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Abstract: 

An efficient algorithm is presented for solving the Riemann problern 

for polytropic gas. It enables the user to compute the solution for 

all physically reasonable data. The convergence of the algorithm is 

shown. The accuracy of the solution is limited only by the accuracy of 

the computing machine. There is an a-priori estimation of the required 

number of iterations. The rate of convergence turns outtobe much 

higher than that of the usual fixed point iteration scheme. 

Ein vollständiger und sicherer Riemannlöser 

Kurzfassung: 

Es wird ein effizienter Algorithmus zur Lösung des Riemannproblems für 

polytropes Gas vorgestellt. Er ermöglicht die Berechnung der Lösung 

für alle physikalisch sinnvollen Vorgaben. Die Konvergenz des 

Verfahrens wird gezeigt. Die Genauigkeit der Lösung wird nur durch die 

Maschinengenauigkeit begrenzt. Es gibt eine a-priori Abschätzung der 

Anzahl der erforderlichen Iterationen. Die Konvergenzgeschwindigkeit 

erweist sich als viel besser als die des üblichen 

Fixpunktiterationsverfahrens. 

AMS Subject Classifications: 65M99, 76L05, 76N15 



1. Introduction 

The Riernann problern for gas dynarnics is an irnportant subject in 

applied science in two respects. Firstly, there is the possibility of 

getting exact solutions to the equations of gas dynarnics and of 

cornparing nurnerical results of any calculation scherne [13,14,20] with 

thern. Secondly, Riernann solvers are a central elernent of several fluid 

dynarnics codes like the randorn choice nurnerical rnethods [2,7,8,20] and 

others [4]. 

An initial value problern for a hyperbolic systern of conservation laws 

-~ < X < ~ , 0 ~ t < ~ , (1) 

with the initial condition 

X < 0 
u(x,O) = (2) 

X > 0 

where are given constant vectors, is called a Riernann problern. 

The question of existence and uniqueness of its solution is nontrivial 

in general. The conservation laws of cornpressible inviscid fluid 

dynarnics are of prirnary interest in practical applications. Results 

for the general case have been published in [9,15] and rnore recently 

in [ 18, 19] . The cornputation of the solution is described in this 

paper. For sirnplicity the equation of state is assurned to be that of a 

polytropic gas. But there are no basic difficulties in handling other 

equations of state [4,7]. The conservation quantity u and the flux 

f(u) in (1) are: 

rnass density , 
rnornenturn density , 
total energy density 

(3) 
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f(u) = (c~-l)e + ~(3-~)/2)(m 2 /p) ) 
(~e - ((~-1)/2)(m 2 /p))(m/p) 

The substitutions 

u := m/p and p := (~-l)(e - f(m 2 /p)) 

adiabatic exp. (4) 

(5) 

where u and p denote the velocity and the pressure of the fluid, 

respectively, lead to the system of equations in the non conservation 

form 

Pt + pu + upx = 0 
X 

ut + uu + px/p = 0 
X 

(6) 

Pt + upx + ~pu = 0 
X 

The initial conditions are 

X < 0 

T (p,u,p) = (7) 

X > 0 

with given constant values The following 

restrictions apply to the inital data 

pl ~ 0 pl ~ 0 if pl = 0 then pl = 0 
(8) 

Pr ~ 0 Pr ~ 0 if Pr = 0 then Pr = 0 

The inital value problern described has no classical solution in 

general. The weak solution however is unique (18] and may contain 

discontinuities and constant states, i. e. a region in the x-t-plane 

where (p,u,p)T is constant. Since perturbations propagate at a finite 

speed there are two constant states 

constant initial 

s1 and Sr resulting from the 

T (p u p ) In the general r' r' r · 



3 

case there is a third state S* being divided by a slip line into two 

constant states I and II and separated by centered waves frorn the 

constant states s
1 

and Sr The velocity and the pressure in I and II 

are the sarne and therefore denoted by u* and p*' respectively. The 

centered waves are shocks or rarefaction waves. The solution to the 

Riernann problern depends on the initial values. The constant states s1 

and Sr exist in any case but S* or one of the constant states I and II 

rnay not appear. The slip line and the centered waves need not occur 

either. If there are two centered waves they need not be of different 

types, i.e. both of thern can be shocks or rarefaction waves. The 

solution is constant on the lines x/t = const hence the boundaries of 

the centered waves and the constant states are straight lines 

originating in x = 0 t = 0. A qualitative exarnple of a solution is 

given in Fig. 1. The left centered wave is a rarefaction wave while 

the right one is a shock. 

left ....,ave 

I 

slip line 

I 
I 

s~ 
I 

1 

right wave 

sl s r 
----------~----------------~--------- -----~-------~C> 

X 

Fig. 1. The solution to the Riernann problern 
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2. The fixed point problern 

Solving the Riernann problern rneans deterrnining the values P,·:, u,._., Pr, Prr, 

the type and location of the centered waves and the quantities inside 

a rarefaction fan if there is one. The central task has been shown to 

be the calculation of p* [2,3,16,20]. When p* has been deterrnined, all 

other work is accornplished easily (for details see [20]). 

Defining the quantities (rnisprint in [20]) 

one can show that 

with 

.l 
CCCo+1)w+o-1)/2) 2 

((o-1)/(2/o))((1-w)/(1-wK)) 
K := Co-1)/(20) 

Elirninating u* in (9) one obtains 

and the substitution of M
1 

and Mr given in (10) leads to 

(9) 

(10) 

(10a) 

(11) 

(12) 

where the function F contains the initial values as pararneters. 

Looking for a fixed point of F is equivalent to the search of a zero 

of the function 
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Theorem: The fixed point problern (12) is solvable iff 

where c 1 ,cr derrote the values of the local sound velocity 

~ 

c = crp/p) 2 

(13) 

(14) 

The idea underlying the proof (for details see [11]) is the following. 

If G(O) < 0 then G(p*) < 0 for all p* in (O,~). Gis continuous and 

G(p*) ~ -~ if p* ~ ~ . Since (13) is equivalent to G(O) ~ 0 the proof 

is complete. 

3. The solution to the fixed point problern 

The criterion (13) contains only the initial data and is easy to 

handle. It permits one to decide whether the fixed point problern is 

solvable or not. 

Let us assume (13) to be fulfilled. Now the question is how to 

calculate the solution. A modified form of the so-called Godunov 

iteration [10] is recommended in some papers [2,20]. Starting from the 

value 

(15) 

an iteration 

n=O,l,2, ... , (16) 
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follows. The parameter a is initially chosentobe 1. The iteration is 

finished after having reached a certain accuracy (see [2]), otherwise 

it is continued. After L iterations (proposal in (2]: L = 20) a is 

taken to be one half of the previous value of a. The convergence of 

this procedure has not been proved and not all of our practical 

computations confirm the good experience reported in (2]. 

In [4] a secant iteration is presented. The first two guesses used to 

start the iteration are obtained from Godunov's iteration scheme. As 

with the above method, the convergence of this method is also not 

certain. 

The Brent algorithm [1] is a combination of the bisection method and 

the secant iteration which retains the advantages and avoids the 

disadvantages of both procedures. The calculation effort is not 

significantly greater, i.e. there is only one function evaluation per 

iteration. The convergence is certain and an a-priori estimation of 

the required number of iterations can be made as for the bisection 

method. The rate of convergence is that of the secant method. The only 

requirement for the applicability of the Brent algorithm is to find an 

interval where the function changes its sign, i.e. an interval 

(p p ) has to be found in which G has i ts zero. S ince (13) · is 
~·(min' ~·(max 

now assumed to be valid one knows that G(O) > 0 and p, . can be taken 
~(m1n 

to be equal to zero. An appropriate value p, with G(p, ) ~ 0 is 
~(max ~ 1max 

required. Some estimations [11] lead to 

if 

P"'itrmax = 

where 

u -u ~ 0 
1 r 

(17) 



n2(ul-ur)2plpr 

(0+1) CIPJ.+~) 2 
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+ 4 
PriPJ.+pl~ 
~+IP; 

(17 a) 

Now the Brent algorithrn can be applied. The desired accuracy of the 

result has to be specified and is only lirnited by the accuracy of the 

cornputing rnachine. In order to cornpare the Godunov iteration with the 

Brent algorithrn one hundred data sets have been chosen arbitrarily for 

the Riernann problern all of thern satisfying (13). Both rnethods have 

been successfully applied and furnished the sarne results within the 

accuracy required. The nurnber of iterations needed is shown in Fig. 2. 

For a few cases, the Godunov scherne converged very quickly and 

necessitated only few iterations. However, the average nurnber of 

iterations was 24.32 for the Godunov rnethod and only 6.97 for the 

Brent algorithrn. The superiority of the Brent algorithrn is quite 

obvious. 

4. The cornplete Riem<mn solver 

If the solvability condition (13) of the fixed point problern is not 

fulfilled the solution to the Riernann problern can be written 

explici t ly. It contains two rarefaction waves and a vacuurn zone in 

between. With 

= ((~-1)u 1+2(x/t+c 1 ))/(~+1) 
= ((u -x/t)2p~/(~p ))(1/(~-1)) 

Vl 1 1 
(18) 

~ 
= CPv1IP1) P1 

and 
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1 0 20 

Fig. 2. The required number of iterations of the Godunov method 
(upper figure) and of the Brent algorithm (lower figure) 
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uVr = ((~-1)u +2(x/t-c ))/(~+1) r r 

Pvr = ((x/t-u )2p~/(~p ))(1/(~-1)) 
Vr r r 

(19) 

Pvr = (pVr/pr)~pr 

one can define 

x/t < u
1

-c
1 

u
1
-c

1 
< x/t < u 1+2c 1 ;C~-1) 

T (p,u,p) = vacuum u 1+2c/(~-1) < x/t < u -2c /(~-1) (20) 
r r 

T 
(pVr'uVr'PVr) 

T 
(pr,ur,pr) 

u -2c /(~-1) < x/t < u +c r r r r 

u +c < x/t . 
r r 

The solution to the Riemann problern cannot be given by the quantities 

p,u,p. But looking at (5) the transformation 

m = pu (21) 

leads to a (weak) solution of the conservation laws after substituting 

u and p from (20) and defining p = m = e = 0 in the vacuum zone. From 

the point of view of physics the natural variables in fluid mechanics 

are the conservation quantities p, m, e. There are also mathematical 

reasons to use these coordinates, especially if vacuum regions occur. 

But in the computations one uses p,u,p and refers to (21). 

The Riemann solver described above is not yet complete. Some special 

data sets for the Riemann problern (like in [14]) to which the previous 

formulas do not apply need to be considered. If for example p
1 

= 0 

(pr = 0) and p1 > 0 (pr > 0) the quantitiy M1 (Mr) cannot be computed 

from (10). Same investigations [11] lead to 

1. 

Ml = ( ( 0+ 1) p 1 p~"'/ 2) 2 if pl = 0 pl > 0 
(22) 

1. 
(M = ((~+1)p P .... /2) 2 if Pr = 0 Pr > 0 ) . r r " 
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The rest of the procedure can be accomplished as above, with only one 

exception. The function G now has two zeros if 

u -
1 (23) 

one of which is = 0 and does not provide a solution to the 

Riemann problem. In order to compute the other zero p* > 0 by means of 

the Brent algorithm, one should give p*min any appropriate small 

positive value. If (23) is not satisfied the solution is obtained from 

(20), with the left (right) rarefaction wave vanishing, since c
1 

= 0 

(er= 0). If the initial data contain a vacuum region, i.e. pl = 0 

p = 0 (p = 0 1 r p = 0), 
r 

the velocity specified for it has no 

meaning. From the jump conditions it is obvious that the transition of 

fluid flow to vacuum cannot be a shock. If p > 0 
r 

pl > 0) the solution is given in (20) with the 

extending to the left (right) hand side. Horeover, 

central 

if Pr 

(pl > 0 ' pl = 0) the remaining rarefaction wave vanishes. 

5. Conclusions 

vacuum zone 

> 0 
' Pr = 0 

We have presented a procedure to solve the Riemann problern for 

polytropic gas. The initial data are first examined for their physical 

relevance (8). An easy to handle criterion (23) leads to either a 

solvable fixed pointproblern or to the direct solution (20). A fast 

algorithm [1] which converges with certainty has been made applicable 

to the fixed point problem. Same special cases for the initial data 

have been treated in order to complete the method. This Riemann solver 

is able to operate reliably and is recommended for use in practical 

applications. 
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