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Theoretical and Experimental Modal Survey of a Horizontal Cylindrical 

Shell Partly Filled with Water 

Abstract 

The report deals with theoretical and experimental modal surveys of a 

horizontally located cylindrical shell, requested for experimental veri

fication of the SING-S coupled fluid/structure-interaction computer 

program. The eigenfrequencies, the mode shapes and the critical damping 

ratios of the test cylinder used (~ 1000 x 3 x 1600 mm, empty or partly 

filled with water, water level 680 mm) were extracted from the set of 

simultaneously measured relaxation response signals. The transient res

ponse was achieved via a snapback-process or an impulse excitation of 

the test cylinder shell. The EVAcomputer program was used to extract 

the modal characteristics from the acceleration response signals. A 

total number of 57 eigenmodes were identified experimentally - 33 eigen

modes of the test cylinder partly filled with water and 24 eigenmodes of 

the empty test cylinder. It has been found that the horizontal arrange

ment of the shell destroys the regular cosine patterns of its eigen

modes. The eigenmodes of the empty test cylinder are composed of signi

ficant contributions by several cosine patterns with a distinct main 

contribution by one of them. The natural frequencies f of the empty test 

cylinder can be plotted over the circumferential order v of the "predo

minant" cosine pattern (v-f-plot) and reveal trends similar to those of 

the vertical shell. The presence of the water charge in the test cylin

der causes additional distortions of the eigenmode patterns. The contri

bution to the individual mode shapes of the particular "predominant" 

cosine pattern is less significant, and tracing the v-f-plots is not 

meaningful. The calculated and the extracted mode shapes are nearly 

congruent; the deviations observable in individual sections are in most 

cases caused by different spatial orientations of these modes which in 

turn are caused by structural imperfections of the test cylinder. The 

calculated and extracted natural frequencies are well intercomparable 

and the mutual deviations generally do not exceed several per cent. The 

extracted values of the critical damping ratio ~ are of the order of 

several per mill and do not attain 0.5 %. 
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Theoretische und experimentelle Modalanalyse einer horizontalen, z.T. 

mit Wasser gefüllten Zylinderschale 

Zusammenfassunq 

Der Bericht befaßt sich mit theoretischer und experimenteller Modalana

lyse einer horizontal positionierten, leeren oder z.T. mit Wasser 

gefüllten Zylinderschale ~ 1000 x 3 x 1600 mm. Zweck dieser Untersuchung 

war die experimentelle Verifizierung des gekoppelten, fluid/strukturdy

namischen Rechenprogrammes SING-S. Die Eigenfrequenzen, die Eigenschwin

gungsformen und die entsprechenden modalen Dämpfungsquotienten des un

tersuchten Testbehälters wurden bei verschiedenen Experimenten jeweils 

aus einem Satz von simultan gemessenen transienten Antwortsignalen mit 

dem Rechenprogramm EVA extrahiert. Die dafür benötigte transiente Ant

wort der Zylinderschale wurde mit einer Snapback-Vorrichtung oder mit 

einem Impulshammer angeregt. Insgesamt wurden 57 Eigenschwingungsmodes 

des Testzylinders identifiziert; davon entfallen 24 Eigenmodes auf den 

leeren und 33 auf den wassergefüllten (Wasserspiegelhöhe 680 mm) Testzy

linder. Es hat sich herausgestellt, daß die horizontale Positionierung 

des Testzylinders die Eigenschwingungsmodes wesentlich beeinträchtigt. 

Die Eigenschwingungsformen des leeren Testzylinders bestehen jeweils aus 

mehreren regulären Kosinuskomponenten mit einer ausgeprägten Hauptkompo

nente. Die entsprechenden Eigenfrequenzen f, geplottet über die Umfangs

ordnung v der Hauptkomponente weisen einen ähnlichen Verlauf auf wie im 

f-v-Diagramm des vertikalen Zylinders. Durch die Wirkung der Wasservor

lage entstehen weitere Verzerrungen der Eigenschwingungsformen. Der 

Beitrag der Hauptkomponente ist weniger signifikant und das Zeichnen des 

f-v-Diagramms ist nicht mehr sinnvoll. Die vorausberechneten und die 

extrahierten Eigenschwingungsformen sind weitgehend kongruent; die indi

viduellen Abweichungen sind in der Regel durch unterschiedliche Orien

tierungen im Raum verursacht, die wiederum auf die Wirkung von struktu

rellen Imperfektionen des Testzylinders zurückzuführen sind. Die voraus

berechnei:en und die extrahierten Eigenfrequenzen stimmen miteinander gut 

überein; die eventuellen Abweichungen sind 1n der Regel nicht größer als 

einige Prozent. Die extrahierten Dämpfungsquotienten ~ betragen einige 

Promille und erreichen nicht den Wert von 0,5 %. 
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1. Introduction 

The submitted report deals with theoretical and experimental modal 

surveys of a horizontal test cylinder, which is either empty or partly 

filled with water. It constitutes second case in a test series carried 

out to check the SING-S fluid-structure interaction code /1-3/. The 

first, simpler case in this test series was the modal survey of the same 

shell positioned vertically, which constituted a quasi-axisymmetric 

problern /4-7/. Compared tothissimpler case, the horizontal cylinder 

investigated here constit'utes a three-dimensional problem. Some prelimi

nary results obtained by an experimental modal analysis of the horizon

tal test cylinder are summarized in paper /8/. 

A schematic sketch of the stainless-steel test cylinder used in our 

investigations and its principal dimensions are given in the upper part 

of fig. 1. A bird's eye view of the experimental setup is shown in fig. 2. 

The test cylinder shell, dia. 1000 mm x 3 mm x 1600 mm, is welded on 

both ends to quadratic stainless-steel plates (1250 x 1250 x 30 mm) 

which are in turn screwed to a heavy fastening plate of approx. 3300 kg 

weight. The test cylinder was empty or, in some experiments, partly 

filled with water up to the level of 680 mm. The theoretical modal 

analysis of the test cylinder was performed with the STRUDL /9/ and 

SING-S /1-3/ computer codes. The technique applied in the experimental 

modal survey of the test cylinder involves transient step or impulse 

excitation of the shell, simultaneaus measurement and recording of the 

resulting acceleration responses of the shell, and subsequent evaluation 

of these response signals with the EVAcomputercode /10/. This yields a 

set of natural frequencies, mode shapes and critical damping ratios of 

the test cylinder. The calculations performed are specified in section 2. 

The experimental setup and the procedure of evaluation used are 

explained in section 3. The calculated eigenfrequencies and the asso

ciated rnode shapes of the test cylinder are presented and compared with 

the corresponding experimental data in section 4, where also the extrac

ted values of the critical damping ratio are presented. The conclusions 

are drawn in section 5. 

2. Computer programmes used in the theoretical modal analysis 

The natural frequencies and the corresponding mode shapes of the empty 
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test cylinder were calculated with the STRUDL finite-element programme 

/9/ implemented on an IBM 3033 computer. As plane symmetry had been 

postulated for the test cylinder, only one half of it was incorporated 

into the theoretical model; the corresponding discretization is il

lustrated in fig. 3. The defined half-structure was represented by 570 

SSHQ-elements and 294 SBCT-elements with a total of 734 nodal points and 

549 dynamic degrees of freedom. The calculations performed yielded 549 

eigenmodes with the eigenfrequency values located in the frequency 

interval of 115.77- 4466.8 Hz. The stiffness and mass matrices created 

here were used as an input data set in the modal calculations of the 

test cylinder partly filled with water. These calculations were perfor

med with the SING-S fluid-structure-interaction-code /1-3/. The corres

ponding discretization is illustrated in fig. 4. It uses 495 elements 

with 447 unknowns and constitutes 323 coupling degrees of freedom. The 

calculations performed yielded 549 eigenmodes with the eigenfrequency 

values in the frequency range 54.98 - 4465.2 Hz. Several typical low

frequency modes obtained in both calculations are presented and compared 

with the corresponding experimental quantities in section 4. 

The mechanical properties of the structural material of the test cylinder were 

described in all calculations by the Young's modulus value E = 1.991 x 10 11 N;m2, 

the steel density Q = 7.8 x 103 kg/m3, and the Poisson's ratio ~ = 0.3. The 

density of water was estimated at the value QF = 1000 kg/m3. 

3. Experimental setup and modal evaluation procedures 

The experimental setup used is illustrated in figs. 1 and 2. Two single 

excitation means, e.g. a snapback device acting on the lower generatrix 

or an impact hammer (provided with a soft rubber stick) applied on the 

upper generatrix of the test cylinder, were alternatively used to generate 

the relaxation response of the shell which is needed to derive its modal 

characteristics. The resulting response of the shell was simultaneously 

measured with 32 piezoresistive accelerometers, type 2264-200 (Endevco) 

or GY-155-200 (Kulite), installed stepwise in 157 measuring positions on 

the shell (see the shell development presented in the lower part of fig. 1). 

Four fixed reference positions were used in all experiments; the corres

ponding coordinates are z = 800 rnrn, ~ = 0°; z = 800 mm, ~ = 180°; 



-3-

z = 1000 mm, ~ = 0° and z = 1000 mm, ~ = 180°. The remaining 28 accele

rometers were located somewhere on two cylinder perimeters (30 equi

distantly spaced positions at z = 800 or z = 1000 mm) and seven gene

ratrices (17 equidistantly spaced positions at ~ = 0°, 45°, 126°, 150°, 

162°, 180° and 270°, respectively). The accelerometers were fed from 

5 kHz-carrier amplifiers, type VD6 (Elan), connected to a computerized 

data acquisition system /11/. All 32 simultaneously measured response 

signals of each individual experiment were recorded on magnetic tape, 

which was subsequentely used as an input for the IBM 3033-computer. The 

modal characteristics of the test cylinder were extracted from the 

signals recorded using the EVA computer code. The mathematical back

ground and the most important subroutines of this code are described in 

detail in /10/. The output of this code is a system of natural frequen

cies f . critical damoina ratios z and initial values c ·, the latter -n' • - -n rn 
relacing to R accelerometer positions denoted by r = 1, 2, ... , R. 

A new subroutine, MODAP, has been developed to make visible the mode 

shapes extracted. It approximates the set of R C -values (for each n rn 
fixed) through one three-dimensional modal surface c (z, ~). This 

n 
approximation is based on the assumption 

c ( Z 1 ~) ::::: n 

M 
[ 

m=1 
(1) 

Each of the two separated functions Zm(z) and I,Dm(I,D) is represented by 

one Fourier series according to the equations 

11+1-1 

( al,m 

i21Tlz/zp -i2•lz/zp) 
z ( z) = [ e + bl e ( 2) m 1=1 ,m 

1 
and 

K1+K-1 
( ik~ -iki,D 

) (3) I,Dm(I,D) ::::: [ ak e + ß k e 
k=K ,m ,m 

1 

where Oizizmax• Oi~i2w, 1i11i8 and 1iK1i4; M, 1. K, zp and zmax are 

variable input parameters (in both examples presented further below the 
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following input parameter values were used: M=2 1 1=3 1 K=7~ zp=3200 and 

z =1600). The coefficients a1 1 b1 1 ak and ßk as well as max 1 m 1 m 1 m 1 m 
the integers 11 and K1 are determined automatically by the subroutine. 

A total of 18 modal experiments were performed on the empty shell; their 

evaluation yielded 24 eigenmodes identified in the frequency range 0 -

320Hz. In case of the test cylinder partly filled with water 1 execution 

of 60 modal experiments utilising all 157 accelerometer positions was 

necessary to identify the rather complicated modes. Their evaluation 

yielded 17 modes identified in the frequency range 0 - 200Hz. 

4. Camparisan of theoretical and experimental results 

To compare the theoretical and experimental mode shapes and the corres

ponding eigenfrequencies 1 two sets of plots are presented and discussed 

in this section. In each figure of each set at least two longitudinal 

sections and two developed circumferential sections through the particu

lar three-dimensional mode shape are plotted. A solid line in each plot 

denotes the theoretical mode shape calculated with the STRUDL or SING-S 

computer code. A set of discrete points (e.g. • 1 () or []) denotes the 

experimental mode shape extracted from the response signals by the EVA 

computer code. The corresponding calculated and experimental eigenfre

quencies fn as well as the extracted critical damping ratio ~n are summa

rized at the bottarn of each figure. 

4.1 Empty test cylinder 

The results of theoretical and experimental modal analyses of the empty 

test cylinder are illustrated in figs. 5 through 33. Figures 5 through 

15 show the mode shapes with one half-wave in the axial direction and 2 

to 10 full waves on the perimeter of the test cylinder. Figure 5 shows 

the calculated and extracted modes with two full waves in the circum

ferential direction. The experimental points exhibit remarkable scatter 1 

ind~cating a poor signal/noise ratio of the contribution in the original 

response signal used for the extraction of the mode. This is due to a 

low capability of excitation of the given mode. However 1 the agreement 

between the calculated and the extracted mode shapes is acceptable. The 

calculated natural frequency (280.38Hz) is approx. 7.5% higher than the 
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extracted value (260.56 Hz). This is presumably due to an overestimation 

by the STRUDL computer code of the rigidity of the welded connection 

between cylindrical shell and test cylinder flanges. A similar result 

was obtained in case of the vertical test cylinder /7/. Figure 6 illu

strates the mode shape with three full waves in the circumferential 

direction. This mode, similar to the preceding one, also reveals consi

derable scatter of experimental points as well as an overestimation of 

the calculated natural frequency value. Moreover, an impressed orienta

tion of the extracted mode with the maximum at approx. 150° can be 

observed. It is supposed that this mode orientation is due to the in

fluence of the weld seam, which constitutes an imperfection in the 

second quadrant (see fig. 1). Figure 7 shows the mode shape with four 

full waves in the circumferential direction. An interesting feature of 

this mode is a distinct deterioration approx. at 200° of an ideal wave 

form, indicating a superposition of two mode shapes. Also the calcula

tions did not yield a "clear" mode shape with four full waves on the 

perimeter; the "mixed mode" obtained will be discussed further below in 

this section. Figures 8 and 9 illustrate the extracted doublet with five 

full waves in the circumferential direction. There is only a slight 

difference of approx. 3 % between both natural frequencies extracted 

(111.61 and 113.23 Hz, respectively), but a distinct difference of 

approx. 10° in the orientation. The calculated natural frequency of 

115.77 Hz is slightly higher, namely 3.7 and 2.2 %, respectively, than 

the extracted values. Only one mode with five full waves in the circum

ferential direction was calculated, in accordance with the suppositon of 

a plane symmetrical shell used in the corresponding mathematical model. 

The occurence of the doublet is presumably caused by the structural 

imperfections mentioned above; a similar Observation was made also for 

the vertical test cylinder /7/. Figures 10 and 11 illustrate a doublet 

with six full waves in the circumferential direction. Also here only a 

slight difference between the natural frequencies extracted (125.80 and 

126.45 Hz) can be observed. It indicates the presence of minor struc

tural imperfections giving rise to the doublet. The calculations did not 

yield a clear mode with six full waves in the circumferential direction; 

the "mixed modes" obtained will be presented further below. Figures 12 

through 15 illustrate the mode shapes with 7, 8, 9 and 10 full waves, 

respectively, on the perimeter. The calculated and the extracted natural 

frequencies of these modes are very similar and reveal differences 

smaller than 1 %. 
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This indicates that mathematical modelling of the test cylinder shell by 

the STRUDL computer code is adequate. 

The calculated and the extracted natural frequencies of the modes 

discussed above are plotted in fig. 16 over the parameter v, denoting 

the number of full waves in the circumferential direction. The 

theoretical values are denoted by the symbol • , the experimental ones 

by(). The plot is very similar to that of the vertical cylinder traced 

in fig. 41 of the report /7/ and reproduced here as fig. 17. To elimi

nate possible misunderstandings resulting from the intercomparison of 

figs. 16 and 17, it should be mentioned here that an equivalent of the 

fundamental beam mode (mode with a natural frequency of approx. 32 Hz) 

cannot be expected in case of the horizontal test cylinder. Moreover, 

the natural frequency of the mode with one half-wave in the axial direc

tion and one full wave in the circumferential direction will presumably 

be located near 400 Hz which is well above the upper frequency limit of 

320 Hz used in our experiments. The same is true in case of the modes 

with more than 10 full waves on the test cylinder perimeter. 

Figures 18 through 25 illustrate the mode shapes with one full wave in 

the axial direction and 5 to 10 full waves on the perimeter of the test 

cylinder. For the calculated mode shape with 10 full waves on the peri

meter (f = 312.31 Hz, fig. 25) no experimental counterpart was extracted 

from the response signals. On the other hand, three doublets with 

slightly different natural frequencies were identified (modes with five, 

eight and nine full waves on the perimeter, figs. 18, 19, 22, 23 and 

24). The natural frequencies of all these modes are plotted over the 

parameter v in fig. 16 (symbol~ denotes the experimental and symbol • 

the calculated values). It follows from this plot that the calculated 

eigenfrequencies of the modes with a small number of waves on the test 

cylinder perimeter are slightly overestimated; the corresponding devia

tion (ma~:. value 3.6 %) decreases with v and practically vanishes at 

v = 8 and 9. A similar trend was observed in case of the vertical test 

cylinder (see fig. 17). 

Figures 26 through 29 demonstrate the mode shapes with three half-waves 

in the axial direction and seven, eight or nine waves, respectively, on 

the perimeter of the test cylinder. The wave forms are considerably 
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distorted. For instance, the seven distinct full waves noticed in the 

upper right plot in fig. 26 cannot be identified on another perimeter 

(lower plot). Moreover, a remarkable mutual phase shift in the axial 

direction can be seenon the plots on the left side of fig. 26. Figures 

27 and 28 illustrate the doublet with eight full waves on the perimeter; 

fig. 29 illustrates an extracted single mode with nine full waves. The 

corresponding natural frequencies are plotted over the parameter v in fig. 

16; symbol • denotes the calculated and symbol <> the experimental va

lues. They seem to follow a trend similar tothat plotted in fig. 17. 

Figures 30 through 33 illustrate the "mixed modes" announced above. 

Figure 30 shows the mode shape with one half-wave in the axial direction 

and six distorted full waves in the circumferential direction. This indicates 

the Superposition of forms with five and seven full waves, respectively, 

on the perimeter. The measured eigenfrequency of 120.63 Hz fits very well 

the lower curve in fig. 16 at v = 5 (symbol+). Figure 31 illustrates a 

superposition of modes with four and six full waves, respectively, in 

the circumferential direction. The calculated eigenfrequency of 128.19 

Hz fits very well the lower curve in fig. 16 at v = 4 and 6, respective-

ly (symbol X). It should be recalled here that the calculations did not 

furnish any "clear" mode with one half-wave in the axial and four or six 

waves, respectively, in the circumferential directions. This circumstan-

ce has already been mentioned above in the discussion of fig.s 7, 10 and 

11. Figures 32 and 33 present the calculated, strongly distorted mode 

shapes for which no experimental counterpart was extracted. 

Some additional insight into the complicated structure of mode shapes of 

the horizontal test cylinder is offered by use of the MODAP subroutine 

of the EVA computer code. As already mentioned in section 3, the objec

tive of this subroutine was to visualize the mode shapes extracted. 

However, the decomposition of each mode into components according to 

eqs. (1) through (3) quantifies the measure of contributions of "ideal" 

cosine modes and offers more information on the mode structure than pure 

intuitive considerations. Several typical relief plots generated by the 

MODAP subroutine are displayed as examples in fig. 34. The corresponding 

original extracted mode shapes are presented in figs. 9,30 and 10. For 

instance, the lower mode in fig. 34 (f = 125.85 Hz) was identified in fig. 

10 as a mode with one half-wave in the axial direction and six full waves 
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in the circumferential direction. However, application of the MODAP sub

routine reveals a rather more complicated structure. This reality is 

illustrated in table I. In this table the complex coefficients a1 and ,m 
b1 of eq. (2) are summarized form= 1 and 2 and 1 = 1, 2 and 3 as well ,m 
as the complex coefficients ak and ßk of eq. (3) for m = 1 and 2 and , m , m 
k = 3, 4, 5, 6 and 7. It immediately follows from this tablethat the 

regular cosine pattern with one half-wave in the axial direction and six 

full waves in the circumferential direction constitutes the biggest con

tribution to the given eigenmode. However, it is also evident that the 

contributions not to be neglected of other patterns (mainly the fourth and 

fifth circumferential orders) are also included. Similar additional infor

mation was provided by the analysis with the subroutine MODAP of all 

remaining extracted eigenmodes. 

The critical damping ratios ~ of all modes extracted enter beside the 

corresponding natural frequency value at the bottom of each figure. The 

majority of them is comparable to critical damping ratios of the verti

cal cylinder /7/. several exceptions are the critical damping ratios of 

the modes with one half-wave in the axial direction and a small number 

of waves in the circumferential direction v ~ 7; which are in general 

substantially smaller than those of the vertical cylinder. It is assumed 

that this phenomenon is caused by a lower energy dissipation rate in 

test cylinder flanges. The energy dissipation in the test cylinder shell 

is presumably the same in both cases. 

4.2 Test cylinder partly filled with water 

The presence of the water charge in the test cylinder causes a further 

modification of the eigenmode patterns. The mode shapes are only of the 

"mixed type" with strong participation of several regular cosine pat

terns and they do not reveal any distinct predominance of one of these 

patterns. Therefore, plotting the natural frequencies f over the circum

ferential order v of the "predominant" cosine mode contribution is not 

meaningful and does not furnish smooth f-v-curves as in the case of the 

empty test cylinder. 

Figures 35 through 44a illustrate the mode shapes with one half-wave in 

the axial direction and 4 to 9 distorted waves on the perimeter of the 

test cylinder. Figures 35 and 35a show the mode shape with four distorted 
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waves. This mode is similar to the "mixed mode" shown in fig. 30 which 

comprises the components with 4 and 6 full waves on the perimeter of the 

test cylinder. The calculated and the extracted mode shapes are well 

comparable, and the calculated natural frequency is approx. 2.5 % smaller 

than the corresponding experimental value. Figures 36 and 36a illustrate 

the mode with 5 distorted waves on the perimeter. The circumferential wave 

form is similar to that of the preceding case. The attenuated amplitudes 

at the top of the test cylinder indicate the predominant influence on this 

made af the water charge. Figures 37 through 39 illustrate the mode with 6 

distorted waves on the perimeter. The modes presented in figs. 38, 38a, 39 

and 39a are symmetric with respect to the 0 - 180° plane. In contrast, the 

mode shown in fig. 37 is skew-symmetric and cannot be predicted theoreti

cally by postulating the plane symmetry mentioned in section 2. However, it 

is not clear to which extent the existence of this mode might be caused by 

the structural imperfections discused in the preceding paragraph. Figures 

40 and 40a illustrate the mode with seven distorted waves on the perimeter. 

It is plane symrnetric and fits very well the calculated mode. Figures 41 

and 41a illustrate the rnode with 8 distorted waves on the perimeter. The 

structure of this rnode was analysed with the subroutine MODAP; the corres

ponding results are surnrnarized in table II and the reconstructed mode shape 

is presented as a relief plot at the bottarn of fig. 42 (the analysis 

relates to the results of modal experiment other than that illustrated in 

fig. 41, and the extracted eigenfrequency is approx. 0.8% higher). It 

follows from table II that the total contribution of the regular cosine 

patterns with 4, 5 and 9 waves on the perimeter even exceeds the contribu

tion of the "predominant pattern" with 8 cosine waves. A similar struc

ture is revealed also by the modes with 9 distorted waves an the perime

ter, illustrated in figs. 43 through 44a. The extracted modes constitute a 

doublet with one symmetric (fig. 44) and one skew-symmetric (fig. 43) 

mode. The mode shape of the symmetric mode fits very well the mode shape 

of the calculated mode, but the corresponding natural frequency is approx. 

5 % lower. 

Figures 45 through 51 show 7 extremely distorted modes with partly one and 

partly two half-waves in the axial direction and 7 to 9 waves on the 

perimeter of the cylinder. Figures 45 and 45a illustrate the mode with 

seven distorted waves an the perimeter, one full wave at ~ = 0°, one half

wave in the first and secend quadrants (~ = 45°, 126°, 150° and 162°) and 

quasi-nodes at 180° and 270°. This mode is skew-symrnetric with respect to 
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0 the 0-180 -plane and has no calculated counterpart. The calculated mode 

with seven distorted waves on the perimeter, presented in fig. 46, reveals 

one distorted half-wave at ~ = 0° and one distorted full-wave at 180° and 

270°. Figures 47 through 50 illustrate the modes with 8 waves on the 

perimeter. They are characterized by two distorted half-waves at ~ = 0° 

and one distorted half-wave at ~ = 180°. The calculated mode shape presen

ted in fig. 48 is tentatively compared with two experimental mode shapes, 

yielding (apart from opposite polarities) partial agreement in indivi

dual sections. It should be noted here that the modes illustrated in 

figs. 47 to 48a have maximum amplitudes at ~ = 180°, indicating that 

their dynamics is governed primarily by the test cylinder shell. This 

makes them susceptible to the influence of the structural imperfections. 

The modes governed by the water charge and presented further below in 

this paragraph do not have the same susceptibility and reveal better 

congruence between calculated and extracted mode shapes. For calculated 

mode shapes presented in figs. 49 to 51 no experimental Counterparts 

were found, presumably due to the presence of quasi-nodes in the loca-

tion of the snapback devices (r.p = 0 800 and 1000 mm). 0 and z = 

Figures 52 through 54a illustrate the mode shapes with one full-wave in 

the axial direction and 6 to 9 distorted waves on the perimeter of the 

test cylinder. The presence of the nodes in the middle of the test cylin

der (z = 800 mm) makes these modes less sensitive to excitation acting on 

this plane. This is presumably the reason why no experimental counterparts 

to the calculated modes presented in figs. 52 and 53 were found. An 

adequate experimental Counterpart was found only in case of the mode with 

nine waves on the perimeter, illustrated in figs. 54 and 54a. The axial 

sections of this mode reveal good agreement between the calculations and 

the experiment. However, only a rough agreement can be observed to exist 

for both radial sections presented. 

Figures 55 through 57a illustrate the mode shapes with three half-waves in 

the axial direction and 7 or 9 full waves on the perimeter of the test 

cylinder. The wave forms are considerably distorted and reveal very small 

amplitudes at the top of the test cylinder (~ = 180°), indicating a tight 

coupling of the corresponding modes with the water charge of the test 

cylinder. The experiments yielded two slightly different modes with seven 

not clearly modelled waves on the perimeter, illustrated in figs. 55, 55a 

and 55b. They have opposite polarities at r.p = 270° and slightly different 
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natural frequency values of 166.73 and 168.35 Hz, respectively. They are 

both tentatively compared with the corresponding calculated mode in fig. 55. 

There is a good global congruence of all three modes presented; the devia

tions Observable in individual sections are obviously caused by different 

orientations in space of these modes. Figures 56 and 57 show two calcu

lated mode shapes with nine distorted waves on the perimeter. The first of 

them has maximum amplitudes near ~ = 60° and 300° and quasi-nodes at the 

locations of the exciting devices. Thanks to this circumstance no experi

mental Counterpart of the calculated mode was found. The calculated and 

the extracted mode shapes plotted in fig. 57 reveal good mutual accordan

ce, especially in sections with the distinct amplitudes (~ = 0° and 270°). 

The critical damping ratios ~ of the modes extracted are of the order of 

several per mill and generally do not exceed the critical damping ratios 

of the empty test cylinder. However, due to the non-congruence of the 

extracted mode shapes of the both test objects (test cylinder empty or 

partly filled with water) it is not possible to intercompare the corres

ponding critical damping ratios and to assess quantitatively the contribu

tion of the viscous damping to the total damping. 

Conclusions 

Unlike in the vertical case, the horizontal arrangement of the shell 

destroys the regular cosine pattern of its eigenmodes. The eigenmodes of 

the empty test cylinder have been found to be composed of significant 

contributions by several cosine patterns with a distinct main contribu

tion by one of them. The natural frequencies of the empty test cylinder 

can be plotted over the circumferential order of the predominant cosine 

pattern (v-f-plot) and reveal trends similar to those of the vertical 
shell. 

The presence of the water charge in the test cylinder causes additional 

distortions of the eigenmode patterns. The contribution to the individual 

mode shapes of the particular "predominant" cosine patterns is less signifi

cant, and tracing the v-f-plots is not meaningful. The calculated and the 

extracted mode shapes are nearly congruent; the deviations observable in 

individual sections are in most cases caused by different spatial Orienta

tions of these modes which in turn are caused by structural imperfections 
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of the test cylinder. The calculated and extracted natural frequencies are 

well intercomparable and the mutual deviations generally do not exceed 

several per cent. The extracted values of the critical damping ratio ~ are 

of the order of several per mill and do not attain 0.5%. 
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Fig. 2 : Experimental setup 
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