KfK 3269 Dezember 1982

## The Solubility of Hydrogen, Deuterium and Tritium in Liquid Lead-Lithium Alloys in the Temperature Region 500-1500 K

M. Hoch

Institut für Neutronenphysik und Reaktortechnik

Kernforschungszentrum Karlsruhe

Institut für Neutronenphysik und Reaktortechnik

#### KfK 3269

### The Solubility of Hydrogen, Deuterium and Tritium in Liquid Lead-Lithium Alloys in the Temperature Region 500-1500 K

Michael Hoch<sup>+</sup>

<sup>+</sup>Department of Materials Science and Metallurgical Engineering, University of Cincinnati, Ohio, USA

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

> Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

THE SOLUBILITY OF HYDROGEN, DEUTERIUM AND TRITIUM IN LIQUID LEAD-LITHIUM ALLOYS IN THE TEMPERATURE REGION 500-1500 K

ABSTRACT

The solubility of H<sub>2</sub>, D<sub>2</sub> and T<sub>2</sub> in liquid Pb-Li alloys was calculated, using the thermodynamic data in the binary systems. In the temperature range of 500 to 1500K and composition range .01 <  $x_{Li}$  < 0.6, the solubility is almost temperature independent, and is not strongly influenced by the solubility of H<sub>2</sub> in pure lead. In the 17 at % Li alloy, at 500K the D<sub>2</sub> solubility is log K = 1.49 ± .213, K in appm. torr<sup>-1/2</sup>, that of H<sub>2</sub> is 1.565 ± .213, and that of T<sub>2</sub> is 1.446 ± .213.

DIE LÖSLICHKEIT VON WASSERSTOFF, DEUTERIUM UND TRITIUM IN BLEI-LITHIUM-LEGIERUNGEN IM TEMPERATURBEREICH 500 BIS 1500K

#### **ZUSAMMENFASSUNG**

Die Löslichkeit von H<sub>2</sub>, D<sub>2</sub> und T<sub>2</sub> in flüssigen Pb-Li-Legierungen wird unter Benutzung der thermodynamischen Daten der linearen Systeme berechnet. Die Löslichkeit ist im Temperaturbereich von 500K bis 1500K und bei einem Li-Gehalt von 1 % bis 60 % von der Temperatur nahezu unabhängig. Sie wird von der Löslichkeit von H<sub>2</sub> in reinem Pb fast nicht beeinflußt. Für eine Legierung mit einem Li-Gehalt von 17 Atom-% ist der Wert der D<sub>2</sub>-Löslichkeit bei 500K log K = 1.49  $\pm$  0.213. Die Einheit von K ist appm. Torr<sup>-1/2</sup>. Der entsprechende Wert ist für H<sub>2</sub> 1.565  $\pm$  0.213 und der für T<sub>2</sub> 1.446  $\pm$  0.213.

#### ABSTRACT

The solubility of  $H_2$ ,  $D_2$  and  $T_2$  in liquid Pb-Li alloys was calculated, using the thermodynamic data in the binary systems. In the temperature range of 500 to 1500K and composition range..01 <  $x_{Li}$  < 0.6, the solubility is almost temperature independent, and is not strongly influenced by the solubility of  $H_2$  in pure lead. In the 17 at % Li alloy, at 500K the  $D_2$  solubility is log K = 1.49 ± .213, K in appm. torr<sup>-1/2</sup>, that of  $H_2$  is 1.565 ± .213, and that of  $T_2$  is 1.446 ± .213.

#### INTRODUCTION

The aim of this paper is to calculate, from the available thermodynamic data, the solubility of  $H_2$ ,  $D_2$  and  $T_2$  in Pb-Li alloys in the temperature range 500-1500 K. The aim more specifically is to obtain the Sievert's law constant K as a function of composition and temperature.

The approach is to calculate the thermodynamic functions from the available data in the binary systems Li-LiH (Li-LiD, Li-LiT), Li-Pb and Pb-H and calculate the thermodynamic function of the ternary Pb-Li-H (Pb-Li-D, Pb-Li-T) system.

We are interested in the pressure at low concentration of  $H_2$  ( $D_2$  and  $T_2$ ) and over a large temperature range. The available thermodynamic data in the binary systems do not cover the temperature and composition range in question. We, therefore, use a thermodynamic model to calculate the various parameters which then permit a satisfactory extrapolation of the data to compositions and temperatures where no experimental data are available. The model approach has the advantage that a large number or experimental data from various authors using different methods are combined to determine the energy parameters.

The model we use is the model described by Hoch and Arpshofen [1] which is a quasichemical regular solution model similar to that one used by Guggenheim [3]. The approach by Hoch and Arpshofen [1] involves associates i.e., compounds in the solution of various complexities such as An, Bm where (A and B are the two species and n and m are their coefficients in the compound). The model provides various compounds in solution (such as  $A_3B$ ,  $A_2B_2$  and  $AB_3$ ) and the relationship of the heat and free energy of formation of those compounds can be calculated from first principles i.e., the relation between the heat and free energy of formations of the various compounds obey a relatively simple formula. This permits us for one system i.e., the Pb-Li to describe the thermodynamic activity in terms of one constant, the interaction parameter  $\Omega_0$ . The model takes into account the deviation of the atomic distribution from randomness, and the changes in vibrational entropy in the system.

In the following calculations, free energies, heats and entropies are divided by R, the gas constant. Thus  $\triangle H$  and  $\triangle G$  are expressed in kK (kilo-Kelvins) and the entropy is dimensionless. To convert those numbers into calories, or joules, one has to multiply with R (the gas constant).

#### LI-LIH SYSTEM

The phase diagram of the Li-LiH system is shown in a schematic fashion by Hansen [4b] Fig. 1. At high temperatures we have a single liquid which disproportionates into two liquids,  $L_1$  and  $L_2$  at lower temperatures and below that at the monotectic temperature we have a transformation into a two phase region the liquid Li phase in equilibrium with solid LiH. As our interest is mainly and practically only in the liquid region, we will consider only the measurements carried out in the liquid region.

Our approach is to calculate from the phase boundary of the two liquid region  $(L_1 + L_2)$  in Figure 1, the thermodynamic functions of the system in the liquid phase i.e., the activity of Li and LiH as a function of composition and temperature. Then from the H<sub>2</sub> (and D<sub>2</sub> and T<sub>2</sub>) pressures in the plateau region, i.e., in the region of the two liquid phases, we can obtain the free energy of formation of stoichiometric LiH and combining this with the equations for the activity of Li and LiH we obtain the Sievert's law constant. The advantage of this method is that it is possible to obtain the properties for H<sub>2</sub>, D<sub>2</sub> and T<sub>2</sub>, and also the fact that a number of data are available in the temperature and composition range question.

#### Phase boundary

Phase boundaries of the  $(L_1 + L_2)$  region, in the Li-LiH system are given by Veleckis [20], Smith [9], Heumann [5], and Shpilrain [12]; in the Li-LiD system by Veleckis [8], Smith [9], Heumann [5], and in the Li-LiT system by Heumann [5]. Plateau pressures in the Li-LiH system are given by Veleckis [20], Smith [9], Heumann [5], and Shpilrain [12] in the Li-LiD system by Veleckis [8], Smith [9] and Heumann [5], and in the Li-LiT system by Heumann [5]. Veleckis [7] measured the plateau pressures in all three systems.

Heumann  $\lfloor 5 \rfloor$  used only an enriched T<sub>2</sub> gas for his measurements. Smith  $\lfloor 9 \rfloor$  noted that the phase boundaries in the Li-LiH and Li-LiD system are identical. Veleckis (6) noted that the plateau pressures were in the ratio

 $\frac{P_{D_2}}{P_{H_2}} = \sqrt{2}, \frac{P_{T_2}}{P_{D_2}} = \sqrt{3},$  and used these relationships to calculate the pressures

below the monotectic temperature in the two phase region Li(1) + LiH(s).

Table 1 contains the phase boundaries and plateau pressures of Veleckis [8, 20], Smith [9], Heumann [5] and Shpilrain [12]. The first column is the temperature, second and third the phase boundary  $x_1$  and  $x_2$  in LiH (resp. LiD and LiT) atom fractions, the fourth and fifth the interaction parameter calculated from Li, resp. LiH activities, the ninth the plateau pressure. The pressure for D<sub>2</sub> and T<sub>2</sub> are connected in the next column to H<sub>2</sub> pressures by dividing them by  $\sqrt{2}$  and  $\sqrt{3}$  resp. As Smith [9] had the same phase boundaries in the Li-LiH and Li-LiD systems, the plateau pressures are next to each other.

#### Interaction parameter.

Fig. 1 shows an asymmetric miscibility gap indicating repulsion, and 3 atom complexes [1]. The heat of mixing of a system as this is given by [1]

$$\Delta H_{m} = 3x^{2}y\Omega_{1}\left(1 - x^{2}y\frac{C}{T}\Omega_{1}\right) + 3xy^{2}\Omega_{2}\left(1 - xy^{2}\frac{C}{T}\Omega_{2}\right)$$
(1)  
x atom fraction of LiH (LiD or LiT)  
y atom fraction of Li  
C =  $\frac{2.n(n-1)}{z}$ 

n number of atoms in complex, z: neighbors in liquid; n = 3, z = 10

We have also shown [1] that  $\Omega_1 = 2 \ \Omega_2$ , for simplicity reason  $\Omega_2 = \Omega_0$ . Thus one obtains

$$\frac{\Delta H_{\rm m}}{3} = \Omega_0 x y \left( 1 + x \right) - \Omega_0^2 \frac{C}{T} x^2 y^2 \left( 3x^2 - 2xy + 1 \right)$$
(2)

by differentiation [1] we obtain the partial excess free energy of the x component  $\overline{\Delta G}_x^{ex}$  and of the y component  $\overline{\Delta G}_y^{ex}$ 

AY

$$\frac{\Delta \overline{G}_{x}}{3y^{2}} = \Omega_{0} \left( 1 + 2x \right) \left( 1 - \frac{1.5T}{H_{v}} \right) + \Omega_{0}^{2} \frac{C}{T} x \left( 25x^{3} - 28x^{2} + 9x - 2 \right) \left( .5 - \frac{1.5T}{H_{v}} \right)$$
(3)

$$\frac{\overline{\Delta G_{y}}}{3x^{2}} = 2\Omega_{0}x\left(1 - \frac{1.5T}{H_{y}}\right) + \Omega_{0}^{2}\frac{C}{T}y\left(-25x^{3} + 23x^{2} - 7x + 1\right)\left(.5 - \frac{1.5T}{H_{y}}\right)$$
(4)

The  $\Delta H_V$  enters into the vibrational entropy correction, and the error is negligible when using  $\Delta H_V$  of Li for LiH.

From Eq. (3) we obtain an expression for the activity of LiH, and from Eq. (4) for Li.

For every author, at every temperature, at the 2 phase boundaries  $x_1$ , and  $x_2$ , the Li and LiH activities must be equal. Stating that

Tlnx +  $\overline{\Delta G_{x}^{ex}}$  must be equal at  $x_{1}$  and  $x_{2}$  and Tlny +  $\overline{\Delta G_{y}^{ex}}$  must be equal at  $x_{1}$  and  $x_{2}$  we calculate one  $\Omega_0$  from the Li and one from the LiH activity. Those are given in column 4 and 5 of Table 1. The values calculated for LiH are very constant, from Li show a trend, because at  $x_2$  the Li concentration is very small.

Averaging the  $\Omega_0$  from LiH and LiD of Veleckis, Smith and Heumann et al, in Table 1, giving each author equal weight we obtain  $\Omega_0$  = .602 ± .011 kK.

The phase boundaries  $x_1$  and  $x_2$  given in Table 1, for Li-LiH, Li-LiD and Li-LiT are plotted in Fig. 2. They coincide (the Li-LiT of Heumann [5] being an exception, his  $T_2$  gas contained large amount of  $D_2$  and  $H_2$ ). The average values of  $x_1$  and  $x_2$  are given in Table 2.

#### Plateau pressures

The plateau pressures given in Table 1  ${}^{P}H_{2}$  and the converted  ${}^{P}D_{2}$  and  ${}^{P}T_{2}$  are plotted in Fig. 3. The measurements of Veleckis [7] are plotted in Fig. 4. The reason that Veleckis [7] measurements are plotted separately is, that there are so many points, it would overshadow the other authors data.  ${}^{P}H_{2}$  and the converted  ${}^{P}D_{2}$  and  ${}^{P}T_{2}$  data fall on a common line in both figures, and the line is

$$\ln P_{\text{atm}} = 14.85 - \frac{17.60.10^3}{T} + 1/2 \ln u \pm .06$$
(5)

where u = 1 for  $H_2$ , u = 2 for  $D_2$  and u = 3 for  $T_2$ .

#### Free energy of formation of LiH. (LiD and LiT)

For the reaction

Li + 1/2 H<sub>2</sub> → LiH

$$\Delta G^{\circ} f = - T \ln a_{iiH} + T \ln a_{ii} + 1/2 T \ln P$$
(7)

(6)

Using Eq. 3 and 4 we have

$$-\text{Tlna}_{\text{LiH}} + \text{Tlna}_{\text{Li}} = \text{Tln}_{\mathbf{x}}^{\mathbf{Y}} + 3 \left[ \Omega_0 \left( 3x^2 - 1 \right) \left( 1 - \frac{1.5\text{T}}{19.125} \right) + \Omega_0^2 \frac{\text{C}}{\text{T}} \left( 30x^5 - 60x^4 + 40x^3 - 12x^2 + 2x \right) \left( .5 - \frac{1.5\text{T}}{19.125} \right) \right]$$
(8)

To use for In P in Eq. (7) the plateau pressure given in Eq. (5), Eq. (8) must be evaluated at various temperatures with the phase boundary  $x_1$  and  $\alpha_0$  as given in Table 2. Because of the uncertainty in  $x_1$  and that in  $\alpha_0$ , at each temperature we obtain 9 points, the best fit through those points is

$$(-Tlna_{LiH} + Tlna_{Li})_{at T, X_1'} = .340 - .565T \pm (.033T) [kk] (9)$$

Combining Eq. 7 and 9

$$\Delta G_{fLiH(1)}^{0} = -8.46 + 6.86T + \frac{1}{4} T \ln u + (.045T) [kK]$$
(10)

To obtain K, Sieverts law constant, Eq. (10) and (8) are substituted in Eq. (7),  $y \approx 1$ , and x corresponds to the at atom fraction of H (or D or T) in Eq.(8),  $x \approx 0$ , gives

$$1/2 \ln P \simeq -\frac{6654}{T} + 6.718 + \frac{1}{4} \ln u + \ln x \pm .045 \left[ a t m^{\frac{1}{2}} \right]$$
(11)

and

$$\ln K_{Li} = \frac{6654}{T} - 6.718 - \frac{1}{4} \ln u \pm .045 / atom fraction atm^{-1/2} / (12)$$

Using Eq. (9) and Eq. (8),  $x_1$  can be calculated and through Eq. (3)  $x_2$  can be obtained. These are given in Table 2 under calculated values.

To check our calculations,  $P_{D_2}$  at 973K (700°C) is calculated at x=10<sup>-6</sup> and at 10<sup>-1</sup>, using Eq. (7), (8) and (10). We obtain log  $P_{D_2}$  (torr) = -9.07 at x = 10<sup>-6</sup> and log  $P_{D_2}$  (torr) = .915 at x=.1. These values are plotted in Fig. 5, which is taken from Veleckis [6], where the data of Veleckis [6], Ihle and Wu [11], McCrackem et al [10] and Smith [9] are compared. The agreement is excellent.

Our free energy of formation  $\Delta G_{f}^{0}$  of LiH calculated from Eq. 10 is 0.26 kcal more negative than that given by Janaf [19] (in 1967).

#### **PB-H SYSTEM**

The Pb-H system has been reviewed by Hansen (4a) and no significant new results seem to be available. If we take the high value given by Opie et al [13] the Sievert's law constant is given by

$$\ln \kappa_{Pb}^{1} = -3.66 - \frac{5540}{T} - \frac{1}{2} \ln u \left( \frac{1}{K_{Pb}} \right) \text{ in atom fraction} \cdot \operatorname{atom}^{-1/2} \overline{7} \quad (13)$$

The  $D_2$  and  $T_2$  behavior is assumed to be similar to the LiH system. At 600°C, Hofmann et al [14] found a 25 times smaller solubility than Opie et al [13]. If we pass a parallel line to Eq. 13 through the point of Hofmann et al [14], we obtain

$$\ln \mathbf{K}_{Pb} = -6.88 - \frac{5540}{T} - \frac{1}{4} \ln u / \frac{\pi}{Pb} \text{ in atom fraction} \cdot \operatorname{atm}^{-1/2} 7 \quad (14)$$

We are using Eq. (14) in our calculations. However, even at very low Li content in the ternary alloy Pb-Li-H,  $x \approx .01$ , Eq. (14) has very little in-fluence on the total Sievert's law constant.

#### PB-LI SYSTEM

The thermodynamics of this system was discussed in detail by Hoch, Arpshofen and Predel [2]. Summarizing the results we have EMF measurements of Saboungi et al [18] at 770, 812, 869 and 932 K, a total of 110 points; also EMF measurements by Demidov et al [16] at 800 degrees K (10 pts), heat of mixing measurements by Predel and Oehme [15] at 1000 K (46 pts), and mass spectrometry data of Ihle, Neubert and Wu [17] at 750, 800 and 850 K. The system can be described as having complexes of 4 atoms and one single interaction parameter  $\Omega_0 = -1.23 \pm .04$  kK. The data above 75 atomic % Li scattered significantly as the activity of Li is close to its atom fraction and small measurement errors introduce large errors in  $\Omega_0$ .

The heat of mixing of 4 atom complexes is given by [1]

$$\Delta H_{m} = 4 x^{3} y \Omega_{1} \left( 1 - x^{3} y \Omega_{1} \frac{C}{T} \right) + 6 x^{2} y^{2} \Omega_{2} \left( 1 - x^{2} y^{2} \Omega_{2} \frac{C}{T} \right)$$

$$+ 4 x y^{3} \Omega_{3} \left( 1 - x y^{3} \Omega_{3} \frac{C}{T} \right)$$
(15)

In 4 atom complexes (1)  $\Omega_1 = 3$   $\Omega_3$   $\Omega_2 = 2$   $\Omega_3$   $\Omega_3 = \Omega_0$  we have

$$\frac{\Delta H_{\rm m}}{4xy} = \Omega_0 \left(1 + x + x^2\right) + xy\Omega_0^2 \frac{C}{T} \left(-16x^4 + 16x^3 - 12x^2 + 4x - 1\right)$$
(16)

where x is the at fraction of Li, y that of Pb,  $C = \frac{2 \cdot n(n-1)}{7}$ 

n is the number of atoms in the complex, n = 4 and z is the coordination number in the liquid z = 10. Differentiating we obtain the excess partial free energy of Li and Pb

$$\frac{\overline{\Delta G_{x}^{ex}}}{4y^{2}} = \Omega_{0} \left(1 + 2x + 3x^{2}\right) \left(1 - \frac{1.5T}{H_{vap}}\right) + x \frac{C}{T} \Omega_{0}^{2} \left(112x^{5} - 192x^{4} + 140x^{3} - 64x^{2} + 15x - 2\right) \left(\frac{1}{2} - \frac{1.5T}{H_{vap}}\right)$$
(17)

$$\frac{\overline{\Delta G}y}{4x^2} = \Omega_0 (3x^2) \left( 1 - \frac{1.5T}{H_{vap}} \right) + y \frac{C}{T} \Omega_0^2 \left( 112x^5 - 176x^4 + 124x^3 - 52x^2 + 11x - 1 \right) \left( \frac{1}{2} - \frac{1.5T}{H_{vap}} \right)$$
(18)

where  $\Delta H_V$  are the heat of vaporization,  $\Delta H_V$  (Li) = 19.125 kK,  $\Delta H_V$  (Pb) = 23.7 kK [19].

We have one more measurement to obtain  $\Omega_0$  in the Pb-Li system: Veleckis et al [16] measured the H<sub>2</sub> pressure in the Pb-Li-H system, where 3 solid phases are in equilibrium; LiH and two Pb-Li alloys. The plateau pressures correspond to the various univariant equilibria (in their Figure VI). The plateau pressures can be expressed as a function of temperature in the various systems. Inspecting the Li-Pb phase diagram, [4a], one finds that at one moment the monovariant equilibria reach an invariant equilibrium where a liquid, and 3 solid phases (LiH(s) plus 2 Li-Pb alloys) are present. Extrapolating the hydrogen pressure curve to the temperature of the invariant point we obtain from Eq. (7) and (10) the activity of Li,  $a_{li}$ . The activity of LiH  $a_{LiH}(1)$  can be calculated from the heat of fusion of LiH, 2.718 kK [19], and the monotectic (equals the meltiny) point, 694°C. Eq. (17) permits then to calculate  $\Omega_0$  in the Pb-Li system. The calculations are carried out in Table 3. The agreement with the direct measurements is very good except for  $x_{li}$  = .825, which is above .75, where scatter is always present.

#### TERNARY PB-LI-H, PB-LI-D AND PB-LI-T SYSTEMS

The solubility of  $H_2$  (and  $D_2$ ,  $T_2$ ) in liquid Pb-Li alloys can be expressed by the equation

 $K = K_{Li}a_{Li} + K_{Pb}a_{Pb}$ 

(19)

where  $K_{Li}$  is given by Eq. (12),  $K_{Pb}$  by Eq. (14) and  $a_{Li}$  is calculated from Eq. (17) and  $a_{Pb}$  from Eq. (18).

Eq. (19) assumes, that a certain amount of  $H_2$  is dissolved due to Li, another amount due to Pb, and the two are independent. It is seen in Table 4, that  $K_{Pb}a_{Pb}$  does not contribute significantly even when  $x_{Li} = .01$ , this assumption is justified. Table 4 gives LogK (appm torr  $^{-1/2}$ ) of  $D_2$  at three temperatures 500, 1000 and 1500, K as a function of the Li concentration. At 3 small Li concentrations, LogK' and LogK<sub>0</sub> is also given, to show that the lead effect is negligible. For logK' Eq. (13) is used, for LogK<sub>0</sub>  $K_{Pb} = 0$  is assumed. At 500°K, the values are for a supercooled liquid, as in the Pb-Li phase diagram the liquid is only the stable form around  $x_{Li} = .17$ . The data are also plotted in Fig. 6. In Eq. (19),  $a_{Li}$  is multiplied by  $K_{Li}$ , which is constant at a certain temperature. The variation of K with composition follows that of  $a_{Li}$ : It is 1 at  $x_{Li} = 1$ , decreases sharply at x = .75, and continues a moderate decrease to  $x_{Li} = .01$ . The combination of  $K_{Li}a_{Li}$  is such, that K is independent of temperature when  $.01 < x_{1i} < .6$ .

The error in  $\ln K_{Li}$ ,  $\pm$  .045 gives a factor of 1.046 in  $K_{Li}$ ; the error of  $\pm$  .04 in  $\Omega_0$ , gives a factor of 1.56 in  $a_{Li}$  at 500K, 1.20 at 1000K and 1.01 at 1500K, making the total error in logK  $\pm$  .213 at 500K,  $\pm$  .099 at 1000K,  $\pm$  .023 at 1500K.

Closer inspection of the values of  $\Omega_0$  in the Pb-Li system [2] shows a possible trend in  $\Omega_0$  with composition. Using this variable  $\Omega_0$ , logK is again calculated and given in Table 5 and plotted in Fig. 7. The error in this case, may be somewhat smaller than with a constant  $\Omega_0$ . The difference between the calculations is small.

Finally, as most of the interest is with the alloy containing 17 at % Li,  $x_{Li} = .17$ , Table 6 contains the interpolated values from Tables 4 and 5.

K is independent of Temperature when 0.05<x<0.6. Table 7 contains the average value of K from table 4 and 5.

#### REFERENCES

- Hoch, M. and Arpshofen, I., Uber ein modifiziertes Assoziatmodell zur Berechnung der thermodynamischen Zustandsfunktionen flüssiger Legierungen, Z. Metallk., to be published.
- Hoch. M. and Arpshofen, I., Predel, B., Anwendung eines modifizierten Assoziatmodells auf binäre und ternäre flüssige Legierungen, Z. Metallk., to be published.
- 3. Guggenheim, E.A., Mixtures, Oxford, Clarendon Press, 1952.
- 4a. Hansen, Max and Anderko, Kurt, <u>Constitution of Binary Alloys</u>. 2nd ed. McGraw-Hill Book Company, New York, 1958.
- 4b. Elliott, Rodney P., <u>Constitution of Binary Alloys</u>, <u>First Supplement</u>, McGraw-Hill Book Company, New York.
- 4c. Shunk, Francis A., <u>Constitution of Binary Alloys</u>, <u>Second Supplement</u>, McGraw-Hill Book Company, New York.
- 5. Heumann, F.K, Salmon, O.N., US. AEC, KAPL-1677 (1956).
- Veleckis, E., Yonko, R.M. and Maroni, V.A., The Current Status of Fusion Reactor Blanket Thermodynamics, <u>Proceedings of Thermodynamics of</u> <u>Nuclear Materials 1979</u>, Vol. II, 3-25, International Atomic Energy Agency, Vienna, 1980.
- 7. Veleckis, E., Journal of Nuclear Materials, Vol. 79, 20-27 (1979).
- 8. Veleckis, E., Journal of Physical Chemistry, Vol. <u>81</u>, 526-531 (1977).
- 9. Smith, F.J., Lan, J.F., Begun, G.M. and La Gamma de Batistoni, A.M., Journal Inorganic Chemistry, Vol. <u>41</u>, 1001–1009 (1979).
- McCracken, G.M., Goodall, D.H.J. and Long, G., The Extraction of Tritium from Liquid Lithium, IAEA Workshop on Fusion Reactor Design Problems, Culham, U.K. (1974).
- 11. Ihle, H.R. and Wu, C.H., <u>Proc. 8th Symp. on Fusion Technology</u>, Noordwijkerhout, The Netherlands, EUR-5182C, 787 (1974).
- 12. Shpilrain, E.E., Yakimovich and Sheresheskii, V.A., Teplofiz. Vys. Temp. <u>15</u>, 661 (1977).
- 13. Upie, W.R. and Grant, N.J., Trans. AIME, 191, 244-245, (1951).
- 14. Hoffman, W. and Maatsch, J., Z. Metallkunde, <u>47</u>, 89-95 (1956) correction on p. 528.

- 15. Predel, B. and Oehme, G., Z. Metallk. Vol. <u>70</u>, 456, (1979).
- 16. Demidov, A.I, Mozachevskij and Lerasimenko, L.N., Electrochimija, Vol. <u>9</u>, 848 (1973).
- 17. Ihle, H.R., Neubert, A. and Wu, C.H., "The activity of Lithium, and the Solubility of Deuterium in Lithium Lead Alloys", <u>Proc. 10th Symp.</u> <u>Fusion Techn.</u>, Padova, Italy, 639 (1978).
- 18. Saboungi, M.L. and Blander, M., J. Chem. Phys. Vol. <u>68</u>, 1375 (1978).
- 19. JANAF Thermochemical Tables, U.S. Dept. of Commerce, NSRDS-NBS37 (1971).
- 20. Veleckis, E., van Deventer, E.H. and Blander, M., J. Phys. Chem. Vol. 78, 1933-1940 (1974).

| · · · · · · ·                               | in th                                        | e liquid L                                   | i-LiH, Li                                    | -LiD and L                                   | i-LiT systems                                 |                                       |
|---------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------------|
|                                             |                                              | Syste                                        | m Li-LiH                                     |                                              |                                               |                                       |
| Reference                                   |                                              | Vele                                         | ckis (20)                                    |                                              | Plateau pressures                             |                                       |
| Temp. K                                     | ×1                                           | ×2                                           | Ω <sub>ο</sub><br>Li<br>kK                   | Ω <sub>0</sub><br>LiH<br>kK                  | P <sub>H2</sub><br>atm                        | P <sub>H2</sub><br>converted          |
| 983<br>1032<br>1076<br>1120<br>1151<br>1176 | .246<br>.292<br>.332<br>.386<br>.418<br>.447 | .984<br>.971<br>.957<br>.923<br>.888<br>.855 | .751<br>.706<br>.679<br>.635<br>.616<br>.607 | .617<br>.616<br>.609<br>.600<br>.599<br>.597 | .0506<br>.116<br>.225<br>.433<br>.658<br>.867 |                                       |
|                                             |                                              | Syst                                         | em Li-LiD                                    |                                              |                                               |                                       |
|                                             |                                              | Vele                                         | ckis (8)                                     |                                              | PD2                                           |                                       |
| 978<br>1029<br>1078<br>1113<br>1144         | .228<br>.280<br>.332<br>.377<br>.411         | .980<br>.972<br>.953<br>.931<br>.905         | .718<br>.706<br>.669<br>.644<br>.627         | .634<br>.618<br>.609<br>.602<br>.601         | .0645<br>.152<br>.321<br>.527<br>.795         | .0456<br>.108<br>.227<br>.372<br>.562 |
|                                             |                                              | Syste                                        | m Li-LiH                                     |                                              |                                               |                                       |
|                                             |                                              | Heumann,                                     | Salmon (                                     | 5)                                           | PH2                                           |                                       |
| 973<br>998<br>1002                          | .26                                          | .96                                          | .624                                         | .594                                         | .0349<br>.0672<br>.0693                       |                                       |
| 1023<br>1029<br>1047                        | .30                                          | .94                                          | .609                                         | .590                                         | .116<br>.144                                  |                                       |
| 1073                                        | .35                                          | .92                                          | .606                                         | .587                                         | .175                                          |                                       |
| 1123<br>1173<br>1223                        | .405<br>.47<br>.55                           | .89<br>.865<br>.83                           | .602<br>.610<br>.619                         | .588<br>.595<br>.609                         | .230                                          |                                       |

Table 1. Phase boundaries  $x_1$ ,  $x_2$  and interaction parameter

|                                             |                                          |                                           |                                              |                                              | P <sub>D2</sub><br>atm                |                              |                               |
|---------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------|------------------------------|-------------------------------|
| 973<br>1023<br>1073<br>1123<br>1173<br>1223 | .28<br>.325<br>.38<br>.445<br>.53<br>.64 | .94<br>.92<br>.90<br>.875<br>.825<br>.735 | .579<br>.578<br>.583<br>.589<br>.589<br>.589 | .573<br>.570<br>.570<br>.574<br>.581<br>.595 | .0592<br>.118<br>.333                 | .0419<br>.0837<br>.235       |                               |
|                                             |                                          |                                           |                                              | •<br>• •                                     | PT2<br>atm                            |                              |                               |
| 973                                         | .31                                      | .91                                       | .541                                         | .547                                         | .0665                                 | .0384                        |                               |
| 1023<br>1028<br>1039                        | .365                                     | .88                                       | .542                                         | .544                                         | .181<br>.196<br>_231                  | .105<br>.113<br>.13          |                               |
| 1073                                        | .43                                      | .85                                       | . 549                                        | .545                                         | 345                                   | 199                          |                               |
| 1123                                        | .525                                     | .80                                       | .554                                         | .550                                         | .040                                  | • 133                        |                               |
|                                             |                                          |                                           | Smith                                        | (9)                                          | ,                                     |                              |                               |
|                                             |                                          |                                           |                                              |                                              | P <sub>H</sub> 2                      | PD2<br>atm                   | PH2<br>atm<br>converted       |
| 973<br>1023<br>1073<br>1123                 | .24<br>.28<br>.33<br>.46                 | .98<br>.97<br>.96<br>.92                  | .713<br>.693<br>.689<br>.633                 | .618<br>.613<br>.609<br>.600                 | .0368<br>.0974<br>.217<br>.447        | .0605<br>.151<br>.33<br>.607 | .0428<br>.107<br>.236<br>.429 |
|                                             |                                          |                                           | Shpilrai                                     | n (12)                                       |                                       |                              |                               |
| 1042<br>1015<br>1088<br>1160<br>1196        | .32                                      |                                           |                                              |                                              | .146<br>.093<br>.306<br>.820<br>1.281 |                              |                               |

Table 2. Summary of Data on the systems Li-LiH, Li-LiD and Li-LiT

 $L_1 + L_2$  phase boundary

| T °K         | ×1                                 | ×2                                   | ×1 cal | c ×2 |
|--------------|------------------------------------|--------------------------------------|--------|------|
| 973          | $.25 \pm .015$                     | .973 ± .015                          | .259   | .955 |
| 1023         | $.292 \pm .016$<br>$.345 \pm .016$ | $.958 \pm .019$<br>$.942 \pm .021$   | .339   | .920 |
| 1123<br>1173 | $.403 \pm .017$<br>$.471 \pm .022$ | $.0.910 \pm 0.18$<br>$.848 \pm .016$ | .483   | .860 |

Interaction parameter  $\Omega_0 = .602 \pm .011 \text{ kK}$ Free energy of formation  $\Delta G_f^0$  of LiH, LiD and LiT( $\ell$ )  $\Delta G_f^0 = -8.46 \pm 6.86 \text{ T} \pm 1/4 \text{ T} \ln u \pm (0.45\text{T})$  in kK u = 1 for H, 2 for D, 3 for T

Sieverts law constant

 $\ln K = \frac{6654}{T} - 6.718 - \frac{1}{4} \ln u \pm .045 / K in atom fraction atom^{-1/2} / T$ 

Plateau pressure

 $\ln P_{(atm)} = 14.85 - \frac{17.6.10^3}{T} + \frac{1}{2} \ln u \pm .06$ 

| Suctome                                                  | $\ln p^{\frac{1}{2}}$                          | Univariant Equilibrium  |            |                         | a <sub>liH</sub> | a <sub>li</sub> | ΩΩ   |
|----------------------------------------------------------|------------------------------------------------|-------------------------|------------|-------------------------|------------------|-----------------|------|
| Systems                                                  | $(a tm_2^1)$                                   | Comp.liquid<br>at fr.Li | Temp.<br>K | p <sup>1</sup> 2<br>atm | (1)              | (1)             | kK   |
| LiH, Li <sub>4</sub> Pb, Li <sub>7</sub> Pb <sub>2</sub> | 8.91 - 8.65.10 $^{3}$ T <sup>-1</sup>          | .825                    | 923        | .630                    | 1.14             | .172            | -2.0 |
| LiH, Li <sub>7</sub> Pb <sub>2</sub> ,Li <sub>3</sub> Pb | 9.40 - 8.226.10 $^{3}\overline{f}^{1}$         | .715                    | 931        | 1.76                    | 1.11             | .0652           | -1.2 |
| LiH, Li <sub>3</sub> Pb, Li <sub>8</sub> Pb <sub>3</sub> | 8.584 - 7.2618.10 <sup>3</sup> T <sup>-1</sup> | .700                    | 915        | 1.91                    | 1.17             | .0542           | -1.1 |

Table 3 Interaction parameter  $\Omega_0$  in the Li-Pb (1) system from Hydrogen pressure measurements in the 3 solid phase region of Veleckis et al [6]

|                                                                                     |                                                                                                                                             | Table 4                                    | Solubilit                        | y of D <sub>2</sub> in 1                                                                                                | Pb-Li al'                                | loys                            |                                                                                                                        |                                           |                               |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|
|                                                                                     |                                                                                                                                             | log K in (                                 | appm in a                        | lloy • torr <sup>-1</sup>                                                                                               | <sup>/2</sup> ),                         | $\Omega_0 = -1.2$               | 3 ± .04 kK                                                                                                             |                                           |                               |
|                                                                                     |                                                                                                                                             | 500K                                       |                                  |                                                                                                                         | 1000K                                    |                                 |                                                                                                                        | 1500K                                     |                               |
| × <sub>Li</sub>                                                                     | к                                                                                                                                           | К'                                         | K°                               | К                                                                                                                       | K۲                                       | K°                              | К                                                                                                                      | Κ'                                        | K°                            |
| 0<br>.01<br>.05<br>.1<br>.15<br>.2<br>.3<br>.4<br>.5<br>.6<br>.7<br>.8<br>.9<br>1:0 | $\begin{array}{r} -3.311\\ 1.012\\ 1.210\\ 1.297\\ 1.45\\ 1.595\\ 1.757\\ 1.823\\ 2.043\\ 2.766\\ 4.212\\ 6.052\\ 7.233\\ 7.346\end{array}$ | -1.912<br>1.012<br>1.193<br>1.280<br>1.433 | 1.012<br>1.193<br>1.279<br>1.432 | 907<br>.458<br>1.025<br>1.278<br>1.456<br>1.601<br>1.832<br>2.041<br>2.301<br>2.697<br>3.262<br>3.900<br>4.353<br>4.457 | 0.491<br>.764<br>1.127<br>1.334<br>1.492 | .439<br>1.020<br>1.275<br>1.454 | 105<br>.389<br>.910<br>1.173<br>1.347<br>1.483<br>1.702<br>1.903<br>2.127<br>2.409<br>2.758<br>3.127<br>3.400<br>3.493 | 1.293<br>1.324<br>1.416<br>1.504<br>1.658 | .223<br>.874<br>1.158<br>1.48 |
| Error                                                                               | ± .213                                                                                                                                      |                                            |                                  | ±.099                                                                                                                   |                                          |                                 | ±.023                                                                                                                  |                                           |                               |
| For H <sub>2</sub>                                                                  | all values                                                                                                                                  | of log K                                   | .075 m                           | nore positiv                                                                                                            | e                                        |                                 |                                                                                                                        |                                           |                               |
| For T <sub>2</sub>                                                                  | all values                                                                                                                                  | of log K                                   | .044 m                           | ore neyativ                                                                                                             | e                                        |                                 |                                                                                                                        |                                           |                               |

# Table 5 Solubility of Deuterium in Pb-Li alloys K in (appm \*torr $^{-1/2}$ )

| × <sub>Li</sub> | - 20<br>KK | log K  |       |       |  |  |
|-----------------|------------|--------|-------|-------|--|--|
|                 |            | 500    | 1000  | 1500K |  |  |
| 0               |            | -3.310 | 907   | 105   |  |  |
| .01             | 1.35       | .567   | .266  | .306  |  |  |
| .05             | 1.33       | .736   | .839  | .813  |  |  |
| .1              | 1.30       | .934   | 1.141 | 1.101 |  |  |
| .15             | 1.29       | 1.133  | 1.339 | 1.285 |  |  |
| .2              | 1.27       | 1.374  | 1.522 | 1.443 |  |  |
| .3              | 1.22       | 1.791  | 1.851 | 1.721 |  |  |
| .4              | 1.17       | 2.137  | 2.158 | 1.975 |  |  |
| .5              | 1.13       | 2.594  | 2.490 | 2.235 |  |  |
| .6              | 1.14       | 3.217  | 2.843 | 2.490 |  |  |
| .7              | 1.17       | 4.411  | 3.328 | 2.798 |  |  |
| .8              | 1.20       | 6.075  | 3.913 | 3.141 |  |  |
| .9              | 1.24       | 7.275  | 4.353 | 3.405 |  |  |
| 1               |            | 7.329  | 4.457 | 3.50  |  |  |
| Error           |            | ± .116 | ±.059 | ±.021 |  |  |

For H<sub>2</sub> add .075

For  $D_2$  substract .044

Table 6 Solubility of D<sub>2</sub>, H<sub>2</sub> and T<sub>2</sub> in Li-Pb alloys at  $x_{Li} = .17$ K in appm torr<sup>-1/2</sup>

| Ω <sub>0</sub> kK | 500K             | log K<br>1000K   | 1500K        |
|-------------------|------------------|------------------|--------------|
| -1.23 ± .04       | 1.49 ± .213      | $1.514 \pm .099$ | 1.406 ± .023 |
| -1.28             | $1.229 \pm .116$ | 1.412 ± .059     | 1.348 ± .021 |

For  $H_2$  add .075 For  $T_2$  substract .044 Table 7 Solubility of D $_2$  H $_2$  and T $_2$  in Li-Pb alloys Average of Temperature (500, 1000, 1500 K) and  $\Omega_0$ 

 $D_2$ K in appm•torr -1/2

× Li

Log K

| ٥5ء | .92  | 2 <u>+</u> | .172  |
|-----|------|------------|-------|
| .10 | 1.15 | 4 <u>+</u> | .132  |
| •15 | 1.33 | 5 <u>+</u> | .119  |
| .2  | 1,50 | 3 <u>+</u> | 。070  |
| .3  | 1.77 | 6 <u>+</u> | 。049  |
| .4  | 2.00 | 6 <u>+</u> | .132  |
| • 5 | 2.29 | 8 <u>+</u> | .211  |
| ۰6  | 2.73 | 7 +        | 205 ، |

When  $\alpha_{Li} > .6$ , the curres at various temperatures divage. The above given errors represent only the error in the calculated values. For the errors in measurements (or the 2  $\Omega_0$ 's) <u>+</u> 116 at 500 K, <u>+</u> 0.59 at 1000 K and .021 at 1500<sup>0</sup>K have to be added.

For H<sub>2</sub> add .075 For T<sub>2</sub> subtract .044



Fig. 1 Li – LiH system













ALLOYS FOR  $\Omega = -1,23$  kK



