Failure Diagnosis and Fault Tree Analysis

G. Weber

Institut für Datenverarbeitung in der Technik Projekt Nukleare Sicherheit

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Datenverarbeitung in der Technik

Projekt Nukleare Sicherheit KfK 3384

Failure Diagnosis and
Fault Tree Analysis

G. Weber

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

ISSN 0303-4003

Abstract

With the increased complexity of many current systems, safety and reliability considerations are becoming increasingly importantant. Various methods and techniques employed for design, construction and operation of nuclear reactors, reprocessing plants, chemical plants etc. lead to more safety and reliability. This is due to a great extent to an increase of reliability and maintainability on the component level. However, this increase may be offset by a considerable complexity of the system. Here methods of reliability engineering are required. A systematic approach to the problems is needed. Thus reliability engineering uses a number of strategies, among them the techniques of reliable design (e.g. redundancy) and techniques of failure diagnosis (e.g. automatic search for failed units).

In this report a methodology of failure diagnosis for complex systems is presented. Systems which can be represented by fault trees are considered. This methodology is based on switching algebra, failure diagnosis of digital circuits and fault tree analysis. Relations between these disciplines are shown. These relations are due to Boolean algebra and Boolean functions used throughout. It will be shown on this basis that techniques of failure diagnosis and fault tree analysis are useful to solve the following problems:

- Describe an efficient search of all failed components if the system is failed.
- Describe an efficient search of all states which are close to a system failure if the system is still operating.

The first technique will improve the availability, the second the reliability and safety.

For these problems, the relation to methods of failure diagnosis for combinational circuits is required. Moreover, the techniques are demonstrated for a number of systems which can be represented by fault trees.

Zusammenfassung

Mit der steigenden Komplexität von zahlreichen Systemen sind heutzutage Sicherheits- und Zuverlässigkeitsüberlegungen von steigender Bedeutung. Verschiedene Methoden und Techniken, die bei Entwurf, Konstruktion und Betrieb von Reaktoren, Wiederaufarbeitungsanlagen, chemischen Anlagen U.S.w. eingesetzt werden, ergeben mehr Sicherheit und Zuverlässigkeit. Dies ist insbesondere auf eine Erhöhung von Zuverlässigkeit und Instandhaltbarkeit auf der Komponentenebene zurückzuführen. Jedoch können diese Verbesserungen durch eine erhebliche Komplexität des Systems zumindest abgeschwächt werden. Darum sind Methoden der Zuverlässigkeitssicherung erforderlich. Eine systematische Behandlung dieser sicherheitsrelevanten Probleme ist notwendig. So verwendet die Zuverlässigkeitssicherung eine Anzahl von Strategien. Typische Beispiele sind die Behandlung von Zuverlässigkeitsfragen beim Entwurf (z.B. Verwendung von Redundanz) und der Einsatz von Fehlerdiagnose (z.B. automatische Erkennung von ausgefallenen Einheiten). In diesem Bericht soll eine Methodologie der Fehlerdiagnose für komplexe Systeme dargestellt werden. Die Methoden sind anwendbar auf Systeme, die durch Fehlerbäume dargestellt werden können. Die Methologie beruht auf Oberlegungen aus Schaltalgebra, Fehlerdiagnose von digitalen Schaltnetzen und Fehlerbaumanalyse. Die Beziehungen zwischen diesen Disziplinen werden aufgezeigt. Die Beziehungen beruhen insbesondere auf der Boole'schen Algebra und den Boole'schen Funktionen, die im ganzen Bericht verwendet werden.

Es kann auf dieser Basis gezeigt werden, daß Techniken der Fehlerdiagnose und Fehlerbaumanalyse nützlich sind, folgende Probleme zu behandeln:

- Eine effiziente Suche aller ausgefallenen Komponenten (wenn das System ausgefallen ist), soll ausgeführt werden.
- Eine effiziente Suche aller Zustände, die in der Nähe eines Systemausfalls sind (wenn das System noch intakt ist), soll ausgeführt werden. Die erste Technik wird die Verfügbarkeit erhöhen, die zweite die Zuverlässigkeit und Sicherheit.

Für diese Probleme ist die Beziehung zu Methoden der Fehlerdiagnose kombinatorischer Schaltnetze erforderlich. Die angeführten Techniken werden für eine Anzahl von Systemen demonstriert, die durch Fehlerbäume dargestellt sind.

Figures

1. Major gate types
2. Karnaugh-map
3. Parity bit generator
4. Combinational Circuit
5. Graphic Representation
6. Redundant Circuit
7. Example (Top down)
8. Example (Bottom up)
9. Illustrative Example of Fault Tree
10. Cubical Representation
11. AND-Gate with s-a-1 fault
12. Bridge Fault
13. Combinational Circuit
14. Fault Table
15. Simplified Fault Table
16. Combinational Circuit
17. Combinational Circuit
18. Irredundant Circuit
19. Network
20. System S_{1}
21. System S_{2}
22. AND-OR-network
23. AND-OR-network
24. Karnaugh-map
25. Schematic Diagram of Device
26. Fault Tree
27. Standby System
28. Fault Tree
29. Residual Heat Removal Fault Tree
30. Block Diagram for Nitric Acid Cooler
31. Input-output Mode1s
32. Flow Diagram for Nitric Acid Cooler Process
33. Fault Tree for Nitric Acid Cooler
34. Subtree
35. Illustrative Example of Fault Tree
CONTENTS
36. Introduction 1
37. Introduction to Switching Algebra 2
38. Introduction to Failure Diagnosis 41
39. Fault Trees 53
40. Diagnosis Procedures 61
41. Tests for two Types of Faults 69
42. Examples with Various Fault Trees 83
Reference 111

INTRODUCTION

The design, construction and operation of complex systems (nuclear reactors, reprocessing plants, chemical plants etc.) has to meet requirements regarding safety, reliability and availability. Here methods of reliabiliy engineering are required. A systematic approach to these problems is needed. Thus reliability engineering uses a number of strategies, among them the techniques of reliable design (e.g. static and dynamic redundancy) and techniques of failure diagnosis (e.g. automatic search for failed units, design for diagnosability).
In this report a methodology for complex systems is presented. Systems which can be represented by fault trees are considered. The following subjects are significant for our approach:
Concepts of switching algebra including some questions of representation. This leads to the representation by prime implicants and min cuts (sect. 1). Basic concepts of failure diagnosis are introduced (sect. 2). Concepts of fault tree analysis are introduced: coherence, min cuts (sect. 3). Diagnosis procedures are introduced which may be applied to systems represented by fault trees: A test which leads to a prompt failure diagnosis for a failed system. A test which finds all states adjacent to system failure. The first test increases availability, the second test increases safety (sect. 4). Then a discussion of the corresponding concepts of failure diagnosis of combinational circuits is given (sect. 5). Finally, a number of examples demonstrates the use of the introduced methods for nuclear and other technologies. Results of diagnosis and conclusions on the efficiency of test methods are presented (sect. 6).

While all methods mentioned have been used extensively either for computer science or for safety questions a unified approach was not yet available.

1. Introduction to Switching Algebra

1.1 Basic Concepts

1.2 Basic Properties

1.3 Switching Functions
1.4 Representations of Boolean Expressions
1.5 Prime Implicants and Coverage
1.6 Methods to obtain Prime Implicants
1.7 Algorithms to find a simplified sum-of-products Representation
1.8 Cubical Representation of Boolean Functions

1. Introduction to Switching Algebra

We give some basic concepts for switching algebra. This technique is closely related to Boolean algebra. It is useful for

- failure diagnosis and
- fault tree analysis.

1.1 Basic concepts

We assume the existence of a two-valued switching-variable "x" which can assume the values 0 and 1. (Note, that 0,1 are not the real numbers.) No other values are possible here.

A switching algebra is an algebraic system consisting of the set $\{0,1\}$, two binary operations called 'disjunction'(inclusive OR), 'conjunction' (AND), and one unary operation called 'negation' (NOT).

We write $+(V)$ for OR, • (\wedge) for AND, - for NOT.

The definitions of the following relations (AND, OR, NOT, etc.) are given in Fig. 1 (see /1/).

All the gate definitions exept NOT can easily be generalized to allow any input number.

A set G of gate types is called 'complete' if any combinational function can be realized by a circuit that contains gates from G only. Examples of complete sets are $\{$ NAND $\},\{$ NOR $\},\{A N D$, NOT $\}$, $\{O R, N O T\},\{A N D, O R, N O T\}$.

We use the set $\{A N D, O R, N O T\}$ as complete set G.

Name	Circuit symbol	Truth table	Equation
AND		x_{1} x_{2} z 0 0 0 0 1 0 1 0 0 1 1 1	$z \stackrel{1}{T} x_{1} x_{8}$ or $z=x_{1} \wedge x_{2}$
OR		x_{1} x_{2} z 0 0 0 0 1 1 1 0 1 1 1 1	$z=x_{1}+x_{2}$ or $z=x_{1} \vee x_{2}$
NOT		x z 0 1 1 0	$z=\bar{x}$
NAND		x_{1} x_{2} z 0 0 1 0 1 1 1 0 1 1 1 0	$z=\overline{x_{1} x_{2}}$
NOR		x_{1} x_{2} z 0 0 1 0 1 0 1 0 0 1 1 0	$z=\overline{x_{1}+x_{2}}$
EXCLUSIVEOR		x_{1} x_{2} z 0 0 0 0 1 1 1 0 1 1 1 0	$z=x_{1} \oplus x_{2}$

Fig. 1 Major Gate Types

1.2 Basic Properties

We mention a few basic properties of switching algebra. They are also sufficient for a set of axioms. Note that there are also other sets of axioms.

Let x, y, z, \ldots be variables. Then we use the following pairs of identities:

Idempotency
$x+x=x$
$x \cdot x=x$
Note the difference from arithmetic where no idempotency law exists.
Commutativity
$x+y=y+x$
$x \cdot y=y \cdot x$
Associativity
$(x+y)+z=x+(y+z)$
$(x \cdot y) \cdot z=x \cdot(y \cdot z)$
Distributivity
$x \cdot(y+z)=x \cdot y+x \cdot z$
$x+y \cdot z=(x+y)(x+z)$
Note the difference from arithmetic.
Complementation
$x+\bar{x}=1$
$x \cdot \bar{x}=0$
Note the difference from arithmetic.
From the Basic Concepts (1.1) and Basic Properties we can deduce many theorems. Two important theorems are the theorems of De Morgan:
$\overline{x+y}=\bar{x} \cdot \bar{y}$
$\overline{x \cdot y}=\bar{x}+\bar{y}$

We can use truth-tables to prove De Morgan's theorems:

x	y	\bar{x}	\bar{y}	$x+y$	$\overline{x+y}$	$\bar{x} \bar{y}$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Note
For n variable we can write
(a) $\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\ldots+x_{n}$
or $\left.\int_{i=1}^{n} x_{i}=x_{1} v x_{2} v \cdots \cdots x_{n}\right\}$
Disjunction, sum-term
(b) $\prod_{i=1}^{n} x_{i}=x_{1} x_{2} \cdots x_{n}$

Conjunction, Boolean monomial, product-term
or

$$
\prod_{i=1}^{n} x_{i}=x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}
$$

This can be represented by an AND-gate or OR-gate with n inputs.

1.3 Switching Functions

We introduce the concept of switching function, extending the switching algebra to functions of binary variables. The switching function is a Boolean function. Thus it is clearly related to the structure function.

Def.: A 'switching function'

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

of n two-valued variables $x_{1}, x_{2}, \ldots, x_{n}\left(x_{1}=0,1\right)$ is a correspondence which assigns for each of the 2^{n} combinations one value of $\{0,1\}$.

The switching function can be represented using
(a) a truth table
(b) maps
(c) graphic representations, diagrams, fault trees
(d) Boolean expressions, structure functions.

Clearly, for a high number of variables, (a) and (b) become extremely
large. E.g. we will habe for n variables 2^{n} rows in the truth table.

Example:

We will introduce all representations (a) - (d) for an example:

(a) Truth table

A parallel parity-bit generator 12/: This unit must produce an output 1 if and only if an odd number of its inputs have value 1. Take the example of three-bit code words, i.e. the circuit has three inputs x_{1}, x_{2}, x_{3} and its output f must be equal to 1 if 1 or 3 of the inputs are 1 . We can immediately construct the truth table:

row	x_{1}	x_{2}	x_{3}	f	Number of inputs $=1$
0	0	0	0	0	0, even
1	0	0	1	1	1, odd
2	0	1	0	1	1, odd
3	0	1	1	0	2, even
4	1	0	0	1	1, odd
5	1	0	1	0	2, even
6	1	1	0	0	2, even
7	1	1	1	1	3, odd

Table I, truth table
(b) Map

We give a map-representation, based on the truth table.

$$
\begin{array}{lllllll}
x_{1} & x_{2} & 0 & 0 & 0 & 1 & 1
\end{array}
$$

x_{3}	0	1	0	1
0	1	0	1	0
1				

Fig. 2:
Map
(c) Graphic Representation

Fig. 3: parallel parity-bit generator
(d) Boolean Representation (Boolean polynomial).

For this circuit we get as Boolean representation:
$f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3} \vee x_{1} \bar{x}_{2} \bar{x}_{3} \vee \bar{x}_{1} x_{2} \bar{x}_{3} \vee \bar{x}_{1} \bar{x}_{2} x_{3}$
i.e. $f=1 \quad$ if either x_{1} and x_{2} and x_{3} are $=1$ or exactly one input is $=1$.

It is possible to represent switching functions using different techniques. Each will lead to the same truth table.

Canonical forms

We recall that truth-tables are a means for representing switching functions (Boolean functions). We also mentioned that Boolean expressions may be written as Boolean polynomials. Now we give some considerations which are

- closely related to truth tables and are
- easily generalized for switching algebra (Boolean algebra).

Assume, we have a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ represented in a truth table. Then we get two representations which are called 'canonical forms' which will be discussed next:

- the disjunctive normal form (dnf)
- the conjunctive normal form (cnf).

Disjunctive normal form

We introduce the concept of 'minterm'. A minterm is a conjunction (product) of n variables:

$$
p\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Each variable may be either complemented or uncomplemented. The characteristic property of a minterm is that it assumes the value 1 for exactly one combination of the variables.

Then we can write any Boolean function as a disjunction of minterms, called disjunctive normal form (dnf):

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\bigvee_{i=0}^{2^{n}-1} c_{i} p_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

where the constant c_{i} is defined as follows:
$c_{i}=1$ denotes the minterms which in a disjunction generate the function
$f\left(x_{1}, x_{2}, \cdots, x_{n}\right), c_{i}=0$ is related to all other minterms.

Relation to truth-table

For each row j where $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, x_{n}\right)=1$, we get a minterm

$$
p_{j}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

If in this row we have

$$
\begin{array}{lll}
x_{1}=0 \\
x_{2}=1
\end{array} \quad \text { we write } \quad \overline{x_{i}} \quad \text { in } p_{j}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Now we get a disjunction of minterms

$$
p_{j}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

which is equal to the given function
f $\left(x_{1}, x_{2}, \cdot \cdot, x_{n}\right):$

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\bigvee_{j \varepsilon r_{1}} p_{j}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

where j goes over all rows where

$$
f=1 \text {, i.e. } r_{1} \text { is the set of all }
$$ row-numbers where $f=1$.

Note:
$f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{i=0}^{2^{-1}} c_{i} p_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{j \varepsilon r_{1}} p_{j}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$

Example

We refer again to Table I (parity-bit generator).
It can be seen that $f\left(x_{1}, x_{2}, x_{3}\right)=1$ for the set $r_{1}, r_{1}=\{1,2,4,7\}$. We get the minterms p_{j} :

Decimal notation

$$
\begin{array}{ll}
\text { row } 1: 001 \longleftrightarrow p_{1}=\bar{x}_{1} \bar{x}_{2} x_{3} \\
\text { row } 2: & 0.10 \longleftrightarrow p_{2}=\bar{x}_{1} x_{2} \bar{x}_{3} \\
\text { row } 4 & 100 \longleftrightarrow p_{4}=x_{1} \bar{x}_{2} \bar{x}_{3} \\
\text { row } 7 & 111
\end{array} \begin{aligned}
& 1 \\
& 2
\end{aligned}
$$

The disjunctive normal form is

$$
V_{j \in r_{1}} p_{j}=\bar{x}_{1} \bar{x}_{2} x_{3} v \bar{x}_{1} x_{2} \bar{x}_{3} v x_{1} \bar{x}_{2} \bar{x}_{3} v x_{1} x_{2} x_{3}
$$

or, in decimal notation $f\left(x_{1}, x_{2}, x_{3}\right)=\sum(1,2,4,7)$

Note:

1. This form is a sum-of-products-form (sop), if we consider the disjunction as sum, the conjunction as product, a special form of a Boolean polynomial.
2. There are some noteworthy properties of the dnf: There is only one dnf for a given Boolean function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, equivalent to the únique truth table.
3. All terms are disjoint, $p_{j} \cdot p_{k}=0$ for $j \neq k$.

Assume the contrary, i.e. each variable of p_{j} which is uncomplemented (complemented) in p_{j} must also be uncomplemented (complemented) in p_{j}. Thus p_{j} and p_{k} cannot be different, i.e. $j=k$.

To obtain the disjunctive normal form for any given Boolean function a simple procedure can be used. This procedure will also be useful for further considerations. It can be shown that this procedure always leads to a result / $1 /$.
Step 1: Expand the given function to a sum of products form which needs no brackets.

Step 2: Examine each product term. If it is a minterm, retain it, and continue to the next term.

Step 3: In each product which is not a minterm check the variables that do not occur. For each x_{i} that does not occur multiply the product by $\left(x_{i}+\bar{x}_{i}\right)$.
Step 4: Multiply out all products and eliminate redundant terms.

Example

Determine the dnf for the following function

$$
f(x, y, z)=\bar{x}_{3}+x_{2}\left(\bar{x}_{1}+x_{1} x_{3}\right)
$$

This function could be represented graphically as follows:

Fig. 4

Step 1:

$f\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{3}+\bar{x}_{1} x_{2}+x_{1} x_{2} x_{3}$

Step 2:
$x_{1} x_{2} x_{3}$ is a minterm

Step 3:
$f\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{3}\left(x_{2}+\bar{x}_{2}\right)\left(x_{1}+\bar{x}_{1}\right)+\bar{x}_{1} x_{2}\left(x_{3}+\bar{x}_{3}\right)+x_{1} x_{2} x_{3}$

Step 4:
$f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} x_{3}$
$+x_{1} x_{2} x_{3}$

Note
A similar discussion is possible for 'maxterms'. A maxterm is a disjunction (sum) of n variables. The conjunction of maxterms is called a conjunctive normal form. This will not be of much use for problems discussed here.

1.4 Representations of Boolean Expressions

It is useful to have several alternative representations for Boolean expressions /3/. Assume again we have a switching function given as follows:

Fig. $5 \quad$ Graphic Representation

The tree representation (Fig. 5b) is probably most graphic, we can easily see the predecessors, sucessors etc. We can write the expression also using the usual Boolean operations,

$$
f=((q \wedge r) \vee p) \wedge(s \vee \bar{t})
$$

We also want to introduce a representation which will be needed for some methods (as discussed in 1.7.). We introduce the following notation for Fig. 5b:

For branches between vertices we give
1 if the branch goes to the right
2 if the branch goes to the left.
Thus we get (Fig. 5c):

Fig. 5c
E.g. for r we can write 122 , for the gate $r \wedge p$ we can write 12 (as 'coordinates'). We can represent the tree as a data structure, called the 'full left list matrix' /3/:

Here in collumn 1 is the number of predecessors, in collumn 2 the type of operator or operand, in collumn $3,4, \cdots$ the numbers giving 'coordinates'.

Collumn	1	2	3	4	5
2	\wedge				
2	v	1			
0	p	1	1		
2	\wedge	1	2		
0	q	1	2	1	
0	r	1	2	2	
2	v	2			
0	s	2	1		
1	-	2	2		
0	t	2	2	1	

It is sometimes convenient, to simplify the full left list matrix to a left list matrix, dropping the coordinates:
collumn 12

2	\wedge
2	v
0	p
2	\wedge
0	q
0	r
2	v
0	s
1	-
0	t

It can be shown that, if a binary relation such as \wedge, is written in front of its two operands in the form $\wedge x y$ (instead of $x \wedge y$), then by sonsistent use of such a notation ('prefix notation') no parentheses are necessary. As polish equivalents of Boolean connectives, we get (/3/, /4/):

Boolean	Polish	Reverse Polish
\bar{x}	,$- x$	$x,-$
$x \wedge y$	\wedge, x, y	x, y, \wedge
$x \vee y$	v, x, y	x, y, v
$x \oplus y$	\oplus, x, y	x, y, \oplus

Thus our tree may be written in a Lucasiewicz- or parenthesis-free-notation (also called Polish notation):
(a) Polish Notation, prefix notation

$$
(\wedge, v, p, \wedge, q, r, v, s,-, t)
$$

(b) Reverse Polish Notation, postfix notation

$$
(t,-, s, v, q, r, i \wedge, p, v, \wedge)
$$

Note:

- The reverse Polish notation requires that the operators are written in reverse order. Since all operators needed here are related to commutative operations, the order of the variables is not affected.
- If the operators cover more than two variables this should be indicated, e.g. $x \wedge y \wedge z c a n$ be written $\wedge(3), x, y, z$.

It will be seen in sect. 1.7 how the left list matrix and the reverse polish notation is of direct relevance to problems of switching theory and fault tree analysis.

1.5 Prime Implicants and Coverage

A switching function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is said to cover another function $g\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, denoted

$$
\mathrm{f} \supseteq \mathrm{~g}
$$

if f assumes the value 1 whenever g does. Thus, if f covers, then it has a 1 in every row in the truth table in which g has a 1.

Example:
Let $f=x_{1} \oplus x_{2} \quad$ (Exclusive OR)

$$
g_{1}=x_{1} \bar{x}_{2}, \quad g_{2}=\bar{x}_{1} x_{2}
$$

x_{1}	x_{2}	f
0	0	0
1	0	1
0	1	1
1	1	0

x_{1}	x_{2}	$\mathrm{~g}_{1}$	$\mathrm{~g}_{2}$
0	0	0	0
1	0	1	0
0	1	0	1
1	1	0	0

Thus: $\quad f \supseteq g_{1} \quad$ and $\quad f \supseteq g_{2}$
If f covers g and g covers f, then f and g are equivalent.

Example:
Let

$$
\begin{aligned}
& f=x_{1} \leqslant x_{2} \text { and } \\
& g=g_{1} \vee g_{2}
\end{aligned}
$$

Then f and g are equivalent.
Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a switching function and $h\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a product of literals (conjunction). If f covers h, then h is said to imply f, or h is said to be an implicant of f. The implicant is denoted $h-f$.

Example: g_{1} and g_{2} are implicants of f.

Definition: A prime implicant p of a function f is a product term which is covered by f such that the deletion of any literal from p results in a new product which is not covered by f. In other words: p is a prime implicant if and only if p implies f but does not imply any product with fewer literals which also implies f. The set of all prime implicants will be denoted $\left\{p_{i}\right\}$.

Example:
$\bar{x} y$ is a prime implicant of

$$
f=\bar{x} y+x z+\bar{y} \bar{z}
$$

since it is covered by f but neither \bar{x} nor y alone implies f.
A combinational circuit is 'redundant' if it is possible to remove lines and/or gates in such a way that the resulting circuit is equivalent. A combinational circuit which is not redundant, will be called irredundant.

Example:

Fig. 6

Redundant Circuit

This circuit is redundant.

$$
f=\left(x_{1}+x_{2}\right)\left(x_{2}+x_{3}\right)=x_{1} x_{3}+x_{2}
$$

Every circuit may be represented as a sum-of-products form /1/.
Theorem: Every irredundant sum-of-products (sop) equivalent to f is a union of prime implicants of f :

$$
f=\prod_{i=1}^{\ell} p_{i}
$$

Proof: Let f^{*} be an irredundant sop-expression equivalent to f, and suppose that f contains a product term p which is not a prime implicant. Since p is not a prime implicant, it is possible to replace it with another product term which consists of fewer literals. Hence f contains redundant literals, which contradicts our initial assumption.

1.6 Methods to obtain Prime Implicants

We discuss some methods to obtain prime implicants. Many methods use explicitly the representation of Boolean functions by min-terms. This is true e.g. for the Quine-Mc Cluskey method and others, given in the literature e.g. /5/, /6/.

It seems to be more important, to have a method which may be used for a Boolean function represented without using min-terms. This will also prove useful for fault trees $/ 7 /$.

Nelson's Algorithm
The following remarks are in order:

- F is a Boolean function which already has been transformed into a sum-of-products form.
- If in this algorithm a Boolean expression E is 'complemented', this means not only applying the complement to the expression, but also repeatedly using De Morgan's rules, i.e.
$E=x y+\bar{y} z$ leads to
$\bar{E}=\overline{x y+\bar{y} z}=\overline{x y} \cdot \overline{\bar{y} z}=(\bar{x}+\bar{y})(y+\bar{z})$

Algorithm 1

Step 1 Complement F. Obtain F applying De Morgan's rules. Expand \bar{F} into a disjunctive normal form. Drop zero products ($x \bar{x}=0$),
repeated literals ($x=x=x$),
make absorptions $(x+x y=x)$.
This result is $\bar{\Phi}$.

Step 2 Complement $\bar{\Phi}$
Obtain Φ applying De Morgan's rules.
Expand Φ into a disjunctive normal form.
Drop zero products,
repeated literals, make absorptions.
The result is $\sum_{j} p_{j}$, the sum of all prime implicants, and only of prime implicants.

Example:

Step 1
$F=x_{1} x_{2}+\bar{x}_{2} x_{3} x_{4}+x_{3} \bar{x}_{4}$
Complement:
$\bar{F}=\left(\bar{x}_{1}+x_{2}\right)\left(x_{2}+\bar{x}_{3}+\bar{x}_{4}\right)\left(\bar{x}_{3}+x_{4}\right)$
Expand and simplify:
$\bar{\Phi}=\bar{x}_{1} x_{2} x_{4}+\bar{x}_{1} \bar{x}_{3}+\bar{x}_{2} \bar{x}_{3}$

Step 2 Complement
$\Phi=\left(x_{1}+\bar{x}_{2}+\bar{x}_{4}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)$
Expand and simplify:

$$
\sum p_{i}=x_{1} x_{2}+x_{1} x_{3}+\bar{x}_{2} x_{3}+x_{3} \bar{x}_{4}
$$

It is often useful to simplify the Boolean functions needed in Algorithm 1 by factoring.

Example:

$$
F=x_{1} x_{2}+\bar{x}_{2} x_{3} x_{4}+x_{3} \bar{x}_{4}
$$

may be rewritten (factored) as

$$
F=x_{1} x_{2}+x_{3}\left(\bar{x}_{2} x_{4}+\bar{x}_{4}\right)
$$

Then the algorithm may be done with a considerable amount of saving operations /8/.

Algorithm 2 (with factoring)

Step 1 Factor anywhere possible in F.
Complement F.
Obtain \bar{F} applying De Morgan's rules.
Expand \bar{F} into a disjunctive normal form.
Drop zero products ($x x=0$),
repeated literals ($x x=x$),
make absorptions $(x+x y=x)$.
The result is $\bar{\Phi}$.

Step 2 Factor anywhere possible in $\bar{\Phi}$. Complement $\bar{\Phi}$.
Obtain Φ applying De Morgan's rules.
Expand Φ into a disjunctive normal form.
Drop zero products,
repeated literals,
make absorptions.
The results is $\sum_{i} p_{i}$, the sum of all prime implicants, and only of prime implicants.

Example:
Step $1 \quad F=x_{1} x_{2}+\bar{x}_{2} x_{3} x_{4}+x_{3} \bar{x}_{4}$

Factor: $F=x_{1} x_{2}+\left(\bar{x}_{2} x_{4}+\bar{x}_{4}\right) x_{3}$

Complement:

$$
\left.\bar{F}=\left(\bar{x}_{1}+\bar{x}_{2}\right)\left(x_{2}+\bar{x}_{4}\right) x_{4}+\bar{x}_{3}\right)
$$

Expand and simlify:

$$
\bar{\Phi}=\bar{x}_{1} x_{2} x_{4}+\bar{x}_{1} \bar{x}_{3}+\bar{x}_{2} \bar{x}_{3}
$$

Step 2

Factor: $\bar{\Phi}=\bar{x}_{1}\left(x_{2} x_{4}+\bar{x}_{3}\right)+\bar{x}_{2} \bar{x}_{3}$
Complement:

$$
\begin{aligned}
\Phi & =\overline{\bar{x}_{1}\left(x_{2} x_{4}+\bar{x}_{3}\right)} \cdot \overline{\bar{x}_{2} \bar{x}_{3}} \\
& =\left(x_{1}+\left(\bar{x}_{2}+\bar{x}_{4}\right) x_{3}\right)\left(x_{2}+x_{3}\right)
\end{aligned}
$$

Expand and simp1ify:

$$
\sum_{i} p_{i}=x_{1} x_{2} x_{1} x_{3}+\bar{x}_{2} x_{3}+x_{3} \bar{x}_{4}
$$

Notice the savings in the number of terms if F and Φ has been factored.

1.7 Algorithms to find a simplified sum-of-products representation (sop)

The algorithms to find a simplified.s-o-p-representation can be used for the Nelson-Algorithm, Algorithm 1. For some special cases, i.e. Boolean functions which can be represented using AND and OR alone (but without complements; see sect. 3.3) these algorithms even give all prime implicants /9/.

Top-Down-Algorithm (Fussell's Algorithm)
We assume a switching network represented by a logical diagram.

Algorithm 3

Step 0 Start at top A_{0}.

Step 1 Search for predecessors of $A_{i}(i=1,2, \ldots)$
Define predecessors of A_{i}.
$\left(A_{j}^{1}, A_{i}^{2}\right)=\operatorname{pred}\left(A_{j}\right)$.

Step 2 If A_{i} is an OR-gate, we get
$A_{i}^{1}+A_{i}^{2}=A_{i}$, rename A_{i}^{1}, A_{i}^{2}
If A_{i} is an AND-gate, we get
$A_{i}^{1} \cdot A_{i}^{2}=A_{i}$, rename A_{i}^{1}, A_{i}^{2}

Step 3 Multiply out all identified terms to obtain a sum of products. If the sum-of-products contains still gates $\left(A_{j}\right)$ go to step 1 , else go to step 4.

Step 4 The sum-of-product expression (consisting of components) can be simplified: Drop repeated literals, make absorbtions.

This switching network can be represented in a form which contains all gates and inputs but is closer to graph theory.

Fig. 7

Start at A_{0}
A_{0} AND-gate
$A_{1} \cdot A_{2}=A_{0}$

A_{2} OR-gate
$x_{2}+x_{4}=A_{2}$
$A_{1} x_{2}+A_{1} x_{4}$

A_{1} OR-gate
$x_{1}+A_{3}=A_{1}$
$\left(x_{1}+A_{3}\right) x_{2}+\left(x_{1}+A_{3}\right) x_{4}$
$=x_{1} x_{2}+A_{3} x_{2}$

$+x_{1} x_{4}+A_{3} x_{4}$
A_{3} AND-gate
$x_{2} \cdot x_{3}=A_{3}$
$x_{1} x_{2}+x_{2} x_{3} x_{2}$
$+x_{1} x_{4}+x_{2} x_{3} x_{4}$

If repeated literals are dropped and if absorptions are made, we get $\Phi=x_{1} x_{2}+x_{1} x_{4}+x_{2} x_{3}$

Bottom-Up-Algorithm (Bennett's Algorithm)

The Bottom-up-algorithm is a development of Bennett's algorithm which leads to a sum of products representation.
We recall that the reverse polish notation (left list matrix) introduced in sect. 1.4 is used /10, $11 /$.
We have again the tree which was also used for our top-down-algorithm.

Fig. 8 Example

We can characterize all branches and thus get a full left list matrix:

$\begin{aligned} & A_{0} \\ & A_{2} \end{aligned}$	2	\wedge	
	2	\wedge	1
	0	x_{4}	11
	0	x_{2}	12
A_{1}	2	v	2
A_{3}	2	\wedge	21
	0	x_{3}	211
	0	x_{2}	212
	0	${ }^{1}$	22

Full left list matrix
$\left(x_{1}, x_{2}, x_{3}, \wedge, v, x_{2}, x_{4}, v, \wedge\right)$
reverse polish notation

Now we describe the bottom-up-algorithm. Note, that here only AND and ORoperators are assumed. Complements are assumed to be with the variables only.

A general form of this algorithm which will be useful for large and complex trees will be discussed later /10,11/.

Bottom-up-algorithm
Algorithm 4
Step $1 \quad$ Left list matrix L given

Step 2 Take next item from L

Step 3 If item Operator, go to 4, else if item Operand, go to 5.

Step 4 If the operator is AND (1), withdraw the last 1. items in the list (stack) and make a conjunction, else if the operator is $O R$ (1), withdraw the last 1 items in the list (stack) and make a disjunction.

Step 5 Push operand down into list (stack).

Step 6
Check if terms like

$$
x \bar{x}, \quad x x, \quad x+x y
$$

are in the result and drop/simplify.

Step 7 Evaluate the already withdrawn terms to obtain s-o-pexpressions. Go to 2 .

Step 8 If L is empty, a s-o-p-expression for the whole Boolean function is obtained.

Example 1

2	\wedge
2	v
0	x_{4}
0	x_{2}
2	v
2	\wedge
0	x_{3}
0	x_{2}
0	x_{1}

Left list matrix L

Note: We present a number of 1 ists (stacks) showing the mechanism of Algorithm 4, and a number of reduced trees, illustrating the bottom-up-method.

Steps 2-5

Steps 6-8 give
$f=x_{1} x_{2}+x_{1} x_{4}+x_{2} x_{3}$, the $s-0-p-$ expression.

Example 2

We discuss a further example which leads to a generalization of the bottom-up algorithm. We have the following fault tree from the published literature /11,24/.

Fig. 9 Illustrative Example of Fault Tree

This fault tree is also used as an example for our section 6 (Applications of Failure Diagnosis). This fault tree is also part of the studies on hardware simulation /23/.

Note:
To simplify the representation of our left-list matrix, we make the following convention:
(a) Operands may be written in the same line as the operators if no ambiguity arises.
(b) If not otherwise indicated the number 1 (in $\wedge(1), \vee(1)$) is equal to 2.
E. g.

is written:
$\frac{3 \wedge}{0} x_{1}$
$0 x_{2}$ or more concisely $\wedge(3) \quad x_{1}, x_{2}, x_{3}$
$0 \quad x_{3}$ \qquad
We divide the tree into two left-lists (subtrees).
Note: For all primary events we write numbers $(1,2, \ldots, 15)$ only.

Left-1ist E_{1}			Left-list E_{2}		
v			v		
v	1		v	1	
$\wedge(3)$	11	8,9,13	\wedge	11	
\wedge	12		$\wedge(3)$	111	6,14,15
v	121		1	112	
\wedge	1211	5,11	\wedge	12	4,12
16	1212	(Here the simplified	v	2	
10	122	listing does not apply)	\wedge	21	
v	2		7	$\begin{array}{lll} 2 & 1 & 1 \\ 2 & 1 & 2 \end{array}$	
\wedge	21		\wedge	2121	12,15
v	211				
\wedge	2111		\wedge	2122	8,13
v		10,14	\wedge	22	
			3	221	
3	21112		v	222	2,6
1	2112				
6	212				
\wedge	22				
v	221	3,5			
2	222				

Left-list E_{1}		
3,5	$3+5$	$2 \cdot 3+2 \cdot 5$
2	2	10,14
		3
		1
		6
(1)	(2)	(3)
$2 \cdot 3+2 \cdot 5$	$2 \cdot 3+2 \cdot 5$	$2 \cdot 3+2 \cdot 5$
$10+14$	$3 \cdot 10+3 \cdot 14$	$1+3 \cdot 10+3 \cdot 14$
3	1	6
1	6	
6		
(4)	(5)	(6)
$2 \cdot 3+2 \cdot 5$	$2 \cdot 3+2.5+1 \cdot 6$	5,11
$1 \cdot 6+3 \cdot 6 \cdot 10+3 \cdot 6 \cdot 14$	$+3 \cdot 6 \cdot 10+3 \cdot 6 \cdot 14$	16
		10
(7)	(8)	(9)
$5 \cdot 11$	$16+5 \cdot 11$	$10 \cdot 16+5 \cdot 10 \cdot 11$
16	10	
10		
(10)	(11)	(12)
$\begin{aligned} & 10 \cdot 16+5 \cdot 10 \cdot 11 \\ & 8,9,13 \end{aligned}$	$\begin{aligned} & 10 \cdot 16+5 \cdot 10 \cdot 11 \\ & 8 \cdot 9 \cdot 13 \end{aligned}$	$\begin{aligned} & 10 \cdot 16+5 \cdot 10 \cdot 11 \\ & +8 \cdot 9 \cdot 13 \end{aligned}$
(13)	(14)	(15)

From (8) and (15) we get

$$
\begin{aligned}
\Phi E_{1} & =2 \cdot 3+2 \cdot 5+1 \cdot 6+3 \cdot 6 \cdot 10+3 \cdot 6 \cdot 14 \\
& +8 \cdot 9 \cdot 13+10 \cdot 16+5 \cdot 10 \cdot 11
\end{aligned}
$$

(s-o-p-expression)

Left List E_{2}

$\begin{aligned} & 3 \\ & 2,6 \end{aligned}$	$\begin{aligned} & 3 \\ & 2+6 \end{aligned}$	$\begin{aligned} & 3 \cdot 2+3 \cdot 6 \\ & 7 \\ & 12,15 \\ & 8,13 \end{aligned}$
(1)	(2)	(3)
$\begin{aligned} & 3 \cdot 2+3 \cdot 6 \\ & 7 \\ & 12 \cdot 15 \\ & 8 \cdot 13 \end{aligned}$	$\begin{aligned} & 3 \cdot 2+3 \cdot 6 \\ & 7 \cdot 12 \cdot 15+7 \cdot 8 \cdot 13 \end{aligned}$	$\begin{aligned} & 3 \cdot 2+3 \cdot 6 \\ & +7 \cdot 12 \cdot 15+7 \cdot 8 \cdot 13 \end{aligned}$
(4)	(5)	(6)
$\begin{aligned} & 6,14,15 \\ & 1 \\ & 4,12 \end{aligned}$	$\begin{aligned} & 6,14,15 \\ & 1 \\ & 4 \cdot 12 \end{aligned}$	$\begin{aligned} & 6 \cdot 14 \cdot 15 \\ & 1 \\ & 4 \cdot 12 \end{aligned}$
(7)	(8)	(9)
$\begin{aligned} & 1 \cdot 6 \cdot 14 \cdot 15 \\ & 4 \cdot 12 \end{aligned}$	$\begin{aligned} & 1 \cdot 6 \cdot 14 \cdot 15 \\ & +4 \cdot 12 \end{aligned}$	
(10)	(11)	

From (6) and (11) we get
$\Phi E_{2}=2 \cdot 3+3 \cdot 6+7 \cdot 8 \cdot 13+7 \cdot 12 \cdot 15+1 \cdot 6 \cdot 14 \cdot 15+4 \cdot 12$
(s-o-p-expression)

Now we obtain the Boolean function for the whole tree (Fig. 9) in a few steps:

1. Allocate primary events to the set of common/non-common events;
2. Multiply $\Phi_{E_{1}}$ and $\Phi_{E_{2}}$;
3. Drop/simplify all terms of type $x \bar{x}, x x, x+x y$.

We introduce a technique which makes this step with a reasonable amount of calculation /11/.

1. Search for primary events which are common to E_{1} and $E_{2}(c)$ and not common to E_{1} and E_{2} (non-C).

C	non-C
1	
2	
3	4
	5
6	7
8	9
	10
	11
13	12
14	15

2. Divide primary events into the following subsets:

Events from E_{1}	Events from E_{2}	
Sets which contain only C-events	$\mathrm{C}_{1 \mathrm{a}}$	
Sets which contain C and non-C events	$\mathrm{C}_{1 \mathrm{~b}}$	$\mathrm{C}_{2 \mathrm{a}}$
Sets which contain only none events	$\mathrm{C}_{1 \mathrm{c}}$	$\mathrm{C}_{2 \mathrm{~b}}$

3. We get for E_{1} the following sets (corresponding to product terms):

$$
\begin{aligned}
& C_{11}=\{2,5\}, \quad C_{12}=\{3,6,10\}, C_{13}=\{10,16\}, C_{14}=\{2,3\} \\
& C_{15}=\{3,6,14\}, C_{16}=\{5,10,11\}, C_{17}=\{8,9,13\}, C_{18}=\{1,6\}
\end{aligned}
$$

Similarly, for E_{2} :

$$
\begin{aligned}
& c_{21}=\{3,6\}, c_{22}=\{4,12\}, c_{23}=\{1,6,14,15\} \\
& c_{24}=\{7,8,13\}, C_{25}=\{7,12,15\}, c_{26}=\{2,3\} .
\end{aligned}
$$

4. Allocation of $c_{i k}$ to subsets $C_{1 a}, C_{1 b}, C_{1 c}$ etc.

$$
\begin{aligned}
& \left\{C_{14}, \quad C_{15}, \quad C_{18}\right\} \quad C \quad C_{1 a} \\
& \left\{\begin{array}{llll}
C_{11}, & c_{12}, & c_{17}
\end{array}\right\} \quad \subset \quad c_{1 b} \\
& \left\{c_{13}, c_{16}\right\} \quad c \quad c_{1 c} \\
& \text { and } \\
& \left\{c_{21}, c_{26}\right\} \quad \subset \quad c_{2 a} \\
& \left\{c_{23}, c_{24}\right\} \quad \subset \quad c_{2 b} \\
& \left\{\begin{array}{cc}
c_{22} & c_{25}
\end{array}\right\} \quad c \quad c_{2 c}
\end{aligned}
$$

5. Now, each subset of E1 is related to each subset of E2. We write for this Cartesian product:

$$
\begin{aligned}
& C_{1 a} \times C_{2 a}=C_{14}\left(C_{21} \cup C_{26}\right) \cup C_{15}\left(C_{21} \cup C_{26}\right) \cup C_{18}\left(C_{21} \cup C_{26}\right) \\
& C_{1 a} \times C_{2 b}=C_{14}\left(C_{23} \cup C_{24}\right) \cup C_{15}\left(C_{23} \cup C_{24}\right) \cup C_{18}\left(C_{23} \cup C_{24}\right) \\
& \frac{C_{1 a} \times C_{2 c}}{}=C_{14}\left(C_{22} \cup C_{25}\right) \cup C_{15}\left(C_{22} \cup C_{25}\right) \cup C_{18}\left(C_{22} \cup C_{25}\right) \\
& C_{1 b} \times C_{2 a}=C_{11}\left(C_{21} \cup C_{26}\right) \cup C_{12}\left(C_{21} \cup C_{26}\right) \cup C_{17}\left(C_{21} \cup C_{26}\right) \\
& C_{1 b} \times C_{2 b}=C_{11}\left(C_{23} \cup C_{24}\right) \cup C_{12}\left(C_{23} \cup C_{24}\right) \cup C_{17}\left(C_{23} \cup C_{24}\right) \\
& C_{1 b} \times C_{2 c}=C_{11}\left(C_{22} \cup C_{25}\right) \cup C_{12}\left(C_{22} \cup C_{25}\right) \cup C_{17}\left(C_{22} \cup C_{25}\right) \\
& C_{1 c} \times C_{2 a}=C_{13}\left(C_{21} \cup C_{26}\right) \cup C_{16}\left(C_{21} \cup C_{26}\right) \\
& C_{1 c} \times C_{2 b}=C_{13}\left(C_{23} \cup C_{24}\right) \cup C_{16}\left(C_{23} \cup C_{24}\right) \\
& C_{1 c} \times C_{2 c}=C_{13}\left(C_{22} \cup C_{25}\right) \cup C_{16}\left(C_{22} \cup C_{25}\right)
\end{aligned}
$$

6. We get the following s-o-p expressions, where

- the absorbed terms are without index
- the remaining terms get an index $j(j=1,2, \ldots)$
to be identified for further calculations.

$$
\begin{align*}
& c_{1 a} \times c_{2 a} \\
& =c_{14}\left(c_{21} \cup c_{26}\right) \cup c_{15}\left(c_{21} \cup c_{26}\right) \cup c_{18}\left(c_{21} \cup c_{22}\right) \\
& =2 \cdot 3 \cdot 6+2 \cdot 3+3 \cdot 6 \cdot 14+2 \cdot 3 \cdot 6 \cdot 14+1 \cdot 3 \cdot 6+1 \cdot 2 \cdot 3 \cdot 6 \\
& \text { (1) } \tag{4}\\
& c_{1 a} \times c_{2 b} \tag{8}\\
& =c_{14}\left(c_{23} \cup c_{24}\right) \cup c_{15}\left(c_{23} \cup c_{24}\right) \cup c_{18}\left(c_{23} \cup c_{24}\right) \\
& =2 \cdot 3 \cdot 1 \cdot 6 \cdot 14 \cdot 15+2 \cdot 3 \cdot 7 \cdot 8 \cdot 13+1 \cdot 3 \cdot 6 \cdot 14 \cdot 15+3 \cdot 6 \cdot 7 \cdot 8 \cdot 13 \cdot 14 \\
& +1 \cdot 6 \cdot 14 \cdot 15+1 \cdot 6 \cdot 7 \cdot 8 \cdot 13 \tag{9}
\end{align*}
$$

(2)
$c_{1 a} \times c_{2 c}$

$$
\begin{align*}
= & c_{14}\left(c_{22} \cup c_{25}\right) \cup c_{15}\left(c_{22} \cup c_{25}\right) \cup c_{18}\left(c_{22} \cup c_{25}\right) \\
= & 2 \cdot 3 \cdot 4 \cdot 12+2 \cdot 3 \cdot 7 \cdot 12 \cdot 15+3 \cdot 4 \cdot 6 \cdot 12 \cdot 14+3 \cdot 6 \cdot 7 \cdot 12 \cdot 14 \cdot 15 \\
& +1 \cdot 4 \cdot 6 \cdot 12+1 \cdot 6 \cdot 7 \cdot 12 \cdot 15 \tag{11}
\end{align*}
$$

$c_{1 b} \times c_{2 a}$

$$
\begin{align*}
& =c_{11}\left(c_{21} \cup c_{26}\right) \cup c_{12}\left(c_{21} \cup c_{26}\right) \cup c_{17}\left(c_{21} \cup c_{26}\right) \\
& =2 \cdot 5 \cdot 3 \cdot 6+2 \cdot 5 \cdot 3+3 \cdot 6 \cdot 10+2 \cdot 3 \cdot 6 \cdot 10+8 \cdot 9 \cdot 13 \cdot 3 \cdot 6+8 \cdot 9 \cdot 13 \cdot 2 \cdot 3 \tag{3}
\end{align*}
$$

$$
c_{1 b} \times c_{2 b}
$$

$$
\begin{align*}
= & c_{11}\left(c_{23} \cup c_{24}\right) \cup c_{12}\left(c_{23} \cup c_{24}\right) \cup c_{17}\left(c_{23} \cup c_{24}\right) \\
= & 2 \cdot 5 \cdot 1 \cdot 6 \cdot 14 \cdot 15+2 \cdot 5 \cdot 7 \cdot 8 \cdot 13+8 \cdot 9 \cdot 13 \cdot 1 \cdot 6 \cdot 14 \cdot 15+3 \cdot 6 \cdot 10 \cdot 1 \cdot 6 \cdot 14 \cdot 15 \\
& +3 \cdot 6 \cdot 10 \cdot 7 \cdot 8 \cdot 13+8 \cdot 9 \cdot 13 \cdot 7 \\
= & 1 \cdot 2 \cdot 5 \cdot 6 \cdot 14 \cdot 15+2 \cdot 5 \cdot 7 \cdot 8 \cdot 13+1 \cdot 6 \cdot 8 \cdot 9 \cdot 13 \cdot 14 \cdot 15+1 \cdot 3 \cdot 6 \cdot 10 \cdot 14 \cdot 15 \tag{5}
\end{align*}
$$

$$
\begin{equation*}
+3 \cdot 6 \cdot 7 \cdot 8 \cdot 10 \cdot 13+7 \cdot 8 \cdot 9 \cdot 13 \tag{19}
\end{equation*}
$$

$$
\begin{align*}
& c_{1 b} \times c_{2 c} \\
& =c_{11}\left(c_{22} \cup c_{25}\right) \cup c_{12}\left(c_{22} \cup c_{25}\right) \cup c_{17}\left(c_{22} \cup c_{25}\right) \\
& =2 \cdot 4 \cdot 5 \cdot 12+2 \cdot 5 \cdot 7 \cdot(6)(2 \cdot 15+2 \cdot 3 \cdot 4 \cdot 6 \cdot 10+3 \cdot 6 \cdot 7 \cdot 10 \cdot 12 \cdot 15 \\
& +4 \cdot 8 \cdot \underset{(20)}{(20)}+7 \cdot 8 \cdot 9 \cdot 12 \cdot 13 \cdot 15 \\
& c_{1 c} \times c_{2 a} \\
& =c_{13}\left(c_{21} \cup c_{26}\right) \cup c_{16}\left(c_{21} \cup c_{26}\right) \\
& =3 \cdot 6 \cdot 10 \cdot 16+2 \cdot 3 \cdot 10 \cdot 16+5 \cdot 10 \cdot 11 \cdot 3 \cdot 6+15 \cdot 10 \cdot 11 \cdot 2 \cdot 3 \\
& =3 \cdot 6 \cdot 10 \cdot 16+3 \cdot 5 \cdot 6 \cdot 10 \cdot 11 \\
& c_{1 c} \times c_{2 b} \\
& =c_{13}\left(c_{23} \cup c_{24}\right) \cup c_{16}\left(c_{23} \cup c_{24}\right) \\
& =10 \cdot 16 \cdot 1 \cdot 6 \cdot 14: 15+10 \cdot 16 \cdot 7 \cdot 8 \cdot 13+5 \cdot 10 \cdot 11 \cdot 1 \cdot 6 \cdot 14 \cdot 15 \\
& +5 \cdot 10 \cdot 11 \cdot 7 \cdot 8 \cdot 13 \\
& =1 \cdot 6 \cdot 10 \cdot 14 \cdot 15 \cdot 16+7 \cdot 8 \cdot 10 \cdot 13 \cdot 16+1 \cdot 5 \cdot 6 \cdot 10 \cdot 11 \cdot 14 \cdot 15 \\
& +5 \cdot 7 \cdot 8 \cdot 10 \cdot 11 \cdot 13 \tag{10}\\
& c_{1 c} \times c_{2 c} \\
& =c_{13}\left(c_{22} \cup c_{25}\right) \cup c_{16}\left(c_{22} \cup c_{25}\right) \\
& =10 \cdot 16 \cdot 4 \cdot 12+10 \cdot 16 \cdot 7 \cdot 12 \cdot 15+5 \cdot 10 \cdot 11 \cdot 4 \cdot 12+5 \cdot 10 \cdot 11 \cdot 7 \cdot 12 \cdot 15 \\
& =4 \cdot 10 \cdot 12 \cdot 16+7 \cdot 10 \cdot 12 \cdot 15 \cdot 16+4 \cdot 5 \cdot 10 \cdot 11 \cdot 12+5 \cdot 7 \cdot 10 \cdot 11 \cdot 12 \cdot 15 \tag{17}
\end{align*}
$$

These results can be obtained by an algorithm (see /11/). We will here simply list the s-o-p-expression for $\Phi_{E 1} \Phi_{E 2}$
which is a unique (irredundant) cover by prime implicants (see also sect. 1.5 , minimal cuts).

Table of prime implicants

Index j	Term p_{j}	Index j	Term p_{j}
1	$2 \cdot 3$	11	$1 \cdot 4 \cdot 6 \cdot 12$
2	$1 \cdot 6 \cdot 14 \cdot 15$	12	$1 \cdot 6 \cdot 7 \cdot 12 \cdot 15$
3	$3 \cdot 6 \cdot 10$	13	$5 \cdot 7 \cdot 10 \cdot 11 \cdot 12 \cdot 15$
4	$3 \cdot 6 \cdot 14$	14	$4 \cdot 5 \cdot 10 \cdot 11 \cdot 12$
5	$2 \cdot 5 \cdot 7 \cdot 8 \cdot 13$	15	$5 \cdot 7 \cdot 8 \cdot 10 \cdot 11 \cdot 13$
6	$2 \cdot 5 \cdot 7 \cdot 12 \cdot 15$	16	$5 \cdot 7 \cdot 10 \cdot 11 \cdot 12 \cdot 15$
7	$2 \cdot 4 \cdot 5 \cdot 12$	17	$4 \cdot 5 \cdot 10 \cdot 11 \cdot 12$
8	$1 \cdot 3 \cdot 6$	18	$3 \cdot 6 \cdot 8 \cdot 9 \cdot 13$
9	$1 \cdot 6 \cdot 7 \cdot 8 \cdot 13$	19	$7 \cdot 8 \cdot 9 \cdot 13$
10	$7 \cdot 8 \cdot 10 \cdot 13 \cdot 16$	20	$4 \cdot 8 \cdot 9 \cdot 12 \cdot 15$

All terms for the s-o-p-expression of Φ

$$
\begin{aligned}
\Phi & =\Phi_{E 1} \cdot \Phi_{E 2} \\
& =\sum_{j=1}^{20} p_{j}
\end{aligned}
$$

1.8 Cubical Representation of Boolean Functions

We defined a switching function as a correspondence which assigns for each of the 2^{n} combinations of $x_{1}, x_{2}, \cdots, x_{n}$ one value of $\{0,1\}$. E.g. for a switching function

$$
f\left(\bar{x}_{1}, \bar{x}_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}
$$

for each of $2^{3}=8$ combinations of x_{1}, x_{2}, x_{3} a value of $\{0,1\}$ is assigned (Fig. 10).

x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Fig. 10 a Truth Table

Fig. 10 b Map

Fig. 10 c Cubical Representation

Thus the set of all 2^{n} combinations of

$$
p_{i}=x_{1}, x_{2}, \cdots, x_{n}
$$

with the corresponding values $(1,0)$ is called a cubical representation of $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. E.g. the set all all 2^{3} combinations of

$$
x_{1}, x_{2}, x_{3}
$$

with the corresponding values $(1,0)$ (see Fig. 10) is called a cubical representation of

$$
f\left(x_{1}, x_{2} ; x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}
$$

(see also Fig. 10).
Each subset of the 2^{n} combinations generated by fixing some variables, while others take values $(1,0)$ is called a subcube.

Examples

1. We obtain a subcube of Fig. 10c, fixing $x_{3}=0$, while x_{1}, x_{2} may take values 1,0 .
2. We obtain prime implicants of $f\left(x_{1}, x_{2}, x_{3}\right)$ fixing $x_{1}=1, x_{2}=1$, while x_{3}, may take values $1,0\left(p_{1}=x_{1} x_{2}\right)$, and fixing $x_{2}=1$, $x_{3}=1$ while x_{1} may take values $1,0\left(p_{2}=x_{2} x_{3}\right)$.
3. We obtain minterms fixing $x_{1} x_{2} x_{3}$, also called a 0 -dimensional subcube.

Adjacent Subcubes

Let p_{1} be a prime implicant which is represented as subcube. Then each subcube which differs in exactly one variable (say the $k^{\text {th }}$ variable) from p_{i} will be called the adjacent subcube $p_{i k}^{x} / 1 /$. Of course, this concept can be generalized. But this will be sufficient for our purposes.

Example

	1	2	3
$p_{1}=x_{1} x_{2}$	1	1	-
Adjacent subcubes			
$\mathrm{p}_{\underline{\underline{1}} \mathrm{x}}^{\mathrm{x}}$	0	1	-
$k=2$	1	0	-
$p_{2}=x_{2} x_{3}$	-	1	1
Adjacent subcubes			
$\mathrm{p}_{2 k}^{\mathrm{x}}$ ($\mathrm{k}^{\text {k }}$	-	0	1
	-	1	0

(prime implicant represented as subcube)

Note:
If a prime implicant p_{i} consists of 1 literals, the number of adjacent subcubes $p_{i k}^{x}$ is $1(k=1,2, \cdots, 1)$.
2. Introduction to Failure Diagnosis
2.1 Types of Faults
2.2 Basic Concepts of Failure Diagnosis
2.3 Boolean Difference and Tests
2.4 Interpretation of Redundancy

2.1 Types of Faults

We assume Combinational Circuits. There are various types of failures /12/:

- permanent faults
- intermittent faults.

We only deal with permanent faults. If they are present, they will remain (until a repair is done). The permanent faults fall into two classes:

1. Classical faults, i.e.

- stuck at zero (s-a-o)
- stuck at one (s-a-1)
where a failed item behaves as if it had always the value 0 or 1.

Example:

Fig. 11a

Fig. 11b

The circuit of Fig. 11a has for x_{1} a s-a-1-fault (Fig. 11b).

Note

It will be our purpose to model all faults as logical faults. Thus the problem of failure diagnosis becomes a logical problem which is usually independent of the technology used. The same fault model is applicable to various technologies /12/.
2. Non-classical faults

- e.g. Bridge faults
- and others.

Example:

Fig. 12a

Fig. 12b

It can be seen that the bridge-fault leads to Boolean expressions for

$$
z_{1}, z_{2}
$$

which differ from Fig. 12a. We will not deal explicitly with these faults (/12/). Note that non-classical faults have no evident relation to systems represented by fault trees.

2.2. Basic Concepts of Failure Diagnosis

Now some basic notions for failure diagnosis of combinational circuits will be given /1/, /12/. Let C be a combinational circuit which realizes the function

$$
f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Let α be an arbitrary fault in the combinational circuit, where a number of variables change the output f to f_{α}.

Def. If $f_{\alpha} \neq f$ for at least one input $x_{1}, x_{2}, \ldots, x_{n}$, we call the fault α detectable.

If $f_{\alpha}=f$ for all inputs $x_{1}, x_{2}, \ldots, x_{n}$, we call the fault α undetectable.

Def. If for two faults $\alpha, \alpha!$, and for all inputs,

$$
f_{\alpha}=f_{\alpha^{\prime}} \cdot,
$$

we call these faults functionally equivalent. There are in general equivalence classes of faults. A fault can be identified up to an equivalence class.

Example:

Let C be the following combinational circuit:

Fig. 13 Combinational Circuit
which realizes the function

$$
f=x_{1} x_{2}+\bar{x}_{3}
$$

Let f denote the fault free output and let f_{α} denote the output of this circuit in presence of fault α.

Denote by

$$
\begin{aligned}
& \alpha=m_{0} \text { the fault of wire } m, s-a-0 \\
& \alpha=m_{1} \text { the fault of wire } m, s-a-1,
\end{aligned}
$$

similarly $n_{i}, p_{i}, q_{i} \quad(i=0,1)$.

The truth-table for this circuit is shown in Fig. 14. Here all possible single faults a are indicated.

Input		f	f_{α}								
x_{1}	x_{2}	x_{3}		$f_{m_{0}}$	$f_{n_{0}}$	$f_{p_{0}}$	$f_{q_{0}}$	$f_{m_{1}}$	$f_{n_{1}}$	$f_{p_{1}}$	$f_{q_{1}}$
0	0	0	1	1	1	1	0	1	1	1	1
0	0	1	0	0	0	0	0	0	0	1	1
0	1	0	1	1	1	1	0	1	1	1	1
0	1	1	0	0	0	0	0	1	0	1	1
1	0	0	1	1	1	1	0	1	1	1	1
1	0	1	0	0	0	0	0	0	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1
1	1	1	1	0	0	0	1	1	1	1	1

Fig. 14

We observe (fig. 15) that

- collumns $f_{m_{0}}, f_{n_{0}}, f_{p_{0}}$ are identical for all possible inputs, i.e. they are equivalent (cannot be distinguished), similarly $f_{p_{1}}, f_{q_{1}}$, are equivalent,
- there is no fault which is undetectable.

It is possible to simplify the fault table, which will be done below, but which is of little practical value.

Def. A test for fault α is an input $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ if in response to this input the output f_{α} is different from f.

Example:

Input Possible faults

x_{1}	x_{2}	x_{3}	$\left\{m_{0}, n_{0}, p_{0}\right\}$	q_{0}	m_{1}	n_{1}	$\left\{p_{1}, q_{1}\right\}$
0	0	0		1			
0	0	1					1
0	1	0		1			
0	1	1			1		1
1	0	0		1			
1	0	1				1	1
1	1	0					
1	1	1					

Fig. 15 Simplified fault table

We note:

- the only test for $\left\{m_{0}, n_{0}, p_{0}\right\}$ is 111;
- q_{0} can be tested by 000 or 010 or 100;
- m_{1} can be tested by 011, provided there is no response for 001 and 101;
- n_{1} can be tested by 101, provided there is no response for 001,011;
- $\left\{p_{1}, q_{1}\right\}$ can be tested by $001,011,101$, provided there is a response for all three inputs.

Note: A fault table (Fig. 15) is a table in which there is a row for each possible test and a collumn for every fault. A "1." is entered at the intersection of the i-th row and the j-th collumn if the fault corresponding to the j-th collumn can be detected by the i-th test.

The problem of finding the minimal test set is closely related to the problem of finding a minimal cover of a Boolean function (by prime implicants). We will come back on a similar technique in section 5 .

2.3 Boolean Difference and Tests

Assume a circuit C which realizes the oolean function

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Leto be a fault in which input x_{i} is $s-a-0$. Then the function realized by this faulty circuit is

$$
\begin{aligned}
f_{\alpha \alpha} & =f\left(x_{1}, x_{2}, \cdots, x_{i-1}, 0, x_{i t 1}, \cdots, x_{n}\right) \\
& =f\left(o_{i}\right)
\end{aligned}
$$

Similarly, if x_{i} is $s-a-1$, the function realized by the faulty circuit is

$$
\begin{aligned}
f_{d} & =f\left(x_{1}, x_{2}, \cdots, x_{i-1}, 1, x_{i t 1}, \cdots, x_{n}\right) \\
& =f\left(1_{i}\right)
\end{aligned}
$$

The Boolean difference method is an algebraic procedure to determine a complete set of tests to detect a given fault $/ 1 /$.

Def. The Boolean difference of function $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ with respect to its variable x_{i} is defined as

$$
\begin{aligned}
& \frac{d f(\underline{x})}{d x_{i}}=f\left(x_{1}, x_{2}, \cdots, x_{i-1}, 0, x_{i+1}, \cdots, x_{n}\right) \\
& \oplus f\left(x_{1}, x_{2}, \cdots, x_{i-1}, 0, x_{i+1}, \cdots, x_{n}\right)
\end{aligned}
$$

where denotes the exclusive OR. It will be convenient to denote the Boolean difference as

$$
\frac{d f(\underline{x})}{d x_{i}}=f\left(o_{i}\right) f\left(1_{i}\right)
$$

Rules:

1. If $f\left(o_{i}\right) \oplus f\left(1_{i}\right) \equiv 0$ for all variables, the fault related to x_{i} is undetectable (redundant).
2. We get all tests for s-a-o-faults if

$$
x_{i} \cdot \frac{d f(\underline{x})}{d x_{i}}=1
$$

3. We get all tests for s-a-1-faults if

$$
\bar{x}_{i} \cdot \frac{d f(\underline{x})}{d x_{i}}=1
$$

I.e. if we have input combinations \underline{x} which fulfil the conditions (2), (3), we have tests for the respective faults of x_{i}.

Example 1

$$
f=\left(x_{1}+x_{2}\right) \bar{x}_{3}+x_{3} x_{4}
$$

Fig. 16 Combinational circuit

We are interested in possible failures related to x_{3}. The Boolean difference with respect to x_{3} is

$$
\begin{aligned}
\frac{d f(\underline{x})}{d x_{3}} & =f\left(o_{3}\right) \oplus f\left(1_{3}\right) \\
& =\left(x_{1}+x_{3}\right) \oplus x_{4}=\bar{x}_{1} \bar{x}_{2} x_{4}+x_{1} \bar{x}_{4}+x_{2} \bar{x}_{4}
\end{aligned}
$$

For a s-a-o fault at x_{3} we get with

$$
x_{3} \frac{d f(\underline{x})}{d x_{3}}=\bar{x}_{1} \bar{x}_{2} x_{3} x_{4}+x_{1} x_{3} \bar{x}_{4}+x_{2} x_{3} \bar{x}_{4}=1
$$

This expression is equal to one if any of the product terms is equal to one. Thus we get as tests:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\{(0,0,1,1),(1, *, 1,0),(*, 1,1,0)\}
$$

The DONT CARE-sign "*" tells that we are free to choose o or 1.

For a s-a-1 fault at x_{3} we get with

$$
\bar{x}_{3} \frac{d f(\underline{x})}{d x_{3}}=\bar{x}_{1} \cdot \bar{x}_{2} \bar{x}_{3} x_{4}+x_{1} \bar{x}_{3} \bar{x}_{4}+x_{2} \bar{x}_{3} \bar{x}_{4}=1,
$$

as tests

$$
\left(x_{1} x_{2} x_{3} x_{4}\right)=(0,0,0,1),(1, *, 0,0),(*, 1,0,0)
$$

Example 2:

$$
f=x_{1} x_{2}+x_{1} \bar{x}_{2}
$$

$x_{1} x_{2}$

Fig. 17 Combinational Circuit

Is an error at input x_{2} detectable?

$$
\begin{aligned}
\frac{d f(\underline{x})}{d x_{2}} & =f\left(o_{2}\right) \oplus f\left(1_{2}\right) \\
& =x_{1} \cdot 0 \oplus x_{1} \cdot I \\
& =0
\end{aligned}
$$

i.e. an error at input x_{2} is not detectable.

Note:

Some interesting developments of the Boolean difference are:

- There are various rules which make the application for subsystems (subcircuits) easier.
- There is a generalization of Boolean difference for multiple faults.
- The Boolean difference is only for relatively small systems.

There are many methods for failure diagnosis available /1/, /12/. We will deal with a few methods in sect. 5.2 and 5.3 of this report.

2.4 Interpretation of Redundancy

Sometimes, an interpretation of redundancy is desirable, which is not directly related to the detectability of failures.

Assume, we have a circuit which consists only of inputs, outputs and gates (AND, OR, NOT) and is acyclic (contains no directed circuits).

This type of combinational circuit is sometimes called 'wellformed' /2/ and will be considered here.

Definition:
Let $N(Z)$ be a set of (wellformed) networks, which realize a given (Multioutput) combinational function

$$
z=\left(z_{1}, z_{2}, \cdots, z_{m}\right)
$$

where

$$
\begin{aligned}
& z_{1}=f_{1}\left(x_{1}, x_{2}, \cdots, x_{n 1}\right) \\
& z_{2}=f_{2}\left(x_{1}, x_{2}, \cdots, x_{n 2}\right) \\
& \vdots \\
& z_{m}=f_{m}\left(x_{1}, x_{2}, \cdots, x_{n_{m}}\right)
\end{aligned}
$$

A network $N \mathcal{E} N(Z)$ is redundant if it is possible to remove lines and gates from N in such a way that the resulting network N^{\prime} is in $N(Z)$, and still realizes the same switching function.

A network which is not redundant will be called irredundant.

Note

A wellformed circuit can be defined recursively. We only mention one of its properties: A wellformed circuit is acyclic, i.e. it has no closed loop or feedback /1/. Also the fault trees (sect. 3.1) are wellformed circuits.

Examples:

1. $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+x_{1} \bar{x}_{2}$

Since
$x_{1} x_{2}+x_{1} \bar{x}_{2}=x_{1}\left(x_{2}+\bar{x}_{2}\right)$
$=x_{1}$
we can delete lines and gates related to x_{2}. Only
$f\left(x_{1}, x_{2}\right)=x_{1}$
is needed. This is equivalent to saying that the circuit (N) is redundant.
2. A circuit, represented as a sum of prime implicants (without complements).
$z=f\left(x_{1}, x_{2}, x_{3}\right)$

Fig. 18 Irredundant circuit

As can be seen in section 3.3 ('coherence'), no line or gate can be omitted, if the circuit z has to realize the same Boolean function. This circuit is irredundant.

3. Fault Trees

3.1 Definition of Fault-Trees
3.2 Structure Function
3.3 Coherence of Systems and Minimal Cuts
3.4 A few Results on Coherent Structure Functions

3.1 Definition of Fault-Trees

We define a fault-tree and discuss a few properties of fault-trees, also indicating some relations to switching theory /13/.

Definition
A fault-tree is a finite directed graph without (directed) circuits, Each vertex may be in one of several states. For each vertex a function is given which specifies its state in terms of the states of $i t s$ predecessors. The states of those vertices without predecessors are considered the independent variables of the fault-tree.

Some general properties of a fault-tree:

- The vertices without predecessors are the inputs to the fault-tree, representing the components. We are interested in the state of every other vertex, but in particular with the state of one vertex without successors, an output vertex which we identify with the state of the system as a whole. The graphical term 'vertex' here is roughly synonymous with 'item' and generally denotes any level in the system, whether a component, sub-system or the whole system.
- We specialize to only two states per vertex. This makes all of the functions Boolean functions. We call one of the two states 'functioning', 'false' or 0 , and the other 'failed', 'true' or 1.
- Note, that this difinition of a two-state fault-tree is equivalent to a combinational network with one output.
- The no-circuit condition in the graph is equivalent to the condition that the current output of a switching circuit is entirely determined by current inputs, without memory of previous inputs or internal states.

3.2 Structure Function

We introduce the concept of structure function. It is of central importance for all problems of fault tree analysis / $14 /$ / / 15./, $/ 16 /$. It can be seen that it is closely related to the concept of switching function (see sect. 1.3).

We assume a system S, which has n components which can be in two states

- functioning
- failed.

Also the system S can be in two states, either functioning or failed. The components are the vertices without predecessors of our fault tree definition. The function which specifies the state of a vertex in terms of its predecessor is a Boolean function (AND, OR, NOT). The states of the top vertex can be given by a structure function.

Definition of Structure-Function

Let $x_{1}, x_{2}, \cdots x_{n}$ be Boolean variables which can assume the values 0,1 , where

$$
x_{i}=\left\{\begin{array}{l}
0 \text { if component } i \text { is functioning } \\
1 \text { if component } i \text { is failed. }
\end{array}\right.
$$

The assumption that 1 corresponds to failure is used throughout this paper and is useful for fault tree analysis. The Boolean variable x_{i} indicates the state of component i, whereas the state vector

$$
\underline{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

indicates the state of the system.
The Boolean function

$$
\Phi\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

is called structure function and determines completely the state of the system S in terms of the state-vectors:

$$
\Phi\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left\{\begin{array}{l}
0 \text { if system } S \text { is functioning } \\
1 \text { if system } S \text { is failed. }
\end{array}\right.
$$

We note:
The structure function is related to the switching function as follows: They belong to two isomorphic algebraic systems. We call two algebraic systems isomorphic if they are identical up to the symbols used for operations and elements. Thus we can use all concepts and methods from switching algebra for fault tree analysis (and vice versa).

3.3 Coherence of Systems and Minimal Cuts

We introduced in sect. 1.1 the concept of completeness, especially referring to the set of operations

$$
\{A N D, O R, N O T\} .
$$

This (and other complete sets) are usually used in switching algebra. In fault tree analysis we find quite frequently the set

$$
\{A N D, O R\},
$$

which is not complete. (See examples in section 6.) We want to define coherence and show its relation to a simplified s-o-p representation, the minimal cut-representation. Note that failure diagnosis is not restricted to coherent systems (sect. 2 and 5) /14/, /15/, /16/. Definition:

A system is called coherent if and only if
(a) a structure function exists which is nondecreasing in each variable, i.e.

$$
\begin{aligned}
\Phi(\underline{y}) & \geq \Phi(\underline{x}) \text { if } \\
\underline{y} & \geq \underline{x} \text { where } \\
y_{i} & \geq x_{i}(i=1, \cdots, n),
\end{aligned}
$$

(b) the relations hold

$$
\begin{aligned}
& \Phi(0)=\underline{0} \text { where } \underline{0}=(0,0, \cdots, 0) \\
& \Phi(\underline{1})=1 \text { where } \underline{1}=(1,1, \cdots, 1) .
\end{aligned}
$$

This means:
(a) If a system is functioning, then no transition of a component from failure to function can cause a system failure.
(b) If all components are functioning, the system is functioning. If all components are failed, then the system is failed.

Examples:

1. $\Phi(\underline{x})=x_{1} x_{2} \vee x_{2} x_{3} \vee x, x_{3}$, representing a 2/3-system, is coherent.
2. $\Phi(\underline{x})=x_{1} \bar{x}_{2} \vee \bar{x}_{1} x_{2}$ representing an exclusive - OR - gate.
(Fig. 1) is not coherent, since
$(0,1) \leq(1,1)$ does not imply $\Phi(0,1) \leq \Phi(1,1)$.
3. Examples of coherent and noncoherent fault trees are given in sect.6.

Minimal Cut C_{j}
Let $M=\left\{K_{i}, K_{2}, \cdots, K_{n}\right\}$ be the set of components of a coherent system S. A subset V of M such that S is failed if all components belonging to V are failed and all componenets not belonging to V are not failed, is called a 'cut'. A cut is 'minimal' if no proper subsets exist which are also cuts. We call such a cut 'minimal cut' $\left(C_{j}\right)$.
For each minimal cut it is possible, to find a combination of Boolean variables

$$
\underline{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) .
$$

Example:

$$
\begin{aligned}
& \text { minimal cuts } \\
& \left\{K_{1}, K_{2}\right\} \\
& \left\{K_{3}, K_{4}\right\} \\
& \left\{K_{1}, K_{4}, K_{5}\right\} \\
& \left\{K_{2}, K_{3}, K_{5}\right\}
\end{aligned}
$$

Fig. 19 Network

Structure function

	$\Phi(1,1,0,0,0)=1$	(failed)
but \quad	$\Phi(0,1,0,0,0)=0$	(not failed)

We write all components as $K_{i}(i=1,2, \ldots, n)$.
If a component K_{j} belongs to C_{j} we can use the notation $K_{j} \in C_{j}$.
For each minimal cut C_{j} we can use a structure function:

$$
\alpha\left(c_{j}\right)=\bigwedge_{K_{i} \in C_{j}} x_{i}=\prod_{K_{i} \in C_{j}} x_{i}
$$

The first expression is a conjunction of all K_{i} belonging to C_{j}. The second expression is a multilinear form in x_{i}.

Example:

$$
\begin{aligned}
\text { Let } c_{1} & =\left\{k_{1}, k_{2}\right\} \text {. Then, } \\
\alpha\left(c_{1}\right) & =k_{i} \varepsilon_{C_{1}} x_{i}=x_{1} \wedge x_{2}=x_{1} x_{2}
\end{aligned}
$$

Note that every min cut is a prime implicant without complements.
It is possible to express a coherent function using a sum of min cuts.

Example: For the network (Fig.19) shown above, we get

$$
(\underline{x})=x_{1} x_{2} \vee x_{3} x_{4} \vee x_{1} x_{4} x_{5} \vee x_{2} x_{3} x_{5}
$$

or, as multi-linear-form:

$$
\begin{gathered}
\Phi(\underline{x})=1-\left(1-x_{1} x_{2}\right)\left(1-x_{3} x_{4}\right)\left(1-x_{1} x_{4} x_{5}\right) \\
\cdot\left(1-x_{2} x_{3} x_{4}\right)
\end{gathered}
$$

3.4 A few Results on Coherent Structure Functions

We mentioned in sect. 1.5 that every irredundant sum-of-products representation of a switching function is a union of prime implicants of this function. In section 3.2 we introduced the structure function which is isomorphic to the switching function. Moreover, we introduced the concept of coherence and the min cuts.

If the structure function is coherent, the representation by prime implicants greatly simplifies. We quote a theorem which leads to this simplification.

Theorem
A coherent structure function $\Phi(\underline{x})$ can be represented as a s-o-p

$$
\Phi(\underline{x})=\sum_{j=1} P_{j}
$$

of prime implicants, where this representation is unique and can be written using the concept of min cuts

$$
\Phi(\underline{x})=\sum_{j=1}^{\ell} \prod_{k_{1} \in C_{j}} x_{i}
$$

where $K_{i} \varepsilon C_{j}$ are the components belonging to C_{j}, x_{i} the Boolean variables describing the states (functioning, failed) of the components /16, $17 /$.

Note, that there

- is only one (minimal) cover, and there
- are only essential prime implicants which may not be replaced by any other prime implicants.

This has the following consequences for the search for minimal cuts. The algorithm 3 (top-down-algorithm) or 4 (bottom-up-algorithm) leads to all min-cuts. Algorithms like 1,2 (using the complement) are not needed for this type of search. It may be also interesting to note that the problem of testing considerably simplifies if coherent structures are given. One of the simplifications will be evident in sections 4 and 5 (search for min-cuts instead of prime implicants for coherent structures).
4. Diagnosis Procedures
4.1 Diagnosis Procedure 'a'
4.2 Diagnosis Procedure 'b'

4. Some Diagnosis Procedures

Assume a system where for each relevant component a component failure is automatically detected. E.g. some systems of the Automated Laboratory for the WAK allow this type of failure detection /18, $19 /$.

The possible size of a fault table (dictionary and the use of Boolean differences (see sect. 2))is soon impractical. Thus, a method is needed which

- skips redundant information,
- decreases alarms which unnecessarily contribute to system unavailability
- may be used for realistic systems.

We discuss the following two types of tests:
(a) A test which leads to a prompt failure diagnosis for a failed system. This test is based on a structure function with minimal cuts.
The test aids to increase the availability of the system.
(b) A test which finds all states adjacent to system failure but only these. This test is based on a structure function with minimal cuts.
The test aids to increase the safety but the unavailability due to repair remains moderate.

Both tests can be used for systems which are not coherent as well (see sect. 5).

4.1 Diagnosis Procedure 'a'

1. Given a system S in fault tree representation or seriesparallel representation with structure function Φ, where

$$
\Phi=\sum_{j=1}^{e} p_{j}
$$

2. If a min cut p_{j} is equal, to 1 , there is system failure.
3. For all min cuts of Φ, test patterns (minterms) can be generated which uniquely determine whether a min cut is a cause for a system failure or not. This systematic account is called 'Diagnosis Procedure a' (Set of a-tests).

The relation to failure diagnosis concepts will be shown in sect. 5. It can be seen that no failure dictionary is needed. We give an example for 'Diagnosis Procedure a', (also called a-test).

Example:

(1) a-tests search for min cuts of f

Fig. 20 System S_{1}
(2) Structure function $f=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

$$
\begin{array}{rl}
f=x_{1} x_{2}+x_{3} x_{4} & x_{i}=0 \text { comp. i intact } \\
1 \text { comp. i failed } \\
x_{1} x_{2}=0 & f=\begin{array}{l}
0 \\
x_{3} x_{4}=0
\end{array} \\
1 \text { system intact }
\end{array}
$$

(3) a-test

By the a-test we can determine, whether min cuts lead to system failure or not. Every min cut which has value 0, is not a cause for system failure $1^{* *}$ " The min cut which has value 1 is the cause for system failure. A search for components is not needed. The entire cut needs repair.

1*) In some cases also a direct search for the responsible cut may be possible, simply searching for the cut which has value 1.

4.2 Diagnosis Procedure 'b'

1. Given a system S in fault tree representation or series parallel representation with structure function Φ, where

$$
\Phi=\sum_{k=1} p_{k}
$$

2. If a min cut p_{k} is equal to 1 , the system fails.
3. For all min cuts p_{k} adjacent subicubes $p_{i k}^{x}$ can be found which refer to states of a coherent system where only one more component has to fail to cause a system failure.
4. Test patterns can be generated uniquely determining the states adjacent to system failure. This systematic account is called 'Diagnosis Procedure b' (set of b-tests).

The relation to failure diagnosis will be discussed in sect. 5 . We give an example for Diagnosis Procedure a (also called b-test).

Example:

Fig. 21 System S_{2}
(2) Structure function f

$$
\begin{aligned}
& f=f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \\
& f=x_{1} x_{2}+x_{3} x_{4} x_{5} \quad \text { (in min cuts) }
\end{aligned}
$$

(3) b-test

Let p_{i} be prime implicants (min cuts)
$p_{i k}^{x}$ be adjacent subcubes to the p_{i}

$$
\begin{array}{lll}
p_{1}=x_{1} x_{2} & 123345 & 12345 \\
1 & 1--- & \text { Minterms }
\end{array}
$$

$$
p_{2}=x_{3} x_{4} x_{5}
$$

$p_{2 k}^{x} \quad k=1$
--011
00011
2

- - 101
00101
3
- - 110
00110

We obtain all states of the system S_{2} which are adjacent to system failure:

1. component 1 failed:
$p_{11}^{x}=01 \cdots-$
component 2 failed:

$$
p_{12}^{x}=10 \ldots
$$

2. component 4 and 5 failed: $p_{21}^{x}=--011$ component 3 and 5 failed: $p_{22}^{x}=--101$
component 3 and 4 failed: $p_{23}^{\mathrm{x}}=--110$
By the b-test we can locate all states which are adjacent to systemfailure. Then it is possible to prevent system failure replacing the failed components.

Clearly, all the techniques from a and b-Tests, also in relation with search for prime implicants (or min cub) can be applied for automatic diagnosis of systems. This will be shown in more detail in our next section.

5. Tests for Two Types of Faults

5.1 General Assumptions
5.2 Tests for s-a-0-Faults
5.3 Tests for s-a-1-faults
5.4 Examples for Tests
5.5 Existence of Tests
5.6 Relation to Diagnosis Procedures

Introduction

We discuss tests for two types of faults which occur in combinational networks:

- the stuck at one fault ($s-a-1$)
- the stuck at zero fault (s-a-0).

Other faults are not considered. Combinational networks are related to fault trees due to the isomorphism of switching function and structure function. We concentrate here on two tests which use prime implicants (or min cuts). They were developed in $/ 1,17 /$. These tests have been introduced on an informal basis in sect. 4 (Diagnosis Procedures $a, b)$.

5.1 General Assumptions

We assume a two-level network (AND-OR-Type), or a network which can be transformed into an equivalent two-level network (i.e. without deletion of real failures and/or introduction of new failures). In Fig. 22, the AND-OR-type network is shown:

AND

Fig. 22 AND-OR-network

We assume that this is an irredundant network which is equivalent to an irredundant sum of prime implicants. Thus, the switching function f can be written

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{1} p_{i}
$$

where p_{i} denotes the i th prime implicant, 1 is the number of prime implicants of the irredundant sum.

Each AND-gate is equivalent to one prime imlicant. Here we need an algorithm to search for prime implicants (see sect.1). If the system is coherent, a search for min cuts is sufficient (see sect. 1.7). A circuit which consists of r wires may have as many as $2 r$ distinct single faults ($s-a-0, s-a-1$), and $3^{r}-1$ multiple faults (single, double, ..., r-tuple faults). This is due to the binomial theorem /1/:

$$
3^{r}=(2+1)^{r}=\sum_{i=0}^{r}\binom{r}{i} 2^{i} \cdot 1^{r-i} \text {, where } 1^{r-i}=1 \text {. }
$$

5.2 Tests for s-a-0 Faults

We discuss the tests for s-a-0 faults, which correspond to the 'Diagnosis Procedure a^{\prime}.
A s-a-0 fault at any of the inputs of the $j^{\text {th }}$ AND-gate causes the output of this gate to be $s-a-0$, regardless of the value of the remaining variables. Such a fault eliminates the corresponding prime implicant p_{j} from the function f :

$$
f=\sum_{i=1}^{1} p_{i}
$$

To check whether a given prime implicant p_{i} has completely vanished, it is sufficient to have one minterm a_{j} as input which is covered by that prime implicant p_{j} and by no other prime implicant /17/.
For all 'essential prime implicants' such a minterm exists, this is especially true for min cuts (unique representation). The requirement that a minterm a_{j} must be one that is covered by the prime implicant p_{j} and by no other prime implicant $p_{i}(i \neq j)$ is essential. We note, that a complete set of tests for s-a-0 faults for a s-o-p-network consists of n tests corresponding to the 1 prime implicants in f.

To test the $j^{\text {th }}$ AND-gate for $s-a-0$ faults, it is necessary and sufficient to have as input one minterm a_{j} such that

$$
a_{j} \varepsilon \cdot p_{j} \cdot\left(\overline{\left.\sum_{\substack{i=1 \\ i \neq j}}^{1} p_{i}\right)=p_{j} \cdot \prod_{\substack{i=1 \\ i \neq j}} \overline{p_{i}}, ~}\right.
$$

The systematic account of minterms a_{j} to test the AND-gates for $s-a-0$ is referred to as a set of a-tests. It can be shown that all single and multiple stuck-at-faults can be detected by this method.

We give an algorithm for generating the (minimal) a-tests. We introduce the covering matrix E.

The covering matrix shows for all minterms m_{i} if they are covered by prime implicants.
If m_{i} is covered by p_{j}, we have $e_{i j}=1$,
m_{i} is not covered by p_{j}, we have $e_{i j}=0$.

Algorithm 5

Step 1 Construct a covering matrix E whose collumn headings are p_{j}, and whose row headings are m_{i}.

Step 2 Delete all rows which contain two or more 1's.

Step 3 Is there a p_{j} which cannot be covered?
Step 4 Choose for every p_{j} in E one minterm a_{j}. Thus we get the minterms

$$
a_{j}=p_{j} \prod_{\substack{i=1 \\ i \neq j}} \overline{p_{i}}
$$

5.3 Tests for s-a-1 Faults

We discuss the tests for s-a-1 faults, which correspond to the "Diagnosis Procedure b". A s-a-1 fault at any of the inputs of the $j^{\text {th }}$ AND-gate causes the prime implicant not to vanish. But the output of the gate becomes independent of the variable associated with a s-a-1 fault.

Example:

Let the input x_{k} of AND-gate $x_{1} x_{2} x_{3}$
$\mathrm{s}-\mathrm{a}-1$. This is for

$$
\begin{array}{ll}
k=1 & 1 \cdot x_{2} \cdot x_{3}=x_{1} x_{2} x_{3}+\bar{x}_{1} x_{2} x_{3} \\
k=2 & x_{1} \cdot 1 \cdot x_{3}=x_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} x_{3} \\
k=3 & x_{1} x_{2} \cdot 1=x_{1} x_{2} x_{3}+x_{1} x_{2} \bar{x}_{3}
\end{array}
$$

To test the $k^{\text {th }}$ input the $j^{\text {th }}$ AND-gate for $\mathrm{s}-\mathrm{a}-1$-faults, it is necessary and sufficient to have as input one minterm $b_{j k}$ such that

$$
b_{j k} \varepsilon p_{j k}^{x}\left(\overline{\sum_{i=1}^{\ell} p_{i}}\right)=p_{j k}^{x} \prod_{i=1}^{\ell} \overline{p_{i}}
$$

where
$p_{j k}^{x}$ is a subcube adjacent to p_{j} (see sect. 1.8) and p_{j} is the $j^{\text {th }}$ prime implicant.

The systematic account of minterms $b_{j k}$ to test all AND - gates for s-a-1 faults is called a set of b-tests. It can be shown that all single and mutiple stuck-at-faults can be detected by this method.

Before giving the Algorithm a few remarks seem in order (see also Examples given below).

- Pairwise intersection: Assume a cubical representation (sect. 1.8.). For terms like 11--and-11-the pairwise intersection is 111-.
- Prime intersection: If intersecting with other terms leads to no further intersection, we have a prime intersection.
- Prime tests: The prime intersections are related to prime tests.
- Prime test chart: A chart with collumn headings $p_{j k}^{x}$ and with row headings $b_{j k}$ (prime tests) is called prime test chart.
With these remarks we can state our Algorithm.

Algorithm 6

Step 1 List all $p_{j k}^{x}$ for all $j=1,2, \ldots, 1$ and
$k=1,2, \ldots, r_{j}$ where 1 is the number of prime implicants and r_{j} the number of literals in the $j^{\text {th }}$ prime implicant. Thus we get all adjacent subcubes.

Step 2 For every $p_{i s}^{X} \supseteq p_{j t}^{X}$ delete $p_{i s}^{X}$ form list.

Step 3 Find all pairwise intersections of the terms that are now contained in the list. Whenever an intersection is nonempty and contains a minterm for which $\mathrm{f}=0$, checkmark the intersected terms. This step lists the minterms for which $f=0$ which are contained in 2 or more adjacent subcubes.

Step 4 Repeat Step 3 until no new terms are generated. The terms generated in step 3 and those checkmarked in step 2 are called prime intersections. Steps 3 and 4 thus indicate those minterms which simultaneously test as many subcubes as possible.

Step 5 From the list of prime intersections construct a list of prime tests by selecting arbitrarily an input combination $b_{j k}$ for which the value of the function is 0 .

Step 6 Construct a prime test chart where the collumn headings are $p_{j k}^{x}$ (found in step 2) and the row headings prime tests (found in step 5). A sign (x) is inserted at the intersection of any one row and collumn if the corresponding prime test is covered by $\mathrm{p}_{j k}^{\mathrm{X}}$. We get

$$
b_{j k} \in p_{j k}^{x} \prod_{i=1}^{e} \bar{p}_{i}
$$

Step 7 Select a set of prime tests that check each of the $p_{j k}^{x}$ - terms, i.e. find a cover for the prime test chart. D

5.4 Example for Tests ($s-a-0$ and $s-a-1-$ faults)

Given the following network:

Fig. 23
This can be represented as a sum of prime implicants:

$$
f=\sum_{j=1}^{4} p_{j}=x_{3} x_{4}+x_{2} \bar{x}_{3} \bar{x}_{4}+x_{1} x_{4} x_{5}+\bar{x}_{1} \bar{x}_{2} x_{4} \bar{x}_{5}
$$

a-Test (s-a-0-faults)

It can be seen that each prime implicant covers at least one minterm which is not covered by any other prime implicant (see also Karnaugh-map, Fig. 24).

We write as covering matrix with headings

- p_{j} (collums)
- m_{j} (rows):

p_{j}				
m_{i}	p_{1}	p_{2}	p_{3}	p_{4}
$x_{1} \times_{2} x_{3} x_{4} x_{5}$	- -11- 2	$-100-$	$1--11$	$00-10$
01000	0	1	0	0
11000	0	1	0	0
00010	0	0	0	1
00110	1	0	0	1
10110	1	0	0	0
01110	1	0	0	0
11110	1	0	0	0
01001	0	1	0	0
11001	0	1	0	0
10011	0	0	1	0
11011	0	0	1	0
00111	1	0	0	0
10111	1	0	1	0
01111	1	0	0	0
11111	1	0	1	0

Covering Matrix

Step 1 Construction of covering matrix
Step 2 Delete all rows which contain more than one 1 (rows checkmarked by a).

Step 3 There is no p_{j} which cannot be detected by a minterm.
Note: These tests (a_{j}) are necesṣary and sufficient to test for all s-a-o-faults.

Step 4 We choose for every p_{j} one minterm a_{j}, e.g.
$\{\mathrm{a}\}=\{11110,11000,10011,00010\}$

$$
\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4}
\end{array}
$$

Note: These tests (a_{j}) are necessary and sufficient to test for all s-a-0-faults.

Finally, we show a Karnaugh-map with prime implicants p_{j} and minterms a_{j}.

Note:
All the circled minterms belong to the minterms of f with

$$
a_{j} \in p_{j} \cdot \prod_{\substack{i=1 \\ i \neq j}}^{e} \bar{p}_{i}
$$

The minterms which are covered by more than one p_{i} have been deleted from the covering matrix E.
b-Test (s-a-1-faults)

Step 1 From prime implicants p_{j} we find all adjacent subcubes $p_{j k}^{x}$.

$$
\begin{array}{ll}
p_{1}=-11-- & p_{11}^{x}=-10- \\
p_{2}=-100- & p_{12}^{x}=-01- \\
p_{21}^{x}=-000- \\
p_{3}=1--11 & p_{22}^{x}=-110- \\
& p_{23}^{x}=-101- \\
p_{4}=00-10 & p_{31}^{x}=0--11 \\
& p_{32}^{x}=1--01 \\
& p_{33}^{x}=1--10 \\
& p_{41}^{x}=10-10 \\
& p_{42}^{x}=01-10 \\
p_{43}^{x}=00-00 \\
& p_{44}^{x}=00-11
\end{array}
$$

Step 2 For every $p_{i s}^{x} \supseteq p_{j t}^{x}$ delete $p_{i s}^{x}$

$$
\text { We get } \begin{aligned}
p_{12}^{x} & =--01-\supset p_{22}^{x}=-110- \\
p_{11}^{x} & =--10-\supset p_{23}^{x}=-110- \\
p_{33}^{x} & =1--10 \supset p_{41}^{x}=10-10 \\
p_{31}^{x} & =0--11 \supset p_{44}^{x}=00-11
\end{aligned}
$$

Thus our new list is

p_{21}^{x}	$-000-$
p_{22}^{x}	$-110-$
p_{23}^{x}	$-101-$
p_{32}^{x}	$1--01$
p_{41}^{x}	$10-10$
p_{42}^{x}	$01-10$
p_{43}^{x}	$00-00$
p_{44}^{x}	$00-11$

Step 3 We find pairwise intersections, e.g.
$\mathrm{p}_{23}^{\mathrm{x}} \cap \mathrm{p}_{42}^{\mathrm{x}}=-101-\cap 01-10=01010$.

We get:
01010, 11101, 10001, 00000

Step 4 The prime intersections (where intersection leads to no further terms) are

10-10, 00-11
01010, 11101, 10001, 00000

Step 5 To find a test from the intersection 00-11, note that this intersection covers two minterms

00011 and 00111
since $00111 \varepsilon--11-=p_{1}$, only
00011 is admitted as a test.
We get as prime tests (minterms)
00011, 10010
01010, 11101, 10001, 00000

Step 6 The prime test chart is given next:

$P_{j k}^{x}$	-000-	-110-	-101-	1--01	10-10	01-10	00-00	00-11
b_{jk}								
00011								x
10010					x			
01010			x			x		
11101		x		x				
10001	x			x				
00000	x						x	

Note:

These tests (b_{jk}) are necessary and sufficient to test for all s-a-1-faults. We give no representation with Karaugh-map here.

The method of covering a prime test chart is similar to the covering of a fault table. But almost always, the size of a prime test chart is small compared with the corresponding fault table (see sect. 2.2).

5.5 Exixtence of Tests

Theorem: The set T of a-tests and b-tests detects all multiple faults in the two-level AND-OR-network, where all
a-tests are of the type $a_{j} \in p_{j} \cdot \prod_{\substack{i=1 \\ i \neq j}}^{\ell} \bar{p}_{i}$
and all
b-tests are of the type $b_{j k} \varepsilon p_{j k}^{x} \cdot \prod_{i=1}^{\ell} \bar{p}_{i}$.

Proof: We consider only the inputs x_{i}. If any s-a-0 or s-a-1 occurs in one of the inputs, it will be detected by the tests T. If any input is s-a-1, its effect is to add a subcube $p_{j k}^{x}$ to the switching function. This subcube can only be deleted (i.e. the subcube will be with an undetectable fault s-a-1) if a s-a-0faults on an input to the same AND-gate occurs. This s-a-0 fault cannot be "masked" by another s-a-1 fault at the gate:

From $\quad x_{1} \cdot x_{2} \ldots 1_{i_{1}} \ldots 0_{i_{2}} \ldots x_{n j}$ we get the vanishing of the prime implicant, therefore it will be detected by an a-test.

A s-a-0 at an input to an AND gate causes the prime implicant p_{j} to vanish. The p_{j} is tested by a single a test. If, however, this a test (minterm) is included at the same time in an adjacent subcube added to the switching function as a result of some s-a-1 fault, it will not detect the "vanished" prime implicant. The $\mathrm{s}-\mathrm{a}-1$, however, will be detected by the b-tests.

In all other situations the a test will detect all s-a-0 faults. The a-tests and b-tests together detect all multiple faults, but not necessarily a or b-tests alone. \square

This proof has been presented in $/ 1 /$. Here the proof has been simplified to some extent.

5.6 Relation to Diagnosis Procedures

To apply our concepts correctly to Diagnosis Procedures (introduced in sect. 4) some relations will be outlined:

There is a close correspondence between

1. a-Tests (for s-a-0 faults) and a-Diagnosis Procedures (for failure diagnosis of systems represented by fault trees),
2. b-Tests (for $s-a-1$ faults) and b-Diagnosis Procedures (for diagnosis of subcubes adjacent to system failure).

Clearly, all the techniques from a and b-Tests, also in relation with search for prime implicants (or min cubes) can be applied for automatic diagnosis of systems. This will be shown in more detail in our next section.

6. Examples with Various Fault Trees

6.1 Subsystem of Automated Laboratory
6.2 Standby System with Motor
6.3 Failure of Residual Heat Removal System
6.4 Nitric Acid Cooler
6.5 An illustrative Fault Tree

6.1 Subsystem of Automated Laboratory

Here we regard the photometer and conductivity measurements, which have been discussed in more detail in $/ 18 /$, as a first example (Fig. 25).

Fig. 25 Vereinfachtes Apparateschema (Schematic diagram of automated photometry and conductimetry system /18/).

In a schematic diagram this device is shown. Then a subtree leading to the event "Error in a photometer measurement" is show. From the related structure function we get

- a-tests and
- b-tests.

Component failures (Inputs), Fig. 26.
V1b, V2B, V3a as well as PU1 (fu11), V8a, L4 indicate failures in the components of the device. Note that for the analysis step No. 5 (cuvette filled) (see $/ 18 /, / 19 /$) two min cuts may lead to a measurement error. Note that this event only reduces availability (not the safety) of this device. A fast diagnose is desirable to reduce unavailability.

Fig. 26 Fault Tree

The structure function is:

$$
\Phi=x_{1} x_{2} x_{3}+x_{4} x_{5} x_{6}
$$

We get as a-tests:

	p_{j}	123456
a_{j}	$111-\cdots$	123456
111000	1	0
000111	0	1

If two min cuts are possible causes of measurement error, we can exactly locate the failed component.

We get as b-tests:

$p_{1}=x_{1} x_{2} x_{3}$	123456	123456
	$111---$	

$p_{1 k}^{x}$	$k=1$	$011---$	$b_{1 k}$	011000
	2	$101-\cdots$		101000
	3	$110-\cdots$		110000

$p_{2}=x_{4} x_{5} x_{6} \quad---111$

$p_{2 k}^{x}$	$k=1$	---011	$b_{2 k}$	000011
	2	---101		000101
	3	---110		000110

Thus we can detect all states which are adjacent to system failure. This is still much better than stop the device for any single failure, which considerably decreases unavailability. Moreover, this leads to a systematic search for all states adjacent to system failures in the whole operation of the device.

Note: This test set can be used for the whole photometry and conductivity measurement subsystem (see also /18/).

Efficiency: For $n=6$ inputs we have

$$
\begin{aligned}
& 3^{n}-1 \text { multiple faults (including single faults), i.e. } \\
& 3^{6}-1=7.28 \cdot 10^{2}
\end{aligned}
$$

All are automatically contained in the Lists for a-tests and b-test.

6.2 A Standby System with Motor

This system is reproduced in the literature /20/. It has been used for fault tree analysis.

Fig. 27 Standby system

We describe this system shortly: Assume, the system is a standby system that is tested once every month. It consists of a battery, two switches in parallel, and a motor. To start the motor, two push buttons are pressed to close the two switch contacts 1 and 2 . To stop the motor at the end of test, two push buttons are depressed. Periodically, say every six months, the operator must recharge the battery and perform routine maintenance on the motor.

We have the following fault tree which describes the failure of the motor to start on request.

Fig. 28 Fault Tree

Next we give the structure function.
By a top-down algorithm we find the min cuts.

$$
\begin{aligned}
f= & x_{1}+B+x_{2} \\
= & x_{1}+C+F+x_{2} \\
= & x_{1}+D \cdot E+x_{7}+G+x_{2} \\
= & x_{1}+D \cdot E+x_{7}+x_{9} \cdot H+x_{8}+x_{2} \\
= & x_{1}+x_{2}+x_{7}+x_{8}+D \cdot E+x_{9} \cdot H \\
= & x_{1}+x_{2}+x_{7}+x_{8} \\
& +x_{3} \cdot x_{5}+x_{3} \cdot x_{6}+x_{4} \cdot x_{5}+x_{4} \cdot x_{6} \\
& +x_{9} \cdot x_{10}+x_{9} \cdot x_{11}+x_{9} \cdot x_{12} \\
& +x_{9} \cdot x_{13}+x_{9} \cdot x_{14}
\end{aligned}
$$

We give a list of the min cuts, also describing the related failure combinations.

P_{j}	Min Cut Set	Description of failure combination
1	[1\}	Motor fails to start
2	\{2\}	Inadequate maintenance of motor
3	\{7\}	Dead battery (primary failure)
4	\{8\}	Operator fails to recharge battery
5	\{3,5\}	Switch 1 contacts fail to close Switch 2 contacts fail to close
6	\{3,6\}	Switch 1 contacts fail to close Secondary failure of switch 2
7	$\{4,5\}$	Secondary failure of switch 1 Switch 2 contacts fail to close
8	$\{4,6\}$	Secondary failure of switch 1 Secondary failure of switch 2
9	$\{9,10\}$	Battery operates sufficiently long to discharge Secondary failure of switch 1
10	\{9,11\}	Battery operates sufficiently long to discharge Switch 1 contacts fail to open
11	\{9,12\}	Battery operates sufficiently long to discharge Operator fails to depress push button
12	\{9,13\}	Battery operates sufficiently long to discharge Switch 2 contacts fail to open
13	\{9,14\}	Battery operates sufficiently long to discharge Secondary failure of switch 2

a-Test

Prime Implicants

The cuts p_{j}, causing the defect can be precisely located.
b-Test
$p_{1}, p_{2}, p_{3}, p_{4}$ are single Failures: b-test not applicable

$p_{9}=x_{9} x_{10} \ldots$	$11-\cdots--$
$p_{9 k}$	$k=1$
2	0

$p_{10}=x_{9} x_{11}$	$0-1---$
$p_{9 k}^{x}$	$k=1$
2	

$p_{11}=x_{9} x_{12}$
$1-1-=$
$p_{11 k}^{x} \quad k=1$
$0-1-1-$
$1-0-$

Efficiency: For $n=22$ inputs we have $3^{n}-1$ multiple faults, i.e.

$$
3^{22}=1=3.138 \cdot 10^{10} .
$$

All these faults are automatically covered by the lists for a-tests and b-tests.

6.3 Failure of a Residual Heat Removal System (RHR)

We have this System /21/, represented by a fault tree.
The undesired event is "RHR loss of isolation".

Fig. 29 RHR fault tree: restructured TOP.
(RHR, Residual Heat Removal)

The structure function is:

$$
\begin{aligned}
& \Phi=A_{2} \cdot A_{4} \cdot A_{10} \quad 42 \text { Min Cuts } \\
& +A_{2} \cdot A_{8} \cdot A_{10} \quad 14 "^{\prime \prime} \\
& +A_{2} \cdot 9 \cdot A_{10} \quad 14 "^{\prime \prime} \\
& +A_{2} \cdot 10 \cdot A_{10} \quad 14 \text { " " } \\
& +A_{2} \cdot A_{4} \cdot 216 "^{\prime \prime} \\
& +A_{2} \cdot A_{8} \cdot 212 \text { " " } \\
& +A_{2} \cdot 9 \cdot 21 \quad 2^{\prime \prime} \\
& +A_{2} \cdot 10 \cdot 212 \text { " " } \\
& =84 \text { Min Cuts } \\
& =12 \text { Min Cuts }
\end{aligned}
$$

where $A_{2}=1+2$

$$
\begin{aligned}
& A_{4}=((3+4) 5+6) \cdot 7 \\
& A_{8}=7 \cdot 8 \\
& A_{10}=11 \cdot(12+13+((14+15) 16+17+19+20) \cdot 18) .
\end{aligned}
$$

For simplicity, we restrict the tests to A_{10} (F023 OPEN).

Structure function for A_{10}

$$
\begin{aligned}
& A_{10} \\
& =A_{11}+A_{12}+A_{13}+A_{17}+A_{18} \\
& A_{11}=11 \cdot 12 \\
& A_{12}=11 \cdot 13 \\
& A_{13}=A_{14} \cdot 11 \cdot 18 \\
& A_{14}=A_{15}+17 \quad \text { OPEN } \\
& A_{15}=
\end{aligned} \begin{aligned}
& \\
& A_{16} \cdot 16
\end{aligned} \quad \text { CONTROL SIGNAL TO F023 }
$$

$$
\begin{aligned}
A_{13} & =11((14+15) 16+17) 18 \\
A_{17} & =11 \cdot 18 \cdot 19 \\
A_{18} & =11 \cdot 18 \cdot 20 \\
A_{10} & =11 \cdot 12+11 \cdot 13+11((14+15) 16+17) 18+11 \cdot 18 \cdot 19+11 \cdot 18 \cdot 20 \\
& =11 \cdot 12+11 \cdot 13+11 \cdot 14 \cdot 16 \cdot 18+11 \cdot 15 \cdot 16 \cdot 18+11 \cdot 17 \cdot 18+11 \cdot 18 \cdot 19+11 \cdot 18 \cdot 20
\end{aligned}
$$

a-Test

Min Cuts $p_{j} \quad 111213141516171819 \quad 20$

Here is also information on subsystems (A_{16}, A_{15}, A_{14}) avaible.
We get more details than the mincuts alone.
b-Test

Efficiency: For $n=21$ inputs we have $3^{n}-1$ multiple faults, i.e. $3^{21}-1=1.046 \cdot 10^{10}$.
All these faults are automatically covered by the lists for a-tests and b-tests.

6.4 Nitric Acid Cooler

We consider a subsystem from chemical industry which cools in a process hot nitric acid (HNO_{3}) with a temperature feedback and a pump-shut-down feedforward. This has been analyzed by Lapp and Powers /22/.

Fig. 30 Block diagram for nitric acid cooler

1. We list the components of this system giving:

- possible inputs and outputs and
- possible failures

These may be translated into a fault table. But we will have a simpler way to deal with diagnosis by means of a-tests and b-tests.
2. Then we give a flow diagram for the possible processes including faults.
3. This leads to a non-coherent fault tree.
4. We get then the usual prime implicants and tests (again for a subtree).

Fig. 31 Input-Output Models

Fig. 33 Fault Tree for Nitric Acid Cooler

Fig. 34 Subtree

Structure function of a non-coherent structure
(We use the top down algorithm, which here gives all prime implicants, but not for non-coherent structures in genera1.)

$$
\begin{aligned}
\Phi= & A_{2}+x_{10}+A_{3} \\
= & A_{4}+A_{5}+x_{10}+x_{7} \cdot A_{6} \\
= & A_{7} \cdot \overline{x_{6}}+\overline{A_{7}} \cdot x_{6} \quad(\text { EXOR }) \\
& +x_{10}+x_{7} \cdot x_{8}+x_{7} \cdot x_{9} \\
= & \left(A_{8}+x_{3}+x_{4}\right) \overline{x_{6}}+\left(\overline{A_{3}} \cdot \overline{x_{3}} \cdot \overline{x_{4}}\right) x_{6} \\
& +x_{10}+x_{7} \cdot x_{8}+x_{7} \cdot x_{9} \\
= & \left(\left(x_{1}+x_{2}+x_{4}\right) x_{5}+x_{3}+x_{4}\right) \overline{x_{6}} \\
& +\left(\left(\overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{4}}+\overline{x_{5}}\right) \overline{x_{3}} \cdot \overline{x_{4}}\right) x_{6} \\
& +x_{10}+x_{7} \cdot x_{8}+x_{7} \cdot x_{9} \\
= & x_{1} \cdot x_{5} \cdot \overline{x_{6}}+x_{2} \cdot x_{5} \cdot \overline{x_{6}}+x_{3} \cdot \overline{x_{6}}+x_{4} \cdot \overline{x_{6}} \\
& +\overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{4}} \cdot x_{6}+\overline{x_{3}} \cdot \overline{x_{4}} \cdot \overline{x_{5}} \cdot x_{6} \\
& +x_{10}+x_{7} \cdot x_{8}+x_{7} \cdot x_{9}
\end{aligned}
$$

a-Test

Prime Implicants

p_{j}	12345678910
1	1---10---
2	- 1--10---
3	--1-- 0 - -
4	---1-0--.
5	$0000-1 \cdots$
6	- - 0001 - - -
7	- - - - - - 1
8	- - - - 11 -
9	- - - - 1-1-
Minterms .	
a_{j}	12345678910
1	100010
2	010010
3	001000
4	000100
5	000011
6	110001
7	0000000001
8	1100
9	1010

b-Test for G5' of nitric acid cooler
$12345678910 \quad 12345678910$

$p_{1}=x_{1} x_{5} \bar{x}_{6}$	1---10-	3216842	$\overline{D e c i m a l ~}^{*}$
$p_{1 k}^{x} \quad k=1$			
	1---00-.-	100000	32
3	1---11	100011	35
$p_{2}=x_{2} x_{5} \bar{x}_{6}$	-1--10---		
$p_{2 k}^{x} \quad k=1$	- 0-- $10-\cdots$	100010	34
	- $1-00-\ldots$	010000	16
3	-1--11--	010011	19
$p_{3}=x_{3} \bar{x}_{6}$	- 1 - - 0-- -		
$p_{3 k}^{x} \quad k=1$	--0--0---	000100	4
	- 1 - - 1 -	001001	9
$p_{4}=x_{4} \bar{x}_{6}$	-- 1-0---		
$\mathrm{p}_{4 k}^{\mathrm{x}}$ (${ }^{\text {d }}$	---0-0-	0010000	8
4k 2	- - 1-1-	000101	5
$p_{5}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4} \mathrm{x}_{6}$	$0000-1 \cdots$		
$\mathrm{p}_{5 k}^{\mathrm{x}}$ ($k=1$	1000-1-..	100001	33
	$0100-1 \cdots$	010001	17
3	$0010-1-$	0001011	11
4	0001 - 1--	000111	7
5	0000-0--	000010	
$p_{6}=\bar{x}_{3} \bar{x}_{4} \bar{x}_{5} x_{6}$	--0001--		
$p_{6 k}^{x} \quad k=1$	- 1001 - -	011001	25
	--0101--	100101	37
	--00011---	110011	51
4	--0000-	110000	48

*) We use a decimal numbering to check, if any of the $b_{j k}$ is also included in more than one adjacent cubcubes. If this is not the case, all adjacent states can be identified.

	7	8	9	10	1	2	3	4	5	6	7	8	9

$p_{9}=x_{10}$
Note: For p_{9}, which is a single failure, no adjacent subcubes exist.

Efficiency: For $n=24$ inputs we have $3^{n}-1$ multiple faults, i.e. $\quad 3^{24}-1=2.824 \cdot 10^{11}$.
All these faults are automatically covered by the lists for a-tests and b-tests.

6.5 An illustrative Fault Tree

We are presenting a fault tree which has been already analyzed in sect. 1.7. (see /11/).
This fault tree is used for some research in simulation, where the system is not represented by software, but by hardware (e.g. with a s-o-p-representation, using diode logic /23/, /1/).

It is important to check this hardware in two respects:

- It is necessary to validate that the diode logic represents the original fault tree (This will not be discussed here).
- It is also necessary to test, whether there are any s-a-0 or s-a-1-faults in the diode logic. If there were any faults, this could seriously affect the simulation result.

Here is another, more direct application of the a-tests and b- tests.

The min-cuts for the following fault tree have been calculated by the bottom up algorithm (sect. 1.7).

Fig. 35 Illustrative Example of Fault Tree.

Assume, we can get the outputs from E_{1}, E_{2} separately. Then we get the following tests:
${ }^{\Phi} \mathrm{E}_{1}=2 \cdot 3+2 \cdot 5+1 \cdot 6+3 \cdot 6 \cdot 10+3 \cdot 6 \cdot 14+8 \cdot 9 \cdot 13+10 \cdot 16+5 \cdot 10 \cdot 11$
(similary we get $\Phi_{E_{2}}$).

List

No.	min cut
1	2.3
2	2.5
3	1.6
4	3.6 .10
5	3.6 .14
6	8.9 .13
7	10.16
8	5.10 .11

a-Tests (subtree E_{1})
Min Cuts $P_{j} 1 \begin{array}{lllllllllllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$

| 1 | -1 | - | - | - | - | - | - | - | - | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | - | - | - | - | - | - | - | - | - | - |
| 3 | 1 | - | - | 1 | - | - | - | - | - | - |
| 4 | - | - | - | - | - | - | - | - | - | - |
| 5 | - | - | - | - | - | - | - | 1 | - | |
| 6 | - | - | - | - | -1 | - | - | - | - | |
| 7 | - | - | - | - | - | - | - | - | - | - |
| 8 | - | - | - | - | - | 1 | - | - | - | |

Minterms $a_{j} 1 \begin{array}{llllllllllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$

1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
3	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
4	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0	0
5	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0
6	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
8	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0

Similary, we get a-tests for subtree E_{2}.
b-Tests (subtree E_{1})
p_{j} and $p_{j k}^{x} \quad a_{j k}$
$12345678910111213141516 \quad 12345678910111213141516$

Similarly, we get b-tests for subtree E_{2}.

Efficiency: For $n=20$ inputs we get $3^{n}-1$ multiple faults, i.e. $3^{20}-1=3.487 \cdot 10^{9}$.
All these faults are automatically covered by the lists for a-tests and b-tests.

References

/1/ Z. Kohavi, Switching and Finite Automata Theory Mc Graw-Hill Book Company, New York 1978

12/ J. P. Hayes, Computer Architecture and Organization Mc Graw-Hill Book Company, New York 1978
/3/ K. E. Iverson, A Programming Language John Wiley and Sons Inc., New York 1962
/4/ B. Girling, H.G. Moring Logic and Logic Design Intertext Books, International Texbook Company Limited, 1973
/5/ V. T. Rhyne, et al. A new Technique for the Minmization of Switching Functions IEEE-Trans. on Computers Vol. C-26, pp. 757 -763 (1977)
/6/ M. Davio, J.-P. Deschamps, A. Thayse Discrete and Switching Functions Mc Graw-Hill Book Company, New York 1978
/7/ R. J. Ne1son, Simplest Normal Truth Functions
J. Symbolic Logic, Vol. 20 pp. 105-108, (1954)
/8/ B.L. Hulme, R. B. Worrell
A Prime Implicant Algorithm with Factoring
IEEE-Trans. on Computers
Vol. C-24, pp. 1129-1131 (1975)
/9/ J. B. Fusse11, W. E. Vesely
A new Methodology for obtaining
Cut Sets for Fault Trees
Trans. Amer. Nucl. Soc., Vol. 15, pp. 262-263, June 1972

/10/	R. G. Bennetts On the Analysis of Fauit Trees IEEE Trans. on Reliability Vol. R-24, pp. 175-185 (1975)
/11/	K. Nakashima, Y. Hattori An Efficient Bottom-up Algorithm for Enumerating Minimal Cut Sets of Fault Trees IEEE-Trans. on Reliability, Vol. R-28 pp. 353-357 (1979)
/12/	M. A. Breuer, A. D. Friedman, Diagnosis \& Reliable Design of Digital Systems Pitman Publ. Ltd., London, 1977
/13/	J. D. Murchland, G. G. Weber A Moment Method for the Calculation of a Confidence Interval for the Failure Probability of a System Proceedings of 1972 Annual Reliability and Maintainability Symposium, San Francisco, pp. 565-577
/14/	R. E. Barlow, F. Proschan Statistical Theory of Reliability and Life Testing (Probability Models) Holt, Rinehart and Winston Inc., New York, 1975
/15/	U. Höfle-Isphording Zuverlässigkeitsrechnung Springer Verlag, Berlin, 1978
/16/	VDI Richtlinie 4008/Blatt 7 Strukturfunktion und ihre Anwendung (Entwurf), Verein Deutscher Ingenieure, Düsseldorf 1979
/17/	S. C. Lee, Modern Switching Theory and Digital Design Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1978

/18/

I. Kohavi, Z. Kohavi, Detection of Multiple Faults on Combinational Logic Networks
IEEE-Trans. on Computers, Vol. C-21, pp. 556-568 (1972)
/19/ G. G. Weber
Untersuchung des Zusammenhangs zwischen Fehlerbaumanalyse und Störfallanalyse am Beispiel des Photometer-Leitfähigkeitsmeßstandes, KfK 2909, Februar 1980, Kernforschungszentrum Karlsruhe
D. Stöckle, Unpublished Results
/21/ H. E. Lambert Fault Trees for Decision Making in Systems Analysis (Ph. D. - Thesis), UCRL-51829, University of California, Livermore, 1975
S. L. Salem, G. E. Apostolakis, D. Okrent A new Methodology for the Computer-Aided Construction of Fault Trees Ann. of Nuc1. Energy, Vo1. 4, pp. 417-433, Pergamon Press 1977
/23/ S.A.Lapp, G. J. Powers
Computer Aided Synthesis of Fault Trees IEEE-Trans. on Reliability, Vol. R-26, pp. 2-13, 1977 and
S. A. Lapp, G. J. Powers
Update of Lapp-Powers Fault-Tree Synthesis Algorithm IEEE-Trans. on Reliability, Vo1. R-28, pp. 12-15, 1979
/24/ S. Fenyi
Unpublished Results
/25/ K. Nakashima
Studies on Reliability Analysis and Design of
Complex Systems,
PhD- Thesis, KYOTO UNIVERSITY, Kyoto Japan, March 1980
/26/ W. Görke,
Generating Tests for Functional Expressions in Self-Diagnoses and Fault-Tolerance, Proceedings, Mario Dal Cin, Elmar Dilger (Eds.)
Attempo Verlag, Tübingen 1981

