
KfK 3384

Juli 1982

Failure Diagnosis
and

Fault Tree Analysis

G. Weber

Institut für Datenverarbeitung in der Technik
Projekt Nukleare Sicherheit

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Datenverarbeitung in der Technik

Projekt Nukleare Sicherheit

Kf K 3384

Failure Diagnosis

and

Fault Tree Analysis

G. Heber

Kernforschungs~entrum Karlsruhe GmbH~ Karlsruhe

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH

ISSN 0303-4003

Abstract

With the increased complexity of many current systems, safety and
reliability considerations are becoming increasingly importantant.
Various methods and techniques employed for design, construction
and operation of nuclear reactors, reprocessing plants, chemical
plants etc. lead to more safety and reliability. This is due to a
great extent to an increase of reliability and maintainability on
the component level. However, this increase may be offset by a
considerable complexity of the system. Here methods of reliability
engineering are required. A systematic approach to the problems
is needed. Thus reliability engineering uses a number of strategies,
among them the techniques of reliable design (e.g. redundancy)
and techniques of failure diagnosis (e.g. automatic search for failed
units).

In this report a methodology of failure diagnosis for complex systems
is presented. Systems which ·can be represented by fault trees are con
sidered. This methodology is based on switching algebra, failure diagnosis
of digital circuits and fault tree analysis. Relations between these
disciplines are shown. These relations are due to Boolean algebra and
Boolean functions used throughout. It will be shown on this basis that
techniques of failure diagnosis and fault tree analysis are useful to
solve the following problems:

- Describe an efficient search of all failed components if the system
is failed.

- Describe an efficient search of all states which are close to a system
failure if the system is still operating.

The first technique will improve the availability, the second the reliabi
lity and safety.

For these problems, the relation to methods of failure diagnosis for
combinational circuits is required. Moreover, the techniques are demonstrated
for a number of systems which can be represented by fault trees.

Fehlerdiagnose und Fehlerbaumanalyse

Zusammenfassung

Mit der steigenden Komplexität von zahlreichen Systemen sind heutzutage
Sicherheits- und Zuverlässigkeitsüberlegungen von steigender Bedeutung.
Verschiedene Methoden und Techniken, die bei Entwurf, Konstruktion und
Betrieb von Reaktoren, Wiederaufarbeitungsanlagen, chemischen Anlagen
u.s.w. eingesetzt werden, ergeben mehr ~icherheit und Zuverlässigkeit.
Dies ist insbesondere auf eine Erhöhung von Zuverlässigkeit und Instand
haltbarkeit auf der Komponentenebene zurückzuführen. Jedoch können diese
Verbesserungen durch eine erhebliche Komplexität des Systems zumindest
abgeschwächt werden. Darum sind Methoden der Zuverlässigkeitssicherung
erforderlich. Eine systematische Behandlung dieser sicherheitsrelevanten
Probleme ist notwendig. So verwendet die Zuverlässigkeitssicherung eine
Anzahl von Strategien. Typische Beispiele sind die Behandlung von Zuver
lässigkeitsfragen beim Entwurf (z.B. Verwendung von Redundanz) und der
Einsatz von Fehlerdiagnose (z.B. automatische Erkennung von ausgefallenen
Einheiten). In diesem Bericht soll eine Methodologie der Fehlerdiagnose
für komplexe Systeme dargestellt werden. Die Methoden sind anwendbar auf
Systeme, die durch Fehlerbäume dargestellt werden können. Die Methologie
beruht auf Überlegungen aus Schaltalgebra, Fehlerdiagnose von digitalen
Schaltnetzen und Fehlerbaumanalyse. Die Beziehungen zwischen diesen Dis
ziplinen werden aufgezeigt. Die Beziehungen beruhen insbesondere auf der
Boole'schen Algebra und den Boole'schen Funktionen, die im ganzen Bericht
verwendet werden.

Es kann auf dieser Basis gezeigt werden, daß Techniken der Fehlerdiagnose
und Fehlerbaumanalyse nUtzlieh sind, folgende Probleme zu behandeln:

- Eine effiziente Suche aller ausgefallenen Komponenten (wenn das System
ausgefallen ist), soll ausgeführt werden.
Eine effiziente Suche aller Zustände, die in der Nähe eines Systemaus
falls sind (wenn das System noch intakt ist), soll ausgeführt werden.

Die erste Technik wird die Verfügbarkeit erhöhen, die zweite die Zuver
lässigkeit und Sicherheit.

Für diese Probleme ist die Beziehung zu Methoden der Fehlerdiagnose

kombinatorischer Schaltnetze erforderlich. Die angeführten Techniken werden
für eine Anzahl von Systemen demonstriert, die durch Fehlerbäume dargestellt
sind.

F gures

1. Major gate types

2. Karnaugh-map

3. Parity bit generator

4. Combinational Circuit

5. Graphie Representation

6. Redundant Ci rcui t

7. Example (Top down)

8. Example (Bottom up)

9. Illustrative Example of Fault Tree

10. Cubical Representation

11. AND-Gate with s-a-1 fault

12. Bridge Fault

13. Combinational Circuit

14. Fault Table

15. Simplified Fault Table

16. Combinational Circuit

17. Combinational Circuit

18. Irredundant Circuit

19. Network

20. System S1

21. System S2

22. AND-OR-network

23. AND-OR-network

24. Karnaugh-map

25. Schematic Diagram of Device

26. Fault Tree

27. Standby System

28. Fault Tree

29. Residual Heat Removal Fault Tree

30. Block Diagram for Nitric Acid Cooler

31. Input-output Mode 1 s

32. Flow Diagram for Nitric Acid Cooler Process

33. Fault Tree for Ni tri c Acid Cooler

34. Subtree

35. Illustrative Example of Fault Tree

CONTENTS

o. Introduction

1. Introduction to Switching Algebra 2

2. Introduction to Failure Diagnosis 41

3. Fault Trees 53

4. Diagnosis Procedures 61

5. Tests for two Types of Faults 69

6. Examples wi:th various Fault Trees 83

Reference 111

- 1 -

INTRODUCTION

The design, construction and operation of complex systems (nuclear reactors,
reprocessing plants, chemical plants etc.) has to meet requirements regarding
safety, reliability and availability. Here methods of reliabiliy engineering
are required. A systematic approach to these problems is needed. Thus relia
bility engineering uses a number of strategies, among them the techniques
of reliable design (e.g. static and dynamic redundancy) and techniques of
failure diagnosis (e.g. automatic search for failed units, design for diag
nosabil ity).
In this report a methodology for complex systems is presented. Systems which
can be represented by fault trees are considered. The following subjects are
significant for our approach:
Concepts of switching algebra including some questions of representation.
This leads to the representation by prime implicants and min cuts (sect. 1).
Basic concepts of failure diagnosis are introduced (sect. 2). Concepts of
fault tree analysis are introduced: coherence, min cuts (sect. 3). Diagnosis
procedures are introduced which may be applied to systems represented by fault
trees: A test which leads to a prompt failure diagnosis for a failed system.
A test which finds all states adjacent to system failure. The first test in
creases availability, the second test increases safety (sect. 4).
Then a discussion of the corresponding concepts of failure diagnosis of com
binational circuits is given (sect. 5). Finally, a number of examples demon
strates the use of the introduced methods for nuclear and other technologies.
Results of diagnosis and conclusions on the efficiency of test methods are
presented (sect. 6).

While all methods mentioned have been used extensively either for computer
science or for safety questions a unified approach was not yet available.

-2-

1. Introduction~ to Switching Algebra

1.1 Basic Concepts

1.2 Basic Properties

1.3 Switching Functions

1.4 Representations of Boolean Expressions

1.5 Prime Implicants and Coverage

1.6 Methods to obtain Prime Implicants

1.7 Algorithms to find~ simplified sum-of-products Representation

1.8 Cubical Representation of Boolean Functions

-3-

1. Introduttion to Switching Algebra

We give some basic concepts for switching algebra. This technique
is closely related to Boolean algebra. It is useful for

- failure diagnosis and
- fault tree analysis.

1.1 Basic concepts

We assume the existence of a two-valued switching-variable 11
X

11

which can assume the values 0 and 1. (Note, that 0, 1 are not
the real numbers.) No other values are possible here.

A switching algebra is an algebraic system consisting of the
set ~0,1}, two binary operations called 1disjunction•(inclusive OR),
•conjunction• (AND)·, and one unary operation called •negaHon•

(NOT).

We write + (v) for OR, · (A) for AND, - for NOT.

The definitions of the following relations {AND, OR, NOT, etc.)
are given in Fig. 1 (see /1/).

All the gate definitions exept NOT can easily be generalized to
allow any input numbe~

A set G of gate types is called •complete• if any combinational
function can be realized by a circuit that contains gates from
G only. Examples of complete sets are {NANDI , {NOR}, {AND, NOT},
{ OR, NOT} , { AND, OR,· NOT } .

We use the set { AND, OR, NOT f as complete set G.

-4-

Circuit Truth
Name symbol table Equation

x, Xz z
0 0 0 I

Z 'T XtXs
AND Xt=D-z 0 0 ori

x2 0 0 z = X1 II Xt

x, Xt z

Xt=D-
0 0 0 z = x1 +x2

OR x2 z 0 I or1
0 z = x1 V X2

m NOT x --[>o-z I z=x
0

x, Xt z

Xt=D-- 2
0 0 I

NANO 0 I I .z = X1X2
.'(2

0 I
I 0

x, Xt z

Xt=Do-- 2
0 0 I

NOR 0 I 0 z:= x, + Xz
x2

0 0
0

x, x2 z

xt=lD-z
0 0 0

EXCLUSIVE- 0 I z = x, E9 x2
OR x2

I 0
0

Fig. 1 Major Gate Types

-5-

1.2 Basic Properties

We mention a few basic properties of switching algebra. They
are also sufficient for a set of axioms. Note that there are
also other sets of axioms.

Let x,y,z, ... be variables. Then we use the following pairs of
identities:

Idempotency
X + X = X

X • X = X

Note the difference from arithmetic where no idempotency law exists.

Commutati Vi ty

x+y=y+x
x·y=y·x

Associativity

(x + y) + l = x + (y + z)

(X • Y) ' Z = X ' (Y ' Z)

Distri buti vi ty

X • (y + Z.) = X • y + X • Z

x + y . z = (x + y) (x + z)

Note the difference from arithmetic.

Complementation

X + X = 1

X · X = 0

Note the difference from arithmetic.

From the Basic Concepts (1.1) and Basic Properties we can deduce
many theorems. Two important theorems are the theorems of De Morgan:

X+y = X·Y

X · y = X + y

-6-

We can use truth-tables to prove De Morgan•s theorems:
~

- - --X y X y X+ y X + y X y

0 0 1 1 0 1 1

0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 1 0 0 1 0 0

Note
For n variable we can write

n
(a) L: Xi = xl + x2 + ... + xn

i=1 Disjunction, n
or

~
x. sum-term

1 = x1 v .x2 v ~ .. V X n

n

(b) 1T x.
1 = x1 x2 ... xn Conjuncti on,

t=1 Boolean monomial,
product-term

n
or (\ x. = X 1\X /\" 1\ xn 1 1 2

i=1

Thi s can be represented by an AND-gate or OR-gate wi th n i nputs.

1.3 Switching Functions

We introduce the concept of switching function, extending the
switching algebra to functions of binary variables. The switching
function is a Boolean function. Thus it is clearly related to the
structure function.

Def.: A •switching function• -
of n two-valued variables x1, x2, , xn (x1 = 0,1) is a correspon-
dence which assigns for each of the 2n combinations one value of { 0,1}.

-7-

The switching function can be represented using
(a) a truth table
(b) maps
(c) graphic representations, diagrams, fault trees
(d) Boolean expressions, structure functions.
Clearly, for a high number of variables, (a) and (b) become extremely
large. E.g. we will habe for n variables 2n rows in the truth table.

Example:

We will introduce all representations (a) - (d) for an example:

(a) Truth tab 1 e
A parallel parity-bit generator /2/: This unit must produce an
output 1 if and only if an odd number of its inputs have value 1.
Take the example of three-bit code words, i.e. the circuit has three
inputs x1, x2, x3 and its output f must be equal to 1 if 1 or 3 of
the inputs are 1. We can immediately constructthe truth table:

row x1 x2 x3 f Number of inputs = 1

0 0 0 0 0 0, even

1 0 0 1 1 1, odd

2 0 1 0 1 1' odd

3 0 1 1 0 2, even

4 1 0 0 1 1, odd

5 1 0 1 0 2' even

6 1 1 0 0 2, even

7 1 1 1 1 3, odd

Table I, truth table

-8-

(b) Map

We give a map-representation, based on the truth table.

0 0 0 1 1 1 1 0

x3 0 1 0 1

0

1 1 0 1 0

Fi g. 2: M a p

(c) Graphi c
'

6oR Repres.entati on

] f

""'AND AND AND
1"""1"""> ..,.., NOT C-.., HOT~,-,'""

AND

Fi g. 3: parallel parity-bit generator

-9-

(d) Boolean Representation (Boolean polynomial).

For this circuit we get as Boolean representation:

=

i.e. f = 1 if either x1 and x2 and x3 are = 1 or

exactly one input is = 1.

It is possible to represent switching functions using different
techniques. Each will lead to the same truth table.

Canonical forms

We recall that truth-tables are a means for representing switching func
tions (Boolean functions). We also mentioned that Boolean expressions may
be written as Boolean polynomials. Now we give some considerations which
are

closely related to truth tables and are
- easily generalized for switching algebra (Boolean algebra).

Assume, we have a function f (x1, x2, ... , xn) represented in a truth table.
Then we get two representations which are called 'canonical forms' which
will be discussed next:

the disjunctive normal form (dnf)
the conjunctive normal form (cnf).

Disjunctive normal form

We introduce the concept of 'minterm'. A minterm is a conjunction (product)
of n variables:

p (x1' x2, ... ' xn)

Each variable may be either complemented or uncomplemented. The charac
teristic property of a minterm is that it assumes the value 1 for exactly
one combination of the variables.

-10-

-
Then we can write any Boolean function as a disjunction of minterms,
called disjunctive normal form (dnf}:

2n-1

xn) = V c; P; (x1, x2, · ·
i =o

where the constant c. is defined as follows:
1

X) ' n

c; = 1 denotes the minterms which in a disjunction generate the function

Relation to truth-table

Foreach row j where f (x1, x2, ·

If in this row we have

we write

c. = 0 is related to all other minterms.
1

x.
1

x.
1

xn) = 1, we get a minterm

Now we get a disjunction of minterms

which is equal to the given function ...

where j goes over all rows where f = 1, i. e. r1 is the set of a 11
row- n umbe rs where f = 1.

Note:
2n-:-1

V f (x1, x2' • .. X) = V c. p. (x1' x2' • Cl • ' xn) = P j (x 1 'x2 ' ... 'xn) ' n i =o 1 1 j t:r1

-11-

Example

We refer again to Table I (parity-bit generator).
It can be seen that f (x1, x2, x3) = 1 fo·r the set r1, r1 = {1,2,4,7}.

We get the minterms p.:
J

Decimal notation

row 1: 0 0 1 p1 - X - 1 x2 x3 1

row 2: o: 1 0 p2 - X - 1 x2 x3 2

row 4 1 0 0 • I> p4 = x1 x2 ~3 4

row 7 1 1 1 p7 = x1 x2 x3 7

The disjunctive normal form is

or, in decimal notation f (x1, x2, x3) = ~(1, 2, 4, 7)

Note:

1. This .form is a sum-of-products-form (sop), if we consider the dis
junction as sum, the conjunction as product, a special form of a
Boolean polynomial.

2. There are some noteworthy properties of the dnf: There is only one
dnf for a given Boolean function f (x1, x2, ... , xn), equivalent to
the Unique truth table.

3. All terms are disjoint, pj · pk = 0 for j ~ k.

Assurne the contrary, i.e. each variable of p. which is uncomplemented
J

(complemented} in pj must also be uncomplemented (complemented) in pj.
Thus pj and pk cannot be different, i.e. j = k.

-12-

Relation to Boolean Expressions

To obtain the disjunctive normal form for any given Boolean function
a simple procedure can be used. This procedure will also be useful
for further considerations. It can be shown that this procedure always
leads to a result /1/.
Step 1: Expand the given function to a sum of products form which

needs no brackets.

Step 2: Examine each product term. If it is a minterm, retain it,
and continue to the next term.

Step 3: In each product which is not a minterm check the variables
that do not occur. For each X; that does not occur multiply

the product by (x; +X;)·

Step 4: Multiply out all products and eliminate redundant terms.

Example

Determine the dnf for the following function

f (x, y, z) = x3 + x2 (x1 + x1 x3)

This function could be represented graphically as follows:

AND

Fig. 4 Combinational Circuit

-13-

Step 1:

Step 2:

Step 3:

f (xl, x2' x3) = x3 (x2 + x2) (xl + xl) + xl x2 (x3 + x3) + x1 x2 x3

Step 4:

Note

A similar discussion is possible for •maxterms •. A maxterm is a dis
junction (sum) of n variables. The conjunction of maxterms is called
a conjunctive normal form. This will not be of much use for problems
di scussed here.

-14-

1.4 Representations of Boolean Expressions

It is useful to have several alternative representations for
Boolean expressions /3/. Assurne again we have a switching func
tion given as follows:

or

t s

r q p
r q

Fig. 5 Graphie Representation

The tree representation (Fig. 5b) is probably most graphic, we
can easily see the predecessors, sucessors etc. We can write the
expressionalso using the usual Boolean operations,

f = ((q II. r) V p) A (S V t)

We also want to introduce a representation which will be needed
for some methods (as discussed in 1.7.). We introduce the following
notation for Fig. 5b:

For branches between vertices we give
1 if the branch goes to the right
2 if the branch goes to the left.

Thus we get (Fig. 5c):

p

Fi g. 5c

-15-

E.g. for r we can write 122, for the gate rAp we can write 12
(as 'coordinates•). We can represent the 'tree as a data structure,

called the 'full left list matrix' /3/:

Here in collumn 1 is the number of predecessors,
in collumn 2 the type of operator or operand,
in collumn 3,4,· ·· the numbers giving 'coordinates•.

Coll umn 1 2 3 4 5

2 1\

2 V 1

0 p 1 1

2 1\ 1 2

0 q 1 2 1

0 r 1 2 2

2 V 2

0 s 2 1

1 - 2 2

0 t 2 2 1

It is sometimes convenient, to simplify the full left list matrix to a
left list matrix, dropping the coordinates:

collumn 1 2

2 A

2 V

0 p

2 A

0 q

0 r

2 V

0 s
1 -
0 t

-16-

It can be shown that, if a binary relation such as 11 , is written
in front of its two operands in the form 11 x y (instead of x11y),
then by sonsistent use of such a notation ('prefix notation') no
parentheses are necessary. As polish equivalents of Boolean connec
tives, we get (/3/, /4/):

Boolean Polish Reverse Polish

-
X -,x x,-

X 1\ y Ä' x, y x, y,/\

X V y v, x, y x, y, V
'

X$ y EE),x, y x, y, ~

Thus our tree may be written in a Lucasiewicz- or parenthesis-free-nota
tion (also called Polish notation):

(a) Polish Notation, prefix notation

(A, v, p, I\, q, r, v, s, -, t)

(b) Rev.erse Polish Notation, postfix notation

(t , - , S , V , q , r , ,I\ , p , V , ,/\)

Note:

The reverse Polish notation requires that the operators are written
in reverse order. Since all operators needed here are related to
commutative operations, the order of the Variables is not affected.

If the operators cover more than two variables this should be indi
cated, e.g.xt.yAzcan be writtenl\(3), x, y, z.

It will be seen in sect. 1.7 how the left list matrix and the reverse
polish notation is of direct relevance to problems of switching theory
and fault tree analysis.

-17-

1.5 Prime Implicants and Coverage

A switching function f (x1, x2, ... , xn) is said to cover another
function g (x1, x2, ···, xn)' denoted

f 2 g

if f assumes the value 1 whenever g does. Thus, if f covers, then
it has a 1 in every row in the truth table in which 9 has a 1.

Example:

Let f = x1 (f) x2 (Exclusive OR)

xl x2 f x1 x2 91 92

0 0 0 0 0 0 0

1 0 1 1 0 1 0

0 1 1 0 1 0 1
1 1 0 1 1 0 0

Thus: f 2 91 and f 2 92

If f covers g and 9 covers f, then f and 9 are equivalent.

Example:

Let f = x1 $ x2 and

g = 91 V 92

Then fand 9 are equivalent.

Let f(x 1, x2, ... ,xn) be a switching function and h (x1, x2, ... , xn)

be a product of literals (conjunction). If f covers h, then h is said
to imply f, or h is said to be an implicant of f. The implicant is de
noted h~f.

Example: 91 and g2 are implicants of f.

-18-

Definition: A prime implicant p of a function f is a product term
which is covered by f such that the deletion of any literal from p
results in a new product which is not covered by f. In other words:
p is a prime implicant if and only if p implies f but does not imply any
product with fewer literals which also implies f. The set of all prime

implicants will be denoted { P; }·

Example:
x y is a prime implicant of

--f = X y + X Z + Y Z

since it is covered by f but neither x nor y alone implies f.

A combinational circuit is 'redundant' if it is possible to remove
lines and/or gates in such a way that the resulting circuit is equiva
lent. A combinational circuit which is not redundant, will be called
irredundant.

Example:

Fig. 6 Redundant Circuit

This circuit is redundant.

Every circuit may be represented as a sum-of-products form /1/.

Theorem: Every irredundant sum-of-products (sop) equivalent to f is a
union of prime implicants of f:

f = \1 p.
. 1 1 1=

Proof: Let f* be an irredundant sop-expression equivalent to f, and
suppose that f contains a product term p which is not a prime impli
cant. Since p is not a prime implicant, it is possible to replace it
with another product term which consists of fewer literals. Hence f con
tains redundant literals, which contradicts our initial assumption. o

-19-

1.6 Methods to obtain Prime Implicants

We discuss some methods to obtain p~ime implicants. Many methods
use explicitly the representation of Boolean functions by min-terms.
This is true e.g. for the Quine-Mc Cluskey method and others, given
in the literature e.g. /5/, /6/.

It seems to be more important, to have a method which may be used for
a Boolean function represented without using min-terms. This will also
prove useful for fault trees /7/.

Nelson's Algorith~

The following remarks are in order:
- F is a Boolean function which already has been transformed into a

sum-of-products form.
If in this algorithm a Boolean expression Eis 'complemented', this
means not only applying the complement to the expression, but also
repeatedly using Oe Morgan's rules, i.e.

E = x y + y z leads to

t = X Y + y Z = X Y • y Z = (X + y) (Y + z)

Al gori thm 1

Step 1

Step 2

Complement F.
Obtain F applying Oe Morgan's rules.
Expand F into a disjunctive normal form.
Dropzero products (x x = 0),

repeated literals (x x = x),
make absorptions (x + xy = x).

This result is~.

-Complement <P
Obtain ~ applying Oe Morgan's rules.
Expand ~ into a disjunctive normal form.
Dropzero products,

repeated literals,
make absorptions.

The result is~P;,'the sumofall prime implicants, and
only of prime ~mplicants.o

Example:

Step 1

Step 2

-20-

- -F = x1 x2 + x2 x3 x4 + x3 x4
Complement:

F = (x1 + x2)(x2 + x3 + x4) (x3 + x4)

Expand and simplify:

~= x1 x2 x4 + x1 x3 + x2 x3

Complement

~ = (x1 + x2 + x4) (x1 + x3) (x2 + x3)

Expand and simplify:

~P; = x1 x2 + x1 x3 + x2 x3 + x3 x4

lt is often useful to simplify the Boolean functions needed in
Algorithm by factoring.

Example:

may be rewritten (factored) as

F = x1 x2 + x3 (x2 x4 + x4)

Then the algorithm may be done with a considerable amount of saving
Operations /8/.

Algorithm 2 (with factoring)

Step 1 Factor anywhere possible in F.
Complement F.
Obtain F applying De Morgan•s rules.
Expand F into a disjunctive normal form.
Dropzero products (xx = 0),

repeated literals (xx = x),
make absorptions (x + x y = x).

The result i s ~ .

Step 2

Example:

Step 1

-21-

Factor anywhere possible in ~ •
Compl ement ~ .
Obtain ~ applying De Morgan•s rules.
Expand ~ into a disjunctive normal form.
Drop zero products,

repeated literals,
make absorptions.

The results is~pi' the sumofall prime implicants, and
1

only of prime implicants.o

Complement:

F = (x1 + x2) (x2 + x4) x4 + x3)

Expand and simlify:

~ = x1 x2 x4 + x1 x3 + x2 x3

Step 2

Factor: ~= x1 (x2 x4 + x3) + x2 x3
Complement:

~ = x1 (x2 x4 + x3) . x2 x3

Expand and simplify:

:EP;
;

Notice the savings in the number of terms if ~ and~has been factored.

-22-

1.7 Algorithms to find a simplified sum-of-products representation (sop)

The algorithms to find a simplified.s-o-p-representation can be used
for the Nelson-Algorithm, Algorithm 1. For some special cases, i.e.
Boolean functions which can be represented using AND and OR alone
(but without complements; see sect. 3.3) these algorithms even give
all prime implicants /9/.

Top-Down-Algorithm (Fussell 's Algorithm)

We assume a switching network represented by a logical diagram.

Algorithm 3

Step 0 Start at top A
0

•

Step 1 Search for predecessors of A; (i = 1,2, ...)
Define predecessors of A ..

' 1
1 2 (A. , A.) = pred (A.) .
1 1 1

Step 2 If A. is an OR-gate, we get
1

1 2 1 A~ A. + A. = A., rename A.,
1 1 1 1 1

If A. is an AND-gate, we get
1

A ~ • A~ = A.' 1 A~ rename A.,
1 1 1 1 1

Step 3 Multiply out all identified terms to obtain a sum of
products. If the sum-of-products contains still gates
(A;) go to step 1, else go to step 4.

Step 4 The sum-of-product expression (consisting of components)
can be simplified:
Drop repeated literals,
make absorbtions.o

x, x2
AND A AJ
2 1

x2 x4
Fig. 7

Start at A
0

A AND-gate
0

A2 OR-gate

A1 OR-gate

-23-

X4

This switching network can be
represented in a form which
contains all gates and inputs
but is closer to graph theory.

-24-

A3 AND-gate

If repeated literals are dropped and if absorptions are made, we get

Bottom-Up-Algorithm (Bennett•s Algorithm)

The Bottom-up-algorithm is a development of Bennett•s algorithm which

leads to a sum of products representation.
We recall that the reverse polish notation (left list matrix) intro
duced in sect. 1.4 is used /10, 11/.
We have again the tree which was also used for our top-down-algorithm.

Fig. 8 Example

We can characterize all branches and thus get a full left list matrix:

-25-

~

Ao 2 A

A2 2 A 1

0 x4 1 1

0 x2 1 2

Al 2 V 2

A3 2 A 2 1

0 x3 2 1 1

0 x2 2 1 2

0 xl 2 2

Full left list matrix

reverse polish notation

Now we describe the bottom-up-algorithm. Note, that here only AND and OR
operators are assumed. Complements are assumed to be with the variables
only.

A general form of this algorithm which will be useful for large and
complex trees will be discussed later /10,11/.

Bottom-up-a}gorithm

Algorithm 4

Step 1 Left list matrix L given

Step 2 Take next item from L

Step 3 If item Operator, go to 4, else if item Operand, go to 5.

· Step 4

Step 5

Step 6

Step 7

Step 8

Example 1

2 1\

2 V

0 x4

0 x2

2 lj

2 1\

0 x3

0 x2

0 xl

-26-

If the operator is AND (1), withdraw the last l.
items in the list (stack) and make a conjunction,
else if the operator is OR (1), withdraw the last
1 items in the list (stack) and make a disjunction.

Push operand down into list (stack).

Check if terms like
X X, X X, X + X y

are in the result and drop/simplify.

Evaluate the already withdra~·m terms to obtain s-o-p
expressions. Go to 2.

If L is empty, a s-o-p-expression for the whole Boolean
function is obtained. o

Left list matrix L

Note: We present a number of lists (stacks) showing
the mechanism of Algorithm 4, and a number of
reduced trees, illustrating the bottom-up-method.

-27-

Steps 2-5

List Operand Reduced tree
A

x3 x2 • X
3

x2 xl

xl
x4

x2 . x3 x2

Steps 6-8 gi ve

-28-

Example 2

We discuss a further example which.leads to a generalization of the
bottom-up algorithm. We have the following fault tree from the pub
lished literature /11,24/.

Fig. 9 Illustrative Example of Fault Tree

This fault tree is also used as an example for our section 6
(Applications of Failure Diagnosis). This fault tree is also part
of the studies on hardware simulation /23/.

Note:

To simplify the representation of our left-list matrix, we make the
following convention:

(a) Operands may be written in the same line as the operators if
no ambi g·ui ty ari ses.

(b) If not otherwise indicated the number 1 (in A (1), v (1))

is equal to 2.

E. g.

i s written:

3 "
0 x

1

-29-

0 x2 or more concisely A (3) x1, x2, x3
0 x

3

We divide the tree into two left-lists (subtrees).

Note: For all primary events we write numbers (1,2, .. ,15) only.

Left-list E
1

V

V 1

" (3) 1 1

" 1 2
V 1 2 1

" 1 2 1 1

1 6 1 2 1 2
1 0 1 2 2

V 2

" 2 1
V 2 1 1
A 2 1 1 1
V 2 1 1 1 1

3 2 1 1 1 2
1 2 1 1 2
6 2 1 2

A 2 2
V 2 2 1

2 2 2 2

8,9,13

5 '11

(Here the simplified
listing does not
apply)

10,14

3,5

Left-list

V

V

"
" (3)

1

"
V

"
7

V

"
"
"
3
V

E2

1
1 1
1 1 1

1 1 2
1 2

2
2 1
2 1 1
2 1 2
2 1 2 1

2 1 2 2
2 2
2 2 1
2 2 2

6,14,15

4,12

12,15

8,13

2,6

Left-list E1

3,5

2

(1)

(4)

(7)

2·3 + 2·5
10 + 14
3

1
6

2·3 + 2·5
1·6 + 3·6·10+3·6·14

5·11
16
10

(10)

10·16 + 5·10·11

8' 9' 13

{13)

From (8) and (15) we get

-30-

3 + 5

2

(2)

2·3 + 2·5
3·10 + 3'·14
1
6

(5)

2·3 + 2·5 + 1·6
+ 3·6~10 + 3·6·14

{8)

16 + 5·11
10

(11)

10·16 + 5·10·11
8·9.13

(14)

2·3 + 2·5

10,14

3

1

6

(3)

2·3 + 2·5
1 + 3·10 + 3·14
6

(6)

5' 11
16
10

(9)

10·16 + 5·10·11

(12)

10. 16 + 5. 10. 11

+ 8·9·13

(15)

= 2·3 + 2·5 + 1·6 + 3·6·10 + 3·6·14
<P E1

+ 8·9·13 + 10·16 + 5·10·11 (s-o-p-expression)

-31-

Left List E2

3 3 3·2 + 3·6
2,6 2 + 6 7

12,15
8,13

(1) (2) (3)

3·2 + 3·6 3'2 + 3·6 3·2 + 3·6
7 7·12·15 + 7·8·13 + 7·12·15 + 7·8·13
12·15
8·13

(4) (5) (6)

6,14,15 6' 14' 15 6·14· 15
1 1 1
4,12 4·12 4·12

(7) (8) (9)

1·6·14·15 1·6·14·15
4·12 + 4·12

(10) (11)

From (6) and (11) we get

~E2 = 2·3 + 3·6 + 7·8·13 + 7·12·15 + 1·6·14·15 + 4·12

(s-o-p-expression)

-32-

Now we obtain the Boolean function for the whole tree (Fig. 9)
i n a few s te ps :

1. Allocate primary events to the set of common/non-common events;

2. Multiply <PE and <PE
1 2

3. Drop/simplify all terms of type x x, x x, x + xY·

We introduce a technique which makes this step with a reasonable
amount of calculation /11/.

1. Search for primary events which are common to E1 and E2 (c) and
not common to E1 and E2 (non-C).

c non-C

1
2

3
4
5

6

7

8

9

10

11

12
13
14

15
16

-33-.

2. Divide primary events into the following subsets:

Events from E1
Events from E2

Sets which

contain only c1a c2a
C-events

Sets which

contain c1b c2b
C and non-C

events

Sets which

contain c1c c2c
only non-C

events

3. We get for E
1

the fo 11 owi ng sets (correspondi ng to product terms):

c11 = { 2,5}, c
12

= {3,6,10}, c13 = {1o,16}, c
14

= {2,3}

c15 = {3,6,14}, c
16

= {5,10,11}, c17 ={8,9,13}, c18 = {1,6}

Similarly, for E
2

:

c21 = {3,6}, c22 = {4,12}, c23 = {1,6,14,15}

c24 = {7,8,13}, c
25

= {7,12,15}, c
26

= {2,3}.

-34-

4. Allocation of cik to subsets Cla, Clb' Clc etc.

i c14' c15' clB} (cla
t

{ cll, c12' c17} · c clb

{ cl3' c16:} c clc

a n d

{ c21' c26} c c2a

{ c23' c24} c c2b

{ c22' c25} c c2c

5. Now, each subset of El is related to each subset of E2.

We write for this Cartesian product:

cla X c2a = c14 (c21 uc26) uc15 (c21u c26)u c1a (C21U c26)

cla X c2b = c14 (c23 u c24) u c15 (c23 u c24) u clB (c23 u c24)

cla X c2c = c14 (c22 u c25) u cl5 (c22 u c25) u cl8 (c22 u c25)

clb X c2a = cll (C21 u c26) u c12 (C21 u c26) u c17 (c21 u c26)

clb X c2b = cll (c23 u c24) u c12 (C23 u c24) u c17 (C23 u c24)

clb X c2c = cll (C22 u c25) u c12 (c22u c25) u c17 (C22u c25)

clc X c2a = cl3 (C21uc26)uc16 (C2luc26)

clc X c2b = c13 (c23uc24)uc16 (C23uc24)

clc X c2c = c13 (c22 uc25) uc16 (C22 uc25)

-35-

6. We get the following s-o-p expressions, where
- the absorbed terms ar-e without index
- the remaining terms getan index j (j=1,2, ...)
to be identified for further calculations.

c1a X c2a

= c14 (c21 U c26) U c15 (c21 U c26) U c18 (c21 U c22)

= 2·3·6 + 2·3 + 3·6·14 + 2·3·6·14 + 1·3·6 + 1·2·3·6

(1) (4) (8)

c1a X c2b

= c14 (c23u c24)U c15 (c23U c24)u c18 (c23U c24)

= 2·3·1·6·14·15 + 2·3·7·8·13 + 1·3·6·14·15 + 3·6·7·8·13·14

+ 1·6·14·15 + 1·6·7·8·13
(2) (9)

c1a X c2c

= c14 (c22 U c25) U c15 (c22 U c25) U c18 (c22 U c25)

= 2·3·4·12 + 2·3·7·12·15 + 3·4·6·12·14 + 3·6·7·12·14•15
+ 1·4·6·12 + 1·6·7·12·15

(11) (12)

c1b X c2a

= cll (c21 U c26) U c12 (c21 U c26) U c17 (c21 U c26)

= 2·5·3·6 + 2·5·3 + 3·6·10 + 2·3·6·10 + 8·9·13·3·6 + 8·9·13·2·3
(3) (18)

c1b X c2b

= cll (c23Uc24)Uc12 (c23uc24)Uc17 (c23uc24)

= 2·5·1·6·14·15 + 2·5·7·8·13 + 8·9·13·1·6·14·15 + 3·6·10·1~6·14·15
+ 3·6·10·7·8·13 + 8·9·13·7

= 1·2·5·6·14·15 + 2·5·7·8·13 + 1·6·8·9·13·14·15 + 1·3·6·10·14·15
(5)

+ ~·6·7·8·10·13 + 7·8·9·13

(19)

-36-

c1b X c2c
= c11 (c22° c25)U c12 (c22U c25)u c17 (c22U c25)

= 2·4·5·12 + 2·5·7·12·15 + 2·3·4·6·10 + 3·6·7·10·12·15
(7) (6)

c1c X c2a

+ 4·8·9·12·13 + 7·8·9·12·13·15
{20)

= c13 (c21° c26)U c16 (c21° c26)

= 3·6·10·16 + 2·3·10·16 + 5·10·11·3·6 + 15·10·11·2·3

= 3·6·10·16 + 3·5·6·10·11

c1c X c2b

= c13 (c23uc24)ucl6 (c23uc24)

= 10·16·1·6·14:15 + 10·16·7·8·13 + 5·10·11·1·6·14·15

+ 5·10·11·7·8·13

= 1·6·10·14·15·16 + 7·8·10·13·16 + 1·5·6·10·11·14·15
(10)

c1c X c2c

+ 5·7·8·10·11·13

(15)

= cl3 (c22° c25)U c16 (c22° c25)

= 10·16•4•12 + 10·16·7·12·15 + 5·10·11·4·12 + 5·10·11·7·12·15

= 4·10·12·16 + 7·10·12·15·16 + 4·5·10·11·12 + 5·7·10·11·12·15
(17) (16) {14) {13)

These results can be obtained by an algorithm (see /11/). We will here
simply list the s-o-p-expression for<t>El <t>E 2

which is a unique (irredundant) cover by prime implicants (see also
sect. 1.5, minimal cuts).

-37-

Table of prime implicants

Index Index
j Term Pj j Term p.

J

1 2·3 11 1·4·6·12

2 1· 6·14·15 12 1·6·7·12·15

3 3·6·10 13 5· 7·10·11·12·15

4 3·6·14 14 4·5·10·11·12

5 2·5·7·8·13 15 5·7·8·10·11·13

6 2·5·7·12·15 16 5· 7·10·11·12·15

7 2·4·5·12 17 4·5·10·11·12

8 1·3·6 18 3·6·8·9·13

9 1·6·7·8·13 19 7·8·9·13

10 7·8·10·13·16 20 4·8·9·12·15

All terms for the s-o-p-expression of <'t>

<'t> = <'t> E 1 • <'t> E 2

20
= 2: Pj

j=i

-38-

1.8 Cubical Representation of Boolean Functions

x3

001

We defined a switching function as a correspondence which
assigns for each of the 2n combinations of x1, x2, ···, xn

one value of { 0,1}. E.g. for a switching function

for each of 23 = 8 combinations of x1, x2, x3 a value of{ 0,1}
is assigned (Fig. 10) .

•

x1 x2 x3 f (x1, x2' x3)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0 x3 0 0 0 1 1 1
1 0 1 0
1 1 0 1 0 0 0 'I'
1 1 1 1

1 0 (1
,,

' 1.)

Fig. 10 a Truth Table Fi g. 10 b Map

p1 = 1 1 -
111

p2 = - 1 1

Prime Implicants

101

000

Fig. 10 c Cubical Representation

1 0

0

0

-39-

Thus the set of all 2n combinations of

wi th the correspondi ng· va 1 ues (1 ,0) i s ca 11 ed a cubi ca 1 representati on
of f (x1, x2, xn)· E.g. the set all all 23 combinations of

x1' x2, x3

with the corresponding va1ues n,o)(see Fig. 10) is ca11ed a cubica1
representation of

(see also Fig. 10).

Each subset of the 2n combinations generated by fixing some variables,
while others take values (1,0) is called a subcube.

Examples

1. We obtain a subcube of Fig. 10c, fixing x3 = 0, while x1, x2 may
take values 1,0.

2. We obtain prime implicants of f (x1, x2, x3) fixing x1 = 1, x2 = 1,

while x3 may take values 1,0 (p1 = x1 x2), and fixing x2 = 1,

x3 = 1 while x1 may take values 1,0 (p2 = x2 x3).

3. We obtain minterms fixing x1 x2 x3, also called a 0-dimensional
subcube.

-40-

Adjacent Subcubes

Let p1 be a prime implicant which is represented as subcube. Then
each subcube which differs in exactly one variable (say the kth
variable) from p. will be called the adjacent subcube p~k /1/.

1 1

Of course, this concept can be generalized. But this will be suffi
cient for our purposes.

E x a m p 1 e

p1 = x1 x2

Adjacent subcubes
X k 1 plk =

k = 2

p2 = x2 x3

Adjacent subcubes

X k 1 p2k =
k = 2

Note:

r
1

I 1
j I
'·

' i 0
I

1

I

I -
I

I.
i
I

I -
-

2

1

1
0

1

0

1

3

-

-
-

1

1
0

(prime impl i cant
represented as
subcube)

If a prime implicant P; consists of 1 literals, the number

X
of adjacent subcubes P;k is 1 (k = 1,2, .. ·,1).

-41-

2. Introduction to Failure Diagnosis

2.1 Types of Faults

2.2 Basic Concepts of Failure Diagnosis

2.3 Boolean Difference and Tests

2.4 Interpretation of Redundancy

-42-

2.1 Types of Faults

We assume Combinational Circuits. There are various types of
fail ures /12/:

- permanent faults
intermittent faults.

We only deal with permanent faults. If they are present, they
will remain (until a repair is done). The permanent faults fall
into two classes:

1. Classical faults, i.e.

- stuck at zero (s-a-o)

- stuck at one (s-a-1)

where a failed item behaves as if it had always the value 0 or 1.

Example:

Fig. lla Fig. llb

The circuit of Fig. 11a has for x1 a s-a-1-fault (Fig. 11b).

Note
It will be our purpose to model all faults as logical faults.
Thus the problern of failure diagnosis becomes a logical problern
which is usually independent of the technology used. The same
fault model is applicable to various technologies /12/.

-43-

2. Non-classical faults

- e.g. Bridge faults
- and others.

Example:

Fig. 12a Fig. 12b

It can be seen that the bridge-fault leads to Boolean expressions
for

which differ from Fig. 12a. We will not deal explicitly with these

faults {/12/). Note that non-classical faults have no evident rela
tion to systems represented by fault trees.

-44-

2.2. Basic Concepts of Failure Diagnosis

Now some basic notions for failure diagnosis of combinational
circuits will be given /1/, /12/. Let C be a combinational
circuit which realizes the function

Let a be an arbitrary fault in the combinational circuit, where
a number of variables change the output f to fa .

Def. If fa 4~ f for at least one input x1, x2, ... , xn' we call
the fault adetectable.

If fa = f for all inputs x1, x2, ... ,xn' we call the fault a
undetectable.

Def. If for two faults a, a~,and for all inputs,

f a = f a'·'

we call these faults functionally equivalent. There are in general
equivalence classes of faults. A fault can be identified up to
an equivalence class.

Example:

Let C be the following combinational circuit:

m

Fig. 13 Combinational Circuit

-45-

which realizes the function

Let f denote the fault free output and let f«., denote the output

of thi s ci rcui t in presence of fault a .

Denote by

a = m the fault of wire m, s-a-0
0

a = m
1

the fault of wire m, s-a-1,

s i mi 1 a r 1 y n. , p . , q . (i = 0, 1).
l l l

The truth-table for this circuit is shown in Fig. 14. Here all

possible single faults aare indicated.

Input f fa
.

x1 x2 x3 f f fp f f f f 'f
mu nb 0 qö mt n 1 Pt q 1

0 0 0 1 1 1 1 0 1 1 1 1

0 0 1 0 0 0 0 0 0 0 1 1

0 1 0 1 1 1 1 0 1 1 1 1

0 1 1 0 0 0 0 0 1 0 1 1

1 0 0 1 1 1 1 0 1 1 1 1

1 0 1 0 0 0 0 0 0 1 1 1

1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1

Fi g. 14

-46-

We observe {fig. 15) that

- co11umns f , f , f are identical for all possible inputs,
m~o n'o P·o

i.e. they are equivalent (cannot be distinguished), similarly

f , f , are equivalent,
p.l q I

there is no fault which is undetectable.

It is possible to simplify the fault table, which will be done below,
but which is of little practical value.

Def. A tes t for fault a i s an i nput (x1, x2,
input the output fa is different from f.

Example:

Input Possible faults

x1 x2 x3 { mo' n ' 0 Po} qo m1

0 0 0 1

0 0 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1

1 1 0

1 1 1 1

Fig. 15 Simplified fault table

x) if in response to this
n

n1 {P1' q1}

1

1

1 1

-47-

We note:

- the only test for {m, n, p t;s 111; o o o r
- q can be tested by 000 or 010 or 100;

0

- m1 can be tested by Oll, provided there is no response for 001 and 101;

- n1 can be tested by 101, provided there i s iio response for 001 ,Oll;

{ p1, q1} can be tested by 001, Oll, 101, provided there is a response

for all three inputs.

Note: A fault table (Fig. 15) is a table in which there is a row for

each possible test and a collumn for every fault. A "1" is entered at
the intersection of the i-th row and the j-th collumn if the fault corre

sponding to the j-th collumn can be detected by the i-th test.

The problern of finding the minimal test set is closely related to the
problern of finding a minimal cover of a Boolean function (by prime im

plicants). We will come back on a similar technique in section 5.

2.3 Boolean Difference and Tests

Assurne a circuit C which realizes the oolean function

f (x1 , x2 , ·· ·, xn).

Let~be a fault in which input x. is s-a-o. Then the function realized
1

by this faulty circuit is

fo<, = f (x1 , x2 , · · · , X; _1, 0, X; tl, · · · , xn)

Similarly, if x. is s-a-1, the function realized by the faulty circuit is
1

f~ = f (x1, x2 , .. ·, xi-l' 1, xitl'' .. , xn)

= f (1_;)

The Boolean difference method is an algebraic procedure to determine a
complete set of tests to detect a given fault /1/.

-48-

Def. The Boolean difference of function f (x1, x2, ... , xn) with
respect to its variable x. is defined as

1

d f (_~)

d x.
1

= f (x
1

, x
2

,

where~denotes the exclusive OR. It will be convenient to denote the
Boolean difference as

Rules:

d f (~)

d x.
1

= f (o.) "..,,f (1.)
1 lW' 1

1. If f (o.)~f (1.) ; o for all variables, the fault related to x.
1 1 1

is undetectable (redundant).

2. We get all tests for s-a-o-faults if

x.
1

d f (~)

d X·
1

= 1.

3. We get all tests for s-a-1-faults if

x. •
1

d f (~) = L

d x.
1

I.e. if we have input combinations x which fulfil the conditions (2), (3),
we have tests for the respective faults of x ..

1

-49-

Example 1

Fig. 16 Combinational circuit

We are interested in possible failures related to x3. The Boolean
difference with respect to x3 is

=

For a s-a-o fault at x3 we get with

x3 d f (_~) = x1 x2 x3 x4 + x1 x3 x4 + x2 x3 x4 = 1
d x

3

Thisexpression is equal to one if any of the product terms is equal
to one. Thus we get as tests:

(x1,x2,x3,x4) = { (o,o,1,1) , (1,*,1,o), (*,1,1,o)}

The DONT CARE-sign 11*11 tells that we are free to choose o or 1.

For a s-a-1 fault at x3 we get with

d f (~) - - - - - - -x3 = x1 x2 x3 x4 + x1 x3 x4 + x2 x3 x4 = 1,
d x3

as tests

-so-

Example 2:

Fig. 17 Combinational Circuit

Is an error at input x2 detectable?

= x·oE.&x·T 1 1

= 0'

i.e. an error at input x2 is not detectable.

Note:
Some interesting developments of the Boolean difference are:

There are various rules which make the application for subsystems
(subcircuits) easier.

- There is a generalization of Boolean difference for multiple faults.

- The Boolean difference is only for relatively small systems.

There are many methods for failure diagnosis available /1/, /12/.
We will deal with a few methods in sect. 5.2 and 5.3 of this report.

-51-

2.4 Interpretation of Redundancy

Sometimes, an interpretation of redundancy is desirable, which
is not directly related to the detectability of failures.

Assume, we have a circuit which consists only of inputs, out
puts and gates (AND, OR, NOT) and is acyclic (contains no
directed circuits).

This type of combinational circuit is sometimes called
•wellformed• /2/ and will be considered here.

Definition:

Let N (Z) be a set of (wellformed) networks~ which realize a given
(Multioutput) combinational function

where

A network N (N (Z) is redundant if it is possible to remove
lines and gates from N in such a way that the resulting network
N1 is in N (Z)~ and still realizes the same switching function.

A network which is not redundant will be called irredundant.

Note

A wellformed circuit can be defined recursively. We only mention
one of its properties: A wellformed circuit is acyclic, i.e. it has
no closed loop or feedback /1/. Also the fault trees (sect. 3.1) are
wellformed circuits.

-52-

Examples:

1. f (x1, x2) = x1 x2 + x1 x2 (N)

Since

x1 x2 + x1 x2 = x1 (x2 + x2)

= X 1

we can delete lines and gates related to x2. Only

is needed. This is equivalent to saying that the circuit (N)
i s redundant.

2. A circuit, represented as a sum of prime implicants (without
camp 1 emen ts) .

Fig. 18 Irredundant circuit

As can be seen in section 3.3 (1 coherence 1
), no line or gate can be

omitted, if the circuit z has to realize the same Boolean function.
This circuit is irredundant.

-53-

3. F a u 1 t T r e e s

3.1 Definition of Fault-Trees

3.2 Structure Function

3.3 Coherence of Systems and Minimal Cuts

3.4 A few Results on Coherent Structure Functions

-M-

3.1 Definition of Fault-Trees

We define a fault-tree and discuss a few properties of
fault-trees, also indicating some relations to switching
theory /13/.

Definition
A fault-tree is a finite directed graph without (directed)
circuits. Each vertex may be in one of several states. For
each vertex a function is given which specifies its state in
terms of the states of its predecessors. The states of those
vertices without predecessors are considered the independent
variables of the fault-tree.

Some general properties of a fault-tree:

The vertices without predecessors are the inputs to the
fault-tree, representing the components. We are interested
in the state of every other vertex, but in particular with
the state of one vertex without successors, an output ver
tex which we identify with the state of the system as a
whole. The graphical term 'vertex' here is roughly synonymaus
with 'item' and generally denotes any level in the system,
whether a component, sub-system or the whole system.

- We specialize to only two states per vertex. This makes all
of the functions Boolean functions. We call one of the two
states 'functioning', 'false' or 0, and the other 'failed',
'true' or 1.

Note, that this difinition of a two-state fault-tree is
equivalent to a combinational network with one output.

The no-circuit condition in the graph is equivalent to the
condition that the current output of a switching circuit
is e~tirely determined by current inputs, without memory
of previous inputs or internal states.

-55-

3.2 Structure Function

We introduce the concept of structure function. It is of central
importance for all problems of fault tree analysis {14 I, ;15/,

{16 /. It can be seen that it is closely related to the concept
of switching function (see sect. 1.3).

We assume a system S, which has n components which can be in two
states

functioning
- failed.
Also the system S can be in two states, either functioning or failed.
The components are the vertices without predecessors of our fault
tree definition. The function which specifies the state of a ·
vertex in terms of its predecessor is a Boolean function {AND, OR,
NOT). The states of the top vertex can be given by a structure func
tion.

Definition of Structure-Function

Let x1, x2,
0,1, where

xn be Boolean variables which can assume the values

_ l o if component i is functioning
X; - 1 if component i is failed.

The assumption that 1 corresponds to failure is used throughout this
paper and is useful for fault tree analysis. The Boolean variable X;
indicates the state of component i, whereas the state vector

X =

indicates the state of the system.
The Boolean function

X) n

cp (x 1 ' x2 ' ... ' xn)

is called structure function and determines completely the state
of the system S in terms of the state-vectors:

q, (x 1 ' x2 ' ... ' xn)
if system S is functioning

if SystemS is failed.

-56-

We note:

The structure function is related to the switching function as follows:
They beleng to two isomorphic algebraic systems. We call two algebraic
systems isomorphic if they are identical up to the symbols used for
operatioffiand elements. Thus we can use all concepts and methods from
switching algebra for fault tree analysis (and vice versa).

3.3 Coherence of Systemsand Minimal Cuts

We introduced in sect. 1.1 the concept of completeness, especially refer
ring to the set of operations

{ AND, OR, NOT } .

This (and other complete sets) are usually used in switching algebra. In
fault tree analysis we find quite frequently the set

{ AND,OR},

which is not complete.(See examples in section 6.) We want to define
coherence and show its relation to a simplified s-o-p representation,
the minimal cut-representation. Note that failure diagnosis is not
restricted to coherent systems (sect. 2 and 5) /14/, /15/, /16/.

Definition:

A system is called coherent if and only if

(a) a structure function exists which is nondecreasing in each variable, i.e.

l > X Where

y. > x. (i = L , n),
1 - 1

(b) the relations hold

~ (o) = 2 where o = (o, o, o)

~ (l) = 1 where 1 = (1, 1, 1).

-57-

Thi s means:

{a) lf a system is functioning, then no transition of a component
from failure to function can cause a system failure.

(b) If all components are functioning, the system is functioning.
If all components are failed, then the system is failed.

Examples:

1. ~(!) = x1 x2 v x2 x3 v x, x3, representing a 2/3-system,

i s coherent.

2. <P (!) = x1 x2 V X 1 x2 representi ng an exclusive - OR - gate.

(Fig. 1) is not coherent, since

(o, 1)~(1, 1) does not imply<P(o, 1)~c;P(1, 1).

3. Examples of coherent and noncoherent fault trees are given in sect.6.

Minimal Cut c.
J

Let M = { Ki , K2, , Kn } be the set of components of a coherent sys tem S.

A subset V of M such that S is failed if all components belanging to V are
failed and all componenets not belanging to V are not failed, is called a
•cut•. A cut is •minimal • if no proper subsets exist which are ilso cuts.

We call such a cut •minimal cut• (C.).
J

Foreach minimal cut it is possible, to find a combination of Boolean
variables

Example:

Network

- K1
I

- Ks

'----1 K2 I
Fig. 19 Network

K3 I--

r--

K4 1--

X) • n

minimal cuts

{ K1' K2 }

{ K3' K4 }

{K1' K4' K5~

{ K2' K3' K5 }

-58-

Structure function

~ (1, 1, 0, 0, 0) = 1 (failed)

but ~ (0, 1, 0, 0, 0) = 0 (not fa i 1 ed)

We write all components as K. (i = 1, 2, ... , n).
1

If a component K; belongs to Cj we can use the notation K; [Cj.
Foreach minimal cut c. we can use a structure function:

J

d.- (C.)
J

= 1\
Ki E. C.

.~ J

x.
1

= 11 x.
K. f.c. 1

1 J

The first expression is a conjunction of all K. belanging to C ..
1 J

The second expression isamultilinear form in x ..
1

Example:

Let c1 ={K1, K2}. Then,

a{,(Cl) = K;~Cl X; = xl A Xz = Xl Xz

Note that every min cut is a prime implicant without complements.
It is possible to express a coherent function using a sum of min cuts.

Example: For the network (Fig. 19) shown above, we get

(~) = x1 x2 v x3 x4 v x1 x4 x5 v x2 x3 x5

or,as multi-linear-form:

q, (~) = 1 - (1 - x1 x2) (1- x3 x4) (1 - x1 x4 x5)

· (1 - x2 x3 x4)

-59-

3.4 A few Results on Coherent Structure Functions

We mentioned in sect. 1.5 that every irredundant sum-of-products
representation of a switching function is a union of prime impli
cants of this function. In section 3.2 we introduced the structure
function which is isomorphic to the switching function. Moreover,
we introduced the concept of coherence and the min cuts.

If the structure function is coherent, the representation by prime
implicants greatly simplifies. We quote a theorem which leads to
this simplification.

Theorem

A coherent s tructure functi on <tl (_~.) can be represented as a s -o-p .,

= ~ P.
J

J = 1

of prime implicants, where this representation is unique and can
be written using the concept of ~in cuts

cP(~) = L: 1(x.

where Ki E. Cj are the
variables describing
ponents /16, 17/.

Note, that there

j = 1 K1 f. C j
1

components belanging to c.,x. the Boolean
J 1

the states (functioning, failed} of the com-

is only one (minimal) cover, and there
- are only essential prime implicants which may not be replaced

by any other prime implicants.

This has the following consequences for the search for minimal cuts.
The algorithm 3 (top-down-algorithm) or 4 (bottom-up-algorithm}
leads to all min-cuts. Algorithms like 1,2 (using the complement)
are not needed for this type of search. It may be also interesting
to note that the problern of testing considerably simplifies if
coherent structures are given. One of the simplifications will be
evident in sections 4 and 5 (search for min-cuts instead of prime
implicants for coherent structures).

-61-

4. Diagnosis Procedures

4.1 Diagnosis Procedure 'a'

4.2 Diagnosis Procedure 'b'

-62-

4. Some Diagnosis Procedures

Assurne a system where for each relevant component a component failure
is automatically detected. E.g. some systems of the Automated Labara
tory for the WAK allow this type of failure detection /18, 19/.

The possible size of a fault table (dictionary and the use of Boolean
differences (see sect. 2))is soon impractical. Thus, a method is
needed which

- skips redundant information,
- decreases alarms which unnecessarily contribute to system

unavailability
- may be used for realistic systems.

We discuss the following two types of tests:

(a) A test which leads to a prompt failure diagnosis for a failed
system. This test is based on a structure function with minimal
cuts.
The test aids to increase the availability of the system.

(b) A test which finds all states adjacent to system failure but
only these. This test is based on a structure function with
minimal cuts.
The test aids to increase the safety but the unavailability due
to repair remains moderate.

Both tests can be used for systems which are not coherent as well
(see sect. 5).

-63-

4.1 Diagnosis Procedure 'a'

1. Given a system S in fault tree representation or Series
parallel representation with structure function~, where

e
L:

j = 1

2. If a min cut Pj is equal to 1, there is system failure.

3. For all min cuts of <:P, test patterns (minterms) can be
generated which uniquely determine whether a min cut is
a cause for a system failure or not. This systematic
account is called 'Diagnosis Procedure a' (Set of a-tests).

The relation to failure diagnosis concepts will be shown in sect. 5.
It can be seen that no failure dictionary is needed. We give an
example for 'Diagnosis Procedure a•, (also called a-test).

Example:

CD a-tests search for min cuts of f

min cut p1 min cut p2 I
I
I

Fig. 20 System s1

-64-

GD Structure function f = f (x1, x2, x3, x4)

0 comp. intact
f = x1 x2 + x3 x4 x. = i fa i 1 ed 1 1 comp.

x1 x2 = 0 0 system intact
f = system failed

x3 x4 = 0
1

Q) a-test

0
f intact

min cut ~ 1,2}

Mint~
x1 x2 x3 x4 x1 x2 x3 x4

1 1 - - - - 1 1

1 1 0 0 1 0

x1 x2 =
1 failed

intact
0 min cut{3,4}

x3 x4 =
1 failed

0 0 1 1 0 1

By the a-test we can determine, whether min cuts lead to system failure or
not. Every mi n cut whi eh has va 1 ue 0, i s not a cause for sys tem fa il ure 1 *'..
The min cut which has value 1 is the cause for system failure. A search for
components is not needed. The entire cut needs repair.

1*l In some cases also a direct search for the responsible cut may be
possible, simply searching for the cut which has value 1.

-65-

4.2 Diagnosis Procedure 'b'

1. Given a system S in fault tree representation or series parallel
representation with structure function~, where

2. If a min cut pk is equal to 1, the system fails.

3. For all min cuts pk adjacent sub~ubes p~k can be found which refer
to states of a coherent system where only one more component has
to fail to cause a system failure.

4. Test patterns can be generated uniquely determining the states
adjacent to system ·failure. This systematic account is called

'Diagnosis Procedure b' (set of b-tests).

The relation to failure diagnosiswill be discussed in sect. 5.
We give an example for Diagnosis Procedure a (also called b-test).

Example:
Search for min cuts

I
I

min cut p1 min cut p2

Fig. 21 System s
2

-66-

0 Structure function f

f = f {XI, x2, x3' x4, x5)

f = xi x2 + x3 x4 x5 (in mi n cuts)

G) b-test

Let P; be prime implicants (min cuts)

p~k be adjacent subcubes to the P;

PI = xi x2

p2 =

k = I
2

x3 x4 x5

I 2 3 4 5

I 1 - - -

0 I -

I 0 -

- - I I I

I 2 3 4 5

Minterms

0 I 0 0 0
I 0 0 0 0

X k = 1 p2k 0 I I 0 0 0 I I

2 I 0 I 0 0 I 0 I

3 1 I 0 0 0 I I 0

We obtain all states of the system s2 which are adjacent to

system failure:

1. component I failed: X 0 I Pu =

component 2 failed: X I 0 -PI2 =

2. component 4 and 5 failed: X 0 I I p2I =

component 3 and 5 failed: X 1 0 1 p22 =

component 3 and 4 failed: X I 1 0 p23 =

By the b-test we can locate all states which are adjacent to system
failure. Then it is possible to prevent system failure replacing the

failed components.

-67-

Clearly, all the techniques from a and b-Tests, also in
relation with search for prime implicants (or min cub)
can be applied for automatic diagnosis of systems. This
will be shown in more detail in our next section.

-69-

5. Tests for Two Types of Faults

5.1 General Assumptions

5.2 Tests for s-a-0-Faults

5.3 Tests for s-a-1-faults

5.4 Examples for Tests

5.5 Existence of Tests

5.6 Relation to Diagnosis Procedures

-70-

Introduction

We discuss tests for two types of faults which occur in combinatio
nal networks:

- the stuck at one fault (s-a-1)
- the stuck at zero fault (s-a-0).

Other faults are not considered. Combinational networks are related
to fault trees due to the isomorphism of switching function and struc
ture function·. We concentrate here on two tests which use prime imp
licants (or min cuts). They were developed in /1, 17/. These tests have
been introduced on an informal basis in sect. 4 (Diagnosis Procedures
a,b).

5.1 General Assumptions

We assume a two-level ~etwork (AND-OR-Type), or a network which
can be transformed into an equivalent two-level network (i.e. with
out deletion of real failures and/or introduction of new failures).
In Fig. 22, the AND-OR-type network is shown:

ANO

k

Fig. 22 AND-OR-network

We assume that this is an irredundant network which is equivalent
to an irredundant sum of prime implicants. Thus, the switching
function f can be written

... '

where p. denotes the ;th prime implicant, 1 is the number of prime
1

implicants of the irredundant sum.

-71-

Each AND-gate is equivalent to one prime imlicant. Here we need an
algorithm to search for prime implicants (see sect.1). lf the system
is coherent, a search for min cuts is sufficient (see sect. 1.7).
A circuit which consists of r wires may have as many as
2r distinct single faults (s-a-0, s-a-1), and 3r-1 multiple faults
(single, double, ... , r-tuple faults). This is due to the binomial
theorem /1/:

r
3r = (2 + 1 { = L: (r) 2; {-i , where 1 r- i = 1.

i =0 ·. ;

5.2 Tests for s-a-0 Faults

We discuss the tests for s-a-0 faults, which correspond to the •oiag
nosis Procedure a•.
A s-a-0 fault at any of the inputs of the jth AND-gate causes the out
put of this gate to be s-a-0, regardless of the value of the remaining
variables. Such a fault eliminates the corresponding prime implicant pj
from the function f: 1

f = L: p.
i =1 1

To check whether a given prime implicant P; has completely vanished,
it is sufficient to have one minterm a. as input which is covered by

J
that prime implicant p. and by no other prime implicant /17/.

J

For all •essential prime implicants• such a minterm exists, this is
especially true for min cuts (unique representation). The requirement
that a minterm a. must be one that is covered by the prime implicant p.

J ' J
and by no other prime implicant P; (i t j) is essential. We note, that
a complete set of tests for s-a-0 faults for a s-o-p-network consists
of n tests corresponding to the 1 prime implicants in f.

To test the jth AND-gate for s-a-0 faults, it is necessary and sufficient
to have as input one minterm aj such that

.1fp.
i'=1 1

i +j

The systematic account of minterms a. to test the AND-gates for s-a-0
J

is referred to as a set of a-tests. It can be shown that all single and
multiple stuck-at-faults can be detected by this method.

-72-

We give an algorithm for generating the (minimal) a-tests.

We introduce the covering matrix E.

E =

m.
1

The covering matrix shows for all minterms m. if they are covered by
1

prime implicants.
If m. is covered by p., we have e .. = 1,

1 J 1J

m1 is not covered by pj, we have eij = 0.

Algorithm 5

Step 1 Construct a covering matrix E whose collumn headings are pj'
and whose row headings are m1.

Step 2

Step 3

Step 4

Delete all rows which contain two or more 1's.

Is there a p. which cannot be covered?
J

Choose for every pj in E one minterm aj.
Thus we get the minterms

aj = Pj lf P;
; .• 1
Hj D

-73-

5.3 Tests for s-a-1 Faults

We discuss the tests for s-a-1 faults, which correspond to the
11 Diagnosis Procedure b11

• A s-a-1 faultat any of the inputs of
the jth AND-gate causes the prime implicant not to vanish. But
the output of the gate becomes independent of the variable as
sociated with a s-a-1 fault.

Example:

Let the input xk of AND-gate x1x2x3
s-a-1. This is for

k = 1 1 • x2 . x3 = x1x2x3

k = 2 x1 . 1 • x3 = x1x2x3

k = 3 x1x2 • 1 = x1x2x3

-
+ x1x2x3

-
+ x1x2x3

-
+ x1x2x3

To test the kth input the jth AND-gate for s-a-1-faults, it is
necessary and sufficient to have as input one minterm bjk such that

(f
; = 1

where

p1k is a subtube adjacent to pj (see sect. 1.8) and pj is the jth prime
implicant.

The systematic account of minterms bjk to test all AND - gates for
s-a-1 faults is called a set of b-tests. It can be shown that all
singl~ and mutiple ~tuck-at-fa~lts can be detected by this method.

-74-

Before giving the Algorithm a few remarks seem in order (see
also Examples given below).

- Pairwise intersection: Assurne a cubical representation
(sect. 1.8.). For terms like 11--and-11-the pairwise
intersection is 111-.

- Prime intersection: If intersecting with other terms leads
to no further intersection, we have a prime intersection.

- Prime tests: The prime intersections are related to prime
tests.

- Prime test chart: Achart with collumn headings Pjk and with
row headings bjk (prime tests) is called prime test chart.

With these remarks we can state our Algorithm.

Algorithm 6

Step Listall pjk for all j = 1,2, ... , 1 and
k = 1, 2, ... , rj where 1 is the number of
prime implicants and r. the number of literals
in the jth prime imp1i~ant. Thus we get all
adjacent subcubes.

Step 2 For every p~ ~ p~t delete px,.s form list.
1 s - J

Step 3 Findall pairwise intersections of the terms that
are now contained in the list. Whenever an intersec
tion is nonempty and contains a minterm for which
f = 0, checkmark the intersected terms. This step
lists the minterms for which f = 0 which are con
tained in 2 or more adjacent subcubes.

Step 4 Repeat Step 3 unti1 no new terms are generated. The
terms generated in step 3 and those checkmarked in
step 2 are called prime intersections. Steps 3 and 4
thus indicate those minterms which simultaneously test
as many subcubes as possible.

-75-

Step 5 From the list of prime intersections construct a list
of prime tests by selecting arbitrarily an input com
bination bjk for which the value of the function is 0.

Step 6 Construct a prime test chart where the collumn headings
are Pjk (found in step 2) and the row headings prime
tests (found in step 5). A sign (x) is inserted at the
intersection of any one row and collumn if the corre

sponding prime test is covered by pJk' We get

e
bJ. k E: p~k rr p.

J i = 1 1

Step 7 Select a set of prime tests that check each of the
Pjk- terms, i.e. find a cover for the prime test

chart. D

5.4 Example for Tests (s-a-0 and s-a-1-faults)

Given the following network:

Fig. 23

This can be represented as a sum of prime implicants:

4
f = .}; P· =

J=1 J

- - -
x3x4 + x2x3x4 + x1x4x5 + x1x2x4x5

stee

-76-

a-Test (s-a-0-faults)

It can be seen that each prime implicant covers at least
one minterm which is not covered by any other prime im
plicant (see also Karnaugh-map, Fig. 24).

We write as covering matrix with headings
- p . (co 11 ums)

J
- m; (rows):

p.
m. J

1 p1 p2 p3

x1x2x3x4x5 --11- -100- 1--11

01000 0 0
11 000 0 0
00010 0 0 0
00110 1 0 0

1 011 0 0 0

01110 0 0

1111 0 0 0
01001 0 1 0

11 001 0 0
10011 0 0 1

11 011 0 0
00111 1 0 0

1 0111 0 1
01111 0 0

11111 0 1

Covering Matrix

Construction of covering matrix

p4

00-10

0
0
1
~

0
0
0
0
0
0
0
0
0 ~
0
0 ~

Step 2 Delete all rows which contain more
than one 1 (rows checkmarked by ail).

stee 3 There is no pj which cannot be detected by a mi nterm.

Note: These tests (aj) are necessary and sufficient to test for all
s-a-o-fau]ts.

-77-

Step 4 We choose for every pj one minterm aj' e.g.

{a} = {11110, 11000, 10011, 00010}

p1 p2 p3 p4

Note: Thesetests (aj) are necessary and sufficient to test
for all s-a-0-faults.

Finally, we show a Karnaugh-map with prime implicants p.
J

and minterms aj.

000 001 011 010 110L111 1 01

I
/ CD~ <D 00

,CD CD
~

01

11
/

<D CD CD /1 1

1 0 CD 1 CD CD CD
I

I \ ' "
.._ ______ _,...

I -"' p4 ;-----------------

P, Fig. 24 Karnaugh Map

Note:
All the circled minterms belong to the minterms of f with

e
a. s P· • 'T(p.

J J l
i=1
i fj

100

CD)

The minterms which are covered by more than one P; have been
deleted from the covering matrix E.

!,....

-78-

b-Test (s-a-1-faults)

Step From prime implicants pj we find all adjacent
X subcubes pjk'

p1 = --11-- X --10-p 11 =
X

p12 = --01-

p2 = -100- X -000-p21 =
X -110-p22 =
X

p23 = -101-

p3 = 1 --11 X o--11 p31 =
X

p32 = 1--01
X

p33 = 1--10

p4 = 00-10 X 1 0-10 p41 =
X 01-10 p42 =
X

p43 = 00-00

X
p44 = 00-11

Step 2 For every p~ 5 2 Pjt delete p~ 5

X --01- :J X -110-We get p12 = p22 =
X --10- :J X -110-p11 = p23 =
X 1--10 :J X 10-10 p33 = p41 =
X o--11:J p31 = X 00-11 p44 =

Step 3

Step 4

Step 5

-79-

Thus our new list is

X
p21 -000-

X
p22 -110-

X
p23 -101-

X
p32 1--01

X
p41 1 0-10

X
p42 01-10

X
p43 00-00

X
p44 00-11

We find pairwise intersections, e.g.

P~3 n. P~2 = -·101- n 01-10 = 01010.

We get:

01010, 11101, 10001, 00000

The prime intersections (where intersection leads to no
further terms) are

10-10, 00-11
01010, 11101, 10001, 00000

To find a test from the intersection 00-11,'note that this
intersection covers two minterms

00011 and 00111

since 00111 s ..,.-11- = p1, only
00011 is admitted as a test.

We get as prime tests (minterms)

00011, 10010

01010, 11101, 10001' 00000

-80-

Step 6 The prime test chart is given next:

-ooo- -11o- -1o1- 1--01 10-10 01-10 00-00 00-11

00011

10010 X

01010 X X

111 01 X X

10001 X X

00000 X

Note:
These tests (bjk) are necessary and sufficient to test for all
s-a-1-faults. We give no representation with Karaugh-map here.

X

The method of covering a prime test chart is similar to the
covering of a fault table. But almost always, the size of a
prime test chart is small compared with the corresponding fault
table (see sect. 2.2).

5.5 Exixtence of Tests

Theorem: The set T of a-tests and b-tests detects all multiple
faults in the two-level AND-OR-network, where all

e
a-tests are of the type aj e pj . rr P· . 1 1

and all

X b-tests are of the type bjk e Pjk

1=
i ~j

e
.Tf P· . 1 1 1=

X

-81-

Proof: We consider only the inputs x .. If any s-a-0 or s-a-1
. 1

occurs in one of the inputs, it will be detected by the tests T.

If any input is s-a-1, its effect is to add a subcu~e pjk to the
switching function. This subcube can only be deleted (i.e. the
subcube will be with an undetectable fault s-a-1) if a s-a-0-
faults on an input to the same AND-gate occurs.
This s-a-0 fault cannot be 11 masked 11 by another s-a-1 fault
at the gate:

From x1.x2 .. 1 .•• 0 ... xn. we get the vanishing of the
11 12 J

prime implicant, therefore it will be detected by an a-test.

A s-a-0 at an input to an AND gate causes the prime implicant
pj to vanish. The pj is tested by a single a test. If, however,
this a test (minterm) is included at the same time in an adjacent
subcube added to the switching function as a result of some s-a-1
fault, it will not detect the 11 vanished 11 prime implicant. The
s-a-1, however, will be detected by the b-tests.

In all other situations the a testwill detect all s-a-0 faults.
The a-tests and b-tests tagether detect all multiple faults, but
not necessarily a or b-tests alone. [J

This proof has been presented in /1/. Here the proof has been
simplified to some extent.

5.6 Relation to Diagnosis Procedures

To apply our concepts correctly to Diagnosis Procedures
(introduced in sect. 4) some relationswill be outlined:

There is a close correspondence between

1. a-Tests (for s-a-0 faults) and a-DiaQnosis Procedures
(for failure diagnosis of systems represented by fault trees),

2. b-Tests (for s-a-1 faults) and b-Diagnosis Procedures (for
diagnosis of subcubes adjacent to system failure).

-82-

Clearly, all the techniques from a and b-Tests, also in
relation with search for prime implicants (or min cubes)
can be applied for automatic diagnosis of systems. This
will be shown in more detail in our next section.

-~-

6. Examples with Various Fault Trees

6.1 Subsystem of Automated Labaratory

6.2 Standby System with Motor

6.3 Failure of Residual Heat Removal System

6.4 Nitric Acid Cooler

6.5 An illustrative Fault Tree

-84-

6.1 Subsystem of Automated Labaratory

Herewe regard the photometer and conductivity measurements,
which have been discussed in more detail in /18/, as a first

example (Fig. 25).

Wasser
zur Reinigung

Meßküvette

V4

Alkohol
zur Reinigung

Abluft

L2

Probentransfer (PTR)

Druck
lu ft

Druck
l u ft

Fig. 25 Vereinfachtes Apparateschema (Schematic diagram of automated
photometry and conductimetry system /18/).

-85-

In a schematic diagram this device is shown. Then a subtree
leading to the event 11 Error in a photometer measurement 11 is
show. From the related structure function we get

- a-tests and
- b-tests.

Component failures (Inputs), Fig. 26.

V1b, V2B, V3a as well as PU1 (full), V8a, L4 indicate failures
in the components of the device. Note that for the analysis step
No. 5 (cuvette filled) (see /18/, /19/) two min cuts may lead to
a measurement error. Note that this event only reduces availability
(not the safety) of this device. A fast diagnose is desirable to
reduce unavailability.

V1b V2b

Measurement error

of phot ometer

V3a PU1
(filled)

x3 x4

Fig. 26 Fault Tree

V Ba L4

-86-

The structure function i s:

~ = x1x2x3 + x4x5x6

We get as a-tests:

p.
J

123456 123456
a.

J 111--- ---111

111000 0
000111 0

If two min cuts are possible causes of measurement error,
we can exactly locate the failed component.

We get as b-tests:

p1 = x1x2x3 123456 123456
111---

X k=1 011--- 011000 p1k b1k
2 101--- 101000
3 110--- 110000

p2 = x4x5x6 ---111

X
p2k k=1 ---011 b2k 000011

2 ---101 000101
3 ---110 000110

Thus we can detect all states which are adjacent to system failure.
This is still much better than stop the device for any single failure,
which considerably decreases unavailability. Moreover, this leads to
a systematic search for all states adjacent to system failures in the

whole operation of the device.

-87-

Note: This test set can be used for the whole photometry and

conductivity measurement subsystem (see also /18/).

Efficiency: For n = 6 inputs we have

3n-1 multiple faults (including single faults), i.e.
36-1 = 7.28. 102

All are automatically contained in the Lists for a-tests and b-test.

6.2 A Standby System with Motor

This system is reproduced in the literature /20/. It has been used
for fault tree analysis.

Push buttans

Bo.ttery ...=...

Fig. 27 S~andby system

We describe this system shortly: Assume, the system is a standby
system that is tested once every month. It consists of a battery,

two switches in parallel, and a motor. To start the motor, two push
buttans are pressed to close the two switch contacts 1 and 2. To
stop the motor at the end of test, two push buttans are depressed.
Periodically, say every six months, the operator must recharge the

battery and perform routine maintenance on the motor.

We have the following fault tree which describes the failure of the

motor to start on request.

-88-

f

xg H
(Battery
d i s c h arches)....----'

Fig. 28 Fault Tree

-89~

Next we give the structure function.
By a top-down algorithm we find the min cuts.

f = x, + B + x2

= x, + c + F + x2

= x, + D • E + x7 + G + x2

= x, + D • E + x7 + Xg • H + x8 + x2

= x, + x2 + x7 + x8 + D • E + Xg • H

= x, + x2 + x7 + x8

+ x3 • x5 + x3 • x6 + x4 • x5 + x4 • x6

+ Xg • x10 + Xg • x11 + Xg • x12

+ Xg • x13 + Xg • x14

We give ~ list of the min cuts, also describing the related
failure combinations.

p,
J

2

3

4

5

6

7

8

9

10

11

12

13

Min Cut Set

{ 1 }

{2}

{7}

{8}

{3,5}

{3,6}

{4,5}

{4,6}

{9,10}

{9,11}

{9,12}

{9,13}

{9,14}

-90-

Description of failure combination

Motor fails to start

Inadequate maintenance of motor

Dead battery (primary failure)

Operator fails to recharge battery

Switch 1 contacts fail to close
Switch 2 contacts fail to close

Switch 1 contacts fail to close
Secondary failure of switch 2

Secondary failure of switch 1
Switch 2 contacts fail to close

Secondary failure of switch 1
Secondary failure of switch 2

Battery operates sufficiently long
to discharge
Secondary failure of switch 1

Battery operates sufficiently long to
discharge
Switch 1 contacts fail to open

Battery operates sufficiently long to
discharge
Operator fails to depress push button

Battery operates sufficiently long to
discharge
Switch 2 contacts fail to open

Battery operates sufficiently long to
discharge
Secondary failure of switch 2

List with failure combinations

The cuts pj' causing the defect can be precisely located.

b-Test

K=1
2

k=1
2

k=1
2

k=1
2

k=1
2

k=1
2

X
p11k k=1

2

-92-

are single Fctilures: b-test not applicable

2 3 4 5 6 7 8 9 10 12 13 14

- 1

0 - 1
1 - 0

0
1

1
0 - -

---01---
- - - 1 0 - - -

- 1

- - - 0 - 1
- - - 1 - 0 - -

1 - - - -

0 1
1 0 -

0 -

0 1 - - -
1 - 0 -

0 - - 1
1 0

k=1
2

k=1
2

Efficiency:
faults, i .e.

-93-

2 3 4 5 6 7 8 9 10 11 12 13 14

0
1

- 1
- 0 -

0 - - 1
1 - - - - 0

For n = 22 inputs we have 3n- 1 multiple

All these faults are automatically covered by the lists
for a-tests and b-tests.

-94-

6.3 Failure of a Residual Heat Removal System (RHR)

Wehave this System /21/, represented by a fault tree.
The undesired event is 11 RHR loss of isolation 11

•

Fig. 29 RHR fault tree: restructured TOP.
(RHR, Residual Heat Removal)

-95-

The structure function is:

q, ::: A2 • A4 • A10 42 Min Cuts

+ A2 • A8 • A10

+ A2 • 9 • A10

+ A2 • 1 0 • A10

+ A2 • A4 • 21

+ A2 • A8 • 21

+ A2 • 9 • 21

+ A2 • 1 0 • 21

where A2 = 1 + 2

A4 = ((3 + 4)5 + 6) • 7

A8 = 7 • 8

14 II II

= 84 Min Cuts
14 II II

14 II II

6 II II

2 II II

= 12 Min Cuts
2 II II

2 II II

96 Min Cuts

A10= 11 • (12 + 13 +((14 + 15)16 + 17 + 19 + 20) ·18) .

For simplicity, we restriet the tests to A10 (F023 OPEN).

Structure function for A10

A10 F023 OPEN

= A11 + A12 + A13 +A17 + A18

A11 = 11 • 1 2

A12 = 11 • 13

A13 = A14 • 11 ~ 18

A1 4 = A1 5 + 17 CONTROL SIGNAL TO F023

A1 5 = A16 • 16

A16 = 14 + 15 INTERLOCK 2 PERMISSIVE

-96-

A13 = 11((14 + 15)16 + 17)18

A17 = 11 • 18 • 19

A18 = 11 • 18 • 20

A10 = 11·12+11·13+11((14+15)16+17)18+11·18·19+11·18·20

= 11 • 1 2 + 11 • 1 3+ 11 • 14. 1 6. 18+ 11 • 1 5. 16. 18+ 11 • 17. 18+ 11 • 18. 19+ 11 • 18. 2 0

a-Test

Min Cuts p.
J

11 1 2 13 14 15 16 17 18 19 20

2 - 1 - - -
3 - 1 - 1

4 - 1 - 1

5 - - -
6 1 -
7 - - - - - - - 1

Minterms aj 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 0 A11
2 0 1 0 0 0 0 0 0 0 A12
3 0 0 1 0 1 0 1 0 0

4 0 0 0 1 0 0 0 A13
5 0 0 0 0 0 1 0 0

6 0 0 0 0 0 0 1 0 A17
7 0 0 0 0 0 0 0 1 A18

~

A16
......

A15
~

A14

Here is also information on subsystems (A16' A15' A14) avaible.

We get more details than the mincuts alone.

-97-

b-Test

X Minterm bjk P· and pjk J
11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20

p1 = x11x12
X

k = 1 0 1 0 1 0 0 0 0 0 0 0 0 p1k - - - -
2 1 0 - - - - - - 1 0 0 0 0 0 0 0 0 0

P2 = x11x13 - 1 - - -
X

0 1 0 0 1 0 0 0 0 0 0 0 p2k . k = 1 - - - - - - - -
2 1 - 0 - - - 1 0 0 0 o. 0 0 0 0 0

P3 = x11x14x16x18 - 1 - 1
X

k = 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 p3k - - - -
2 1 - - 0 - 1 - 1 1 0 0 0 0 1 0 1 0 0
3 ' 1 1 - 0 - 1 1 0 0 1 0 0 0 1 0 0
4 1 1 - 1 - 0 1 0 0 1 0 1 0 0 0 0

P4 = x11x15x16x18 - - - - 1
X

k = 1 0 - . 1 1 1 0 0 0 0 1 1 0 1 0 0 p4k - - -
2 1 - - - 0 1 - 1 1 0 0 0 0 1 0 1 0 0
3 1 - - - 1 0 - 1 1 0 0 0 1 0 0 1 0 0
4 1 - - - 1 1 - 0 - - 1 0 0 0 1 1 0 0 0 0

P5 = x11x17x18 - - -
X

0 1 1 0 0 0 0 0 0 1 1 0 0 p5k= k = 1 -
2 1 - - - - - 0 1 1 0 0 0 0 0 0 1 0 0
3 1 - - - 1 0 - .., 1 0 0 0 0 0 1 0 0 0

P6 = x11~18x19 - - - - 1 1 -
X

k = 1 0 1 1 0 0 0 0 0 0 0 1 1 0 p6k - - -
2 1 - - - - - - 0 1 - 1 0 0 0 0 0 0 0 1 0
3 1 1 0 - 1 0 0 0 0 0 0 1 0 0

P7 = x11x18x20 - - - - - 1
X

k = 1 0 1 1 0 0 0 0 0 0 0 1 0 1 p7k - - - - - - -
2 1 - - 0 - 1 1 0 0 0 0 0 0 0 0 1
3 1 - - - - 1 - 0 1 0 0 0 0 0 0 1 0 0

Efficiency: For n = 21 inputs we have 3n-1 multiple faults, i.e.
321 - 1 10 = 1 • 046 • 1 0 •

All these faults are automatically covered by the lists for a-tests and b-tests.

H HO 3

-98-

6.4 Nitric Acid Cooler

We consider a subsystem from chemical industry which cools in
a process hot nitric acid (HN03) with a temperature feedback
and a pump-shut-down feedforward. This has been analyzed by
Lapp and Powers /22/.

COOLING WATER
(OUTLET)

(H 0 T) ------11111814
H H 0 3

TO
(REACTOR) HEAT

EXCHANGER
[I]

: ® [I]
L--------

1
TEMPERATURE

1® SENSOR
I 6
I
I

____ TEMPERATURE
~ CONTROLLER 0 ...____ _ ___,

~0 fiJ
COOLING
WATER

Fig. 30 Block diagram for nitric acid cooler

1. We list the components of this system giving:

- possible inputs and outputs and
- possible failures

These may be translated into a fault table. But we will have
a simpler way to deal with diagnosis by means of a-tests and
b-tests.

2. Then we give a flow diagram for the possible processes including
faults.

3. This leads to a non-coherent fault tree.

4. We get then the usual prime implicants and tests (again for a subtree).

-99-

!®
-0_7 _ _j-T---'-E

1
A-T URE---.

l E~[H~OR

ITJ

Fig. 31 Input-Output t·1odel s

.,
--'·

!.0

w
N

.,
_.
0
::;::

C1
--'·
OJ

!.0,
OJ
3

-t,
0,

::z
--'·
rl",
-'·
n
):::>
n
--'·
0..

n
0
0

((),

-u,
0
n
(()
Vl
Vl

P10

{valve)e

d

Une 11 plugged ®
l11(0) .J

l11 1+11 ~I

-10

f

M 5

• .17\
li .. ~

-1
reversed vnlve

0 nc1ion _ _
+ 1

P7

I/

0

+1

-1
contraHer
nction
reversed

I -10

P11 ® ·lU
--1

f 6 reversedvnlve !1

nction

~ I + 1 I (vnlve a)

+1

M3

T1

.......
0
0

I

,-

Fig. 33

-101-

dawi

!
I
I
I
I
I
I

i
:
I
I
I

:
I
I
I

i
:
L..,

Fault Tree for Nitric Acid Cooler

I

:
I

l
I
I

!
I
1--

::: . _,.
" ·-----""~ '

: c_,

!, !!
: .
I

!
I
I

:
' .. ' fbl I + lW -;g-:-----:t

a II

.. : :1

.. 0 M

3 ! :

1 =
I

: :5 ·------> _
i
:

-102-.

f

G'5 1 "\ A 1

G7 11 ~'\A2 AJr ~G13

11
A6~'" \ G14

· G811" · "'\A4 AS/ "'\Q 9 T xa Xg
...,____.,___ _ __,

6181 '\A7 Xs

X3 x.

G 111" "\AB

ls
G15 I \A9

Fig. 34 SUbtree

-103-

Structure function of a non-coherent structure

(We use the top down algorithm, which here gives all prime implicants,
but not for non-coherent structures in general .)

q, = A2 + x10 + A3

= A4 + A5 + x10 + x7 • A6

= A7 • x6 + A7 • x6 (EXOR)

+ x10 + x7 • x8 + x7 • x9

= (A8 + x3 + x4) x6 + (ÄJ . x3 • x4) x6

+ x10 + x7 • x8 + x7 • x9

= ((x1 + x2 + x4) x5 + x3 + x4) x6

+ ((><"1 • x2 • x4 + x5) x3 • x4) x6

+ x10 + x7 • x8 + x7 • x9

= x1 • x5 • x6 + x2 • x5 • x6 + x3 • x6 + x4 • x6

+ x1 • x2 • x3 • x4 • x6 + x3 • x4 • x5 • x6

+ x10 + x7 • x8 + x7 • x9

a-Test

Prime Impl icants
P· J

1
2
3
4
5
6
7
8
9

Minterms
a.

J
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

1 1 0 -
-1--10

1 0
- 0

0 0 0 0 - 1 - - - -
- - 0 0 0 1 - - - -

1 1
1 - 1 -

1 2 3 4 5 6 7 8 9 10
100010
010010
0 0 1 0 0 0
0 0 0 1 0 0
000011
110001
0 0 0 0 0 0 0 0 0 1

1 1 0 0
1 0 1 0

-104-

b-Test for G5 1 of nitric acid cooler

k = 1
2
3

k = 1
2

k = 1
2

-
Ps = x1x2x3x4x6

X
Psk k = 1

2
3
4
5

P6 = x3x4x5x6
X

p6k k = 1
2
3
4

2 3 4 5 6 7 8 9 10

0 - - - -

0 - 1 0 -
1 - - - 0 0 -
1 1 1 -

-1--10-

- 0 - - 1 0 -
- 1 - - 0 0 -
- 1 1 1 -

- - 1 - - 0 -

- - 0 - - 0 -
1 1

- 0

- - _. 0 - 0 -
---1-1----

0 0 0 0 - 1 - - - -

1 0 0 0 - 1 - - - -
0 1 0 0 - 1 - - - -
0 0 1 0 - 1 - - - -
0001-1
0 0 0 0 - 0 -

- - 0 0 0 - - - -

--1001----
- - 0 1 0 1 - - - -
--0011
- - 0 0 0 0 - - - -

1 2 3 4 5 6 7 8 9 10

32 16 8 4 2

010010
1 0 0 0 0 0
100011

100010
0 1 0 0 0 0
010011

0 0 0 1 0 0
001001

0 0 1 0 0 0
000101

1 0 0 0 0 1
010001
001011
000111
0 0 0 0 1 0

011001
100101
110011
1 1 0 0 0 0

*)we use a decimal numbering to check, if any of the bjk is also
included in more than one adjacent cubcubes. If this is not the
case, all adjacent states can be identified.

*)
Decimal

18
32
35

34
16
19

4
9

8
5

33
17
11
7
2

25
37
51
48

P7 = x7x8
X k 1 p7k =

2

p8 = x7x9
X k = 1 p8k

2

P9 = x10

-105-

7 8 9 10

1 1

0 1
1 0

- 1 -

0 - 1 -
1 - 0 -

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0
0000001100

Note: For p9, which is a single failure, no adjacent
subcubes exist.

Efficiency:
faults, i.e.

For n = 24 inputs we have 3"- 1 multiple
324- 1 = 2. 824 . 1 011 •

All these faults are automatically covered by the lists for a-tests
and b-tests.

-106-

6.5 An illustrative Fault Tree

We are presenting a fault tree which has been already analyzed
in sect. 1.7. (see /11/).
This fault tree is used for some research in simulation, where
the system is not represented by software, but by hardware
(e.g. with a s-o-p-representation, using diode logic /23/, /1/).
It is important to check this hardware in two respects:

- It is necessary to validate that the diode logic represents
the original fault tree (This will not be discussed here).

- It is also necessary to test, whether there are any s-a-0
or s-a-1-faults in the diode logic. If there were any faults,
this could seriously affect the simulation result.

Here is another, more direct application of the a-tests and
b- tests.

The min-cuts for the following fault tree have been calculated
by the bottarn up algorithm (sect. 1.7).

Fig. 35 Illustrative Example of Fault Tree.

-107-

Assume, we can get the outputs from E1, E2 separately. Then
we get the following tests:

~E = 2•3 + 2·5 + 1•6 + 3·6·10 + 3·6·14 + 8•9•13 + 10·16 + 5·10~11
1

(similary we get ~E).
2

List
No.

2

3

4

5

6

7

8

min cut

2·3
2·5
1·6
3·6·10
3·6·14
8·9·13

1 0 ·16
5·10·11

a-Tests (subtree E1)

Mi n Cuts P j 2 3 4

- 1
2 - 1
3 - - -
4
5
6 - - - -
7

8 - - - -

Minterms aj 2 3 4

0 0
2 0 0 0
3 1 0 0 0

4 0 0 1 0

5 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

5 6 7 8 9 1 0 11

- - -
- - - -

- - - -
- - - -
- - -

- - - - -
- - - -
1 - - - -

5 6 7 8 9 1 0 11

0 0 0 0 0 0 0
0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 1

Similary, we get a-tests for subtree E2.

12 13 14 15 16

- - - -
- - - - -
- - - - -
- - - - -

- - - -
- - - -
- - -

12 13 14 15 16

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0 0 1 0 0

0 1 0 0 0

0 0 0 0 1
0 0 0 0 0

b-Tests (subtree E1)

X p. and p.k
J J

-108-

1 2 3 4 56 7 8 9 10 11 12 13 14 15 16

- 0 1 - - - - - - - - - - -
- 1 0 - - - - - - - - - - -

p2 - 1 - - 1

- 0 - - 1
- 1 - - 0

0 - - - - 1
1 - - - - 0

p4 - - 1 - - 1 -

0--1---1
1--o---1
1 1 - - - 0

p5 - - 1 - - - - -

0 - - 1 - - - - -
1 - - 0 - - - - -
1--1----

1 1 -

0 1 -
1 0 -
1 1

1
1

- 0

1
1

- 0

0 - 1
1 - - - - - 0

- - - - 1

0 - - - - 1
1 - - - - 0 1
1----10

Similarly, we get b-tests for subtree E2.

ajk

1 2 3 4 56 7 8 9 10 11 12 13 14 15 16

0 1
1 0

0 0
0 1

0
1

0
1
1

0
1
1

1
0

0
1
1

1
0

1
0
1

1
0
1

0 1
1 0
1 1

1
1
0

0
1

1 1
0 1
1 0

1
1
0

1
1
0

1
0

-109-

Efficiency: For n = 20 inputs we get 3n- 1 multiple faults, i.e.
320 - 1 = 3.487 • 109.

All these faults are automatically covered by the lists for a-tests
and b-tests.

-111-

References

/1/ Z. Kohavi, Switching and Finite Automata Theory
Mc Graw-Hill Book Company, New York 1978

/2/ J. P. Hayes, Computer Architecture and Organization
Mc Graw-Hill Book Company, New York 1978

/3/ K. E. Iverson, A Programming Language
John Wiley and Sons Inc., New York 1962

/4/ B. Girling, H.G. Moring
Logic and Logic Design
Intertext Books, International Texbook
Company Limited, 1973

/5/ V. T. Rhyne, ~t al.
A new Technique for the Minmization of Switching Functions
IEEE-Trans. on Computers
Vol. C-26, pp. 757 -763 (1977)

/6/ M. Davio, J.-P. Deschamps, A. Thayse
Discrete and Switching Functions
Mc Graw-Hill Book Company,
New York 1978

/7/ R. J. Nelson, Simplest Normal Truth Functions
J. Symboliclogic, Vol. 20 pp. 105-108, (1954)

/8/ B.L. Hulme, R. B. Worrell
A Prime Implicant Algorithm with Factoring
IEEE-Trans. on Computers
Vol. C-24, pp. 1129-1131 (1975)

/9/ J. B. Fussell, W. E. Vesely
A new Methodology for obtaining
Cut Sets for Fault Trees
Trans. Amer. Nucl. Soc., Vol. 15, pp. 262-263,
June 1972

-112-

/10/ R. G. Bennetts
On the Analysis of Fault Trees
IEEE Trans. on Reliability
Vol. R-24, pp. 175-185 (1975)

/11/ K. Nakashima, Y. Hattori
An Efficient Bottom-up Algorithm for Enumerating
Minimal Cut Sets of Fault Trees
IEEE-Trans. on Reliability, Vol. R-28 pp. 353-357
(1979)

/12/ M. A. Breuer, A. D. Friedman,
Diagnosis & Reliable Design of Digital Systems
Pitman Publ. Ltd., London, 1977

/13/ J. D. Murchland, G. G. Weber

. I 14/

A Moment Method for the Calculation of a Confidence
Interval for the Failure Probability of a System
Proceedings of 1972 Annual
Reliability and Maintainability Symposium, San Francisco,
pp. 565-577

R. E. Barlow, F. Proschan
Statistical Theory of Reliability and Life Testing
(Probability Models)
Holt, Rinehart and Winston Inc., New York, 1975

/15/ U. Höfle-Isphording
Zuverlässigkeitsrechnung
Springer Verlag, Berlin, 1978

/16/ VDI Richtlinie 4008/Blatt 7
Strukturfunktion und ihre Anwendung
(Entwurf), Verein Deutscher Ingenieure, Düsseldorf 1979

/17/ S. C. Lee, Modern Switching Theory and Digital Design
Prentice-Hall Inc., Englewood Cliffs,
New Jersey, 1978

-113-

/18/ I. Kohavi, Z. Kohavi,
Detectionof Multiple Faults on Combinational
Logic Networks
IEEE-Trans. on Computers, Vol. C-21, pp. 556-568
(1972)

/19/ G. G. Weber
Untersuchung des Zusammenhangs zwischen Fehlerbaumanalyse
und Störfallanalyse am Beispiel des Photometer-Leitfähig
keitsmeßstandes, KfK 2909, Februar 1980,
Kernforschungszentrum Karlsruhe

/20/ D. Stöckle,
Unpublished Results

/21/ H. E. Lambert
F?ult Trees for Decision Making in Systems Analysis
(Ph. D. -Thesis), UCRL-51829, University of California,
Livermore, 1975

/22/ S. L. Salem, G. E. Apostolakis, D. Okrent
A new Methodology for the Computer-Aided
Construction of Fault Trees
Ann. of Nucl. Energy, Vol. 4, pp. 417-433,
Pergarnon Press 1977

/23/ S. A. Lapp, G. J. Powers
Computer Aided Synthesis of Fault Trees
IEEE-Trans. on Reliability, Vol. R-26, pp. 2-13, 1977
and
S. A. Lapp, G. J. Powers
Update of Lapp-Powers Fault-Tree Synthesis Algorithm
IEEE-Trans. on Reliability, Vol. R-28, pp. 12-15, 1979

/24/ S. Fenyi
Unpublished Results

/25/ K. Nakashima
Studies on Reliability Analysis and Design of
Camplex Systems,
PhD- Thesis, KYOTO UNIVERSITY, Kyoto Japan, March 1980

- 114-

/26/ W. Görke,
Generating Tests for Functional Expressions in
Self-Diagnoses and Fault-Tolerance, Proceedings,
MarioDal Cin, Elmar Dilger (Eds.)
Attempo Verlag, Tübingen 1981

