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Abstract

The growth of a large sodium vapor HCDA bubble in a finite pool of
cold sodium is modelled., During the growth the bubble is supplied
with hot wvapor coming from the core region through an orifice.
Nonequilibrium at the phase interface is allowed, and the effect of
noncondensable fission gases is parametrically studied.

Results are presented in graphical form for the case of a typical
300 MW fast breeder reactor. An increase of the quantity of non-
condensable fission gases is showed to cause a slight increase of
the growth velocity, and a much greater increase of the vapor tem-
perature and decrease of the liquid interface temperature, as

expected.

Theoretische Untersuchungen liber das Wathstum von grofen Natriumdampf-

blasen in fliissigem Natrium

Zusammenfassung

In dieser Arbeit wird das Wachstum einer grofen HCDA-Natriumdampfblase
im kalten fliissigen Natrium theoretisch untersucht. W&hrend des Wachs-
tums wird die Blase mit heiBem Natriumdampf aus dem Kern gespeist.
Temperaturdifferenzen an der Blasenoberfldche werden beriicksichtigt
und der Effekt von unkondensierbaren gasférmigen Spaltprodukten

wird parametrisch untersucht. Es werden Ergebnisse fiir einen typsichen
300 MW-Schnellen Briiter dargestellt. Eine Zunahme der Konzentration
der unkondensierbaren Gase verursacht eine geringe Zunahme der Wachs-
tumsgeschwindigkeit und eine viel gr&Bere Zunahme der Dampftemperatur.
und Abnahme der Temperatur des fliissigen Natriums an der Blasenober-
fliche. |
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coefficient

expression (3.22)

coefficient

expression (2.58)

Condensation-evaporation Coefficient (-); coefficient (-)
expression (3.21)

coefficients

specific heat :at constant pressure (J/kg s k)
specific heat at constant volume (J/kg.k)
liquid thermal diffusivity (mz/sec)

energy per unit surface (J/m2)

energy per unit surface (J/m2)

function

function

enthalpy (J), time step (sec)

specific vaporization enthalpy at T=T_ (J/kg)

L
specific enthalpy of saturated liquid at T=TL(J/kg)

specific enthalpy of saturated vapor at T=T_. (J/kg)

L
specific enthalpy of vapor at T=T_. p=pV(J/kg)
Plesset-Zwick integral

thermal conductivity (J/sec:.m,k)

expressions (4.10) used in Runge-Kutta integration

mass (kg)

evaporated mass'(kg/mz)

condensed mass (kg/mz)

mass flow rate introduced from the source into the bubble
(kg/sec)

Sodium molar weight (kg/mol)

exponent '

pressure (N/m2)
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p' sum of all the normal stresses (N/mz)

pr sodium saturation pressure at T=TL (N/mz)

r radial coordinate (m)

R bubble radius (m)

R' external liquid radius (m)

Rg perfect gas constant (J/mol-K)

Ry boundary layer external radius (m)

S Orificecross section (mz)

t time (sec)

T absolute temperature (K)

u radial velocity (m/sec)

¢ specific volume (m3/kg)

\Y volume (m3)

W work made by the vapor against the liquid (J)
X integration variable (sec)

y integration variable (sec), prediction corrector variable
YR velocity of expansion of the bubble (m/sec)

Greek letters:

adiabatic exponent

boundary layer thickness (m)

dynamic viscosity (kg/ms)

3.1415

density (kg/m3)

surface tension (N/m)

Plesset-Zwick variakle, defined by (2.77), Xm4~ sec)

Y A Q O 9 T o <

1y C"Plesset-Zwick variable im4. sec)



Superscripts:

Subscripts:

co
crit

ev

in

lin

e

vl

time derivative (1,s)
saturated conditions

specific quantity (1/kg)

of cover gas

condensation

critical

evaporation

in the vapor source
introduced from the source to the bubble
of liquid

of liquid, at the interface
linearized

index

at radius r=R

of vapor

from vapor to liquid
initial

final

at infinity
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Introduction

Description of the problem

The dynamics of the expansion of large bubbles of hot sodium vapor
in a pool of relatively cold liquid sodium plays an important

role in underétanding the effects of an hypothetical core-disruptive
accident (HCDA) in Liquid Metal Fast Breeding Reactors (LMFBR-s).
As a result of fuel-coolant interaction in an HCDA, a large bubble
would be formed by the discharge of a mixture of hot sodium vapor,
liquid sodium, highly dispersed fuel and fission gases, from the
core region into the relatively cold liquid sodium pool placed
above the core,

An isentropic expansion of the bubble down to the equilibrium
pressure, takingrinto account the compression of the cover gas
volume, would be a rather simple but too conservative estimate,
i.e. overestimate ., of the work performed by the bubble.

The work potential of the accident is much mitigated, if heat
transfer to the cold liquid pool, mainly due to condensation of

hot sodium vapor at the bubble surface, is taken into account.

On the other hand, this mitigating effect could be seriously
reduced by the presence of the noncondensable fission gases, which
tend to aécumulate near the condensation surfaces, inhibiting the
heat transfer.

Other mechanisms , such as cold liquid sodium entrainment in the
bubble, the presence of relatively cold structures in the pool etc,
can influence the bubble expansion as well, generally, but not
always, in the sense of mitigating the work potential. They have

not been considered in the present approach.

Previous work

The literature on bubble dynamics that we have examined, can be
roughly divided into two major classes, the first dealing with
boiling and growth of small bubbles in superheated liquids, the

second with expansion and collapse at large bubbles surrounded by



-10-
relatively cold liquid, mainly for HCDA simulation.

To the first class belong classical papers like those of pilegset
and Zwick /1,11,12/,0f Birkhoff and Margulies /15/, of Theofanous
and Fauske /3/, of Bornhorst and Hatsopoulos /13, 14/. More
recently,studies have been performed by Dalle Donne and Ferranti
/16/, Brook and Mills - /5/ and Prosperetti and Plesset/17/.

To the second class belong the paper of Reynolds ard Kennedy/18/
who examined the coOondensation of a large sodium vapor bubble
obtained by adiabatic expansion of the products of a typical

HCDA, while it rises in the liquid sodium pool, assuming a constant
condensation heat transfer coefficient. The condensation process
was found to be governed by transient conducticn in the liquid

and a significant fraction of the sodium vapor was concluded

to condense before the bubble reaches the pool surface. A subse-
quent paper of Theofamous and Fauske /19/ once more analyzed

the condensation of a rising bubble, but taking into account the
effect of noncondensables and solving the problem of transient mass
diffusicn in the vapor space in conjunction with the transient
heat conduction and convection in the liquid phase. The presence
of noncondensables was found to seriously delay the condensation

process.

The paper by Uzigik and Kress /20/ treats the problem of the con-
densation of the rising bubble in a way similar to the previous
work /19/, i.e. including the effect of fission gases, but a
turbulent boundary layer is assumed, rather than transfer by mode-
cular diffusion in the vapor phase. The reason of this modification
is that a diffusion model may underestimate the condensation rates

if strong internal convection motions are present.

Finally Reyﬁolds and Berthcud /4/ have analyzed both theoretically
and experimentally the expansion and ccllapse of large two phase
(water vapor and liquid water) bubbles in a pool of cold liguid
water. The effect of noncondensables was not included.

An early instability of the bhbble surface was observed. During
this phase conducticn-limited heat transfer is shown to be too

slow to account for the experimental results, while it descrikes
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well the bubble expansion and collapse as soon as the bubble surface
becomes stable, The heat and mass transfer, in the absence of ncn-

condensable gases, significanty mitigates the mechanical work.

Present model and assumptions

The present model describes the expansion and collapse of a large
sodium vapor bubble in a finite pool of relatively cold liquid
sodium. During its growth the bubble is supplied with hot sodium
vapor coming from the core region. The core region is modelled with
a superheated vapor source at constant pressure and temperature,
connected with the bubble through an orifice. The discharae of hot
sodium vapor through the orifice is governed by the pressure-
difference between core region and bubble. The geometry of

the problem is spherical (see Fig. 1).

The temperature and the pressure of the vapor in the bubble are

considered to be uniform. The mass of liquid contained in the pool
is finite. The presence of the cover volume is also modelled by
means of an external spherical gas shell which may be compressed

by the motion of the liquid.

The reactor tank is considered to be rigid and is modelled by an
external rigid boundary.

The initial conditions are as follows: the bubble has an initial
radius of 0.1 m., is filled with sodium saturated vapor at atmos-
pheric pressure, i.e. at about 1154K; and the sodium pool, containing
110 m3 of liquid, has an initial uniform temperature of 800OK.

The initial temperature at the interface is also 800K. A 70 m3 cover
gas volume surrounds the liquid. The volumes and temperatures chosen
are typical of a 300 MW fast breeder reactor.

The hot sodium vapor in the core region has a constant pressure of

5 bar and a constant temperature of 1700K. The orifice connecting
the bubble with the source starts to open linearly at t=0 and is
completely open after 1 msec. Orifice parameters are so chosen that
a maximum mass injection rate of 100 kg/sec of hot vapor from the
core is reached. Nonequilibrium between the sodium vapor in the
bubble and the liquid at the interface is described by the model,
since the temperature of the vapor is different from the temperature
of the liquid at the wall,
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The effect of noncondensable fission gases on the expansion

and collapse of the bubble is modelled by introducing con-
densation and evaporation coefficients, a technique used

in many previous works /3,4,5/. A parametric study is made
varying the value of the coefficients according to experimental
data.

The interphase heat transfer problém is solved tggether with

the heat conduction in the liquid and the liquid motion problem.

Two distinct models are presented, the difference beeing only

in the deécription of the heat conduction in the liquid.

The first model uses the Plesset-Zwick /1/ solution for the

heat diffusion across a spherical boundary with radial motion.

The second uses the Theofanous-Fauske /3/ technique of solving

the energy equation for the liquid by postulating a thin second order
thermal boundary layer in the liquid. _

Only the results obtained by the first method are cshown in the present
report .. Calculations were made also using the second approach.
The resulte of these are not preserited here, as they are in full
agreement with the previéous ones. |

The presence of liquid sodium, of fuel particles and fuel wvapor

in the bubble, the entrainment of liquid drops from the pool, the
presence of ccld structures and the instability‘of the bubble sur-
face are neglected at the present stage of the mcdel.

Rising of the bubble in the pool is also neglected, since the ex-
pansion characteristic times are much smaller than the time re-

quired to rise in the pool.
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Differences between the present model and the previous approaches

The main differences between the present model and the previous

apprcaches can be resumed as follows:

a) instead of considering & constant-radius rising bubble, as in
/18, 19, 20/ we investigate the expansion phase of the bubble.

b) we simulate the flow of hot sodium vapor from the core during

the expansion, instead of modelling a flashing water source
like in /4/.

Governing equations using the Plesset-Zwick solution

Continuity equation for the liguid.

Let us consider an incomgressible fluid, fcr which:
(2.1) g".: comst.

The continuity equation in spherical coordinates and in presence

of a spherical symmetry is then:

°
(2.2) —— (»c‘yt.) = 0.
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Expanding the derivative ore gets:

(2.3) oM g M
L3 %4
end from (2.3): s 5
gouUuN _
(2.4) , z;;-(ub ap;) = M .
2
(2.5) QM _ g X

27t T At
which will be used in the following sections.

Eq, (2.2) can also be rewritten as:

(2.6) n% = R2R .
‘o . o
(207) M = R2R. [r*,

Equation of mction for the liquid:

The equaticn of motion of a viscous, incompressible fluid
(Navier-Stokes' equation) /9/ in spherical coordinates and in

presence of a spherical symmetry is

:
Z] ? [,294
M a2 4 PP + e ["_._.(q,—g—”_-)—-.i&-_l.

(2.8) ot 2T fr 2 YL A2 D2 2
where

M
2.9 A A

represents the sum of all the normal stresses, and is given by the
static pressure plus. the normel friction stresses,
From Eg. (2.4) one gets:

(2.10)

——  q——

M
A 9 nz?“)_z__i_o.
nt or 7 ‘e

and from Eg. (2.5), (2.9) :

' M
(2.11) 2k . 2P 4 a2p, S5
2" 2%
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Using Eq. (2.3), (2.10), (2.11) , Eg. (2.8) becomes:

wm _gMt A Bk gLt
(2.12) ot “x T 7% o $e 2*

From Eqg. (2.7) one gets then:

(2.13) ot

2 - e (20,

Substituting now Eq. (2.7), ( 2.13) 1in(2.12) one obtains the equation

of mction of the liquid in the £final form:

218 é’R‘+zeé’_z RYR: A op . M RR
. 2t o fo on fo 24

This equation is now integrated with respect tc the radial
coordinate r from the bubble radius R tc.a general radius Ty
With the assumption (2.1) and assuming that the viscosity of

the liquid is also constant:

(2.15) /,,l = Conat.

the integration yields:

g0 $2 1 4 A ptel (A4 _._f_ =
(2.16) (RRz-l—ZKR )'(—é--;z-)—E'RR 2% rz.,‘_’)
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The pressure Fgr of the liquid at the bubble bourndary can ke expressed

Now we have to distinguish between twc different cases: in the first
case, considering the expansion of a vapor bubble in a very large
pool of liquid, as it can khe in the case of bubble growth in super-

heated liquid, we have to set:
’Cz —yp 00 .
'Pz = ‘POO ’

and eq. {2.16), using (2.17), reduces to:

(2.18)

o *2 e R. o 4 _ (i i
(2.19) RR"”E'R""*?;_-?-‘.ZS’J!R fe

In the second case, ccnsidering the expansion of a large vagcr
bubble in a finite liquid pocl, see Fig. (1), we have to consider
the external radius R' of the liquid pocl and to set Py equal

to the pressure of the cover gas, i.e.:
|
/Cz'r-‘R.

rn=fe.

(2.20)

For (2.1), the extermal liquid radius R' can be given as a function
of R by:

/3

(2.21) R' = (%Vi + R3> ,




-17-

The pressutre of the cover gas volume, Pgor can be expresssed as a
function of R if we assume that the cover gas is adiabatically
compressed by the expansion of the bubble

) 3 'Xc
4-(20 /Rc)

) 3 .
4—(2 /Ec)

If the reactor tank is considered to be rigid one has simply

(2.22) /PC = ﬁ’o .

= 13\ 4/x
(2.23) R, = —‘:;r-V,_'o + R, ) = Comok,
where
4/3
3
(2.24 : ! 3
) RD = 2T Vi' + EO) .
Eg. (2.16) can be rewritten in this case as:
(7
2
(2.25) R\ ~ 3 R 4 =\,
| (R__’_a_,.).g + (2 -207 %5 g R +

where R' and P, are given by (2.21) to (2.24).
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Energy equaticn for the liguid

The problem of the heat diffusion across a spherical bouridary
with radial motion has been analytically solved in successive
approxirations by Plesset and Zwick /1/. The approximation
procedure converges rapidly, provided the temperature varia-
tions are appreciable only in a thin layer adjacent to the
spkerical bcundary. Here the zero-order sclution is vused,
without higher-order corrections.

The explicit soluticn for the liquid temperature at the boundary
is given in the zero order as a functicn of the temperature
at infinity and of the temperature gradient at the spherical
boundary:

T
} ‘4hg 'T/QQ
(2.26) T, (t) = Teo — (’1?'—') R(:('c-';-;’/z 4%

(]
where t
(2.27 T = |R*()-dt.

[o]
Substituting (2.27) into (2.26) one gets also:

t
(2.28) TL(Q) CT. (%) fa {7‘;‘2(%)(3;:9':): . dx
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pry

Equation of mass transfer at the interface

The mass transport acrcss a"phase interface has heen descriked

in prewvious work /2/. The relationships used here are:

(2.'29) le Mc, — Mev .

I

where
™ Mw . PV .
Moo = o | 2oy 77,
b
(2.31) [\'/\ C Mw . .ﬁLT_‘:.)
' v = ey’ 27w R .‘[ '
K TL

The relationships are similer to those used in previous literature
/3, 4, 5/. The coefficients Cco’ Ceay

the actual mass transfer to the value derived frcm the kinetic

represent the ratic of

theory. Here a parametric study is made where these coefficients
are varied between 1 and 0.01, a range which encompasses the

large scatter of experimental data from the literature /3/.

Equations of energy transfer at the interface

The net rate of heat transfer at the interface is given by:

. A*’

. A .
(2.32) EVQ - Mw . 2‘V - M,O.V * /e\l_'v .

This expression is used only in the energy balance for the
vapor phase. The net rate of energy transmitted to the liquid
phase is given by
: A . A
) o A *
! - — .
vi w v I
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which is slightly different from (2.32), due to the fact that the
solution (2.26) given by Plesset and Zwick /1/ neglects the
variation of mass of the liquid.

The heat transfer equation at the phase boundary (2.33) is then
coupled with the heat diffusion solution in the liquid (2.26),(2.27)
by taking for the temperature gradient at the boundary:

- Eve
(2.34) (ﬂ-) = - —K :
2 /R 3 B

2.6 Vapor source description

The bubble is imagined to be connected with a vapor source through
an orifice. The source contains sodium vapor at high pressure and

temperattire and is assumed to be so large that

(2.35) :
! T(: = cmusi:.

,although, a finite quantity of vapor flows from the source into the
bubble. The critical pressure for the flow through the orifice is
defined by:

‘ 2 \A
(2:30) P = Fi- (m-M '

where

Cpi

Cy,L

L 4

(2.37) h =

The mass flow rate through the orifice is regulated by the downstream
pressure, which is the pressure in the bubble. The maximum velocity
in the orifice is the critical velocity. If the pressure in the bubble

is

(2.38) K, & Perck.
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then the critical velocity is reached and the mass flow rate from

the source into the bubble is glven by:

4o el
(2.39) Mm MM\ ot = S )

If the vapor pressure in the bubble exceeds the critical pressure:

(2.40) | ’ﬁ, > 1°a._;,l: .

then the mass flow rate is given by

-

(2.41) ) : 'y 7?\'__ _f_%"
Mms-f ro e [(£) (K]

The cross section S of the orifice is calculated in order to

produce a certain value of M.. .. ,9iven as input.
in,crit

Continuity equation for the vapor

The mass balance for the vapor contained in the bubble can be

as:

(2.42) l\./‘v - MA:W -— AﬂRzMVL .

This can be written as:

(2.43) d /o 3 _ < zM '

written
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Performing the derivative and rearranging:

AR . R d% oy _ Mw _o
(2.44) fv;{.r__,, = At + Mu TR

The derivative of the vapor density is now expressed by

(2.45) Adg, @ 4Ty + 2% a5
At 9Ty dt op dt

Replacing (2.45) in (2.44) one gets finally:

. o dTv ,fi,.gig fii? . _._£é£f::0
240 S’v% s BT T Ak T TR

where le is given by (2.29) to (2.31) and M.' is given by
(2.38) to (2.41) o

Energy equation for the vapor

The energy balance for the vapor contained in the bubble can be

written as:
[ J r'y L4

(2.47) Ev = E,. -W - 41.-Ezéve

The work made by the vapor against the liquid is given by

(2.48) | -W' = 4mR%Ap, _ié

while the energy introduced by the vapor coming from the source is

(2.49) E. = Mg -A;
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Eqg. (2.47) can be rewritten as:

(2.50)

A 2 ° M ¢..4‘
;ﬁél:%:ﬂlzaj;‘av:]:= —-4"ﬁ2'E;Q - 4ﬂ1z%fb;CE"F P1u~‘£c R

expanding the derivative and using Eq. (2.43) one gets:

as [M,,; ~4rR My | + 2R, S22 atav -

. A
= - 4wR" Eﬂ_ -—411‘210,, dﬁ + Mo B

The derivative of the vapor enthalpy can be expressed as:

b ) AV df
(2.52) A b _ Qew . ATv + 2‘9- )
At 9Tv 4t Rk 4t

Substituting (2.52) into (2.51) and rearfanging one finally

obtains:
[ J
[ d

AL
‘42' R + %EL f; ?ly
(AL :i ) - Pavz”&V"* E:VL:= (>.

. oh,
Ty + =5 55 55, Tv

(2.53)

errR

whereld 1s given by (2.38) to (2.41), M vl by (2.29) to (2.31)

and EVl by (2.32).
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Final form of the differential equations

The problem of the bubble growth is completely described by the

following equations:

a) Equation of motion for the liquid, Eg. (2.25)

b) Continuity equation for the vapor, Egq. (2.46)

c) Energy equation for the vapor, Eq. (2.53)

d) Energy equation solution for the liquid, Eq. (2.28)

The first three equations form the system of differential equations
to be solved, simultaneously with the fourth expression which gives
the liquid temperature at the interface.

The first equation, Eq. (2.25) ,is of the second order, and canbe
splitted into two equations of the first order, Let us define:

(2.54) 4g = R

Eq. (2.25) becomes, using (2.54) and rearranging:

: R, (R)']. y?
(2.55) Y = R(R’ R(AR) { [5 b =5 (R') 9 T
Po (4 _ _R..)] 2% - £)
“["T(R B)r Ty (49 Iy
From Eq. (2.46), using (2.54), one gets

(2.56) .

R 95
. 3 - le -9 -3 9T, T .

¥ = p 2% arR"
2
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Substituting (2.56) in Eq. (2.53), using (2.54) and rearranging
one gets finally:

A

. 1 ( A, 4 M _ M., — |
T, = = {-B% -85, % Lk Mue Y"‘h}r
(2.57) B K R .

where

(2.58) IB =

Egquations (2.54), (2.55), (2.57), (2.56) together with the solution
(2.26) of the energy equation of the liquid form the system of five
differential equations in the five unknown funétions R, YR’ Ty v Py
TL’ which has to be solved.

In Table 1 all the egmations and the formulas necessary for the

solution of the problem are listed.
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Summary of the governing equations using the Plesset-Zwick solution

(2.54) R. = (d-&
R aTs-n B (B ‘*]. 2
(2.55) ‘d‘g= R(R' 3) {——[3 & -+ (R') %R +

[4 (& z")]%“ A (ﬁ’-zz"f‘)}‘

esn g ek (e 538 (/%) [ P =gl

_ B (28« My - Ere).

(2.56) ) _ > M. 22 _B_‘ag\,"}‘
# = Ras’v/ap,, q,-nlz’- Mve ~ £, %r 3 DTy Tv

TaT/>
(2.29 T..= MGINE = i
] 2bv - ofv [ 9%v 31]
(2.58) =73 S’V [:3Tv 2Py ?Pv) Idv 1

(2.27) f Rq

(2.34) (—)

239 Ely = Mer (,e,,,._,é:f)_ P;ley'fé-kv :
232 Evg = Mer -2y — Hu-ﬁ.t, |
2.2 My « Mw - Mo

(2.30) M. - c. .)/ 2';""2* Tv"
(2.31) sz = C&v;/:% -—ﬁv_%).
(2.21) Q’ = (=-V, + R3)4/3.
(2.23) R, .
(2.24) R: (zjr Ve + + R )4/3
R /ﬁ,o A-(R3/Re)® ]'h’c

A= (R'/Rc)s
(2.39) M' = . —'ti (2

)|
N
|w
o~
L
)
w
A
~
W
o
w
~
>
0
>
v

T A . 2 -
n )T R ke = b (T

e M, - S *[zc‘_ 2 L&) - ()] R > pont
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Governing equations using the Theofanous-approagh.

Energy equation for the liqﬁid

The equations of continuity for the liguid Eq.(2.2), of motion

for the liquid Eq.(2.19) or Eq. (2.25), of mass transfer at

the interface Eg. (2.29) to (2.31), of energy transfer at the
interface Eq. (2.32) and (2.33). the continuity equation for the
vapor Eg. (2.46) and the energy equation for the vapor Eq. (2.53)
remain unchanged. .
Instead of using the approximate solution of Plesset-Zwick Eq. (2.26)
the energy equation for the liquid is solved 51multaneously with

the other equations, although with some simplifications /3/.

The energy equation for a fluid in spherical coordinates and in

presence of a spherical symmetry is:

.E{I; + A Z;IT :DL ;: gq; [}i?-zila]

(3.1)
ot

Let us assume now that the temperature of the liquid is everywhere

constant and equal to T , except in a thermal boundary layer

(3.2) R< n £ R

near the phase interface

If we now consider the integral of Eq. (3.1) over the houndary

layer, we obtain:
Re Re
(3.3) 22T de 4+ wnt 3 = 9 [le ]M
rt o
R R
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Instead of solving (3.3) directly, the following approximate

procedure is used: it is assumed that the temperature distribution

in the liquid can be approached by a second-order distribution of

the form

T(x)= ar®+ bx +c¢
(3.4) |

TG) > Tw

j Esd-ﬁel..

) '¢>RL

Now the coefficients, a,b,c, are determined using the following

boundary conditions (see Fig. 2)

'T-<Fi) = 1-L
(3.5)

T(R..) = Teo .

°T =0 .

———————

n JRe

Substituting Eq. (3.4) in (3.5) we get:

Tl-'TBO

(R.-R)"
b = _.2..£IE::IE£;»-F?L .

(R.- R)

(3.6)

— (TL-fﬁb) Fzz'

¢c = lo (RL,‘a)
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Substitution of (3.6) in (3.4) and rearrangement gives:

Cz)-=- T + <?TL':T}v) (:;:::' /)25 ; Rez <R, .

(3.7)

_TZi) = Too ; ¢->':ZL.-

Using the temperature distribution Eq. (3.7) the various terms
appearing in Eq. (3.3) are calculated:

(3. 922- Q}I"’ +(RI.-’I— \z ? C’Z_"TD)+1(TL'TOD)(RL-R)@L-'E)R“ (R"-"')Q(RL"Rl >

R/ R (Ru-R)3
Ru-~
o _ 3 (T.-T
2o on 2(n ”) (RL"R)Z
3 2?1."-
i g () - 4O 2GS

We consider for simplicity the case:
(3.11) T = caha*;

and substitute the expressions (3.8) to (3.10) in Eq. (3.3), using
also the continuity equation for the liquid in the form (2.6), and
get: RL

Re
A A | .2 - Cﬁ.1h9 2
312 @R OF "““)""‘ + 2 R RZA(R"Q)Wr

Re

2 I (% -R) / R (Re-2) A -9 T2 228 [ (R,-n) dre
R

-

(RL R)® (R.-R)*

= 92D R*:“-2R.~)d
A(R,_R) ](3 R'L)a_
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Performing the integration and after some rearrangement one gets:

(R,_-R)- (Q._z+ 3R R+ 622) é_’fi + (1‘;_.= ap)<3kz'+ll'R(R+SRz) ARL+

(3.13)

+2(Ti-To)(RL +3R.R - 321 = 6oL} (Te- T..,) s

At this point we perform a change of variable, intoducing the

boundary layer thickness:

(3.14) S§= R.-R

and E¢.(3.13) becomes finally:

§ (10k*+ 5RE +6%) &Lt + (T-To) (20RE+565) 8 +
+(To-Teo) (10R" + 10R +352);‘4%. = 69 D, (n-u).%f :

(3.15)

Equation of energy transfer at the interface

In order to couple the heat diffusion problem in the liquid with
the interphase energy transfer, Eg. (2.34) is used as a boundary
condition for thevenergy equation for the liquid.
Substituting the postulated temperature distribution Eq. (3.7) in
Eg. (2.34),using also Eq. (3.9) and (3.14) one has:

(3.16) g T-Tw _ _ Eve
§ Ke
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Now we differentiate Eq. (3.16) with respect to time assuming for

simplicity
(3.17) K-L"‘ Covat.

and, using also Eq. (2.33), (2.30), (2.31) (3.11), we obtain:

To - To A'- A M, [ (f&v QJ P, +

z 2K, opv
(3.18)
'3&v' C&v-—-ﬁ ) 7‘ +
+ E— W - [ aTy 2 7-V
A 4~ y A"e\ d&fv ALV A'h. é\lv .L=0.
N 2K, Mo 4, AT, + Mo (m £ T

3.3 Final form of the differential equations

The problem of the bubble growth is completely described by the

following equations:

a) Equation of the motion for the liquid, Eq. (2.25)

b) Continuity equation for the vapor, Eq. (2.46)

c) Energy equation for the vapor, Eq. (2.53)

d) Energy equation for the liquid, Eq. (3.15)

e) Equation of energy transfer at the interface, Eq. (3.18)

Equations a), b), c¢) are treated exactly the same way as in § 2.9
obtaining Equations (2.54), (2.55), (2.56), (2.57) and (2.58).
Then we use Eq. (3.15) and (2.54) to obtain:

: (TTa) z
s Ty = (R +5RT+07) - (20RS+58° ) o+

- (Aok’ +40Rd + 36 )d‘ + 60D, 7—-}
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Substituting Eq. (3.19) in Eqg. (3.18) and solving for % one gets
finally: ‘

§ oL (L e ["‘*" (‘?""23)]1%+
(3.20) - C 2K¢

4_m 9‘&!’ + (‘av"ﬁ*) ‘T" +

T 2ke @ T Ty 2T
- (n.-7ﬁn) é({l) ___:]
A J(10R? +BRJ +52) (zogf+ 24 ) tr TR
where
Ti-Too [ 4, p (10R*+10RI+3S 2)
3.21) C == —F— [T [40224—572[-:—{“)

’ A
INV -é* y ¢ié;v 4L¢ ‘Lﬂf__'ﬂiv
(3.22) A= -?;!,-+2—'—4<£— M i{ + Mw(d‘ﬁ_ ﬁ:: -l

Equations (2-54), (2.55), (2.57), (2.56), (3.20), (3.19) form the
system of six differential equations in the six unknown functions
R, YR’ Ib” P, S, TL’ which has to be solved. In Table 2 all

the equations and the fommulae necessary for the solution of the

problem are listed.
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Table 2

Summary of the governing equations using the Theofanoussolution

(2.54) é=%&
(2.55) ¢, = ;%_;5 {_-2‘—[3—4%4-(%)"].7: +
. .
"D Geogs)] e (b2 )]
20 T =& {-hte= 2be (1/95/m ) [L5 - Pve -R4= ] +
11‘2 (»ﬂy-ﬁv) + Mve-tw "EVL}‘
p 4 ( V'z ‘ ‘\v
620§ = {ZKc [?r L)]'f’" EFeM“ :f'v AL JT"'
S e ol (”’” #55 0 +e0 20 5 ] -
° (Tl-’T ®
3.19) T ='—L—7J(wkl:6RJ‘+J=_ [ (202[-?5-32)7& -(402 +40RI+3J")J +
+ 60Dp R J
(2.58) B ="§va o7 ( ”y) 7TV
To-Teo (10R2+40R S + 3d*
(.20 C ""‘LL‘[:J‘ " (40@524':—12)) A
d"‘ d £ v L B\l.v
(3.22) A= v ZIQ[M“’ +M (475.' * j::_ —-2-7-‘_—)]
(2.32) Ev¢= Meo 4, -—Mulf_ .
(2.29) MV(’—," Mew — Mav
(2.30) My < C“'/-Z:Ti“é,j {’:_;1
. 4
(2.3 W o Cay /zl'jw" 7%'"
(2.21) R'= (_;g.';_ A +R3)4ls |
(2.23) Re = (3 Ve,o +K';)“°. ; (2.37) 4 = :”"";’_,
4
(2.24) R, = (W Ve + Ko ) /s
239 M= S 1/:5 («'177“”"“"‘? & Rt = e ()
(2.41)

MAM S }[2 ‘: m-4 !/"l (T)("H")/t.]_' )_ ¢'> fcﬂ.’_
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4. Numerical solution of the differential équations obtained using

the Plesset-Zwick formulae

Method of numerical solution

The numerical method used to solve the system of differential
equations is a prediotor-corrector method /6/.
The formula used for the predictor is:

(4.1) @) Yoy + 25 £ (Ko ) Yo ) -

?ku+4

while the corrector formula is

(4.2) ?,314 = ‘}m + _ﬁ'_ [)f(xu.,]m) + .f(XMM ’ ».(,.L:: )J .

where f represents the derivative with respect to x of the generic

unknown function y(x), and ‘h is the time step defined by

(4.3) 4 = Xonaqg =X = Xow=Xpuog .
(1)
m+ 1
accuracy, the following final correction is applied, providing

When the solutiony has been obtained with the desired

more accuracy /6/
1) 4 (v) (")
(4.4) l}mﬂ =Y. . +-,’_—(g,,“_M — You)

In order to start the solution and to be able to change the time
step by either doubling or having it during the solution, use of

a self-starting Runge-Kutta fourth order procedure is made /6/ ‘

(4.5)

. )
%M-r‘: %ﬂh-‘- —Z—(K4+Kz +K3 +KL|.),
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where KA = _s)_ (Xm. ' \tm) .

A
Kz = 'f;(xm'*'ié' O PN K‘T)"
. | 4
3= 4 (Xwmr 2 ) Yot K 3)-

,K,r.—_{,(xm‘_*&/ Y on +\<3'_n),

Use of the Plesset-Zwick formula

(4.6)

The Plesset-Zwick formula (2.26) is solved iteratively at each
step of the numerical integration. An iterative solution is
necessary since the integral appearing at the right hand side is
a function of Tt(t). Starting values for the iterative procedure
are calculated by second order or first order interpolation
formulae using values of TL at the preceding time steps.

A diffdculty arises in the numerical calculation of the integral
appéaring in (2.26), because the integral becomes infinite at the
right boundary of the domain of integration. An approximated solution
is obtained by replacing the curve '
F(%) = (37/3%)rcz)

TR
by a second order curve F(f) fitting the values of F(%) at the last

three points of the integration domain, &'', &' and T respectively

(4.7)

(see Fig. 3)
- 2 ] n
(4.8) F(%)= /% +c%+¢cs ; %5 <%

where

L

- A [F(f)—F(Z") _ F%)-FGBY)
1T -y - 3" -

’ n F(3') - F(3"
Cz""'(%'g)c"'" g?{y'(a)'

¢y = - ﬁ"z--c, - %'.'sz F(%").

(4.9)
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By integrating (4.7) one gets:

T ) 32
O T = - (Z;Z)"n % = 2{[tl—%1(t-})+%(( Ve

+[’=-{3-(‘C-3')J'cz +C3j. y<-3"" .

At thevbeginning of the solution, when only two points are

available, a first-order approach is used:

(4.11) F_(z—) - F('}') + F(:)—;":(;')[}_%j) ; '7,,5,'}€’C .

and the approximated solution is
@12 I, = -§- ;/("'}') ' [F(%')"'z F(")] -

For the numerical evaluation of the integrals appearing in (2.27)
and‘(2.26), the functions to be integrated, which are known only
at certain points, are replaced by second order or first order
fittings and then analytically integrated..Since the time step
is variable, the distance between the points where the functions
are known is not constant,and more accurate integration formulae

like Gauss formulae can not be used.

Derivatives of the;physical properties

The derivatives of the physical properties appearingin the formulae

of Table 1 are computed using the formula /7/

(4.13) F'(":) _ F(£+42)2F(¢'_4) )
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Vapor source treatment

In order to improve the rapidity of convergence of the solution,

- the equation (2.41) is replaced by the linearized formula

(4.14) Mm =g Mﬁm A - Pf\t-'t;u..
‘ L~ Phrn

in the domain

(4.15) Fu. £ Pv < /f}' ’

where

by = Pk + 0.9 ($e ~fust) .

(4.16)

The cross section S of the orifice is varied according to Fig. 4
and the value Smax is computed 1in order to give a certain chosen

value Mi of the mass flow rate.

n, crit

Initial condi#tions and values of the parameters

We present solutions of the set of eguations listed in Table 1,

obtained with the initial conditions listed in Table 3:
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Table 3 ~ Initial Conditions
(4.17) R(0) = 0.1 m
(4.18) YR(o) = 0 m/sec
(4.19) p,(0) =1.013 x 10° N/m?
_ m¥ _
(4.20) T, (0) =T* /b (0)7 = 1154.59K
(4.21) TL(o) = 800K

The bubble is supposed to contain saturated vapor at atmospheric
pressure. The temperature in the liquid is initially uniform and
equal to the temperature at infinity. The initial conditions are
non-equilibrium conditions because the vapor temperature is different

from the liquid interface temperature.

In Table 4 the values assigned to the most important parameters

in the solutions are shown.
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Table 4

Values of the parameters:

Ti = ~ 1700K
Py = 5.x 105 N/m2
Rg = 8314, ‘J/mq'i K
M, = 23, kg{gol
Ml = 0.227 x 10 ~ kg/mesec
p, = 825.8 kg/m’
o] = 0.154 N/m
cp,l = 1259.7 J/ kg«.K
K, = 65.6 J/sec.m.. K
T, = 800K
P, = P, - 23
o +v,0 Ro
v, = 110 m3
Vc,o = 70 m
Po,o © P,
Yo = 1.667

The orifice connecting the bubble with the source

starts' to open

linearly at time t=0 and is completely open after 1 msec. Oorifice

parameters are so chosen that a maximum mass rate

from the core to

the bubble of 100 kg/sec of hot sodium vapor is reached.

To compute the physical properties of sodium such

as enthalpies,

saturation pressure etc, use has been made of MAPLIB-routines

/8, 10/
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Results
The results of three different solutions of the set of equations

obtained with the Plesset-Zwick approach (Table 1) are presented,
for the cases:

a) ¢ =c =c .= 0.1
_ ev co

b) c = cev= ccb=0.01

C) c = Cev=cco= 1.

The initial conditions and the values of the other parameters were

exactly the same. in the three cases presented, and have been listed
in Table 3 and Table 4 respectively.

Figures 5 to 14 show a comparison of the results of the three cases

in the first 270 msec,

A decrease in the value of the coefficients ¢, as it would be in
presence of noncondensable gases which tend to accumulate near the
bubble wall, causes a slight increase of the growth velocity and
a much greater increase of the vapor temperature, as expected. The

liquid interface temperature, on the other hand,is much decreased .

Figures 15 to 24 show the same curves in the initial region

(about o =3 mseci.

The calculations for cases a) and b) have been extended up to 1.5sec
and 2.4 sec, respectively.
Figures 25 to 29 show: the results for case a) and Figures 30 to 34

show the results for case b).
Oscillations are mainly due to the presence of the cover gas volume.
In Table 5 some results are listed for the three cases presented. The

values of the maximum: radius, growth velocity, vapor temperature,

vapor pressure, liquid interface temperature and introduced mass flow

- rate are given for the first threee oscillations of the bubble.
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For the case c=1 dnly-the first oscillation is given., In the same
Table the values of Tv’ pV,'TL at the time when the maximum radius

(at the first oscillation) is reached, are also given.

In general the difference between the results of case ¢c=0.1 and

case ¢c=0.01 is greater than the difference between case q=1.and case
c=0. 1-ﬂPar{:icularly interesting is to'comparevthe values at the first
maximum radius: going from case c=1,to case c=0.01 the maximum bubble
radius at the first oscillation increases by 9.0%,

the time is 9.5% smaller, the vapor temperature increases by 9.6%, the
vapor pressure increases by 31.6% and the liquid interface temperature
decreases by 19.3%.

The maximum growth velocity at the first oscillation increases by
1.6% from the case c=1, to case ¢=0.01.

‘ in’ Meo’ Mev
vl Ev&eat the time' when the radius reaches its maximum
value (first oscillation) are also given.

In Table 5 the values of the total transferred masses, M

and energies E

From case c=1 to case c¢c=0,01, M:n decreases by 8.2%, EVi decreases
by 64%, E\ .
0.07% of the value at c=1.,, respectively.

decreases by 63% and Moo and Mo, are reduced to 1.3% and
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Results .of Calculations

Table 5
C =1 C=o0.1 C = 0.01
time time time
1 X
value (ms) value (ms) value (ms)
R 1 (m) 1.828 151, 1.861 152. 1.993 143.
max,
[ - -
ax, 2 (=) =) 2.068 337. 2.108 311,
ax, 3 » -) (=) 2.136 492. 2.156 442.
YR’max.l (m/s) | 18.71 22.0 18.76 22.4 19.00 243.
2, (=) (-) 8.68 290. 7.70 259,
3 (=) (=) 7.60 454, 6.75 409.
°x) 1502, 0.30 1598, 0.63 1572. L 0.48
V,max ‘
2 n 1307. 247, 1372, 230. 1627. ' 220.
3 n (=) =) 1376. 408, 1612. 371.
1 (Pa) | 4.98x10° | 1.14 | 4.98x10° | 1.03 5.00x10° 0.99
v,max
2 n 3.34x10° | 248. | 3.31x10° | 244. 3.74x10° 227.
5 5
3 w ) = 3.81x10 415, 4,15x%10 371.
L (°r) 1354, 2.67 | 1293, 18.8 963, 32.8
,max
2 a (=) (-) 1290. 244, 1121. 246,
3 0« (-) (=) 1314, 415, 1195, 382.
in,max (kg/s) 24 0.26 19. 0.2 18. 0.2
2 =) (=) 100. 44, 100. 64 .
3 -) ) ) -) ) )
fi, at rR=r___ 1l 13,21 13.27 12.12
in (kg) max,
fﬁco ?1:)=ma_x,l 23]- 151. 24-4 152. 2.92 ]43.
JT_at ®R=R — 224, 7.5 0.16
ev max, 1}
(kg)
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continued (tab. 5)

(E . wat R=R__ | 3.86 x10’ 3:73x10 1.39x10’
vl max, |
@))
ey _ 7 7 7
fE' at R=R___ 1] 3,21x10 3.06x10 1.20x10
vl . max,
) .
T at R=R 1154,00 151, 1235. 152, 1265. 143,
v max, |
®) o :
= > 3 5
PV at R Rmax,l 0.919x10 0.986x10 1.209x10
(Pa\) ! ) B ) (
T. at R=R 1141, 1117, 920.
L max, |
&)
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Fig. 4:Variation of the orifice cross section
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