С−Т (КС/МФ2*S)	G⊐DD G−DD (KG/M↑2±S)	GDO7 T−DD (KG/M⊅2*S	ID) TSN	VSL+VSG (M/S)	VEL (M/S)	VEL. DD-G (M/S)	FON ID VERT AVG TSN CAMMA	LEN АУС САИМА	80A0 A. DENG	Bright Anna Anna Bright	RADIOTRACER FOR FRACTION CONNETER
$\begin{array}{c} 1194,940\\ 1286,426\\ 1366,182\\ 1133,544\\ 1130,161\\ 733,589\\ 408,097\\ 1312,844\\ 1101,594\\ 934,597\\ 916,190\\ 1275,975\\ 1037,366\\ 1225,208\\ 1225,208\\ 1225,208\\ 124,026\\ 1169,471\\ 1235,789\\ 1114,234\\ 1595,518 \end{array}$	831,550 825,513 810,845 665,565 680,767 873,676 497,562 559,349 1160,360 1160,655 789,708 911,020 778,286 911,020 778,285 911,020 778,286 921,568 810,886 921,566 923,666 921,566 923,666 923,666 924,596 943,666 943,666 943,666 943,666 943,666 943,666 943,666 943,666 943,666 943,666 943,666 943,666 945,666 943,666 944,766 943,666 944,766 943,766 944,766 943,766 9	578.570 5.22.223 481.2243 390.739 410.068 1040.515 606.633 187.786 284.017 1440.659 1470.3553 800.0639 494.384 532.078 532.078 532.078 532.211 619.506	3345 555 555 555 555 555 555 555 555 555	5.93615 10.2471 15.733443 15.733443 10.459528 10.3459528 17.45953 17.45953 17.45953 15.00 17.4558 10.5587 15.000 15.0000	3.6727 6.5729 9.6782 1.9333 11.5552 1.5552 1.53551 1.53551 1.53550 8.54098 5.0028 5.0085 5.0088 5.0085 5.0088 5.0085 5.0088 5.0085 5.00	2.556 4.582 5.223 5.523 5.514 5.524 5.523 1.5736 5.5736 5.5736 5.565 5.1336 5.554 5.554 5.554 5.5564 5.5564 5.5564 1.12 3.865 5.556 1.321 3.866 1.321 3.866	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 5.55\\ 195.592\\ 177.48\\ 177.48\\ 295.21\\ 177.48\\ 295.21\\ 177.47\\ 295.55\\ 295.55\\ 295.55\\ 295.55\\ 295.55\\ 295.26\\ 1425.28\\ 295.28\\$	37.10 54.55 59.96 0. 57.96 0. 75.98 0. 0. 0. 72.86 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		5. 5.30 6.90
IASS FLOW RA	TE COMPARIS	NC	TABLE	9,3: TO	TAL VELOC	ITY COMPAG	RISON TABLE 9.4: \	/OID FRACT	FION COMPAR	ISON	From
3 15	ICH 40 BAR					RUN ID	From Govier & Aziz	<u>From Gam</u> Flow	ma Densitome Interf	ter <u>Refer</u> ace Flow	ence Densitometer Interface
ID GI TSN (M/	HS VIGHS IENS RADIO 'S) (M/S)	V LIQ. G DENS (M/S)	V LIQ. RADIO (M/S)	G DENS	RADIO		Flow Regime Map	<u>Regime</u>	Location	<u>(%)* Regime</u>	Location(%)*
6003 7. 6004 11. 6005 11. 6013 11. 6014 6. 6015 1. 6014 6. 6015 1. 6016 1. 6018 10. 6018 10. 6018 10. 6020 3. 6021 7. 6022 4. 6022 4. 6022 8. 6022 8. 6022 8. 6026 8. 6026 8. 6026 8. 6026 8. 6026 8. 6026 8. 6026 8. 6026 8. 6027 1. 6068 6. 6071 6. 6071 7. 6071 6. 6071 7. 6071 7	809 823 623 12.70 624 6.20 244 1.80 800 1.70 807 7.00 585 10.60 463 2.20 947 2.40 947 8.90 931 4.40 918 6.98 944 8.90 285 7.80 0285 7.80 0285 7.80 654 11.00 255 654 071 5 9HASE VFI	3.065 5.342 6.286 3.236 1.550 0.940 2.131 5.429 1.988 2.019 4.472 2.749 3.816 5.509 7.611 4.938 3.011 4.938 3.011 4.938 3.011 4.938 3.011 4.938 3.011 4.938 3.011 4.938	9.80 3.270 0.20 4.80 2.20 4.80 2.20 4.80 2.20 4.70 3.70 5.30 5.30 5.30	2.548 2.2190 1.445 1.880 1.445 1.880 1.445 1.950 1.742 1.777 1.795 1.623 1.678 1.678 1.678 1.678 1.678 1.678 2.915 2.827	1.296 1.938 1.059 1.889 2.208 1.048 1.099 1.467 1.865 1.561 1.472 1.545	6003 6005 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6024 6025 6026 6027 6048 6066 6067 6068 6069 6070 6071	Slug Flow Slug Flow	COMDADISO	34.7 11.9 7.2 -5.00 24.9 70.7 54.7 13.4 -9.9 72.4 66.4 19.1 43.3 24.9 10.7 0.9 15.8 42.00 36.8 16.2 42.9 42.9 -6.7 M		2 28 41 15 54 54 2
	0 646 GIOT G-T (KG/MT2*S) 1194.940 1280.426 1366.188 1136.188 138.89 408.097 1312.844 1101.594 934.597 916.975 1037.366 1225.2844 101.594 934.597 916.975 1037.366 1225.975 1037.366 1225.975 1037.366 1225.975 1037.366 1225.975 1037.366 1225.975 1037.366 1225.975 1037.366 1225.975 1037.366 1225.975 1037.366 1225.975 1037.366 1269.471 1235.789 1114.234 1595.518 KUN V G ID G I TSN (M/ 6003 7. 6004 11. 6015 1. 6015 1. 6015 1. 6016 1. 6017 6. 6021 7. 6024 8. 6024 8. 6025 10. 6026 8. 6027 5. 6048 8. 6026 8. 6027 5. 6048 8. 6026 1. 6026 1. 6026 8. 6027 5. 6048 8. 6026 1. 6026 8. 6027 6. 6027 6. 6026 1. 6026 1. 6026 1. 6026 1. 6027 5. 6026 1. 6026 1. 6027 5. 6028 6. 6029 6. 6070 6. 6071 TABLE 9.5	9 BAR GDOT GDT GDOT G-T G-DD (KG/MT2*S) (KG/MT2*S) 1194.940 831.550 1280.426 525.513 1366.188 816.846 1130.161 680.767 733.589 873.676 408.097 497.560 1312.844 496.522 1101.594 559.349 934.597 1160.360 916.190 1160.655 1275.975 7.89.708 1037.366 911.020 1225.208 778.282 124.026 778.282 124.026 778.282 125.208 778.282 124.026 778.282 125.208 778.282 124.026 784.591 114.234 921.564 1595.518 994.200 286.903 413.366 3 INCH 40 BAR RUN V GAS V GAS ID G DENS RADIO TSN (M/S) (M/S) 6003 7.809 6004 11.833 6005 11.251 6013 11.623 12.70 6014 6.084 6.20 6015 2.244 1.80 6017 6.897 7.06 6018 10.585 10.60 6019 3.463 2.20 6018 10.585 10.60 6019 3.463 2.20 6021 7.947 8.50 6021 7.947 8.50 6021 7.947 8.50 6021 7.947 8.50 6022 4.931 4.40 6022 6.918 6.98 6024 8.944 8.90 6025 10.488 11.00 6026 8.285 7.80 6027 5.060 5.10 6048 8.535 6066 1.255 6067 1.654 6068 6069 6.071 6071 TABLE 9.5: PHASE VE	0 BHS GDOT GDOT GDOT T-DD (KG/M12*S) (KG/M12*S) (KG/M12*S) 1194,940 831.550 578.670 1286.426 525.513 52.223 1366.188 810.846 481.245 1133.544 665.565 390.789 1130.161 680.767 418.068 733.589 873.676 1046.515 408.097 497.560 606.633 1312.844 496.522 187.786 1101.594 559.349 284.017 934.597 1160.360 1440.659 916.190 1160.655 1476.349 1225.975 789.708 488.755 1037.366 911.020 806.063 1225.208 778.282 494.384 1225.208 778.282 494.384 1225.208 778.282 494.384 1225.208 778.285 453.520 1235.789 810.886 532.078 1114.234 921.564 762.211 1595.518 994.206 619.506 286.903 413.366 451.043 WASS FLOW RATE COMPARISON 3 INCH 40 BAR RUN V GAS V GAS V LIQ. ID G DENS RADIO G DENS TSN (M/S) (M/S) (M/S) 6003 7.809 3.065 6013 11.623 12.70 8.045 6013 11.623 12.70 8.045 6014 11.833 5.342 6005 11.251 6.286 6013 11.623 12.70 8.045 6014 1.833 5.342 6005 11.251 6.286 6013 11.623 12.70 8.045 6014 1.833 5.342 6005 11.251 6.286 6013 11.623 12.70 8.045 6014 1.833 5.342 6015 2.244 1.80 1.550 6016 1.800 1.70 8.940 6017 6.897 7.00 2.131 6018 10.585 10.60 5.429 6019 3.463 2.20 1.988 6021 7.947 8.50 4.472 6023 6.918 6.90 3.816 6024 8.944 8.90 5.509 6021 7.947 8.50 4.472 6023 6.918 6.90 3.816 6024 8.944 8.90 5.509 6025 10.488 11.00 7.611 6048 8.535 7.80 4.933 6066 1.255 8.402 6027 5.060 5.10 3.011 6048 8.535 4.083 6066 1.255 8.402 6070 6.071 2.147 6071 TABLE 9.5: PHASE VELOCITY CON	9 BAR GLOT GLOT GLOT GLOT RUN G-T G-DD T-DD ID T-DD ID T-D I	0 ERR 3 INCH 4 G_0T	9 EAR 3 INCH 48 BAR GOT FG-TT GOT GOT GOT GOT GOT GOT GOT GOT GOT G	9 BHE 3 INCH 40 BAR GOT GOT GOT TOD TOD TOD TOD TOD VEL OB GOT GOT GOT TOD TOD TOD VEL OB (HC/S) (HC/S) (HC/S) (HC/S) (HC/S) (HC/S) 1194,940 831.650 G78.670 6003 5.936 3.672 2.555 1236.188 810.845 481.245 6005 10.245 7.722 4.553 1133.544 665.555 390.739 6013 11.171 9.609 5.642 1138.6116 800.767 410.808 6014 5.161 4.178 2.577 733.589 873.676 1040.515 6015 1.793 4.402 1.670 400.097 497.560 606.6016 1.335 4.931 1.136 1312.844 946.522 187.766 6017 5.743 6.333 2.354 1045.515 1470.349 602 2.573 1.833 2.354 1045.515 1470.349 602 2.573 1.833 2.354 1045.51 1470.349 602 2.573 1.835 2.355 304.597 1160.360 1440.659 6019 2.483 1.752 2.175 1037.366 911.620 300.663 6022 3.951 2.821 2.478 1037.366 911.620 300.663 6022 3.951 2.821 2.478 1224.026 778.282 494.384 6023 5.920 4.5551 2.691 1235.2080 778.282 494.384 6023 5.920 4.5551 2.691 1234.026 784.597 1502 300.663 6025 10.022 8.028 5.054 1139.471 736.255 463.520 6025 17.382 8.028 5.054 1139.551 2.691 502 3.078 6027 7.382 8.028 5.054 1139.551 2.691 502 3.078 6027 1.355 3.466 003 1.637 1.64 1114.233 2.944 493.845 532.078 6027 1.355 3.866 MASS FLOW RATE COMPARISON S INCH 49 DAR RUN V GRS V GRS V LIG. V LIG. SLIP SLIP SAUCH	0 BAB 2 INCH 48 BRR 2 INCH GDOT GDOT CDOT CDOT FUH VSL +VSG VEL ID-5 ID VEL ID ID <t< td=""><td>0 BH6 3 INCH 48 ERR 2 INCH 40 ERR Densities (KG-ME GPT GDT GDT TDD THD VEL. DEnsities (KG-ME 1144.340 831.550 CR5.670 G003 5.936 8.672 2.556 G004 19.457 14.57 1134.344 831.555 CR5.670 G003 5.936 8.672 2.556 G004 19.457 14.57 1134.344 G80.757 148.055 S003 5.936 8.672 2.555 G004 19.457 14.57 14.57 1133.444 G80.757 148.055 S014 5.15 1.632 CR5.7 14.57 14.57 1.632 CR5.7 11.57 1.633 2.575 14.67 1.572 CR1.7 3.57 1.572 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.535 2.565 2.657 2.575 2.157 2.157</td><td>0 EHR 3 INCH 40 BAR 3 ENCH 40 BAR 3 ENCH 40 BAR GET GDOT CDOT FDD FD FD</td><td>0 EHK 3 INCH 40 6 BA 2 INCH 40 Fit EAN ITES (KG,M132) (KG,M132) (KG,M132) 10 G-12 C,C12 <td< td=""></td<></td></t<>	0 BH6 3 INCH 48 ERR 2 INCH 40 ERR Densities (KG-ME GPT GDT GDT TDD THD VEL. DEnsities (KG-ME 1144.340 831.550 CR5.670 G003 5.936 8.672 2.556 G004 19.457 14.57 1134.344 831.555 CR5.670 G003 5.936 8.672 2.556 G004 19.457 14.57 1134.344 G80.757 148.055 S003 5.936 8.672 2.555 G004 19.457 14.57 14.57 1133.444 G80.757 148.055 S014 5.15 1.632 CR5.7 14.57 14.57 1.632 CR5.7 11.57 1.633 2.575 14.67 1.572 CR1.7 3.57 1.572 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.633 2.575 1.535 2.565 2.657 2.575 2.157 2.157	0 EHR 3 INCH 40 BAR 3 ENCH 40 BAR 3 ENCH 40 BAR GET GDOT CDOT FDD FD FD	0 EHK 3 INCH 40 6 BA 2 INCH 40 Fit EAN ITES (KG,M132) (KG,M132) (KG,M132) 10 G-12 C,C12 C,C12 <td< td=""></td<>

3 INCH 40 BAR

3 INCH 40 BAR

RUN ID TSN	ALPHA GAMMA	GDOT-GDOT G-T REF (KG/M†2*S)	VT-(VSL+VSG) (M/S)	RUN ID TSN (LEN AVG (GAMMA ((KG/M†3)	GDOT/(VSL+VSG) REF (KG/M↑3)	DRAG DISK (KG/M*S†2)	(GDOT)X(VSL+VSG) REF (KG/M*S†2)	(SUM MV/ Alpha)/Area (KG/M*S†2)
6003	0.61	139.02	-2.26	6003	325.39	177.87	2125	6268.30	3693.50
6004	0.77	132.79	-3.81	6004	195.58	110.77	3484	11890.28	7347.93
6005	0.80	173.26	-2.52	6005	176.92	116.44	3716	12221.66	8408.01
6013	0.87	121.19	-1.56	6013	117.97	90.63	3755	11308.73	8879. 82
6014	0.68	215.26	-0.98	6014	270.48	177.27	1713	4721.84	3201.96
6015	0.35	-82.43	-0.39	6015	523.20	455.06	1459	1463.30	1276.06
6016	0.46	-11.81	-0.40	6016	438.11	314.45	565	560.71	409.19
6017	0.76	797.50	0.59	6017	207.41	89.73	1189	2959.66	1604.48
6018	0.90	489.65	1.47	6018	95.37	60.68	3281	6170.78	4319.51
6019	0.34	-136.23	-0.73	6019	533.52	431.24	2524	2658 .98	2163.98
6020	0.38	-103.62	-0.74	6020	499.56	396.38	2697	2623.78	2097.81
6021	0.72	160.15	-1.61	6021	238.25	160.14	2618	7774.64	5390.46
6022	0.55	2.37	-1.13	6022	367.68	261.99	2257	4088.77	2964.90 8
6023	0.68	155.53	-1.37	6023	269.19	180.69	2250	6332 .52	4375.15
6024	0.78	112.79	-1.80	6024	191.84	135.82	3209	9091.95	6 608. 09
6025	0.84	12.37	-1.99	6025	145.67	115.46	3721	11596.08	9314.40
6026	0.73	56.91	-1.98	6026	228.78	159.69	2874	8702 .9 6	6229.15
6027	0.56	7.29	-1.06	6027	359.88	266.15	2360	4603.90	3451.27
6048	0.60	182.75	-1.95	6048	333.23	209.72	2966	9517.01	6214.09
6066	й.74			6066	218.23	97.05	377	104.29	56.53
6067	0.55			6067	368.90	190.06	463	257.62	145.35
ÊÑÊ8				6068		57.44	901	1526.11	
6069				6069		39.42	4749	4388. 06	
6070	Й.88			6070	116.66	57.31	1744	1785.44	1108.07
6071	0.00			6071		40.14	1401	1034.62	

TABLE 9.7: ERROR CALCULATIONS

TABLE 9.8: SINGLE INSTRUMENT CALCULATION

LTR LO 00 79-109

LTR LO 00 **79-109** KFK 2784

Superficial Liquid Velocity, $V_{s\,\ell}({
m m/s})$

FIGURE 9.4: MASS FLUXES CALCULATED TURBINE AND DRAG DISC MEASUREMENTS AT DIFFERENT REFERENCE VALUES

FIGURE 9.9: ERROR IN TURBINE VELOCITY

- 94 ---

FIGURE 9.11: MOMENTUM FLUX COMPARISONS

— 95 —

METER MEASUREMENTS AT DIFFERENT REFERENCE VALUES

-- 96 ---

10.

THREE-INCH STEAM-WATER 70 BAR

, .

FLUID: STEAM - WATER	INSIDE DIAMETER= 0.06665 M
PIPE SIZE= 3 INCH SCHEDULE 160	TURB. JFA.= 0.0381 M
NOMINAL PRESSURE= 70 BARS	PIPE AREA= 0.0034889 M+2

								GAMMA DENSITOMETER				RADIO	TRACER	
P 31111	FLOW RATES						DRAG	A BEAM	B BEAM	C BEAM	SCAN	VELOC	ITIES	Commonte
KUN ID DDDOC	TEMO	SUB US	TERM	W.	ATER	TURB.	DISK	UPPER	MIDDLE	LOWER	DENS	STEAM	WATER	Comments
TSN (DODS)		SUP-YE	LAHSS	SUP-VE	LMASS	VEL	CKGZ		(KG/	(KG/		(N/S)	(M/S)	
TON (DARS)		(11/5)	(KG/S)	(4/8)	(KG/S)	(11/5)	11*572.) fit3)	MT37	MT3)	P[T37	CHI GHM	MH DENS)	
6035 78.1	291.2	0.21	0.030	1.779	4.530	1.86	2943	651	723	765	665			
6036 78.7	291.5	0.86	0.126	1.630	4.144	1.93	3150	485	550	740	537			
6037 78.4	292.3	1.48	0.215	1.589	4.042	2.36	3402	389	469	704	428			
6051 75.7	288.7	5.29	0.737	0.995	2.546	6.37	2866	139	223	334	178			
6052 75.5	289.0	7.36	1.021	1.188	3.042	7.04	3851	139	192	296		9.40	6.20	
6053 76.2	290.1	1.61	0.226	1.219	3.117	2.12	2507	318	407	608	357	3.10	2.70	
6054 75.6	287.6	0.91	0.126	0.507	1.299	0.99	536	290	379	556		1.80	1.00	
6055 75.4	290.1	0.96	0.134	1.064	2.723	1.59	1649	358	428	634	437	2.10	2.00	
6056 75.8	290.5	5.10	0.711	0.510	1.305	6.55	2070	108	202	289		6.30	2.90	
6057 76.1	290.5	3.11	0.435	1.205	3.082	3.30	2222	236	329	508		5.00	3.20	
6058 75.8	290.1	4.51	0.628	1.216	3.111	4.60	2626	189	280	428	262	6.50	3,90	
6059 75.3	289.0	5.95	0.822	1.214	3.109	6.44	3762	146	205	315		8.00	5.00	
6060 75.7	289.4	3.31	0.460	1.491	3.815	3,62	2995	251	340	536		5.40	3.70	
6061 75.8	289.8	1.45	0.202	1.491	3.815	2.24	3434	362	455	682		3.20	2.60	
6062 75.3	288.3	5.52	0.763	1.613	4.132	5.74	3863	181	246	396		7.10	5.30	
6063 75.9	288.7	10.11	1.410	1.331	3.404	10,79	4162	89	125	167		12.60	10.30	T above range
6074 75.6	290.1	4.96	0.689	0.137	0.351		2772	28	104	63				T failed
6075 74.8	289.0	10.03	1.376	0.139	0.356	-	5360	3	60	2				T failed, DD above range
6076 74.9	289.0	9.80	1.347	0.259	0,665	-	5456	9	70	41				T failed, DD above range
6077 74.9	289,4	4.96	0.682	0.264	0.676		2544	39	143	153	111			T failed
6078 74.6	288.7	0.77	0.105	0.235	0.604	-	585	191	287	390	235		•	T failed
COOD 75 0	290.1	Ø.85	0.119	0.156	0.398		559	145	252	333	Z42			T·failed
0000 (3.3	207.0	9.4 3	1.303	0.537	1.375		5465	41	107	108				T failed, DD above range

Dash indicates error in data. Blank indicates no data.

TABLE 10.1: PRIMARY ENGINEERING UNIT DATA

- 99 -
| | з: | INCH. | 70 | BAR |
|--|----|-------|----|-----|
|--|----|-------|----|-----|

3 INCH 70 BAR				3 INCH 70 BAR				DENSITIES (KG/M†3)			VAPOR FRACTIONS 1				
RUN ID TSN (GDOT REF (KG∕M↑2*S)	GDOT G−T (KG/M†2*S)	GDOT G-DD (KG/M†2*S)	GDOT T-DD (KG/M†2*S)	RUN ID TSN	VSL+VSG (M∕S)	TURB. VEL (M/S)	VEL. BD-G (M/S)	ID TSN	VERT AVG GAMMA	LEN AVG SCAN GAMMA DENS	ALPHA ALI Gamma Sci (Len) dei	°HA AL N THEF≐ IS	BDI OR AM	OTRACER FRACTION WATER
6035 6036 60512 60552 60553 60554 60555 60558 60558 60559 6061 6062 6062 6063 6075 6075 6075 60775 60778 60778 60778 60778 6078 60778 6078 60	1307.002 1223.881 1226.155 940.984 1164.550 958.182 408.438 818.883 577.833 1008.054 1071.684 1126.716 1225.315 1151.366 1403.021 1379.805 298.088 496.432 576.686 389.234 203.216 148.184 767.577	1316.303 1114.773 1190.108 1425.268 1419.600 913.292 391.597 727.331 1262.659 1138.403 1324.421 1376.959 1309.382 1081.786 1512.884 1334.984 SS FLOW RATI	1444.622 1349.528 1309.667 800.873 880.970 1038.010 460.271 869.821 631.535 875.113 869.918 896.549 1040.293 1288.725 1009.402 717.488 431.426 367.054 475.573 529.230 405.719 363.968 680.303	1585.450 1633.720 1441.237 450.019 546.709 1179.760 540.990 1040.226 315.870 672.716 571.387 583.751 826.504 1535.249 673.477 385.614	6035 6036 6052 60523 60555 60555 60555 60555 60555 60555 60555 60555 60555 60555 60555 60555 60555 60555 60555 60577 60579 60579 60575 60579 60575 60555 60555 60555 60555 60555 60555 60557 60575 60557 60577 60779 600	1.990 2.494 3.070 6.289 2.829 1.417 2.0210 4.316 5.7234 4.796 7.131 11.436 7.131 11.436 7.131 11.436 7.131 10.055 5.223 1.009 9.963 1.009	1.856 1.928 2.361 2.125 0.990 1.585 6.553 3.303 4.595 3.624 2.237 5.736 10.793	2.037 2.334 2.598 3.578 4.371 2.415 1.164 1.896 3.278 2.539 3.018 4.196 2.879 2.665 3.827 5.801 6.425 14.603 11.473 4.808 1.441 1.537 8.033 Y COMPARISON	6035553456 6005553456 6005553456 6005553456 6005556 600556 600556 6006534 60077567890 60077567890 60077567890 60077567890 60077567890 60077567890 60077567890 60077567890	707.25 573.80 498.76 220.50 198.86 424.90 390.90 454.11 340.00 284.14 210.79 356.51 478.13 260.10 122.35 66.55 25.15 40.91 108.14 273.68 83.55 E 10 //.	709.20 664.71 578.13 537.11 504.12 427.58 223.80 177.88 201.53 429.83 357.48 395.42 458.80 436.73 192.69 344.62 288.20 262.09 213.66 361.35 483.57 263.75 123.69 67.14 25.14 41.45 110.08 110.97 281.46 235.35 236.87 242.26 84.69 VOLD EPACTION C	0.03 0.1 0.22 0.1 0.33 0.1 0.77 0.44 0.5 0.449 0.40 0.40 0.40 0.56 0.4 0.56 0.5 0.56 0.5 0.56 0.5 0.56 0.5 0.56 0.5 0.56 0.5 0.56 0.5 0.56 0.5 0.55 0.5 0.52 0.5 0.52 0.5 0.52 0.5 0.52 0.5 0.52 0.5 0.55 0.5 0.52 0.5 0.55 0.5	11 11 12 0.11 135 0.48 14 0.886 15 0.886 14 0.886 15 0.979 16 0.481 17 0.929 18 0.979 19 0.9775 10 0.997 11 0.921 12 0.921	0.782 0.511 0.461 0.629 0.645 0.645 0.645 0.80	0.81 0.55 0.497 0.622 0.630 0.63 0.63 0.63 0.63 0.63 0.63
				1 10					TABL	E 10.4:	VUID FRACTION C	UNPARISON			

	з інсн	70 BAR							From Gamma	a Densitometer	Fr Referen	om ce Densitometer
RUN ID TSN	V GAS G DENS (M/S)	V GAS RADIO (M/S)	V LIQ. G DENS (M/S)	V LIQ. RADIO (M/S)	SLIP G DENS	SLIP RADIO	RUN ID TSN	From Govier & Aziz Flow Regime Map	Flow Regime	Interface Location(%)*	Flow Regime	Interface Location(%)*
538 6035 6037 6055 6055 6055 6055 6055 6055 6055 605	7.032 7.032 3.5204 9.5204 9.66853 12.66853 6.55510 7.09461 5.5520 6.4941 5.49461 9.1612 9.1612 9.1612 9.1493 9.1493 9.8244 11.1920 10.080	9.40 3.10 2.30 5.00 5.20 5.20 5.20 7.20 12.60	1.834 2.088 2.362 3.752 5.098 2.167 0.998 2.316 2.742 4.999 1.022 3.479 88.782 2.594 0.677 8.548 8.272	6.20 2.70 1.00 2.90 3.90 3.90 3.90 3.70 2.50 10.30	3.835 1.886 1.915 1.888 1.888 1.888 1.888 1.884 1.881 2.824 2.0267 1.640 1.915 1.720 1.643 1.485 0.111 2.129 1.739 2.175 1.219	1.516 1.148 1.800 1.050 2.172 1.563 1.667 1.600 1.459 1.231 1.340 1.223	6035 6036 6037 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6061 6062 6063 6074 6075 6076 6077 6078 6079 6079 6080	Elongated Bubble Slug Flow Slug Flow		125.41 90.34 74.12 17.91 11.91 57.81 51.26 63.02 10.34 42.08 30.43 15.08 44.70 69.46 24.93 -6.72 -23.15 -37.47 -10.30 29.15 19.14 -8.37		94 81 54 15 54 54 28
TADI												

TABLE 10.5: PHASE VELOCITY COMPARISON

TABLE 10.6: FLOW REGIME COMPARISON

3 INCH 70 BAR

3 INCH 70 BAR

RUN ID TSN	ALPHA GAMMA	GDOT-GDOT G-T REF (KG/M†2*S)	VT-(VSL+VSG) (M/S)	RUN ID TSN	LEN AVG GAMMA (KG/M†3)	GDOT/(VSL+VSG) REF (KG/M†3)	DRAG DISK (KG∕M*S↑2)	(GDOT)X(VSL+VSG) REF (KG/M*S↑2)	(SUM MV/ ALPHA)/AREA (KG/M*S↑2)
6035 6037 6037 60512 60553 60553 60553 60558 60558 60661 60677 607788 60778 60778 60778 60778 60778 60778 60777778 6077778 6077778 607778 607777777777	0.23 0.23 0.23 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.20 0.20 0.20	9.30 -109.11 -30.05 484.28 255.05 -44.89 -16.84 -91.55 684.83 130.35 252.74 250.24 84.07 -69.58 109.86 -44.82	-0.13 -0.57 -0.71 0.08 -1.51 -0.43 -0.44 0.94 -1.01 -1.13 -0.72 -1.17 -0.70 -1.39 -0.64	6035 60351 60552 60553 60556 60556 60558 60558 60558 60558 60558 60561 605778 60561 605778 60561 605778 605778 605778 6057778	709.20 578.13 504.12 223.80 201.53 429.83 458.80 395.42 458.20 344.62 283.66 363.57 263.69 423.69 263.69 423.60 423.69 423.	656.93 490.80 397.50 149.63 136.20 288.33 403.00 233.55 187.27 157.27 391.61 196.76 120.65 58.463 57.357 274.47 202.70	$\begin{array}{r} 2943\\ 3150\\ 3402\\ 2866\\ 3851\\ 2507\\ 536\\ 1649\\ 2070\\ 2626\\ 3762\\ 2626\\ 3762\\ 3863\\ 4162\\ 2772\\ 5366\\ 4162\\ 2772\\ 5366\\ 2545\\ 2545\\ 585\end{array}$	$\begin{array}{c} 2600.35\\ 3051.90\\ 3745.36\\ 5917.72\\ 9957.38\\ 2710.73\\ 578.58\\ 1660.56\\ 3241.63\\ 4350.99\\ 6133.02\\ 8072.18\\ 5876.97\\ 3385.10\\ 10004.53\\ 15779.60\\ 1520.05\\ 5047.16\\ 5798.41\\ 2034.36\\ 203.73\\ \end{array}$	2442.09 2621.70 3014.98 4259.95 7254.06 2174.56 436.01 1468.42 2198.84 3114.35 4292.01 6186.86 4329.26 2781.32 7702.33 15398.11 1370.22 20709.41 1582.38 152.54
6080	0.72 0.94			6080 6080	236.87 84.69	77.04	5465	149.48 7647.26	103.12 7024.70

TABLE 10.7: ERROR CALCULATIONS

TABLE 10.8: SINGLE INSTRUMENT CALCULATION

<u>1</u>0

LTR LO 00 79-109 Tk. 2784

FIGURE 10.1A: GOVIER AND AZIZ FLOW REGIME MAP

FIGURE 10.1B: IMPEDANCE PROBE FLOW REGIME MAP

VALUES

FIGURE 10.7: COMPARISON OF RADIOTRACER VAPOR FRACTION

FIGURE 10.8: ERROR IN GAMMA DENSITOMETER - TUBINE MASS FLOM CALCULATION

--- 107 ---

FIGURE 10.12: DRAG DISC MOMENTUM FLUX COMPARISONS

108

11. Conclusions

The behavior of a LOFT DTT mounted in free field configuration and a LOFT type Gamma-Densitometer installed in a five inch pipe and a three inch pipe test section in horizontal two-phase flow were investigated. This report presents the experimental description and the data obtained. Also included are data obtained with the Radiotracer Measurement System, Impedance Probes and the Scanning Densitometer.

Basing on these data, analyses are performed

- to interprete physically the data as a function of the phase distribution
- to calculate mass flux with other models
- to develop a calibration relationship

The results of these analyses are presented in another report $\frac{2}{2}$.

12. References

- /1/ Solbrig, C.W., Shull, G.B., Good, R.R., Chen, L.L., Reimann, J., John, H., Loeffel, R.: Volume I of Loft Production DTT and a Loft Type Gamma Densitometer, 20-00-79-109, EG&G Idaho Inc., Dec. 1979
- /2/ Reimann, J., John, H., Löffel, R., Solbrig, C.W., Stephens, A.G., Goodrich, L.D.: EG&G Mass Flow Rate Instrumentation Tests at Kernforschungszentrum Karlsruhe, Data Report Vol. 1, KfK 2784, 1980
- /3/ John, H., Reimann, J.: Gemeinsamer Versuchsstand zum Testen und Kalibrieren verschiedener Zweiphasen-Massenstrommeßverfahren, Anlagenbeschreibung KfK 2731 B, Feb. 1979
- /4/ Govier, G.W., Aziz, K.: The Flow of Complex Mixtures in Pipes von Nostrand Reinhold Co, New York, 1972, pp. 792
- /5/ Lassahn, D.G.: LOFT Three-Beam Densitometer Data Interpretation; Three-NUREG-111; 1976
- /6/ Reimann, J., John, H., Müller, St.: Impedance Probe for Detecting Flow Regime and Measuring the Phase Distribution in Horizontal Air-Water- and Steam-Water-Flow; Two-Phase Flow Instrumentation Review Group Meeting, Troy, New York, March 13-14, 1978.
- /7/ Reimann, J., John, H.: Measurements of the Phase Distribution in Horizontal Air-Water- and Steam-Water-Flow; Second CSNI Specialist Meeting on Transient Two-Phase Flow, Paris (France), 12th-14th June, 1978
- /8/ Löffel. R.: Durchflußmessung mit Radiotracern; Durchfluß-Meßtechnik Tagung Düsseldorf, 10.-11. März 1976, Düsseldorf: VDI-Verlag 1976. VDI-Berichte 254, S. 133-142.
- /9/ Stephens, A.G.: Determination of Flow Regime Characteristics by Photon Attenuation Thesis, Pennsylvania State University, 1975.

Appendix I

Impedance Probe Data

Whereas a gamma beam gives information on void fraction integrated over the beam length, for local void fraction measurement often electrical probes are used. A special development of such a probe is the impedance probe used in these experiments which is applicable also in liquids with negligible electrical conductivity such as steam-water at high pressure or freon. The measuring principle is described in detail in /6/; examples for steam-water measurements are reported in /7/. Figure I.1 shows schematically typical probe signals for a dispersed bubble flow (upper part) and a dispersed droplet flow (lower part). These two phase configurations can exist at the same time in the cross section of a pipe when in the upper part droplets exist in the gas core and in the lower part the liquid is concentrated (eccentrical annular flow).

In the figure the lower level belongs to the liquid phase and the upper level to the gas phase. By selection of a convenient trigger level the time averaged void fraction is obtained.

The analysis of impedance probe data allows both a density determination and a flow regime determination when data are obtained with a traversing impedance probe. When data are obtained with a fixed impedance probe, it is possible to estimate only the flow regime and not the entire density over the cross section. Impedance probe data with a traversable impedance probe were taken on the fiveinch pipe and were taken with two fixed impedance probes on the three-inch pipe. The flow regimes which have been postulated to occur from the traversing impedance probe data in the five-inch pipe are summarized in Figure I.2 and a flow regime map obtained from analysis of the 40 and 75 bar data is given in Figure I.3. Figures I.4 to I.8 indicate how the flow regimes were determined from the data obtained. Figure I.4 shows a summary of four different test points. It includes in it the flow regime definitions and the time average density at each point in the vertical direction. Point 5052 shows a sharp decrease in the density as the vertical relative distance (y/d) increased beyond 0.35. The other points show this decrease to be slower and to occur lower in the pipe. Figure I.5 shows the impedance probe data obtained at the different elevations where significant changes in the density were occurring. Three-beam gamma densitometer outputs as a function of time corresponding to these data are also shown. The densitometer outputs are synchronized with that impedance probe output whose dimensionsless distance is underlined. The top curve, the impedance probe data at elevation (y/d) 0.53, shows almost all steam. At elevation 0.48, the data shows more

liquid, at elevation 0.43 almost 50 %.liquid and at elevation 0.38, almost all liquid. The three beams of the gamma densitometer are consistent with the above described impedance probe data. The top beam, γ_3 , shows mostly steam in the top part of the pipe. The second beam which nearly goes through the center of the pipe at a 52° angle from horizontal direction shows much more liquid and the beam which goes through the bottom of the pipe shows almost all liquid. Figures I.6a and I.6b show the same type of information for test No. 5051. Figures I.7 and I.8 also show this same information for the remaining two points. It is observed in all these cases that the structure of the signal is considerably different from run to run. The considerably different oscillations associated with each experimental condition indicate differenct wave structures, bubble and droplet sizes between the various runs. This type of measurements has been done for all of the five-inch test points, all profiles of the density versus vertical distance and the associated flow regime are shown in /2/.

A different method is used to estimate the flow regime in the three-inch pipe where only two positions were measured with fixed impedance probes.,The two impedance probes were approximately 5 mm above the bottom and below the top of the pipe flow channel respectively. Since two measuring positions do not give the same amount of information as a traversable probe, the time dependent signals of the gamma densitometer and the DTT were also used in the flow regime determination.

FIGURE I.1: SCHEMATIC DIAGRAM OF THE IMPEDANCE PROBE

- 113 --

NO WAVES OR LOW FREQUENT WAVES, NO BUBBLE ENTRAINMENT, NO DROPLET ENTRAINMENT

STRATIFIED FLOW

HIGHER FREQUENT WAVES, PERIODIC BUBBLE ENTRAINMENT, FEW DROPLETS ABOVE INTERFACE

WAVE FLOW

STRATIFIED MIST FLOW (ECCENTRICAL ANNULAR FLOW)

NO DISTINCT WAVES, HIGH BUBBLE ENTRAINMENT IN LIQUID AT PIPE BOTTOM, CONSIDERABLE DROPLET ENTRAINMENT IN GAS CORE, DROPLET DEPOSITION AT UPPER PIPE WALL CAUSES THIN LIQUID FILM: ECCENTRICAL ANNULAR DROPLET FLOW

LONG AND SMALL BUBBLES IN THE UPPER POSITION OF THE PIPE

mmmmmmmmm

ELONGATED BUBBLE FLOW

LARGE GAS PLUGS SEPARATED BY SLUGS WITH CONSIDERABLE BUBBLE ENTRAINMENT IN BOTTOM LAYER ALSO BUBBLE ENTRAINMENT

SLUG FLOW

FIGURE I.2: DEFINITIONS OF FLOW REGIMES

FIGURE I.3: FLOW REGIME MAP FROM TRAVERSING IMPEDANCE PROBE DATA (40 and 70 BAR EXPERIMENTS

FIGURE I.4: VOID FRACTION IMPEDANCE PROBE ANALYSIS

- 116 --

FIGURE I.5: SIGNALS OF IMPEDANCE PROBE AND γ -BEAMS FOR TEST NR. 5052: p = 4,9 bar, c_w = 0.08 m/s, c_s = 0.985 m/s

117 -

FIGURE I,6A: SIGNALS OF IMPEDANCE PROBE AND γ -BEAMS FOR TEST NR. 5051: P = 4.3 bar, c_w = 0.246 m/s, c_s = 4.86 m/s

FIGURE I.6B: SIGNALS OF IMPEDENCE PROBE AND γ -BEAMS FOR TEST NR. 5051: P = 4.3 bar, c_w = 0.246 m/s, c_s = 4.86 m/s

- 119 —

FIGURE I.7: SIGNALS OF IMPEDANCE PROBE AND γ -BEAMS FOR TEST NR. 5054: P = 40 BAR, C_W = 0.22 M/s, C_S = 9.93 M/s

FIGURE I.8A: SIGNALS OF IMPEDANCE PROBE AND γ -BEAMS FOR TEST NR. 5050: p = 4,5 bar, c_w = 0,118 m/s, c_s = 10,4 m/s

FIGURE I.8B: SIGNALS OF IMPEDANCE PROBE AND γ -BEAMS FOR TEST NR. 5050: p = 4.5 bar, c_w = 0.118 m/s, c_s = 10.4 m/s

Appendix II

The EG & G Reference Densitometer (Scanning Densitometer)

The scanning densitometer was a low photon energy, moving-detector system (Figure II.1)assembled and checked out at EG & G Idaho, Inc. Significant portions of the system were purchased from Westinghouse Nuclear Energy Systems where it had been used previously /8/. In the Karlsruhe testing, a new spool piece and traversing framework were built, a new source was supplied, and these were combined with the Westinghouse detector, electronics, and traversing motor and control to form the new system.

The spool piece was a 1.48 m length of 3 inch. Schedule 160, Type 304 stainless steel pipe with Grayloc hubs at both ends and a flanged joint about 23 cm from the downstream end. A beryllium ring was mounted between these flanges and the joint sealed with silver-plated Inconel 600 O-rings. The nominal beryllium ring inside diameter was 66.7 mm with an outside diameter of 101.6 mm, was 19.05 mm thick, and fabricated of Brush-Wellman alloy S-200 E. The flanges were specially fabricated with an 8 bolt pattern and with taps for pressure, temperature, and Storz lens connections. Three of the flange bolts were replaced by a pair of flange clamps in order to permit the detector an unobstructed view of the entire flow cross section. The clamp bolts were at locations outside the traversing range of the detector. At the spool horizontal centerline, a 19.18 mm diameter hole was drilled in each flange at a distance of 7.620 cm from the center of the flange bore. A 19.05 mm diameter shaft aligned like a flange bolt, was mounted through and between these holes, and served two functions: (1) it was the axle about which the detector rotated, and (2) it housed the radioactive source.

The liquid nitrogen dewar and X-ray detector were mounted on a traversing frame constructed of rectangular aluminium tubing. At one end of the frame, vertical arms connected it to the axle/source tube. Sealed ball bearings were pressed into the arms and provided low frictional resistance between the stationary axle and rotating arms and frame. At the frame's outer end, a vertical circular arc segment was attached to the frame. A chain from the drive motor sprocket was attached to the bottom of the arc, so that pulling upward on the chain raised the detector. The chain unwrapped from the circular segment causing a detector movement linearly related to the rotation of the drive motor.

The radioactive source consisted of approximately 45 mCi of accelerator-grade Cd-109, prepared in May 1977 by New England Nuclear Company. The active material

was electroplated on a silver disc which was housed in a hermetically sealed short cylinder. The primary radiation is the 22.1 keV silver k_{α} X-ray with a yield of better than 95 % per disintegration. k_{β} X-rays are also present at 24.9 and 25.4 keV, as is an 88 keV gamma. The electron capture decaying isotope has a half life of about 453 days.

The detector was a 1.0 cm diameter by 5 mm active depth Si (Li) crystal, cooled to near liquid nitrogen temperature in a common vacuum 5 liter dewar, Ortec Model 78916-10300. The 3.81 cm diamter evaculated cryostat snout was sealed against the atmosphere with a 0.001 inch thick beryllium window. A detector shield was mounted on the front of the cryostat. It consisted of a lead sleeve and 25.4 mm thick shield. A rectangular collimating hole was machined in the shild and had a cross section 10 mm wide by 3.17 mm high. Thus, the collimating hole length-to-height ratio was approximately 8 to 1.

With the source/detector of 24.58 cm, the 3.17 mm collimating slot height corresponded to an angular beam height of 0.739 degrees, and constituted 1/20 of the flow diameter. Photon energy resolution of the detector was 274 eV full width half maximum at 15,00 of the 22.1 keV X-rays per second with a main amplifier shaping time constant of μ s.

A traverse is started by moving the detector to its initial position. The 22.1 keV pulses are counted for 10 s and the number counted is typed on the teletype. While the typing is preceding, the detector is moved by the stepping motor to position 2. The counter is reset and counting reinitiated at the new pe^{-} position. This procedure is repeated automatically for the 65 azimuthal detector positions, at which time the operator stops the process and returns the detector to its initial position for the next data run.

Densitometer calibration was accomplished by obtaining count rate traverse data for known density, all-liquid and all-dry vapor conditions. Data were reduced using the scanning densitometer data reduction computer program, PATDR. Chordal average densities are calculated using Equation (4) and cross sectional average fluid density is calculated using Equation (5). The weighting factor used in the latter equation accounts for the angular segment beam area associated with the polar coordinate setup of source and detector.

$$\rho_{c}(\theta) = \rho_{f} - (\rho_{f} - \rho_{g}) - \frac{\ln \frac{I(\theta)}{I_{f}(\theta)}}{\ln \frac{I_{g}(\theta)}{I_{f}(\theta)}}$$
(4)

$$\overline{\rho} = \frac{\frac{47}{\sum_{i=1}^{47} \left[\rho_{c}(\theta_{i}) \ 0.5 \ (D_{0}+D_{s})(\cos \theta_{i}) \ X_{f}(\theta_{i})_{\Delta\theta}\right]}{\sum_{i=1}^{47} 0.5(D_{0}+D_{s})(\cos \theta_{i}) \ X_{f}(\theta_{i})_{\Delta\theta}}$$
(5)

where

ρ_f

= the density of the subcooled water giving rise to traverse count rates $I_f(\theta)$.

 ρ_{σ} = the superheated steam density yielding count rates $I_{q}(\theta)$.

- ρ_{c} = the chordal average density determined from the two phase flow count rates $I(\theta)$.
- D_{n} = beryllium ring outer diameter.
- D_s = twice the distance from source center to nearest outer surface of beryllium ring.
 - = traverse angle (Figure).

$$X_f$$
 = fluid chordal path length = $(D_i^2 - (D_0 + D_s)^2 \sin^2 \theta)^{1/2}$.

); = beryllium ring innter diameter.

The Figures II.2 to II.8 show how the scanning densitometer is used to verify the correctness of the three beam densitometer data reduction model. Three beam and scanning densitometers were mounted side by side and used to monitor a stratified flow regime. Three chordal average density readings were obtained, one from each of the three beams of the three beam densitometer. Forty-seven chordal average density values were obtained by the scanning densitometer monitoring the same flow. The three values from the three beam densitometer and the information that the flow regime was stratified were used in Lassahn's stratified three-beam densitometer data reduction model /5/. The output from that model is the other density distribution shown in the figures.

The good agreement between the scanning densitometer data distribution and that calculated from the multibeam densitometer data gives a high level of confidence in the three beam densitometer data reduction model. Although this result is encouraging, in practical application the appropriate type of flow regime must still be determined in order to apply the appropriate data reduction model to the three-beam densitometer data.

FIGURE II.1: DENSITOMETER SOURCE, PIPE, DETECTOR GEOMETRY

,

FIGURE II.3: COMPARISON OF DENSITY PROFILES (TSN 6016 AND 6017)

FIGURE II.4: COMPARISON OF DENSITY PROFILES (TSN 6019 AND 6020)

— 130 —

FIGURE II.5: COMPARISON OF DENSITY PROFILES (TSN 6025 AND 6035)

--- 131 ---

FIGURE 11.5: COMPARISON OF DENSITY PROFILES (TSN 6035 AND 6037)

FIGURE II.7: COMPARISON OF DENSITY PROFILES (TSN 6051 AND 6052)

— 133 —

FIGURE II,8: COMPARISON OF DENSITY PROFILES (TSN 6055 AND 6058)

— 134 —

Appendix III

The Radioactive Tracer Velocity Measurement Technique

1. The Equipment for Radiotracer Velocity Measurement

With the radiotracer technique, gaseous and liquid tracers are injected periodically into the flow. Figure III. 1 presents a schematic diagram of the radiotracer equipment. After a mixing distance the "radiotracer cloud" reaches the same velocity as the corresponding phase of the two-phase mixture and is detected by detectors, arranged downstream in two or more measurement planes. The velocity of the individual phases is determined from the given measurement distances and the elapsed time.

The technique presented in the following is also described in /9/. The radiotracer of the gaseous phase Ar-41 (E = 1.29 MeV, $T_{1/2}$ = 1.83 hours) was used in the steam phase of the flow and for the liquid phase Mn-56 dissolved in water (E = 0.85 MeV, 1.81 MeV, and 2.11 MeV, $T_{1/2}$ = 2.58 hours) was used in water phase of the flow. Both tracers were activated in the research reactor FR2 of the Kernforschungszentrum Karlsruhe.

Four tracer injection valves are arranged along the test section with a distance between each valve of 100 mm. The valves are electromagnetic with a nominal diameter of 1.2 mm. The valves are of a fast opening and closing type to permit as high injection frequencies as possible. The valve nozzles are partially inserted into the test section. A copper packing prevents vapor or water from escaping at the Connection. As the test section is at an elevated temperature during operation, the valves are water-cooled. The nozzles of the injection valves are of two different lengths. The short nozzles end at the inside wall of the tube, while the long nozzles reach within 10 mm of the center of the test section. The injection valves are arranged (in the direction of the fluid flow) as follows: first long nozzle for the Mn solution, second, long nozzle for Ar, third, short nozzle for Mn solution and finally, short nozzle for Ar.

The first measuring plane was installed at a distance of 500 mm downstream from the last injection valve. It consisted of two 2" x 2" detectors, opposing each other and installed vertically to the tube in the same direction as the injection valves. The detectors were in a water cooled casing. They were shielded by 50 mm of lead around the NaI(Tl) crystal. Between the test section and the detector a slit-type lead collimator (length: 50 mm) was installed; its 20 mm broad slit was in a vertical direction relative to the horizontal axis of the test section. The other five measuring planes with similar NaI(Tl)
detector equipment were arranged each spaced 600 mm apart. For shielding against the background radiation from the injection valves, a wall of lead (thickness: 100 mm) was erected between the last injection valve and the first measurement plane.

2. The Control of Tracer Injection

2.1 Valve Control Unit

The prepared tracer reaches the electromagnetic injection valves at an injection pressure higher than the system pressure of the test facility. The injection valves are operated above their normal operational range in order to obtain the performance necessary for the injection technique. The control of the injection valves is carried out directly, without transformers and time-delaying elements, by a valve control unit in the measuring room, developed and built by the Laboratorium für Isotopentechnik (LIT). This valve control unit opens and closes the injection valves at precisely determined times. The injection valves are open for about 10 to 20 ms for the gaseous tracer Argon-41 and about 20 to 60 ms for the liquid tracer Mn-56, depending on the activity needed per injection and the specific activity of the electric charge displacement of a mechanically loaded piezocrystal. These pressure measurements are recorded with the data during the experiment.

The tracer labeling of the steam phase and of the water phase is performed alternately. The valve control unit produces a precisely adjustable delay time between the four different injection valves. This is advantageous for data evaluation when the tracers tend to bunch together within the measurement distances as is the case when slip occurs. The frequency of the injection periods (a period includes all four injections) varies between 0.1 cps to 3 cps depending upon the expected linear velocities for the two-phases in the test section. The valve control unit permits injections with different frequencies, which are automatically controlled in exactly determinable times. Thus it is possible to accurately label a flow with varying velocities for the two-phases.

2.2 Specific Activities, Count Rates Obtained

The mean value of the activity per injection amounts to 1 - 15 mCi. The detection of the tracer cloud is performed by NaI(Ti) scintillation detectors. The "sensitive field" of the detectors is focused by slit-type collimators (width: 20 mm). For the 3-in. test section, the typical tracer cloud viewed by the detector has an activity of 50-500µCi.

3. Detection

The starting distance, i.e., the distance between the last injection valve and the first detector plane amounted to about 0.5 m. It is expected that within this distance the injected tracer is mixed with the corresponding phase and also is accelerated up to phase velocity. The distance required for this purpose depends, among other things, on the phase velocities, the flow pattern and the thermodynamic circumstances and was determined experimentally. After this starting distance, four measuring planes followed at a distance of 1/2 to 1 m. Each measuring plane consisted of two detectors arranged opposite to each other and installed vertically. After these four measuring planes, two single detector stations were placed above the test section, arranged at a distance of 2-1/2 and 1-1/2 m, respectively. The individual phase velocities were determined by measuring the elapsed time of the corresponding tracer cloud between two measuring planes. The positioning of two detectors in one measurement plane offers redundancy. Also, indications for the distribution of the tracer in the test section can be determined. By arranging more than two measurement planes velocity transients can be measured, thereby providing conclusions on the thermodynamic state.

4. Data Acquisition

In the measuring room, all devices for injection control, tracer measurement and data collection are installed, so that personel are not needed at the facility. Here the preamplified signal coming from the detectors is amplified once more by the factor 100. The adjustment of high voltage to the operating point of the photomultiplier and the determination of the supplementary amplification are performed by using the gamma-ray spectrum from a radioactive calibration source, which had been attached to each detector for a short time before starting the experiment (generally Co^{60} with an activity of 10µCi). The calibration spectra are collected by a multichannel analyzer. During the measurement the functioning of the detectors and the tracer behaviour are continuously monitored by the spectra of the tracers, registered in the multichannel analyzer.

At the outlet of each amplifier three single channel analyzers are installed. Here the analog signals coming from the amplifier are transformed into digital pulses. The first single channel analyzer is used as an lower level discriminator. That is, a digital output pulse is created if the analog pulses are higher than the noise threshold. The other two single channel analyzers are used to identify the individual tracers. That is, these two single channel analyzers are set to provide a digital output signal within the gamma-ray energy regions of the two radiotracers (Ar-41; E = 1.29 MeV, Mn-56; E =0.85, 1.81 and 2.11 MeV). The single channel analyzers are adjusted with a multichannel analyzer by placing the "energy windows" over the photopeaks of the tracer spectra; Ar-41; 2.29 MeV; Mn-56; 1.81 MeV. This identification of the tracer by energy discrimination is a supplement to the tracer determination by injection control. With count rate meters, the pulse rate from the single channel analyzers is linearly transformed into an analog voltage. The resolution time of the count rate meters has been modified to 1 ms.

4.1 Recording Technique

The control pulses of the valve control unit, the signals of the pressure gauges at the injection valves and the analog voltage from the count rate meters are adapted to the tape recorder by attenuators and recorded on magnetic tape. Two recorders with a total of 28 channels are available, furthermore there is a PCM unit (<u>pulse code modulation</u>) which records 8 signals in one channel. During the experiment, signals are transmitted through adequate low-pass filters to a high speed UV-recorder, so that prompt evaluation of the data can be made during the experiment.

5. Data Evaluation Technique

The linear phase velocities are determined by evaluation of the integrally measured count rates according to a cross-correlation technique, whereby the tracer are identified both by injection control and energy discrimination. The radio-tracer signals were recorded in an analog mode and evaluated on an IBM 370/3033 computer using a program developed by KfK. Two data blocks (gates), each containing one peak, were read in synchronously. In the evaluation of these data blocks, the relations shown below were used. The cross correlation function of two signals x(t), y(t):

$$\phi_{xy}(\tau) = \int_{-\infty}^{\infty} x(t) \cdot y(t+\tau) dt$$

represents the time delay between these two signals.

We suppose that the signals were zero outside an interval T: x(t), y(t) = o for /t/> T/2.

From

$$\Phi_{xy}(\tau) = \int_{+T/2}^{T/2} x (t) \cdot y(t+\tau) dt$$

simple numerical integration furnishes:

$$\oint_{xy}(\tau_i) = 1/nT * \sum_{i+1}^{n} x(iT*)y(iT*+kT*)$$
$$T = nT*, \ k = \tau/T*$$

On the basis of the time shift of the peak centroids an approximate value of τ_{o} is determined, from which τ_{min} and τ_{max} are found. For convolution (calculation of the cross-correlation functions) τ is now varied within these limits τ_{min} , τ_{max} . As a result one obtains the curve of the cross-correlation function in the interval $t_{min} < t < t_{max}$. The peak of the cross-correlation function supplies the mean transit time of the respective tracer between the points of measurement. Tables III. 1 and III. 2 show the measured velocities between the different detector locations. It is clearly seen that the values for both phase velocities differ at the different locations. This is due to the development of the two-phase flow along the flow path.

				N	
un v _g D1 - D3 _V		v _g ^{D3} - ^{D5} v _{&}		۷ _g 05 - 07 _۷	
10.40	3.50	11.00	3.56	11.00	2.98
5.00	1.30	4.70	1.29	4.45	1.33
5.00	1.36	5.00	1.36	5.45	1.27
10.67	2.83	10.00	2.49	10.00	2.32
11.00	3.16	10.00	2.86	10.00	2.52
1.21	1.21	1.23	1.06	1.35	1.00
1.08	0.59	1.20	0.30	1.15	0.31
1.35	2.08	1.39	1.94	1.36	1.83
	Vg ^{D1} - 10.40 5.00 5.00 10.67 11.00 1.21 1.08 1.35	$v_{g}^{D1} - D_{3}v_{g}$ 10.40 3.50 5.00 1.30 5.00 1.36 10.67 2.83 11.00 3.16 1.21 1.21 1.08 0.59 1.35 2.08	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_g^{D1} - D_3 v_{\ell}$ $v_g^{D3} - D_5 v_{\ell}$ 10.403.5011.003.565.001.304.701.295.001.365.001.3610.672.8310.002.4911.003.1610.002.861.211.211.231.061.080.591.200.301.352.081.391.94	$v_g^{D1} - D_3 v_{\ell}$ $v_g^{D3} - D_5 v_{\ell}$ $v_g^{D5} - D_{1.00}^{D5} v_{\ell}$ 10.403.5011.003.5611.005.001.304.701.294.455.001.365.001.365.4510.672.8310.002.4910.0011.003.1610.002.8610.001.211.211.231.061.351.080.591.200.301.151.352.081.391.941.36

5 INCH 40 BAR RADIOTRACER VELOCITIES

.

т. — Т.

5 INCH 70 BAR RADIOTRACER VELOCITIES

5066	5.43	2.95	5.27	2.59	5.27	2.27
506 7	5.21	3.36	5.11	2.96	5.25	2.51
5068	1.00	1.30	1.02	1.16	1.03	0.96
5069	1.17	1.91	1.18	1.80	1.20	1.57
5070	1.21	0.76	1.30	0.62	1.22	0.50
5071	5.55	2.86	5.64	2.40	5.65	1.87

TABLE III.1: RADIOTRACER VELOCITIES 5 INCH TEST SECTION

Run ID	v _g D1 -	D3 _V	v _g ^{D3} -	D5Ve	v ^{D5} -	D7 _V	
6013	12.41	11.61	12.61	9.77	12.93	9.12	
6014	5.56	4.59	6.09	3.70	6.26	2.99	
6015	1.56	2.19	1.10	1.87	2.12	1.50	
6016	1.47	1.45	1.61	1.08	1.83	0.89	
6017	6.67	2.81	7.14	2.34	6.51	2.20	
6018	10.56	6.20	10.56	5.45	10.72	4.04	
6019	1.96	2.83	2.11	2.27	2.37	2.03	
6020	1.94	2.75	2.21	2.33	2.71	2.03	
6021	7.62	7.18	8.15	5.44	8.61	4.00	
6022	3.79	4.11	4.13	3.35	4.76	2.77	
6023	6.13	5.69	6.78	4.08	6.86	3.63	
6024	9.02	8.16	8.98	6.40	8.94	5.01	
6025	11.02	10.01	11.04	9.06	10.96	6.50	
6026	8.05	7.13	7.89	5.66	7.85	4.82	
6027	4.66	4.46	4.92	3.63	5.20	3.09	

3 INCH 40 BAR RADIOTRACER VELOCITIES

3 INCH 70 BAR RADIOTRACER VELOCITIES

Run ID	v _g D1 -	- D3 _{V &}	v _g D3 -	D5Ve	v _g D5 -	D7 _V
6052	8.88	8.43	9.14	7.12	9.53	5.23
6053	2.81	3.22	2.91	2.83	3.29	2.54
6054	1.61	1.43	1.66	1.12	1.83	0.94
6055	1.97	2.51	2.10	2.15	2.21	1.80
6056	5.99	4.05	6.21	3.08	6.46	2.66
6057	4.52	3.98	4.81	3.37	5.05	3.02
6058	6.06	5.40	6.34	4.25	6.62	3.64
6059	7.67	7.09	7.92	5.63	8.06	4.47
6060	5.03	4.58	5.25	3.85	5.59	3.62
6061	:2.91	3.22	3.07	2.79	3.47	2.58
6062	7.28	6.79	7.42	5.62	7.59	5.03
6063	11.82	10.41	12.48	10.41	12.18	10.02

TABLE III.2: RADIOTRACER VELOCITIES 3 INCH TEST SECTION

FIGURE III.1: SCHEMATIC DIAGRAM OF RADIOTRACER EQUIPMENT