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Search for New Partiales in e+e- Annihilation 

ABSTRACT 

Recent results on search for new partiales in e+e- annihilation are 

presented. Searches for new elementary fermians, Higgs partiales, su~ 

persymmetric partiales, and indica tions of composi teness all turn out to 

be negative and yield limits on partiale masses. Some puzzling phenomena 

are discussed. 

Suche nach neuen Teilchen in der e+e- Vernichtung 

ZUSAMMENFASSUNG 

Neuere Ergebnisse auf der Suche nach neuen Teilchen in der e+e- Ver­

nichtung werden vorgestellt. Die Suchen nach neuen elementaren Fermionen, 

Higgs Teilchen, supersymmetrischen Teilchen und Hinweisen auf 'Composite­

ness' verliefen alle negativ und liefern Grenzen auf die Teilchenmassen. 

Einig~ ungeklärte Phänomene werden diskutiert. 

Invi ted talk at the Tenth Hawaii Conference on High Energy Physics, 

Honolulu, 26. -31. August 1985 
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1 • INTRODUCTION 

In this paper I will review the extended searches for new partielas 

which have been performed at e+e- colliders1• Emphasis will be on results 

from the high energy machines where a weal th of data is now available 

from the experimental groups ASP, HRS, MAC, MARK II, and TPC at PEP and 

CELLO, JADE, MARK J, PLUTO, and TASSO at PETRA. 

Many searches at the two machines are complementary in the sense 

that PETRA has concentrated on high energies accumulating some 20pb- 1 per 

experiment between 40 and 47 GeV cm energy in the last two years (plus 

about 80 pb-1 at 35 GeV the year before). On the other hand PEP tuned the 

machine to high luminosities at 29 GeV where several experiments have in­

tegrated some 200 pb-1 in the last years. 

Besides the high energy da ta I will also mention some new results 

which have been recently obtained by the CLEO and CUSB groups at CESR and 

the ARGUS detector at DORIS II araund 10 GeV cm energy. 

An excellent review of the field has been given recently by Komamiya 
1 at the Kyoto Conference • 

To introduce searches for new partielas let us first briefly lock 

into the 'standard model' of elementary partiale physics. It is based on 

the idea of local gauge symmetries which generate the strong, weak, and 

electromagnetic interactions with the gauge groups suc(3) X SU(2) X 

U(1). The gauge bosons (gluons, z 0 , W±, y) mediate interactions between 

the structure partielas of matter, the fermions. They come in two cate­

gories, quarks wi th and leptons wi thout strong interaction. We believe 

today that at least three generations of quark and lepton doublets exist 

(Fig. 1a). Massasare given to z 0 , W± and the fermians by spontaneaus 

symmetry breaking2 (Higgs mechanism). Although most of the partielas of 

the standard model described above have been discovered, there are still 

several open questions: 



Fig. 1 : Normalized total hadronic annihilation cross section R otot/ oQED as a function of the cm 

energy W = IS. 
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- there is only indirect (though overwhelming) evidence for the ~ 

neutrino3, 

- the sixth quark (top) has not been discovered, 

- we do not know how many generations of fermians there are, 

- in the standard process of mass generation at least one new particle, 
2 the Riggs boson, is generated • This partiale has not been found yet. 

In addition to these open questions within the standard model seve­

ral problems and shortcomings of the model are encountered. 

- A true unification of the three interactions as attempted in Grand Uni­

fied Theories GUT has been unsuccessful so far (see D. Perkins' 

talk 4). 

Gravitation is not yet included in the standard model. The only promi­

sing path seems to lead through supersymmetry. 5' 6 

- The way of generating masses is completely open. Attempts other than 

the Riggs mechanism have been tried, e.g. technicolour. 7 

- Why do fermians occur in several generations? This question - among 

others - .leads to the sugges tion of composi teness of quarks and lep­

tons (and heavy gauge bosons)8 • 

This review will deal with some aspects of those problems underlined 

above. 

2. + -
PARTICLE PRODUCTION IN e e REACTIONS 

+ -Charged partielas are pairproduced in e e annihilation according to 

the simple formulae 

a 
1/2 

for spin 1/2 ( 1 ) 

for spin 0 ( 2) 
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Qq = charge, ß = vlc, erQED = 4n a213s 

a = fine structure constant, s = (cm energy) 2. 

Scalar partiales are both suppressed by a spin factor 4 and a much 

slower increase of the threshold factor than spin 112 partiales. At high 

energies the above cross sections are modified by electroweak effects. In 

particular, also neutral fermions can be produced according to 

( 3) 

with a, v being the axial and vector coupling constant for the electron 

and the outgoing fermion. GF is the weak coupling constant and MZ the 

mass of the Z 0• The expression in the last bracket is x "' -0.06 a t v's = 

34 GeV and X ""-0.10 at IS = 44 GeV. 

+ -
A big advantage of partiale searches in e e annihilation is the 

clean kinematical situation of producing partiale pairs in the cm system 

(if we ignore higher order QED effects). For charged partiales, the pro­

duction according to (1) or (2) will asymptotically lead to an increase 

of the total cross section which is usually measured in terms of R = 

er to/ erQED: lffi = Q ~ for fermians and lffi = 1 I 4 Q ~ for scalar bosons. So 

the first quantity to check is the total cross section. 

+ -Fig. 1 shows a compilation of e e total hadrenie cross section data 

in terms of R = er( e + e- + hadrons) I erQED as a function of the cm energy 

v's. 9 The data are in good agreement with the expectation of 

a 
R 3 • L: Q 2 ( 1 + ~) 

q q 1t: 

for 5 quark flavours including first order QCD corrections. 

(4) 

Disappointing as this may be from the point of view of partiale 

searches, one may try and turn the vice into a virtue. First of all, the 

constancy of the cross section over a wide range of energy can be used to 

give a limit on the formfactor of the pairproduced quarks. Parametrizing 
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the formfactor in the form F(s) = 1 ± s/(s - AP yields values of A± "' 

200 7 300 GeV which corresponds to an upper limit on the quark radius of 

r 5.. 10- 1 8 m. 1 
q 

Further results can be obtained if one compares the total cross sec­

tion with the theoretical expectation 

R (5) 

including QCD corrections 

1 + a/n+ C (a/n2 
s 2 s 

(6) 

1.99 - 0.12 Nf in the MS scheme and electroweak corrections 

( 1 + ö ) 
e/w 

1 - 2 
V V 

e q 
Q X 

q 
(7) 

10 Fig. 2 shows the world data on an expanded R-scale The experimen-

tal uncertainty on the data of 2 7 3% is roughly of the same size as the 

expected corrections. 

sin 2 e . However, as 
w 

with both corrections 

This excludes precise determinations of a and 
s 

shown in Fig. 2, data can be perfectly explained 

in the right ballpark. 

As far as new particle searches are concerned, this again shows that 

little room is left for new phenomena. 

3. SEARCH FOR NEW ELEMENTARY FERMIONS 

a) New Heavy Quarks 

Al though it is clear from Figs. 1 and 2 that no new threshold has 
+ -been passed in e e annihilation, these measurements do not exclude yet 
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narrow resonances expected e.g. a few GeV below a new quark threshold. 

During 1983 and 1984 a search for such narrow resonances has been 

performed at PETRA. The energy range between 39.8 GeV ..; IS ..; 46.78 GeV 

was scanned in steps of ß( v'S) = 30 MeV, well within the natural energy 

spread of the machine. On average 50 + 60 nb- 1 per point and experiment 

were accumulated. 

The combined result of all four experiments (CELLo 11 , JADE
12

, MARK 

J
13 , TASso14 ) is shown in Fig. 3· A tt resonance, as indicated in the fi­

gure, can be safely ruled out. However, a bound state of Q = - 1/3 
q 

quarks which would be 4 times smaller in R cannot be excluded from this 

measurement. A more sensitive measure for new quark production is the a­

planarity, which is expected to increase strongly above threshold. 

Fig. 4 shows the CELLO data compared to the expectation of an addi­

tional quark of charge 1/3 or 2/3· The 95% C.L. lower limits on the new 

quark masses are 

Mt > 23.3 GeV 2/3 

Mb' > 22.7 GeV -1/3 

A clean signature for new heavy quarks is the emission of leptons at lar­

ge angle with respect to the event axis (thrust axis). Such events have 

been searched for by all PETRA collaborations. No indication for anything 
15 new was found except for an effect seen by the MARK J group at highest 

PETRA energies (46 .30 ..; IS ..;; 46.78 GeV). Fig. 5 shows their data at high 

energy compared to a control sample with about 10 times more events at 

lower en•3rgy. An excess of 6 events wi th low thrust ( < 0 .8) and large [1 

emission angle (cos e < 0.7) with respect to the thrust axis was found. 

In a successive run with about the same integrated luminosity only 2 ad­

ditional events were detected. Fig. 5 shows the full data sample with 8 

events in the large angle, low thrust bin. From the control sample, a 

background of 0.5 events would have been expected. No excess events of 



Fig. 4: 

lll -c 
1!.1 
> 
1!.1 -0 

0.1 

- 8 -

CELLO 
45.7< Ecm<46.78Ge 

• Data 
-MC: 

u,d ,s,c,b+ g 
---- MC + 2/3q 
......... MC + 1/3q 

02 03 
Aplanarity 

37331 

Aplanarity distribution at highest PETRA energies 

compared with the expectation of an addition quark of 

charge 2/3 or -1/3· 



Fig. 5: 

l.CJ 

Vl 
0 
u 

36_9 s {s < 46_30 Ge V 
-~~-~-~"7.":~:m~f"l 

10 - ··1:1.~ I 
•• 0. •.:... 111 • . ,. . 

OB ". :. 

- .. , 
ÜD 

Ot. 

02 

0 
OS 0_6 0.7 08 0.9 10 

thrust 

46.30s (S ~46.78GeV 
101 -· --~ ... ........ ... 

I• • ~ \. • 

oal 
I 

0 61 : 
I 

!.() 

Vl 0 l. 
0 
u 

02 

i 
0 [ __________ ----- .. ----

OS 0 6 0_7 0 8 0 9 1 0 

thrust 

thrust 
p j·i /0)(15 ,, ,. r / 

) / 

y~ 
/ / _ _.-

Scatter plot of events as a function of thrust and cos ö. The low energy control sample contains about 

10 times more luminosity. 

\..0 



- 10 -

this type above background have been seen by the other collaboration. 

+ -What are the prospects for toponium searches at the next e e colli-

ders TRISTAN, SLC, and LEP? Fig. 6 shows the width for the 'background' 

continuum reaction e + e- -7 hadrons R( y, Z) compared to the heavy vector 

meson (tt) width at LEP16 • One can see that with increasing energy the 

signal : noise ratio will decrease from about 3:1 at 60 GeV to 1:2 at 80 

GeV. If the toponium mass is even closer to the z0 mass, interference ef­

fects will cause dramatic variations of the cross section (Fig. 7). 

3b. Further Sequential Leptons 

If further generations of lepton doublets (L-, vL) would excist in 

the accessible mass range, they would be rather easily detectable through 

their decay into the known quarks and leptons. In case they would have 

the conventional coupling to the charged weak current, their decay rates 

into the different decay channels can be readily predicted (see Fig. 8a). 

Assuming equal coupling to all (colour factor 3 for the quarks) fermion 

doublets we can estimate a leptanie brauehing ratio of about 12% for each 

of the decays into e, ~, 1:. The signatures for the searches all make use 

of the acoplanari ty of the events due to the missing energy of the neu­

trinos. MARK II has looked for anomalaus lepton pairs, JADE searched for 

acoplanar hadron jets and CELLO, MAC, MARK J, PLUTO, and TASSO studied 

the cleanest signature of leptons against hadrons wi th missing energy. 

Recent new results at the 95% C.L. are ML > 22.0 GeV (CELLO), ML > 22.5 

GeV (MARK J), and ML > 22.7 GeV (JADE). 

V 

If vL is heavy it may mix with the light neutrinos. Heavy neutrinos 

can be pairproduced via a virtual z 0 and decay according to the dia­
L 

gram of Fig. 8b. The coupling to the charged current is given by the mi-

xing angle sin €· If the mixing is small or vL is light the partiale may 

have a lifetime long enough to decay in the detector. The MARK II group 

has searched for secondary vertices between 2 mm and 100 mm from the in­

teraction point in events containing > 4 tracks. They found 3 events with 

an estimated.background of 2 events. Their result is shown in Fig. 9a for 



- 11 -

sin2 8w=0.23 (' 
I \ 
I \ 

ld~ 
C1" ( e• e-- o".z"-ff) I \ 

R = cr(e+e--~·-fl-fl-) / 
\ 

I \ 
I \ 

I \ 
I \ 

10
2 

I \ 

" I ....... 

I 
I 

/ 

10 

40 60 100 

DEGENERACY OF Z
0 

AND TOPONIUM 

Vl 
c: 
0 ,_ 
"0 
0 I ..c. 
,_ I 
0 

I 
+ ..... ..... 
t 

I 
+Q) 

Q) 

b 

""' 

" 

Fig. 6: 

Expected norma-

lized cross sec-

tion R for the 

heavy vector me-

son production 
Rpeak c:ompared 

to the continuum 

of hadronic an-

nihilation (da-

shed line) as a 

function of e-

nergy (m I; = ls). 

Fig. 7: 

Destructive 

interference 

expected for 

toponium 

masses close 

to the Z 0 

mass. The 

variation of 

the total 

hadrenie 

cross sec-

tion with 

energy near 

the Z 0 mass 

is shown. 



N\JJ 1 o-4 
c 
üi 

1 o-8 

0.5 

Fig. 9b 

- 12 -

a 

2 5 
MASS (GeV/c2) 

As a), summarizing limits 
from n + e v ( 1 ) , ( 2) , K + 

e v (3), CHARM experiment 
(4), (5), universality (6), 
PEPmonojet search (7), and 
MARK II (8). 

tr r d s 

vllvüc 

10 

Fig. 8a: 
Decay of a hypo­
thetical sequen­
tial lepton L 
into the known 
fermians and the 
signatures used 
for the search. 

8b: 
Weak decay of a 
hypothetical 
heavy neutrino 
VL· 

Fig. 9a 
Excluded 
range for 
neutrinos 
function 
mixing 
sin 2 Eo 

mass 
heavy 
as a 

of the 
angle 

Heavy Neutrinos 

10-1 10° 
MN (GeV/c2) 

(1) (2) Tl~ev (7)MONOJET(PEP)---
(3) K -ev MAC•MARKJI•HRS 

(4) (5) CHARM EXPT (8) MARK IT 

(6) UNIVERSALl TY 



- 13 -

the three cases of e, ~~~ mixing. For comparison limits from other expe­

riments and the monojet search at PEP are included in Figure 9b. 

Shortlived heavy neutrinos decaying into e (HRS) or v (MARK II) plus 

two charged particles have been studied at PEP. The search excludes heavy 

neutrino masses between 2 and 5·4 GeV (90% C.L.) if a standard production 

cross section is assumed. 

4· SEARCH FOR HIGGS PARTICLES 

In the standard model one (complex) Higgs doublet is needed to gene-
+ 

rate the w-and z 0 masses. In this minimal model one new physical par-

ticle, the neutral Higgs boson Ho, is generated. In other models, in par­

ticular in supersymmetric models, more Higgs particles are required and 
+ 6 charged Higgs particles H- are expected • Furthermore, technicolour mo-

dels in which the heavy vector bosons are composite generate further sca­

lar bosons, the technipions, which are predicted to have masses in the 

range of 5 to 14 Gev. 7 

4a. Neutral Higgs Particles 

I will first discuss the standard model Higgs particle H0 and then 

proceed to charged Higgs particles and technipions. Non-minimal neutral 

Higgs particles will be discussed in section 5 in the context of mono­

jets. 

The relative decay width is given by 

r( QQ +H 0 y) 

r( QQ +e + e -) 

(8) 

(9) 

Experimentally this reaction would reveal itself in a monochromatic y li-
18 ne. Searches have been carried out on the J/~ and T resonance • 
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On the J/1' resonance BR (J/1' + H 0 y) "" 1/2 • 10-4 is expected. The 

experimental limit of the Crystal Ball group19 

BR(J/J'i' + y + nothing) < 1.4 ·10- 5 (90% C.L.) 

is sufficient to exclude H 0 if it does not decay in their detector. From 

the known mass-lifetime relation for H 0 they can deduce 

MH o > 50 MeV. 

The exclusive ~(2.2) claimed by the MARK III collaboration is not consi­

dered to be a candidate for the standard Higgs partiale 18 because its 

branching ratio 

would require unrealistic values for BR( ~ + K+K-) to be compatible with 

( 9) • 

On the T resonance, BR(T + H 0 y) ""2•10-4 is expected. Recently new 

experimental limits became available 

ARGUS: < 0.2 % E 0.5 + 4.0 GeV 
21 

y 22 
CLEO < ( 0.1 ... 1 .4)% E 0.1 + 2.0 Ge V 

y 23 CUSB < 0.02 % ~0 1.2 + 4.2 GeV 

The latter one seems to exclude Higgs bosons in the mass range 1 .2 GeV < 
MH o < 4.2 GeV, however radiative corrections to the simple process (8) 

may be rather large (about factor 2). Therefore we have to wait for a 

better (9.t least twice) experimental limit before we can draw any final 

conclusions. 

The bes t place to look for H 0 would of course be the decay of tt 

( 3s 1) + H 0 y. For Mtt "" 80 GeV and MH o "' 40 GeV the branching ratio 

would be "' 3%. 
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Another way to produce H 0 is through the decay of the Z 0 boson as 

shown in Fig. 10. The expected rates for 106 z 0 decays which corresponds 

to about 1 year of running at LEP are given in Table 1 24 

TABLE 1: Rates for 10 6 Z 0 decays 

MH o (Ge V) 
Z o -+ H 0 ;/ J..-

zO -+ HOy 

10 

65 

1.8 

20 

26 

1.7 

30 

11 

1.4 

40 

4 

1 .1 

50 

1.5 
0.7 

We see that in partieular for high HO masses reaction (8) seems to be by 

far more promising to look for H 0. 

4b. Charged Higgs Partielee and Technipions 

Charged Higgs partielas would be produeed aeeording to formula ( 2) 
+ -

in e e reactions. As mentioned above, the reaetion is strongly suppres-

sed near threshold. Therefore mass limits will be lower than in the ease 

of eharged fermions. The Higgs will decay preferentially into the heavy 

fermions: 

-+ cb, -es, v 
't 

( 10) 

Sinee the relative decay width into leptanie and hadrenie channels cannot 

safely be predieted, experiments have to look for all deeay modes. The 

leptonie deeay has a rather simple signature, very similar to the one of 

a new heavy lepton. However, the decay into a quark pair is more dif­

fieult to detect sinee it involves four-jet final states. This deeay mode 

was studied by TASso25 • The result is shown in Fig. 11 together with li­

mits obtained by other experiments26 , 27 , 28 ' 29 ,30 • The range 5 GeV < MH± < 
13 Ge V is excluded independent of the branehing ratios. This shows in 

particular that charged technipions do not exist! 
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5. SEARCH FOR SUPERSYMMETRie PARTICLES AND MONOJETS 

Supersymmetry (SUSY) 5 relates fermians and bosons by the symmetry 

operation J±1/2. Thus, each standard partiale has its SUSY partner with 

spin J±1/2. Table 2 summarizes the minimal SUSY extension of the standard 

model
6

• Note that two Higgs doublets are necessary to preserve the one to 

one correspondence between Higgs and Shiggs. The SUSY partners of the 

vector boson and Higgs sector can mix to form neutralinos and charginos. 

In the following I will concentrate on new results on sleptons, photinos, 

neutralinos, and gluinos and refer to previous papers for earlier re­

sults1. 

TABLE 2: Supersymmetrie Partielee 

Standard 
particles 

I Suoersymmetric 
I sparticles 

J ± 1/2 

I 
J = 1/2 J = 0 

Quark Squark 

Lepton ~L ~R ~=euT I Slepton \ ~ Q.=euT 

Neutrino ve v\.1 VT I Sneutrino ve v\.1 VT 

---------~-----------

J = 1 

Gluon g 

W-Boson W± 

Z-Boson Z0 ,y 
Photon 
---------i 

Higgs 
+ 

H1 

Ho 
1 

J = 0 

Ho 
2 

Hz 

I 
I 

Gluino 

Wino 

Zino 
Phot i no 

Shiggs 

J = 1/2 

I-:::+- I 
I w- I 

l~o :y\1 I 
I I I I 
1 N~utra- 1 ~~harge- 1 'l1nos 1nos · 

I I 

-o -o I I 
--+ --H1 H 2 Hl Hz 

I i I I I ------" 
__ ___,_ 

---------..J........-----------

SUSY partiales have the same couplings and QUantum numbers as their con­

ventional partners. However, mass differences between the partners will 

be generated by SUSY breaking. In many models this is assumed to occur at 

the Fermi scale. SUSY partiales have a new conserved multiplicative QUan-
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turn nurober R which is -1 for SUSY partielas and +1 for conventional par­

tiales. Therefore, SUSY partiales are always pair produced. 

A particular consequence of this last property is that the lightest 

SUSY partiale (LSP) will be stable since it cannot decay into light con­

ventional partielas wi thout viola ting R-pari ty. Also, since all :i.nterac­

tions with matter will involve SUSY partielas which are known to be heavy 

of the order of ~ 20 GeV, the LSP will be almost non-interacting at pre­

sent energies, i.e. will be neutrino like. The best candidates are the 

photino y, Goldstino G, scalar neutrino ~ and the higgsino h
0

• (The 

Goldstino is the Goldstone partiale generated in SUSY breaking. It does 

not exist in supergravity, since it will give mass to the gluino.) 

All SUSY partiales eventually decay into the LSP. Thus, the most im­

portant signature for SUSY will be the missing energy and momentum car­

ried away by the LSP. 

5a. Photinos and Scalar Electrons 

Many SUSY models assume the photino y to be the LSP. To search for 

i t one may try to study the SUSY analogue of the reaction 

shown in Fig. 12d 

+ -e e + y y • 

+ -
e e + yy 

( 11 ) 

As y is supposed to interact only very weakly it will be invisible in the 

detector. Therefore, the only way to study this process experimentally 

would be through initial state radiation (Fig. 12c) as suggested by 

Fayet31 

+ -
ee + YYY· (12) 

The expected cross sections at IS 

0.87 are 

40 GeV for X > 0.2 and lcos e I< y y 
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for M- = 20 GeV 
e 

for M" 40 GeV e 

which would lead to a signal of 10 + 30 events for 100 pb- 1 • The experi­

mental problems of triggering on a single photon of E ~ 2+3 GeV and no-
y 

thing else wi th such a low event rate are formidable. One has to cope 

with a high background of higher order QED processes (eey, yyy) and cos­

mic rays. Therefore, the experiment needs a good directional photon de­

tection and nearly complete coverage for the missing energy. 

Even in a perfect detector, the background of reactions of the type 
+ -

yvv will e e + remain. Fig. 13 shows the energy dependence of the SUSY 

process compared to this 'neutrino counting I t' 32 reac J.on • As one can see, 

experiments will be swamped by v vy reactions above ls ~ 50 Ge V. Thus PEP 

and PETRA are the only e+e- machines appropriate for the yyy reaction. 

In view of this singular situation, the CELLO detector has been up­

graded for full angular coverage for electromagnetic showers down to 50 

mrad. Energy, time and direction of single photans is detected in the fi­

nely segmented LAr calorimeter at lcos e I ~ 0.87. At PEP, the ASP expe-
y 

riment33 has been particularly designed for reaction (11). It consists of 

a central proportional chamber (PC) system surrounded by lead glass 

blocks sandwiched in 6 layers of PC's in the centre and additional for­

ward calorimeters. The detector can be triggered by single photans down 

to 20° and has a hermetic coverage for electromagnetic showers down to 20 

mrad. 

As one can see from Fig. 12c,d the search for y is always intimitely 

connected with a search for scalar electrons. In Fig. 12 two other reac­

tions relevant for the ~ and y search are added: the ee pair production 

(Fig. 12a) and the virtual compton scattering process of Fig. 12b where 

one electron remains undetected in the beam pipe. 

The processes of Fig. 12 have been investigated by many groups. Fig. 
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Fig. 14 Experimental limits on the y and e masses from the 

reactions of Fig. 12a,b,c. 
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14 summarizes the most important results from ASP33 , CELLo34 , JADE35 , and 

MAc
46 • Note in particular, that the ASP result based on an integrated lu­

minosity of 68.7 pb- 1 could push the e mass limit for massless y to 

M.-. > 51.1 GeV (90% C.L.). 
e 

The result can also be expressed as a limit on the nurober of neutrinos 

N < 14 
V 

( 90% C .L.). 

If the photino is massive with a mass larger than the Goldstino (graviti­

no) it is unstable and decays into a photon and a Goldstino (or graviti­

no) G (c.f. Fig. 15). The photino lifetime is then given by -&~ = 8 
y 

nd 2/M~, where d is the scale parameter of SUSY breaking37 . The experi-

mental signatures are illustrated in Fig. 15a,b, and c. Two relatively 

heavy photinos decaying in the detector give rise to two acoplanar pho­

tons (c) whereas relatively light photinos would reveal themselves by 

large missing energy of the two decay photons (a). Both cases were first 

studied by the CELLO group38 and later by the JADE39 , MARK i 0
, and TAS­

so41 collaborations. The JADE group also investigated case (b) where only 

one photino decays in the detector, whereas the other one escapes, thus 

leaving a single photon in the detector. The resul ts of all four PETRA 
,.. 

experiments are summarized in Fig. 16. One can see that y decay is exclu-

ded forM,.. < 100 GeV and M~ < 20 GeV. 
e " y ,._ 

5b. Monojets and Searches for Neutralinos, Neutral Higgs 

and Gluinos 

As mentioned above, photinos, zinos, and shiggs may mix to form neu­

tralinos6. In particular, a light X~ and an unstable xg may result from 

such a mixing. x~ and xg could be produced in pairs where xg would decay 

into a pair of fermions and a x ~ (Fig. 17a, b). 

These ideas and the search for-such phenomena got a considerable new 

impact by the Observation of 'monojets' in the UA1 collaboration42 • Many 
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explanations were suggested for these single jets with large missing p 1 
including 

zo -+- 2 heavy Neutralinos ~o xl ~o 

Xz 
43 

( 13) 

zo + 2 neutral Higgs ho ho 44 
1 2 

Others suggested that gluinos and squarks may be the source of mono­

jets45. 

Although the UA1 data seem to have found a conventional explanation 

meanwhile46 , they initiated several searches in e+e- annihilation which 

are important in their own right. I will first discuss the z 0 decays (13) 

and then the search for gluinos. 

The suggested neutral particles ( 13) would couple to the virtual 

Z 0 's produced at PEP and PETRA (Fig. 17a). In case of the neutralinos x 0 

and neutral Higgs h 0 the light partner X~ or h~ is assumed to escape the 

detector. The heavier partners xg or hg will decay into the light X~ or 

h 1 according to the diagram of Fig. 17 c. The h g could also couple di­

rectly to a pair of heavy fermions, preferentially .,;, c, b (Fig. 17b). 

There are the following free paramters in the game 

r(z 0 -+- x ~ x g) 
r(z 0 -+- vv) 

or 
r(z 0 -+- h ~ h g) 

f( Z O + V v) 

which control the production rate and r = BR(h g + ff) to define the re­

lative importance of the decays of Diagram 17b and c. 

The experimental limits obtained by different groups at PEP47 , 48 , 49 

and PETRA50,5 1 are summarized in Figs. 18 and 19 for the case of neutra­

linos and neutral Higgs particles. Note that the specific model of 
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Glashow and Manohar44 which attempted to explain the UA1 monojets is ex­

cluded for masses 2 GeV ~ Mh g )._ 20 GeV. This rules out neutral Higgs 

particles as source of the UA1 monojets which occur in the mass range be­

tween 3 and 15 GeV. 

Gluinos 

In radiative T transistions, the decay of the xb ( 3P 1) state into 

two massless gluons is suppressed due to helici ty arguments. Therefore, 

the decay into one massless and one virtual massive gluon g* becomes do­

minant. g* will couple either to a qq pair or to a pair of gluinos as in­

dicated :i.n Fig. 20a. If the gluino is relatively light, this mode could 

have a sizable brauehing ratio. The gluino would decay into a quark pair 

and a photino (Fig. 20b) with a l:i.fetime52 

M~q 4 1 GeV ) 5 
1 ·3 x 10- 11 ( 1ÖO GeV) ( M---

g 

For gluino masses of the order of some GeV and very heavy squark masses 

(some 100 GeV) the lifetime would be long enough to be detectable. 

The ARGUS collaboration searched for secondary vertices in their 

T( 2S) 7 Xb ( 3P l) + y events53 • The experimental l:i.mits they can deduce 

are given in Fig. 21 together with other l:i.mits on gluino and squark mas­

ses54. 

6. SEARCH FOR COMPOSITENESS 

6a Excited Leptons 

If leptons were composi te particles, one would expect to obse·rve fi­

nite structures and exci ted states. As far as structures are concerned, 

no deviation from pointlike behaviour of e, ~~ and ~ has been observed 

up to 0 (100 Gev)-1. 
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There are two reactions through which excited leptons (heavier par­

tiales with the same quantum numbers as the corresponding leptons) could 

be produced directly in e+e- annihilation (Fig. 22a,b) 

+ -
e e + J.* J.* ( 14) 

+ -
e e + J.* ,L (15) 

Whereas the cross section for ( 14) in the cas e of a poin tlike J.* with a 

mass less than the beam energy would be given by (1), reaction (15) would 

require an unconventional current Lagrangian55 

L (J 
f.LV J.F +h.c. 

f.LV 

where "A is the coupling strength which is unknown. 

J.* decays rapidly 

1-L* + 1-L + y 

and one observes a signal 

+ - + 
1-L- y( y) (16) e e + 1-L 

which has to be separated from the radiative QED background. Mass limits 

on M * are of course restricted to less than the beam energy in reaction 
1-L 

(14), whereas high values (~ is) can be reached in reaction (15). 

56 Searches for exci ted leptons X* have been performed by the CELLO , 

JADE57 , MARK J58 , and MAc59 collaborations. For masses below beam energy, 

mass limi ts can be deduced from the observed limi ts on excess events of 

type ( 16) compared to the expected cross section ( 1 ) • Recent values are 

given in Table 3· In the case of reaction (15), an excited muon would 

show up as a peak in the invariant mass distribution of the 1-LY system. 

No such signal has been observed. From a comparison with the QED predic-
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tion, upper limits on the observed cross section for reaction (15) can be 

obtained. By means of the expected cross section this can be transformed 

into limi ts on the coupling constant A. as a function of M *' Fig. 23 
l.l. 

shows recent results from the CELLO and JADE collaborations. For A. = 1 

mass limits can be pushed as high as 40 GeV. However, parametrizing the 

coupling by (MY..*/ A 2 ) 2 instead of ( A./M Y..*) 2 wi th the composi teness scale 

A would be an equally good choice. In this case, for reasonable values of 

A "' 1 Tev60 the resul t of F:i.g. 23 does not gi ve any further restriction 

on the Y..* mass which would exceed the values of Table 3· 

TABLE 3: Mass limits in GeV on excited leptons 

(95% C.L., form factor F = 1) 

JADE 

CELLO 

e* 

23.1 

23.0 22.6 

22.5 

22.5 

In case of excited electrons, limits can be pushed further by investiga-
61 ting the 'virtuel compton' graph of Fig. 22c and a hypothetical e* ex-

+ -
change in e e + yy (Fig. 22d). The latest results on these processes 

56 57 . from the CELLO and JADE groups are g2ven in Fig. 24. Again, assuming 

A. = 1 the mass limi t could be pushed as high as 84 Ge V whereas for A "' 1 

TeV only the pair production limit of Table 3 holds. 

6b. The CELLO Event and Search for Leptaquarks 

+ -In search of isolated muons in hadrenie e e annihilation the CELLO 

collaboration found an event of the type 

+ - + -e e + l.l. l.l. jet jet 

wi th large transverse momentum of the muons wi th respect to the event 

axis
62

• The probabili ty to find such events from conventional sources 

(mainly a 4-QED) was estimated tobe of the order of 1o-3. 
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Two events of similar topology have been seen at the UA1 detector 
63 

and B. + F. Schrempp64 realized, that the symmetric solution of j.L-jet 

masses of all three events clustered around 20 GeV (Fig. 25). They sugge­

sted, that the events may be due to pairproduction and decay of lepto­

quarks X 1-L of the second generation. They argue that in composite models 

one light leptoquark may exist for each generation: /, xl-1 and x 1:. Each 

X would have quark-antilepton quantum numbers, i.e. charge 2/3 and spin 

0. The second generation xl-1 would decay 

+ 
+ Sj.L,CV 

1-L 

Thus not only 1-11-1 jet jet bu t also 1-1 v jet jet and v v jet jet events are 

expected. The JADE collaboration performed a systematic search for all 

three categories65 • They found only one candidate in the 1-11-1 jet jet 

class, however with low invariant 1-1 jet masses. Fig. 26 shows the mass 

ranges excluded by their search for the different event classes. It ex­

cludes light leptoquarks between 4 and 20.8 GeV at the 95% C.L. The CELLO 

event sits right at the edge of their contour. 

7. CONCLUSION 

• No evidence for new particles has been found at PEP/PETRA/DORIS 

II/CESR. 
+ - + -

• Some puzzling phenomena like the CELLO event e e + 1-1 1-1 jet jet or 

the broad events with high transverse momentum muons in the MARK J 

detector still remain unexplained. 
+ -

• Let us wait for and look forward to the next generation of e e ma-

chines TRISTAN, SLC, LEP! 
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