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ABSTRACT 

A description will be given of the basic processes acc~ring 

during ion implantation and ion beam analyses. The useful­

ness of the backscattering and channeling technique is de.mon­

strated by a discussion of the applications to thin film ana.­

lysis, studies of diffusion and reactions in thin films, 

lattice location investigations, disorder analysis and 

surface studies. 

Ion implantation is a valuable research tool in metallurgy. 

The process operates very far from equilibrium conditions 

and thus will influence near surface properties in a unique 

way. The observed modifications are related to special microsco­

pic structures which will be considered in detail. 

I. Ma.terialan.alyse :rn.it fi,ilfe der Ion.en.rückstreuung und 
des Chan.n.ellin.geffektes 

II. Ma.terialmodifikation durch Ionenbestrahlung und Ionen­
implantation 

ZUSAMMENFASSUNG 

Nach einer Einführung in die Grundlagen der Ionenimplan­

tation und der Ionen-Rückstreu- und Channeling-Analysen­

methode wird anhand von ausgewählten Beispielen der 

Einsatz der Ionenimplantation zur gezielten Veränderung der 

Eigenschaften von Oberflächenschichten demonstriert. Ionen­

strahlanalysenmethoden sind zur Charakterisierung dieser 

Schichten besonders geeignet. 
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INTRODUCTION 

All methods of material analysis by target Stimulation using 

photons, electron or ions yield a mixture of quantitative and 

qualitative information. Techniques such as photo-electron­

spectroscopy or electron-energy-loss-spectroscopy usually pro­

vide information on the electronic structure of the material 

and on chemical binding however are not quantitative in respect 

of element analysis. Energetic ion beams with energies between 

about 100 and 3000 keV interacting with the target usually yield 

quantitative information however do not provide binding informa­

tion at all. 

The use of energetic ion beams for solid state analytical 

work has expanded rapidly during the last two decades, largely 

because of the development of improved data precessing equipment 

and of high-resolution nuclear particle detectors, which provide 

an energy-proportional signal with an energy resolution of about 

1%. In normal backscattering analysis geometry the depth resolu­

tion is about 10 to 20 nm. With the newly developed electrostatic 

analysers the depth resolution is about 0.5 nm. The region of 

application is wide spread and includes: 

a) thin film analysis: determination of composition and impurity 

content, diffusion and reaction between thin film-couples, oxi­

dation, analysis of semiconductor doping. 

b) single crystal analysis: combined with the channeling effect 

in single crystals energetic ion beams can be use to determine 

regular interstitial and substitutional lattice sites of foreign 

atoms in host materials with high spacial resolution ('V2 · 1 o-3 nm), 

crystalline disorder and radiation darnage in materials, relaxa­

tion- and reconstruction phenomena on single crystalline surfaces 

as well a lattice site determination of adsorbed atoms. 

c) analysis of environmental, biological, geophysical and other 

problems mainly using the proton-microprobe with a greatly 

reduced background radiation as compared to the electron-micro­

probe. 

This list is by far not complete. The whole field is well docu­

mented and nearly complete information can be obtained from 

books and conference proceedings listed in ref. 1 to 7. In ref. 7 
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a comprehensive and recent bibliography is given in the field 

of ion beam surface modification and analysis. 

Besides Rutherford backscattering one can use other close 

encounter processes such as nuclear reactions, proton-induced 

X-rays and ion-induced Auger-electrons for materials analyses 

with ion beams. 

In the following lectures however we will concentrate on 

materials analysis by ba.ckscattering and by ion channeling. A 

few of our experimental results are presented as examples to 

demonstrate the usefulness of these techniques. 

I. Backscattering Spectrometry 

1. Equipment 

Backscattering of charged particles produced in accelera­

tors is a well-known method used for the analysis of surfaces 

/8/. Backscattering of He-ions from radioactive sources, 

for example, was applied for chemical analysis of the lunar 

surface /9/. The He-ion beam generatedinan accelerator has the 

advantage of a far higher source strenght to energy resolution 

ratio. This makes if possible to look at small solid angles of 

the backscattering particles so that the energy spread caused by 

kinetics is small compared with the energy resolution of the 

detecting system. A typical experimental arrangement is shown 

in Fig. 1. A well collimated monoenergetic ion beam with ener­

gies between about 200 keV and 3000 keV is delivered by a Van­

de-Graaff accelerator (the lower energy limit is given if one 

wants to avoid neutralization effects, the upper limit is due to 

the occurence of deviations in the Rutherford cross section by 

resonance scattering; both effects would influence quantitative 

analysis). Thebeam current is measured with an integrator; the 

target is shielded with a Faraday cup to avoid errors by secon~ 

dary electron emission. The energy distribution of the back­

scattered H~-ions is measured with a surface barrier detector. 

The electrical signal from this detector is amplified and stored 

in a pulse height analyser. The linear response of the nuclear 
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particle detector provides a fixed energy per channel in the 

multichannel analyser. In order to include the material ana­

lysis by ion channeling in single crystalline targets, which 

will be discussed in chapter II, the samples are mounted on 

a two axis goniometer to permit the alignment of the ion beam 

with one of the low index crystal directions. 

At energies of 2 MeV the energy resolution 6E/E is usually 

not limited by the energy straggling of the accelerated ion 

beam but by the energy-resolution of the nuclear particle detec­

tor and the noise of the first stage in the preamplifier. 

Typical values for 6E/E are 0.1% for the ion beam and 0.7% for 

the nuclear particle detector. The backscattered ion must be 

stopped in the depleted region of the p-n junction of the 

silicon-surface barrier detector. The stopping process is due 

to inelastic interaction of the incident ions with the electrons, 

called electronic stopping and due to elastic interaction with 

the target atoms via a partially screened Coulomb-potential, 

called nuclear stopping. During the slowing down process of 2 MeV 

He-ions in silicon about 99% of the energy is lost due to elec­

tronic stopping thus producing electron-hole pairs which are 

seperated by the strong electrical field gradient in the p-n 

junction and which produce the electric signal of the detector. 

The straggling in the nuclear energy loss will limit the energy 

resolution of the nuclear particle detector to about 10 keV. To­

gether with the preamplifier noise the typical energy resolution 

for the detecting system is about 15 keV for 2 MeV He-ions. 
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The energy of a light ion scattered by an atom at the sur­

face is K2E
1 

, where K2 is the fractional energy loss after 

scattering given by: 

( 1 ) 

Here m is the mass of the incident light ion, M that of the 

target atom, e2 is the scattering angle in laboratory coordi­

nates and E1 and E2 are the energies of the incident and reflec­

ted ion, respectively. From eq. (1) it can be estimated that 

the mass resolution which will be defined as the difference in 

reflected ion energies for scattering from surface atoms with 

mass M and M+1, is rather high considering incident He-ions and 

target atoms with masses < 50 however decreases strongly for 

M > 50. The situation can be improved using a heavy mass inci­

dent ion for example 16o-ions /10/. The improved mass resolution 

for 
16

o-ions is demonstrated in Fig. 2, where backscattering 

spectra from 2.4 MeV He-ions and 20 MeV 16o-ions are compared. 

The calibration target consisted of 5 nm thick layers of Au, 

Ag and Cu evaporated on a Si slice. In the case of 16o-scatter­

ing, 65cu is clearly separated from 63 cu; the gain in mass reso­

lution for M > 50 is about a factor of 4 compared to the results 

from 4He-scattering. 

Treating the mass resolution in chapter 1.2 we have con­

sidered the scattering event to occur with atoms at the surface. 

If the scattering event occurs at a depth t we have to take into 

account the energy loss due to inelastic collisions with the 

target electrons. If E' is the energy of the incident ion, then 

the energy E1 just before collision after penetrating the surface 

layer to depth t is given by 
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t 

E1 = E' - I J ~~ dx I ( 2) 

0 

The energy E2 immediately after elastic collision at depth t 

is given by 

( 3) 

and E'' , the energy of the outgoing particle as measured with 

the nuclear particle detector at an angle 8 (= 180°-8 2 ) is 

given by 

t 

E" =E -
2 I J ~~ dx 

cos8 
0 

Inserting eqs. (3) and (2) in (4) 

t t 

J ~~ dx I - I I ~~ 
0 0 

dx 
cos8 

( 4) 

(5) 

Since dE/dx changes only slowly with energy, average values of 

dE/dx can be used for the incoming and outgoing path respecti­

vely. Then 

E" - K
2
E' - t · [ S] ( 6) 

where we define [S], the backscattering energy loss parameter, 

by 

[S] K2dEI - dx -
E1 

+ ( 7) 

- -In this definition E1 and E2 are the intermediate energies be= 

tween E' and E1 , and E2 and E" , respectively. At the energies 

usually used, where t · [S] << E' one may take E1 ~ E' and 

E2 ~ E2 with negligible loss of accuracy. Thus for thin films 

with thicknesses up to about 500 nm the energy scale in a back­

scattering spectra can be converted to a mass scale by eq. (1) 

and into a depth scale by eq (6). 
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The backscattering energy loss parameter can be calculated 

by using tabulated dE/dx(E)-values /4,11/. It can also directly 

be determined by taking backscattering spectra from evaporated 
films of known thicknesses. In Fig. 3, a typical backscattering 

spectrum from a Mo-layer on a quartz substrate is presented, 

illustrating characteristic results for both thickness measure­

ment with a stylus instrument and with a backscattering mea­
surement /12/. 

2. Applications 

2.1 Thin Film Growth Processes 
~~------------------------

From the previous discussion it is clear that a back­

scattering analysis can quickly provide information on the thin 

film thickness and on the impurities present /12/. We can also 

show that this technique is suitable to study the intermediate 

stages of growth of thin films and the sticking probability 

factor. This possibility is demonstrated in Fig. 4 where the 

backscattering spectra are shown for Sn-films on Si /13/. Equal 

quantities of Sn have been evaporated on Si at substrate tem­

peratures of 77, 293 and 393 K. A significant reduction in the 

yield can be seen for layers evaporated at higher temperature 

(393 K) indicating island growth,and a substantially reduced peak 

area at room temperature indicating agreatly reduced sticking 

factor at this temperature. 

A fruitful area of application is the analysis of dielec­

tric layers on semiconductors by ion backscattering. Sio2- and 

Si3N4 -amorphous layers are extensively used in silicon devices 

as diffusion masks and also as passivating and insulating layers. 

As backscattering measurements are useful in the analysis of the 

depth dependence of the composition and density of the nitride 

and oxide layers, the various deposition processes such as 

thermal oxidation, chemical vapor deposition, glow discharge, 

sputtering etc. can be quickly optimized. One of the earlier studies 

on the analysis of silicon-oxide layers on silicon surfaces is 

given in ref. 14. 
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Analyzing a compound A B we have to assume that the atomic 
m n dE 1 

stopping cross sections sA and sB,where s = dx · N'can be added, 

weighted proportionally to their abundance in the compound. This 

postulation is known as Bragg's rule /15/. The specific energy 

loss for a compound is then given by 

dE 
dx 

AB 
(8) 

AB AB . where AB stands for AmBn and NA , NB are the atom1c densities 

of A and B atoms in AB respectively. Eq. (8) has now to be inser­

ted in eq. (7) to give the backscattering energy loss parameter 

for light ions scattered at A-atoms [S~B] or B-atoms [S~B] in the 

compound where 

[SAB] AB AB (9) = NA [EA] + NB [EB] A 

with 

[ E A) 
2 

IE, 

1 
EAI and [ EB] KisBI 

+-1-= KAEA + cose = EB 
E2 E1 

cos8 
E2 

For [S~B] Ki has to be replaced by K~ in [sA] and [sB]. With 

these equations available one can determine the constituent atom 

ratio Y = N~B/N~B in a compound by measuring the heights H~B 
and H~B (yield) from the A and B atoms in the backscattering 

spectrum 

y = 
AB 

• H • a B A 

( 1 0) 

The scattering process due to Coulomb interaction can be des­

cribed by the well-known Rutherford differential scattering 

cross section. In laboratory coordinates it is given by: 
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z1 and z2 are the atomic nurober of the projectile and target 

atom. E is the energy of the projectile immediately before 

scattering and e2 is the laboratory scattering angle. The 

average differential scattering cross section a is taken over 

a finite solid angle, n, given by the sensitive area of the 

detector and the distance from the substrate. Knowing these 

numbers one could determine the total nurober of target atoms 

per unit area, N6x from the height of the spectrum, H that 

is the nurober of counts per channel, on an absolute scale 

H = QonNox where Q is the total nurober of projectiles (charge) . 

By use of [S] as defined in eq. (7) one obtaines 

H = Q • a · n · N • 8E/ [S] 

H = Q • a · n • 6E/ [ E] 

or 

where 6E is the energy to channel conversion factor. 

It is often more convenient to measure the composition on a 

relative scale by relating the height of an elemental target 

HA to the height H~B in a compound 

y = 
a~B ( EB] 

( 11) 

Both methods have been applied for example for the analysis of 

reactively sputtered NbN-layers /16/. Such refractory compound 

with B1-crystal structures are known to have good superconduc­

ting properties. In Fig. 5 a typical backscattering spectrum 

from a NbN layer sputtered onto a carbon substrate (dashed line) 

is compared to a spectrum. from a Nb layer evaporated onto 

quartz. The height of the Nb peak in the compound, ~~N is 

strongly reduced as compared to the height R~~ of the pure Nb 

layer. Eq. (11) can immediately be applied to determine Y, the 

ratio of the Nb to N atoms. Eq. (10) can be applied using the 

h.el'ghts RNbN d RNbN d t ' d f th t ~ th Nb an N as e erm1ne rom e spec ra. ~rom ese 
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data we concluded that violations of Bragg's rule in nitrides are 

not larger than about 5%. 

Compounds can also be produced by high dose ion implantation. 

Implantation at a single ion energy will produce a Gaussian shape 

distribution of the implanted species. In order to obtain a homo­

geneous profile several energies can be used and the fluences can 

be varied in such a way that a homogeneaus implantation profile 

emerges. In Fig. 6 a calculated implantation profile is shown for 

N in Re. Energies and fluences used are indicated in Fig. 6. 

Except at the surface region, a reasonable homogeneaus distribu­

tion is seen. The homogeneity of the implantation as a function of 

depth was tested with the backscattering spectrometry using 2 MeV 

He-ions. As an example, such spectra of a Re film before and after 

implantation of 45 at.% N are shown in Fig. 7. A decrease accompa­

nied by a broadening of the implanted layer is seen as compared to 

the unimplanted sample. These effects are due to an increased 

energy loss of the He particles during their penetration of the im­

planted film. The total peak area which is independent of the ener­

gy loss, is proportional to the total nurober of Re atoms. 

Thin film X-ray ~nalysis showed that the hcp-crystal structure 

of Re was no longer present. The cubic NaCl-structure Re 55N45 had 

formed during the implantation process /17/. 

Diffusion processes are important in the formation of metal 

electrodes and compounds in surface layers of crystals. An early 

example was the application of backscattering to study the diffu­

sion of Au in Cu /18/. Further, diffusion processes are important 

dur ing doping of, semiconductors by ion implantation. Radiation 

enhanced diffusion during implantation or during annealing may 

significantly change the doping profile. 

As an example, the change of an Sb-peak as a function of 

annealing time at a temperature of 900°C is shown in Fig. 8 /19/. 

Implantation of Sb in silicon samples was carried out at an ion 

energy of 400 keV using a dose of 8 . 10 14 Sb/cm2 at room tempera­

ture. The implanted peak shape is nearly symmetric about the peak 
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maximum. The nurober of implanted ions N./cm 2 can be calculated 
1 

by comparing the area A. from the impurity peak (here Sb) with 
1 

the height of the silicon spectrum Hh (h = host) for random 

orientation: 

N. = 
1 

Ai · oh Nh 6E 

Hh oi [S]h 
( 1 2) 

oh and oi are the Rutherford cross sections for the host and the 

impurity atom respectively (o ~ z2 ); Nh ist the atomic density 

of the host and 6E is the energy/channel conversion factor in the 

spectrum. Relating the peak area A. to the height of the host 
1 

spectrum has the advantage that the integrated charge and the 

solid angle of the detector cancel and need not to be considered. 

The as-implanted impurity peak profile can be described by the 

equation 

n(x) ( 1 3) 

where n is the concentration of the implanted ions and x is the 

distance from the surface. R is the mean projected range and l',Rp is 
p 

the standard deviation of the distribution. For a Gaussian 

shape, R coincides with the position of the peak maximum, where­
p 

as 2.35·l',R is equal to the full width at half maximum (FWBM). It 
p 2 1/2 

can be shown that eq. (13) with l',R replaced by (L',R + 2Dt) 
p p 

is a particular solution of the true diffusion equation where 

D and t are the diffusion coefficient and time, respectively. 

The dashed line shows the initial distribution of the implanted 

Sb atoms in Fig. 8. In the isothermal anneal sequences it can be 

seen that the distributions at lower channel numbers correspond­

ing to deeper depth are relatively unchanged. However, there is 

a decrease observed in the height of the distribution and a 

broadening of the distribution towards the surface. The observed 

asymmetrical distribution indicates a non-constant diffusion 

coefficient throughout the implanted layer. The solid lines are 
-16 2 calculated with a value of D = 10 cm /sec (the normal value 

for Sb in Si at 900°C) for the deeper flank of the profile,where-
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as a D value of 3. 3 • 1 0- 15 cm2 I sec described the peak decrease as 

well as the region from peak to surface. At the surface, the g-rowth 

of a peak indicated that Sb atoms have diffused to the surface 

and become trapped. A more detailed description of enhanced 

diffusion and out-diffusion in ion implanted silicon is given in 

ref. 19. 

As a last example diffusion processes at the Cu/CdTe inter­

face for evaporated and chemically plated Cu layers are considered. 

Here the backscattering analysis allows the simultaneaus measure­

ment of compound forrnation and diffusion /20/. Afterevaporation 

of a thick Cu layer (about 1 ~m) the backscattering spectrum is 

given by the curve No. 1 in Fig. 9. Due to the high energy loss 

of the He-ions in the Cu layer the energy of He ions scattered from 

the CdTe surface is shifted from channel 920 to channel 690. The 

energetic overlap of He-ions scattered from Cu and from CdTe pro­

duces a peak from channel 660 to 690. The step at channel 870 is 

the leading edge of Cu, the step at channel 695 is the leading 

edge of CdTe and the step at channel 660 is the trailing edge of 

Cu. During successive heat treatments at 320°C (not shown in Fig. 

9) the thickness of the Cu-layer decreases, causing the leading 

edge for CdTe and the trailing edge for Cu to move towards higher 

energy. This process is also seen for spectrum No. 2 in Fig. 9. 

Besides the indiffusion of Cu, which leads to the observed shifts 

as discussed above it is clearly seen in Fig. 9 that Cd diffuses 

through the Cu layer and precipitates at the surface. With increa­

sing annealing time the Cu layer is enriched with Cd. From measure­

ments at different temperatures the diffusion coefficient D for Cu 

in CdTe could be determined /20/. 



-18-

II. Ion Channeling in Materials Analyses 

3. Introduction 

The motion of energetic charged particles in a crystalline 

target is strongly influenced by directional effects due to 

densely packed rows or planes of atoms in the crystal lattice. 

This phenomenon called channeling was first discovered by 

computer studies /21/, simulating the slowing down process of 

charged particles in materials taking the lattice structure into 

account. The influence of the channeling effect on the ranges 

and range distributions of charged particles was far more pro­

nounced in experiments, using single crystalline targets and per­

fect alignment between the incident beam direction and low index 

crystal directions /22,23,24/. Since this late discovery 

of the channeling effect numerous studies have been performed on 

the principles as well as on the applications of this effect for 

materials characterization. Excellent reviews have been published 

/25,26,27/ which provide detailed and comprehensive treatment of 

the subject. The intention of this review is to give a short intro­

duction and to summarize recent development in three main fields 

of application, namely: 

a) foreign atom location b) radiation darnage c) surface studies. 

From the computer studies it was concluded that the channelled 

particles experience many glancing collisions with atoms in 

successive lattice planes. This leads to the simple concept that 

the potential in binary collisions between charged particles and 

crystal atoms can be replaced by a potential, U(r), between the 

particle and a string of atoms /27/ characterized only by the 

distance d between neighbored atoms in the string. A characteri­

stic angle ~ 1 exists, called Lindhard's characteristic angle, 

separating particles with glancing collisions from those with ~ > ~ 1 
which will not feel the steering force of densely packed rows or 

'"> ~ I_.., 

planes. ~ 1 = (2z 1z 2e..::./(dE)) ' 1 ..::. where z
1 

and z 2 are the atomic 

numbers of the particle and atom respectively and Eis the particle 

energy. Fora charged particle moving in a channel bordered by atomic 

planes or rows, in a first approximation, neglecting inelastic 
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energy lossed due to interactions with electrons, the transverse 

energy is conserved. The total transverse energy El is the sum 

of the transverse potential energy, U(r), and the transverse 

kinetic energy, E~w 2 (r). 

Assuming that this transverse energy remains constant1 the 

motion of the particle with El is restricted to an area A(El) in 

the xy-plane wi thin the channel where El > U (r. ) . U (r. ) is the ln ln 
potential energy which the ion obtains when entering the channel 

a t a posi tion r. away from the potential minimum a t r = 0. A (EJ) ln 
is a function of E, w and r. and there is an equal probability ln 
of finding the ion anywhere within this area. Considering a beam 

of particles uniformly incident over the total channel area, we 

may add up these uniform distributions inside the various areas 

A(EJ.). This will lead to a high flux density in the middle of the 

channel in the region of lowest U(r). The knowledge of such flux 

peaking effects and flux depression near the atomic rows is necessary 

for the determination of regular interstitial lattice sites and of 

the lateral distribution of lattice defects. Conservation of trans­

verse energy and flux peaking are the most important features of 

the channeling effect. 

4. Lattice location of foreign atoms 

Physical properties of materials are determined by the speci­

fic location of foreign atoms in the host lattice. Information on 

the lattice sites can be obtained by using the angular dependence 

of close impact parameter events such as Rutherford scattering, 

nuclear reactions or ion-induced X-rays in ion channeling experi­

ments. 

4.1 ~~2~~2~~~§~~~~-~E§~~~~-~~9-~~e§~!i~i!2~~1_1~~~!2§_E2§!~!Q~§ 

Qf_!~E~~!~Y-~~Q~~ 

Rutherford backscattering is the most widely used close­

encounter process in channeling studies. The experimental arrange­

ment is schematically shown in Fig. 1 and has been described in 

chapter I. 
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nal (•) and on random interstitial (D) sites. Angu­
lar yield curves when measured in windows 1 to 3 
are shown in (c) . 
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Fig. 10a schematically illustrates the incident beam well 

aligned or randomly oriented with respect to the atomic rows. 

Indicated in Fig. 10a are the host atoms with mass M2 (o), 

foreign atoms on random interstitial lattice sites M3 (0) and 

foreign atoms on substitutional lattice sites M4 (&) with the 

assumption M4 > M3 > M2 . Typical backscattering energy spectra 

are shown in Fig. 10b for the random as well as for the aligned 

beam. Particles backscattered from target atoms of different 

masses near the surface are seen to be well seperated on the 

energy scale. Particles from target atoms at some depth suffer 

an energy loss due to inelastic interactions with electrons and 

will produce nearly reetangular shaped spectra as shown schemati­

cally in Fig. 10b. The energy scale can be converted into a mass 

scale and into a depth scale (see chapter 1.3). 

When the beam is aligned with an axial direction, about 95 to 

98% of the incident particles will be steered by the strings of 

atoms (channelled component) and a strong reduction of the back­

scattered yield from the lattice atoms as well as from substitu­

tional impurity atoms is noted in Fig. 10b. The backscattered 

yield as a function of the angle ~ between random and aligned 

incidence when monitored in the energy windows 1 to 3 and norma­

lized to the random yield is shown in Fig. 10c. These angular 

yield curves are characterized by two important quantities: the 

minimum yield, x . for perfect alignment and the critical angle, m1n 
~ 112 , the half angle at height (1-xmin)/2. 

In Fig. 10c it can be seen that if Xmin and ~ 112 for the 

host lattice and the substitutional impurity atoms are the same, 

100% of the impurity atoms occupy substitutional sites. The sub­

stitutional fraction, f is determined by f = (1-x.)/(1-xh) were s s 1 

Xi and xh are the normalized minimum yields for the impurity and the 

host respectively. No reduction of the yield is shown for mass M3 , 

indicating that those impurity atoms are localized at random 

interstitial sites. 

For precise lattice location studies it is most important to 

take complete angular yield curves as is demonstrated in Figs. 11a and 

b for Ga implanted in an Al-single crystal /28/ at room temperature. 
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In the as-implanted sample ~ 112 for Ga is smaller and 

x . larger than the values measured for the host. This indi­mln 
cates that Ga is slightly off the substitutional lattice site 

(about 0.015 nm), presumably because Ga atorns have a disturbed 

neighborhood, for example a neighbored Ga-atom or a vacancy. 

After annealing with short electron pulses with a width of 

about 150 nsec and a total energy of 2.4 J/cm2 (4 steps with 0.6 

J/cm2 ) a complete annealing and a substitutional fraction of 1 

is reached as is demonstrated in Fig. 11b. 

The ~ 112 - and the Xmin-values rnay be cornpared to calcu­

lated values using the empirical formuls from Barrett 1291 
based on Monte Carlo computer calculations: 

~ 1 I 2 = 0. 8 F RS ( 1 . 2 u 1 I a) ~ 1 and Xmin = 18 . 8 N d u~ 

The Thomas-Fermi screening radius a is given by a = 0.885 a 

(z
21 3 +z 21 3 ) 11 2 wherea

0
is the Bohrradius (a

0 
= 0.0528 nm). 

The one-dimensional rms thermal vibration arnplitude u1 is cal­

culated from Debye theory of thermal vibrations: 

where GD is the Debyetemperaturein K and 0(x) the Debye func­

tion with x = GDIT. FRS and 0(x) are tabulated in 1121 and 171 
respectively. N is the nurober of host atoms per unit volume. 

Analysis of angular dependent backscattering spectra from 

crystals with complicated structures and with defects can be 

performed using Monte Carlo computer calculations 1301. For 

compounds with parallel rows of atoms with different atomic 

numbers and anisotropic lattice vibrations a detailed knowledge 

of the flux profile is required for the quantitative analysis 

of the channeling results. In such programs the elastic inter­

action between incident ions and the lattice atoms is treated 
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as a series of independent binary collisions. For the calculation 

of the deflection angle at each interaction the classical scat­

tering theory in momentum approximation is used /31/. The 

Meliere-approximation /32/ to the Thomas-Fermi potential is 

used as scattering potential. The electronic energy loss is 

calculated from an impact-parameter-dependent term due to colli­

sions with closed-shell electrons and from a constant part, which 

is due to collisions with valence electrons which are treated to 

be equally spread over the lattice, and to plasma excitations. The 

energy loss due to nuclear interaction is neglected since the ion 

energies are in the MeV-region. The mean squared angular spread 

of the channelled beam due to multiple scattering from electrons, 

directly proportional to the inelastic energy loss rate, is also 

included in such programs. The influence of amorphous surface 

layers on the divergence of the beam can also be simulated by 

choosing the transverse momentum of the starting ion from a 

Gaussian distribution. 

As an example of such a computer calculation, channeling 

results from the compound v 3si, a superconductor with A15 

crystal structure, are compared with calculated values in Fig. 

12a,b /33/. 

Good agreement is obtained between calculated and measured 

angular yield curves for the V - as well as for the Si-sublatti­

ces. Protons from the 28si(d,p
8

) 29 Si-reaction have been used to 

measure the channeling data from the Si-rows /34/. The anisotro­

pic vibrational amplitudes used in the computer program were 

taken from X-ray diffraction results and the anisotropy of the 

thermal Vibrations of the V-atoms was taken into account. The 

rms-amplitude of V-atoms in the chain parallel to <100> is 13% 

smaller than th~ amplitude perpendicular to the chain. Replacing 

this anisotropy by a mean isotropic value leads to results given 

by a dashed line in Fig. 12a ,b. 

It is seen that the ~ 112 <100>-value is not affected where­

as the ~ 112 <110> decreased by 0.04°. This change of ~ 112 is only 

slightly above the limit of accuracy of current measurements and 

calculations. 
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Physical properties of metals are modified by the incorpora­

tion of light ions especially hydrogen, helium, oxygen and nitrogen. 

These light atoms occupy well defined interstitial positions 

mainly tetrahedral and octahedral sites at low temperatures and 

may migrate at higher temperatures. Such processes are important 

in many applications like hydrogen storage and reactor techno­

logy. Lattice location and diffusion processes can be monitared 

with the ion channeling technique. Recent review articles on 

this subject are found in ref. 35. 

The knowledge of the flux distribution as a function of 

transverse energy is most important for the analysis of inter­

stitial lattice positions. The transverse energy of the channel­

led particles will increase with increasing tilt angle. The 

flux profile will widen and the peaking will disappear. At the 

same time the flux and therefore the yield from foreign atoms 

located at interstitial positions near the rows of lattice atoms 

will increase. This behaviour has been calculated /36/ using the 

multi-row analytical method /26/ for example for 3.5 MeV 
14

N 

ions incident along the <100> axial direction in Fe and is shown 

in Fig. 13a,b,c. Fig. 13a shows the channel bordered by 4 rows 

of Fe-atoms and impurity atoms located at positions O, A and B. 

The flux distribution along SOS' for the incident beam at ang­

les ~ 1 = o, ~ 3 = ~ 112 and ~ 1 < ~ 2 < ~ 3 with respect to the <100> 

direction is shown in Fig. 13b. The variation of the flux at the 

positions 0, A, B and S as function of the tilt angle is given 

in Fig. 13c. As the flux is proportional to the reaction yield, 

Fig. 13c reflects the angular yield curves that may be obtained 

in an experiment and which will lead to the decision about the 

exact location of the regular interstitial positions. For a 

clear-cut decision of the exact location usually further measure­

ments along other low index crystal directions and planes are 

necessary. Examples for experimental results can be found in 

ref. 35. 
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5. Disorder analysis 

The advantage of the channeling technique for disorder ana­

lysis is, that it provides a fast and simple tool to determine 

the crystalline quality of the sample and to control annealing 

processes as has been proved in semiconductor doping by ion 

implantation. The disadvantage is that the method is not very 

sensitive, the lower limit of detection is about 1 at.% of dis­

placed atoms of the crystal using single alignment. The analysis 

is ambiguous if several defect structures such as point defects, 

dislocation loops, clusters, stacking faults, twins etc. are 

present in the same sample. Other measurements, such as trans­

mission electron microscopy should be used to determine absolute 

dechanneling cross sections oD for the various kinds of defects. 

Reviews on this topic may be found in ref. 4. 

As mentioned above the incident beam along channeling 

directions is thought to be composed of two components, - the 

channelled component with the transverse energy nearly conserved 

and the random component, consisting of particles with impact 

parameters p > p , where p is the critical impact parameter c c 
leading to a deflection angle > $

112
. The random component 

rapidly increases by increasing the angle between beam direction 

and axial lattice direction i.e. by increasing the transverse 

energy. During the motion of channeled particles inside a per­

fect crystal these particles will suffer multiple scattering 

by electrons and by thermally vibrating lattice atoms. This leads 

to an increase of the transverse energy and particles will be 

transferred from the channeled component to the random cornponent. 

This effect is called dechanneling and is seen as an increase of 

the yield with depth in the aligned spectra. Disorder will simi­

larly increase the transverse energy of channeling particles. 

This is schematically shown for displaced atoms in Fig. 14a and 

for a dislocation in Fig. 14b. 
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Large-angle deflections from displaced atoms will lead to 

a direct reaction yield in the backscattering analysis. Small 

angle scattering from displaced atoms with scattering angles 

larger than the critical angle for channeling will increase 

the dechanneling yield and will lead together with the dechanne­

ling yield of the perfect crystal to an increase of the back­

scattering yield at larger depth. Locally displaced atoms are 

mainly observed in crystals where covalent bonding prevails, in 

metals mainly extended defects are present at room temperature 

and there is a negligible contribution to direct backscattering. 

Implantation of N or of Ne into Mo provides an example for 

a direct backscattering component and for just an enhanced 

dechanneling at deeper depth /37/. By implanting N-ions in Mo 

the Mo-atoms are displaced from their lattice sites and an 

amorphaus Mo structure is formed as was shown by X-ray diffrac­

tion. This amorphous layer produced a large disorder peak as 

can be seen in the aligned spectrum of Fig. 15. The same amount 

of Ne ions implanted in Mo will not stabilize displaced Mo-atoms. 

In this case the normal agglomeration of point defects occurs with­

out any indication of direct backscattering. The superconducting 

transition temperature T of the diserdered layer is increased c 
from .9 to 9.2 K, after Ne implantation T is not affected. c 

If the host atoms are statistically displaced from their 

original lattice site then, as for the determination of inter­

stitial positions, the flux distribution F(z,y) has to be taken 

into account. The defect concentration ND(x) is determined by 

ND(z) = flND(x,y,z) · F(z,y)dzdy where ND(x,y,z) is the spatial 

distribution of displaced atoms. The defect distribution in 

transverse direction perpendicular to the channel can be ex­

plored by utilizing the angular dependence of the spatial dis­

tribution of the channeled component. For such analysis it is 

most convenient to use a computer program and to insert into 

the program the depth profile as well as the lateral profile of 

the darnage across the channel. The nurober and the lateral distri-
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bution of displaced atoms can be varied until the measured back­

scattering aligned yields in dependence of the incident beam 

angle can be reproduced by the calculation. 

Small atomic displacements have been studied in supercon­

ductors with A15 and B1 structure as it is observed that the 

strong reduction of the superconducting transition temperature 

is correlated with the increase of disorder during preparation 

or irradiation. For refractory materials like NbNx and NbCx' Tc 

is found to decrease strongly with increasing amount of vacan­

cies in the non-transition metal sublattice. The displacement 

fields around C-vacancies in NbC have been studied by measur-x 
ing the temperature dependence of angular yield curves /38/. 

Displacement of the first Nb neighbors of o
1 

= 0.12 ~ 0.025 ~ 
and of the second Nb neighbors of o2 ~ 0.03 ~ 0.01 ~ areund 

isolated C vacancies have been determined. These static dis­

placements as measured with the channeling method were in good 

agreement with the results of x-ray diffraction experiments /39/. 

High Tc superconductors with A15 crystal structure are 

very sensitive to radiation damage. The defect structures pro­

duced by irradiation with light and heavy ions have been inten­

sively studied using ion channe1ing /40,33/. In Fig. 16 it can 

be seen that after irradiation of a v3si single crystal with 4 

and 10 · 10 16 He-ions/cm2 at 300 keV and at room temperature 

produces a direct backscattering peak at a depth of about 

7000 R where the He-ions come to rest. Near the surface up to a 

depth of 2000 ~ only a slight increase of the minimum yield is 

noted. Irradiating a film of v
6
si with a thickness of 2000 ~ and 

below with a fluence of 4 · 10 1 He+/cm2 , however will reduce T c 
from 16.5 to 2 K. Thus it is necessary to study in detail the 

darnage produced in the surface near region up to 2000 ~. Angular 

yield curves have been measured in the energy windows as indicated 

in Fig. 16 and the results are shown in Fig. 17. After irradiation 

a narrowing of the angular yield curve is noted which can be 

attributed tosmall distortions in the order of 0.1 ~ of the 
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lattice atoms. This distortions have also been measured for the 

Si-sublattice using a 29 Si(d,p
8

) 29 Si-reaction /41/. 

Point defects which are produced during irradiation with 

energetic ions can be trapped by solute atoms. Trapping and anni­

hilation of trapped defects as a func::tion of the substrate tempera­

ture as well as the microscopic structure of the trapped system 

can be determined with in situ channeling measurements. Numerous 

results formany solute atoms in Al, Mg, Cu etc. have been ob­

tained mainly by the Chalk River group /42/. One specific result 

for 0.13 at.% Cu in Al is shown in Fig. 18. Experimental and 

calculated angular yield curves are shown for backscattering of 

1.5 MeV He+-ion at 30 K. The crystal was irradiated at 70 K with 

9 · 10 15 He+ /cm2 at 1. 5 MeV in order to form Al-Cu mixed dumbbells. 

The channeling analysis confirms the existence of dumbbell confi­

gurations where the Cu atoms are displaced 0.148 nm along <100> 

from their initial substitutional lattice positions. 

6. Burface Layers and Phase Transformations 

In chapter 2.2 examples have been discussed showing the 

usefulness of backscattering for the analysis of amorphaus thin 

films. In the case that this thin films have been grown on a 

single crystalline substrate, the sensitivity of the technique 

will be greatly inhanced if the analyzing beam is aligned with 

a low index crystal direction of the substrate /14/. 

Numerous examples are given where backscattering and 

channeling of MeV He-ions have been successfully applied to the 

analysis of silicon oxide /14,43c/, silicon nitride /43a,b/ and 

phosphosilicate glass layers on Si single crystals /43d/. Here 

we will give only one example for such an analysis of phospho­

silicate glass (PSG) layers which are of great importance in 

semiconductor device technology as they show enhanced passivating 

properties, especially by gettering the mobile alkali ions known 
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to cause device instabili ties. Fig. 19 clearly shows that the yield 

from the silicon substrate is strongly reduced by aligning the 

<111> crystal axis with the incident beam direction. The peak 

called HW is due to scattering from the oxygen atoms in a 
0 

Sio2-layer. The high mass resolution using 2.8 MeV He-ions 

allowed to seperate 29si from 28si as well as an easy seperation 

of P-atoms in the PSG (not shown in Fig. 18) /43d/. 

Besides the analysis of thin amorphaus films on single 

crystalline substrates information can be obtained on the 

process of epitaxial growth and on phase transformations of ion 

implanted metastable phases. During phase transformations the 

interface conditions between implanted and unimplanted region 

play an important role in the nucleation and growth process. 

As an example we will discuss the nucleation and growth of A15 

v3Ga from ion-implanted supersaturated Ga-V solid solutions /44/. 

The bcc solid solution phase field extends beyond 25 at.% Ga at 

high temperatures and the A15 phase forms by a congruent reaction 

on cooling from high to medium temperature. Implantation of Ga 

has been performed at room temperature to form a supersaturated 

alloy at room temperature. By thermal activation the alloy will 

then undergo a non-equilibrium transformation into the A15 high 

Tc phase at relatively low temperatures. In Fig. 20 random and 

<111>-aligned backscattering energy spectra are shown for a V 

single crystal implanted with 21 at.% Ga and after a heat treat­

ment for 30 min at various temperatures as indicated. Helium ions 

backscattered from gallium atoms are well seperated in energy 

(channels 390-430) from those backscattered from vanadium atoms 

(channels 390 and below). From the depth scale, which is about 

3.5 nm per channel, the width of the gallium profile can be esti­

mated to be about 140 nm, in reasonable agreement with the calcu­

lated profile. The gallium concentration can be estimated from 

the hight of the gallium yield and the vanadium profile using 

eq. (11) tobe about 21 at.% near the surface and about 19 at.% 

near the interface between implanted an unimplanted vanadium. 

The gallium atoms are on substitutional lattice sites and stay 

substitutional in the isoehranal annealing process up to 775°C, 
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where the transformation into the A15 phase starts at the sur­

face. The growth is almost complete at 800°C. Thin film X-ray 

measurements and inductive T measurements clearly prove that c 
the A2 phase has transformed to A15. Further results on the 

interface behaviour especially at higher Ga concentrations may 

be obtained in ref. 44. 

7. Surface Studies 

In the last years ion channeling became an important tool 

to provide informations on clean and covered single crystal 

surfaces. Relaxation and reconstruction phenomena have been 

studied and quantitative values for the coverage and the posi­

tion of adsorbate atoms have been obtained. A recent review on 

that topic is given in ref. 7. 

Applications of basic interest are the determination of 

surface relaxations ~d of the outermost layers on a single cry­

stal and the dependence of this relaxation amplitude on tempera­

ture and on the adsorption of foreign atoms. Of further interest 

are the location of adsorbed atoms and the reconstruction of the 

outermost layer of host atoms as a function of temperature and 

adsorption. Such studies have been performed using experimental 

arrangements as shown in Fig. 1 /39/, the combined use of 

channeling and blocking /40/ where the crystal is well aligned 

with the incident beam and the detector is tilted through a 

blocking axis, and by surface channeling /40/, where the beam 

enters the single crystal surface at angles smaller than the 

critical angle for axial channeling. The aligned backscattering 

spectrum as for example in Fig. 15 for the unimplanted Mo single 

crystal always shows a clearly resolved surface peak which pro­

vides a quantitative measure of the nurober of unshadowed lattice 

atoms per cm2 . The surface peak may include surface atoms which 

are oxidized and therefore be displaced from their lattice sites. 

Thus it is essential that the surface is cleaned in situ in the 

UHV chamber. 
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Fig. 21 illustrates how the surface peak area will change 

if the surface structure varies as indicated. For a clean un­

reconstructed surface having a 1 x 1 LEED pattern the 

surface peak area is direct proportional to the nurnber of atorns 

in the first layer. For He-ion bearn energies below 1 MeV the 

atorn of the second layer are cornpletely shadowed by the atorns 

of the first layer (Fig. 21a). If a surface reconstruction 

does occur (Fig. 21b) then the peak area will increase as the 

atorns in the second layer are no langer shadowed by those of 

the first layer. For the case of a relaxation of the first layer 

the channeling experirnent has to be perforrned through two 

different low inde~ crystal directions. The surface peak area 

will increase if the atorns are no langer perfectly aligned under 

a certain crystal directions (Fig. 21c). A surface covered with 

adsorbate atorns rnay have a reduced surface peak area if the 

adsorbate atorns are sitting on top of the surface atorns as shown 

in Fig. 21d. As discussed in chapter 1.2 the sensitivity of ion 

scattering to atornic rnass perrnits a discrirnination between sub­

strate an adsorbate. The channeling processes can be sirnulated 

by Monte Carlo calculations using the surface crystal structure 

as a rnodel pararneter. Sorne arnbiguity of the calculated data is 

due to the fact that for the vibrational arnplitude of surface 

atorns, bulk values of the Debye ternperature are used and iso­

tropic vibrations are assurned. Both assurnptions are probably 

not correct for atorns close to or at the surface. Ternperature 

dependent rneasurernents under different crystal directions rnay 

be useful to solve such problerns. 

Although it is by no rneans possible to treat the subject in 

any detail in such a short review the reader rnay have gained 

sorne irnpression on the potentials of the ion bearn techiques for 

rnaterials analysis. 



Fig. 21: 

0 0 0 0 

0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 0 

0 0 0 0 

-39-

N(E) 

\ "'\ ', I .... ___ ...J 

IDEAL CRYSTAL E 

N(E) 

RECONSTRUCTED E 

N(E) 

~ 
RELAXED 

ADSORBATE COVERED E 

Influence of different surface structures on 
the yield of the surface peak in the aligned 
backscattering spectra /7/. 



-40-

References 

/1/ J.F. Ziegler, New Uses of Ion Accelerators, Plenum Press, 

New York (1975) 

/2/ J.W. Mayer, J.F. Ziegler (eds.), Ion Beam Surface Layer 

Analysis, Thin Solid Films, Vol 19 (1973) 

/3/ o. Meyer, G. Linker, G. Käppeler (eds.), Ion Beam Surface 

Layer Analysis, 2 vols, Plenum Press, New York (1976). 

/4/ W.-K. Chu, J.W. Mayer, M.-A. Nicolet 

/5/ 

/6/ 
/7/ 

/8/ 

/9/ 

/10/ 

/11/ 

/12/ 

/13/ 

/14 I 

/15/ 

/16/ 

/17/ 

/18/ 

/19/ 

/20/ 

/21/ 

Backscattering Spectrometry, Academic Press, New York 

(1978) 

D.V. Morgan (ed.), Channeling,Wiley, New York (1973) 

D.S. Gemmell, Rev. Mod. Phys. ~, 129 (1974) 

L.C. Feldman, J.W. Mayer, S.T. Picraux, Materials Analysis 

by Ion Channeling, Academic Press, New York (1982) 

s. Rubin, Nucl. Instr. and Meth. 2_, 177 (1959) 

A.L. Turkevich, Science 134 (1961) 672 and J. Geophys. 

Res. 70 (1965) 1311 

S. Petersson, P.A. Tove, 0. Meyer, B. Sundqvist and 

A. Johansson in Ref. 2, p. 157 

J.W. Mayer and E. Rimini (eds.), Ion Beam Handbock for 

Materials Analysis, Academic Press, New York (1977) 

G. Linker, 0. Meyer and M. Gettings in Ref. 2, p. 177 

0. Meyer, H. Mann and G. Linker, Appl. Phys. Lett. 20 

(1972) 259 

0. Meyer, J. Gyulai and J.W. Mayer, Surface Science 22 

(1970) 263 

W.H. Bragg and R. Kleeman, Phil. Mag. 10 (1905) 318 

0. Meyer, G. Linkerand B. Kraeft in Ref. 2, p. 217 

A. ul Haq and 0. Meyer, J. Low Temp. Phys. 50 (1983) 123 

R.F. Sippel, Phys. Rev. 115 (1959) 1441 

0. Meyer and J.W. Mayer, J. Appl. Phys 41 (1970) 4166 

H. Mann, G. Linkerand 0. Meyer, Solid State Commun. 11 

(1972) 475 

M.T. Robinson and O.S. öen in the Proceedings of the Conf. 

"Le Bombardement Ionique ed. I. I. Trillat, C.N.R.S., Paris 

(1961) 



/22/ 

/23/ 

/24/ 

/25/ 

/26/ 

/27/ 

/28/ 

/29/ 

/30/ 

/31/ 

/32/ 

/33/ 

/34/ 

/35/ 

/36/ 

/37/ 

/38/ 

/39/ 

/40/ 

/41/ 

/41/ 

/42/ 

-41-

G.R. Piercy, F. Brown, J.A. Davies and M. McCargo, Phys. 

Rev. Lett. 10 (1963) 399 

H. Lutz and R. Sizmann, Phys. Lett. 5 (1963) 113 

R.S. Nelson and M.W. Thompson, Phil. Magn. 8 (1963) 1677 

Channeling-Theory, Observation and Applications, ed. 

D.V. Morgan (Wiley and Sons, London 1973) 

D.S. Gemmell, Rev. Mod. Phys. 14 (1974) 129 

J. Lindhard, Phys. Lett. 12 (1964) 126 

T. Hussain, J. Geerk, F. Ratzel and G. Linker, Appl. Phys. 

Lett. 37 (1980) 298 and Solid State Commuri. 44 (1982) 745 

J.H. Barret, Phys. Rev. B3 (1971) 1527 

H.D. Carstanjen and R. Sizmann, Rad. Effects 12 (1972) 225 

Chr. Lehmann and G. Leibfried, z. Phys. 172 (1963) 465 

G. Meliere, z. Naturforschung 2A (1947) 142 

R. Kaufmann and 0. Meyer, Rad. Effects 40 (1979) 97 and 161 

0. Meyer, R. Kaufmann, B.R. Appleton and Y.K. Chang 

Solid State Commun. 39 (1981) 825 

H.-D. Carstanjen, phys. stat. sol. (a) 69 (1980) 11 

R.B. Alexander, P.T. Collaghan, and J.M. Poate, Phys. Rev. 

B9 (1974) 3022 

G. Linker and 0. Meyer, Solid State Commun. 20 (1976) 695 

R. Kaufmann and 0. Meyer, Phys. Rev. B28 (1983) 6216 

T.H. Metzger, J. Peisl and R. Kaufmann, J. Phys. F 13 

(1983) 1103 

0. Meyer and B. Seeber, Solid State Commun. 22 (1977) 603 

0. Meyer, J. Nucl. Mat. 72 (1978) 182 

0. Meyer, R. Kaufmann, B.R. Appleton and Y.K. Chang 

Solid State Commun. 39 (1981) 825 

L.M. Howe and J.A. Davies in Site Characterization and 

Aggregation of Implanted Atoms in Materials, Ed. A. Perez 

and R. Coussement (Plenum Press, N. Y. 1980) 

/43/ a. 0. Meyer and W. Scherber, J. Phys. Chem. Solids 32 

(1971) 1909 

b. J. Gyulai, 0. Meyer and J.W. Mayer, J. Appl. Phys. 42 

(1971) 451 

c. s. Petersson, G. Linker and o. Meyer, phys. stat. sol. 

(a) 14 (1972) 605 

d. G. Linker, 0. Meyer and W. Scherber, phys. stat. sol. 

(a) 16 (1973) 377 



-42-

/44/ J.M. Lombaard, G. Linkerand 0. Meyer, 

J. of the Less-Common Metals 96 (1974) 191 

/45/ J.A. Davies in Material Characterization using Ion 

Beams ed. J.P. Thomas and A. Cachard (Plenum Press, 

N. Y. 1978) 

/46/ W.C. Turkenburg, W. Soszka, F.W. Saris, H.H. Kersten 

and B.G. Colenbrander, Nucl. Instr. Meth. 132 (1976) 

587 

/47/ R. Sizmann and C. Varelas, Nucl. Instr. Meth. 132 (1976) 

633 

C. Varelas, H.D. Carstanjen and R. Sizmann, Phys. Lett. 

77A, 469 



-43-

II, MATERIALS MODIFICATION BY ION 

IRRADIATION AND IMPLANTATION 





-45-

Contents 

General Introduction 

1. Basic Processes 

1.1 Atomic Collisions and Energy Loss 

1.1 .1 Range and Range Distribution 

1.2 Radiation Darnage 

1.3 Lattice Location 

2. Applications in Materials Science 

2.1 Semiconductor Doping 

2.2 Implantation Metallurgy 

2.2.1 Extended Solid Solubilities 

2.2.2 Compound Formation by Implantation 

2.3 Radiation Darnage Effects 

2.3.1 Defects in Elements 

2.3.2 Defects in Compounds 

2.3.3 Radiation Induced Phase Transfor­
mations 





-47-

GENERAL INTRODUCTION 

Ion implantation is a process by which nearly all elements 

can be introduced into near surface regions of materials with­

out any metallurgical constraints. The concentration and the 

depth distribution can be well controlled, leading to a high 

degree of reproducibility in altering chemical and physical 

properties of the materials. 

The process of implantation can be divided into different 

steps which will be considered separately in the following: 

1. Sticking factor and sputtering: If a beam of ions with 

energies between typically 10 and 500 keV will hit the 

surface of a target, some ions may not penetrate into the 

target but will be reflected by large angle collisions with 

the host atoms in the outermost layers thus leading to a 

sticking factor below one. In such head on collisions the 

host atom may receive a high recoil energy in forward 

direction. The momentum may be reversed in further colli­

sions leading to an ejection of a host atom. This process 

will be called sputtering. 

2. Energy loss process: In the slowing down process the ion 

will interact with many target atoms. The problern can be 

treated as a series of binary collisions. The collisions 

depend on the interatomic potential V(r) which will deter­

mine the trajectories of both colliding particles. The know­

ledge of the interaction potential is of fundamental impor­

tance. The amount of energy lost in each collision until the 

incident ion comes to rest will determine the total path 

length i.e. the range of the particle. To a good approxima­

tion the energy loss process can be considered either to 

occur by inelastic collisions with the target electrons 

(excitation of atomic electrons) or by elastic collisions 

with the target atoms where the kinetic energy is conserved. 

The interaction in the secend process may be described by a 

partially screened Coulomb potential as interatomic potential. 
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3. Range and range distribution: The sequence of elastic and 

inelastic collisions is a stochastic process. Thus the 

range and range distribution will be given by a probabi­

lity distribution. In agreement with the experiment the 

distribution will be Gaussian-shaped as long as an 

amorphous target is used. In single crystals the depth 

distribution may be strongly distorted by the channeling 

effect. If the ions enter a single crystal nearly parallel 

to a low index crystal direction under an angle smaller 

than the io-called critical angle than they are steered 

by a series of small angle collisions to a depth which 

is significantly larger than the mean penetration depth 

in an amorphous target. Other penetration anomalies such 

as enhanced diffusion due to the mobility of point defects 

at elevated implantation temperatures have been noted and 

will be discussed later. 

4. Radiation damage: During the slowing down process of the 

incident energetic ion, energy is transferred to the target 

atoms by elastic collisions. The average energy to dis­

place a target atom, called the displacement energy, is 

typically 25 eV. Thus it is obvious that heavy ions 

having energies in the keV region cause considerable 

damage. The recoiled host atom may itself displace further 

host atoms and produce cascades of displaced atoms. 

Under certain conditions, if almost all atoms in a small 

region are displaced the concept of a sharp displacement 

energy breaks down resulting in a nonlinear cascade or 

"spike process". 

5. Annealing: A large amount of displaced atomswill return 

to regular lattice sites in annealing processes. Annealing 

may occur over a short time scale already during the im­

plantation process. Important features are the temperature 

dependent mobilities of point defects and the nucleation 

and growth processes which depend on the temperature as 

well as on chemical binding energies. Annealing can also 

be applied as a seperate thermally activated process 

following the implantation. Radiation darnage itself may 
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influence the chemical and physical properties of the 

implanted region and may mask the doping effects of the 

implanted foreign ions. The knowledge of the mechanisms 

of darnage production and annealing is therefore of 

great importance. 

6. Lattice site location and compound formation: The lattice 

location of the implanted ion directly after the 

slowing down process or after annealing will determine 

the chemical and physical properties of the sample. Ion 

implantation is a non-equilibrium process and it is 

expected that metastable alloys can be produced, which 

do not exist in the equilibrium phase diagram. From the 

replacement collision theory it can be inferred that the 

implanted ion should have a high probability to get 

trapped on a regular lattice sites. Beside the formation 

of supersaturated interstitial and substitutional solid 

solutionsothereffects have been observed such as amorphi­

zation and compound formation. 

The whole field is well documented in the literature. 

Basic ion-atom collision processes are described 

in references /1 to 3/. Applications to semiconductor doping 

and their electrical properties are treated in references 

/4 to 6/. Applications to metals and insulators are treated 

in a recent book /7/ and in the proceedings of the conferences 

on Ion Beam Modification of Materials /8 to 11/. 

In the following review a short description of the 

basic processes of ion target interactions will be presented 

in chapter 1. In chapter 2 some applications in materials 

science will be discussed emphasizing the various advantages 

of ion implantation as a non-equilibrium technique. A few of 

our experimental results are presented to demonstrate the 

unique features of ion beam modification by irradiation and 

implantation. 
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1. Basic Processes 

Ion ranges, range distributions and disorder profiles 

will be governed by the collisions of atoms in the 

slowing down process. The slowing down process is considered 

as a sequence of binary collisions where each collision 

consists of two colliding point masses in a central force 

field. In such a conservative system the total energy is 

conserved and there is only an exchange between kinetic and 

potential energy. The collisiorr is then called elastic. 

In this description the electronic structure of the colliding 

atoms and the excitations of the electrons are completely 

ignored. Clearly, such inelastic excitation processes will 

occur in each collision and will slightly influence the 

trajectories and the kinetic energies of the colliding atoms. 

In praxis however it turns out that to a good approximation 

the correlation between elastic and inelastic processes can 

be neglected and both processes can be treated separately. 

When a charged particle penetrates a thin film of thick­

ness 6x the amount of energy loss (6E) of the projectile with 

energy E to the target is defined as 

dE/dx(E) = lim 6E/6x 
x+O 

The thickness of the film may be described by the nurober of 

atoms per unit area, N · 6x, thus the atomic stopping cross 

section (S) can be expressed by dE/(N·dx) in eV·cm2 . Consider­

ing the slowing down process as a series of binary collisions 

S can be described by 

T max 
s = ~ T.P. = 

J 
Tdo ( 1 ) 

i l l 

T min 
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T. is the kinetic energy transferred to the i-th target atorn 
1 

in elastic nuclear collisions (s=sn) or to the i-th electron 
• in inelastic electronic collisions (s=s ) with a probability . e 

Pi for an energy transfer between T and T+dT. The integral ex-

tends over all possible energy losses in individual collisions 

and do is the cross section for the energy transfer. The total . 
energy loss is then given by S = Sn+ Se and the range of the 

projectile is obtained as 

R (E) = 

Eo 

f dE/(S·N) 

0 

( 2) 

In order to evaluate eqs. (1) and (2) the basic collision 

processes will shortly be discussed. 

a) Elastic collisions: the rnotion of two point rnasses in a 

central force field is a Straightforward exercise of classical 

rnechanics applied to describe the planetary rnotion. The general 

solution of the equations of rnotion is the wellknown scattering 

integral which provides the connection between the angle of 

deflection ~ in the center of rnass systern and the irnpact para­

rneter p: 

= TI-2p 2 2 2 1 /2 dr/(r ·{1-V(r)/ER-p /r } ( 3) 

CO 

r is the distance of separation between the rnasses M1 and M2 , 

rrnin is the rninirnum distance of approach, ER is the relative 

energy of collision, ER = M2 ·E
0

/M 1+M2 , and V(r) is the inter­

atomic potential. Since the system is conservative, the energy 

transfer for a given scattering angle ~ is independent on the 

form of the interaction potential. Thus the final asymptotic 

values of velocities and energies can be calculated by just 

considering energy and momenturn conservation in the center of 

mass system. The energy transferred to a target atom is 

T = E
0 

- E1 with E
0 

and E1 being the energies of the incident 

particle before and after collision, respectively, is then 

given by 
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( 4) 

The maximum transferred energy in a head on collision is 

The differential scattering cross section do for the 

scattering processes with impact parameters between 
p and p + dp and scattering angles cp and cp + dcp is 

given by 

do = 2np dp and do/dr2 = pdp/(sincpdcp) (5) 

Equation (3) provides the dependence between cp and p. Thus, 

in order to calculate energy transfers and differential cross­

sections for a given energy transfer, eq. (3) has to be solved 

completely. This can be done numerically for all potentials, 

analytically however only for interaction potentials with 

V(r) = C/r 8
• These inverse power potentials represent the 

Coulomb potential for s = 1 , the Nilsen potential for s = 2 

and the hard core potential for s = 0. 

A detailed evaluation of the differential cross section 

do = 2np dp for energy transfer provides the important result 

that da increases with decreasing T for s = 1 and 2. From 

eq. (2) T decreases with decreasing cp thus the scattering is 

large in forward direction. For the hard sphere case s = 0 

do is independentofT and thus from eqs. (2) and (1) inde­

pendent of cp and p with the result that all energy transfers 
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from 0 to T and all scattering angles are equally probable, m 
the scattering is isotropic. The total collision cross section 

ot t is infinit for real potentials ot t =PJ00

do and finite for o o p=o 
the hard sphere case (from p = 0 to p = r . ) . The case s = 1 mJ.n 
was first treated by Rutherford and resulted in the famous 

Rutherford differential scattering law for a-particles pene­

trating thin films. The differential cross section can con­

veniently evaluated in the so-called momentum approximation when 

p is large or E
0 

is large and ~ is small and in the hard sphere 

approximation for nearly head-on collisions where p is small 

and the deflection angle is large. Lindhard /12/ has provided 

the inverse power potential as a good approximation to the 

scattering integral for all values of s. Besides the power law 

potential, screened potentials are used,especially the Themas­

Fermi-Potential 

V(r/a) ~(r/a) (6) 

where the Themas-Fermi screening radius is given by 

a = a · 0.8853 (z 213 + z213 )- 1 / 2 
0 1 2 

( 7) 

Universal curves are obtained for both the stopping power and 

the range energy relation by introducing dimensionless para­

meters p and s for the range and energy, respectively 

p = 

= 

RN 4 • na 2 

E 
a·M 2 

(8a) 

(8b) 

With these parameters the differential scattering cross section 

can be given by a one-parameter equation 

( 9) 
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where t = E 2 sin 2 ~/2. Evaluation of eq. (1) lead to an universal 

expression for S 
n 

where 

s 
n = 2 -4na 

= 

( 1 Oa) 

( 1 Ob) 

The universal curve for S is shown in Fig. 1 /13/ revealing 
n 

a rnaxirnurn for E < 1 • 

b) Inelastic collisions. The treatrnent of electronic stopping 

is rnore cornplex. For the high energy region S reveals a 
2/3 e 

rnaxirnurn for a projectile velocity v 1 = z1 v
0 

with Bohr's 

velocity v = e 2 /h (see Fig. 1). For velocities larger than 
0 

v 1 , Se decreases with 1/E. In this energy region which is 

called the Bethe-Bloch region, direct energy transfer is pro­

vided to single electrons. Se is given by 

2 
2rnev 

[ log I + ••• ] ( 1 1 ) 

This energy region is irnportant for the rnaterials analysis 

with light ions in the MeV region. In the low energy 

region, which is irnportant for slow rnoving heavy ion as in 

the case of ion irnplantation it is seen in Fig. 1 that no 

longer a universal curve exists for S . S is seen to increase e e 
linearly with E 

112 and the proportionality factor k is 

0.14 ~ 0.03 as long as z
1 

~ z2 . In this low energy region all 

electrons are excited collectively and the plasrna frequency 

wp of the host lattice electrons becornes irnportant. Firsov /14/ 

considered a simple geornetrical rnodel of rnornenturn exchange 

between projectile and target atorn during interpenetration of 
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electron clouds. Here we will simply present the often used 

proportionality factor k as given by Lindhard /12/ 

k = ( 1 2) 

The reduced range p(E) can now be determined by evaluating 

eq. (2) in reduced parameters p and E. This equation gives the 

average total path length for an ion slowing down from an 

energy E
0 

as the total path is composed of many small pieces 

in different directions caused by large angle deflections. The 

total average path length projected on the original direction 

of the incident ion is defined as the projected range R . 
p 

Clearly, for individual projectiles the nurober of collisions, 

the energy transferred and thus the total path length will 

vary and the variation can be described by a Gaussian distri­

bution curve to express the distribution curve of implanted 

ions, N(x) 

N(x) 
x-R 

= N exp-0.5 {---E} 2 
p liR 

p 
( 1 3) 

The peak concentration is N = N /(/2TI • liR) - 0.4Ns/6Rp where 
p s 2 p 

Ns is the nurober of implanted ions/m , and liRP is the standard 

deviation. At x = R + liR N (x) = N ;re. p- p p 

Values for the average projected range Rp and the average 

standard deviation of the projected range liR are presented 
p 

in tabulator or graphical form /15,16,17,18/ mostly based on 

the LSS-theory /19/. 
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a) Measurements techniques: Methods for the determination of 

implanted ion density profiles may be divided in destructive 

and non-destructive techniques. In the first group, layers of 

well-known thicknesses are removed by anodic stripping, 

vibratory polishing or sputtering. The implanted ions are de­

tected by their electrical activity, if they are dopants in 

semiconductors, by radiotracer methods for radioactive ion 

species or by secondary ion mass spectroscopy (SIMS) during 

sputtering. Non-destructive techniques are the Rutherford­

Backscattering Spectroscopy (RBS) of light ions in the MeV 

region, the capacitance-voltage method and the window th~ck­

ness-voltage method for implanted p-n junctions in semicon­

ductors. 

b) Comparison with experiment: The radiotracer techniques 

provide the most sensitive detection methods. Using various 

radiotracer ions implanted in amorphaus Ta2o5 /21/ excellent 

agreement with range values as predicted by the LSS-theory 

was obtained. In general it was observed that for amorphaus 

targets the agreement between calculated and measured R -
p 

and 6Rp-values for all ion-target atom combinations are in 

the order of 20% in the energy range between 10 and 300 keV. 

c) Penetration anomalies: For crystalline target the influence 

of the channeling effect on the range profile can hardly be 

avoided. If the angle of incidence between the direction of a 

heavy ion beam and low index crystal direction is smaller than 

a critical value ~ c 

. ~> 1 I 2 
d 

( 1 4) 

where d is the lattice spacing between the atoms along a row. 

Then the ion is steered by a series of successive small angle 

collisions to large depth which may be 3 to 8 times Rp de­

pending on ~ , the degree of orientation and the temperature /22/. c 
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The depth profile may further be seriously distorted by 

radiation enhanced diffusion, especially in metals of low 

melting pointsuch as Pb, Zn or Cd /23/. Radiation enhanced 

diffusion may also occur during layer removal using the 

sputtering technique and may influence the measured depth 

profile. Thus theoretical ion ranges may be exceeded by at 

least a factor of ten. 

With radiotracer techniques a deep penetration tail of 

the implanted species in the order of 1% of the total implanted 

amount was found in W which is a factor of 100 deeper than the 

theoretical R value /24/. This tail is thought tobe due to 
p 

the diffusion of interstitials which have a small probability 

of not being trapped. A deep penetration tail of similar size 

has also been observed for different dopants in Si using the 

window thickness-voltage method where the electrical activity 

of the implanted ions is measured over 3 to 4 orders down to a 

minimum detectable concentration of about 10 12 ions/cm
3 

/25/. 

In Fig. 2 a schematic drawing of the distribution of electri­

cally active centers for boron-implanted contacts in high resis­

tivity n-type Si is given near R (upper scale) and is compared 
p 

to the measured results (lower scale). The donor concentration 

is 6 · 10 10 cm3 for Si with a specific resistivity of 80 k~cm. 

In summary, although experimental and theoretical values 

for Rp and 6Rp are in rather good agreement (~20%) various 

effects may influence the implanted ion profile and have to be 

taken into account. 

Radiation Darnage is a very complex subject where subtile 

interactions occur between defect production and defect annealing 

by athermal atomic motions, thermally activated motions and 

motions caused by other thermodynamic driving forces such as 

differences in binding energies and formation enthalphies etc. 
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The basic processes of darnage production are well treated in 

the literature /2,3/. Herewe will present only a few general 

guidelines and we will restriet our discussion to darnage 

effects which may influence the results of high dose heavy 

ion implantation. 

In order to study details of the defect production 

processes and to compare them with theoretical predictions 

based on the theoretical framewerk as discussed above it is 

necessary to separate the different possible influences. One 

possible way to study intrinsic defects, especially point 

defects and the formation small defect clusters is to irra­

diate very pure elemental targets with electrons at low 

temperatures (below 4K). At these temperatures it is known 

that interstitial atoms, having a rather high activation 

energy of formation (3-4 eV) but a very low activation energy 

of migration (~0.1 eV) arenot yet mobile. At these tempera­

tures annealing will mainly occur by athermal motions due to 

the high strain energy in the displacement field areund the 

point defects. A spontaneaus recombination volume between 50 

and 100 atomic volumes is generally observed in agreement with 

computer calculations. While interstitials are mobile between 

4 and 40 K, single vacancies have higher activation energies 

of migration (0.4 to 1.8 eV) although the formation energies 

are lower (< 3 eV) than those of the interstitials. Thus the 

influence of vacancies on the annealing processes usually 

occurs at higher temperatures. 

1.2.1 Cascade Effects 

In centrast to electron irradiation, where well-separated 

point defects are produced, the slowing down of heavy ions 

causes so-called collision cascades. The incident ion may 

transfer a large amount of it's energy to a target atom in a 

primary knock-on event. The knocked-on target atom will collide 

with another lattice atom which in turn will displace a further 
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lattice atom. Thus we obtain an avalanche-like process of moving 

atoms which distribute the energy in successive collisions until 

the energy is below about Ed the minimum energy necessary to 

displace an atom from its equilibrium lattice site. The thres­

hold displacement energy Ed is about 25 keV. A good demonstra­

tion of such an avalanche-like cascade production is given in 

Fig. 3 where computer calculations are shown simulating the 

slowing down process for 100 keV Ar-ions in Cu /26/. Individual 

cascades, called subcascades can be seen to be formed along the 

track of the primary ion. The number of subcascades formed and 

their distribution has to be taken into account in order to 

estimate the deposited energy density in a special ion-target 

combination. Under certain conditions, for example for low 

energy heavy ions implanted into a heavy mass target the proba­

bility for subcascade formation is less pronounced and the 

darnage is uniformly distributed throughout the volume of a 

single cascade. Volume correction factors as a function of the 

mass ratio (M2/M1 ) have been evaluated in Ref. 27. 

The number of displaced atoms Nd within a cascade can be 

evaluated, starting with eq. (10) which gives the nuclear 

stopping Sn via primary collisions during the slowing down pro­

cess of the primary incident ion. In addition the slowing down 

process of secondary energetic recoils has to be considered and 

it has to be noted that the energy loss is again due to both 

electronic excitations and nuclear collisions, v(E). Therefore 

v(E) is about 20~o 30% smaller than the integrated nuclear 

stopping power ( ~) value of the primary ion. Assuming that only 

those recoiled atoms become displaced which received an energy 

E > Ed' the total number of displaced atoms is obtained by dividing 

v(E) by 2Ed /28/ 

= 0.8 V(E) 
2Ed 

( 1 5) 

Nd can now be compared with experimental results. For metals, 

although irradiated at 4 K, the observed nurober of displaced 
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atoms is usually about a factor of 10 smaller than predicted, 

suggesting that a large amount of spontaneaus recombinations 

does occur during cascade production as it was discussed 

above for point defect production by electron irradiation. 

In semiconductors, especially in Si, the measured nurober 

of displaced atoms is by a factor of 2 to 10 larger than pre­

dicted. This result clearly indicates that the binding pro­

perties of the materials play a prominent role in defect 

stabilization. Whereas in simple metals the binding is non­

directional and the cohesive energy is below about 1 eV/At, 

in semiconductors strong covalent bonding prevails with about 

2 to 3 eV/bond. For Si it was observed that for similar values 

of the nuclear energy loss v(E) the nurober of Nd increases 

with increasing mass of the incident ions and that this effect 

is especially pronounced at lower energies indicating that 

non-linear energy density behaviour such as "spike-effects" 

may occur /29/. The concept to describe the slowing down process 

by a series of successive binary collisions with a fixed thres­

hold energy does no longer hold if in a small cascade volume 

each atom receives more than 1 eV/At. A collective motion of 

all atoms in the cascade volume would be a better picture to 

describe this state. A detailed treatment of non-linear cascade 

effects from the theoretical point of view as well as from 

experimental manifestations is given in a recent review /13/. 

Within the thermal spike concept the cascade volume with 

radius r = 20 ~ is considered to be in the liquid state and is 

quenched at a rate of t where t ~ r 2 /4D ~ 10 12 sec, where D 

is the thermal diffusitivity (D; 10-2/sec). These quench times 

are far smaller than those reached for splat cooling (10- 6 sec) 

and pulsed laser irradiation (~10- 9 sec) and are even smaller 

than those reached by vapor quenching on a LHeT-cooled substrate. 
I 

From this result is may be inferred that cascade quenching would 

be an effective method to produce amorphous materials. The 

question which of the above mentioned techniques for amorphi­

zation is the most effective one is hard to solve as up to now 
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Fig. 4 Interference function of a Nb-layer implanted 
homogeneously with 20 at.% P /33/. 
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only amorphous two-component metallic systems have been stabi­

lized by vapor quenching as well as by irradiation with about 

the same success /30/. The stabilization of the amorphous phase 

is then due to chemical binding forces or due to differences in 

the atomic radii which provide structural stability of a random 

atomic arrangement. For pure gallium, as an exception /31/, the 

amorphous state can be stabilized by vapor quenching. In a 

recent study it was shown that pure gallium could also be amor­

phizised by low-temperature (< 10 K) ion irradiation /32/. The 

importance of the energy density within the cascade for the 

phase transformation has been demonstrated in these experiments 

by using He, Ne and Ar-ions. Amorphization is obtained only be 

Ne and Ar-ion irradiation. Further it was demonstrated that the 

crystal structure of the surrounding matrix plays a crucial 

role for the recrystallization process during irradiation. Irra­

diation of the less stable ß-Ga crystalline phase did not lead 

to a phase transformation. 

Amorphous materials as produced by vapor quenching, by 

ion irradiation or implantation are often contrasted to so­

called glassy metals which have been formed by rapid or by very 

slow cooling (undercooling) from the melt. It is thought that 

the amorphous states would reveal different short range order. 

Apart from all the difficulties to determine the short range 

order from radial distribution functions such a study has been 

performed for a-Nb80P20 produced by homogeneaus P-implantation 

in a Nb thin film /33/. Firstevaluations of the interference 

function shown in Fig. 4 indicate that a liquid like amorphous 

phase had indeed formed. 

1.3 Lattice Location ----------------

From the theoretical point of view, considering the 

slowing down process as a series of binary collisions, the im­

planted ion should have a certain probability to end up on a 

substitutional lattice site by undergoing a replacement colli-
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sion. The conditions for such a replacement collision can be 

given according to /34/ as follows: the energy T transferred 

to a hast atom must be equal or greater than Ed' the threshold 

displacement energy. If the rest energy E-T of the primary ion 

is smaller than Ed then there exists a certain probability 

that the ion will recombine with the lattice vacancy and become 

substitutional. The probability for replacement collisions has 

been calculated for all ion-target combinations and lies be­

tween zero and Q.8 /34/. The theory is based purely on 

ballistic arguments and does not consider the chemical nature 

of the incident ion. On the other hand, nonlinear cascade 

theory can be applied. The incident ion comes to rest in a 

region, where all atoms are in motion on a time scale of 

10-12 sec. The nonlinear cas6ade region is then quenched by 

thermal diffusion, followed by a recrystallization from the 

surrounding crystalline matrix. The lattice site of the 

primary ion would then depend on the state in the cascade 

region. If this state is liquid-like then the lattice site 

occupation would depend on the solubility of the foreign atom 

in the liquid hast and thus on thermodynamic arguments. 

The experimental results on diluted solid solutions produced 

by ion~implantation have been summarized in recent reviews /35/. 

The results are usually depicted in a Durken-Gurry plot (electro­

negativity, x, versus atomic radius, r). Applying the Hume-Rothery 

criteria for equilibrium alloys (6r/rh = ~0.15 (h=host); 6x= ~0.4) 

it has been noted that these rules are exceeded for implanted solid 

solutions. Modified rules have been suggested /9/ (6r/rh = -.15 and 

+.40; 6x= ~0.7) and these rules arevalid for about 90% out of 63 

implanted alloys. As an example the Darken-Gurry plot for various 

ions implanted into V is shown in Fig. 5a. There are several re­

markable exceptions to the modified Hume-Rothery rules (dashed 

line). Iodine and selenium are substitutional although they are 

outside the limits given by the modified rules. Whereas implanted 

species from groups III to VII have a high substitutional solu-a a 
bility those of groups Ia and IIa are relatively insoluble in V 

in agreement with similar observations made previously for Al, 
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Cu and Fe as host lattices /35/. First results for Cs implanted 

at 5 K and analyzed at th'is temperature showed that the substi­

tutional fraction SF, is about 0.5. For the system yxe SF is 

also about 0.5. These results show that point defect migration 

during implantation at room temperature drastically influence 

the local atomic arrangement near the foreign atom. As VXe and 

ycs are extreme cases concerning electronegativity and atomic 

radii, respectively, it is concluded that the Hume-Rothery-co­

ordinates play a minor role for implanted systems. 

Besides the Hume-Rothery coordinates the lattice site 

occupation may be determined by cascade effects. Thus the mea­

sured SF will be compared to the theoretically determined replace­

ment collision probability /34/. For VBi SF is about 1, irrespec­

tive of the implantation temperature (see Fig. Sb). This value is 

far larger than that determined from the replacement collision 

theory. In agreement with the conclusion drawn previously for 

CuBi and CuW /35/ it is clear that replacement collisions alone 

are not sufficient in explaining substitutionality. It is remark­

able, however, that the results for yxe and ycs are in agreement 

with theory. The results for ycu, yse and yKr are not yet con­

clusive as the concentration dependence of SF has not been 

studied in detail up to now. 
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2. Applications in Materials Science 

Ion implantation is extensively used by the semiconductor 

device industry as a method for doping semiconductors with 

acceptor or donor centres in order to form p-n junctions. The 

main advantage as compared to doping by thermal diffusion is 

that the amount of dopants and the dopant profil can accurate­

ly be controlled and reproducibly be specified. High value 

resistors in integrated circuits can also be manufactured by 

ion implantation in a controlled way. In special devices such 

as the metal-oxide semiconductor transistors which are exten­

sively used in large-scale integrated circuit stray capacitance 

can be substantially reduced and threshold voltages can be ad­

justed by ion implantation. These potentials are treated in 

detail in references /4,5,6/ for example. Herewe will shortly 

describe the production and performance of an ion implanted 

nuclear particle detector. In a second example the formation of 

supersaturated Si-As alloys by ion implantation and pulsed elec­

tron beam annealing is studied. 

The application of ion implantation to modify other 

material properties including corrosion, oxidation, mechanical 

and catalytic behavior, optical effects and superconductivity 

are treated in Ref. /7/. Herewe concentrate on basic metalluri­

cal effects which are mainly responsible for the observed 

changes in the physical properties of metals. 

High resolution nuclear particle detectors have been pro­

duced by implantation of P and B-ions at low energies up to 

10 keV in the front and rear area of high resistivity n-type 

Si (10 - 135 kncm, 0.3 - 4 mm thick) respectively to produce 

p-n-n+ junctions /37/. This devices can be fully depleted such 

that the space charge region extends up to the back-contact. 

Electron-hole pairs as produced by nuclear radiation can be 

collected over the whole thickness of the silicon slice. The 
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response of such an ion-implanted detector to alpha-particles 

of an 241 Am-source is shown in Fig. 6. The implantations have 

been performed within 0.5 degree parallel to the <111> Si­

crystal direction. By using well-channeled ions at low concen­

trations darnage effects were minimized. Low temperature annea­

ling up to 300°C for 10 min was found sufficient to produce 

junctions iwth good current/voltage-characteristics and long 

lifetimes of the minority carriers (1-2 msec). Such detectors 

proved to be more stable to changes of ambient athmosphere 

and of vacuum than surface barrier detectors. 

The annealing of radiation darnage is a most serious 

problern in serniconductor doping by ion implantation. For high 

dose irnplants in Si the implanted region becomes amorphaus 

and thermal annealing has to be applied near 600°C in order to 

trigger an epitaxial regrowth of the amorphaus layer starting 

frorn the crystalline to amorphaus interface /4/. Wehave 

studied the effects of pulsed electron beam annealing of ion 

implanted Si-crystals /38,39/. The generally accepted annealing 

mechanism due to irradiation by high-energy pulsed laser or 

electron beams, involves melting of the surface layer followed 

by a liquid phase epitaxial regrowth. This has the advantage 

that the malten zone can extend beyond the less sharp amorphaus 

to crystalline interface which may not completely anneal out in 

the thermally activated solid state regrowth process. The dopant 

concentrations incorporated into substitutional lattice sites 

can largely exceed the equilibrium solid solubility limit at the 

melting temperature of the substrate. 

We have produced supersaturated surface alloys by very high 

dose (0.8- 2.6 · 10 17 ;cm2 ) implantation of As-ions into silicon 

and studied the effect of subsequent pulsed electron-beam 

annealing (PEBA) by means of the Rutherford-backscattering and 

channeling technique /38/. The energy density deposited by the 

pulsed electron bearn was in the range from 1.0 to 2.3 J/cm2 . The 

melting threshold is reached at 1.0 J/cm2 . The pulse duration 

was 300 ns and the maximum accelerating valtage was about 18 kV 

/39/. The annealing capability of PEBA is demonstrated in Fig. 7. 
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Fig. 6 Response of an 
ion-implanted nuclear 
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241Am alpha-particles 
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Afterimplantation of 1.2 · 10 17 As+/cm2 the implanted region is 

completely amorphous. It is interesting to note that the 

stopping power changes strongly in the implanted region due to 

the high As-concentration (~ 25 at.%) and induces a reduction 

of the Si-yield (step in the random spectra at the Si edge) in 

the amorphized region. The arsenic depth distributions is 

Gaussian like (see eq. 13) with the maximum located at a depth 

of 500 ~. After pulse annealing with 1.4 J/cm2 a broadening of 

the As-depth distribution is observed. The peak concentration 

is reduced to 13 at.%. The reduction of the As peak concentra­

tion is also indicated in the reduced step height of the random 

spectra at the Si-edge. The aligned spectrum shows a strong 

reduction of the scattering yield for both the host and the 

As-atoms. The minimum yield from Si (7%) is somewhat higher 

than that from the virgin crystal (3.5%) indicating that at 

such high As concentration some defects are left, mainly pro­

duced by small displacements (0.01 nm) of the As atoms from their 

substitutional lattice sites. This result was obtained by evalua­

ting angular scan measurements as a function of As-concentration 

/38/. The maximum solubility limitwas found tobe 7 · 10
21 

As/cm3 . 

This value exceeds the equilibrium value by a factor of 4 and is 

slightly higher than in the liquid (5 · 10 21 As/cm3 ) at the retro­

grade temperature. From these results one can conclude that ion 

implantation combined with pulse annealing is a very efficient 

technique to form supersaturated alloys in semiconductors. 

The formation of metastable phases by ion implantation is 

unavoidably connected with the production of radiation darnage 

which in turn will effect the physical properties of the 

material. Ion implantation may also lead to radiation induced 

phase transformations in multicomponent systems and thus hide 

the doping effect of the implanted ions. One way to unravel 

radiation induced effects from ion implantation effects is to 

perform additional so called irradiation experiments using self-
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ions or noble gas ions which are chemically inert. The forma­

tion of intrinsic defects such as point defects and extended 

defects and their influence on the materials properties as well 

as the influence of cascade effects and of radiation enhanced 

diffusion can be studied by such irradiation experiments of pure 

monocomponent targets. If the target contains impurities in low 

concentrations, impurity stabilized defects may be produced such 

as dumbbells or amorphaus zones. Irradiation of multicomponent 

targets may lead to radiation induced lattice site exchange of 

atoms metastable compound formation, and amorphization. Some 

examples of such irradiation experiments will be treated in the 

chapter on radiation darnage effects. In the next two sections 

the formation of extended alloys and the formation of compounds 

by ion implantation will be discussed. 

In chapter 1.3 it was shown that ion implantation is a 

suitable technique to form supersaturated substitutional alloys 

in most of the metals as a large amount of the defects produced 

will anneal out during implantation at room temperature. This 

observation is in centrast to results from implantation experi­

ments in many semiconductors, where amorphization will occur 

during implantation at room temperature and darnage annealing by 

epitaxial regrowth in the solid phase or from a short-lived 

melt has tobe performedas discussed in chapter 2.1 for Si. 

Transient annealing techniques such as laser or electron beam 

annealing have also been used for the processing of ion-implanted 

metals to form metastable alloys with solubility levels exceeding 

the values from equilibrium phase diagrams. 

The system cu2Al 98 is discussed to demonstrate that by 

electron pulse annealing above the melting threshold the 

synthesis of supersaturated alloys is more successful than by 

thermally activated annealing in the solid phase /40/. Though 

the equilibrium solubility of Cu in Al at room temperature is 

very low (< 0.1 at.% at 250°C) a supersaturated solid solution 

with 2.1 at.% Cu on substitutional sites was formed by pulsed 
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electron beam annealing using deposited energy densities of 

about 2.0 J/cm2 . This result is obtained by evaluating the 

angular scan curves in Fig. 8a. The substitutional fraction 

S for the Cu-atoms is given by S = {1 - Xi)/(1 - Xh) where 

Xi and xh are the normalized minimum yield values for the 

impurity and the host atoms respectively. In the as-implanted 

sample S is about 0.4 whereas after PEBA an almest complete 

agreement of the angular scans from the impurity and the host 

lattice atoms is observed resulting in a substitutional frac­

tion of about 0.95. Angular scans from the crystal before and 

after thermal annealing at 300°C for 8 1/2 h are shown in 

Fig. 8b. For the as-implanted sample S is about 0.4 while after 

thermal annealing a value of 0.66 has been determined. The dis­

agreement between the critical angles of the host and impurity 

atoms shows that after thermal annealing the impurity atoms are 

still somewhat displaced from the regular lattice sites. For 

prolonged annealing time at 300°C diffusion of Cu into the Al­

sample has been observed. 

In summary, an improvement of the solubility above the 

value from the equilibrium phase diagram has been obtained by 

PEBA. This result is thought to be due to the fast quenching 

rate (~ 10-9 sec) preserving the high solubility of Cu in Al in 

the liquid state down to room temperature~ The reduced substi­

tutional fraction for the as-implanted sample indicates that 

the rapid quench mechanism from a liquid-like nonlinear cascade 

region as discussed in chapter 1.3 can not directly be applied. 

Further studies will be carried out to elucidate this point for 

low melting point metals where radiation enhanced diffusion 

effects are known to occur /23/. 

The formation of interstitial solid solutions by implanting 

hydrogen and deuterium ions in different metals and alloys at 

liquid helium temperature has led to the discovery of many 

interesting superconducting alloys /41/. Some of these alloys 

have later also been produced by using high pressure or electri­

cal H-charging at low temperatures (~ 200 K) . The T -values ob-c 
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tained by the implantation technique have been confirmed. From 

these results it can be concluded that defects produced during 

implantation either anneal out or do not influence Tc. 

In this paragraph we will discuss the formation of inter­

stitial solid solutions of oxygen and nitrogen in transition 

metals where the solid solubility is limited to 3.5 at.% 0 and 

to about 1 at.% N /42/. T is found to decrease almost linearly c 
by 0.9 K/at.% for oxygen in niobium and the lattice parameter 

a
0 

increases linearly by 4.3 · 10-2 nm/at.% /42/. By implanta­

tions of oxygen and nitrogen ions in molybdenum /43/ and nio­

bium /44/ thin films, substantial changes of T and a have c 0 

been observed. In these experiments T of Mo increases from c 
0.9 up to 9.2 K and T of Nb decreases from 9.2 to 1.4 K. c 
The increase of a with increasing N-concentration in Nb is 

0 

shown in Fig. 9 /44/. The slope of about 4 · 10- 2 nm/at.% up 

to 20 at.% N is in good agreement with the value obtained for 

0 in Nb as mentioned above. In the nitrogen concentration 

range above 20 at.% the high angle X-ray lines disappears and 

only broad low angle lines were observed indicating heavy 

structural distortions towards amorphization. At 30 at.% N 

new lines appear in the X-ray photographs due to the formation 

of niobium nitride phases. This compound formation processes 

will be discussed in the next chapter. 

The formation of supersaturated interstitial alloys by 

implanting C, N or 0-ions is accompanied with local displace­

ment fields which can be determined by evaluating the X-ray 

line intensities using modified Wilson plots /44/. Such 

plots are shown in Fig. 10 for four different concentrations 

of N in Nb. The slopes of the lines are seen to increase with 

increasing nitrogen concentration indicating growing dis­

tortions of the structure and a weakening of the transition 

metal bonds by the lattice dilatation caused by the nontransi­

tion metal. The weakening of the transition metal bonds may 

lead to a stable amorphous phase at about 20 at.% impurities 

as was observed for Mo /33,45/, Re /46/ and for Nb /47/. The 
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process of amorphization by ion implantation will be discussed 

in chapter 2.3.3. 

In summary, supersaturated interstitial alloys have been 

produced by ion implantation. The conclusion that the implanted 

impurities are located on interstitial sites is not only drawn 

from the lattice parameter increase having a similar slope­

value than interstitial alloys in thermal equilibrium but also 

from channeling experiments /48/, where the interstitial lattice 

site of N in Nb has directly been determined. 

The use of high dose heavy ion implantation as a method to 

form metastable compounds may be affected by the sputtering 

effect. From the sputtering yield and the mean range of the 

ions one can easily evaluate the maximum concentration retained 

in a target. The sputtering yield will not only limit the 

amount of impurities that can be implanted but will also affect 

the implanted profile. One way to overcome this disadvantage of 

ion implantation is to use atomic mixing of atoms by irradiations 

of the interface of a thin film couple with heavy self-ions or 

noble-gas ions and to study the ion-induced interfacial reactions. 

Ion beam mixing has been used to form metastable alloys and com­

pounds /49/. The question whether atomic mixing will occur by 

ballistic effects or be caused by thermodynamic forces can not be 

answered in a general way and does depend clearly on the chemical 

bonds which prevail in the used materials. In some systems e.g. 

for Pd layers on Si the amount of mixing was found to increase 

strongly by passing over from the linear collision cascade 

regime to nonlinear cascade mixing /49/. 

In the following examples of compound formation by ion im­

plantation will be discussed. It will be shown that for high 

dose light ion irnplantation the sputtering effect is small and 

stoichiometric nitrides with NaCl-structure can be produced by 

nitrogen implantation in transition metals with bcc- or hcp-
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structure. These nitrides with B1 crystal structure are stable 

against ion-irradiation and they do form by implantation 

although in the equilibrium phase diagram these phases are 

indicated as metastable or do no exist at all as for example 

MoN /50/. 

Many refractory materials show deviations from stoichio­

metry as these compounds reach a minimum of the free energy by 

incorporating a certain amount of vacancies. The Tc-values 

are known to decrease with increasing vacancy concentrations 

in both sublattices. Ion implantation would be a useful tech­

nique to compensate these deviations from stoichiometry if 

optimum conditions for disorder annealing could be found. This 

subject has been discussed in more detail in a recent review 

/30/. Carbon implantations have been performed in VCO.SS and 

in Nbc 0 . 83 . Radiation darnage analysiswas carried out using 

the channeling technique /30/. The influence of light ion im­

plantation in NbC has also been studied /30/. 

Here we will shortly describe the results of C-ion im­

plantation into NbN0 . 85 single crystals with B1 structure and a 

Tc-value of 14.3 Kinorder to form Nb(CxN 1 _x) compounds /51/. 

The main result of this study is shown in Fig. 11. The implan­

tation temperature of 920°C was found to be an optimum between 

radiation darnage annealing and enhanced diffusion which would 

tend to drive the system back to the thermal equilibrium. In 

Fig. 11 Tc increases up to a maximum value of 17.8 Kat about 

10 at.% C. This maximum Tc-value which is in close agree-

ment with values obtained for bulk samples indicates that the 

implanted C-ions are located on the nontransition metal lattice 

sitesdue to short' distance diffusion after implantation at 

920°C. 

In chapter 2.2.1 it was shown that by ion implantation of 

nitrogen into molybdenum an amorphaus phase was produced with 

a Tc of 9.2 K at aN concentration of about 20 at.%. For higher 

N concentrations a phase transformation fromfue bcc to a fcc­

phase via the amorphaus phase was observed. The lattice para­

meter of these phases, which have been produced not only by 
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ion implantation but also by reactive sputtering in a N/Ar gas 

mixture or in a pure N plasma are shown in Fig. 12 as a func­

tion of N-concentration. The specific resistivity for MoN 

films with stoichiometric composition reached values up to 

1000 ~~cm, probably due to columnar growth with small grain 

size /50/. 

In centrast to the formation of MoN via bcc/amorphous/fcc 

transformations with increasing N concentration, the hcp rhenium 

phase and the fcc rhenium nitride phase formed by N implantation 

/46/ were both present for N-concentrations between 13 and 

45 at.%. Above 45 at.% N only the fcc phase was observed. For 

stoichiometric ReN the lattice parameterwas 4.021 ~' the speci­

fic resistivity was 230 ~~cm and Tc was 4.5 K. Implantation of 

N at liquid nitrogen temperature caused a phase mixture of B1 

ReN and an amorphaus phase. Storage of ReN at RT for 2 months 

caused a decomposition indicating that the implanted phase was 

unstable. 

Besides the formation of intermetallic compounds during 

the implantation process another possibility is the production 

of supersaturated solid solutions or amorphaus mixtures by 

implantation and to transform these mixtures by a thermally 

activated nonequilibrium process into a compound. As an 

example for such a transformation the nucleation and growth of 

v3Ga with A15 structure from ion-implanted supersaturated Ga-V 

solid solutions has been studied /52/. The implantation of Ga 

in V single crystals and V thin films was performed at room 

temperature. Channeling measurements (see Fig. 13) and thin 

film X-ray diffraction studies revealed that the as-implanted 

Ga is substitutional up to about 35 at.%. This concentration is 

limited by the sputtering effect. The nucleation of the A15 

phase starts at the surface as can be seen in Fig. 13c. The 

transformation is completed at 800°C (Fig. 13d). For Ga con­

centrations above 25 at.% a polygonization of the implanted 

layer is observed after isoehranal annealing at 700°C for 30 min 

and thus nucleation centers (grain boundaries) are now available 

within the whole implanted region. 
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tion in a V-single crystal as a function of the 
annealing temperature to demonstrate the nuclea­
tion and growth of the A15 phase /52/. 
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Besides thermally activated phase transformations of 

supersaturated solid solutions and amorphaus mixtures as pro­

duced by ion implantation pulsed electron or laser beam 

annealing can be applied /53/. Both annealing procedures have 

been applied to Nb 75Ge 25 mixtures either being amorphaus or 

being in the A15 phase however distorted by different degrees 

of radiation damage. Nb 3Ge with A15 structure is the material 

which has the highest T of 23 K known. Irradiation with elec-c 
trons or protons will reduce T

0 
to a saturation value of about 

4 K without affecting strongly the crystalline structure. In 

contrast, irradiation with Ar-ions will completely amorphize 

Nb 3Ge however the T
0

-value of amorphaus Nb 3Ge is also about 

4 K. Thus the effectivity of the annealing process can be 

checked by registering the T -recovery. From Fig. 14 it can be c 
seen that the maximum T -value obtained in the isochronaus c 
annealing process at about 850°C, is strongly dependent on the 

amount of darnage in the sample before annealing. Complete T
0 

recovery is only obtained for the H+-irradiated slightly 

damaged samples. Samples which were X-ray amorphaus after high 
+ dose Ar irradiation revealed similar recovery curves as those 

obtained by annealing sputtered amorphaus Nb 75Ge 25 films. 

Annealing of amorphaus Nb 75Ge 25 mixtures by pulsed electron 

beams using energy densities up to 5 J/cm2 lead to the forma­

tion of crystalline A15 phases with moderate T
0
-values to­

gether with the stable tetragonal phase. Thus it is concluded 

that the growth velocity during pulse annealing may be too high 

to form well ordered A15 compounds. 

The equilibrium A15 phase with the composition 

Nb 3 (Ge 0 . 8Nb 0 . 2 ) and a T
0
-value of 6.5 K has been implanted 

with Ge at room temperature and was then subjected to a similar 

isoehranal annealing process. The results are also included 

in Fig. 14. Also the implanted surface regionwas found tobe 

amorphaus after 

the crystalline 

implantation, it did epitaxially regrow on 

bulk sample /54/. A possible explanation for the 

rather low maximum T
0
-value would be the incorporation of defects 

during the regrowth from amorphaus phases. 
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In summary, compounds have been improved by compensating 

deviations in composition from stoichiometry. New metastable 

compounds have been synthesized. The application of ion im­

plantation and pulse annealing is of limited success for well­

ordered systems with complex crystal structures with regard to 

superconductivity as this property is strongly affected by 

antisite defects and local displacement fields. 

It is well known that intrinsic defects may affect the 

physical properties of materials. The introduction of extended 

defects by plastic deformation or irradiation could lead to a 

hardening. The Debye temperature is then reduced followed by a 

decrease of the specific heat. The vibration spectrum of the 

atoms next to a vacancy in centrast may be shifted to lower 

frequencies and thus may enhance the electron-phonon-coupling 

in some metals as will be discussed here for the case of Re. 

In metals containing small amounts of impurities special in­

trinsic defect impurity associates may form during irradiation 

and may alter the physical properties. With increasing density 

of extended defects or with increasing strain areund point 

defects in solid solutions the free energy of the material 

may increase to values larger thanthose of other possible 

metastable phase. Thus a spontaneaus transformation to meta­

stable or amorphaus phases may occur. 

The following examples are given to illustrate the influence 

of such defect structures on the superconductivity. 

3.2.1 Defects in Elements -------------------

It has been observed /56/ that Tc of Re single crystals 

increases when this crystals were heated close to the melting 

point and then rapidly quenched. The T increase was attributed c 
to vacancies which are thought to shift the vibrational spectrum 

to lower energies and thus to strenghten the electron-phonon­

coupling. In Re isolated vacancies are stable for temperatures 

up to 500 K. 
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The influence of radiation induced defects on Tc, p
0 

(residual resistivity at 4.2 K) and the structure of Re films 

was studied in irradiated samples as a function of nitrogen 

and argon ion fluence /55/. The film thickness used was smaller 

than the ion ranges, thus most of the ions could penetrate the 

film and come to rest in the substrate. The nuclear energy loss 

of Ar is about 6 times larger than the nuclear energy loss of 

N ions. In order to compare the resistivity and the Tc changes 

on a common scale after irradiation the deposited energy den­

sity has been calculated. In Fig. 15 the Tc and 6p
0 

(change of 

the residual resistivity) is shown as a function of the depo­

sited energy density Q. An increase for the resistively measured 

T res and 6p is seen for increasing Q up to 10 24 eV/cm3 
c 
(~ 15 eV/at). Tcres is nearly independent on Q, however a strong 

increase of 6p is noted for Q > 10 26 eV/cm3 . The inductively 
0 -

measured T ind for Ar irradiation shows a quite different be­
c 

havior as a function of Q as T res. This difference, which has 
c 

not been observed to occur for N irradiated Re films, is thought 

to be due to a rather inhomogeneaus distribution of the vacan­

cies after Ar-irradiation. The further increase of Tcind at high 

Q is thought to be due to vacancies trapped at dislocation. The 

annealing behavior of high and low dose irradiated films support 

this trapping model. For low dose irradiated samples complete 

annealing was observed for p and T in stage III (~ 0.19 * T ) , o c m 
clearly indicating that the vacancies are responsible for the 

Tc increase. For high dose irradiated samples the annealing be­

havior can be explained in terms of vacancies pinned to disloca­

tions and successively being released during the annealing proce­

dure /55/. 

In chapter 2.2.1 it was discussed that the formation of 

supersaturated interstitial solid solutions will strongly 

distort the host lattice by weakening the transition metal 

bonding and by reducing the electron density. Lowering the elec­

tron density in Mo will shift the Fermi energy into a region of 

increased density of electronic states (DOS) and thus will enhance 

the electron-phonon-coupling. Broadening of the DOS will result 
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a sirnilar enhancernent. In Fig. 16 it is shown that Tc increases 

with increasing irnplnated irnpurity content. Implantation of very 

pure Mo filrns (residual resistivity ratio pRT/p
0 
~ 4) with noble 

gas ions will not affect T . For oxygen-contarninated however the c 
Mo layers Tc will increase upon irradiation with Xe ions very 

steeply as it is shown in Fig. 16. As an explanation it is 

suggested that Mo-oxides are dissolved by Xe irradiation and 

that oxygen is recoiled into interstitial lattice sites and thus 

produces strong displacernent fields with all the consequences as 

discussed above. Although the irradiations have been perforrned 

at liquid-heliurn ternperature the solute-defect cornplexes are 

stable up to high ternperatures /43/. 

In conclusion, both intrinsic defects as well as irradiation 

induced irnpurity-defects cornplexes rnay strongly affect the 

physical properties of rnaterials. Prior to irnplantation irradia­

tions should be perforrned in order to see if such effects will 

influence the ion irnplantation results. 

Irnportant intrinsic defects in cornpounds are deviations frorn 

the stoichiornetric cornposition and anti-site lattice occupation. 

In refractory transition-rnetal cornpounds these deviations are due 

to the existence of vacancies on both sub~attices. In cornpounds 

with A15 structure all lattice sites are usually occupied however 

deviations frorn stoichiornetry rnay occur and atorns rnay be exchanged 

called anti-site defects. Most of the rnaterials properties are 

strongly affected by deviations frorn the stoichiornetric cornposi­

tion. For Nbc
1 

T decreases frorn 11.8 to 1.2 K for the vacancy -c c 
concentration increasing frorn 1 to 30%. In order to explain this 

large variation of Tc due to deviations frorn the stoichiornetry, 

exact knowledge of the structural changes is necessary. Ion 

channeling rneasurernents have been perforrned in NbC 1 ~ in the 
~~~ 

cornposition range 0.02 < c < 0.18 in order to deterrnine the local 

atornic displacernents around carbon vacancies /56/. Angular yield 

curves rneasured on Nbc 0 . 82 , Nbc 0 . 89 and Nbc 0 . 98 single crystals 
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at temperatures of 295 and 5 K are shown in Fig. 17. The critical 

angle ~ 112 and the minimum yield are both a measure of the average 

total (dynamic and static) atomic displacements. Assuming that 

the dynamic contribution is independent of c, the criticle angle 

is largest for the stoichiometric sample. The difference ~1/2 at 

295 and 5 K is then largest and is due to temperature dependence 

of dynamic component. The absolute value is in agreement with the 

value obtained from neutron scattering measurements indicating 

that there is no contribution of static displacements (Fig. 17c). 

With increasing deviation from stoichiometry (Fig. 17b and 

Fig. 17a) ~ 112 decreases indicating the increasing value of the 

average static component. In the range of low vacancy concentra­

tion (c 2 0.1) the displacements of the first Nb neighbors around 

a C-vacancy were u 1 = 0.12 R obtained by using a specific local 

defect model in the Monte Carlo simulations (solid lines in Fig. 

17 /56/). For high vacancy concentration the analysis with a 

model of mean Gaussian-distributed displacements of all atoms 

yields the same values as for the specific defect model. 

Recent irradiation results of stoichiometric, reactively 

sputtered NbC and NbN thin films have shown a strong decrease 

of Tc and of the lattice parameter a
0 

with increasing fluence, 

indicating that vacancies and displaced host lattice atoms 

are produced by irradiation with He and Ar ions /57/. 

High Tc superconductors with A15 crystal structure are very 

sensitive to radiation darnage as has been discussed already in 

chapter 2.2.2. In v3si thin films Tc was found to decrease from 

17 to 1.4 Kupon irradiation at room temperature with 4 · 10 16 He­

ions at 300 keV /58/. The nature of the defects present has been 

studied applying the channeling analysis to a v3si single crystal 

irradiated with a similar He fluence and energy /59/. Angular 

yield curves as shown in Fig. 18 from V-rows in the <100> as well 

as in the <110> channeling directions performed near the surface 

at a thickness corresponding to the thickness of the thin films 

revealed a noticable narrowing after implantation of 4 · 10 16 He/cm2 

at room temperature. The defect model assumed in the computer 
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simulation (solid lines in Fig. 18) consisted of all V atoms 

slightly displaced from their lattice sites. The displacements 

were assumed to have Gaussian distribution with a rms-amplitude 

of 0.05 ~ perpendicular to the <100> and <110> channeling direc­

tions. 

In summary, static displacements and anti-site defects 

have been observed by channeling and by thin film X-ray analy­

sis and are probably both responsible for the large Tc degrada­

tion observed in irradiated high Tc superconductors with A15 

structures. In refractory materials T decreases with increas-c 
ing vacancy concentration. The influence of static displace-

ment fields on the physical properties is not clarified up to 

now. 

2.3.3 Radiation Induced Phase Transformations 

Compounds with complex crystal structures may during 

irradiation undergo a complete phase transformation into simpler 

alloy structures or may be rendered into a structure having no 

long-range periodicity. Up to now it is not yet possible to 

predict which phase will be stable, for example a simple super­

saturated alloy, compound, or the amorphaus phase. In general 

the transformations occur more readily the heavier the incident 

particle and the lower the substrate temperature during irradia­

tion. Besides phase transformations observed during irradiation 

of compounds with complex crystal structures, implantation of 

metalloid ions known as "glass-formers" may transform transition 

metals into the amorphaus state. In this case the transformation 

process can be studied with the concentration of the glass-former 

as a parameter. Two different crystalline to amorphaus transition 

mechanisms have been observed and will be discussed in the 

following. 

The problern of irradiation induced phase transformations of 

superconductors with A15 structure and subsequent thermally acti­

vated retransformation into crystalline A15 phases has drawn con-
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siderable interest in recent years. The transformation behavior 

has been studied for v3si /60/ for Nb 3Ge /61/ and for Nb 3Ir 

/62/ where amorphaus material was formed upon irradiation. The 

annealing behavior of v3Si yields the A15 phase irrespective 

of the annealing procedure used. For Nb 3Ge the annealing 

results have been discussed in chapter 2.2.2. 

The amorphization process of Nb 3Ge thin films irradiated 

with He as well as with Ar-ions was studied using X-ray diffrac­

tion. With increasing ion fluence the static Debye-Waller factor 

and the lattice parameter were found to increase steeply. At 

higher fluences a total loss of X-ray intensity is noted and 

is attributed to the formation of amorphaus regions. From these 

results it may be argued that the formation of amorphaus zones 

does not occur in a direct manner by rapid quenching from colli­

sion cascade regions but is probably forced by strain fields 

which cause the measured displacements fields. These observations 

are in good agreement with results obtained from channeling ex­

periments on He- and Ar-irradiated v3si single crystals where 

static displacements fields and amorphaus zones have also been 

observed /60/. For He-irradiations of v3si at room temperature 

the displacement amplitude and thus the accompanying strain is 

too small to cause a crystalline to amorphaus transition. 

Radiation darnage usually causes a depression of Tc in high 

T A15 superconductors whereas some low T A15 materials reveal c c 
an increase of Tc with increasing disorder. Tc of Nb 3Ir 

(Tc = 2 K) was found to increase up to 5.7 K with increasing 

Kr-ion fluence. Defect analysis resulted in the following inter­

pretation a) the amorphaus phase has a Tc of 5.7 K, b) the A2 

phase has a T below 2 K, c) static displacements probably cause c 
a Tc-increase of the A15 phase up to about 3 K /62/. 

Irradiation of Nb 3Al results in the formation of a super­

saturated A2 soli~ solution. Upon annealing of this solid solu­

tion, A15 material is formed with a Tc-value higher than that of 

the starting material /63/. In the transformation process the 

A15 X-ray line intensity was found to decrease without braodening. 



-91-

The average static amplitudes were small and increased only 

slightly during the transformation process. 

Irradiations were also performed on sputtered 

containing a mixture of different phases: A2, A15, 

/64/. After irradiation with 1 · 10 16 Ne/cm2 at 350 

Nb 1 Si films -x x 
Ti 3P, Cr5B3 
keV at room 

temperature the A15, Ti 3P and cr5B3 phases transformed into 

the amorphaus phase, whereas the A2 phase was little affected. 

The thermally activated retransformation into the A15 phasewas 

found to depend on the degree of disorder introduced during 

irradiation as was discussed for Nb3Ge in chapter 2.2.2. 

Amorphization processes by ion implantation have been exten­

sively studied in semiconductors /4,6/ while much less work has 

been performed in metals /43,45,65/. In metals the size and the 

chemical bonding abilities of the implanted ion species are im­

portant parameters for the stabilization of defect structures. 

The amorphization process of Nb layers by phosphorus ion implan­

tationwill be discussed here in more detail /66/. Evaparated 

Nb thin films were homogeneously implanted with phosphorus ions 

in the concentration range from 2.5 to 20 at.%. Typical X-ray 

spectra before and after implantation are shown in Fig. 19. 

With increasing phosphorus concentration the X-ray lines from 

the crystalline material decreases until the lines disappear 

complete at concentrations of 20% At (= 16.7 at.%). In cantrast 

to the large displacement amplitudes noted for N implanted in 

Nb (see chapter 2.2.1) the modified Wilson plots for P in Nb 

shown in Fig. 20 yield a displacement amplitude of 0.1 Rinde­

pendent of the P concentration. From the axial section values 

in Fig. 20 the volume transformed into amorphaus material can be 

obtained and is 5, 23 and 58 % of the layer for the P concentra­

tion of 2.5, 5 and 7.5 % respectively. The results from the 

channeling analysis (see Fig. 21) indicating 0 direct back­

scattering peak at 10 at.% P and reaching the random level at 

15 at.% Parein good accordance with the X-ray results. The 

amorphization process depends on the implanted ion species. While 

with N implantation the host lattice is distorted with static 
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displacements and a strong increase of the lattice parameters 

occurs accompanied by a weakening of the bonds of all the host 

atoms, by P implantation the diserdering process is discon­

tinuous in a sense that amorphaus regions are present in a less 

distorted crystalline matrix. The amorphization process as a 

function of impurity concentration can be explained by quench­

ing from high energy density cascades however further experi­

ments are necessary to draw more definite conclusions on the 

dynamical processes tagether with the impurity defect inter­

action leading to amorphization. 

In summary metastable solid solutions and amorphaus 

phases can easily be obtained by ion irradiation and implanta­

tion. The results obtained for metals can not simply be treated 

by collisional theories. The amount of volume transformed into 

the amorphaus state depends on the substrate temperature 

during irradiation and thus on thermal or radiation enhanced 

diffusion properties as well as on the chemical abilities of 

the atoms in the mixture. Differences in the free energies of 

the different competing metastable phases during irradiation 

will priDvide driving forces for phase transformations. 

Materials modification by ion irradiation and implantation 

is a very exciting and fruitful area as well as from a pure 

scientific and an applied point of view. In this short review 

some examples have been summarized to demonstrate the poten­

tials in this field of materials science. 



-94-

References 

/1/ G. Carter and J.S. Colligon; Ion Beam Bombardment of 

Solids 1 Reinemann Educational Books Ltd. 1 London (1968). 

/2/ M.W. Thompson; Defects and Radiation Darnage in Metals 

Cambridge, Univ. Press (1969). 

/3/ Chr. Lehmann; Interaction of Radiation with Solids and 

Elementary Defect Production, North-Holland Publishing 

Company, Amsterdam (1977). 

/4/ J.W. Mayer, L. Eriksson and J.A. Davies, Ion Implantation 

in Semiconductors, Academic Press (1970). 

/5/ R.S. Nelson, G. Dearnaley, J.H. Freeman and J.L. Stevens; 

Ion Implantation in Semiconductors, North-Holland (1973). 

/6/ G. Carter and W.A. Grant; Ion Implantation of Semicon­

ductors, Contemporary Electrical Engineering Series 1 

Edward Arnold, London (1976). 

/7/ Treatise on Materials Science and Technology, Vol. 18, 

Ion Implantation, ed. J.K. Hirvonen, Academic Press, 

New York (1980). 

/8/ Applications of Ion Beam to Metals, eds. S.T. Picraux, 

E.P. EerNisse 1 F.L. Vook, Plenum Press, New York (1974). 

/9/ Conf. Proc. on Ion Beam Modification of Materials 

(IBMM) Budapest (1978), ed. J. Gyulai, T. Lohner 1 

E. Pasztor in Rad. Eff. 48 (1980). 

/10/ IBMM, Albany (1980) 1 eds. R.E. Bennenson, E.W. Kaufmann, 

G.L. Miller, W.W. Scholz, Nucl. Instr. and Meth. 182/183 

(1981). 

/11/ IBMM, Grenoble (1982), eds. B. Biasse, G.L. Destefanis, 

J.P. Gailliard, Nucl. Instr. and Meth. 209/210 (1983). 

/12/ J. Lindhard, V. Nielson and M. Scharff, 

Mat. Fys. Medd. 36, 10 ( 1968). 

/13/ J.A. Davies in Surface Modification and Alloying, 

eds. J.M. Poate, G. Foti, Plenum Publishing Corp. (1983). 

/14/ O.B. Firsov, Sov. Phys. JETP 5, 1133 (1957). 

/15/ W.S. Johnson and J.F. Gibbons, Projected Range Statistics 

in Semiconductors (Stanford Univ. Bookstore 1 1969). 



-95-

/16/ D.K. Brice, Ion Implantation Range and Energy Deposition, 

Sandia Labs. Albuquerque, New Mexico, SAND 75-0622 Report, 

(1977). 

/17/ K.B. Winterbon, Ion Implantation Range and Energy 

Deposition Distribution, Vol. 2, Plenum Press, New York 

(1975). 

/18/ J.P. Biersack, L.G. Haggmark, Nucl. Instr. and Meth. 

174 (1980) 257. 

/19/ J. Lindhard, M. Scharff, H.E. Schiott, Mat. Fys. Medd. 

33 (1963) 14. 

/20/ W.K. Chu, J.W. Mayer and M.-A. Nicolet, Backscattering 

Spectrometry, Academic Press, N.Y. (1978). 

/21/ J.P.S. Pringle, J. Electrochem. Soc. 121 (1974) 45. 

/22/ L. Eriksson, Phys. Rev. 161 (1967) 235. 

/23/ H.J. Smith, Rad. Effects 18 (1973) 55, 65 und 73. 

/24/ E.V. Kornelsen, F. Brown, J.A. Davies, B. Domeij 

and G.R. Piercy, Phys. Rev. 136 (1964) A849. 

/25/ 0. Meyer, Nucl. Instr. and Meth. 70 (1969) 279/285. 

/26/ Y. Yamamura, Y. Kitazoe, Rad. Effects 39 (1978) 251. 

/27/ R.S. Walker and D.A. Thompson, Rad. Effects 37 (1978) 

11 3. 

/28/ G.H. Kinchin and R.S. Pease, Report Prog. Phys. 18 

(1955) 1. 

/29/ D.A. Thompson and R.S. Walker, Rad. Effects 26 (1978) 

91 . 

/30/ 0. Meyer in Ref. /7/, p. 415 

J. Geerk, K.G. Langguth, G. Linker, 0. Meyer, 

Transactions on Magnetics IEEE 13 (1977) 662. 

J. Geerk, K.G. Langguth, Solid State Cornrnun. 23 (1977) 83. 

J.M. Lombaard, 0. Meyer, Rad. Effects 36 (1978) 83. 

J. Geerk, Rad. Effects 48 (1980) 35. 

R. Kaufmann and 0. Meyer, Rad. Effects 52 (1979) 53. 

/31/ H. Bülow and W. Buckel, z. Phys. 145 (1956) 141. 

/32/ M. Holz, P. Ziemann and W. Buckel, Phys. Rev. Lett. 51 

(1983) 1584. 

/33/ R. Kaufmann, G. Linker and 0. Meyer, Nucl. Instr. and 

Meth. 21 8 ( 1 9 8 3) 6 4 7 . 



-96-

/34/ D.K. Brice, Inst. Phys. Conf. Ser. No. 28 (1976) 334. 

P.H. Dederichs, Chr. Lehmann, H. Wegener, phys. stat. 

sol. 8 (1965) 213. 

W.W. Anderson, Solid State Electronics 11 (1968) 481. 

/35/ J.M. Poate and A.C. Cullis, in Ref. /7/, p. 85. 

/35b/ D.K. Sood and G. Dearnaley, Rad. Effects 39 (1978) 157. 

/36/ H.W. Alberts, 0. Meyer and J. Geerk, Rad. Effects 69 

(1983) 61. 

/37/ 0. Meyer and G. Haushahn, Nucl. Instr. and Meth. 56 

(1967) 177. 

/38/ A. Turos, 0. Meyer and J. Geerk, Applied Physics A28 

(1982) 99. 

/39/ J. Geerk and 0. Meyer, Rad. Effects 63 (1982) 133. 

/40/ T. Hussain and G. Linker, Solid State Commun. 44 

(1982) 133. 

/41/ B. Stritzker and H. Wühl, in G. Alefeld, J. Völkl 

(eds.); Hydrogen in metals, Springer, Berlin (1978). 

/42/ c.c. Koch, J.O. Scarbrough and D.M. Kroeger, Phys. Rev. 

B9 (1974) 888. 

/43/ 0. Meyer, Inst. Phys. Conf. Ser. No. 28 (1976) 168. 

/44/ G. Linker, Rad. Effects 47 (1980) 225 and Nucl. Instr. 

and Meth . 1 8 2 I 1 8 3 ( 1 9 81 ) 50 1 . 

/45/ G. Linker and 0. Meyer, Sol. State Commun. 20 (1976) 695. 

/46/ A. ul Haq and 0. Meyer, J. of Low Temp. Phys. 50 (1983) 

1 23. 

/47/ G. Linker, Nucl. Instr. and Meth. 209/210 (1983) 969. 

/48/ K. Gamo, H. Goshi, M. Takai, M. Iwaki, K. Masuda and 

S. Namba Jap. Appl. Phys. 16 (1977) 1853. 

/49/ S. Matteson, B.M. Paine, M.G. Grimaldi, G. Mazey and 

M.A. Nicolet, Nucl. Instr. and Meth. 182/183 (1981) 43. 

/50/ G. Linker, R. Smithey, 0. Meyer, J. of Phys. F (1984). 

/51/ 0. Meyer, E. Friedland, B. Scheerer, Sol. State Commun. 

39 (1981) 1217. 

/52/ J.M. Lombaard, G. Linker, 0. Meyer, J. of the Less­

Common Metals 96 (1984) 191. 

/53/ o. Meyer, Trends in Physics: 5th General Conf. of the EPS, 

Istanbul (ryorobantu, I.A. ed.) Central Inst. of Physics, 

Budharest 1982, p. 821. 



-97-

/54/ J. Geerk, Sol. State Commun. 33 (1980) 761. 

/55/ A. ul Haq and 0. Meyer, J. of Low Temp. Phys. 49 (1982) 

1 51 . 

/56/ R. Kaufmann and 0. Meyer, Phys. Rev. B28 (1983) 6216. 

/57/ V. Jung, M. Kraatz, 0. Meyer, R. Smithey, Verhandl. 

DPG (VI) 19 (1984) 488. 

N. Kobayashi, R. Kaufmann, G. Linker, Verhandl. DPG 

(VI ) 1 9 ( 1 9 8 4 ) 4 8 9 . 

/58/ 0. Meyer and B. Seeber, Sol. State Commun. 22 (1977) 

603. 

0. Meyer, J. Nucl. Mat. 72 (1978) 182. 

0. Meyer, R. Kaufmann, B.R. Appleton, Y.K. Chang, 

Solid State Commun. 39 (1981) 825. 

/59/ R. Kaufmann and 0. Meyer, Rad. Effects 40 (1979) 161. 

/60/ 0. Meyer, G. Linker, J. of Low Temp. Phys. 38 (1980) 

747. 

/61/ J. Pflüger, 0. Meyer, Solid State Commun. 32 (1979) 

114 3. 

/62/ 0. Meyer, R. Kaufmann, R. Flükiger, Proc. Superconducti­

vity in d- and f-Band Metals (1982), eds. W. Buckel and 

W. Weber, KfK 1982, ISBN 3-923704 00 3, p. 111. 

/63/ U. Schneider, G. Linker, 0. Meyer, J. of Low Temp. 

Phys. 47 (1982) 439. 

/64/ J. Ruzicka, E.-L. Haase, 0. Meyer, Proc. Superconducti­

vity in d- and f-Band Metals (1982), eds. W. Buckel and 

W. Weber, KfK 1982, ISBN 3-923704 00 3, p. 103. 

/65/ W.A. Grant, Nucl. Instr. and Meth. 182/183 (1981) 809. 

/66/ G. Linker, Nucl. Instr. and Meth. 209/210 (1983) 969. 




