KfK 3369 Juli 1982

# Zerstörungsfreie Plutoniumbestimmung in Abfallgebinden der Eurochemic in Mol

W. Eyrich, W. D. Klotz, H. Würz Institut für Neutronenphysik und Reaktortechnik Projekt Wiederaufarbeitung

## Kernforschungszentrum Karlsruhe

#### KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Neutronenphysik und Reaktortechnik Projekt Wiederaufarbeitung

> KfK 3369 PWA 15/82

Zerstörungsfreie Plutoniumbestimmung in Abfallgebinden der Eurochemic in Mol

> W. Eyrich W.D. Klotz H. Würz

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

.

ţ

.

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

#### Zusammenfassung

Die Faßmeßanlage wurde bei der Eurochemic in Mol zur zerstörungsfreien Bestimmung des Plutoniumgehalts von Wastegebinden eingesetzt. In realistischen Wasteproben schwankt der (αn) Anteil an der Neutronenemission in einem weiten Bereich. Deshalb kann die Plutoniumbestimmung nur über eine Koinzidenzmessung erfolgen. Die aus den Messungen und aus Rechnungen gewonnen Aussagen und Verfahren zur Elimination von Multiplikations- und Matrixeffekten werden diskutiert.

Bei einem auf minimalen Neutronenuntergrund ausgelegten Aufstellungsort kann mit dem derzeitigen Gerät eine Pu Nachweisgrenze von ca. 20 mg/200 l Faß erreicht werden.

#### Nondestructive Plutonium Assay of Eurochemic Waste Items

#### Abstract

The Neutron Well Counter was used for the Pu assay of Eurochemic waste items. Due to rather large changes of the (an) contribution to the neutron emission the Pu assay only can be done by the neutron coincidence method. Measurements and experimental results for the Eurochemic waste items are described. Moreover estimations for the important parameters neutron multiplication and chemical composition of the waste are given. It is demonstrated how to eliminate the influence of both these quantities.

With the presently available neutron well counter minimum Pu contents of 20 mg are detectable in 200 l drums.

#### <u>Inhaltsverzeichnis</u>

Einleitung Meßmethode Meßaufbau Eichmessungen, kleine Gebinde Diskrepanzen zwischen Cf und Pu Eichmessungen in Mol Multiplikationseffekte Eichpräparate Messungen an Wastegebinden Resultate und Diskussion Multiplikationseffekte für homogenisierte Abfallgebinde Multiplikationseffekte für andere Abfallgebinde Matrixeinflüsse für kleine Gebinde Multiplikations- und Matrixeffekte für 200 l Gebinde Zusammenfassung Literatur

## Einleitung

Die im INR entwickelte und gebaute Faßmeßanlage /1/, wurde bei der Eurochemic in Mol zur Bestimmung des Gehalts an Plutonium in Wastegebinden eingesetzt. Die Ziele der Meßkampagne waren:

- 1) Test und Erprobung der Faßmeßanlage an realistischen Puhaltigen Wastegebinden
- Durchführung einer Plutoniumbilanzierung des zur Naßveraschung bestimmten Abfalls
- 3) Sammlung von Erfahrungen mit der Faßmeßanlage
- 4) Bestimmung des Einflusses der Wastematrix auf das Meßergebnis
- 5) Bestimmung des Einflusses von Multiplikationseffekten auf die Koinzidenzzählrate

#### Meßmethode

Die Meßmethode basiert auf einer passiven Neutronenmessung. Die Neutronenemission der geradzahligen Pu-isotope 238, 240 und 242 und von Am 241 wird nachgewiesen. Die totale Emission und die Anteile aus Spontanspaltung und ( $\alpha$ ,n) sind in Tabelle 1 angegeben. Die angegebenen ( $\alpha$ ,n) Werte gelten für PuO<sub>2</sub>.

Die  $(\alpha, n)$  Neutronenausbeute hängt stark von der chemischen Zusammensetzung des Wastes ab. Deshalb ist für eine verläßliche Pu-bestimmung die Unterscheidung zwischen Neutronen aus Spontanspaltung und aus  $(\alpha, n)$  Reaktionen notwendig. Diese wird mit dem von Böhnel entwickelten Koinzidenzzähler /2/ durchgeführt. Dabei wird die Tatsache ausgenutzt, daß bei Spontanspaltung der geradzahligen Pu-isotope mehr als 2 Neutronen gleichzeitig emittiert werden. Die Einzelneutronen aus der  $(\alpha, n)$  Reaktion dagegen sind in ihrer zeitlichen Reihenfolge statistisch verteilt.

Die Neutronen leben eine gewisse Zeitt $_L = 1/\alpha$  im Detektorsystem. Innerhalb des Zeitintervalls  $0 \le t_M \le \Delta t \approx 1/\alpha$ , nach Registrierung des ersten Neutrons wird es demnach sehr wahrscheinlich sein, zu einem Neutron aus Spontanspaltung einen zweiten Partner nachzuweisen (prompter Zyklus). Nach einer Wartezeit t<sub>w</sub>» At dagegen werden keine Partner mehr zu dem den Meßzyklus auslösenden Neutron gefunden werden können.

Die gesuchten Koinzidenzzählrate ergibt sich aus der Differenz der Zählraten des prompten Zyklus (Zeitintervall  $\Delta t$  sofort nach einem registrierten Ereignis) und des verzögerten Zyklus Zeitintervall ebenfalls  $\Delta t$  aber um t<sub>w</sub> »  $\Delta t$  verzögert).

Die Koinzidenzzählrate ZR ist gegeben, gemäß:

$$ZR_{cc} = \varepsilon_c^2 \frac{\overline{\nu(\nu-1)}}{2\overline{\nu}} (1 - e^{-\alpha \Delta t})q_{sp}$$
(1)

falls nur 1 Nuklid spontanspaltend ist und

$$ZR_{cc} = \varepsilon_{c}^{2} (1 - e^{-\alpha \Delta t}) \frac{\int_{i} (\overline{\nu (\nu - 1)}) n_{i} q_{sp}^{i}}{i \sqrt{2\nu}} \int_{i} n_{i} q_{sp}^{i}$$
(1a)

falls mehrere Nuklide spontanspaltend sind

#### Es bedeuten:

- $\boldsymbol{\varepsilon}_{\mathbf{C}}$ : Nachweisempfindlichkeit der Detektoranordnung für Spontanspaltneutronen
- q<sub>sp</sub>: Neutronenemission durch Spontanspaltung

🗓 : mittlere Anzahl der pro Spontanspaltung emittierten Neutronen

1/α: Lebensdauer der thermischen Neutronen im

- n<sub>i</sub> : Anteil des Isotops i
- $\Delta t$ : Zeitintervall innerhalb dessen der 2. Partner zum auslösenden Ereignis erwartet wird.  $\Delta t \approx 1/\alpha$

Die Gesamtzählrate ZR<sub>tot</sub> ist gegeben durch:

$$ZR_{tot} = \varepsilon_{tot} q_{tot} = \varepsilon_{c}q_{sp} + \varepsilon_{\alpha n}q_{\alpha n}$$

mit

q<sub>αn</sub> : Neutronenemission durch (αn) Reaktionen
ε<sub>αn</sub> : mittlere Empfindlichkeit der Detektoranordnung für
(αn) Neutronen

#### Meßaufbau

Der Meßaufbau ist schematisch in <u>Abb.1</u> dargestellt. Die Detektoranordnung besteht aus einem großen Hohlzylinder aus Polyäthylen mit fest verbundenem PE-Boden und einem abnehmbaren PE-Deckel. Mit Ausnahme des Deckels sind alle PE-Flächen mit BF<sub>3</sub> Zählrohren bestückt. Die Detektoren sind in 2 Lagen angeordnet. Damit wird im Prinzip erreicht, daß der Neutronennachweis von der Energie des Neutrons abhängig wird. Z.B. kann ein niederenergetisches Neutron die innere Detektorschicht i noch erreichen, wird aber vor dem Erreichen der äußeren Detektorschicht a im Moderator absorbiert. Das Verhältnis der Zählraten  $ZR_{tot}^{i}/ZR_{tot}^{a}$  ist demnach eine Funktion der Energie der in die Detektoranordnung eintretenden Neutronen.  $ZR_{i}/ZR_{a}$  nimmt für Neutronenergien  $E_{n} > 0,2$  MeV mit wachsender Energie ab.

Zur Reduktion der Empfindlichkeit der Detektoranordnung gegen Untergrundneutronen sind die Außenseiten des PE-Blocks mit Cdblech abgeschirmt.

Die Elektronik ist mit Ausnahme des Koinzidenzzählers konventionell. Die BF<sub>3</sub> Zählrohre werden bei 2400 Volt betrieben. Jeweils 9 Zählrohre bilden eine Gruppe mit eigener Hochspannungsversorgung und eigener Impulselektronik.

(2)

#### Eichmessungen, kleine Gebinde

Zur Eichung der Meßapparatur wurden Messungen mit 2 Pu-oxid-Eichpräparaten und mit einer <sup>252</sup>Cf-Neutronenquelle im Labor durchgeführt. In Mol standen außerdem mehrere Plutoniumpräparate zur Verfügung. Das Plutonium war jeweils homogen vermischt mit ca. 2 kg typischem brennbarem Matrixmaterial und in PVC Beuteln verpackt. Die Pu-präparate entsprachen in ihrer Matrix-Zusammensetzung (Neopren, PVC, Zellulose), in ihrer Geometrie und auch in ihrer Materialmenge weitgehend den realistischen zur Ausmessung vorgesehenen Wastebeuteln. In Tabelle 2 ist die mittlere chemische Zusammensetzung des Matrixmaterials angegeben.

Angaben über die Neutronenquellstärken q<sub>sp</sub> (Emission durch Spontanspaltung) der einzelnen Eichpräparate finden sich in Tabelle 3. q<sub>sp</sub> wurde für die Pu-präparate unter Verwendung der Daten der Tabelle 1 und der Analysenresultate der Präparatehersteller berechnet.

Die gemessene Abhängigkeit  $ZR_{CC} = f(\Delta t)$  ist in <u>Abb.2</u> für die Fälle leeres Analysevolumen mit Cd und Analysevolumen mit PE-Stücken gefüllt ( $\rho_{H_2O} = 0,2$  g/cm<sup>3</sup>) ohne Cd dargestellt. Die Präparate befanden sich jeweils im Zentrum des Analysevolumens.

Aus  $ZR_{CC} = f(\Delta t)$  wurden die Lebensdauer  $1/\alpha$  der Neutronen im Detektorsystem und eine Schätzung für die Empfindlichkeit  $\varepsilon_{C}$  bestimmt. Aus Gl.(1) ergibt sich:

$$\frac{dZR}{d\Delta t} = ZR_{cc} = \frac{\overline{\nu(\nu-1)}}{2\overline{\nu}} \quad \varepsilon_c^2 \quad q_{sp} \quad \alpha e^{-\alpha\Delta t} = A e^{-B\Delta t}$$
(3)

Die Parameter A und B von Gl.(3) wurden durch least-square-fit bestimmt. Bei bekanntem A und B berechnet sich die Empfindlichkeit  $\varepsilon_c$  gemäß:

- 4 -

$$\varepsilon_{c}^{2} = \frac{A}{\frac{\nu (\nu - 1)}{2\nu}} q_{sp} B$$

Zahlenwerte für die Lebensdauer  $1/\alpha$  der thermischen Neutronen im Detektor und für  $\varepsilon_c$  sind in Tabelle 4 angegeben.

Mit den gemäß Gl.(3) bestimmten  $1/\alpha$  Werten wurden aus den Koinzidenzzählraten ZR<sub>CC</sub> gemäß Gl.(1) Nachweisempfindlichkeiten  $\varepsilon_{\rm C}$  bestimmt. Das Koinzidenzzeitintervall  $\Lambda$ t betrug 100 µs. Die Resultate sind in Tabelle 5 angegeben. Die Genauigkeit in  $\varepsilon_{\rm C}$  wird auf  $\pm$  10% geschätzt. Auffallend ist zunächst, daß bei den angenommenen Quellstärken q<sub>sp</sub> (Tabelle 3) die Empfindlichkeiten  $\varepsilon_{\rm C}$  für Pu und Cf differieren.

## Diskrepanzen zwischen Cf und Pu

Zur Demonstration der deutlich außerhalb der Meßfehler liegenden Diskrepanzen in den Empfindlichkeiten  $\varepsilon_{\rm C}$  zwischen Cf und den Pupräparaten sind in Tabelle 6 gemessene und berechnete  $ZR_{\rm tot}/ZR_{\rm CC}$ -Verhältnisse angegeben. Gemäß Gl.(1) und (2) ergibt sich für das Verhältnis  $ZR_{\rm tot}/ZR_{\rm CC}$ :

$$ZR_{tot}/ZR_{cc} = \frac{\varepsilon_{tot} \quad q_{tot}}{q_{sp} \quad \varepsilon_c^2 \quad \frac{\overline{\nu(\nu-1)}}{2\overline{\nu}} \quad (1 - e^{-\alpha\Delta t})}$$
(5)

Der Zeitfaktor 1- $e^{-\alpha \Delta t}$  kann eliminiert werden, wenn z.B. Verhältnisse  $(ZR_{tot}/ZR_{cc})^{Cf}/(ZR_{tot}/ZR_{cc})^{Pu}$  gebildet werden. Man erhält:

$$A = \frac{(ZR_{tot}/ZR_{cc})^{Cf}}{(ZR_{tot}/ZR_{cc})^{Pu}} = \frac{(\varepsilon_c^{Pu})^2 F(\bar{\nu})^{Pu} q_{sp}^{Pu}}{\varepsilon_c^{Cf} \varepsilon_c^{Pu} F(\bar{\nu})^{Cf} \left[\varepsilon_c^{Pu} q_{sp}^{Pu} + \varepsilon_{\alpha n}^{Pu} q_{\alpha n}^{Pu}\right]}$$
(6)

(4)

Da Cf nur Spontanspaltungsneutronen emittiert, ist in Gl.(6) verwendet worden

$$q_{tot}^{Cf} = q_{sp}^{Cf}$$
 und  $\varepsilon_{tot}^{Cf} = \varepsilon_{c}^{Cf}$ 

$$F(\overline{v}) = \frac{v(v-1)}{2\overline{v}}$$

Die gemessenen Zählratenverhältnisse zeigen einen systematischen Trend der auf Totzeiteffekte im Koinzidenzzähler hindeutet. Der totzeitfreie Wert für A ist 0,405. Dies wurde durch Verwendung eines schwachen Cf-Präparates bestätigt. Die Größe der Totzeiteffekte in  $ZR_{CC}$  ist in der letzten Spalte von Tabelle 6 angegeben. Anwendung der Totzeitkorrektur ergibt für die Empfindlichkeit  $\epsilon_{C}^{Cf}$  (Tabelle 5 1. Zeile) 19,5 statt 17,4. Dieser Wert ist diskrepant zu  $\epsilon_{tot}^{Cf}$  (es muß gelten  $\epsilon_{C}^{Cf} = \epsilon_{tot}^{Cf}$ ). Außerdem sind die Empfindlichkeiten für das Cf-Präparat systematisch niedriger als für die Pu-Präparate.

Die Ursache der unterschiedlichen Empfindlichkeiten von Cf und Pu wurden etwas näher untersucht. Es kommen in Betracht:

- 1) eine energieabhängige Detektorempfindlichkeit  $\varepsilon$  (E)
- 2) ein falscher Wert  $q_{sp} = q_{tot}$  für Cf
- 3) falsche Werte q<sub>sp</sub> für die Pu-präparate
- 4) eine unterschiedliche mittlere Energie der Spontanspalt und
   (αn) Neutronen für die Pu-oxid Präparate
- 5) falscher Wert für F(v) für Cf

Pkt. 3) kann ausgeschlossen werden, da die  $\varepsilon_{c}$ -Werte für die Pu-Präparate der verschiedenen Hersteller innerhalb <u>+</u> 5% übereinstimmen. Die Energieabhängigkeit der Detektorempfindlichkeit  $\varepsilon$ (E) wurde in 1-dimensionaler Kugelgeometrie berechnet und in Abb.3a dargestellt. Unter Verwendung von  $\varepsilon$ (E) wurde abgeschätzt ob die Nachweisempfindlichkeit  $\varepsilon_c$  für Pu und Cf verschieden ist. Nach /3/ kann das Quellspektrum der Spontanspaltungsneutronen durch eine Maxwellverteilung beschrieben werden gemäß:

$$\chi(E) = \sqrt{E} \exp(-E/\Theta)$$
 (7)

$$\Theta = \frac{2}{3}(0,74 + 0,653 \sqrt{\overline{\nu}+1})$$
(8)

Mit Gl.(7) und (8) wurde die über das Spaltspektrum gemittelte Empfindlichkeit  $\varepsilon_{c}$  berechnet, gemäß

$$\mathbf{\xi}_{\mathbf{C}} = \frac{f_{\varepsilon}(\mathbf{E}) \chi(\mathbf{E}) d\mathbf{E}}{f_{\chi}(\mathbf{E}) d\mathbf{E}}$$

mit

Bei der angenommenen Energieabhängigkeit von  $\varepsilon$ (E) ergibt sich ein Unterschied in  $\varepsilon_{c}$  für Pu und Cf von etwa 2% d.h.  $\varepsilon_{c}^{Pu} = 1,02 \varepsilon_{c}^{Cf}$ .

Ebenfalls berechnet wurden energieabhängige Zählratenverhältnisse  $ZR_{tot}^{i}/ZR_{tot}^{a}$ . Die Resultate sind in Abb.3b dargestellt. Aus  $ZR_{tot}^{i}/ZR_{tot}^{a}$  berechnen sich für Cf mit  $\varepsilon_{tot} = \varepsilon_{c}$  und bei gleichem Zeitfaktor  $F(\alpha \Delta t) = 1 - e^{-\alpha \Delta t}$  die entsprechenden Koinzidenzzählratenverhältnisse  $ZR_{cc}^{i}/ZR_{cc}^{a}$  gemäß

$$ZR_{cc}^{i}/ZR_{cc}^{a} = (ZR_{tot}^{i}/ZR_{tot}^{a})^{2}$$
(9)

Gl.(9) gilt nicht für die Pu-präparate, da Spontanspaltungsund (αn) Neutronen verschiedene mittlere Energien haben können.

Die höhere mittlere Energie der Cf-Spontanspaltungsneutronen sollte sich besonders im Verhältnis ZR<sup>i</sup><sub>CC</sub>/ZR<sup>a</sup> bemerkbar machen. Mit einer anderen Detektoranordnung (weniger Detektoren im inneren Ring) wurden die Zählraten-Verhältnisse innen/außen für verschiedene Fälle bestimmt. Die Resultate sind in Tabelle 7 angegeben. Die totalen Zählratenverhältnisse sind für Pu etwas niedriger als für Cf. Das Verhältnis nimmt mit wachsendem Wassergehalt der Matrix zu. Zunehmende Thermalisierung im Analysevolumen bewirkt, daß der thermische Neutronenfluß bereits in kurzer Entfernung von der inneren Detektoroberfläche ein asymptotisches Verhalten zeigt. Gleichzeitig sinkt die Empfindlichkeit ε, da weniger Neutronen das Analysevolumen verlassen. Ebenfalls in Tabelle 7 sind die gemessenen Koinzidenzzählratenverhältnisse angegeben. Die Unterschiede zwischen Cf und Pu liegen wie erwartet bei ca. 4%.

Unverständlich ist, weshalb Gl.(9) nicht gültig ist. Für Cf müßten die Werte  $ZR_{CC}^{i}/ZR_{CC}^{a}$  um ca. 16% größer sein als in Tabelle 7 angegeben. Für Pu könnte der Wert  $ZR_{tot}^{i}/ZR_{tot}^{a}$  durch höherenergetische (an) Neutronen zusätzlich reduziert sein (siehe weiter unten). Damit besteht die Diskrepanz sowohl für Cf als auch für Pu. Unter Verwendung des Zählratenverhältnisses

$$\frac{ZR_{cc}}{ZR_{tot}^2} = \frac{c}{n^2} = \frac{\varepsilon_c^2}{\varepsilon_{tot}^2} F(\bar{\nu}) (1 - e^{-\alpha \Delta t}) \frac{q_{sp}}{q_{tot}^2}$$
(10)

mit  $\varepsilon_c = \varepsilon_{tot}$  für Cf und dem Wert für die Lebensdauer 1/ $\alpha$  aus Tabelle 4 kann die Quellstärke  $q_{tot}$  des Cf-Präparats bestimmt werden. Die Koinzidenzzählraten  $ZR_{cc}^{Cf}$  wurden gemäß Tabelle 6 um Totzeiteffekte korrigiert. Die dabei erhaltenen Werte  $c/n^2$ sind in Tabelle 8 angegeben und in Gl.(10) zur Berechnung von  $c_{tot}^{Cf}$  verwendet worden. Innerhalb eines Fehlerbereichs von maximal  $\pm$  10% ergeben sich gleiche  $q_{tot}^{Cf}$ -Werte, unabhängig von der betrachteten Anordnung.

Unter der Annahme  $\varepsilon_{C}^{Pu} = \varepsilon_{\alpha n}^{Pu}$  wurden mittels Gl.(10) auch  $q_{tot}$  Schätzwerte für die Pu-präparate gewonnen (Tabelle 8). Allerdings ist die Annahme  $\varepsilon_{C}^{Pu} = \varepsilon_{\alpha n}$  nicht richtig. Für Molpräparate ist  $ZR_{tot}^{i}/ZR_{tot}^{a}$ um den Faktor 1,1 größer als für Cf. Gemäß Abb. 3b ist dies eindeutig auf eine niedrigere mittlere Energie der ( $\alpha$ n) Neutronen dieser Präparate zurückzuführen. Gemäß Tabelle 7 ergeben sich für die Pu-oxid Proben niedrigere  $ZR_{tot}^{i}/ZR_{tot}^{a}$  Werte als für Cf. Dies könnte ein Hinweis darauf sein, daß die ( $\alpha$ n) Neutronen dieser Proben eine höhere mittlere Energie besitzen als die Spontanspaltungsneutronen. Dieser Verdacht wird durch die Berechnung von  $\varepsilon_{\alpha n}^{Pu}$  gemäß Gl.(2) erhärtet.  $q_{\alpha n}$  und  $q_{sp}$  wurden für die Pu-oxid Proben aus den Herstellerdaten (Tabelle 3a und 3b) berechnet. Es ergab sich, daß  $\varepsilon_{\alpha n}$  ca. 20% niedriger ist als  $\varepsilon_{c}$ . Ein direkter experimenteller Beweis für diesen Sachverhalt steht allerdings noch aus.

- 8 -

Gemäß Gl.(6) kann A berechnet werden. Verwendet wurden dazu:  $(q_{tot}/q_{sp})^{Cf}=1,0; (q_{\alpha n}/q_{sp})^{Pu}=0,67$  sowie die Werte F( $\overline{\nu}$ ) für Cf und Pu aus Tabelle 1. Mit  $\varepsilon_{c}^{Pu}=1,02$   $\varepsilon_{c}^{Cf}$  ergibt sich aus Gl.(6):

$$A = \frac{0.58}{1 + \frac{\varepsilon_{\alpha n} q_{\alpha n}}{\varepsilon_{c} q_{sp}}}$$
(6a)

Für  $\varepsilon_{c}^{Pu} = \varepsilon_{\alpha n}^{Pu}$  ergeben sich die in Tabelle 6 berechneten A-Werte. Diese sind nach Totzeitkorrektur um ca. 18% niedriger als die experimentell bestimmten.

Als mögliche Ursachen für die Diskrepanz Cf/Pu verbleiben damit noch die Möglichkeiten: falsche Werte für  $q_{sp}^{Cf}$  und für  $F(\bar{\nu})^{Cf}$  und  $\varepsilon_{\alpha n}^{Pu} \neq \varepsilon_{C}^{Pu}$ . Mit  $\varepsilon_{C}^{Pu} \quad \varepsilon_{C}^{Cf} = 21,5\%$  folgt aus Gl.(2):  $q_{sp}^{Cf} = q_{tot}^{Cf} = 7,8\cdot10^{4}$  n/sec anstatt wie angenommen,  $q_{sp} = 9,45\cdot10^{4}$  n/sec

Gemäß Tabelle 9 ergibt sich dann für  $F(\bar{v})^{Cf}$ :

$$F(\bar{v})^{Cf} = \frac{\bar{v}(v-1)}{2\bar{v}}^{Cf} + 1,33 \pm 16\%$$

Mit diesen beiden Änderungen könnten die Diskrepanzen zwischen Cf und Pu gemäß den Tabellen 5 und 6 beseitigt werden. Allerdings sind die oben gemachten Annahmen zweifelhaft. Insbesondere der Wert für  $F(\bar{\nu})$  ist in Widerspruch zum Wert  $F(\bar{\nu}) = 1,574$  berechnet unter Verwendung von  $\bar{\nu} = 3,76 + 0,015$  und  $\sigma = 1,207$ .

#### Eichmessungen in Mol

Die in Mol eingesetzte Meßanlage wurde vor Beginn der Messungen mit Eurochemic Präparaten geeicht. Zur Verfügung standen 5 verschiedene Präparate Pu I bis Pu V, siehe Tabelle 3. Es wurden Eichkurven für 3 verschiedene Fälle bestimmt. Die Abhängigkeit der Koinzidenzzählrate ZR<sub>CC</sub> von der Menge des Plutonium im Bereich des Zentrums des Analysevolumens ist in <u>Abb.4</u> dargestellt. Durch Kombination der Pu-präparate wurden als Gesamtmenge im Analysevolumen 65 g Pu erreicht.

In Tabelle 10 sind die Meßresultate für die Fälle ohne und mit Cd-Abschirmung aufgelistet. Der PE-Deckel der Meßanlage war stets frei von Cd, der Boden war stets mit Cd abgeschirmt. Für den Fall ohne Cd nimmt das Zählratenverhältnis  $ZR_{tot}/ZR_{cc}$  mit wachsender Pu-menge ab. Dies ist ein Hinweis darauf, daß Multiplikationseffekte auftreten. Für den Fall mit Cd-Abschirmung des Analysevolumens ist die Abnahme von  $ZR_{tot}/ZR_{cc}$  mit wachsender Pu-menge im betrachteten Bereich Pu<sub>tot</sub>  $\leq 65$  g gering. Dagegen zeigt der Fall Anordnung mit reduzierter Empfindlichkeit (Verwendung nur des äußeren Detektorrings) ebenfalls den Einfluß von Multiplikationseffekten auf die Koinzidenzzählrate.

#### Multiplikationseffekte Eichpräparate

Der Einfluß der durch die Neutronenemission des Plutoniums induzierten Spaltung auf die Koinzidenzzählrate ZR<sub>CC</sub> wurde untersucht. Nach /4/ ist die totale Koinzidenzzählrate ZR<sub>CC</sub><sup>T</sup> gegeben durch:

$$ZR_{CC}^{T} = (F - F_{FF}) \sum_{i=2}^{N} (i-1)Q_{i}(\varepsilon_{C}, \overline{v}_{SP}) + F_{\alpha n} \sum_{i=2}^{N} (i-1)Q_{i}(\varepsilon_{\alpha n}, \overline{v}_{FF})$$
  
+ 
$$F_{FF} \sum_{i=2}^{N} (i-1)Q_{i}(\varepsilon_{C}, \overline{v}_{EFF})$$
(11)

Nach /5/ berechnen sich die Größen  $Q_i(\varepsilon, \overline{\nu})$  gemäß:

$$Q_{i}(\varepsilon, \overline{\nu}) = \varepsilon^{i} \sum_{n=i}^{N} {n \choose i} (1-\varepsilon)^{n-i} G(n)$$
(12)

wobei

G(n) gegeben ist durch

$$G(n) = \frac{1}{\sigma \sqrt{2\pi} \sum_{n'=0}^{\infty} G(n')} \exp\left(-\frac{(n-\overline{\nu})^2}{2\sigma^2}\right)$$
(13)

G(n) ist die Wahrscheinlichkeit, daß pro Spaltereignis mit  $\bar{\nu}\text{-N}\text{eutronen}$  n Neutronen emittert werden.

Die G(n) wurden für verschiedene Fälle berechnet. Werte sind in Tabelle 11 angegeben. Die Größen  $\sum_{i=2}^{N} (i-1)Q_i(\varepsilon,\overline{\nu})$  sind ebenfalls in Tabelle 11 für die Fälle ohne <sup>i=2</sup> Cd-Abschirmung ( $\varepsilon_c$ =21%) und mit Cd-Abschirmung ( $\varepsilon_c$ = 18%) angegeben. Zur Berechnung von ZR<sup>T</sup><sub>CC</sub> gemäß Gl.(11) müssen noch die induzierten Spaltraten F<sub>αn</sub> und F<sub>FF</sub> bekannt sein. Dazu wurden Quellmultiplikationsrechnungen mit DTK /6/ in Kugelgeometrie für 30 1 Gebinde im

Analysenzentrum durchgeführt. Tatsächlich liegt Zylindergeometrie mit H/D=100/65 vor. Dieser Geometrieeffekt wurde mittels einer 2-dimensionalen Vergleichsrechnung korrigiert. Die Resultate sind in Abb.5 als Funktion des Pu-gehalts im Analysevolumen dargestellt. Das Verhältnis  $Q_{ne}/Q_{fiss}$  gibt an, wieviel Neutronen notwendig sind, um 1 induziertes Spaltneutron zu erzeugen. Im Fall Analysevolumen ohne Cd hängt  $Q_{ne}/Q_{fiss}$  stark von der Matrixzusammensetzung ab. Z.B. erhöht der Zusatz von Chlor (gemäß Tabelle 2 mit ca. 29 Gew.% im synthetischen Waste enthalten) das Verhältnis  $Q_{ne}/Q_{fiss}$  um etwa 70%. Die Werte von Abb.5 gelten mit Chlor. Auffallend ist 1) eine wachsende Selbstabschirmung des Plutoniums für Pu Konzentrationen oberhalb etwa 7g Pu/l und 2) eine Reduktion der induzierten Spaltrate um den Faktor 8,4 wenn das Analysevolumen mit Cd abgeschirmt wird. Dies ergibt sich, da die Neutronen überwiegend in der Detektoranordnung abgebremst werden.

Die Verhältnisse  $Q_{ne}/Q_{fiss}$  werden auch zur Berechnung von  $F_{\alpha n}$  und  $F_{FF}$  verwendet gemäß:

$$F_{FF} = \frac{\frac{1}{\bar{v}_{FF}}}{\frac{1}{\bar{v}_{FF}} \frac{1}{\bar{Q}_{ne}/\bar{Q}_{fiss}}}$$
$$F_{\alpha n} = \frac{\frac{q_{\alpha n}}{\bar{v}_{FF} \frac{1}{\bar{Q}_{ne}/\bar{Q}_{fiss}}}$$

a

Die Koinzidenzzählrate ohne Multiplikation  $ZR_{cc}^{OM}$  ist gegeben gemäß:

$$ZR_{CC}^{OM} = F \sum_{i=2}^{N} (i-1) Q_{i}(\varepsilon, \overline{v}_{sp})$$
(15)

(14)

Die Multiplikation M<sub>cc</sub> ergibt sich aus:

$$M_{CC} = \frac{ZR_{CC}^{T}}{ZR_{CC}^{OM}}$$
(16)

In den Abb.6 und 7 ist  $M_{CC}$  als Funktion der Pu-menge im Analysevolumen und für verschiedene Werte  $q_{\alpha n}/q_{sp}$  für die drei Fälle mit und ohne Cd (Abb.6) und reduzierte Empfindlichkeit (Abb.7) dargestellt. Referenzwert  $q_{\alpha n}/q_{sp}$  ist der Wert für die Pu-präparate: 2,9. Die Multiplikationseffekte gemäß Gl.(16) sind größenordnungsmäßig identisch mit den gemessenen (Abb.4). Aus Abb.6 entnimmt man z.B. daß die induzierte Spaltung eine Erhöhung der Koinzidenzzählrate ZR<sub>a</sub> um ca. 13% bei fehlender Cd-Abschirmung bewirkt. (Pu-gehalt65 g im Analysevolumen) Eine Erhöhung von ZR<sub>CC</sub> ist für die Anordnung mit Cd-Abschirmung experimentell nicht feststellbar (Abb.4) die Rechnung ergibt 2%.

#### Messungen an Wastegebinden

Der gesamte α-Abfall der Eurochemic beträgt ca. 1000 kg. Ein Teil dieser Wastemenge war bereits zur Naßveraschung vorbereitet worden. Dieser behandelte Abfall enthält nur noch in Schwefelsäure zersetzbare (brennbare) Bestandteile wie Kleenex Tücher, Neopren, PVC und andere Kunststoffe. Der "brennbare" Abfall war in einem Schredder zerkleinert und anschließend in PVC Beutel abgefüllt worden. Das Gewicht der einzelnen Beutel lag im Bereich 2,5-5 kg. Diese Gebinde können als homogeniserte Proben betrachtet werden. Jeweils 2 dieser Gebinde waren in 28 1 Blechfässern untergebracht. Die Gebinde wurden einzeln und zu mehreren in der Meßanlage in Volumenmitte ausgemessen.

Neben diesen bereits behandelten Gebinden gab es aussortierte "nicht brennbare" Festabfälle jeweils in 28 1 Blechfässern und noch nicht (Stand Februar 1981) behandelte Originalgebinde, ebenfalls in 28 1 Fässern.

Der gesamte Abfall mit den 3 Abfallkategorien wurde in einer 6-wöchigen Meßkampagne ausgemessen. Die Gebinde bzw. die 28 1 Blechfässer wurden jeweils einzeln in der Mitte des Analysevolumens positioniert. Die Anlage wurde verschlossen (PE-Deckel ohne Zählrohre aufgesetzt) und jedes Gebinde jeweils bis zu 20 Minuten ausgemessen. Die Meßkampagne verlief soweit einwandfrei. Im Verlauf der Meßkampagne mußten 2 defekt gewordene BF<sub>3</sub>-Zählrohre ausgewechselt werden.

Am Aufstellungsort in Mol ergab sich als Untergrundzählrate totaler Untergrund  $ZR_{tot}^{U} = 4,5$  c/sec, Untergrund der Koinzidenzzählrate  $ZR_{CC}^{U} = 0,2$  c/sec. Dieser Untergrund blieb über die gesamte Dauer der Meßkampagne konstant. Mehrmals täglich und jeweils über Nacht wurden Untergrundmessungen durchgeführt.

#### Resultate und Diskussion

Unter Verwendung der Eichkurven von Abb.4 für den Fall mit Cd-Abschirmung und unter Verwendung der Multiplikationskorrektur gemäß Abb.6 und 7 wurde aus den gemessenen Koinzidenzzählraten die Menge der Pu-isotope 238, 240 und 242 bestimmt. Der Pu-vektor hängt vom Abbrand ab. Dieser ist in der Regel für das Wastegebinde unbekannt. Deshalb kann bereits der Gehalt der geradzahligen Pu-isotope im Analysevolumen nicht genau bestimmt werden.

Die Abbrandabhängigkeit der Spontanspaltungsneutronenemission  $q_{sp}$  ist in Abb.8 dargestellt. Die Daten beruhen auf Aktinidenanalysenresultaten für TRINO /7/ und KWO-Brennstoff /8/, sowie für Grundremmingen Brennstoff /9/ und auf Eurochemic Betreiberdaten /10/. Ein Mittelwert für  $q_{sp}$  von (1010 ± 50) n/(sec g Pu 238 + Pu 240 + Pu 242) deckt den Eurochemic Abfall ab. Wird auch Brennstoff aus modernen DWR's zugelassen (z.B. KWO) so vergrößert sich der Fehler auf

 $q_{sp} = (1010 + 70) n/(sec g Pu 238 + Pu 240 + Pu 242)$ 

- 14 -

Tabelle 12 enthält die komplette Liste aller vermessenen Wastegebinde mit dem Gehalt an Pu 238 + Pu 240 + Pu 242 in Gramm. Die Genauigkeit der Werte liegt für Pu 238 + 240 + 242 Gehalte kleiner 20 g bei + 5%. Für höhere Pu-gehalte verschlechtern Multiplikationseffekte die Genauigkeit. Bei hohen Gesamtzählraten (ZR<sub>tot</sub> > 20000c/sec) wird die Genauigkeit durch nichtreproduzierbare Schwankungen in ZR drastisch verschlechtert. Einzelne Fälle mit geringerer Genauigkeit sind vermerkt. Tabelle 12 enthält auch die Resultate der zum Zeitpunkt der Messungen noch unsortierten Wastegebinde und die Resultate des als nicht brennbar aussortierten Wastes. An einigen der noch nicht sortierten Wastegebinden wurden hohe Gesamtzählraten ZR<sub>tot</sub> und hohe Koinzidenzzählraten ZR<sub>CC</sub> gemessen. Entsprechend gering war die erreichbare Genauigkeit in der Pu-bestimmung. Die Werte der Tabelle 12 sind korrigiert um Multiplikationseffekte, inclusive der (an)Korrektur und um Totzeiteffekte .

Der unsortierte Waste befand sich in 28 l Blechfässern. Das maximale Gewicht der Gebinde betrug 8 kg. Diese Matrixmenge, obwohl doppelt so hoch wie für die brennbaren Gebinde, erzeugt keinen nachweisbaren Matrixeffekt. Zur Bestimmung der Pu-menge wurden deshalb dieselben Eichkurven verwendet (Abb.4) wie für die kleineren Gebinde.

Für die Bestimmung des totalen Gehalts an Plutonium zeigt Abb.9 den Zusammenhang zwischen der Neutronenemission  $q_{sp}$ und dem totalen Pu-gehalt. Für den Eurochemic Abfall ergibt sich ein Fehler von <u>+</u> 21%. Dieser Fehler kann nur reduziert werden, wenn die Herkunft des Abfalls genau bekannt ist.

Für LWR-Brennstoff im Abbrandbereich 10-25 GWd/tU ergibt sich der Fehler in der Pu<sub>tot</sub>-bestimmung gemäß Abb.9 zu <u>+</u> 40%.

- 15 -

Die Gesamtmenge an Pu im Waste errechnet sich gemäß:

 $1g(Pu238 + Pu240 + Pu242) \triangleq (5,3 + 1,1)g Pu_{tot}$ 

Der bis Ende 1980 aufbereitete brennbare Waste (Gebinde C101-C337) enthält (2636+525)g Pu<sub>tot</sub>.

#### Multiplikationseffekte homogenisierter Abfallgebinde

Der Einfluß von Multiplikationseffekten auf die Koinzidenzzählrate wurde für Abfallgebinde mit höheren Pu-gehalten und mit stark unterschiedlicher  $(\alpha n)$ -Neutronenproduktion untersucht. Verwendet wurden hierzu die Anordnungen Analysevolumen mit und ohne Cd-Abschirmung. Gemäß Abb.6 sollten beide Anordnungen für Pu-gehalte größer ca. 50 g eine unterschiedliche Beeinflussung der Koinzidenzzählrate durch Multiplikationseffekte zeigen. Dies wurde durch Messungen an "brennbaren" Abfallgebinden mit hohen Pu-gehalten überprüft. Die ausgemessenen Gebinde sind zusammen mit den Resultaten in Tabelle 13 aufgelistet. Angegeben sind die gemessenen Zählraten, die totzeitkorrigierten Koinzidenzzählraten ZR $_{CC}^{K}$  und die Gehalte an Pu 238 + Pu 240 + Pu 242. Für beide Fälle ergibt sich gute Übereinstimmung. Eine Ausnahme bildet zunächst das Gebinde C 182. Für dieses Gebinde ist die  $(\alpha n)$  Neutronenemission etwa einen Faktor 1,35 höher als für die Pu-präparate. Diese höhere (an) Neutronenemission bewirkt gemäß Abb. 6 für den Fall ohne Cd-abschirmung eine Erhöhung der Multiplikation um 4,2%. Wird dies berücksichtigt so reduziert sich der ermittelte Wert auf 18,3 g Pu 238 + Pu 240 + Pu 242, im Vergleich zu 17,5 g für den Fall mit Cd-abschirmung des Analysevolumens.

Es wurden weite Resultate für homogenisierte Gebinde verglichen. Ausgewählt wurden solche mit hoher ( $\alpha$ n) Emission. Die Resultate für diese Gebinde sind ebenfalls in Tabelle 13 aufgelistet. Für die Gebinde C 300 und C 182 + C 183 wird wieder analog zu oben eine Korrektur der höheren ( $\alpha$ n) Neutronenemission durchgeführt. Für das Gebinde C 300 ist der ( $\alpha$ n) Anteil verglichen mit dem Referenzfall um den Faktor 2,7 höher. Diese höhere ( $\alpha$ n) Neutronenemission bewirkt eine Erhöhung der Multiplikation um ca. 2% für den Fall mit Cd-Abschirmung und ca. 14% für den Fall ohne Cd-Abschirmung. Damit erhält man für C 300:

(Pu 38 + 40 + 42) mit Cd = 11,0 g (Pu 38 + 40 + 42) ohne Cd = 10,7 g

Für die beiden Gebinde C 182 + C 183 erhält man nach Korrektur der (an) Neutronenemission einen Gehalt an Pu 238 + Pu 240 + Pu 242 von 24,6 g. Aus der Addition beider Einzelgebinde ergibt sich: 24,8 g. Damit ist demonstriert, daß die Multiplikationseffekte berechnet gemäß Gl. (16) und dargestellt in Abb.6 und 7 richtig sind.

#### Multiplikationseffekte für andere Abfallgebinde

Unter den noch nicht sortierten Wastegebinden gab es welche mit hohen Gesamtzählraten (bis 50000 c/sec). Diese hohen Zählraten bewirken massive Totzeiteffekte. Da der Einfluß der Totzeit nur bis Zählraten ZR<sub>tot</sub> von ca. 16200 c/sec bekannt ist (Tabelle 6) wurden einige dieser Gebinde mit hohen Gesamtzählraten in einer Detektoranordnung mit reduzierter Empfindlichkeit ausgemessen. Es wurde nur der äußere Detektorring ohne Cd-Abschirmung des Analysevolumens verwendet. Gemäß Abb.4 ergibt sich für diese Anordnung gegenüber dem Referenzfall Analysevolumen leer mit Cd-Abschirmung eine um den Faktor 8,4 reduzierte Koinzidenzzählrate. Allerdings ergibt sich auch eine stärkere Abhängigkeit von Multiplikationseffekten. Die Änderung der Koinzidenzzählrate durch Multiplikationseffekte ist in Abb.7 für die Anordnung mit reduzierter Empfindlichkeit dargestellt. Ein Vergleich der Resultate ist in Tabelle 14 gegeben. Die Zählraten  $ZR_{cc}$  sind jeweils um Totzeiten und Multiplikationseffekte korrigiert. Die Totzeiteffekte für Zählraten  $ZR_{tot}$ größer 1,6.10<sup>4</sup> c/sec wurden durch logarithmische Extrapolation der experimentellen Werte für  $ZR_{tot} \leq 1,6.10^4$  c/sec gewonnen. Da nicht bekannt ist wie genau die Extrapolation ist, ergeben sich für hohe Gesamtzählraten größere Unsicherheiten in den Werten Pu-238 + Pu 240 + Pu 242 der Referenzanordnung.

Als Verhältnis der korrigierten Koinzidenzzählraten erhält man den Mittelwert 10,7  $\pm$  2,0, d.h. es ergeben sich höhere Pu-gehalte für die Referenzanordnung. Dies ist zu vergleichen mit dem aus den Eichmessungen ermittelten Wert von 8,4. Ursachen dieser Diskrepanzen könnten sein: 1) systematische Fehler in den Meßwerten ZR<sub>CC</sub> der Referenzanordnung bei hohen Spaltstoffgehalten, 2) systematischer Fehler in der Totzeitkorrektur, 3) neutronenabsorbierende Materialien als Beimischung in den Fällen hohen Pu-gehalts. Letzteres bewirkt eine Reduktion der Multiplikation für die Anordnung mit reduzierter Detektorempfindlichkeit. Klarheit zu diesem Punkt kann nur gewonnen werden, wenn eine weitere Meßkampagne in Mol durchgeführt werden würde.

Eine weitere Kontrolle des Multiplikationseinflusses auf die Koinzidenzzählrate ZR<sub>CC</sub> ergibt sich aus der Kombination verschiedener Gebinde. Ausgewählt wurden hierzu Gebinde mit hohen Pugehalten bei gleichzeitig nicht zu hoher Gesamtneutroneemission. Resultate sind in Tabelle 15 dargestellt. Die nicht sortierten Gebinde waren in 28 l Blechfässern enthalten. In der Tabelle ist vermerkt, welches der beiden Gebinde unten im Analysevolumen stand. Über eine Referenzmessung wurde die Änderung in ZR<sub>tot</sub> und ZR<sub>CC</sub> bei Änderung der Meßpositionen von Volumenmitte nach unten bestimmt. Die angegebenen Zählraten sind um diesen Geometrieeffekt korrigiert. Mit wachsendem Pu-gehalt im Analysevolumen tritt eine wachsende Unterschätzung des Multiplikationseffekts auf. Die Diskrepanz liegt im Rahmen der Unsicherheiten der Korrekturen für Totzeit und Geometrie.

- 18 -

#### Matrixeinflüsse für kleine Gebinde

Gemäß Tabelle 7 ergibt sich, daß das Zählratenverhältnis innerer zu äußerer Detektorring  $ZR_{tot}^{i}/ZR_{tot}^{a}$  von der Zusammensetzung der Wastematrix abhängt.  $ZR_{tot}^{i}/ZR_{tot}^{a}$  nimmt mit wachsendem Wassergehalt der Matrix zu, während die Nachweisempfindlichkeit  $\varepsilon$  abnimmt. Deshalb war es naheliegend, die Größe  $ZR_{tot}^{i}/ZR_{tot}^{a}$  zur Elimination der Einflußgröße Zusammensetzung der Wastematrix zu verwenden /1/. Der Einfluß des Wassergehalts der Wastematrix kann aus Tabelle 5 entnommen werden. Die Nachweisempfindlichkeit  $\varepsilon$  wird z.B. gegenüber dem Fall wasserfreies Analysevolumen ohne Cd-Abschirmung um ca. 30% reduziert, wenn der Wassergehalt auf  $\rho_{\rm H_2O}$  =0,2 g/cm<sup>3</sup> ansteigt. Damit wird die Koinzidenzzählrate bei gleicher Emissionsrate der Spontanspaltungsneutronen auf die Hälfte reduziert. Die Empfindlichkeitsänderung ist für den Fall mit Cd-Abschirmung größer. Wenn der Wassergehalt von 0 auf 0,2 g/cm<sup>3</sup> ansteigt, wird die Koinzidenzzählrate um den Faktor 3 reduziert.

Die einfache Korrekturmethode unter Verwendung von  $ZR_{tot}^i/ZR_{tot}^a$ geht davon aus, daß die mittlere Energie der ( $\alpha$ n) Neutronen nicht zu sehr verschieden ist von der der Spontanspaltungsneutronen und daß das Eichpräparat bezüglich des Anteils der ( $\alpha$ n) Neutronen an der Gesamtemission typisch ist für den Waste. Beide Annahmen treffen nicht zu. Deshalb kann die oben skizzierte Methode nicht zur Elimination des Matrixeinflusses verwendet werden.

Dies wird auch aus den Abb.9 und 10 deutlich. Aufgetragen ist jeweils die Gesamtheit der Meßresultate der Meßkampagne in Mol für die Fälle mit und ohne Cd-Abschirmung der inneren PE-Wand. Obwohl die verschiedenen Wastebeutel in etwa dieselbe Wastemenge enthalten (ein von Beutel zu Beutel variierender Matrixeffekt sollte demnach nicht auftreten) ändert sich das Verhältnis der Zählrate ZR<sup>i</sup><sub>tot</sub>/ ZR<sup>a</sup><sub>tot</sub> in einem sehr großen Bereich. Gleichzeitig ändert sich das Verhältnis ZR<sub>tot</sub>/ZR<sub>cc</sub> maximal um einen Faktor 5. Die (αn) Neutronen haben demnach eine deutlich niedrigere Quellenergie als die Spontanspaltungsneutronen und ihr Anteil kann von Probe zu Probe stark schwanken. Die Cd-Abschirmung der inneren PE-Wand hat bei Größe  $ZR_{tot}^i/ZR_{tot}^a$  vom Verhältnis  $ZR_{tot}/ZR_{cc}$ . Dies ist aufgrund der ähnlichen Abhängigkeit von  $ZR_{tot}^i/ZR_{tot}^a$  von der Neutronenenergie auch zu erwarten. Für den Fall "ohne Cd" sind lediglich wesentlich weniger Gebinde und außerdem nur bereits sortierte ausgemessen worden (Abb.10).

Die Cd-Abschirmung reduziert die Matrixabhängigkeit von  $ZR_{tot}^i$  $ZR_{tot}^a$  im betrachteten Variationsbereich  $0 \le \rho_{H_20} \le 0.2$  g/cm<sup>3</sup> von ca. <u>+</u> 21% auf <u>+</u> 12% erhöht aber gleichzeitig die Matrixabhängigkeit der Nachweisempfindlichkeit. In beiden Fällen muß wegen des letzteren der Einfluß der Wastematrix eliminiert werden. Dazu sind folgende Maßnahmen geeignet:

1) für  $ZR_{tot}$ : Korrektur über das Verhältnis  $ZR_{tot}^i/ZR_{tot}^a$ 2) für  $ZR_{cc}$ : Korrektur über  $ZR_{cc}^i/ZR_{cc}^a$ 

Die Verwendung von  $ZR_{tot}$  zur Bestimmung des Pu-gehalts der Wasteprobe ist wegen des großen Variationsbereichs der ( $\alpha$ n) Neutronenanteile nicht sinnvoll. Die Matrixkorrektur hat unter Verwendung des Koinzidenzzählratenverhältnisses  $ZR_{CC}^{i}/ZR_{CC}^{a}$  zu erfolgen. Augenblicklich verfügbar sind  $ZR_{CC}^{a}$  Messungen an einigen wenigen realistischen Wasteproben. Trotz stark unterschiedlicher Verhältnisse  $ZR_{tot}/ZR_{CC}^{tot}$  ergibt sich nach Multiplikations- und Totzeitkorrektur ein konstanter Wert  $ZR_{CC}/ZR_{CC}^{a}$  (Tabelle 14 letzte Spalte).

Der bei den Messungen in Mol festgestellte große Variationsbereich der ( $\alpha$ n) Neutronenemission hat im Prinzip 2 Ursachen: 1) der Puwaste stammt von Brennstoff mit unterschiedlichen Abbränden und 2) die unterschiedliche Vermischung des Pu mit Matrixmaterial sowie die Zusammensetzung und die Dichte der Matrix (Reichweite der  $\alpha$ -Teilchen und ( $\alpha$ n) Ausbeuten).

- 20 -

Es wurde geprüft ob Pkt. 1) als Ursache in Frage kommt. Dazu wurden wieder dieselben Aktinidenanalysenresultate und Eurochemic Betreiberdaten /7-10/ verwendet. In Abb. 12 ist die ( $\alpha$ n) Neutronenemission über der Emission durch Spontanspaltung für Brennstoff der Reaktoren Obrigheim (KWO) Gundremmingen (SWR) und Trino bezogen auf 1g Pu<sub>tot</sub> aufgetragen. Die Eurochemic Betreiberwerte sind als Punkte mit eingetragen. Es ergibt sich in etwa ein linearer Zusammenhang zwischen  $\alpha$ n und Spontanspaltungsemission. Damit wird aber das Verhältnis  $q_{\alpha n}/q_{sp}$  konstant und damit im Abbrandbereich 10-35 GWd/tU praktisch abbrandunabhängig. Pkt 1) scheidet damit als Ursache der Variation des Verhältnisses  $ZR_{tot}/ZR_{cc}$  aus.

#### Multiplikations- und Matrixeffekte für 200 l Gebinde

Es wurden folgende typische Fälle betrachtet: 1) eine homogene Verteilung von Pu im 200 L Volumen vermischt mit unterschiedlichen Matrixmaterialien und 2) eine lokale aber zum Zentrum des Analysevolumens symmetrische Pu-ansammlung umgeben von unterschiedlichem Matrixmaterial. Der Fall einer inhomogenen Pu-verteilung im Analysevolumen wurde bisher nicht betrachtet.

Ziel der Untersuchungen sollte die Bestimmung folgender Punkte sein: 1) Einfluß und Möglichkeiten zur Elimination des Matrixeinflusses, 2) Einfluß und Elimination von Multiplikationseffekten und 3) Abschätzung des Fehlers in der Pu-bestimmung durch eine unbekannte Pu-materialverteilung im Analysevolumen. Pkt. 1) und 3) wurden experimentell untersucht, zu Pkt 2) wurden Quellmultiplikationsrechnungen in 2 dim. Zylindergeometrie durchgeführt.

Berechnete Multiplikationswerte M<sub>CC</sub> sind in Abb.13 für 30 l Gebinde in Volumenmitte und in Abb.14 für 200 l Gebinde mit homogener Puverteilung angegeben. Im Fall der 30 l Gebinde war das restliche Volumen leer bzw. mit Polyäthylen der Dichten  $\rho_{\rm H_2O}=0,1$  und  $\rho_{\rm H_2O}=0,3~{\rm g/cm}^3$  gefüllt. Aus Abb. 13 entnimmt man, daß bei moderierender Wastematrix ( $\rho_{\rm PE} \geq 0,1~{\rm g/cm}^3$ ) Multiplikationseffekte bereits bei Pu-gehalten größer 5g auftreten. Ohne Cd-Abschirmung des Analysevolumens wird der Einfluß der Wastematrix auf die Multiplikation drastisch reduziert. Die Matrixabhängigkeit der Multiplikation wird für 200 l Gebinde mit homogener Pu-Verteilung noch weiter reduziert. Gemäß Abb. 14 kann damit die Multiplikationskorrektur ohne Kenntnis der Matrix erfolgen.

Der Einfluß der Matrixzusammensetzung auf das Koinzidenzmeßsignal  $ZR_{CC}$  wurde für die Fälle Volumen leer und Volumen gefüllt mit Polyäthylen der Dichte  $\rho_{PE}=0,18$  g/cm<sup>3</sup> experimentell untersucht. Dazu wurde das große Pu-oxid-präparat in einem Meßraster bei 3 radialen und jeweils 9 axialen Positionen verwendet.

Die Resultate sind in Abb.15 dargestellt. Die Matrixkorrektur der Koinzidenzzählrate  $ZR_{cc}$  kann über das Verhältnis  $ZR_{cc}^{i}/ZR_{cc}^{a}$  erfolgen. Die Werte  $ZR_{cc}^{i}/ZR_{cc}^{a}$  sind leider keine Meßwerte, sondern gemäß Gl.(9) aus Meßwerten  $ZR_{tot}^{i}/ZR_{tot}^{a}$  mit einer Cf-Quelle berechnet. Für die Anordnung ohne Cd ergibt sich gemäß Abb. 15 eine stärkere Abhängigkeit von  $ZR_{cc}^{i}/ZR_{cc}^{a}$  von der Matrixzusammensetzung. Außerdem ergibt sich eine geringere Beeinflussung des Meßsignal  $ZR_{cc}$  durch die Puverteilung im Analysevolumen. Die Fälle Pu im Zentrum und Pu auf einer Zylinderschale 20  $\leq r \leq$  30 cm unterscheiden sich für den Fall mit Cd um ca.  $\pm$  23%, für den Fall ohne Cd ist dagegen wegen des für beide Pu-verteilungen verschiedenen  $ZR_{cc}^{i}/ZR_{cc}^{a}$  kein Einfluß auf  $ZR_{cc}$ zu erwarten.

#### Zusammenfassung

Der Einsatz der Faßmeßanlage in der Eurochemic in Mol hat gezeigt, daß die passive Neutronenmessung eine relativ einfache, empfindliche und zuverlässige Methode zur Pu-bestimmung in Wastegebinden darstellt. In realistischen Wastegebinden kann der Anteil der (an) Neutronen an der Neutronenemission in einem weiten Bereich schwanken. Damit muß zur Pu-bestimmung die Koinzidenzmethode verwendet werden.

Beschrieben werden Eichmessungen und die Messungen in Mol. Die aus diesen Messungen gewonnenen Aussagen über den Einfluß von Multiplikationseffekten und über Verfahren zur Elimination des Einflusses der Wastematrix auf die Pu-bestimmung werden diskutiert.

Mit der in Mol verwendeten Meßanlage wurden Nachweisgrenzen von 40 mg Pu in einem Analysevolumen von 200 l erreicht. Bei einem auf minimalen Neutronenuntergrund ausgelegten Aufstellungsort kann mit dem derzeitigen Gerät die Nachweisgrenze um mindestens einen Faktor 2 reduziert werden, d.h. minimale Pu-Mengen von ca. 20 mg/ 200 l können nachgewiesen werden.

Matrixeffekte und inhomogene Pu-verteilungen sind für 200 l Gebinde noch weiter zu untersuchen. Dazu werden bei HDB Labormessungen auch an betonierten Fässern durchgeführt. Die bestehenden Diskrepanzen zwischen Pu und Cf sind weiter zu untersuchen. Außerdem ist eine experimentelle Bestimmung der Abhängigkeit der Koinzidenzzählrate von Totzeiteffekten durchzuführen.

Die Faßmeßanlage sollte stets ohne Cd-Abschirmung betrieben werden. Dies erlaubt die Elimination des Matrixeinflusses auf das Meßsignal und erleichtert die Multiplikationskorrektur.

#### Literatur

- /1/ W. Eyrich et al.: A Neutron Well Counter for Plutonium Assay in 200 l Waste Barrels, EUR 6629 EN, 1979
- /2/ K. Böhnel: Die Plutoniumbestimmung in Kernbrennstoffen mit der Neutronenkoinzidenzmethode, KfK 2203, 1975
- /3/ J. Terrell: Phy. Rev. 127, S.880, 1962
- /4/ E.W. Lees, B.W. Houton: Variable dead time counters. Theoretical responses and the effects of neutron multiplication. AERE-R-9168, 1978.
- /5/ A. Prosdocimi: Neutron Multiplicity Analyses as a Passive Interrogation Method. 1. Symp. ESARDA 25/27 April 1979, Brüssel
- /6/ C. Günther, W. Kinnebrock: Das ein-dimensionale Transportprogramm DTK, KfK 1381, 1971
- /7/ P. Barbero et al: Post Irradiation Examination of the Fuel Discharged from the TRINO Vercellese Reactor, EUR 5605e, 1977
- /8/ P. Barbero et al.: Post Irradiation Analysis of the Obrigheim Spent Fuel, EUR 6589e, 1979
- /9/ P. Barbero et al: Post Irradiation Analysis of the Gundremmingen BWR Spent Fuel, EUR 6301 EN, 1979
- /10/ R. Swennen: persönliche Mitteilung

| Nuklid | <b>v</b> | $\frac{\overline{v(v-1)}}{2\overline{v}}$ | q<br>sp<br>(ñ∕secg)    | q <sub>αn</sub><br>n/secg |
|--------|----------|-------------------------------------------|------------------------|---------------------------|
| Pu 238 | 2,21     | O,896                                     | 2430                   | 20110                     |
| Pu 240 | 2,15     | O,869                                     | 898                    | 270                       |
| Pu 242 | 2,14     | O,864                                     | 1685                   | 4,5                       |
| Cf-252 | 3,76     | 1,574                                     | 2,3 • 10 <sup>12</sup> | 10 <sup>6</sup>           |

Tabelle 1 Neutronenemission und v-Werte für Pu isotope

Tabelle 2 Chemische Zusammensetzung des Matrixmaterials der Eurochemie Pu-Präparate. Dichte  $\rho \approx 0,2$  g/cm<sup>3</sup> Das Plutonium ist homogen in der Probe verteilt

| Element | Gew. % |
|---------|--------|
| С       | 52,6   |
| 0       | 8,1    |
| н       | 7,0    |
| Cl      | 29     |
| Zn      | 1,7    |
| Si      | 0,9    |
| Al      | 0,5    |
| Fe      | 0,1    |

- 25 -

| Präparat                                                | Quellstärke<br>aus Spontan<br>Spaltung<br>n/sec | Quellstärke<br>aus (an)<br>n/sec | e totale<br>n-Emission<br>n/sec | Gesamt<br>menge<br>Pu<br>.g          | Menge<br>Pu 238 +<br>Pu 240 +<br>Pu 242<br>g |
|---------------------------------------------------------|-------------------------------------------------|----------------------------------|---------------------------------|--------------------------------------|----------------------------------------------|
| <sup>252</sup> Cf                                       | 9,45 • 10 <sup>4 (1)</sup>                      | -                                | 9,45 • 10 <sup>4</sup>          | -                                    | -                                            |
| Puoxid 1<br>Puoxid 2 <sup>(2)</sup>                     | 182<br>1843                                     | unbekannt                        | unbekannt                       | 1,493<br>15,1                        | 0,197<br>1,99                                |
| Pu I<br>Pu II<br>Pu III<br>Pu IV <sup>(3)</sup><br>Pu V | 2092<br>4000<br>8153<br>455<br>1081             | unbekannt                        | unbekannt                       | 9,62<br>18,4<br>37,5<br>2,09<br>4,98 | 2,016<br>3,85<br>7,85<br>0,438<br>1,04       |

Tabelle 3a: Verwendete Eichpräparate und Neutronenquellstärken

- (1) Quellstärke am Nov. 1980
- (2) Hersteller TUI
- (3) Hersteller Eurochemic Mol

Tabelle 3b: Isotopenvektor der verwendeten Pu-präparate

| Präp.           | Pu-vektor (238;239;240;241;242) | $\frac{\text{Am } 241}{\text{Pu}}$ |
|-----------------|---------------------------------|------------------------------------|
| Pu-oxid         | (0,09; 85,33; 12,9; 1,43; 0,25) | (Gew.%)<br>0.21                    |
| Pu-präp.<br>Mol | (0,87; 72,01; 18; 6,9; 2,04)    | 3,34                               |

bezogen auf Dez. 1980

Tabelle 4 Lebensdauer  $1/\alpha$  der thermischen Neutronen und Nachweisempfindlichkeit  $\varepsilon_{c}$  der Detektoranordnung bestimmt aus least square fit  $ZR_{CC} = f(\Delta t)$ 

| Fall                          | Quelle                                              | 1/α<br>(µs)       | е <sub>С</sub><br>(%) |
|-------------------------------|-----------------------------------------------------|-------------------|-----------------------|
| Analysevol. leer<br>ohne Cd   | Cf (1) innen<br>außen<br>Pupräparat<br>I + II + III | 125<br>155<br>135 | 7,7<br>6,1<br>20,1    |
| Analysevol. mit PE<br>Ohne Cd | Puoxid<br>(1)<br>Cf                                 | 133<br>155        | 11,4<br>9,2           |
| Analysevol leer<br>mit Cd     | Pupräparat<br>II, III                               | 98                | 17,8                  |
| Analysevol. mit PE<br>mit Cd  | Puoxid                                              | 95                | 13,3                  |

(1): Andere Detektoranordnung mit weniger Detektoren im inneren Ring.

| Fall                          | Präparat                    | <sup>ZR</sup> tot (c | /sec) <sup>ZR</sup> cc | <sup>q</sup> sp (n/                  | sec) <sup>q</sup> tot  | ε(%<br>aus ZR<br>cc       | )<br>aus ZR<br>tot |
|-------------------------------|-----------------------------|----------------------|------------------------|--------------------------------------|------------------------|---------------------------|--------------------|
| Analysevol. leer<br>ohne Cd   | Cf<br>Puoxid<br>Pu III, Mol | 16120<br>749<br>6181 | 2154<br>45,2<br>153    | 9,45 10 <sup>4</sup><br>2020<br>8150 | 9,45 • 10 <sup>4</sup> | 17,4→19,5<br>22,2<br>20,1 | 17,0               |
| Analysevol. leer<br>mit Cd    | Puoxid<br>Pu III, Mol       | 55<br>5502           | 3,65<br>134            | 182<br>8150                          |                        | 19,0<br>17,8              |                    |
| Analysevol. mit PE<br>mit Cd  | Puoxid<br>Cf                | 340<br>8569          | 18,9<br>812            | 1843<br>9,45 •                       | 10 <sup>4</sup>        | 13,6<br>9,4               | 9,0                |
| Analysevol. mit PE<br>ohne Cd | Puoxid                      | 498                  | 18,5                   | 1843                                 |                        | 14,8                      |                    |

Tabelle 5: Nachweisempfindlichkeiten für Eichpräparate im Zentrum des Analysevolumens, Koinzidenzzeitintervall 100 µs

28

Tabelle 6: Vergleich gemessener und berechneter ZR<sub>tot</sub>/ZR<sub>cc</sub> - Verhältnisse

| Fall             | Präparat      | <sup>ZR</sup> cc (c/se | c) ZR tot | (ZR <sub>tot</sub><br>(ZR <sub>tot</sub><br>ME | Cf<br>/ZR <sub>CC</sub> )<br>/ZR <sub>CC</sub> ) <sup>.Pu</sup><br>RE* | Totzeiteffekt<br>im Koinzidenz-<br>zähler (%) |
|------------------|---------------|------------------------|-----------|------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|
| Analysevol. leer | Cf            | 2154                   | 16200     |                                                |                                                                        |                                               |
| ohne Cd          | Pu            | 45,2                   | 749       | 0,451                                          | 0,342                                                                  | 12,6                                          |
| Analysevol. mit  | Cf            | 1034                   | 11870     | 0.426                                          | 0.342                                                                  | 6,5                                           |
| PE, ohne Cd      | Pu            | 18,5                   | 498       |                                                | -,                                                                     | ~                                             |
| Analysevol, mit  | Cf            | 812                    | 8569      | 0.40                                           | 0,342                                                                  | -                                             |
| PE mit Cd        | Pu            | 1,29                   | .∛34      |                                                | -,                                                                     |                                               |
| Analysevol. leer | Kl. Cf-Quelle | 1,7                    | 14,8      | 0.404                                          | 0.342                                                                  | _                                             |
| ohne Cd          | Pu            | 24,2                   | 521,3     | 0,101                                          | 01042                                                                  |                                               |
|                  |               |                        |           | [                                              |                                                                        |                                               |

(\*) unter den Annahmen  $e_c^{Pu} = 1,02 \frac{c_c^{Cf}}{c_c}$ 

(<sub>\*</sub>)

unter den Annahmen  $\varepsilon_{c}^{Pu} = 1,02 \varepsilon_{c}^{Cf}$  $\varepsilon_{tot}^{Pu} = \varepsilon_{c}^{Pu}$  Tabelle 7: Verhältnisse der totalen und der koinzidenten Zählraten. Die Präparate befinden sich jeweils im Zentrum des Analysevolumens. Der innere Detektorring war ausgedünnt.

| Fall           | Präparat | ZR <sup>i</sup> tot/ZR <sup>a</sup> tot | $zr_{cc}^{i}/zr_{cc}^{a}$ |
|----------------|----------|-----------------------------------------|---------------------------|
| Volumen leer   | .Cf      | 1,48                                    | 1,93                      |
| ohne Cd        | Pu-oxid  | 1,43                                    | 1,87                      |
| Volumen mit PE | Cf       | 2,49                                    | 5,2                       |
| ohne Cd        | Pu-oxid  | 2,42                                    | 5,07                      |

- 30 -

Tabelle 8: Bestimmung der totalen Neutronenquellstärke verschiedener Präparate

| Fall                        | Präparat                 | c/ <sub>n</sub> 2<br>totzeit korrigiert                                                        | q <sub>tot</sub> (n/sec)<br>aus c/ <sub>n</sub> 2                                         |
|-----------------------------|--------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Analysevol. leer<br>ohne Cd | Cf<br>Puoxid 1<br>Pu III | 9,24 $\cdot$ 10 <sup>-6</sup><br>8,05 $\cdot$ 10 <sup>-5</sup><br>4,0 $\cdot$ 10 <sup>-6</sup> | 8,5 $\cdot$ 10 <sup>4</sup><br>3,3 $\cdot$ 10 <sup>3</sup><br>3,0 $\cdot$ 10 <sup>4</sup> |
| Analysevol. m. PE           | Puoxid 2                 | $1,2 \cdot 10^{-3}$                                                                            | 260                                                                                       |
|                             | Pu III                   | 4,42 \cdot 10^{-6}                                                                             | 3,2 * 10 <sup>4</sup>                                                                     |
| Analysevol.m.PE             | Cf                       | $1,1: \cdot 10^{-5}_{-3}$                                                                      | 9,0 10 <sup>4</sup>                                                                       |
| mit Cd                      | Puoxid 2                 | $1,1 \cdot 10^{-3}$                                                                            | 305                                                                                       |
| Analysevol.m. PE            | Cf                       | 7,81 · 10 <sup>-6</sup>                                                                        | 1,0 * 10 <sup>5</sup>                                                                     |
| ohne Cd                     | Puoxid 1                 | 7,45 · 10 <sup>-5</sup>                                                                        | 3,3 * 10 <sup>3</sup>                                                                     |

-

<u>Tabelle 9:</u> Bestimmung von F (v)<sup>Cf</sup> =  $\frac{\overline{v(v-1)}}{2\overline{v}}$  unter Verwendung

## verschiedener Gleichungen.

Gl. (1): 
$$F(\overline{v}) \stackrel{Cf}{=} \frac{ZR_{CC}}{\overline{\epsilon}_{C}^{2} q_{Sp}^{Cf} F(\Delta t)}$$

G1. (6a): 
$$F(\overline{v})^{Cf} = 1.02 \frac{\varepsilon_{C}^{Pu} F(\overline{v})^{Pu}}{\varepsilon_{tot}^{Pu} (q_{tot}/q_{sp})^{Pu}} \frac{(ZR_{tot}/ZR_{cc})^{Pu}}{(ZR_{tot}/ZR_{cc})^{Cf}}$$

± 15

Gl. (10): 
$$F(\nabla) = \frac{c/n^2 q_{tot}^{Cf}}{F(\Delta t)}$$

Beziehung F(ν) Fehler 웡 No 1,46 1 ± 16 1,34 6 ± 11 1,32

10

|                             |                       |                     |                          | ·                        | <u> </u>                            |
|-----------------------------|-----------------------|---------------------|--------------------------|--------------------------|-------------------------------------|
| Präparat                    | 238<br>g Pu240<br>242 | g Pu <sub>tot</sub> | ZR <sub>tot</sub><br>(c/ | ZR <sub>cc</sub><br>sec) | ZR <sub>tot</sub> /ZR <sub>cc</sub> |
| Pu I                        | 2,01                  | 9,66                | 1620                     | 35,7                     | 45,3                                |
| Pu II                       | 3,85                  | 18,5                | 3082                     | 72,4                     | 42,5                                |
| Pu III                      | 7,85                  | 37,6                | 6180                     | 151,3                    | 40,8                                |
| Pu V                        | 1,0                   | 4,98                | 850                      | 18,9                     | 45,0                                |
| Pu I + Pu II                | 5,86                  | 28,1                | 4710                     | 108,9                    | 43,2                                |
| Pu I + Pu V                 | 3,0                   | 14,6                | 2454                     | 54,1                     | 45,3                                |
| Pu I + Pu III               | 9,86                  | 45,2                | 7765                     | 199,8                    | 38,8                                |
| Pu II + Pu <sup>.</sup> III | 11,70                 | 56,06               | 9300                     | 299,5                    | 40,5                                |
| Pu I + Pu II + Pu III       | 13,7                  | 65,7                | 10825                    | 281                      | 38,5                                |
|                             |                       |                     |                          | -                        |                                     |

Tabelle 10: Eichmessungen mit Eurochemic Pu-Präparaten

| Präparat                    | 238<br>g Pu240<br>242 | g <sup>Pu</sup> tot | ZR <sub>tot</sub> | ZR <sub>cc</sub><br>/sec) | ZR <sub>tot</sub> /ZR <sub>cc</sub> |
|-----------------------------|-----------------------|---------------------|-------------------|---------------------------|-------------------------------------|
| Pu I                        | 2,01                  | 9,66                | 1620              | 35,7                      | 45,3                                |
| Pu II                       | 3,85                  | 18,5                | 3082              | 72,4                      | 42,5                                |
| Pu III                      | 7,85                  | 37,6                | 6180              | 151,3                     | 40,8                                |
| Pu V                        | 1,0                   | 4,98                | 850               | 18,9                      | 45,0                                |
| Pu I + Pu II                | 5,86                  | 28,1                | 4710              | 108,9                     | 43,2                                |
| Pu I + Pu V                 | 3,0                   | 14,6                | 2454              | 54,1                      | 45,3                                |
| Pu I + Pu III               | 9,86                  | 45,2                | 7765              | 199,8                     | 38,8                                |
| Pu II + Pu <sup>.</sup> III | 11,70                 | 56,06               | 9300              | 299,5                     | 40,5                                |
| Pu I + Pu II + Pu III       | 13,7                  | 65,7                | 10825             | 281                       | 38,5                                |
|                             | · ·                   |                     |                   |                           |                                     |

a) Anordnung: Analysevolumen leer ohne Cd-Abschirmung

b) Anordnung: Analysevolumen leer mit Cd-Abschirmung

| Präparat              | 238<br>g Pu240<br>242 | ZR <sub>tot</sub> ZR <sub>cc</sub><br>(c/sec) | ZR <sub>tot</sub> /ZR <sub>cc</sub> |
|-----------------------|-----------------------|-----------------------------------------------|-------------------------------------|
| Pu I                  | 2,01                  | 1447 32,2                                     | 44,9                                |
| Pu II                 | 3,85                  | 2752 65,3                                     | 42,1                                |
| Pu III                | 7,85                  | 5502 131,1                                    | 42,0                                |
| Pu IV                 | 0,44                  | 312 6,9                                       | 45,2                                |
| Pu V                  | 1,0                   | 770 17,9                                      | 43,0                                |
| Pu I + Pu V           | 3,0                   | 2192 49,3                                     | 44,3                                |
| Pu I + Pu II          | 5,85                  | 4189 97,5                                     | 43,0                                |
| Pu II + Pu III        | 11,70                 | 8198 198,9                                    | 41,2                                |
| Pu I + Pu II + Pu III | 13,7                  | 9505 234                                      | 40,7                                |

| Isotop         | 239 <sub>Pu</sub> | 240 <sub>Pu</sub> | Schnellspaltung | 252 <sub>Cf</sub> |
|----------------|-------------------|-------------------|-----------------|-------------------|
| $\overline{v}$ | 3,12              | 2,151             | 4,27            | 3,76              |
| σ              | 1,08              | 1,08              | 1,52            | 1,207             |
| G (O)          | 0,0057            | 0,051             | 0,005           |                   |
| G(1)           | 0,0538            | 0,205             | 0,026           | 0,0242            |
| G(2)           | 0,2157            | 0,3679            | 0,086           | 0,11417           |
| G(3)           | 0,3776            | 0,2727            | 0,186           | 0,2712            |
| G(4)           | 0,272             | 0,0858            | 0,258           | 0,3242            |
| G(5)           | 0,083             | 0,0115            | 0,234           | 0,195             |
| G(6)           | 0,0109            | 0,0006            | 0,102 0,137     | 0,0591            |
| G(7)           | 0,0006            |                   | 0,015 0,052     | 0,00901           |
| G(8)           |                   |                   | 0,00095 0,013   | 0,000691          |
| G (9)          |                   |                   | 0,002           |                   |

Tabelle 11: Wahrscheinlichkeiten für die Emission mehrerer Neutronen pro Spontanspaltung

- 34 -

Größen  $\Sigma_{i=2}^{\Sigma}$  (i-1)  $Q_i(\varepsilon, \overline{\nu})$  für verschiedene  $\varepsilon$ - und  $\overline{\nu}$ -Werte

| Empfindlichkeit |         |        | $\overline{\nu}$ |
|-----------------|---------|--------|------------------|
| ε               | 2,151   | 3,12   | 4,27             |
| <u>8</u>        | Pu-240  | Pu-239 |                  |
| 18              | 0,0548  | 0,1153 | 0,178            |
| 21              | 0,0744  | 0,1557 | 0,217            |
| 6,5             | 0,00696 | 0,0149 | 0,0296           |

| Gebinde | 38<br>g Pu 40<br>42 | Gebinde | 38<br>g Pu 40<br>42 | Gebinde | g Pu         | 38<br>40<br>42 | Gebinde | 38<br>g Pu 40<br>42 | Gebinde | 38<br>g Pu 40<br>42 |
|---------|---------------------|---------|---------------------|---------|--------------|----------------|---------|---------------------|---------|---------------------|
| C 101   | 0,46                | C 124   | 1,23                | C 147   | 0,025        |                | C 170   | 0,60                | C 193   | 4,94                |
| 102     | 0,26                | 125     | 1.06                | 148     | 0,76         |                | 1/1     | 0,32                | 194     | 0,35                |
| 103     | 0,26                | 126     | 0,42                | 149     | 0,10         |                | 172     | 12,9                | 195     | 0,64                |
| 104     | 1 27                | 127     | 0,14                | 150     | 0,1          |                | 173     | 7,54                | 196     | 2,02                |
| 105     | 1,27                | 120     | 1,39                | 151     | 0,73         |                | 175     | 2,22                | 197     | 5,12                |
| 106     | 0,46                | 129     | 0,03                | 152     | 1 24         |                | 175     | 2,07                | 198     | 2,31                |
| 107     | 0,07                | 130     | 0,55                | 155     | 1,04         |                | 177     | 2,00<br>1 00        | 199     | 0,40                |
| 100     | 1 36                | 132     | 0,20                | 154     | 0.35         |                | 170     | 1,02                | 200     | 0,23                |
| 109     | 35                  | 132     | 0,41                | 155     | 0,35         |                | 170 1   | 0,50                | 201     | 0,09                |
| 111     | 2 39                | 134     | 0,33                | 157     | 2,20<br>2,51 |                | 180     | 1 91                | 202     | 0,05                |
| 112     | 1.22                | 135     | 0,23                | 158     | 2, JI<br>1 Q |                | 181     | 10 44               | 203     | 0,03                |
| 113     | 2,68                | 136     | 1,19                | 150     | 1 04         |                | 182     | 17 65               | 205     | 0,07                |
| 114     | 1,11                | 137     | 4.33                | 160     | 1,31         |                | 183     | 5.6                 | 205     | 0,05                |
| 115     | 1.24                | 138     | 1.0                 | 161     | 0.63         |                | 184     | 5,43                | 200     | 0,09                |
| 116     | 3,02                | 139     | 0,52                | 162     | 0,45         |                | 185     | 6,94                | 208     | 0,1                 |
| 117     | 1,28                | 140     | 0,64                | 163     | 2,60         |                | 186     | 4,74                | 209     | 0,03                |
| 118     | 1,09                | 141     | 2,38                | 164     | 3,20         |                | 187     | 1,82                | 210     | 0,04                |
| 119     | 0,62                | 142     | 3,06                | 165     | 1,65         |                | 188     | 0,43                | 211     | 0,03                |
| 120     | 2,28                | 143     | 1,43                | 166     | 1,27         |                | 189     | 7,97                | 212     | 0,035               |
| 121     | 1,97                | 144     | 1,09                | 167     | 0,52         |                | 190 1   | 18,3 ± 2,6          | 213     | 0,02                |
| 122     | 0,89                | 145     | 0,35                | 168     | 0,19         |                | 191     | 2,81                | 214     | 0,05                |
| 123     | 0,98                | 146     | 0,10                | 169     | 1,26         |                | 192     | 3,55                | 215     | 0,03                |

Tabelle 12: Liste der vermessenen Wastegebinde mit Gehalt an Pu 238 + Pu 240 + Pu 242 in Gramm

I

| Gebinde | 38<br>g Pu 40<br>42 |
|---------|---------------------|---------|---------------------|---------|---------------------|---------|---------------------|---------|---------------------|
| C 216   | 0,04                | C 241   | 0,46                | C 266   | 0,31                | C 291   | 2,83                | C 316   | 1,09                |
| 217     | 0,02                | 242     | 0,54                | 267     | 1,31                | 292     | 15,9                | 317     | 4,62                |
| 218     | 0,03                | 243     | 0,72                | 268     | 4,38                | 293     | 5,09                | 318     | 2,30                |
| 219     | 0,02                | 244     | 8,37                | 269     | 4,65                | 294     | 5,87                | 319     | 1,15                |
| 220     | 0,05                | 245     | 1,80                | 270     | 1,53                | 295     | 9,45                | 320     | 8,8                 |
| 221     | 0,02                | 246     | 0,5                 | 271     | 3,25                | 296     | 3,06                | 321     | 0,94                |
| 222     | 0,01                | 247     | 1,78                | 272     | 1,53                | 297     | 0,60                | 322     | 6,21                |
| 223     | 0,01                | 248     | 2,88 ± 0,6          | 273     | 8,74                | 298     | 0,85                | 323     | 0,76                |
| 224-1   | 0,025               | 249     | 1,13                | 274     | 0,48                | 299     | 3,65                | 324     | 0,40                |
| 224-2   | 0,025               | 250     | 1,91                | 275     | 0,14                | 300     | 11,2                | 325     | 21,2+2,2            |
| 226     | 0,02                | 251     | 6,15 ± 0,4          | 276     | 0 <b>,</b> 27       | 301     | 5,98                | 326     | 12,1                |
| 227     | 0,01                | 252     | 1,17                | 277     | 0,62                | 302     | 6,18                | 327     | 2,64                |
| 228     | 0,01                | 253     | 3,74                | 278     | 0,73                | 303     | 3,21                | 328     | 2,44                |
| 229     | 0,01                | 254     | $0,91 \pm 0,1$      | 279     | 0,95                | 304     | 3,36                | 329     | 1,0                 |
| 230     | 0,006               | 255     | 0,48                | 280     | 1,47                | 305     | 2,46                | 330     | 3,6                 |
| 231     | 0,003               | 256     | 3,28                | 281     | 0,48                | 306     | 1,56                | 331     | 2 <sub>r</sub> 1    |
| 232     | 0,024               | 257     | 1,25                | 282     | 0 <b>,</b> 65       | 307     | 2,56                | 332     | 1,56                |
| 233     | 0,01                | 258     | 4,34                | 283     | 1,33                | 308     | 1,17                | 333     | 0,56                |
| 234     | 0,005               | 259     | 2,0                 | 284     | 1,76                | 309     | 1,9                 | 334     | 0 <b>,</b> 85       |
| 235     | 0,01                | 260     | 2,15                | 285     | 2,2                 | 310     | 0,98                | 335     | 0,55                |
| 236     | 0,005               | 261     | 1,78                | 286     | 0,76                | 311     | 0,84                | 336     | 4,12                |
| 237     | < 0,002             | 262     | 0,40                | 287     | 0,51                | 312     | 2,10                | 337     | 0 <b>,</b> 27       |
| 238     | 0,74                | 263     | 0,75                | 288     | 0,26                | 313     | 3,31                |         |                     |
| 239     | 1,05                | 264     | 0,42                | 289     | 0,55                | 314     | 2,57                |         |                     |
| 240     | 0,14                | 265     | 1,3                 | 290     | 0 <b>,</b> 79       | 315     | 2,46                |         |                     |

Gesamtmenge Pu 238 + Pu 240 + Pu 242 aller brennbaren Gebinde: (4**9**7,3 ± 25) g gesamte Pu-Menge : (2**6**36 ± 525) g

-----

••

- -

l 3 6

Nicht brennbare Gebinde

| item No                                                                                                                                                                                                              | 38<br>g Pu 40<br>42                                                                                                                                                                                                                                                               |                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| item No<br>1001<br>1002/1003<br>W118<br>W123<br>W124<br>W125<br>W126<br>W138<br>W139<br>W141<br>W144<br>W149<br>W150<br>W175<br>W176<br>W175<br>W176<br>W175<br>W176<br>W179<br>W189<br>W209<br>W210<br>W211<br>W212 | g Pu $\begin{array}{c} 38\\ g Pu \begin{array}{c} 40\\ 42 \end{array}$<br>1,37<br>0,155<br>0,615<br>0,282<br>0,223<br>0,149<br>0,186<br>0,23<br>0,090<br>14,390 $\pm$ 1,7<br>0,107<br>0,094<br>0,395<br>0,348<br>1,0<br>0,093<br>< 0,005<br>0,275<br>1,33<br>1,87<br>0,75<br>0,35 | 1 g Pu 238 + Pu 240 + Pu 242 $\triangleq (5,3 \pm 1,1)g$ Pu <sub>to</sub> |
| W212 ·<br>W235<br>W236                                                                                                                                                                                               | 0,35<br>0,3<br>0,16                                                                                                                                                                                                                                                               |                                                                           |

 $S = 26,2 \text{ g (Pu } 238 + 240 + 242) \stackrel{\clubsuit}{=} (139 \pm 28,8) \text{ g Pu}_{tot}$ 

i

,

| Gebinde        | 38<br>g Pu 40   | Gebinde            | 38<br>g Pu 40       | Gebinde  | 38<br>g Pu 40     | Gebinde              | 38<br>g Pu 40     |                              |
|----------------|-----------------|--------------------|---------------------|----------|-------------------|----------------------|-------------------|------------------------------|
|                | <sup>%</sup> 42 |                    | • 42                |          | 42                |                      | 42                |                              |
| E 182          | 0,65            | L 224              | 4,9                 | н 909    | 26,8              | н 1118               | 26,6+3,5          |                              |
| E 268-2        | 20,3            | в 149              | 25+8                | н 1091   | 5,0               | н 1099-4             | 0,01              |                              |
| E 269-1        | 30,1            | в 160 <sup>*</sup> | -<br>45 <u>+</u> 20 | н 1095   | 14,8              | S35-6                | 16,4              |                              |
| E 280-2        | 0,2             | P 285              | 0,25                | н 1097   | 10,8              | S 28                 | 4,1               |                              |
| <b>E</b> 281-2 | 25,8            | н 655-2            | 5,9                 | н 1098   | 29,2              | s 35-2               | 5,8               | *Hoher Multiplikationseffekt |
| E 283          | 25,3            | н 655-3            | 9,4                 | н 1099-1 | 2,6               | s 35-4               | 18,4 <u>+</u> 4,5 |                              |
| E 275-2        | 13,8            | н 655-1            | 33,8                | н 1099-2 | 15,5              | Н 972-1              | 13,9              |                              |
| E 291-1        | 11,7            | н 655-4            | 16,4                | н 1099-3 | 3,9               | н 986                | 4,8               |                              |
| E 291-2        | 30,9            | н 708              | 3,8                 | н 1100   | 22,5              | н 972-2 <sup>-</sup> | 4,7               |                              |
| E 300          | 7,6             | н 695              | 25,5                | н 1101   | 2,3               | н 1114               | 8,7               |                              |
| E 301-2        | 41,1            | н 692              | 13,6                | н 1104   | 12,9              | н 1117               | 11,6              |                              |
| E 301-3        | 4,5             | н 721              | 2,0                 | н 1105   | 4,61              | Н 1121               | 8,9               |                              |
| E 303          | 0,42            | н 830              | 14,6                | н 1106   | 8,6               | S 35−5               | 16,1              |                              |
| E 279          | 1,85            | н 845              | 11,3                | н 1108   | 10 <b>,</b> 65    | Cummo                | 007               |                              |
| E 305          | 13,5            | н 889              | 3,4                 | н 973    | 12,4              | Summe                | 907               | Gesamtmenge an Pu:           |
| E 306          | 3,7             | н 888              | 1,0                 | н 989    | 10,1              |                      |                   | Pu = (480/ + 106/) g         |
| E 284-2        | 3,0             | н 904              | 8,5                 | н 1092   | 2,6               | B 182                | 0.65              |                              |
| E 307          | 4,4             | н 918              | 2,6                 | н 1111   | 33,2 <u>+</u> 7,4 | P 404                | 0.1               |                              |
| E 308          | 10,8            | н 930              | 1,6                 | н 1113-1 | 9,4               | P 808                | < 0.05            |                              |
| E 426          | 7,1             | н 959              | 6,9                 | н 1113-2 | 0,03              |                      | -                 |                              |
| S 2            | 4,6             | н 971              | 3,4                 | н 1113-3 | 2,4               |                      |                   |                              |
| S 28           | 4,1             | н 972-1            | 13,9                | н 1114   | 8,7               |                      |                   |                              |

- -

| Gebinde Analysevol. mit Cd-Abschirmung |                           |       |                    |                    |              |                   | Analysevol. ohne Cd-Abschirmung |                    |                    |              |  |
|----------------------------------------|---------------------------|-------|--------------------|--------------------|--------------|-------------------|---------------------------------|--------------------|--------------------|--------------|--|
|                                        | ZR <sub>tot</sub> (c/sec) | ZRcc  | ZR <sup>K</sup> cc | ZR <sup>W</sup> cc | g Pu38+40+42 | ZR <sub>tot</sub> | ZRcc                            | ZR <sup>K</sup> cc | ZR <sup>W</sup> cc | g Pu38+40+42 |  |
| C 172                                  | 10100                     | 214   | 220                | 217                | 12,9         | 11285             | 242                             | 251                | 225                | 12,2         |  |
| C 173                                  | 4740                      | 121   | 121                | 121                | 7,0          | 5344              | 135                             | 135                | 132                | 7,0          |  |
| C 182                                  | 17140                     | 259   | 295                | 289                | 17,5         | 19980             | 370                             | 425                | 352                | 19,1         |  |
| C 183                                  | 6575                      | 96,5  | 96,5               | 96,5               | 5,6          | 7225              | 107                             | 108                | 108                | 5,7          |  |
| C 185                                  | 9880                      | 111,5 | 115                | 115                | 6,7          | 10795             | 125                             | 130                | 130                | 6,9          |  |
| C 326                                  | 13943                     | 198   | 212                | 207                | 12,1         | 15820             | 228                             | 250                | 225                | 12,4         |  |
| C 300                                  | 18920                     | 170   | 192                | 190                | 11,2         | 22410             | 215                             | 253                | 225                | 12,2         |  |
| C 182+183                              |                           |       |                    |                    | -            | 26710             | 484                             | 585                | 475                | 25,6         |  |
| PuI+II+III                             | 9910                      | 238   | 245                | 242                | 13,7         | 10820             | 281                             | 293                | 263                | 13,7         |  |

Tabelle 13 Resultate für verschiedene Anordnungen. Demonstration des Multiplikationseffektes

ZR<sub>cc</sub>: Meßwert Koinzidenzzählrate

ZR<sub>cc</sub><sup>K</sup>: Totzeitkorrigierter Meßwert

 $ZR_{cc}^{W}$ : Totzeit- und Mulitplikationskorrigierter WErt der Koinzidenzzählrate

Tabelle 14 Vergleich der Pu-Bestimmung an umsortierten Wastegebinden mit hohen Pu-Gehalten. Referenzanordnung: Analysevolumen mit Cd-Abschirmung und  $q_{\alpha n}/q_{sp} = 2,9$ Ausgeführte Korrekturen: Totzeit, Mulitplikation incl. ( $\alpha$ n) Neutronenemission

|            | Referenzanordnung |                 |                    |                    |              |                        | nur äußerer Detektorring |                     |              |                            |
|------------|-------------------|-----------------|--------------------|--------------------|--------------|------------------------|--------------------------|---------------------|--------------|----------------------------|
| Gebinde    | ZR                | ZRcc            | ZR <sup>K</sup> cc | ZR <sup>W</sup> cc | g Pu38+40+42 | Z.R <sup>q</sup><br>cc | ZR <sup>K,q</sup> cc     | ZR <sup>Wa</sup> cc | g Pu38+40+42 | $ZR_{cc}^{W}/ZR_{cc}^{Wa}$ |
| PuI+II+III | 9910              | 238             | 245                | 242                | 13,7         | 32                     | 32                       | 28,8                | 13,7         | 8,4                        |
| E291-1     | 21455             | 217 <u>±</u> 5  | 253                | 243                | 14,3         | 29,5±3,5               | 29,5                     | 24,6                | 11,7         | 9,8                        |
| E291-2     | 36620             | 645±35          | 812                | 745                | 43,9         | 87±15                  | 92,2                     | 64,9                | 30,9         | 11,5                       |
| E275-2     | 49740             | 298 <u>+</u> 55 | 382                | 344                | 20,1         | 38,9±8,5               | 43,6                     | 29,1                | 13,8         | 11,8                       |
| E426       | 24650             | 111 <u>+</u> 22 | 134                | 127                | 7,5          | 19±6                   | 19,4                     | 14,9                | 7,1          | 8,5                        |
| s35-4      | 32580             | 445±22          | 556                | 519                | 30,6         | 46,9                   | 48,8                     | 38,7                | 18,4         | 13,4                       |
| S35-5      | 28490             | 305±15          | 372                | 347                | 20,4         | 41,9±9                 | 42,3                     | 33,8                | 16,1         | 10,2                       |
| Н655-4     | 28540             | 382±28          | 466                | 435                | 25,6         | 44,1±11                | 45                       | 34,6                | 16,4         | 12,5                       |

Mittelwert  $10,7\pm2,0$ 

 $^{\rm ZR}_{\rm tot}$ 

totale Zählrate

- ZR<sub>cc</sub>, ZR<sup>a</sup><sub>cc</sub> gemessene Koinzidenzzählraten
- $ZR_{cc}^{K}$ ,  $ZR_{cc}^{K,a}$  totzeitkorrigierte Koinzidenzzählraten

 $ZR_{cc}^{W}$ ,  $ZR_{cc}^{W,a}$  multiplikationskorrigierte Koinzidenzzählraten, Korrektur ( $\alpha$ n) enthalten

| Gebinde                          | <sup>ZR</sup> tot | ZR <sub>cc</sub><br>(c, | ZR <sup>K</sup> cc<br>/sec) | ZR <sup>W</sup> cc                                 | 38<br>g Pu40<br>42 |
|----------------------------------|-------------------|-------------------------|-----------------------------|----------------------------------------------------|--------------------|
| C 172                            | 10093             | 214                     | 220                         | 217                                                | 12,9               |
| C 173<br>C 172 + C 173*          | 4740<br>14420     | 121<br>331              | 121<br>364                  | 121<br>350                                         | 7,0                |
| PuI + PuII + PuIII               | 9910              | 238                     | 245                         | 242                                                | 13,7               |
| S 35-6<br>PuI + II + III + S35-6 | 23505<br>33850    | 248<br>484              | 295<br>610                  | 278<br>554                                         | 16,4               |
| Mitte unten                      |                   |                         |                             | و و بار می اور |                    |
| E 301-2                          | 12610             | 691                     | 739                         | 697                                                | 41,1               |
| н 845                            | 7410              | 196                     | 196                         | 192                                                | 11,3               |
| H845 + E 301-2                   | 20540             | 908                     | 1053                        | 975                                                |                    |
| Mitte unten                      |                   |                         |                             |                                                    |                    |

Tabelle 15 Multiplikationseffekt bei hohen Pu-Gehalten in den Gebinden. Anordnung mit Cd-Abschirmung

\*Gebinde zusammen in 28-1-Blechfaß in Faßmitte





- 43 -





- 45 -



- 46 -



Mcc 6(an)2lan ohne Cd E=21% b(an) mit Cd E= 18% 9Ri 1,0 200 100 300 Abb. 6's Andering der Koinzilanzzähltrale durch Multiplikations affebale für vershuidene (m) Neutronene emissionen. Referenzfall: 9an/9sp=2,9 Analysevolumen ohne Cd Absohirmung





- 50 -





- 52 -





- 54 -





