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Abstract

A new method CIP (Cubic-Interpolated Pseudo-particle) to solve
hyperbolic equations is proposed. The method gives a stable and
less diffusive result for square wave propagation compared
with FCT (Flux—-Corrected Transport) and a better result for
propagation of a sine wave with a discontinuity. The scheme is

extended to nonlinear and multi-dimensional problems.

CIP = eine neue LOsungsmethode fir allgemeine nichtlineare

hyperbolische Gleichungen in mehreren Dimensionen

Zusammenfassung

Es wird eine neue Methode CIP (Cubic-Interpolated Pseudo-particle)
zur LOsung hyperbolischer Gleichungen vorgeschlagen. Mit dieser
Methode erhél£ man stabile und weniger verwaschene Ldsungen flr
die Propagation einer Rechteck-Welle und einer Sinus-Welle mit
Unstetigkeit als mit der FCT (Flux-=Corrected Transport) Methode.
Die Methode wird in dieser Arbeit auch auf nichtlineare und mehr-

dimensionale Probleme erweitert.
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I. INTRODUCTION

In a previous paper, we proposed a less-diffusive and
stable algorithm, CIP (Cubic-=Interpolated Pseudo=Particle)
[1}], for solving a linear hyperbolic equation. In the
scheme, a qguantity within a mesh is interpolated by a cubic
polynomial. Since the gradient of the quantity is a free
parameter, the scheme is completely different from the
spline method [2,3] ; in the latter method, the gradient
is calculated by assuming continuity of the quantity, the
first derivative and the second derivative of the quantity
at the mesh boundaries, and is independent of the equation.
In contrast, the first derivative in the CIP is calculated
by the model equation for the spatial derivative and is
chosen so that it is consistent with the time evolution of
the given equation.

Since the CIP does not use the 'limiting' procedure
employed in the FCT[{4], it does not suffer from a
fictitious clipping in a triangular wave. This was
demonstrated in propagation of a sine wave with a
discontinuity in the previous paper[l].

The present paper gives generalization of the CIP
scheme to nonlinear problems with non-advective terms and
to multi=dimensional problems. In section II, the basic
principle of the CIP is briefly explained from a different
viewpoint from the previous paper[l]. In section III,
the CIP is extended to nonlinear problems. In section 1V,

one=dimensional shock tube problems in plane geometry are




used for test runs. The CIP and various other schemes are

compared with the analytic solution. In section V, the
scheme is extended to a two~dimensional configuration, with
a few numerical examples. The CIP scheme is

straightforwardly extended to multi~dimensional problems by

time splitting.




ITI. BASIC PRINCIPLE OF CIP

In this section, the basic principle of the CIP

algorithm is briefly explained by comparing it with other

schemes. For this purpose, let us use a simple hyperbolic
equation ;
3f /3t + ¢ Af/ex = O, (1)

where ¢ is constant. Equation (1) is integrated over an

interval (Xi-l/Z’x1+1/2)’(tn’tn+1) to obtain
Xi41/2
| [fn+l(x)—fn(x)]dx=~AFi+l/2+AFi_l/2, (2)
*i-1/2
*ix1/2
BFy 10" £7(x)ax, (2")
Xi41/27CAE

where the superscript n and the subscript i on f mean the
value of f at t=tn and X=X, respectively. In the

right hand side of Eq.(2), the profile of f is assumed to
remain rigid during the interval At(=tn+1—tn)

and to propagate by a distance cAt[l].

It is interesting to examine the assumptions made on
the spatial profile of f£(x) for the in@egration of Eq.(2)
in various schemes. In an example given in Fig.1l, let the
solid line be an actual profile of a wave, the dashed line

be an employed profile in a scheme given below, and the

shaded areas be AF. At first, let us begin with a




centered difference scheme. The assumptions made are as

follows ;

1) left hand side : f(x) is constant and dex=fiAx
2) right hand side : although f(x) is linearly
interpolated as shown by the dashed line in Fig.l(a), only

the values at x=x. are used to estimate AF ;
ixl/2

that is, the incoming and outgoing fluxes AF are given by

the shaded rectangular areas and hence AFiil/Z =

fiil/ZCAt = (fi+fii1)CAt/2'

This leads to

n+1 n_
i —fl ~—(K/2)(fi+1=fi_1), (3)

k being cAt/Ax.

£

The second example is the Lax-Wendroff scheme[5],

where the assumptions employed are as follows ;

1) left hand side : the same as the centered difference.
2) right hand side : f(x) is linearly interpolated as
shown by the dashed line and the fluxes AF are given
by the shaded areas in Fig.1l(b) and hence AFiil/Z

_ 2.2
=(£,+£, 1 )cbt/28(£ £, ) at? 2,

This leads to

£,

. 2+, q), (4)

)+K2/2-(f~

g Ml g Do /o (£ el

i i i+1”
which can be modified into a two-step form as in the

two-step Lax-Wendroff scheme.




The above derivation clearly shows the assumptions
made in the schemes ; it is interesting to see that the
Lax=Wendroff scheme is only a slight modification of the
centered difference as seen from the comparison between
Figs.1l(a) and 1l(b).

Other than those schemes, there exist a number of
schemes available at present and shown to be useful. In
Fig.2, some of those schemes are introduced and tested with
a typical problem, square wave propagation with k=0.2; the
profiles are shown after 1000 steps. In the leap=-frog and
the Lax-Wendroff schemes, overshooting and the so-called
phase error are significant. Let us consider. the cause of
this error. InAboth schemes, although the spatial profile
of £ is linearly interpolated and AF is calculated based
on the profile shown in Fig.1l, the profile on the left hand
is

side of Eqg.(2) is assumed to be flat. If AFi+1/2

less than AFi_ for ¢>0, the value fi in Fig.l

1/2
should always increase according to Eq.(2) and overshooting
should occur ; the spatial profile of f on the left hand
side of Eg.(2) is constant ( f=fi } and hence

AF 2 ( >0 ) is used to increase

i-1s2 = AFi4qy
fi uniformly.

In contrast, if the spatial profile of £ on the left
hand side of Eq.(2) is correctly described, overhoot does
not occur as illustrated in Fig.3 ; the solid and dashed

lines show the profiles of a wave at t=tn and

t tn + cAt, respectively. Outgoing and

n+1:

incoming fluxes (Eqg.(2')) are given by the shaded areas C




and A plus C', respectively; C' is the same as C. If the
reai profiles are used in the integration on the left hand
side of Eg.(2), Eg.(2) means that both the area A' and the
difference between the outgoing and incoming fluxes, which
is given by the area A, fill the area B without causing any
overshoot. Consequently, it is essential to predict
correctly the profile within a mesh at an advanced time
t:tn+1' In the PIC{10,11], a number of particles in

a line represent a spatial profile of f£. Then, time
evolution of the spatial profile , which is only a spatial
translation by cAt in the present case, is well described
by the particles' movement ; the spatial distribution of
the particles after they move gives the spatial profile of

f at the next time (t=t If it is possible to

n+l)'
imitate this movement of many particles by a simple
function, it will provides a stable and less-diffusive
scheme.

In the CIP method, the spatial profile of f within a
mesh is approximated by a cubic polynomial. Then the
integration on the right hand side of Eg.(2) is the same as
that due to a particle's translation in space by cAt. At

the next time step (t that is, after the profile

n+1)’
moves, a new polynomial within a mesh is required in order
to calculate the term on the left hand side of Eqg.(2).
Since the boundaries of an old polynomial shift by cAt
from the cell boundaries, the polynomial at t=tn cannot

be used as the profile of the guantity within a‘mesh at
t:tn+1' Hence, a new cubic polynomial must be

generated to approximate a new profile as well as possible.




In ordinary cubic=-spline interpolation, continuity of
the value f, the first derivative f', and the second
derivative f" is required to generate the piecewise cubic
polynomials from the data given at some discrete points.
This procedure is not suitable for the present problem,
because the profile generated by the method is not
consistent with the given equation. Even in recent work on
spline interpolation, this physical requirement was
neglected and the efforts were limited to constructing
well=-posed and monotonic splines [2,3]. The CIP method
relaxes the requirements on continuity, that is, requires
continuity only of £ and f' at the mesh boundaries. Then £
and f' at some discrete points are used to generate the
piecewise cubic polynomials. The additional free parameter
f' offers a tool to approximate the particle's movement as
mentioned in the previous paragraph. This can be done by

calculating the time evolution of f£' by the equation
3f' /3t + ¢ f'/ax = O, (1")

as well as that of f by Eg.(1). In the previous paper{l],
Eg.(1') was not solvea by the difference method but it was
proposed to use the first derivative of a cubic polynomial
fn(x) at x = xi-cAt for f'n+1; this corresponds
to the translation of the profile ( fn(x) ) by cAt.

Here, we summarize the finite difference form of the

CIP as follows




n+1l n+l n n _AF. Ax (5a)
H, " T#Gy o T=Hp Gy -(8F; 172 AFl_l/z)/ !
H, = 1/192(18f,  +156f +18f, ), (5b)
- 1 _rl

Gi = 5/192(f io1-f i+l)AX’ (5¢)
e 2 3 4 . n, 2
AFi+l/2—(—K/8+ K“/8+k”/6-k [/4)F 141 Ax

b k/8r k2 8- 6t 4 Mo

2 4 n
+( «/2-3c“/4 +K /2)fi+l Ax
+( k/243c2/4 ~t/2) £ Pax, (5d)

When all fin and fi'n are given, the value

of the right hand side of Eqg.(5a) is calculated. However,

n+l f.n+l

both £ and cannot be calculated at once

from this equation alone. Thus f'n+1 is determined by

Egq.(1l') as

fi'n”= £'(x,-cht, € ). (6)

Hence the equation which must be solved is the tridiagonal
matrix for fi+1’ fi, and fi-l at t = tn+1
in Eq.(5a). Since the solution Eg.(6) is only an

approximate one, it will depart from the real solution

after a long time and hence recorrection is required to




adjust it to the value fi ; in the previous paper(l],
this recorrection was done once every 50 steps.

Before closing this brief review, we must make an
important comment in solving Eqg.(5a). Since tridiagonal
inversion is slow when it is employed in vector machines,

it should be avoided in the code. This can be done in the

CIP. Hin+1 in Eq.(5a) is re-written as
~
g, 2 - e Py (ny, (7a)
1 1 1
~ ~ ~ ~t
H.(n) = (3/32)(F,, -2, +%, ). (7b)

Since H is smaller by a factor of 3/32 than f, a rough
~S

approximation can be used in estimating H. Thus, the

quantities having ~ are calculated by shifting as in

Eqg. (6) because Eg.(l) is the same as Eqg.(l') except for the

difference of f and f'. According to this equation,
~S
fi = f(xi—cAt,tn). (8)

Consequently, the equation to be solved is

n+1 n+l

~/
=H."-H, (n)+c,. "~ G,
1 1 1 1

f
i

“(BF 1 yp=bF5 1 p)/B%, (9)

instead of Eg.(5a). We found that Eqg.(9) gives the same

result as Eg.(5a) and it is used in Fig.Z2.




IIT. GENERALIZED ONE-DIMENSIONAL CIP

\

A large class of equations can be written in the form

3F/8t + 9(fu)/dx = g. (10)

Here f and g can be vector quantities. The inhomogeneous
term g includes, for example, the pressure work in the
hydrodynamic equation and the heat conduction in the energy
equation and so forth. Furthermore, u is the advection
velocity and is sometimes written in terms of £ and hence
Eg. (10) becomes a nonlinear equation.

In this section, we extend the CIP algorithm to the
equation given in Eq. (10). The algorithm is divided into
two phases, the Eulerian and the Lagrangian phases as in
the PIC and SOAP codes.

1) Eulerian Phase

. Egquation (10) is solved without the advection term

* = n n
£ i fi + o9y At. (11)
The CIP algorithm needs information about the first spatial
derivative of f. In the previous paper{l], we proposed to

use the eqgquation

Af' /3t = dg/ox, (12)

for this purpose. We do not need to use an elaborate

difference scheme in equation because of the factor 5/192

in Eq. (5c) and hence Eg.(12) may be solved with a centered




4 —

finite difference. Although Eq.(12) works well, another
simple procedure is preferable for general purposes because
3g/3X becomes a third order derivative if g is the heat
conduction term and is written, for example, as

azf/exz. Here, we propose to use

R P ¢! - n, . n
£, =f', +(f, -f, —fi+l ffi_l ) /2 ax%, (13)

Although this procedure is the same as Eq.(12), the
procedure is greatly simplified ; only the values f* given
by Eqg.(11l) are used. Furthermore, the procedure ocffers
another advantage. In the coupled hyperbolic=-parabolic

equation
_ 2 2
3f/at + dfu/dx = D37 /ax", (14)

the spatial derivative f' can be advanced in time by
Eg. (13) after the non-advective term is solved implicitly

as

* n 2 * * * . 15
£ £, pDat/ax" (£, 4 -2f, +£. 4 ) (15)

Thus the CIP can be used even if DAt/sz >> 1.

2) Lagrangian Phase

In this phase, the advection term is calculated by the
CIP algorithm as given in Eq. (5c), (5d),(6),(7b),(8),and
(8), but k = Ky = ui+1/2

space-dependent, and f°, £'" in Eq.(9) are

At/Ax is now




replaced by f*, f£'*. The shifting process as in Egs. (6)
and (8) can be done by the spatial translation of the

cubic-interpolated profile f*(x) by uiAt as follows ;

o 3 2 v *
fi = aiX + biX + £ io1 X + fi—l ; (16)
n+l _ 2 1 1
f'i = 3aiX + 2biX + £ io1 ¢ (17)
where
X = Ax - u;bt, (18)

* 2 * * 3
ai=(f'.l +f'i_l )/ A% —Z(fi -£5 4 Y /A%, (19)

* * 2 , * , * ‘ 20
b.=3(f, -f, ¢ )/Ax"-(£'; +2£7, 4 )/ax.  (20)




IV. SHOCK WAVE PROPAGATION IN PLANE GEOMETRY

In this section, the CIP algorithm is applied to the

hydrodynamic equations ;

dp/3t + dpu/dr = - Spu/r, (21la)
am/3t + 3dmu/dr = - dp/dr - Smu/r, (21b)
3E/3t + 3Eu/dr = - 3pu/dr - §(E+p)u/r, (2lc)
p = (y-1) (E-mu/2), - (214)

where p, m, E, u, and p are the density, momentum, total
energy, velocity, and pressure, respectively, and ¥ is the
specific heat ratio. These equations can be used for
plane, cylindrical, and spherical geometries by letting §
be 0, 1, and 2, respectively. In this section, the problem
is limited to a plane geometry.

The scheme proposed in section III is checked by using
the following test problem : the initial condition is p=1,
E=1 for the leftmost 100 zones and p=0.5, E=0 for the
other zones ; u=0 and ¥=5/3 in all zones. The solution of
this problem is given in Appendix. As is well known,
overtaking occurs at a shock front if there is no
dissipation term in Egs.(21). In the discussion of such
dissipation, we should distinguish the nonlinear problem

from the linear one. In the linear problem the CIP
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algorithm does not need any dissipation even at a steep
gradient region. This is due to the fact that the CIP
scheme tries to correctly solve the given equation. The
situation becomes different in the nonlinear problem ; the
dissipation term is physically required in order to obtain
a single~valued function and all schemes use it whether it
is explicit or implicit.

The three major forms of explicit numerical
dissipation are the artificial viscosity, the "FCT"[4]
and the "hybrid"[13] schemes. The limiter in the FCT
sometimes leads to an incorrect result as pointed out in
the reviéw by McRae et al.[1l4]. The hybrid scheme uses a
diffusive scheme at the shock front and a higher order
scheme at other regions. In this paper, all three
dissipation methods are examined.

(i) Artificial Viscosity

An artificial viscosity of the form[1l2]
0 =090 + 9, (22)

is used in the pressure term in Egs.(21b) and (21c), where

- apCS(au/ax)AX, if 3u/9x<0,
= 23a
0, = (23a)
0, otherwise,
2.2 .
- ap(3u/ax)“ax", if ju/9ax<0,
= 23b)
0, (
0, otherwise.

Here CS means the sound velocity and a is an adjustable




parameter of order unity. The result with the CIP method
after 800 time steps is shown in Fig.4(a). Here, a is set
to 1.0 and At is fixed to 0.1 with Ax=1.0. Slight
overshoots still remain behind the shock front and the
contact surface. For comparison, an analytical solution is
shown by the dashed line in the figure. It should be noted
that the value a=1.0 is quite small compared with that used
in other schemes ; in Fig.4(d) the result obtained with the
MacCormack scheme[1l5] is shown, a being the same as in
Fig.4(a).

(ii) Hybrid Scheme

For a flux AF in Eq.(9), the upstream flux

< £, , 1 uy,500

AFS L1/2 (24)

« £, , otherwise

i+l

is used instead of the flux (Eg.(5d)) in the region where

3u/9x<0, udp/9x<0, (25)

is satisfied. Equation (25) only tracks the shock front
well. It should be noticed that only AF is changed while
the other CIP algorithm is not changed. The result with
this method is shown in Fig.4(b). Compared with Fig.4(a),
the contact discontinuity becomes slightly diffusive and
the oscillation occurs in the area where the velocity is

constant ahead of the expansion region. This oscillation




is due to incorrect switching of Eqg.(24) and is improved if
(ui+1—ui)/lui+1+ui|<0.05 is used instead of

(Uy 49"

ui)<O (3u/3x<0). The diffusion at the

contact discontinuity is due to diffusion by Eqg.(24) in the
initial phase. However, the profile at the shock front is
better than that in Fig.4(a). As shown in Fig.4(e), the
upwind scheme alone cannot produce such a sharp
discontinuity at the contact surface.

(iii) FCT

Since it is of no use to incorporate the limiting
procedure into the CIP, which only makes the scheme
complicated, the "phoenical-SHASTA"[9] scheme is used for
comparison and its result is shown in Fig.4(c). The
steepness of the shock front is almost the same as that by
the hybrid CIP, while the contact discontinuity becomes
more diffusive. Although no overshooting occurs at the
shock front, the density behind the shock wave is
unfortunately larger by about 5 percent than the analytical
solution. It may be possible to use a different limiting
procedure, for example, the limiting proposed by Zalesak
[16]. However, it is true that we must be careful in
using the limiting procedure.

The test problem given above is a special one because
the Mach number of the shock wave is infinite. It is
worthwhile to test the scheme in a lower Mach number
regime. Figures 5 and 6 give other examples : the initial
condition is p=1, E=2.5 (p=1) for the leftmost 100 zones

and p=0.125, E=0.25 (p=0.1) for the other zones ; u=0 and
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¥=1.4 in all zones and Ax=0.01. This example was used in
Sod's review[l7]. Here, open circles are the result with
the CIP and the solid line shows the analytical result,
which is given in Appendix. In Fig.5, the artificial
viscosity is of the type given in Eqg.(23). Although the
contact discontinuity is successfully described, the shock
front is quite diffusive. This behavior is attributed to
the first order viscosgity given by Eqg.(23a). Since in
Fig.4 the pressure in front of the shock wave is zero, no
significant diffusion occurs there. In contrast, in Fig.5
the sound speed in front of the shock wave is as fast as
that behind the shock wave and hence Ql causes

diffusion there. This diffusion can be reduced as shown in
Fig.6 if CS in Eq.(23a) is replaced by |u|, since u is
zero in front of the shock wave.

From these test problems, it is clear that the CIP can
describe sharp discontinuities without any special
techniques except for the shock front. Associated with the
shock front, further improvement is presumably expected
with a different artificial viscosity or other techniques

that we have not tried.




V. MULTIDIMENSIONAL CIP

It is generally known that a one-dimensional scheme
can be easily extended to multi-dimensions by using the
time splitting technique. However, this technique should
be applied to the CIP with care because the CIP method uses
the gradient of the dependent variable as a free parameter.
For instance, let us consider a two-dimensional convective

equation such as
8f/at+cxaf/ax+cyaf/8y=0, (26)

where Sy and ¢ are the velocities in the
x-direction and the y-direction, respectively ; now both
are temporarily taken to be constant. The time splitting

techniques means that Eqg.(26) is split to be

- _ n
fi = L(x) fi . (27a)

n+1
i

£ = L(y) E,, (27b)

where L()\) is an operator of any scheme which gives the

solution of the equation
3f /9t + cxaf/ax = 0. (28)

In the CIP scheme, Eqg.(27) should be modified, because
the scheme needs the information on the spatial derivative

of £f. That is, in solving Eq.(27b), Eq.(9) should be
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applied to the y~direction with the aid of Egs.(5c), (5d),
(6), (7b), and (8). However, 3f/3y is not yet known

because in Eq.(27a) only a?Vax is calculated according to

Eq.(6). Consequently, some method is required to estimate
aEyay. In order to clarify the computing process, let us

introduce a "CIP operator" C(\) ;
fn+1 en
= C(\) (29)

aet 1 /gy af /0, (a=x,y)

which represents the process given in Egs. (5c¢c), (5d), (6),
(7b), (8), and (9). By using this expression, Eq.(26) can

be solved as

T £
= C(X) (30a)
— n
p P ‘
= n
3 = s(x,v)q : (30b)
go*i £
= C(y) (30c)
n+1 -
d d '
n+l

P = S(y,X)p , (30d)




where p=3f/8x and g=3f/3y.
Here the operator S(\,u) gives the solution of the

equation

3/3t[3£/3u]+Cy3/aN[3£/3n]=0, (31)

(u,\ = x or y, but u#\).

That is, the spatial derivative of f in some direction is
convected toward the perpendicular direction. In the
calculation described below, we found that the.result is
insensitive to the method used to solve Eqg.(31) and hence
the donor-cell~type finite difference scheme is used.
Figure 7 shows the propagation of a square wave in the
direction at an angle of 45 degrees to the axis. The
parameters used are Ax = Ay = 1.0, Cy = cy = 1.0,
and At = 0.2, and.the figure'shows the profiles at the
initial step and after 1000 steps. The gradient correction
was inserted in the initial 10 time steps and once every 50
steps as in the previous paper[l]. Thus, the CIP
algorithm has been extended successfully to two-~dimensional
problems by applying sequentially one-dimensional CIP
algorithms. This procedure has a great advantage because
the subroutine for the CIP solver can be used in any number
of dimensions and hence the program is largely simplified.
This scheme works well also for the solid body rotation

test applied to Zalesak's fully multi-dimensional




FCT[16]. Figure 8 shows the profile at an initial time

and after one revolution with the CIP ; the conditions for
the calcualtion are all the same as those in Zalesak's test
run. It should be noticed that the older form of

FCT[4,9] cannot reproduce the result shown here and the

CIP method can give a similar result to the Zalesak's

method in less CPU time.

VI. CONCLUSION

In this paper, we have re=-examined the basic principle
of the CIP from a different viewpoint and found that the
scheme can be modified into an explicit difference form ;
hence the scheme can execute efficiently on vector
machines. The scheme was extended to nonlinear and
multi-dimensional problems. In the nonlinear problem, the
flux switching at the shock front gave a satisfactory
result for a one-~dimensional shock tube problem, although a
further improvement should be expected by choosing a better
dissipation term. The CIP scheme could be
straightforwardly extended to multi-dimensional problems by
successive application of one-dimensional CIP schemes;
hence the problem in any number of dimensions can be solved

by the subroutine for the one-dimensional CIP.
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Figure Captions

Fig.l : Schematics of flux calculation in (a) the
centered finite difference and (b) Lax-
Wendroff schemes.

Fig.2 : Propagation of a square wave after 1000
time steps, k being 0.2, with up=wind,
Friedrichs-=Lax[6], leap-frog, Lax-Wendroff,
Fromm[7], compact~-differencing[8],
phoenical~SHASTA[9], and CIP.

Fig.3 : The basic principle of CIP. The solid and
dashed lines mean the profiles at t=tn

and t=t respectively. Both the area

n+1’
A' and the difference between the outgoing
and incoming fluxes (A=A+C'-C) are used
to £ill the area B.

Fig.4 : The shock tube problem in a high Mach
number regime using (a) CIP
(artificial viscosity), (b) CIP(hybrid),
(c¢) phoenical-SHASTA, (d) MacCormack, and

(e) up-wind schemes.

Fig.5 : The shock tube problem in a low Mach number
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regime with CIP ; the artificial wviscosity
in Eqg.(23) is used. "Energy" in the right
bottom figure means the specific internal
energy|[ = p/p(¥-1) ].

Fig.6 : The same problem as in Fig.5 with CIP but
Cs in Eqg.(23a) is replaced by |u].

Fig.7 : Linear wave propagation in the direction
45 degrees from the axis; (a) zones used,
(b) the initial profile, and (c¢) the profile
after 1000 time steps.

Fig.8 : Soclid body rotation as in.Ref.[16]; (a)
zones used, (b) the initial profile, (c) CIP
without gradient correction[l] after one
revolution, and (d) CIP with gradient
correction.

Fig.9 : The Rieman problem : (a) the initial

condition, (b) the profile at t>0.




Appendix

In order to give a concrete example, it should be
better to summarize the Rieman problem here, although it is
available in literature. Figure 9 represents the
configuration used in this problem. Figure 9(a) shows the
initial conditions; a diaphram is placed at x=0 between the
regions 1 and 5. At t>0, the profile will be modified into
that in Fig.9(b).

If the Mach number M of the shock wave located at
X=X, is defined by use of the isothermal sound speed
(p/p)l/2 at the region 5, the Rankine-Hugoniot.

relation leads to

P, 2M% - (¥-1)
—_— = (A-1)
Pg ¥+1
2
Py (¥+1)M
— e (A=2)
- (¥-1)M%+2%
2 1/2
2(M°-%)  ,pg
u, = _ = (A-3)
(r+1)m \p,

At the contact surface (x=x3), the pressure and
the velocity should be continuous. Thus,
Uy = u4, (A=4)
p3 = p4/ (A=5)
In the adiabatic expansion region (region 2), a simple

relation is derived for a simple wave ; u = u(p), that is,

U is a single=valued function of p. After 3u/dr and




3u/9t are transformed into (du/dp) (3p/3r) and
(du/dp)(3p/at), Egs.(21la) and (21b) reduce to an

equation:

dp ¥p
e + [ u—(——-) ] — =0 . (A-6)
3t

if the function u(p) satisfies a relation

du 1(3’ p) 172
TOE = e e (A=-7)
dp P P °
This last expression gives
1/2 (¥=1)/2
Py 2 P3 |
u, = ( [1- (——— ] (A-8)
Py -1 Py .

Equation (A=-6) means that the rarefaction front (x=x1)

and the boundary X=X, move with the velocities

1/2 1/2
~(¥p1/py) /% and ug-(3p,/p4) 7,
respectively.

Since the adiabatic relation

¥
p3/pl = (93/91) (A-9)
holds, Uy is related to P,y as
¥-1)/2%
7o, 1/2 Py ( )/
w = (__..) — - (__ ! | (A-10)
3 .
Py ¥-1 Py

When Egs.(A-1) and (A-3) with (A-4) and (A-5) are
subsituted into Eq.(A-10), we obtain the relation which

determines the Mach number.

2 1/2 2M2=(x-1) Pe (¥-1) /2%

M- PgPy _
(¥=1) ( ) B -
(¥+1)M \¥ppg (¥+1) pl)

(A=11)




In Table 1, the numerical values used in Figs.4 and 5

are summarized.




Table 1

1

Fig.4 Fig.5
¥ 1.4 5/3
Py 1.0 2/3
Pl 1.0 1.0
Px 0.1 0.0
Pg 0.125 0.5
M:Eq.(A-11) 1.958 o
Shock Speed 1.751 0.7924
Uz=u, 0.9266 0.5943
:Eq.(A-3)
P3P, 0.3028 0.2354
Eq.(A-T)
p4:Eq.(A'2) 0.2654 2.0
’p3:Eq.(A-9) 0.4260 0.5355
Speed of X=X+
Ua-Cq -0.071 -0.2616
Speed of X=X
:-C -1.183 -1.054
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### 1-D SHOCK TUBE PROBLEM ### |

|mm e < BASIC EQUATION > ===-eommnn-- | |

<<<<<<<<< TABLE OF CONSTANTS >>>>>>>

: DT/DR
: COEFFICIENT FOR CIP = (5/192)DR
: COEFFICIENT FOR ARTIFICIAL VISCOSITY
: SPATIAL STEP
: 1/DR
: TIME STEP
GAMMA
: GAMMA -1

SPECIFIC HEAT
(GAMMA+1)/2

: NUMBERS OF MESHES
: MESH-1
: MESH-2
: MESH*1
NGEOM :

GEOMETRY(1,2,3) SEE INIT

COEFFICIENT FOR CIP = -(5/192)DR
: COEFFICIENT FOR CIP =0
: COEFFICIENT FOR CIP = (5/192)DR
: COEFFICIENT FOR CIP = (18/192)
: COEFFICIENT FOR CIP = (156/192)
: COEFFICIENT FOR CIP = (18/192)

NGEOM-1

<<<<<<<<< TABLE OF VARIABLES >>>>>>>

: H(N; DD+*G(N, D -( DF(1+1/2)-DF(1-1/2) )/DR IN EQ.(9)-ENERGY
: SAME - MOMENTUM

: SAME - DENSITY

: CONVECTIVE FLUX DF IN EQ.(9) - ENERGY

: SAME - MOMENTUM

: SAME - DENSITY

: GRADIENT OF ENERGY

: GRADIENT OF MOMENTUM

: GRADIENT OF DENSITY

: TOTAL ENERGY
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C YM : MOMENTUM
C YR : DENSITY
C YEGRD : USED FOR ADVANCING GRADIENT IN TIME EQ.(13) - ENERGY
Cc YMGRD : SAME - MOMENTUM
C YRGRD : SAME - DENSITY
Cc YP : PRESSURE
C YU : VELOCITY
C YVIS : ARTIFICIAL VISCOSITY
C
C
C <<<<<<<<< TABLE END >>>>>>>
c
C
IMPLICIT REAL*8(A-H,0-27)
C
COMMON /CMPHYS/ YR(1000), YM(1000), YE(1000),YP(1000),YU(1000),
& YVIS(1000),FR(1000), FM(1000), FE(1000),
& GR(1000),GM(1000),GE(1000)
C
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH,MM1,MM2,MP1,N
C

COMMON /CMGRAD/
YRGRD(1000), YMGRD(1000), YEGRD(1000) ,ZGEOM,NGEOM

C
DIMENSION FRR(1000),FMR(1000),FER(1000)
C
Cez=zmooooozmoz=szmom=z=zz=omz [N|TIALIZE ==sssozozs=sz=oosoozooszsozzooooos
C
CALL INIT
C
N =1
C
C====z=zmzssozmzmozzomszzzzzzzzz MAIN LOOP =ssozooooozoooomomgomusnsozssszoos
C
DO 10 ISTEP=1, ILOOP
C
Cmmmmmm e CALCULATE VELOCITY =---ommmmommmmmmoe e
C
CALL NUCLC
C
Cmmmmm o m e CALCULATE PRESSURE --------o-mmmommmomaaaaoe
&
CALL YPCLC
Cc
Cmmmm o CALCULATE VISCOSITY -----mmmmmmmmomnmmnes
C
CALL VSCLC
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Cozoszzoozmomzozmzmonozzzzzzzz EULERIAN PHASE Ss=ocococoomoooozosozozoszzsoozss
&
c
Cmmmmmmmmmmmm e e DENSITY =-mommmmo oo oo e
C
CALL DENRHS
C
Cmmmmmmmmmmm e MOMENTUM ======mmmmmm o e oo
C
CALL MOMRHS
c
Commmmmmmmmmmm e DENSITY GRADIENT ==-==-=-cmnommmmncnonmnoas
c
CALL NEWGRD(GR,YRGRD)
C
Crmmmmmmmmm oo MOMENTUM GRADIENT =-===c-=ccmmommmmmmncnanae
C
CALL NEWGRD(GM, YMGRD)
C
Commmmmmommmmmm oo CALCULATE TEMPORAL VELOCITY FOR
ENERGY -----
C
CALL EUCLC
Cc
Commmmmmmmmm o TOTAL ENERGY =---===-mmmmmmmmmaeees
C
CALL ENERHS
C
Cmmmmmmm e e e TOTAL ENERGY GRADIENT -----ommmmcmmnonnns
C
CALL NEWGRD(GE,YEGRD)
C
Cmmmmmmm e m e CALCULATE NEW VELOCITY -----=mmneonooma-
C
CALL NUCLC
Cc
c
Ce=zzmzzomozmmzommmzm=z==zmmzzz | AGRANGIAN PHASE soo=sosmooommozz=mzsmmmooomomzs=s
&
Cc SOLVED BY CIP ALGORITHM
Cc
(O e e T T R R e R PP R R R R R R
c
Cc
C <<<<<<<<<<< PDENSITY >>>>>>>>>>>>
c
C
G CALCULATE FLUX - EQ.(5D) .......ccoiivnnn.n.
Cc

CALL FLCLC(FRR,YR,GR,YU)

9]
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.......................... CIP SOLVER ... ittt iiei i
--- H+*G-DF/DR IN EQ.(9) ---
CALL CIPRHS(FR,FRR,GR,YR)
--- PREDICT H AND G AT ADVANCED TIME AND COMPLETE EQ.(9) --

CALL CIPCLC(YR,GR,FR,YU)

<<<<<<<<<< MOMENTUM >>>>>55>>>>

.......................... CALCULATE FLUX ... ittt iiiiiine e
CALL FLCLC(FMR,YM,GM,YU)
.......................... CIP SOLVER ... i ittt iiinanaen

CALL CIPRHS(FM,FMR,GM, YM)
CALL CIPCLC(YM,GM,FM,YU)

<<<<<<<<<<< ENERGY >>>>>>>>>>>>

.......................... CALCULATE FLUX ... ittt e
CALL FLCLC(FER,YE,GE,YU)
.......................... CIP SOLVER ... i iiiiiiiiiieieinniennnaens

CALL CIPRHS(FE,FER,GE,YE)
CALL CIPCLC(YE,GE,FE,YU)

.......................... GRADIENT CORRECTION ... . v,

IF ((ISTEP.LE.10).OR.(MOD(ISTEP,50).EQ.0)) THEN
CALL CORRCT(YR,GR,DR,MESH)
CALL CORRCT(YM,GM,DR,MESH)
CALL CORRCT(YE,GE,DR,MESH)

ENDIF
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IF(MOD(ISTEP,10).EQ.0) THEN
PRINT #*," ISTEP= ',ISTEP," TIME= ", TIME
CALL YOUT(YR,1,100, DENSITY ")
CALL YOUT(YM,1,100, MOMENTUM")
CALL YOUT(YE,1,100,'ENERGY ')
ENDIF

CONTINUE




— 47 —

SUBROUTINE INIT

IMPLICIT REAL*8(A-H,0-7)

O 0O 000000000

COMMON /CMPHYS/ YR(1000), YM(1000), YE(1000),YP(1000),YU(1000),

& YVIS(1000), FR(1000), FM(1000),FE(1000),
& GR(1000),GM(1000), GE(1000)
C
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH, MM1, MM2, MP1,N
c

COMMON /CMGRAD/
YRGRD(1000), YMGRD(1000), YEGRD(1000) ,ZGEOM, NGEOM
C

C m e m e o e e e
c
C..... TOTAL MESH USED
C
MESH = 100
C
C..... 1(PLANE), 2(CYLINDER), 3(SPHERE)
C
NGEOM = 1
C.....
ZGEOM = DFLOAT(NGEOM-1)
PRINT *,' NGEOM = ',NGEOM
C
C..... MAXIMUM LOOP
C
ILOOP = 100
C
C..... SPACE INCREMENT
Cc
DR = 0.01DO
C
C..... TIME STEP
C

DT = 0.001DO




C..... SPECIFIC HEAT RATIO

C
GAMMA = 1.4DO0
C
cC..... COEFFICIENT FOR VISCOSITY
C
Cvs = 1.0D0
c

WRITE(6,1000) ODR,DT,GAMMA,CVS,ILOOP
1000  FORMAT(1H ,5X,'DR =',F7.2,1X,'DT =',F7.3,1X,'GAMMA =",F7.2,
& 1X,'CVs =',F7.3,1X,'ILOOP =',15,/)

= MESH + 1
MM1 = MESH - 1
= MESH - 2

TIME = 0.00DO

CK = DT/ DR

DRI = 1.00D0 / DR

CGR = 5.00D0 / 192.0D0 * DR

GM1 = GAMMA - 1.00D0
GP1H = 0.50D0 * ( GAMMA + 1.00D0 )

- 5.0D0 / 192.0D0 * DR
0.0D0
5.0D0 / 192.0D0 * DR
18.0D0 / 192.0D0
156.0D0 / 192.0D0
18.0D0 / 192.0D0

R1
R2
R3

Py,
o
| I D | B I A1

DO 10 1=1,MESH

YR(I) = 0.00DO
YM(1) 0.00DO0
YE(D) 0.00DO
YP(I) 0.00DO
Yu(l) 0.00DO
GR(1) 0.00DO
GM(1) 0.00DO
GE(1) 0.00DO
FR(1) 0.00DO0
FM(1) 0.00DO0
FE(I) 0.00D0
YVIS(i) = 0.00DO

10 CONTINUE

Cc
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30

O00000

40

<LLLLLLLLL LKL

DO 30 I=1,MESH
YM(1) = 0.00DO

CONTINUE
LLLLLLLLL LS
LLLLLLLLLLL

DO 40 I=1,50

YE(1) = 2.50D0
YR(1) = 1.0D0
CONTINUE

DO 41 1=51,MESH
YE(1) = 0.25D0

YR(1) = 0.125D0
CONTINUE
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MOMENTUM >>>>>>>>>>

DENSITY >>>>>>>>>>>
ENERGY >>>>>>>>>>>
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CALCULATE PRESSURE FROM
( (TOTAL ENERGY)-(KINETIC ENERGY) ) / ( GAMMA - 1)

SUBROUTINE YPCLC
IMPLICIT REAL*8(A-H,0-2)

COMMON /CMPHYS/ YR(1000),YM(1000),YE(1000),YP(1000),YU(1000),

& YVIS(1000),FR(1000), FM(1000),FE(1000),
& GR(1000),GM(1000), GE(1000)
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH,MM1,MM2,MP1,N

DO 10 1=1,MESH
YP(1) = GM1 * ( YE(1) - 0.50DO*YR(D*YU(D*YU(1) )
IF (YP(1).LE.0.00DO) YP(1) = 0.00DO
CONTINUE




O O 000000000

0o 00 000 O

ARTIFICIAL VISCOSITY Q1 + Q2 |

Q1 : FIRST ORDER Q2 : SECOND ORDER

SUBROUTINE VSCLC
IMPLICIT REAL*8(A-H,0-Z)

COMMON /CMPHYS/ YR(1000),YM(1000), YE(1000),YP(1000),YU(1000),

& YVIS(1000),FR(1000), FM(1000), FE(1000),
& GR(1000),GM(1000) ,GE(1000)
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH,MM1, MM2,MP1,N
DO 10 1=2,MESH
M1 =1 -1
DLTU = YU(I) - YU(IMT1)

RMAN = YR(I) * YR(IMT1)

FSQR = RMAN * ( YP(I) + YP(IM1) )

IF ((DLTU.LT.0.0D0).AND.(FSQR.GE.0.0D0)) THEN
QA = - 0.50D0 * DLTU * SQRT( FSQR * GAMMA )
QB = 0.50D0 * RMAN * DLTU * DLTU
YVIS(l) = CVS *¥ ( QA + GP1H*QB )

ELSE
YVIS(1) = 0.00D0O

ENDIF

10 CONTINUE

LTI |

YVIS(1) = YVIS(2)




CALCULATE NON-ADVECTIVE TERM

IN THE EULERIAN PHASE |

<<<<<<< PDENSITY >>>>>>> ]

SUBROUTINE DENRHS

IMPLICIT REAL#*8(A-H,0-2Z)

o O 000000000

COMMON /CMPHYS/ YR(1000), YM(1000),YE(1000),YP(1000),YU(1000),

& YVIS(1000), FR(1000), FM(1000), FE(1000),
& GR(1000),GM(1000),GE(1000)
C
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH, MM1, MM2, MP1,N

COMMON /CMGRAD/
YRGRD(1000), YMGRD(1000), YEGRD(1000),ZGEOM,NGEOM

C
o mm o o o o e o e e o e e ot e e
C
DO 10 I=1,MESH

POSI = 1.0D0 / ( DFLOAT(1)-0.50D0 ) * DRI

YRGRD(1) = - ZGEOM*YR(1)*YU(1)*POSI*DT

YR(1) = YR(l) + YRGRD(I)

10 CONTINUE

C

POSI = 1.0D0 / ( DFLOAT(MESH)-0.50D0 ) * DRI
YRGRD(MESH) = - ZGEOM*YR(MESH)*YU(MESH)*POSI*DT
YR(MESH) = YR(MESH) * YRGRD(MESH)

O 00 o000




CALCULATE NON-ADVECTIVE TERM

| IN EULERIAN PHASE 1
|

| <<<<<<<< MOMENTUM >>>>>>> |
i

SUBROUTINE MOMRHS

IMPLICIT REAL*8(A-H,0-Z)

O O 000000—000

COMMON /CMPHYS/ YR(1000),YM(1000), YE(1000),YP(1000),YU(1000),

& YVIS(1000), FR(1000), FM(1000), FE(1000),
& GR(1000),GM(1000),GE(1000)
C
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH, MM1,MM2,MP1,N
C

COMMON /CMGRAD/
YRGRD(1000), YMGRD(1000), YEGRD(1000), ZGEOM, NGEOM

FPL = 0.00DO

DO 10 1=1,MM1
IPT =1 +1
FPR = ( 0.50DO*(YP(IP1)+YP(I)) *+ YVIS(IP1) ) * CK
POSI = 1.0D0 / ( DFLOAT(1)-0.50D0 ) * DRI
YMGRD(1) = - FPR * FPL
& - ZGEOM*YM(D)*YU(I1)*POSI*DT
YM(1) = YM(1) + YMGRD(1)
FPL = FPR
10 CONTINUE
o
FPR = ( YP(MESH) + YVIS(MESH) ) * CK :
POSI = 1.0D0 / ( DFLOAT(MESH)-0.50D0 ) * DRI
YMGRD(MESH) = - FPR + FPL
& - ZGEOM*YM(MESH)*YU(MESH)*POSI*DT
YM(MESH) = YM(MESH) * YMGRD(MESH)

YM(1) = 0.00D0

O 00 o000 0O
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I CALCULATE NON-ADVECTIVE TERM
IN EULERIAN PHASE I

<<<<<<<< TOTAL ENERGY >>>>>>>> |

O0O0O0O—~—000

SUBROUTINE ENERHS

C
IMPLICIT REAL*8(A-H,0-2Z)
C ‘
COMMON /CMPHYS/ YR(1000},YM(1000),YE(1000),YP(1000),YU(1000),
& YVIS(1000),FR(1000), FM(1000), FE(1000),
& GR(1000),GM(1000),GE(1000)
C
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH, MM1,MM2,MP1,N
C

COMMON /CMGRAD/
YRGRD(1000), YMGRD(1000), YEGRD(1000),ZGEOM, NGEOM

C
S = o e o o o ot
C
CKQ = 0.250D0 * CK
C
FPL = 0.00DO
DO 10 I=1,MM1
IPT =1 + 1
DIC = ( DFLOAT(I) - 0.50D0 ) * DR
POSI = 1.0D0 / DIC
FPR = ( YP(IPD)+*YP(1)+2.0DO*YVIS(IP1) )
& * ( YUUIPD+*YU(I) ) * CKQ
Z10 = YP(1) * 0.5DO*(YVIS(IP1)+YVIS(1))
YEGRD(I) = (FPL-FPR)
& - ZGEOM*(YE(1)+*Z10)*YU(1)*POSI*DT
YE(1) = YE(l) * YEGRD(1)
FPL = FPR
10 CONTINUE
C
DIC = ( DFLOAT(MESH) - 0.50D0 ) * DR
POSI = 1.0D0 / DIC
FPR = 2.0D0*( YP(MESH)*YVIS(MESH) )
& * ( YU(MESH)+*YU(MMT1) ) * CKQ
210 = YP(MESH) *+ YVIS(MESH)
YEGRD(I) = (FPL-FPR)
& - ZGEOM#*(YE(MESH)*+Z10)*YU(MESH)*POSI*DT
YE(MESH) = YE(MESH) * YEGRD(MESH)
C
€ ecmcmmeecmmemon-
RETURN
C cmmemmmmmeme




O O 0000000000

O 00 000

10

CALCULATE FIRST ORDER DERIVATIVE OF PROFILE

AFTER EULERIAN PHASE |

SUBROUTINE NEWGRD(YY,YG)
IMPLICIT REAL*8(A-H,0-Z)
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,

R1,R2,R3,R4,R5,R6,
ILOOP,ISTEP,MESH,MM1,MM2,MP1,N

L

DIMENSION YY(1),YG(1)

DO 10 I=2,MM2

IPT =1 + 1

IMT = 1

YY() = YY() + ( YG(IP1)-YG(IM1) ) * 1.0DO * DRI
CONTINUE

YY(1) = 0.00D0

YY(MM1) = 0.00DO
YY(MESH) = 0.00D0O




SUBROUTINE FLCLC(FRR,YR,GR,YU)

IMPLICIT REAL*8(A-H,0-Z)

O O 000000000

COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,

& R1,R2,R3,R4,R5,R6,
& ILOOP, ISTEP,MESH, MM1, MM2,MP1,N
c
DIMENSION FRR(1),YR(1),GR(1),YU(1)
C
(o o o o ot o o et e o e e o e o b e ke 1
C
C
DO 10 I=1,MM1
C
IP1 =1 + 1
UF = 0.50D0 * ( YU(IP1) * YU(l) ) * CK
C
C
UF2 = UF*UF
UF3 = UF*UF2
UF4 = UF*UF3
C
QR1 = ( 0.125D0*%UF-0.375D0*UF2+0.5D0%UF3-0.5D0%UF4 )
QR2 = ( 0.250D0*UF-0.500D0*UF2+UF3/3.0D0 )
QR3 = ( 0.500D0*UF-0.500D0*UF2 )
QR4 = ( UF )
C
QF1 = ( QR1 - QR2 ) * DR
QF2 = ( QR1 - 2.0DO*QR2 * QR3 ) * DR
QF3 = ( - 2.0DO*QR1 *+ 3.0D0*QR2 )
QF4 = ( 2.0DO*QR1 - 3.0D0*QR2 *+ QR4 )
C
FRR(1) = QF1 * GR(IP1)
& + QF2 * GR(I)
& + QF3 * YR(IP1)
& + QF4 * YR(I)
C

10 CONTINUE
C




O

O o0 000

..... BOUNDARY FLUX ( MESH+1/2 )

UF = 0.50D0 * ( YU(MESH) + YU(MM1) ) * CK

UF2
UF3
UF4

QR1
QR2
QR3
QR4

QF1
QF2
QF3
QF4

[ I ]

UF*UF
UF*UF2
UF*UF3

( 0.125DO*UF-0.375D0*UF2+0.5D0*UF3-0.5D0%UF4 )
( 0.250D0*UF-0.500D0*UF2+UF3/3.0D0 )

( 0.500D0*UF-0.500D0*UF2 )

( UF )

( QR1 - QR2) * DR

( QR1 - 2.0D0*QR2 *+ QR3 ) * DR
( - 2.0DO*QR1 + 3.0D0*QR2 )

( 2.0D0*QR1 - 3.0D0*QR2 + QR4 )

FRR(MESH) = QF3 * YR(MESH)

+ QF4 * YR(MESH)




O e kbbb L L bt bl |
cl |
cli |
C 1 CALCULATE ALL THE RIGHT HAND SIDE TERMS IN CIP
|
cl |
cl |
cl |
O Rt |
Cc :
SUBROUTINE CIPRHS(FR,FRR,GR,YR)
cC
IMPLICIT REAL*8(A-H,0-Z)
C
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DR1,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH, MM1,MM2,MP1,N
C
DIMENSION FR(1),FRR(1),GR(1),YR(1)
C
C
&
DO 20 I=2,MM1
C
IPT =1 +1
IMT =1 -1
C
FR(I) = R1 * GR(IP1)
& + R3 * GR(IM1)
& + R4 * YR(IP1)
& + R5 * YR(I)
& + R6 * YR(IM1)
& + FRR(IM1) - FRR(I)
20 CONTINUE
C
Crmmomm e e e BOUNDARY CONDITION (LEFT) -==---=mvee-connon-
C
FR(1) = RT * GR(2)
& + R4 * YR(2)
& * R5 * YR(1)
& *+ R6 * YR(1)
& - FRR(1)
C
C
C-oormmmmmmcm e e ecea BOUNDARY CONDITION (RIGHT) ---===-=cn==en=ec-
Cc
FR(MESH) = R4 * YR(MESH)
& + R5 ¥ YR(MESH)
& + R6 * YR(MM1)
& - FRR(MESH) + FRR(MM1)
C
C  ~eereecessccmea-
RETURN
C  mmeemmeemmmmmee-




O

o000

|
| SOLVE CIP EQUATION 1
| (TRIDIAGONAL FORM IS TRANSFORMED INTO EXPLICIT DIFFERENCE)

i

| ZBB : BOUNDARY CONDITION

| !

I GRN : PREDICTED GRADIENT |
! YRN : PREDICTED QUANTITY I
I

SUBROUTINE CIPCLC(YR,GR,FR,YU)

IMPLICIT REAL*8(A-H,0-7)

O O 000000000000

COMMON /CMCNST/ DR,DT,CK,GAMMA ,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH, MM1, MM2, MP1,N

DIMENSION GRN(1000), YRN(1000),YR(1),GR(1),FR(1),YU(1)

DO 10 I=2,MM1

PT =1 +1

iM1 = | -1

UK = DABS( YU(l) ) *# CK

UK2 = UK *# UK

UK3 = UK2* UK

CX =1.0D0 - UK

CX2 = CX * CX

CX3 = CX2* CX

S1=( 1.0D0 - 4.0D0*UK + 3.0D0*UK2 )

S2 = ( - 2.0D0*UK + 3.0D0*UK2 )

S3 = ( 6.0D0O*UK - 6.0D0*UK2 ) * DRI
s4 = ( - 6.0DO*UK + 6.0D0*UK2 ) * DRI
T1 = ( CX3 - CX2 ) * DR

T2 = ( CX3 -2.0D0*CX2+CX ) ¥ DR

T3 = (-2.0DO*CX3+3.0D0*CX2 )

T4 = ( 2.0DO*CX3-3.0D0*CX2+1.0D0)

T5 = ( UK3 - UK2 ) ¥ DR

T6 = ( UK3 -2.0D0*UK2+UK ) ¥ DR

T7 = (-2.0D0*UK3+3.0D0*UK2 )

T8 = ( 2.0D0*UK3-3.0D0*UK2+1.0D0)




IF(YU(1).GE.0.0D0O) THEN

GRN(I) = S1 * GR(1)
+ S2 * GR(IM1)
+ 83 * YR(I)
+ S4 * YR(IM1)

e

00

YRN(D)=T1*GR(1)+T2*GR(IM1)
& +T3*YR(1)+T4*YR(IM1)

ELSE

GRN(1) = S2 * GR(IP1)
+ S1 * GR(1)
+ S3 * YR(IP1)
+ S84 * YR(1)

e ¢ o™

00

YRN(1)=T5*GR(IP1)+*T6*GR(1)
& +T7*YR(IP1)+T8*YR(I)

ENDIF
100 CONTINUE
GRN(1) = 0.00DO
GRN(MESH) = 0.00D0
YRN(1) = YR(1)
YRN(MESH) = YR(MESH)

..... DATA EXCHANGE

o000 0O 0 0O 0O O 0

DO 30 I=1,MESH
GR(1) = GRN(I)
YR(1) = YRN(I)
30 CONTINUE
C




C

O o0 O00

..... USE THE PREDICTED VALUES TO SOLVE CIP

CGRR = 18.0D0/192.0D0
DO 40 1=2,MM1

IPT =1 + 1
IMT =1 - 1
FR(1) = FR(1) *+ CGR * ( GR(IP1) - GR(IM1) )

& -CGRR*( YR(IP1)-2.0DO*YR(I)*YR(IMT1) )
40 CONTINUE

FR(1) = FR(1)-CGRR*(YR(2)-YR(1))
FR(MESH) = FR(MESH)-CGRR*(YR(MM1)-YR(MESH))

DO 50 1=1,MESH

YR()=FR(1)
50 CONTINUE




O 000000000

SUBROUTINE CORRCT(YZ,GZ,DRZ,MESHZ)

REAL*8 YZ(1000),GZ(1000),DRZ
INTEGER MESHZ

MM1 = MESHZ - 1

DO 10 =2, MM1

IPT =1 +1
IM1T =1 -1
GL = ( YZ(1) - YZ(IM1) ) / DRZ
GR = ( YZ(IP1) - YZ(1) ) / DRZ

AGL = ABS(GL)
AGR = ABS(GR)
IF (AGR.GT.AGL) THEN

GZ(1) = GL
ELSE

GZ(1) = GR
ENDIF

10 CONTINUE

GZ(1) = 0.00D0
GZ(MESHZ) = 0.00D0O




O T Tt T LR R |
(Ol i
C CALCULATE TEMPORARY VELOCITY ( U-OLD *+ U-NEW ) / 2
i
C 1 |
C i IN ORDER TO CONSERVE THE ENERGY
I
cC i I
c 1 |
o S |
(o
SUBROUTINE EUCLC
C
IMPLICIT REAL*8(A-H,0-Z)
C
COMMON /CMPHYS/ YR(1000), YM(1000), YE(1000), YP(1000), YU(1000),
& YVIS(1000),FR(1000),FM(1000), FE(1000),
& GR(1000),GM(1000),GE(1000)
C
COMMON /CMCNST/ DR,DT,CK,GAMMA ,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH, MM1,MM2,MP1,N
C
o e e ot e o e o e e o e o e o e e
C

DO 10 1=1,MM1
IF (YR(1).GT.0.00D0) THEN
YU(l) = 0.50D0 * ( YU(l) + YM(1)/YR(1) )
ELSE
YU(l) = 0.00D0O
ENDIF
10 CONTINUE

YU(MESH) = YU(MM1)




0O 0O 000000000

O o0 o000 O

10

— B4 —

SUBROUTINE NUCLC
IMPLICIT REAL*8(A-H,0-Z)

COMMON /CMPHYS/ YR(1000),YM(1000), YE(1000),YP(1000),YU(1000),

& YVIiS(1000), FR(1000), FM(1000), FE(1000),
& GR(1000),GM(1000), GE(1000)
COMMON /CMCNST/ DR,DT,CK,GAMMA,CVS,GM1,GP1H,DRI,CGR, TIME,
& R1,R2,R3,R4,R5,R6,
& ILOOP,ISTEP,MESH,MM1,MM2,MP1,N

DO 10 I=1,MM1
IF (YR(1).GT.0.00D0) THEN

YU(l) = YM(1) / YR(D)
ELSE

YU(l) = 0.00DO
ENDIF

CONTINUE

YU(MESH) = YU(MM1)




SUBROUTINE YOUT(YZ,M,N, ICH)

O 000000000

REAL*8 YZ(1000)
INTEGER M,N,ICH(2)
Cc
G o o e e 2 e
Cc
WRITE(6,1000) ICH
1000  FORMAT(TH ,//,30X,"*%* ' 2A4," *&%')
C
WRITE(6,1010) (YZ(1),1=M,N)
1010  FORMAT(TH ,1P,10E12.5)

o0 000






