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Abstract 

The Nodal Green's Function Method and the code, based on this method, 

developed bv R, Lawrence and J, Dorning .for solving the 3-dimen-

sional multigroup diffusion equations in reetangular geometrv, are described. 

Some improvements of the code are presented, The method and code capabili­

ties are demonstrated on the basis of a sample problem, namely the two­

dimensional IAEA benchmark problem, 

NGFM - e1n RecheEfrogramm zur Lösung der stationären Multigruppen-Diffusions­

gleichung in Rechtecksgeometrie mit der Methode Nodaler Green'scher Funktionen 

Zusammenfassung 

Im vorliegenden Bericht werden die von R. Lawrence and J, Dorning entwickelte 

"Nodal Green's Function Method" zur Lösung der 3-dimensionalen Multigruppen­

Neutronen Diffusionsgleichungen und das auf der Grundlage dieser Methode ent­

wickelte Rech~nprogramm beschrieben. Außerdem werden einige Verbesserungen 

dieses Verfahrens dargestellt. Die Methoden und die Möglichkeiten des Codes 

werden anhand von Musterbeispielen, insbesondere am 2-dimensionalen IAEA­

Benchmark-Problem, vorgeführt. 
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I. Introduction 

The determination of the neutron flux and power distributions is of great 

importance for steady-state core performance or long-time burnup studies, 

as well as for safety analysis studies, i,e, analysis of short-time reactor 

transients, 

In the past, low-order finite difference methods have been used normally 

for solving the neutron diffusion equation, especially for small Light Water 

reactors (LWRs) /4/. However these methods require an enormaus amount of 

space meshpoints and consequently very much computer time. In addition, for 

large 3000 MW (thermal) power reactors one observes that the diameters, 

measured in diffusion lengths, are approximately 190 for an PWR and 36 for 

Liquid Metal cooled Fast Breeder Reactors (LMFBRs) /13/. This indicates the 

well known fact that the fuel subassemblies in large PWRs are neutronically very 

loosely coupled, so that the solution methods converge very slowly unless 

very efficient and partly sophisticated convergence acceleration techniques 

are appl{ed, For three-dimensional problems with accuracy requirements for 

the average assembly powers in the range of one percent, the computer times 

for codes based on low-order difference methods became so excessive that such 

codes could hardly be used for routine calculations. For large fast breeder 

reactors the situation is somewhat relaxed with respect to the required 

number of spatial mesh points and also the neutranie coupling of the cores 

is not as loose as in the light water reactor cores. But, on the other hand, 

these reactors require more neutron energy groups for an adequate description, 

For this reason much emphasis has been put on the de~elopment of more effi­

cient numerical methods during the last decade, Especially the class of so­

called nodal methods /2,5,6/ has been investigated to enable the calculation 

of flux and power distributions in modern nuclear reactor systems in the 

steady-state as well as in transient operation, The applicatiori of these 

methods involves the determination of equivalent homogenized.group diffusion 

parameters /7,8/ representing relative large subregions of the reactor (so­

called "nodes") such as entire fuel assemblies, Typical assembly sidelengths 

are: for LWR in reetangular geometry 20 cm (two-dimensional IAEA Benchmark 

Problem /14/) and for LMFBR in hexagonal geometry about 6.5 cm (three-dimen­

sional INR Benchmark Problem /15/). Once these parameters are known, the 

global power distribution is obtained by solving the diffusion equation for 
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this "homogenized-assembly" reactor model, using simple approximations for 

the space dependence of the flux within the node. Therefore much attention 

has tobe given to the coupling between the nodes. In this way the nodal 

methods can produce sufficiently accurate results when applied to a mesh 

corresponding to the dimensions of the homogenized fuel assemblies, i.e. by 

an appreciably smaller nurober of mesh points, than has been found to be 

necessary for finite-difference methods. 

One of the modern nodal methods is the Nodal Green's Function Method /1,2,3/, 

described as a highly accurate and efficient tool for the analysis of LWRs 

as well as LMFBRs in multidimensional models. This method achieves a very 

high accuracy when it is applied on a mesh size, corresponding to the dimen­

sions normally used for fuel assernblies for LWRs. Numerical camparisans show 

(Table I - reproduced from Table III in /3/) that the efficiency of NGFM can 

be higher by about three orders of magnitude than that of standard finite dif­

ference methods for three-dimensional LWR calculations. The use of such a nodal 

method should allow to perform three-dimensional reactor calculations with high 

accuracy much more on routine basis than it is presently possible using con­

ventional finite difference methods. 

The NGFM-computer code, developed by R. Lawrence /1/ is based on the solution 

of the three-dimensional multi-group steady-state diffusion equation in 

reetangular geometry by the Nodal Green's Function Method. The usual fixed 

source scheme (i.e. outer iteration formalism) is applied in this code. There 

are two possibilities to accelerate the outer iterations convergence: fission 

source extrapolation /10/ and coarse-mesh rebalancing technique /11/. 

The present report contains a short description of the NGFM and the NGFM-Code, 

as well as the user's manual and a sample case for illustration. 

In a forthcoming KfK-report related studies devoted especially to LMFBR­

applications will be described, 
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2. Solution of the Multigroup Diffusion Equations by the Nodal Green's 

Function Method 

The NGFM is based on the linear form of the nodal balance equation written 

in terms of the face-average partial currents across the surfaces of the 

node, namely 

(I) 

u=x,y,z 

g=1, ... G. 

k=1, ... K. 

where the average (or nodal) fluxes and group sources are defined by 

(2a) 

and 

(2b) 

-k 
4>g -

respectively. 

G 

3 
~ (r) dr 

g 

r (vt:f~k 
g 

g'=1 

Equation (I~ is derived by integrating the steady-state diffusion equation 

in standard multigroup representation, assuming Cartesian geometry. The 

reactor configuration V is partitioned into an array of K homogeneaus boxes 

(or nodes) vk, k=1, ... K, suchthat vkn v1 = o, k I 1, and u vk = v. 

k a , u = x,y,z 
u 

denote the node halfwidths (Fig. 1), i.e. 

k 
a ' X 

All other quantities have their usual meaning. 
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The balance equation (I) 1s solved in two steps: 

I) Couplingeach node "k 11 with the adjacent nodes by the face-averaged 

partial currents across the surfaces of the node. The face-averaged outgoing 

and incorning partial currents across the node surfaces perpendicular to the 

u-direction are given by 

(3a) 

and 

(3b) 

out 1 k ( k) 
J +au gu -

u == X 1 Y 1 Z 

Jin 1 k 
gu 

k (+a ) 
-u 

~-- ll (u) + ..!.ok 
- 4 gu - 2 g 

u x 1 y 1 z 

~l (u) 
C3 gu 

u 

dA. k 
_'f_ (u) 
3 gu 
u 

] k 
u==+a 1 -u 

] k 
u==+a 1 -u 

where l (u) 
gu 

is a partially integrated flux, defined by 

k 
k a 

1 
w a 

k (4) l (u) - k k f dw J V dv ~ (u 1 V 1 W), 
gu 

4 a a k k 
g 

w u -a -a 
w V 

u == x 1 y 1 Z 1 

2) reduction of the solution of the three-dirnensional problern to the solution 

of three successive one-dirnensional problerns, obtained by integrating the 

diffusion equations for each box over the two directions transverse to each 

coordinate direction. This reduction is rnade with the goal of receiving the 

additional relations between surface partial currents and the interior fluxes, 
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- solving each one-dimensional problern by application of Green's functions 

for the one-dimensional in-group diffusion removal operator. The integral 

equations received represent an exact (local) solution to the coupled set 

of one-dimensional differential equations. 

- spatial approximation of these one-dimensional integral equations, using 

a weighted residual procedure applied within each node /12/. The partially 

integrated group fluxes, group sources, and the transverse leakages are 

expanded in quadratic polynomials 

3 -
(Sa) l (u) L <Pk pk 

gu gun un 
n=1 

3 -
(Sb) Qk (u) 1: Qk pk 

gu gun un > u x,y,z, k 1, NET 

n=1 

3 

(Sc) Lk (u) l: 
k pk = L 

gu gun un I 

n=1 ) 

NET - total number of nodes 

k 
P u1 (u) 1 

k 2 Pu2(u) = 

and 

k 2 _!_(ak) 2 Pu3(u) - u 3 u 

solving the resulting matrix equation with expansion coefficients, which 

provides the necessary additional relationships between the interface 

partial currents and the flux within the node, in conjunction with the 

linear form of the nodal balance equation (1). 
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3. Basic Iteration Strategy and Acceleration Techniques 

3.1 Iteration Scheme 

The basic iteration strategy, applied in the NGFM-code, consists of the 

following steps: 

I. Constructing the vector group source 

and the average (nodal) group source 

(6a) 1 iiik(n-1) + L 
A (n-2) 

g'<g 

+k(n) 
0 I k=11 ••• KI ··gu 

Qk(n) 1 k=1 1 • • ,K1 
gu 

('B 1 k 
Lgg' 

:;:k(n) 
'l'gl I 

u = x 1 y 1 z 

e.g. 

where only down-scattering is allowed and the average (nodal) fission source 
-k 
'l' 1.s defined by 

G -
(6b) - l: \) 

~k(n) 
g' I 

g'=l 

+k(n) 
2. Calculating the vector transverse leakage L 1 k=l1···K1 (K- total 

b d ) · d' . gx out 1 k(n-1)( k) num er of no es us1.ng the y- 1.rected part1.al currents J +a 1 
gy -y 

from the previous outer iteration, and then solving the matrix equations over 

each row of the computational mesh for the x-directed partial currents, 

namely: 

(7a) Jin 1 k(n) (ak) 
gx x 

{+k(n) +k (n)} k 
Qgx - L +R gx gx 

n = 11 •• • K 

g 1 I •• • G 
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(7b) out,k(n) ( k) J -a 
-+k(n) -+k(n)} k in,k(n-2)( k) 

{ - L + R J -a Qgx gx gx gx x gx x 

k 1, ••• K 

g 1, ... G 

where [ ~~ J is a column vector, representing the convolution integral 

of the Green's functions and the expansion polynomials, and Rk and gx 
Tk 

gz 
are reflection and transmission coefficients, respectively, obtained 

from Green 1 s functions, depending on width and material properties of the 

node /1/. 

-+k(n) 
3. Calculating the vector transverse leakages L , k=1, ... K , using 

gy 
the x-directed partial currents just calculated and then solving equations 

(6) on each column of the computational mesh for the y-directed partial 
out,k(n) 

currents J k 
gy (2:_ay) 

Analogously, for three-dimensional problems calculating 

I;k(n) 
gz 

using out,k(n) ( k) 
J +a and Jout,k(n) (+ak) 

gx - x 

and then solving Eq, (7) on each 

the z-directed partial currents 

one-dimensional 
Jout,k (n) (+ak) 

gz - z 

gy - y 

block in z-direction for 

*) 

-tk(n) 4. Calculating the vectors with the expans~on coefficients ~ of the par-
gu 

tially integrated fluxes, solving the one-dimensional matrix equations, 

obtained by the weighted residual procedure 

*) In order to avoid possible misunderstanding or misinterpretation it may be 

h h . 1 . d . h -+k ( u) . h wort w ~ e to ~n ~cate t at L ~s t e leakage component for the one-gz 
dimensional calculation in the z-direction but it describes physically the 

leakage in the directions perpendicular to the z-direction, 
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~k(n) 

gu 
r Guul 
- gu-

- 8 .,.. 

in 1 k(n)( k) J -a 
gu u 

u = x 1 y 1 Z 1 g 1 I ••• GI k 1 I •• • K 

where [9"~~] , [ ~:] and [ ~:] are 3x3 matrix and 3-entries 

vectors, respectively, defined in /1, p. 29/ by Green's functions 
1k(n) +Qk(n) and +Lx(n) 
~ are column vectors with 3 entries, containing 
gu gu gu · k ( ) 

J
J..n 1 n 

the expansion coefficients (Eq. (5)). gu(+ak) are the most recently 
-u 

calculated partial currents. 

5. Calculating the eigenvalue: 

A. (n) = A. (n-1) 

where 
k 

ijik(n) 

Steps (I,) through (5,) constitute one fission source (or- outer) iteration; 

the inner loop, steps (I) through (4), is repeated for each energy group 

g,g=I, ••• G. The partial current equations (7) are solved iteratively using 

directed sweeps through the one-dimensional mesh /1/. 

3.2 Incorporation of Boundary Cönditions 

The boundary conditions, taken into account for solving Eq. (7), are the 

following ones: 

(9) 
1 s 

a e: I 
u 
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where S - reactor boundary; 

2 - number of node, adjacent to S; 

c - constant, which can assume the following values: 

c Boundary conditions, imposed on the solution of the diffusion 

equation 

-1 zero flux 

0 zero incoming partial current 

zero net current (symmetry). 

3.3 Acceleration Techniques 

There are two possibilities to accelerate the convergence rate in the 

NGFM-Code: - using the fission source extrapolation method when a correspond­

ing criterium is satisfied /10/ 

~ using (by option) the coarse-mesh rebalancing method /11/. 

For this procedure a coarse mesh grid different from the original 

one and also a different number of rebalancing iterations may 

be used, 
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4. Code Description 

The NGFM-Code is written in FORTRAN-IV and is used at KfK on an IBM-360/168 

and an IBM-3033 computer, The version described on 21 March 1983 has the 

following general features: 

1. Only down-scattering is allowed. The maximal number of energy groups is 8. 

2. The node numbering is performed rowwise from left to right and from bottom 

to top (in three dimensional cases). Jagged boundary is allowed on the 

right (in (x-y) plane), See Fig. 3. 

3. The code can solve problems having three types of boundary conditions at 

external node sides: a) zero flux; b) zero incoming partial current; 

c) symmetry (mesh-edged or mesh-centered), 

The vacuum boundary conditions a) and b) can be imposed on each reactor 

boundary, the symmetry conditions - only on the left and on the lower 

boundaries (in (x,y) plane) and additionally on the bottom boundary (in 

z-direction). 

4. The code admits full plane (360°) and 90° symmetry sector of the reactor 

core (in (x,y) plane) and full or half height (in z-direction). 

5, The code requires ca, 1172 K Bytes virtual storage including LMAX 

4-Bytes words storage locations, 

The array dimensions, designated LEND, should not exceed LMAX: 

LEND=1+NGRP*ND1*ND3+NGRP*ND2+NDI*ND4+NDI*ND5, 

where the following code variable designations are used: 

ND1=NODES - total number of nodes 

140000 

ND1=NX*NY*NZ; NX, NY, NZ - number of nodes in x-, y-, z-direction, respectively. 

ND2=2*IDIM*NODES; IDIM - number of dimensions (2 _:: IDIM.:: 3) 

ND3=3*IDIM; 
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ND4=2*IDIM+ I ; 

ND5=ND4 

NGRP - number of energy groups (NGRP _::: 8), 

A bleck-diagram of the code is presented in Fig, 2. The code routines and their 

functions are described below. Additional information, e,g, on the meaning of 

various variables may be found in Chapter 5, describing the input data. 

MAIN 

OUTERD 

PCMATR 

INNERD 

JCALCD 

SETUP 

- sets limits for calculation of array dimensions. Calculates array 

dimensions and pointers. Calls subroutines: SETUP, OUTER, OUTERD, 

OUTPUT, 

- solves directly (i.e. without iterations) the partial current equa­

tion, fortwo-dimensional problems with node numbers less than II in 

x- and y-direction. If at least one of these numbers is greater than 

II, subroutine OUTER is used. Calls PCMATR, INNERD, 

- constructs partial current matrix PCM. 

- calculates nodal flux and flux expansion coefficients. Normalizes 

flux coefficients, Calls subroutines: QSOUR and JCALCD, 

- calculates directly partial currents in each dimension. Calls 

subroutine TVLEAK. 

- checks for jagged outer boundary and locates surface nodes on this 

boundary. Sets up flat initial flux (~~=I) and calculates the 

initial outgoing partial currents J~ut,o = 0.25 (k=I,NET) 

on this basis, Calculates: node volumes and surface areas, number 

of nodes in each row (by jagged outer boundary), initial production 

rate. Normalizes the flux. Calls subroutines: MESH, PARAB, GREENF. 

Some important designations: 

X(NGRP,NDI ,ND3) 

XJ(NGRP,ND2) 

flux expansion coefficients groupwise, nodewise and 

directionwise (Eq. (6a)). 

partial currents (in- and outgoing) groupwise through 

each node surface, including boundary surfaces (Eq. (7)), 



QOLD (ND I , NDS) 

Creates arrays: 

KEND(J ,K), 

J=l ,2;K=NPY, ••• I 

KEND(J,K) 

J=3,4;K=NPX,, •• I 

KROW (Kl), 

KI=I,,, .NPY 
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- fission source expans1on coefficients for each node, 

in x-, y-, z-direction, respectively (Eq, (5), (6)), 

array with entries specifying the nurnbers of the first 

and the last nodes respectively in row K 

K ,S 50; 

array with entries specifying the nurnbers of the first 

and the last nodes respectively in colurnn K 

K.:: so; 

- nurnber of nodes in row NPY-KI+I 

(necessary for jagged boundary) 

KROW(KI)=KEND(2,KI)-KEND(I,KI)+I 

MESH - reads geornetry rnodel data, node material nurnbers, boundary conditions, 

iteration and rebalancing pararneters. Sets up node rnesh. Calculates: 

NPX=NPU( I) - rnaxirnurn nurnber of nodes 1n x-direction; 

NPY=NPU(2) - rnax1rnurn nurnber of nodes 1n y-direction; 

NPZ=NPU(3) - rnaxirnurn nurnber of nodes 1n z-direction; 

NPXY - nurnber of nodes in (x,y) plane; 

NET -

Sets up: 

NASX=NASU (I) 

NASY=NASU(2) 

NASZ=NASU(3) 

NASXY 

NAST 

total nurnber of nodes. 

- nurnber of assernblies in x.-direction; 

- nurnber of assernblies 1n y-direction; 

- nurnber of assernblies 1n z-direction; 

- nurnber of assernblies 1n (x,y) plane; 

- total nurnber of assernblies. 



Creates arrays: 

MATN(I), 

I=l,o •• 20 

W(I,J), 

I=I, ••• 20,J=I,2,3 

NCOUP(K,M), 

K=l,.ooNET, 

M= I, o o o 2*IDIM 

NCOUP (K,NRPT), 

K= I, ••. NET, 

NRPT=2*IDIM+ I 

ISWP(3,9) 
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- material nurober for each volume element 

(maximal 20 volume elements); 

- width of volume element "I" in direction "J"; 

array with pointers for incoming partial 

currents (for each node "K") 

- volume element type ~n node "K"; 

array with sweep parameters in x-, y-, z­

direction, respectively. 

Sets up coarse-mesh rebalancing parameters: 

NCMX=NCMU (I) 

NCMY=NCMU(2) 

NCMZ=NCMU(3) 

NCMXY 

NCMR 

IDBLK 

IDID 

- nurober of nodes for coarse-mesh call in 

x-direction; 

- nurober of nodes for coarse-mesh cell in 

y-direction; 

- nurober of nodes for coarse-mesh cell in 

z-direction; 

- nurober of nodes for coarse-mesh cell ~n 

(x,y) plane; 

- total nurober of nodes for coarse-mesh cell, 

NCMR ~ 256; 

S - block s~zes for coarse-mesh inversion; 

IDBLK=NCMX,IDID~NCMY for two-dimensional problems; 

IDBLK=NCMXY,IDID=NCMZ for three-dimensional problems; 

IREBAL = 0 - no rebalancing 

- with rebalancing 



NUCDAT 

SIGMIN 

GREENF 

KCMBY(J,I), 

J=I, ••• 2*IDIM 

KCMBY (IDIR, 2) 

IDIR= I , ••• IDIM 

NCMC(ICM,IDIR) 

ICM= I , ••• NCMU 

(IDIR), IDIR= I, 

• • ~ IDIM 
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- highest numbered node on outer surface J; 

- increment for coarse-mesh cell numbering in 

direction IDIR; 

- array with entries specifying the number of 

nodes per coarse-mesh cell "ICM" in IDIR-

direction; ICM < 12 • 

FR(I),I=I, ••• NCMR- rebalancing factors 

RHO - eigenvalue, calculated by coarse-mesh 

rebalancing 

RHO= I. - initial guess for eigenvalue 

Prints input data, as well as iteration and rebalancing parameters. 

Calls subroutine NUCDAT. 

- reads and prints nuclear data. Calls subroutine SIGMIN, if 

parameter NFILE > 0. 

- transfers macroscopic cross sections of a SIGMN-block into 

NGFM-own storage areas. 

- calculates 4 types of Green's function matrices for volume element 

type NR in each direction IDIR(IDIR=I, ••• IDIM) andin each energy 

group NG, 

Some important designations: 

IFLAG - print parameter 

- no print 

IFLAG 

- print all matrices 

NAPROX = 3 - degree of polynomial approximation 



- 15 -

IPF= (IDIR-1 )*NAPROX - Counter for roatrix eleroent rGuul , (see L gujmn 
/1/, p. 144), n=I, ••• NAPROX,ro=IPF+l, ••• IPF+NAPROX; u=x,y,z (resp. 

IDIR=1,2,3),g=l, ••• NGG; NGG- total nurober of energy groups; 

IPF=2*(IDIR-l)+l - node surface nurober 1.n "-" direction 

t 
I - for surface (-x) 

IPJ = 3 - for surface (-y) 

5 - for surface (-z) 

NRNG=NGG*(NR-I)+NG - groupwise counter, sequentially for each 

voluroe eleroent NR; NRNG < 60. 

The following 4 types of roatrices GVV, GVS, GSV and GSS are calcu­

lated in GREENF (for readers roore interested in the details see /1/, 

pp., 144 - 14 7): 

I) voluroe-voluroe 

NG= I ,NGG; 

I,J=l ,NAPROX; 

IPF+ I _:: 9 ; J _:: 3; 

u=x,y,z; 

2) voluroe-surface 

( -I 1,-+u-l) GVS(NRNG,IPF+I,IPY)=2• A •LGguj I'I=I, ••• NAPROX 

GVS (NRNG, IPF+ I, IPJ+ I) =2 • (A-I • [c~:]) I, I= I, ••• NAPROX,IPJ _:: 6 
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3) surface-volurne 

GSV (NRNG, IPJ, IPF+I)= ~~J I/Z, I= I, ••• NAPROX 

GSV (NRNG, IPJ+ I, IPF+ I)= [c;~J I/2 , I= I,, •• NAPROX 

4) surface-surface 

GSS(NRNG,IPJ,IPJ)=REFL - reflection coefficient for surface 

IPJ= I, 3, 5 

GSS(NRNG,IPJ+I,IPJ+I)=REFL- reflection coefficient for surface 

IPJ+I=2,4,6 

GSS(NRNG,IPJ,IPJ+I)=TRAN - transrnission coefficient frorn surface 

IPJ+I to surface IPJ 

GSS(NRNG,IPJ+I,IPJ)=TRAN - transrnission coefficient frorn surface 

IPJ to surface IPJ+I 

- contains the outer iteration loop. Calculates the eigenvalue, if 

there is no rebalance acceleration. Checks whether the convergence 

criteria are fulfilled, The outer iterations terrninate, if these 

criteria are satisfied, or/and the rnaxirnurn nurober of outer itera­

tions NMAX(I) is reached. 

Pointwise (i.e. nodewise) fission source convergence criterion: 

max 
ERRQ k=1 I • • NET 

;pk (n) _ -k (n-1) 

;pk(n) 
< ERR (1), 

-k(n) where 'I' 

ERR( I) 

- average fission source in node K for outer 

iteration "n" (Eq. (6b)) 

- input value 
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Flux convergence criterion*): 

ERRM 
max 
x,g 

~k(n) _ <Pk(n-1) 
g g 

~k(n) 
g 

where ERR(2) 1s an input value. 

< ERR (2), 

The outer iterations are terminated, if criteria (10) and (II) 

are satisfied, or when the maximum number of iterations MMAX(I) 

is reached. 

Prints iteration, rebalancing and fission source extrapolation 

parameters for each outer iteration. Calls subroutines INNER and 

REBAL (if IREBAL > 0), 

- calculates group flux expans1on coefficients on the basis of 

Eq. (8) starting with the top plane (in each plane (x,y) from top 

to bottom, from the right to the left). Calculates the nodal flux 

using nodal balance equation (I), Normalizes flux coefficients, 

Computes maximum flux error nodewise and groupwise**!: 

ERRF 
max 
k=1, •.• K 
·g=1, ••• G 

-k(n) -Jdn-1) 
<Pg - <Pg 

~k(n) 
g 

Computes maximum deviation from I for flux normalization coeffi­

cients FACT(NG,K)***),i.e. 

ERRM max 
NG,K 

I 1 - FACT(NG,K) 

Calls QSOUR and JCALC. 

*) The implementation and application of the flux criterion 1s a new feature 

compared to the original code as described in I I I. 
**) and ***) are new options in comparison with the origina~ NGFM-code III. 
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(12) 

(13) 

(14) 
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- constructs group source. Cornputes pointwise (i,e, nodewise) the 

fission source error 

ERRQ max 
k=1 I NET 

where ijik (n) 

-k (n) - (k (n-1) 
'!' - '!' 

ijik(n) 

average fission source in node "K", for outer 

iteration "n" 

Computes fission source extrapolation (FSE) pararneter 

\{T 
.. ----~-, 

(iiik(n) -k(n-1) 2 
- '!' ) 

k=1 
OMEG 

\r~T 1 - (ijik(n)_ijik(n-1))2 . I 
I k-;::;-1 

Checks for asymptotic convergence 

(n) (n-2) 
w - w 

(n) 
w 

< E: I I 

(n) 
w 

-1 
where E:' is an input value. Usually E:·'· = 1.10 when the source 

extrapolation criterion (14) is satisfied, the fission source terrn 

and the partial currents are extrapolated with the pararneter. 

Sorne irnportant designations: 

QOLD(ND1),NDS) - array with entries specifying the fission source 

expansion coefficients nodewise (for outer itera­

ti_on "n") 

X(NG,K,N) 

NG=1 ,NGG 

K=1 ,NET 

N=1 ,NAPROX 

fission and down-scatter source expansion coeffi­

cients groupwise and nodewise for fixed outer 

iteration "n". 



JCALC 

TVLEAK 

~BAL 

EXTEND 

CMM2D 

CMM3D 

DI~CT 

OUTPUT 
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- calculates partial currents in each direction, solving Eq. (7). 

Calls subroutines TVLKI and TVLK2. 

- calculates one-dimensional transverse leakage expansion coeffi­

cients for fixed one-dimensional blocks on the basis of Lawrence's 

approximation (/I/, p. 32- 33, p. I48). 

scales (with rebalance factors) nodal fluxes, flux expansion 

~oefficients, outgoing currents and incoming currents on outer 

surfaces. Calculates new Wielandt estimate 

ERR(4) I.O+ABS(RHO-I.O) 

where RHO is the previously calculated eigenvalue, Calls subroutines: 

EXTEND, CMM2D, CMM3D and DI~CT. 

- extends partial currents on (jagged) outer boundary to square outer 

boundary for rebalancing. 

- calculates coarse mesh rebalance matrix H(80,80,I2) for two­

dimensional problems. 

- calculates coarse mesh rebalance matrix H(80,80,I2) for three­

dimensional problems. 

calls the Harwell subroutine MBOIB for the inversion of the matrix 

H /23/. [In Lawrence's version is used subroutine INVERS, 

but when applying it, some LMFBR Benchmark Problems could not be 

solved on an IBM computer even with double word precision because 

of the occurrence of divide checks.] Performs NCMI coarse mesh 

iterations, where NCMI is an input value. Solves for rebalancing 

factors F. Computes new estimate for eigenvalue - RHO. Computes 

F-maximum deviations from I, i.e. the value ERRCM. 

- normalizes node power densities in such a way that the total power 

density is I. Prints primary results, By option prints node power 

densities and normalized average assembly fluxes. 
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5. Input and Output Description 

The input consists of following cards: 

Card 
Type 

2 

Format 

IOA4 

I 1415 

Item 

(TITLE(I),I=I,20) 

Comment 

Identification heading: two strings of 

40 characters 

Geometry model data (read 1n Subroutine MESH) 

IDIM 

NGG 

NMAT 

NDE 

NREG 

IPRTI 

I 
I 

I 
! 

Dimension of the problem: 

2 - two-dimensional problern 

3 - three-dimensional problern 

Number of energy groups (NGG _:: 8) 

Number of materials (NMAT _:: II) 

Number of different (or unique) volume 

elements (which are simply computa­

tional mesh cells or "nodes") as deter­

mined by material composition and mesh 

spacings in each coordinate direction 

(NDE _:: 20) 

Number of different overlays used in 

setting up the mesh. A total of ·NREG 

cards are read in subroutine MESH in 

j order to specify the mesh. 

I 

I 

I 

Printing option for input data: 

0 - only axial hockling is printed; 

l - all nuclear data as well as 

geometry model are printed. 
I 



Card 
Type 

3 

4 

Format 

1415 

1415 

Itern 

IPRT2 

NBDY(I), 

I= I ,2*IDIM 

NPTS 

NPTSZ 

NASU(I), 

I= I, IDIM 

- 21 -

Cornrnent 

Printing option for output data: 

0 - print prirnary results and average 

power distribution 

I - 0 as well as power distributions 

in each layer ~n z-direction 

2 - I as well as norrnalized fluxes 

1 group - and nodewise 
I 

I 

! Boundary conditions: 

-1 - vacuurn (ingoing current is 0); 

0- vacuurn (flux is 0); 

I - edge-centered syrnrnetry; 

2 - rnesh-centered syrnrnetry 

irnposed on the boundaries: -x, +x, -y, 

1 +y and -z, +z (for 3-dirnensional problerns) 

Nurnber of Subdivisions (in x- and y­

directions) of the basic cornputational 

rnesh. This rnesh consists of "assernblies" 

and thus a total of NPTS*NPTS nodes per 

assernbly (in x-y plane) are obtained. 

The power density edits are perforrned 

on the assernbly-size rnesh. When NPTS=I, 

each node corresponds to an assernbly. 

Nurnber of Subdivisions (in z-direction) 

of the basic cornputational rnesh (i.e. 

number of nodes per assernbly) 

Nurnber of assernblies in x-, y-, z­

direction, respectively. 



1 Card 
Type 

5 

6 

7 
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Format Item 

1415 MMAX(2) 

NCMPX 

NCMPZ 

I5,5EIO.O MMAX(I) 

ERR( I) 

I ERR(2) 

I ERR(S) 

Comment 

Number of rebalance iterations per 

outer iteration. If MMAX(2)=0 - no 

rebalancing is performed. 

Such that NCMPX*NCMPX assernblies are 

combined to form one coarse mesh 

rebalance region. 

Such that NCMZ z-planes (in the basic 

computational mesh) are combined into 

one coarse-mesh rebalance region. 

Maximum number of outer iterations 

Outer iteration convergence criterion 

Flux convergence criterion 

1 Fission source extrapolation criterion 
i 

Foreachregion NR=I, NREG is given the following card (7): 

NTYPE 2I5 '2I5' 

EIO,O, 

2I5,EIO.O, NM 

2I5,EIO.O 

(NU I (I) ,NU2 (I), 

WU (I), I= I, IDIM) 

NUI (I) 

NU2(I) 

WU(I) 

Volume element type (NTYP,::: 20) NTYPE=O, 

for nodes outside the jagged boundary. 

Material number for this volume element 

Number of the first assembly in I­

direction, containing the volume 

element NTYPE 

Number of the last assembly in I­

direction, containing NTYPE 

Dimensions of these assernblies contain­

ing NTYPE in the corresponding 

direction "I". 



Card 
Type 

8 

9 
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Format Item Comment 

Nuclear data description (reading in subroutine NUCDAT) 

(5E14.0) (CHI (I), I= I ,NGG) 

BSQ 

I DIS NFILE 

Fission spectrum (the same for all 

material regions), 

Axial buckling (for the two-dimen­

sional problern only). 

Read option parameter: 

0 - read nuclear data 

>0 - no reading of nuclear data; they 

are transferred by subroutine 

SIGMIN, 

Foreach material NM are given consistently NGG cards with cross sections: 

10 5EI4.0 

II 5El4.0 

DIFCO(NM,NG) 

SIGR(NM,NG) 

VSIGF(NM,NG) 

(SCAT(NM,NG,NGI), 

NGI=l ,NG-1) 

Diffusion coefficient for material NM 

1n energy group NG, i,e. D~ (assumed 

tobe isotropic). 

Removal cross section for material NM 

in energy group NG, i,e, E~g 

Production cross section for material 

NM in energy group NG, i,e, vE~g 

Down-scattering cross-section, i.e. 
s g+g' 
E~ , only for NG > I • 
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At the end of each outer iteration the following values are printed: 

(not all of these variables were included in the original vers1on of the 

code - see footnotes in chapter 4 - subroutines INNER and OUTER) 

NOUT 

XFK.EFF 

ERRQ 

ERRF 

NUMG 

NUMF 

NR5 

NRN 

ERRM 

ERRCM 

OMEG 

- outer iteration number 

- recent estimate for eigenvalue 

- maximum relative fission source error 

- maximum relative flux error 

- energy group to which ERRF is attributed 

- node to which ERRF is attributed 

- energy group, for which the flux normalization factor has maximum 

deviation from I 

- node, for which this deviation is maximal 

- maximum deviation of flux normalization factor from 

- maximal deviation of rebalancing factors from I 

- fission source extrapolation factor (see Eq, (I3)) 

ISE - FSE parameter: 0 - no FSE; 

I - FSE criterion is satisfied and FSE is performed, 
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6. Sarnple Problern 

In the following the input data and output edit for the two-dirnensional 

IAEA Benchmark Problern /14/ are given to illustrate sorne NGFM-Code capa­

bil{ties. 



2-D IAEA BENCHMARK PROBLEM 
JAGGED OUTER BOUNDARY(COR.DIF.COEF) 

2 2 4 4 24 1 1 0 
2 -1 2 -1 
1 1 9 9 
2 2 2 

100 1. OE-04 1. OE-03 1. OE-01 
4 4 1 9 180.0 1 9 180.0 
3 3 1 1 20.0 1 1 20.0 
2 2 2 4 60.0 1 4 80.0 
3 3 5 5 20.0 1 1 20.0 
2 2 6 6 20.0 1 4 80.0 
2 2 7 7 20.0 1 2 40.0 
1 1 8 8 20.0 1 3 60.0 
2 2 1 1 20.0 2 4 60.0 
2 2 5 5 20.0 2 4 60.0 
1 1 7 7 20.0 3 5 60.0 
3 3 1 1 20.0 5 5 20.0 
2 2 2 2 20.0 5 7 60.0 
2 2 3 4 40.0 5 6 40.0 
3 3 5 5 20.0 5 5 20.0 
1 1 6 6 20.0 5 6 40.0 
2 2 1 1 20.0 6 7 40.0 
1 1 3 3 20.0 7 8 110.0 
1 1 4 4 20.0 7 7 20.0 I 
1 1 5 5 20.0 6 7 40.0 N 

0\ 
1 1 1 2 rw.o 8 8 20.0 I 
0 4 5 9 100.0 9 9 20.0 
0 4 7 9 60.0 8 8 20.0 
0 4 8 9 40.0 7 7 20.0 
0 4 9 9 20.0 5 6 40.0 
0 

l.OOOE+OO O.OOOE+OO O.OOOE+OO 
1. 5 0.03 0.0 
0.4 0.08 0.135 

0.02 
1. 5 0.03 0.0 
0.4 0.085 0.135 

0.02 
1.0 0.03 0.0 
0.4 0.13 0.135 

0.02 
2.0 0.04 0.0 
0.3 0.01 0.000 

0.04 
2.0 0.04 0.0 
0.3 0.055 0.0 

0.04 
C===== (5) INPUT FOR TWO-DIMENSIONAL IAEA BENCHMARK PROBLEM. 
C===== REFERENCE: ARGONNE CODE CENTER: BENCHMARK PROBLEM BOOK, 
C===== ANL-7416, SUPPLEMENT 2, ARGONNE NATIONAL LAB. ( 1977). 



2-D IAEA BENCHMARK PROBLEM 
JAGGED OUTER BOUNDARY(COR.DIF.COEF) 

NODAL GREENS FUNCTION METHOD; 

NUMBER OF SPACE DIMENSIONS = 2 

NUMBER OF GROUPS = 2 

NUMBER OF MATERIAL COMPOSITIONS = 4 

NUMBER OF DIFFERENT VOLUME ELEMENTS = 4 

NUMBER OF REGIONS = 24 

&EOMETRY: 

NODES PER ASSEMBLY (X-Y PLANE) 

AXIAL NODES PER AXIAL MESH DIVISION 

NODES IN X-DIRECTION 

NODES IN Y-DIRECTION 

NODES IN Z-DIRECTION 

TOTAL NUMBER OF NODES 

MESH CODE: 

ELEMENT TYPE 
1 
2 
3 
4 

MESH LAYOUT: 

AXIAL PLANE NO. 

DELTA X 
20.0000 
20.0000 
20.0000 
20.0000 

DELTA Y 
20.0000 
20.0000 
20.0000 
20.0000 

4 4 4 4 0 0 0 0 0 
1 1 1 4 4 4 0 0 0 
2 2 1 1 1 4 4 0 0 
2 2 2 2 1 1 4 4 0 

1 X 

9 

9 

81 

DELTA Z 
0.0 
0.0 
0.0 
0.0 

MATERIAL NUMBER 
1 
2 
3 
4 

I 
N 
-....J 
I 



3 2 2 2 3 1 1 4 0 
2 2 2 2 2 2 1 4 4 
2 2 2 2 2 2 1 1 4 
2 2 2 2 2 2 2 1 4 
3 2 2 2 3 2 2 1 4 

BOUNDARY CONDITIONS: 

MINUS X: 2 -1 = VACUUM (ZERO J-IN) 

PLUS X:-1 0 = VACUUM (ZERO FLUX) 

MINUS Y: 2 1 = EDGE~CENTERED SYMMETRY 

PLUS Y: -1 2 = MESH-CENTERED SYMMETRY 

MINUS Z: 3 3 = NOT USED IN 2-D PROBLEM 

PLUS Z: 3 

I 
N 
00 
I 



NUCLEAR DATA 

MATERIAL NUMBER 

GROUP DIFFUSION REMOVAL VUF ISS FISSION CHI 
1 1.5000000E+OO 3.0000001E-02 0.0 0.0 1.0000000E+OO 
2 3. 9999998E-01 7.9999983E-02 1.3499999E-01 1.3499999E-01 0.0 

SCATTERING MATRIX 

GROUP 1 2 
1 0.0 0.0 
2 2.0000000E-02 0.0 

MATERIAL NUMBER 2 

GROUP DIFFUSION REMOVAL VUFISS FISSION CHI 
1 1.5000000E+OO 3.0000001E-02 0.0 0.0 l.OOOOOOOE+Oo 
2 3.9999998E-01 8.4999979E-02 1.3499999E-01 1.3499999E-01 0.0 

SCATTERING MATRIX 

l 
N GROUP 1 2 
~ 

1 0.0 o.o t 
2 2.0000000E-02 0.0 

MATERIAL NUMBER 3 

GROUP DIFFUSION REMOVAL VUFISS FISSION CHI 
1 1.0000000E+OO 3.0000001E-02 0.0 0.0 1.0000000E+OO 
2 3.9999998E-01 1. 3000000E-01 1.3499999E-01 1.3499999E-Ol 0.0 

SCATTERING MATRIX 

GROUP 1 2 
1 0.0 0.0 
2 2.0000000E-02 0.0 

MATERIAL NUMBER 4 

GROUP DIFFUSION REMOVAL VUF ISS FISSION CHI 
1 2.0000000E+OO 3.9999999E-02 0.0 0.0 1.0000000E+OO 
2 3.0000001E-01 1.0000002E-02 0.0 0.0 0.0 

SCATTERING MATRIX 

GROUP 1 2 
1 0.0 0.0 
2 3.9999999E-02 0.0 

AXIAL BUGKLING = 0.0 



ITERATION PARAMETERS: 

REBALANGING (0/1 = NONE/DIREGT) 

REBALANGE ITERATIONS PER OUTER ITERATION 

NUMBER OF NODES PER GOARSE MESH GELL (X-Y) 

NUMBER OF NODES PER GOARSE MESH GELL (Z) 

MAXIMUM NUMBER OF-OUTER ITERATIONS 

OUTER ITERATION GONVERGENGE GRITERION 

FLUX GONVERGENGE GRITERION 

SOURGE EXTRAPOLATION GRITERION 

2 

2 X 2 

100 

l_OE-04 

l_OE-03 

l.OE-01 



OUTER ITERATIONS: 

GROUP AND GROUP AND 
POINTWISE POINT-GROUPWISE NODE WITH NODE WITH SOURCE 

NO. EIGENVALUE CONVERGENCE CONVERGENCE MAX.FLUX-ERR MAX(FAC-1.0) MAX(F-1.0) OMEGA EXTRAP.? 

1 1.00496292 1.00E+OO 1. OOE+OO 2 1 1 69 3.294E-01 6.23E-01 1. 6E-01 0 
2 1.03922081 3.12E+OO 1. 18E+OO 2 1 2 44 1.450E-01 4. 85E-01 4. 1E-01 0 
3 1. 03045177 4.32E-01 5.35E-01 2 61 2 53 1.213E-01 1.00E-01 1.5E+OO 0 
4 1.03135490 1. 17E-01 1.57E-01 2 76 2 53 1. 055E-01 5.15E-02 4.4E-01 0 
5 1.03230095 8.65E-02 9.78E-02 2 53 2 53 1. 009E-01 4.64E-02 2.5E+OO 0 
6 1.03282166 7.61E-02 8.13E-02 1 61 2 53 8.858E-02 3.92E-02 8. 8E+OO 0 
7 1.03322601 6.41E-02 6.55E-02 1 61 2 53 7.528E-02 3.35E-02 5.2E+OO 0 
8 1.03352928 5.46E-02 5. 51E-02 1 61 2 53 6.316E-02 2.88E-02 5.8E+OO 0 
9 1.03524590 4.65E-02 2.29E+OO 2 53 2 53 4. 352E-01 1.83E-02 6.3E+OO 1 

10 1.03554344 4.20E-02 4.63E-01 2 53 2 61 2.92ciE-01 2.54E-02 7.8E-01 0 
11 1.03519344 5.39E-02 3.03E-01 2 61 2 69 1.439E-01 8.64E-03 7.9E+OO 0 
12 1.03503227 1.97E-02 6.00E-02 2 61 2 69 9.263E-02 6.11E-03 6.9E-01 0 
13 1.03497219 1.33E-02 3.20E-02 2 69 2 69 5.760E-02 4. 32E-03 2.9E+OO 0 
14 1.03493500 9.46E-03 1.91E-02 2 69 2 69 3.501E-02 3.23E-03 3.5E+OO 0 
15 1.03491020 7.05E-03 1.18E-02 2 69 2 69 2.077E-02 2.50E-03 4.8E+OO 0 
16 1.03489304 5.46E-03 7.27E-03 2 69 2 69 1.201E-02 1. 97E-03 5.0E+OO 0 
17 1.03482914 4.31E-03 4.69E-02 2 61 2 36 5.491E-03 1.30E-03 5.1E+OO 1 
18 1.03481483 3.60E-03 8.81E-03 2 52 2 61 9.013E-03 1.58E-03 1. 5E+OO 0 
19 1.03483009 3.61E-03 1.66E-02 2 61 2 69 3.491E-03 4.66E-04 2.5E+OO 0 
20 1.03483677 1. 09E-03 2.75E-03 2 69 2 69 2. 112E-03 3.14E-04 8.0E-01 0 
21 1.03483963 6.96E-04 1.53E-03 2 69 2 69 1.218E-03 2.34E-04 1. 9E+OO 0 
22 1.03484058 5.06E-04 9.25E-04 2 69 2 76 8.533E-04 1.84E-04 2.7E+OO 0 I 
23 1.03484154 3.84E-04 5.88E-04 2 69 2 76 6.255E-04 1. 45E-04 4. OE+OO 0 w 
24 1.03484344 2.98E-04 3.86E-04 2 69 2 76 4.594E-04 1.17E-04 4.2E+OO 0 -I 
25 1.03484821 2.35E-04 2.44E-03 2 61 2 76 5.627E-04 7.34E-05 4.4E+OO 1 
26 1.03484821 1. 73E-04 5.13E-04 2 52 2 61 5.705E-04 6.96E-05 7.7E-01 0 
27 1.03484726 1.66E-04 8.01E-04 2 61 2 69 3. 175E-04 9.54E-06 -1.1E+02 0 
28 1.03484726 2.44E-05 9.58E-05 2 69 2 69 2.081E-04 4.77E-06 6.8E-01 0 



SUMMARY OF CALCULATION: 2-D IAEA 
EIGENVALUE 
NO. OF OUTER ITERATIONS 
NO. OF REBALANCE ITERATIONS 
MAXIMUM FLUX ERROR 
CPU TIME FOR EIGENVALUE CALC. 
TOTAL CPU TIME 

BENCHMARK PROBLEM 
1.03484726 

28 
56 

2.44E-05 
0.0 
0.0 

AVERAGE ASSEMBLY POWERS: AXIAL AVERAGE: 

2 3 4 5 6 7 

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8 0.7525 0.7326 0.6831 0.0 0.0 0.0 0.0 

7 0.9320 0.9405 0.9667 0.8410 0.5984 0.0 0.0 

6 0.9328 1.0296 1.0658 0.9087 0.6932 0.5730 0.0 

0.0 

0.0 

0.0 

0.0 

5 0.5843 1.0786 1.1932 0.9807 0.4521 0.6932 0.5984 0.0 

4 1.2288 1.3198 1.3443 1.1987 0.9807 0.9087 0.8410 0.0 

8 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

3 1.4766 1.4812 1.4583 1.3443 1.1933 1.0658 0.9667 0.6831 0.0 

2 1.3261 1.4406 1.4813 1.3198 1.0786 1.0297 0.9405 0.7327 0.0 

0.7171 1.3261 1.4766 1.2288 0.5843 0.9328 0.9320 0.7525 0.0 

2 3 4 5 6 7 8 

JAGGED OUTER BOUNDARY(COR.DIF.COEF) 

9 

LW 
N 
I 

9 
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TABLE I 

Camparisan of Results.for the Three-Dimensional IAEA Benchmark Problem 

(reproduced from Table III /3/) 

I i" Execution \ Methoda I Reference E: (%) Computer max Time (s) j 

Analytic method 

(QUANDRY) 17,22 0.7 29 IBM 370/168 

Finite difference methodb 

(VENTURE) 20 2. 1 21 600 IBM 360/195 

Finite element methodc 

(FEM3D) 20 4.0 82 800 B-6700 

Nodal expansion method 16,21 0.9 50 CDC 6600 

NGFM 1,19 0.4 62 CYBER 175 

NODLEG method 18 1.0 672 CDC 6500 

aExcept where noted, all calculations were done using a 20-cm radial mesh. 

bl.67-cm radial mesh. 

cS.O-cm radial mesh. 

Symmetry 

One-eighth core 

One-quarter core 
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