KfK 4192 Oktober 1987

# Kritische Leckströmung aus rauhen Rissen in Druckbehältern

H. John, J. Reimann, G. Eisele Institut für Reaktorbauelemente

Kernforschungszentrum Karlsruhe

.

# Kernforschungszentrum Karlsruhe Institut für Reaktorbauelemente

KfK 4192

Kritische Leckströmung aus rauhen Rissen

in Druckbehältern

H. John, J. Reimann, G. Eisele

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

## Zusammenfassung

Zweiphasige Leckraten, die aus Rissen in druckführenden Komponenten von Kernreaktoren oder chemischen Apparaten austreten können, berechenbar zu machen, ist von großer Bedeutung besonders im Rahmen des Leck- vor Bruch-Kriteriums. Um eine zuverlässige Berechnungsmethode für diese kritischen zweiphasigen Massenströme durch rauhe Risse zu finden, wurden umfangreiche Versuche mit unterkühltem Wasser bis zu Drücken von 140 bar mit echten und simulierten Rissen durchgeführt. Die entscheidenden Parameter, wie Einlaßdruck und Unterkühlungstemperatur des Wassers, ferner die Spaltweite und die Rauhigkeit der Spaltflächen wurden in weitem Umfang variiert. Die Meßergebnisse wurden mit Berechnungen nach mehreren Modellen verglichen. Ein von Pana veröffentlichtes Modell zeigte die beste Übereinstimmung zwischen Messung und Rechnung. Erste Berechnungen mit diesem Modell wurden mit experimentell bestimmten Reibungsbeiwerten ζgemacht. Mit einer aus diesen Experimenten abgeleiteten Beziehung zur Berechnung des Reibungsbeiwertes wurde das Pana Modell erweitert. Ein Vergleich von 458 mit diesem modifizierten Pana Modell berechneten Versuchspunkten mit den Meßergebnissen ergab eine relative Standardabweichung von unter 20 %.

# CRITICAL TWO-PHASE FLOW THROUGH ROUGH SLITS

## Abstract

The knowledge of the two-phase mass flow rate through a crack in the wall of nuclear or chemical reactor components is very important under the leakbefore-break criterion point of view. For providing a qualified analytical tool for calculating critical mass flow rates through such a crack a detailed test program was carried out using subcooled water up to pressures of 14 MPa. A real crack and several simulated cracks (rough slits) were examined experimentally. The important parameters such as inlet pressure, subcooling temperature of water, slit width, and inner surface roughness were varied in a wide range and the measured data compared with calculated values from different models. The data comparison indicates that the model published by Pana leads to predictions which agree best with the observed data. First calculations were carried out using the friction coefficient  $\zeta$  , which results from single phase flow measurements. A correlation has been developed to calculate  $\zeta$ from the geometrical dimensions of the crack and was integrated into an advanced version of the Pana Model. The Modified Pana Model was qualified against some hundreds of test values. The measured data were predicted with a relative standard deviation of less than 20 percent.

# Inhaltsverzeichnis

|   |           | Zusammenfassung                                               |    |
|---|-----------|---------------------------------------------------------------|----|
|   |           | Abstract                                                      |    |
|   | 1.        | Einleitung                                                    | 1  |
|   | 2.        | Versuchseinrichtung                                           | 2  |
|   | 2.1       | Versuchskreislauf                                             | 2  |
|   | 2.2       | Teststrecke                                                   | 3  |
| , | 2.3       | Versuchsdurchführung                                          | 5  |
|   | 3.        | Betrachtung von Modellen für zweiphasigen kritischen          |    |
|   |           | Massenstrom                                                   | 6  |
|   | 3.1       | Pana-Modell                                                   | 6  |
|   | 3.2       | Abdollahian-Modell I                                          | 10 |
|   | 3.3       | Abdollahian-Modell II                                         | 12 |
|   | 3.4       | Collier-Modell                                                | 13 |
|   | 4.        | Ergebnisse                                                    | 13 |
|   | 4.1       | Messung des Reibungsbelwertes                                 | 13 |
|   | 4.2       | Empirische Gleichung zur Berechnung des Reibungsbeiwertes aus |    |
|   |           | den geometrischen Spaltparametern                             | 14 |
|   | 4.3       | Kritische Massenstromdichten aus Messung und Rechnung         | 16 |
|   | 4.4       | Druckverlaufmessung im Spalt                                  | 19 |
|   | 5.        | Schlußfolgerung                                               | 20 |
|   | ineal and | Danksagung                                                    | 22 |
|   | -         | Literatur                                                     | 23 |
|   |           | Anhang A: Daten aus Messung und Rechnung                      | 59 |
|   |           | Anhang B: Diagramme zur Bestimmung der Massenstromdichte in   | 76 |
|   |           | rauhen Rissen                                                 |    |

#### 1. Einleitung

Für die Sicherheit von Kernreaktoren und chemischen Apparaten ist es von großer Bedeutung, Leckraten aus Rissen druckführender Komponenten vorausbestimmen zu können. Meistens handelt es sich dabei um zweiphasige kritische Massenströme, wenn die Temperatur des Mediums in der Nähe des Siedepunktes liegt, was bei Kernreaktoren zutrifft.

Die Literatur weist viele theoretische und experimentelle Untersuchungen zu dieser Thematik auf, die sich jedoch meist mit Bruchöffnungen von 1 bis 10 cm, gelegentlich bis zu 1 m, befassen. Diese Untersuchungen, aus denen eine Reihe bekannter Ausströmmodelle (Blowdownmodelle) hervorgegangen sind, stammen aus der Zeit in der man beim Kühlmittelverluststörfall vom Abbruch einer ganzen Kühlmittelleitung (2F-Bruch) ausging. Als Folge der heute verwendeten zäheren Materialien und der fortgeschrittenen Kenntnisse über einen Bruchverlauf wird jetzt immer mehr das Leck- vor Bruch-Kriterium als realistisch angesehen (Munz [1,2]). Das Interesse hat sich daher mehr Strömungen durch kleine Leckagen wie Risse zugewandt.

In diesem Bericht sollen Untersuchungen von Strömungen durch enge rauhe Risse mit typischen hydraulischen Durchmessern ab  $d_H = 0,5$  mm, Kanalbreiten von 80 mm und Kanallängen von L = 46 mm behandelt werden. Hierüber wird auch in [17] berichtet. Diese Kanäle sind gekennzeichnet durch ein großes L/d<sub>H</sub> = Verhältnis, jedoch relativ kurze Strömungslängen und große Wandrauhigkeiten.

Die Frage, ob dafür die bisherigen Ausströmmodelle für zweiphasigen Massenstrom noch anwendbar sind, wurde häufig wie z.B. von Wallis [3] Amos [4] und Reimann [5] diskutiert.

Für Kanäle mit sehr großem  $L/d_H$  Verhältnis wird oft mechanisches und thermisches Gleichgewicht in der Strömung (Homogeneous Equilibrium Model = HEM) angenommen. Wegen der jedoch relativ kurzen Übergangszeiten für den Phasenwechsel wird bisweilen auch thermisches Ungleichgewicht, wie von Friedel [6] untersucht, zugrundegelegt. In diesem Bericht werden Modelle mit beiden Annahmen zum Vergleich mit den Meßergebnissen herangezogen und zwar einerseits das Gleichgewichtsmodell von Pana [7,8] und das Modell II von Abdollahian [9,10] und andererseits das Modell I von Abdollahian, das zwar mechanisches Gleichgewicht, jedoch thermisches Ungleichgewicht voraussetzt.

Letzteres baut auf ein Modell von Henry [11,12,13] auf. Es gibt nur sehr wenige Experimente mit Strömung durch enge Spalte, auf die zurückgegriffen werden kann. Zum Teil wurden sie in glatten Spalten oder mit geringer Oberflächenrauhigkeit gemacht. Collier [14,15], Amos [4] und Kefer [16] führten Versuche mit unterkühltem Wasser durch und verglichen sie mit vorhandenen Modellen bzw. modifizierten sie diese Modelle. Tabelle I zeigt die wichtigsten Parameter dieser Versuche. Weitere Informationen sind in [17] enthalten.

# 2. Versuchseinrichtung

## 2.1 Versuchskreislauf

Abb. 1 zeigt das Schema des Versuchskreislaufes. Der von der Dampfkesselanlage gelieferte Wasserstrom fließt über ein Sintermetallfilter und eine variable Drosselstrecke zum Druckbehälter mit der Teststrecke. Nach dem Druckbehälter strömt das normalerweise jetzt zweiphasige Gemisch über ein Ventil zum Kondensator und von dort als Kondensat über eine Pumpe zur Kesselanlage zurück. Ein Zweigstrom fließt über das Bypaßventil, das zum Einstellen des gewünschten Druckes vor der Teststrecke erforderlich ist, direkt zum Kondensator zurück.

Das Sintermetallfilter soll Korrosionsprodukte zum Schutz der engen Testspalte zurückhalten. Diese können aus der aus ferritischem Material gebauten Kesselanlage besonders beim Anfahren herausgetragen werden. Vom Filter bis zum Gegendruckregelventil ist der Versuchskreislauf aus diesem Grunde aus Edelstahl gefertigt. Die aus zwei parallelen Einheiten bestehende Drosselstrecke Fabrikat Caldyn/Ettlingen, die zur Bestimmung des einphasigen Massenstromes dient, erlaubt die Einstellung von 12 geeichten Öffnungsverhältnissen. Damit kann der über einen großen Bereich zu erwartende Massenstrom mit optimaler Genauigkeit bestimmt werden. Der absolute und der Differenzdruck an der Drosselstrecke werden mit Rosemounttransmittern und die Temperatur mit NiCrNi-Thermoelementen bestimmt. Diese 3 Signale gehen zum Rechner PDP 11, durch den eine ständige on-line-Berechnung des Massenstroms durchgeführt wird. Die Anlage kann mit maximal 3 kg/s unterkühlten Wassers bis zu einem Druck von 14 MPa betrieben werden. Die Unterkühlung des Wassers, bezogen auf den Siedepunkt vor der Teststrecke konnte bis minimal ca. 2 K reduziert werden. Die maximalen Werte lagen bei 60 K.

Der Kreislauf ist an mehreren zusätzlichen Stellen mit Temperatur- und Druckmeßstellen bestückt, deren Signale teilweise vom Rechner erfaßt werden.

# 2.2 Teststrecke

Die Einzelheiten der Teststrecke die abweichend von Abb. 1 aus 4 parallel geschalteten Einheiten bestand, sind in Abb. 2 in vereinfachter Form dargestellt. Prinzipiell besteht die Teststrecke aus zwei gleichgroßen Stahlblöcken, zwischen denen mittels Abstandshaltern ein definierter senkrechter paralleler Spalt eingestellt wird. Die Abstandshalter sind wie die Abbildung zeigt, in Nuten eingelassen, die die Spaltflächen seitlich begrenzen. Durch Einsetzen von Abstandshaltern verschiedener Dicke kann die Spaltweite variert werden. Dieses wurde in Stufen von 0,1 mm getan. Das Blockpaar mit Abstandshaltern wird mit einer speziellen Abdeckplatte und 4 Stiftschrauben auf eine dickwandige runde Grundplatte gespannt, die eine konzentrische Bohrung hat, deren Durchmesser wie die Spaltbreite, 80 mm beträgt. Zwischen Blockpaar und Grundplatte befindet sich eine Dichtung. Durch eine Reihe von Schrauben in der Abdeckplatte werden die Blöcke gegen ihre Abstandshalter zusammengedrückt, die Abstandshalter in ihre Nuten gepreßt und axial mit den Stirnflächen gegen die Dichtung der Grundplatte gedrückt. Auf diese Weise werden Bypaßströme zur Spaltströmung, die das Meßergebnis verfälschen würden, vermieden. Die Spalttiefe (in Strömungsrichtung) ist bei allen Testeinsätzen 46 mm und die Spaltbreite 80 mm. Die Grundplatte wird als Zwischenboden zwischen die beiden glockenförmigen Hälften des Testbehälters, die jeweils einen Eintritts- und Austrittsstutzen haben, geflanscht. Die dem Spalt zugewandten Flächen der beiden Blöcke sind durch Sandstrahlen mit unterschiedlicher Korngröße, bzw. mit Stahlgries, künstlich aufgerauht, um echte Rißstrukturen zu simulieren. Es wurden 2 Blockpaare hergestellt, deren Spaltrauhigkeiten mehrmals nach Abschluß der Versuche geändert wurde. Das Material ist V2A. Es wurde ferner ein Teststreckeneinsatz mit einem echten Riß hergestellt. In einer Materialprüfmaschine wurde ein längerer Stahlblock mit 100 x 50 mm Querschnitt durch Biegewechselbelastung "durchgebrochen". In der Rißebene war der Block ringsherum eingekerbt, um das Rißwachstum zu begünstigen und um eine möglichst ebene Rißfläche zu bekommen. Es mußten dennoch mehrere Risse erzeugt werden, um einen brauchbaren Teststreckeneinsatz mit definierbaren Größen zu bekommen. Aus dem geteilten Rißblock wurde ein Teststreckeneinsatz mit den selben Abmessungen, wie die beschriebenen Einsätze, herausgearbeitet. Das Material des Einsatzes für den echten Riß war das Reaktormaterial 20

MnMoNi 55. Es wurde verwendet, um möglichst realistische Rißrauhigkeiten zu bekommen.

Die Rauhigkeiten der Rißoberflächen wurden sowohl bei den simulierten als auch bei dem echten Riß mit einem Perthometer ausgemessen. Die gegenüberliegenden Rißflächen wurden an ca. 10 verschiedenen Stellen über eine Länge von jeweils 5 mm abgetastet. Die auf dieser Strecke ermittelten maximalen Höhendifferenzen wurden von allen 10 Messungen gemittelt und als gemittelte maximale Rauhigkeit (R) definiert. Von den möglichen Rauhigkeitsdefinitionen scheint diese als Parameter für die flüssige Reibung im Spalt am sinnvollsten zu sein. Weniger sinnvoll scheint die von einigen Autoren zugrunde gelegte sogenannte mittlere Rauhigkeit zu sein, die als Mittelwert aller Spitzen- und Tälerabstände von einer Mittellinie definiert ist. Die Größe der mittleren Rauhigkeit wird stark durch die vielen kleinen Rauhigkeitserhebungen bestimmt, die aber an der Strömungsreibung offenbar keinen großen Einfluß haben. Zwischen der gemittelten maximalen Rauhigkeit und der mittleren Rauhigkeit besteht kein eindeutiger funktionaler Zusammenhang. Nach eigenen Erfahrungen und Aussagen aus der Literatur, z.B. Button [17], ist letztere etwa 6 bis 10 mal kleiner als die von uns definierte Rauhigkeit. Wie die später behandelten Ergebnisse zeigen, ist der Parameter Rauhigkeit und die genaue Definition desselben von großer Bedeutung für die Berechnung der Spaltleckraten.

Ebenso wichtig ist die richtige Bestimmung der effektiven Spaltweite S. Da die Rauhigkeitserhebungen in der Größenordnung der Spaltweiten liegen, müssen sie bei der Festlegung der Strömungskanalweiten berücksichtigt werden. Bei den simulierten Spalten, bei denen die Rißflächen absolut plan sind, wurden mit Fühlerblechen (Spione), die in Dickenstufen von 0,01 mm zur Verfügung standen, nach der Montage der Testeinsätze die lichten Spaltweiten S<sub>m</sub> d.h., die Abstände zwischen den großen Rauhigkeitserhebungen beider Flächen festgestellt. Zu diesem Maß wurde 2 mal die halbe Rauhigkeitserhebung R dazu gezählt d.h. S = S<sub>m</sub> + R.

Beim echten Riß, bei dem die Flächen eine leichte Welligkeit hatten, war dieses Meßverfahren nicht optimal anwendbar. In diesem Fall wurden die 2 Rißflächen so zur Deckung gebracht, daß die Spaltweite praktisch O war. In dieser Position, in der auch die Endbearbeitung der anderen Blockflächen und der Abstandshalternuten gemacht werden mußten, wurden die beiden Nuten ver-

messen. Der Betrag um den die Abstandshalter dicker waren als die Nutenweite wurde als Spaltweite S<sub>m</sub> definiert. Die gemessene Rauhigkeit R wurde auch hier zu S<sub>m</sub> addiert, um die effektiven Spaltweite S zu bekommen, denn beim Aufeinanderliegen der beiden Rißflächen wurde angenommen, daß zwar das Welligkeitsprofil beider Flächen deckungsgleich sei, jedoch nicht die Rauhigkeitserhebungen ineinander verzahnt seien.

Beim Vermessen der simulierten Risse wurde festgestellt, daß in den meisten Fällen die Austrittsweite etwas größer war als die Eintrittsweite. Vermutlich waren geringfügige Verformungen des Testeinsatzes durch Montagekräfte die Ursache. Da bei allen Versuchspunkten der Austrittsquerschnitt der kritische Querschnitt war, wurde die Austrittspaltweite S<sub>A</sub> für die Berechnungen zugrundegelegt.

7 Druckentnahmebohrungen in Strömungsrichtung auf beiden Rißflächen verteilt dienten der Messung des Strömungsdruckabfalles im Spalt. Die Bohrungen waren mit variablen seitlichem Abstand nach beiden Seiten der Strömungsmittellinie angebracht um die Strömung möglichst wenig zu stören.

# 2.3 Versuchsdurchführung

Abb. 3 zeigt die Matrix der Versuchsparameter. Alle Testeinsätze wurden mit Eintrittsdrücken von 4, 6, 8, 10 und 12 MPa und wenige mit 14 MPa gefahren. Die Unterkühlungstemperaturen, bezogen auf den Eintrittsdruck, waren 60, 50, 40, 30, 20, 10 und 2 K. Die Unterkühlung 0 (Siedepunkt) konnte wegen instabilen Verhaltens der Druckregelung nicht ganz erreicht werden. Der Gegendruck  $p_u$ , der normalerweise beim Umgebungsdruck lag, wurde jeweils beim 60 K Punkt so weit angehoben bis unterkritische und einphasige Strömung erreicht war. Mit steigendem Gegendruck wurden dann jeweils einige einphasige Punkte gefahren, um den Reibungsbeiwert  $\zeta$ , der, wie später berichtet wird, für die Rechnungen benötigt wurde, zu bestimmen.

Die  $\zeta$ -Bestimmung war auch deshalb von großer Bedeutung und wurde daher nach jedem neuen Versuchsstart wiederholt, weil ein konstanter  $\zeta$ -Wert ein Zeichen für unveränderte Geometrie des Spaltes ist. Gegenüber Ablagerungen, Erosion oder thermischer Dehnung sind die engen Spalte sehr empfindlich.

Der Versuchsablauf war folgender: Nach dem Starten der Kesselanlage wurde zunächst mit steigender Temperatur das Wasser durch den Bypaß geleitet, bis die Leitungen frei vom Rost waren. Danach wurde der Testkreislauf angewärmt. Die einzelnen Versuchspunkte wurden gewöhnlich mit steigender Temperatur, die nur langsam erhöht werden konnte angesteuert. Der Eintrittsdruck wurde dabei durch ständige Korrekturen konstant gehalten. Vom Rechner wurden die notwendigen Leitgrößen, wie Drücke, Temperaturen und Unterkühlungsgrade bei Bedarf ausgedruckt. Die Zeitspanne zwischen zwei Versuchspunkten war 20 bis 30 Minuten. Beim Erreichen der gewünschten Werte wurden auf Befehl vom Rechner die Drücke und Temperaturen vor und nach dem Spalt, die Unterkühlungstemperatur, der gerechnete Massenstrom und die sieben gemessenen Drücke im Spalt aufgenommen und auf Magnetplatten gespeichert, um sie zur späteren Weiterverarbeitung abzurufen.

Insgesamt wurden mit 16 Schlitzkonfigurationen 458 verwertbare Versuchspunkte erreicht.

# 3. Betrachtung von Modellen für zweiphasigen kritischen Massenstrom

Da es das Ziel der Arbeiten, über die hier berichtet wird, ist eine Rechenmethode zu finden, mit der sich Leckraten aus Rissen möglichst genau und mit annehmbarem Aufwand berechnen lassen, wurden Modelle aus der Literatur aufgegriffen und auf ihre Verwendbarkeit untersucht. Im Folgenden werden 4 ausgewählte Modelle, die später mit den Versuchsergebnissen verglichen werden, kurz beschrieben.

#### 3.1 Pana Modell

Pana [7,8] hat eine Methode für die Berechnung von kritischen zweiphasigen Leckraten veröffentlicht, die die flüssige Reibung in dem Leck durch Einführung des Reibungsbeiwertes 5 berücksichtigt. Diese Methode unterscheidet sich hierdurch von den Blowdown-Modellen. Die Berechnungsmethode basiert auf thermodynamischen Gleichgewichtsmodellen, wie die modifizierte Bernoulligleichung und das homogene Gleichgewichtsmodell (HEM) bzw. alternativ das Moody Modell [20].

Das Moody Modell geht von fluiddynamischem Ungleichgewicht aus. Bei einem Strömungskanal, wie ihn ein enger rauher Riß darstellt, ist die Strömung so stark durchmischt, daß man homogene Strömung annehmen kann. Es wird daher das Pana Modell für unsere Anwendung nur in Verbindung mit dem HEM betrachtet. Exemplarische Rechnungen zeigten, daß sich mit dem Moodyansatz ein um 30 bis 100 % höherer Massenstrom ergeben würde, der, wie später einleuchtend wird, unrealistisch ist. Pana teilt den Bereich der kritischen Entspannung von unterkühltem bis zum gesättigten Wasser, und nur dieser Bereich soll hier betrachtet werden, in 2 Gebiete ein, die anhand des Enthalpie-Entropiediagrammausschnittes in Abb. 4 erläutert werden sollen.

Da die Entspannung zwischen dem Eintrittsdruck  $P_o$  und dem Gegendruck  $P_u$  reibungsbehaftet ist (polytrop), verläuft sie nicht als Senkrechte im Diagramm, sondern mit einer Steigung, die zunehmender Entropie entspricht. Ausgehend von dem Gebiet niedriger Eintrittstemperatur  $T_o$  zu höherer Temperatur (von links unten nach rechts oben) wird mit  $T_o$ " und  $T_2$ " der Punkt erreicht, in dem der Zustand im Austritt des Spaltes die Sättigungslinie erreicht, Zweiphasenstrom entsteht und kritische Entspannung beginnt. Mit steigender Eintrittstemperatur (sinkender Unterkühlung) steigt der Austrittsdruck  $p_2$  an und liegt jetzt über dem Gegendruck  $p_u$ . Der Verdampfungsbeginn bleibt nach Pana trotz steigender Eintrittstemperatur im Austrittsquerschnitt bis die Grenztemperaturen  $To_{1im}$  und  $T_{2Lim}$  erreicht werden. Von jetzt an wandert die Stelle der Dampfbildung im Spalt stromaufwärts und erreicht hat. Der Bereich I reicht von To" bis  $To_{1im}$  und Bereich II von  $To_{1im}$  bis Tos.

Der von Pana weiterhin behandelte Bereich III mit zweiphasiger Zuströmung trifft bei den hier betrachteten Verhältnissen nicht zu. Er wäre nur bei homogener Zuströmung sinnvoll, die jedoch bei Stagnationszustand vor dem Spalt nicht vorstellbar ist.

Pana beschreibt die Massenstromdichte für den Bereich I, in dem im Spalt erst im Austrittsquerschnitt Zweiphasenströmung vorliegt, mit der Gleichung:

$$G = \left[\frac{2 (p_0 - p_2)}{v (1 + \zeta)}\right]^{0.5}$$
(1)

mit dem spezifischen Volumen v im Spalt und dem einphasigen Reibungsbeiwert  $\zeta$  • Da die Temperaturdifferenz To - T2 sehr klein ist und am Austritt Sättigungs-

zustand herrscht hat er Gl. (1) durch die sogen. modifizierte Bernoulligleichung angenähert.

$$G \approx \left[\frac{2\left[\overset{p_{o}}{r} - \overset{p_{s}}{s} (T_{o})\right]}{\overset{v}{s} (T_{o}) \cdot (1 + \zeta)}\right]^{0,5}$$
(2)

Diese Gleichung ist sehr einfach zu handhaben. Die treibende Kraft ist die Druckdifferenz zwischen dem Eintrittsdruck und dem Siededruck der Eintrittstemperatur. Die obere Grenze des Bereiches I ist erreicht, wenn  $G = G_{1im}$  und

$$\frac{P_{o}}{P_{s}} \left( \frac{T_{o}}{p_{s}} \right) \left| \lim_{1 \le m} = 1 + \frac{1 + \zeta}{2} \cdot \frac{G_{1 \le m} \cdot v_{s}}{p_{s}} \right|$$
(3)

Beim Überschreiten dieser Grenze d.h., wenn

$$\frac{P_{o}}{P_{s}(T_{o})} \left. \left. \left. \left. \frac{P_{o}}{P_{s}(T_{o})} \right|_{1 \text{ im}} \right. \right. \right.$$
(4)

ist, liegt der Bereich II vor.

Der Bereich II ist begrenzt durch:

$$G_{\text{Lim}} = f (T_0 \text{ lim}, T_2 \text{ lim}) \text{ bei } x_2 = 0$$

und

$$G_{\text{HEM}} = f(T_{\text{OS}}) \text{ bei } x_{\text{OS}} = 0$$

Zwischen diesen beiden Grenzwerten ist die Massenstromdichte eine lineare Funktion von der Eintrittstemperatur  $T_o$ , die zwischen To<sub>lim</sub> und To<sub>s</sub> liegt.

Die Massenstromdichte für Bereich II ist:

$$G = G_{\text{HEM}} + \frac{T_{\text{os}} - T_{\text{os}}}{T_{\text{os}} - T_{\text{olim}}} \quad (G_{\text{lim}} - G_{\text{HEM}})$$
(5)

Die Grenzwerte G<sub>lim</sub> und G<sub>HEM</sub> werden mit dem homogenen Gleichgewichtsmodell HEM (Homogeneous Equiblibrium Model) für die o.g. Randbedingungen errechnet. Die Temperatur T2<sub>1im</sub> errechnet sich iterativ aus der Beziehung:

$$^{T}olim^{-T}2lim = \left(\frac{V \cdot (T_{2lim}) \cdot G_{lim} (T_{2lim})}{c_{p} (T_{2lim})} \cdot \frac{(T_{2lim})}{2} \cdot \frac{1+\zeta}{2} \cdot (\alpha \cdot T_{2} - \frac{\zeta}{1+\zeta})\right)$$
(6)

mit

$$C_{p} = \left| \frac{dh}{dt} \right|_{p}$$
(7)

$$\alpha = \frac{1}{v} \cdot \left( \frac{dv}{dt} \right)_{p}$$
(8)

Das homogene Gleichgewichtsmodell kann als bekannt vorausgesetzt werden und ist in vielen Rechenprogrammen installiert. An dieser Stelle soll daher nur kurz die Grundlage für das Modell, das sowohl thermisches als auch fluiddynamisches Gleichgewicht voraussetzt, angedeutet werden.

Aus der allgemeinen Beziehung für Massenstromdichte bei einphasiger Strömung

$$G = \frac{1}{v} \cdot \left[ 2 \cdot (h_0 - h_2) \right]^{-0,5}$$
(9)

entsteht, wenn für das spezifische Volumen v und die Enthalpie h die Beziehungen für homogene Zweiphasenmischung

$$v = x v_{G} + (1 - x) V_{T}$$
 (10)

$$h = x \cdot h_{G} + (1 - x) h_{L}$$
(11)

eingesetzt werden; wobei x der Dampfgewichtsanteil und die Indices G und L für Gas und Flüssigkeit stehen, die Massenstromdichte für homogenes Zweiphasengemisch:

$$G = \left\{ \frac{2\left[h_{o}^{-} - (1 - x) \cdot h_{L2}^{-} x h_{G2}\right]}{x_{2} \quad g_{2}^{-} + (1 - v_{2}) \cdot v_{L2}} \right\}^{0,5}$$
(12)

Unter weiterer Annahme eines isotropen Strömungseinlaufes in den Spalt (Position 0 bis 1)

$$S_{o} = S_{1} = X_{1} + S_{GL} + (1 - X_{1}) + S_{L1}$$
 (13)

und Einbeziehung des Impulsansatzes für den Druckabfall

$$\zeta = \int_{P_1}^{P_2} 2 \frac{1 + G^2 \cdot \frac{dv}{dp}}{G^2 \cdot V} \cdot d_p = f(G_1, G_2, p_1, p_2, x_1, x_2)$$
(14)

wird die Gleichung für die Massenstromdichte nach dem Druck p abgeleitet und gleich O gesetzt. Damit ergibt sich die Beziehung für die kritische Strömung

$$\frac{\mathrm{dG}}{\mathrm{dp}} = 0 \tag{15}$$

# 3.2 Abdollahian-Modell I

Dieses Modell ist auf der Grundlage von Henry's [10,11,12] Modell, das auf fluiddynamischem Gleichgewicht (homogene Strömung) aber auf thermodynamischem Ungleichgewicht beruht, entstanden. Das thermische Ungleichgewicht, d.h. die Verzögerung des Phasenwechsels wird durch einen empirischen Faktor N auf folgende Weise berücksichtigt:

In der aus der Massenerhaltungsgleichung und der Impulsgleichung entstandenen Beziehung für die kritischen Massenstromdichte

$$G_{c}^{2} = - \left| x^{\bullet} \frac{dv_{G}}{dp} + (v_{G} - v_{L}) \cdot \frac{dx}{dp} \right|_{c}^{-1}$$
(16)

in der der Index c für kritischen Zustand steht ist:

$$\frac{\mathrm{d}\mathbf{v}_{\mathrm{G}}}{\mathrm{d}\mathbf{p}} = -\frac{1}{\mathbf{\chi}} \quad \frac{\mathbf{v}_{\mathrm{G}}}{\mathbf{p}} \tag{17}$$

mit dem Isotropenexponenten  $\varkappa$ , und dem Term für den Phasenwechsel (Wasser zu Dampf)

$$\frac{dx}{dp} = N \cdot \frac{dx_E}{dp}$$
(18)

Der Ungleichgewichtsfaktor N ist

| $N = 2 \cdot \frac{x}{E}$ | für | <sup>x</sup> <sub>E</sub> < 0,05 | und |
|---------------------------|-----|----------------------------------|-----|
| N = 1                     | für | $x_E \ge 0,05$                   | ×   |

und der Gleichgewichtsdampfanteil

$$\mathbf{x}_{\mathbf{E}} = \begin{vmatrix} \mathbf{S}_{\mathbf{O}} - \mathbf{S}_{\mathbf{L}} \\ \mathbf{S}_{\mathbf{G}} - \mathbf{S}_{\mathbf{L}} \end{vmatrix}_{\mathbf{E}}$$
(19)

mit den Entropien vor dem Spalt S<sub>o</sub> und der Entropie der Flüssigkeit und des Dampfes S<sub>G</sub> im Gleichgewichtszustand. Aus (16, 17, 18) ergibt sich dann

$$G_{c}^{2} = \left| x \frac{\overline{v}_{G}}{\overline{x} \cdot p} - (\overline{v}_{G} - \overline{v}_{L0}) \cdot N \cdot \frac{dx_{E}}{dp} \right|_{c}^{-1}$$
(20)

Der Langrohr-Dampfgewichtsanteil ist nach der Definition des Modells:`

Und im Spalt mit der Länge L und dem hydraulischen Durchmesser  $d_H = 2$  S wird davon ausgegangen (nach Henry), daß der Beginn der Verdampfung bei  $L/d_H = 12$ liegt und sich der kritische Dampfanteil als Funktion von  $L/d_H$  des Spaltes asymptotisch dem Wert der Gl. 21 nähert nach folgender Beziehung:

$$x_{c} = x_{LT} \left[ 1 - \exp \left( -0,0523 \right) \left( \frac{L}{d_{H}} - 12 \right) \right]$$
 (22)

Abdollahian hat das Henry-Modell dadurch erweitert, daß er alle Druckverluste im Spalt berücksichtigt hat. Er setzt für den gesamten Druckabfall über den Spalt:

$$\Delta P_{tot} = \Delta P_{e} + \Delta pf + \Delta p_{A} + \Delta P_{AA}$$
(23)

Im Einzelnen bedeuten:

$$\Delta \mathbf{p}_{e} = \frac{G_{c}^{2} \cdot \mathbf{v}_{LO}}{2 C^{2}}$$
(24)

der Eintrittsdruckverlust mit der Kontraktionszahl C = 0,61

$$\Delta P_{f} = \frac{12}{2} \lambda \cdot G_{c}^{2} \cdot v_{L0} + \lambda \frac{L/d_{H} - 12}{2} \cdot G_{c}^{2} \cdot \left[v_{L} + x(v_{G} - v_{L})\right]$$
(25)

der Reibungsdruckverlust mit dem Reibungsfaktor 🖌 der nach der modifizierten Karman-Gleichung

$$\lambda = (2 \quad \log \frac{d_{\rm H}}{2\rm K} + 1,74)^{-2}$$
(26)

mit der mittleren Rauhigkeitshöhe K berechnet wird.

 ${}^{\Delta P}_{A}$  und  ${}^{\Delta P}_{AA}$  sind die Druckverluste bedingt durch Querschnittsveränderung des Spaltes und durch Phasenwechsel. Der kritische Druck ergibt sich schließlich aus:

$$P_{c} = P_{o} - \Delta P_{tot}$$
(27)

Für den ersten Vergleich von Experiment und Rechnung, mit dem Pana- und dem Abdollahian I-Modell, bei dem die gemessenen Reibungsbeiwerte für beide Modelle als Grundlage dienen sollten, wurde Gl. (23) durch folgende Beziehung substituiert:

$$\Delta P_{tot} = (1 + \zeta) \frac{V_{LO}}{2} G_{c}^{2}$$
(28)

Auf diese Weise konnten beide Modelle auf gleicher Basis verglichen werden.

#### 3.3 Abdollahian-Modell II

Dieses Modell von Abdollahian et al. [9,10] für kritische Entspannung aus unterkühltem Stagnationszustand ist im Aufbau und der Anwendung besonders einfach. Es geht von homogener Gleichgewichtsströmung mit thermischem Gleichgewicht aus und verlangt im Gegensatz zum Modell I keine besonderen Eingaben von geometrischen Parametern des Strömungskanals.

Mit der Annahme, daß  $p_c \approx p_s$  (To) und der Berücksichtigung nur des Eintrittsverlustes und des Reibungsdruckverlustes wird die kritische Massenstromdichte nach folgender Gleichung berechnet:

$$G_{c} = \left[\frac{2\left[p_{o}^{-}p_{s}^{-}(To)\right]}{v_{m}+v_{m}^{-}f\cdot\frac{L}{d_{H}}+\frac{v_{o}}{c^{2}}}\right]^{0,5}$$
(29)

mit c = 0,61 und f ein Reibungsfaktor (Karman)

$$\overset{\nabla}{m} = \overset{\nabla}{\overset{\nabla}{L}} + \overset{\nabla}{x} \begin{pmatrix} \overleftrightarrow{\nabla} - \overleftrightarrow{\nabla} \\ G & L \end{pmatrix}$$
 (30)

die quergestrichenen Werte sind über den Entspannungsweg gemittelte Werte.

#### 3.4 Collier-Modell

Dieses Modell [14,15] ist wie das Abdollahian Modell I (in 3.2 beschrieben) auf dem Modell von Henry aufgebaut. Der wesentliche Unterschied zum beschriebenen Modell liegt in der Beziehung für den Reibungsdruckverlust im Spalt. An die Stelle von Gleichung (25) tritt bei diesem Modell die Beziehung:

$$\Delta p_{f} = \frac{\lambda}{4} \left( \frac{L}{d_{H}} - 12 \right) G_{c}^{2} \left[ \nabla_{L} \left( 1 + \frac{A_{e}^{2}}{A_{i}^{2}} + x_{e} \left( \nabla_{GC} - \nabla_{L0} \right) \right]$$
(31)

Hierbei stehen die Indices c, e, i für kritischen Zustand, Austritt und die Stelle  $L/d_{\rm H}$  = 12 im Spalt.

# 4. Ergebnisse

## 4.1 Messung des Reibungsbeiwertes

Der Reibungsbeiwert des Spaltes bei einphasiger Strömung errechnet sich aus den Meßwerten mit folgender Gleichung:

$$\zeta = \frac{(p_0 - p_u) \cdot A^2 \cdot \boldsymbol{5} \cdot 2}{\overset{\circ}{\mathbf{m}}_{\mathbf{m}}^2} - 1$$
(32)

Hierin sind  $\mathcal{G}$  die mittlere Dichte,  $p_0$  und  $p_u$  die gemessenen statischen Drücke vor und hinter dem Spalt und A der Strömungsquerschnitt des Spaltes, der mit der in 2.2 definierten Spaltweite errechnet wurde. Aus Gründen der Vereinheitlichtung wurde der Austrittsquerschnitt genommen und damit der Wert  $\zeta_A$ errechnet. In diesem Wert sind außer der flüssigen Reibung auch der Eintrittsdruckverlust und der Verlust durch Querschnittsänderung enthalten.

Wie in 2.3 bereits erwähnt wurde, wurden die Messungen bei Betriebstemperatur d.h. jeweils beim Versuchspunkt mit der Unterkühlung 60 K durch Anhebung von  $p_u$  durchgeführt, weil die Spaltweite offenbar leicht temperaturabhängig war. Für eine Spaltgeometrie wurden jeweils etwa 20 Messungen und  $\zeta_A^{-Berech-}$ nungen durchgeführt und gemittelt. Die Streuung der einzelnen  $\zeta_A^{-Werte}$  um den Mittelwert betrug etwa 5 - 8 %.

Waren bei einer Teststreckengeometrie diese Streuungen merklich größer, wurde diese Geometrie nicht verwendet.  $\zeta_A$ -Werte von Messungen mit kaltem Wasser (70°C) waren um 10 bis 20 % größer als die beschriebenen. Sie wurden für Berechnungen nicht verwendet.

# 4.2 <u>Empirische Gleichung zur Berechnung des Reibungsbeiwertes aus den geome-</u> trischen Spaltparametern

Die experimentelle Bestimmung des Reibungsbeiwertes, wie sie in 2.3 und 4.1 beschrieben wurde, ist, um das Pana-Modell für Berechnungen anwenden zu können, viel zu aufwendig oder gar nicht durchführbar. Da aber andererseits mit diesem Modell so gute Ergebnisse erzielt wurden, wie später gezeigt wird, wurde eine Beziehung für die Berechnung von  $\zeta$  aus den geometrischen Rißparametern entwickelt, mit der das Pana-Modell erweitert und für allgemeine Fälle anwendbar gemacht wurde.

Der Reibungsbeiwert setzt sich nach allgemeiner Definition zusammen aus einem Anteil für den Eintrittsverlust  $\zeta_i$ , für den Reibungsverlust  $\zeta_f$  und für den Austrittsverlust  $\zeta_E$ 

 $\zeta = \zeta_{i} + \zeta_{f} + \zeta_{E}$ (33)

Ein Anteil für Querschnittsänderung wurde nicht eingeführt. Er ist in  $\zeta_{\rm f}$ enthalten. Der Eintrittsverlust für scharfkantigen Einlauf ist nach dem Wärmeatlas 1984 [18]  $\zeta_{\rm i} = 0,5$ .

Der Reibungsverlustanteil ist durch die bekannte Beziehung

$$\zeta_{f} = \lambda * \frac{L}{d_{H}}$$
(34)

gegeben, wobei  $\lambda$  der Reibungsfaktor, L die Strömungslänge und d<sub>H</sub> (2 x Spaltweite) der hydraulische Durchmesser sind. Der Austrittsverlust ist bei scharfkantigem Austritt ohne Druckrückgewinnung gleich Null, wenn die dynamische Druckhöhe als verloren angesetzt wird.

Für die Berechnung des Reibungsfaktors  $\lambda$  gibt es viele Gleichungen aus der Literatur, die jedoch meistens für Strömungskanäle größerer Abmessungen geeignet sind. Nikuradse [20,21] hat in seinem bekannten Diagramm, in dem die Reibungsfaktoren über der Re-Zahl mit dem Parameter d<sub>H</sub>/R (R = Oberflächenrauhigkeit) dargestellt sind, gezeigt, daß bei großen Re-Zahlen und großen d<sub>H</sub>/R-Werten  $\lambda$  praktisch nur noch vom Verhältnis d<sub>H</sub>/R abhängt. Bei unseren  $\zeta$  -Messungen zeigte sich, daß keine Abhängigkeit mehr von der Re-Zahl bestand. Aus diesem Grunde kann hierfür die von Nikuradse verwendete Form der folgenden Gleichung verwendet werden:

$$\lambda = \left(a \cdot \log \frac{d_{\rm H}}{R} + b\right)^{-2} \tag{35}$$

Nikuradse fand bei seinen bekannten Versuchen mit Sandrauhigkeiten die Faktoren a = 2, b = 1,46. Button [18] fand für seine Versuche mit rauhen Spalten die Werte a = 2,25, b = 1,25.

In Abb. 5 wurde  $1/\sqrt{\lambda}$  über dem Logarithmus von d<sub>H</sub>/R aufgetragen. Gleichungen vom Typ Gl. (35) ergeben dabei Geraden.

Mit Hilfe der Gleichungen (33, 34 und 35) wurden aus den bei unseren Versuchen gemessenen  $\zeta$ -Werten und den gemessenen Rauhigkeitswerten R und den hydraulischen Durchmessern d<sub>H</sub> die  $\lambda$ -Werte errechnet und in Abb. 5 für die unterschiedlichen Rauhigkeiten eingetragen. Mit Hilfe der linearen Degression wurde dann die für unsere Spalt- und Rißkonfigurationen zutreffende Gleichung

$$\lambda = (3,39 \cdot \log \frac{d_{\rm H}}{R} - 0,866)^{-2}$$
(36)

gefunden, die mit Gl. (33) und (34) die folgende Gleichung zur Berechnung des Reibungsbeiwertes liefert:

$$\zeta_{\rm A} = 0,5 + (3,39 \cdot \log \frac{d_{\rm H}}{R} - 0,866)^{-2} \cdot \frac{L}{d_{\rm H}}$$
 (37)

Mit dieser Gleichung wurde das Pana Modell zum Modifizierten Pana Modell erweitert. Voraussetzung für die Anwendung ist die in Abschn. 2.2 detailliert gegebene Definition für R und d<sub>H</sub>.

# 4.3 Kritische Massenstromdichten aus Messung und Rechnung

In den Tabellen 4 - 20 im Anhang sind die wichtigsten Versuchsdaten mit den in Tabelle 2 aufgeführten Spaltgeometrien, dokumentiert. Jede der Tabellen 4 - 20 enthält jeweils die Werte für einen Spalt. Außer den Meßwerten  $p_0$ ,  $T_0$ ,  $p_u$  bzw. den on-line errechneten Werten  $\Delta$  T, m und  $G_M$  sind die mit dem ursprünglichen Pana Modell, unter Verwendung des gemessenen Reibungsbeiwertes  $\zeta_A$ , gerechneten Werte  $G_R$ ,  $p_2$  und  $G_R/G_M$  enthalten.  $G_M$  ist die gemessene und  $G_R$ die mit dem Modell gerechnete Massenstromdichte.  $P_2$  ist der theoretische Druck im Austrittsquerschnitt.

In Abb. 6 bis 10 sind die gemessenen Massenstromdichten über dem gemessenen Reibungsbeiwert  $\zeta_A$  mit dem Stagnationsdruck p<sub>o</sub> als Parameter aufgetragen. Ein Diagramm enthält jeweils eine Kurvenschar für eine konstante Unterkühlungstemperatur  $\Delta$  T. Die Diagramme zeigen, daß sich durch die Versuchspunkte Kurven mit stetiger Tendenz legen lassen. Wie zu erwarten war, geben höhere Eintrittsdrucke p<sub>o</sub>, kleinere Werte von  $\zeta_A$  und größere  $\Delta$ T-Werte größere Massenstromdichten. Die Kurven werden mit abnehmender Eintrittstemperatur d.h. mit zunehmender Unterkühlungstemperatur  $\Delta$ T steiler. Grundsätzlich ist eine starke Abhängigkeit von dem Parameter  $\zeta_A$  zu erkennen, die mit zunehmender Unterkühlungstemperatur größer wird. Dieser Effekt ist darauf zurückzuführen, daß mit wachsendem G der Reibungsverlust im Spalt quadratisch wächst.

In Abb. 11 ist die Massenstromdichte über dem Parameter  $L/d_H$  aufgetragen. Parameter ist die Rauhigkeit R. Die Kurven wurden für die Unterkühlungstemperaturen 10 K und 60 K dargestellt. L ist die Länge des Strömungskanals (46 mm bei den beschriebenen Versuchen). Diese Darstellungsart wurde hauptsächlich deshalb gewählt, weil sie in der Literatur häufig anzutreffen ist. Da G eine Funktion von L, d<sub>H</sub> und R ist, sind Kurven in diesem Diagramm nur dann vergleichbar, wenn R immer in der gleichen Weise definiert wurde. Eine Kurve die einem Bericht von R.P. Collier [14,15] entnommen und in das Diagramm eingezeichnet wurde, läßt sich schlecht in die Kurvenschar eingliedern, weil vermutlich die Definition der angegebenen Rauhigkeit anders als bei uns durchgeführt wurde. Leider wird oft die Bedeutung dieser Größe vernachlässigt.

Der Vergleich der Versuchsdaten mit Modellrechnungen wurde in folgender Weise durchgeführt.

In einem ersten Schritt wurden Berechnungen mit dem ursprünglichen Pana Modell und dem modifizierten Abdollahian-Modell I (auch modifiz. LEAKO1-Modell genannt) gemacht. Beide erfordern die Eingabe der durch Messung gefundenen  $\zeta$   $_{A}$ -Werte und sind daher von der rechnerischen Bestimmung der flüssigen Reibung aus den Rißparametern unabhängig. Abb. 12 und 13 zeigen die gemessene (ausgezogene Linie) und die mit Pana gerechnete Massenstromdichte (gestrichelte Linie) über der Unterkühlungstemperatur 🛛 🗛 aufgetragen. Der Stagnationsdruck  $p_0$  ist dabei ein Parameter. Abb.12 wurde mit  $\zeta_A = 3.2$  und Abb. 13 mit  $\zeta_A$  = 38,2 gemacht. Beide Diagramme zeigen, daß die gerechneten Werte dicht unter den gemessenen liegen. In Abb. 14, 15, 16 wurden die Verhältnisse von gerechneten zu gemessenen Werten  $G_R/G_M$  über der Unterkühlungstemperatur  $\Delta T$  für das Pana Modell und in Abb. 17 und 18 für das modif. LEAKO1-Modell aufgetragen. Es kann schon hier gesehen werden, daß die LEAKO1-Werte wesentlich stärker von der Linie  $G_R/G_M = 1$  abweichen, als die Pana-Werte. Die Abb. 19 und 20 zeigen endlich die gerechneten Werte über den gemessenen Werten aufgetragen und zwar in Abb. 19 für Pana und in Abb. 20 für Abdollahian I. Beide Diagramme zeigen für 458 Versuchspunkte bemerkenswert geringe Abweichungen von der Ideallinie (45°-Linie). Beim Pana Modell beträgt die relative Standard Abweichung nur 10,2 % und beim modif. LEAK01-Modell 16,3 %. Das Pana Modell ist daher für die Beschreibung der Versuchswerte wesentlich besser geeignet als das Abdollahian-Modell I.

Die auf Abb. 19 und 20 angegebenen Fehlergrößen sind wie folgt definiert.

relativer Fehler:

$$\bar{x}_{m} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{im}$$
$$x_{im} = (G_{Mess.} - G_{Rechn.})/G_{Mess.}$$

relative Standardabweichung:

$$S_{Rm} = \left[\sum_{i=1}^{n} x_{im}^2 / (n - f - 1)\right]^{0,5}$$

wobei n die Anzahl der Werte und f die Anzahl der Variablen im Modell sind.

In einem zweiten Schritt wurden Vergleichsrechnungen mit 3 Modellen gemacht, die als Eingaben nur noch geometrische Rißgrößen, neben den üblichen fluiddynamischen Größen erfordern. Es sind dies das Modifizierte Pana Modell, das original Abdollahian Modell I und das Abdollahian-Modell II.

In den Abbildungen 21, 22 und 23 sind die Berechnungen dieser 3 Modelle für 458 Versuchspunkte über den Messungen aufgetragen. Die Punkte, die zu den 3 echten Rißgeometrien gehören, wurden hier gegenüber den Werten der simulierten Rißgeometrien durch besondere Symbole gekennzeichnet. In Tabelle 3, auf die später noch eingegangen wird, sind die Fehlergrößen für diese Vergleiche aufgeführt. Die 3 Diagramme zeigen, daß das Modifizierte Pana Modell eine größere Streubreite und größere Standardabweichung verglichen mit dem original Pana Modell Abb. 19 hat, was darauf zurückzuführen ist, daß mit der Korrelation, mit der das ursprüngliche Pana Modell erweitert wurde, eine zusätzliche Unsicherheit, besonders in Bezug auf die Definition der Rauhigkeit und der effektiven Spaltweite eingeführt wurde. Dieser Effekt kommt besonders bei den Versuchspunkten mit den echten Rissen zum Ausdruck, bei denen die Bestimmung der effektiven Spaltweite schwieriger als bei den simulierten Rissen war. Allgemein kann man jedoch feststellen, daß das Modifizierte Pana Modell von den 3 Modellen die Versuchsergebnisse am besten wiedergibt. Mit einer Standardabweichung von etwa 18 % ist die Übereinstimmung auch absolut gesehen als sehr gut anzusehen.

In einem dritten Schritt wurden der Vollständigkeit halber Versuchsdaten, die von R.P. Collier [14, 15] und von Amos und Schrock [4] aus der Literatur entnommen wurden, mit dem modifizierten Pana Modell nachgerechnet und in Abb. 24 dargestellt. Als Rauhigkeiten wurden bei Collier die angegebenen Werte eingesetzt, die wie bereits erwähnt wurde, offenbar auf eine andere Weise definiert waren. Bei Amos und Schrock, bei denen keine Rauhigkeiten angegeben sind, wurden aus einphasigen Kalibrierdaten aus dem Bericht durch Rückwärtsrechnung Rauhigkeitswerte errechnet und dann wieder in die Modellrechnung eingesetzt.

Schließlich wurden auch die übrigen Kombinationsmöglichkeiten von Modellen und Versuchsdaten durchgeführt unter Einschluß des Modells von R.P. Collier. Die Fehlerdaten dieser Kombinationen sind in Tabelle 3 zu sehen. Die jeweils günstigste Kombination, die den kleinsten Fehler ergibt, ist mit einem eingekreisten Wert gekennzeichnet. Das Modifizierte Pana Modell ist, wie man sehen

kann, außer bei den Collier-Daten das Modell mit der besten Wiedergabe der Versuchsdaten. Die Collierdaten aus den Versuchen mit simulierten Rissen werden systematisch zu groß wiedergegeben. Geht man davon aus, daß Collier die arithemetisch gemittelte Rauhigkeit verwendet hat, die etwa 6 bis 10 mal kleiner ist als die von uns verwendete Spitzenrauhigkeit, wie in Abschnitt 2.2 erwähnt wurde, so kann man mit Verwendung von Gleichung 3.2 und den Abbildungen 6 bis 10 überschlagen, daß die gerechnete Massenstromdichte dadurch um den Faktor 1,3 bis 3 zu groß gerechnet wurde. Dieser Faktor erklärt das Herausfallen der Collier-Werte in Abb. 24 und die hohen Fehlerwerte in Tabelle 3. Die Abweichungen der Werte für echte Risse bei Collier sind damit nicht interpretierbar. Es kann im Augenblick nur gesagt werden, daß die Versuchswerte offenbar wegen der großen Streubreite stark fehlerbehaftet sind.

# 4.4 Druckverlaufmessung im Spalt

Die Darstellung der Druckverlaufmessungen im Spalt hat rein informativen Charakter. Eine Rückkopplung zu den Rechnungen wurde nicht durchgeführt. Ebenso sind keine vergleichenden Druckverlaufrechnungen gemacht worden.

Über 7 Druckanbohrungen von 1 mm Ø, die in Strömungsrichtung gesehen von der Mittellinie um wenige Millimeter unregelmäßig seitlich versetzt waren, wie in 2.2 bereits erwähnt wurde, wurden die Drucke mit Absolutdrucktransmittern (Sensotec, 200 bar Meßbereich) gemessen. Für jeden Stagnationsdruck wurde eine Eichmessung beim Massenstrom 0 gemacht und das Ergebnis beim Plotten der Drucke berücksichtigt. In den Abbildungen 25 bis 31 wurden die Messungen von 2 Schlitzkonfigurationen (s. Tabelle 2) mit je 3 Stagnationsdrucken dargestellt. Die Unterkühlungstemperatur ist der variable Parameter in jeder Abbildung. Die gestrichelten waagerechten Linien zeigen den zur Eintrittstemperatur gehörenden Sättigungsdruck. Die senkrechten Linien zeigen die axiale Position der Meßbohrungen. Die auf Pos. 0 und 46 aufgetragenen Werte sind die Drücke p<sub>o</sub> vor und p<sub>u</sub> hinter dem Spalt und sind nur durch die Art des Plottprogramms mit den benachbarten Punkten durch gerade Linien verbunden.

Nach einem Eintrittsdruckverlust (Pos. 0 - 3.2) müßten die Kurven bei parallelen Spalten und einphasiger Strömung einen linearen Verlauf haben, deren Steigung von der Massenstromdichte G und vom Reibungsbeiwert ζabhängt. Nach dem Erreichen des Sättigungsdruckes sollten sie direkt (ohne Siedeverzug)

oder mit geringen Abstand danach (mit Siedeverzug) stärker und mit zunehmender Neigung infolge zweiphasigen Druckverlustes abfallen.

Deutlich zu erkennen ist, daß die Kurven mit größter Unterkühlung (60 K) den größten Druckabfall haben, wegen der größten Massenstromdichte. Die Kurven mit kleinster Unterkühlung (2 K) beginnen dagegen entsprechend mit kleinerem Druckabfall um dann nach Unterschreiten des Siededruckes stärker abzufallen und die anderen Kurven zu überschneiden. Leider ist der lineare Verlauf der Kurven vor dem Siedepunkt nicht immer ganz eindeutig ausgeprägt. Das liegt an geringen Querschnittsänderungen der Spalte und an dem zu geringen Auflösungsvermögen der Absolutdrucktransmitter. Beim Unterschreiten des Sättigungsdruckes ist bei einigen Kurven ein kurzer relativer Anstieg des Druckes zu entdecken.

Amos und Schrock [4], die eine umfangreiche Darstellung von Druckmessungen im Spalt in ihrem Bericht gemacht haben, haben diese Erscheinung noch weit stärker beobachtet und nicht eindeutig erklären können.

Vermutlich ist der Beschleunigungsvorgang der Strömung beim Expandieren der Dampfblasen die Ursache. Bei Amos und Schrock überdecken die Kurven größerer und kleinerer Unterkühlung, würde man sie in ein Diagramm einzeichnen, einen größeren Bereich als bei unserer Darstellung. Die Begründung ist, daß der Einfluß der Unterkühlung mit zunehmendem Reibungsbeiwert kleiner wird. Amos und Schrock haben ihre Versuche mit glatten Spalten, also kleinen  $\zeta$  -Werten (ca. 2 - 5) gemacht, während bei uns die Reibungsbeiwerte sich bis zum Wert 85 erstreckten.

# 5. <u>Schlußfolgerung</u>

Mit dem Modifizierten Pana Modell wurde eine Methode gefunden, Leckraten aus Rissen in Wandungen von Druckbehältern mit unterkühltem Wasser bis zu hohen Drücken mit guter Genauigkeit zu berechnen.

Experimente mit simulierten und echten Rissen, die in einem großen Parameterbereich in Bezug auf den Druck, die Unterkühlungstemperaturen die Spaltweiten und die Oberflächenrauhigkeiten gefahren wurden, konnten in guter Übereinstimmung nachgerechnet werden.

Der Vergleich der Rechnung und der Messung hatte für 458 Versuchspunkte eine Standardabweichung unter 20 %.

Trotz des großen behandelten Parameterbereiches kann die Rechenmethode nicht alle Rißformen mit gleicher Genauigkeit abdecken. So wurde zum Beispiel nur die Rauhigkeitsgröße, nicht aber die Rauhigkeitsstruktur, die von der Art des Rißbildungsprozesses und dem Wandmaterial abhängt, untersucht. Ferner wurde der Einfluß der Querschnittsänderung (Spaltweite, Breite) nicht behandelt.

Der Anhang dieses Berichts enthält einige Arbeitsdiagramme Abb. 32 bis 38 mit denen sich auf der Basis des Modifizierten Pana Modells eine einfache Abschätzung einer zweiphasigen Leckrate durchführen läßt, wenn die geometrischen Rißparameter und der Stagnationszustand des Fluids bekannt sind.

# Danksagung

Herrn Professor D. Munz und Herrn St. Müller vom KfK danken wir für die Möglichkeit der Herstellung der echten Rißprobe und die dabei geleistete Unterstützung.

Den Herren Dr. L. Friedel und F. Westphal danken wir für die bei der Firma Hoechst/Frankfurt durchgeführten Modellrechnungen und für die Mitarbeit an dem Bericht für das "Int. Journal of Multiphase Flow" [17].

Herrn H. Kastner und Herrn H. Kefer von der KWU/Erlangen danken wir für Beratung und Literaturhinweise, besonders bezüglich des Pana-Modells.

#### Literatur

- Munz, D., Leck-vor-Bruch-Verhalten druckbeaufschlagter Komponenten. Fortschr.-Ber. VDI-Z. Reihe 18, Nr. 14, (1984).
- Müller, H.M., Müller, S., Munz, B., Neumann, J., Extension of surface cracks during cyclic loading. Fracture Mechanics, 17. Volume, ASTM STP 905, American Society for Testing and Materials, Philadelphia, 625-643, (1986).
- [3] Wallis, G.B., Critical two-phase flow. Int. J. Multiphase Flow, Vol. 6, 97-112, (1980).
- [4] Amos, C.N. and Schrock, V.E., Critical discharge of initially subcooled water through slits. NUREG/CR-3475, (1983).
- [5] Reimann, J., Vergleich von kritischen Massenstrommodellen im Hinblick auf die Strömung durch Lecks. Fortschr.-Ber. VDI-Z. Reihe 18 Nr. 14, 63-94, (1984).
- [6] Friedel, L., Siedeverzug in Kältemitteln bei plötzlicher Druckentlastung aus dem Gleichgewichtszustand. Chem.-Ing.-Tech. 57, 154/155, (1985).
- [7] Pana, P., Eine modifizierte Bernoulli-Gleichung für die Berechnung der Strömungsvorgänge im unterkühlten Wassergebiet. IRS-W-18, (1975).
- [8] Pana, P., Berechnung der stationären Massenstromdichte von
   Wasserdampfgemischen und der auftretenden Rückstoßkräfte. IRS-W-24, (1976).
- [9] Abdollahian, D., Calculation of leak rates through cracks in pipes and tubes. EPRI NR-3395, (1983).
- [10] Abdollahian, D., Analytical prediction of single-phase and two-phase flow through cracks in pipes and tubes. Heat Transfer-Niagara Falls AICHE Symposium Series, No. 236, 80, 19-23, (1984).

- [11] Henry, R.E., The two-phase critical discharge of initially saturated or subcooled liquid. Nucl. Sci & Engng 41, 336-242, (1970).
- [12] Henry, R.E., An experimental study of low-quality, steam-water critical flow at moderate pressures. ANL-7740, (1970).
- [13] Henry, R.E., Fauske, H.K., The two-phase critical flow of one-component mixtures in nozzles, orifices and short tubes. Trans. ASME, J. Heat Transfer 95, 179-187, (1971).
- [14] Collier, R.P., Liu, J.S., Mayfield, M.E., Stuben, F.B., Study of Critical two-phase flow through simulated cracks. BCL-EPRI-80-1, (1980).
- [15] Collier, R.P., Stulen, F.B., Mayfield, M.E., Pape, D.B. and Scott, P.M., Two-phase flow through intergranular stress corrosion cracks. EPRI-NP-3540-LD. Research Project T118-2, Final Report, (1984).
- [16] Kefer, V., Kastner, W., Krätzer, W., (Kraftwerk Union A.G., Erlangen), Leckraten bei unterkritischen Rohrleitungsrissen - Experimente und Berechnungskonzept. Proceedings Jahrestagung Kerntechnik '86, p. 81-84, Aachen, April 8-10, 1986.
- [17] John, H., Reimann, J., Westphal, F., Friedel, L., Critical Two-Phase Flow Through Rough Slits, Intern. Journal of Multiphase Flow, (Submitted March 1987).
- [18] Button, B.L., Grogan, A.F., Chivers, T.C. and Manning, P.T., Gas flow through cracks. J. Fluids Engng., 100, 453-458, (1978).
- [19] VDI-Wärmeatlas 1984 4. Auflage, LC 2, VDI-Verlag/Düsseldorf.
- [20] Moody, F.J., Maximum flowrate of a single component two-phase mixture. Journal of heat transfer, Trans. ASME, Series C, Vol. 87 p. 134-142, (1965).
- [21] Nikuradse, J., Strömungsgesetze in rauhen Rohren. VDI Forschungsheft 361, (1933).
- [22] Schlichting, H., Boundary Layer Theory. Pergamon Press, (1955).

|                    |                                                                          | Schlitzbr  | eite                    | Schl.Tiefe                    | Schl.Weite                             | Rauhigkeit    |                                  |
|--------------------|--------------------------------------------------------------------------|------------|-------------------------|-------------------------------|----------------------------------------|---------------|----------------------------------|
| Autor              | Flüssigkeit                                                              | Eintr.(mm) | Austr.[mm]              | L (mm)                        | <u>    S  [mm]</u>                     | <u>R [µm]</u> |                                  |
| C.N.Amos et al.    | unterkühltH₂O<br>∆T =0 – 65K<br>P <sub>max</sub> = 16,0MPa               | 20.4       | 20.4 $A = 2.6$          | 60-75<br>7.8mm <sup>2</sup>   | 0.127<br>0.254<br>0.381                |               | simulierte<br>Risse              |
| R.P.Collier et al. | unterkühltH <sub>2</sub> 0<br>ΔT = 33–120K<br>P <sub>max</sub> =11,5MPa  | 57.2       | 57.2<br>A =11.4 -       | 63.5<br>64mm <sup>2</sup>     | 0.2-1,12                               | 0.3-10.2      | simulierte<br>Risse              |
| R.P.Collier et al. | unterkühltH₂O<br>∆T = 0-72K<br>P <sub>max</sub> = 11,5MPa                | 0.74-27.9  | 0.74-27.9<br>A =0.015-6 | 20<br>5.55mm <sup>2</sup>     | 0,02<br>0.05<br>0.074<br>0.108<br>0.22 | 1,78          | echte<br>Risse                   |
| V.Kefer et al.     | unterkühlt H <sub>2</sub> O<br>ΔT = 0-60K<br>P <sub>max=</sub> =16,0 MPa | 19–108     | 19-108<br>A = 5.89-     | 10-33<br>13.93mm <sup>2</sup> | 0.097<br>0.129<br>0.325                | 20-40         | simulierte<br>und echte<br>Risse |

Tabelle 1 Parameter von Experimenten aus der Literatur

- 25 --

| Tabelle | 2 | Liste | der | getesteten | Schlitzgeon | netrien |
|---------|---|-------|-----|------------|-------------|---------|
|         |   |       |     |            | 2           |         |

| Probe   | tot. Schli   | tzweite      | Rauhigkeit | Querschnitt      | Reibungsbeiwert |
|---------|--------------|--------------|------------|------------------|-----------------|
| ΝΓ.     | Eintr.<br>mm | Austr.<br>mm | μπ         | A <sub>ex2</sub> | ζ <sub>A</sub>  |
| 2.204   | 0.205        | 0.25         | 5          | 20.0             | 3.2             |
| 2.13A   | 0.25         | 0.35         | 70         | 28,0             | 18.1            |
| 2.24A   | 0.26         | 0.26         | 70         | 20.8             | 23.0            |
| 3.13A   | 0.27         | 0.35         | 70         | 28.0             | 15.3            |
| 3.24A   | 0.34         | 0.39         | 70         | 31.2             | 8,1             |
| 3.13B   | 0.34         | 0.43         | 150        | 34.4             | 15.2            |
| 3.24B   | 0.41         | 0.48         | 150        | 38.4             | 11.2            |
| 2.13B   | 0.24         | 0.32         | 150        | 25.6             | 38.2            |
| 4.24B   | 0.53         | 0.58         | 150        | 46.4             | 8.3             |
| * 2.15R | 0.44         | 0.44         | 240        | 35.2             | 85              |
| * 3.15R | 0.54         | 0.54         | 240        | 43.2             | 43              |
| * 4.15R | 0.64         | 0.64         | 240        | 51.2             | 23.5            |
| 2.24C   | 0.24         | 0.25         | 100        | 20.0             | 28.2            |
| 3.130   | 0,39         | 0.43         | 100        | 34.4             | 7.8             |
| 4.13C   | 0,50         | 0.55         | 100        | 44.0             | 6.4             |
| 2.24D   | 0.21         | 0.28         | 50         | 22.4             | 7.5             |

\* echte Risse

| Experimentelle         | <b>R.P.Collier et al</b><br>Sim. Risse     |     | <b>R.P.Collier et al</b><br>wirkliche Risse |    | <b>C.N.Amos et al.</b><br>Sim.Risse    |     | eigene Experimente                         |     |                                            |      |
|------------------------|--------------------------------------------|-----|---------------------------------------------|----|----------------------------------------|-----|--------------------------------------------|-----|--------------------------------------------|------|
| Daten                  |                                            |     |                                             |    |                                        |     | wirkliche Risse                            |     | Sim.Risse                                  |      |
| Modelle                | $\overline{x}_{m}$ [%] S <sub>Rm</sub> [%] |     | x <sub>m</sub> [%] S <sub>Rm</sub> [%]      |    | x <sub>m</sub> [%] S <sub>Rm</sub> [%] |     | $\overline{x}_{m}$ [%] S <sub>Rm</sub> [%] |     | $\overline{x}_{m}$ [%] S <sub>Rm</sub> [%] |      |
| R.P.Collier et al.     | -16                                        | 62  | 27.                                         | 62 | 56                                     | 63  | -41                                        | 51  | 33                                         | 39   |
| D.Abdollahian et al.I  | 6                                          | 49  | -15                                         | 97 | 22                                     | 29  | -78                                        | 91  | 10                                         | 20   |
| D.Abdollahian et al.II | -8                                         | 48  | 16                                          | 59 | 31                                     | 38  | -55                                        | 79  | 10                                         | 30   |
| Modifiz. Pana          | -49                                        | 108 | 55                                          | 92 | 9                                      | 21) | -24                                        | 27) | 6                                          | (14) |
| Anzahl von Ver-        | 2                                          | 7   | ø                                           | 70 | 34                                     | 45  | 10                                         | 0   | 35                                         | 58   |
| suchspunkten %         |                                            | 3   |                                             | -8 | 4 4<br>4                               | 8   | 1                                          | 1   | 4                                          | 0    |

-

Tabelle 3 Fehlerdaten für den Einsatz mehrerer Modelle bei unterschiedlichen Experimenten



Abb.1 Schema des Versuchskreislaufes



Abb.2 Teststrecke mit veränderlichem Schlitz



Abb.3 Testmatix für alle Schlitzgeometrien

- 30 —


Abb.4 Enthalpie-Entropie-Diagramm für Pana-Modell



- 32



Abb. 6 Kritische Massenstromdichte über Reibungsbeiwert  $\zeta_A$  (Experiment)



Abb. 7 Kritische Massenstromdichte über Reibungsbeiwert  $\zeta_A$  (Experiment)



Abb. 8 Kritische Massenstromdichte über Reibungsbeiwert ζ<sub>A</sub> (Experiment)



Abb. 9 Kritische Massenstromdichte über Reibungsbeiwert ζ<sub>A</sub> (Experiment)



Abb. 10 Kritische Massenstromdichte über Reibungsbeiwert ζ<sub>A</sub> (Experiment)



— 38 —







Abb.14 Berechnete/gemessene Massenstromdichte (Pana Modell) ζ = 3.2; 15.2; 23



Abb.15 Berechnete/gemessene Massenstromdichte (Pana Modell) ζ = 28.2; 38.2



Abb.16 Berechnete/gemessene Massenstromdichte (Pana Modell) ζ = 43; 85



Abb.17 Berechnete/gemessene Massenstromdichte (LEAK 01 Modell, ABDOLLAHIAN)

— 44 —



Abb.18 Berechnete/gemessene Massenstromdichte (LEAK 01 Modell, ABDOLLAHIAN)

- 45 ---





— 47 —





# Abb. 22 Modellvergleich

--- 49 --



--- 50 ---



Abb. 24 Modellvergleich



## Abb.25 Druckverlauf im Spalt 2.24 A

— 52 —



Abb.26 Druckverlauf im Spalt 2.24 A



Abb.27 Druckverlauf im Spalt 2.24 A



Abb.28 Druckverlauf im Spalt 2.24 A



Abb.29 Druckverlauf im Spalt 4.24 B



# Abb. 30 Druckverlauf im Spalt 4.24 B



Abb.31 Druckverlauf im Spalt 4.24 B

— 58 —

### <u>Anhang A (Tabellen 4 bis 19)</u>

Daten aus Messung und Rechnung (Pana)

In den Tabellen 4 bis 19 sind die experimentellen Werte

- po Stagnationsdruck vor dem Spalt
- T<sub>o</sub> Stagnationstemperatur vor dem Spalt
- $\Delta T$  Unterkühlung des Wasser vor dem Spalt
- p<sub>u</sub> Stagnationsdruck nach dem Spalt
- m Massenstrom, einphasig gemessen
- $G_M$  Massenstromdichte auf Austrittsquerschnitt bezogen

und die mit dem Pana-Modell unter Verwendung des gemessenen Reibungsbeiwertes ζgerechneten Werte

- p2 Druck im Spaltaustritt
- $G_R$  Massenstromdichte auf Austrittsquerschnitt bezogen

und das Verhältnis der gerechneten zu den gemessenen Massenstromdichten dokumentiert. Jede Tabelle enthält die Daten einer Spaltkonfiguration.

| Probe: 2.204          |                  | Spa                                  | ltweite:              | 0.                    | 25  mm    | Spaltrauhigkeit: 5 μm<br>Baiburgabaiuant: 2 2 |                           |                                |  |  |
|-----------------------|------------------|--------------------------------------|-----------------------|-----------------------|-----------|-----------------------------------------------|---------------------------|--------------------------------|--|--|
|                       |                  | Sparcquersenn. 20.00 mm Reibungsbeiw |                       |                       |           |                                               |                           | .wert: 3.2                     |  |  |
| P <sub>o</sub><br>bar | т <sub>к</sub> о | ΔΤ<br>Κ                              | P <sub>2</sub><br>bar | P <sub>u</sub><br>bar | m<br>kg/s | G <sub>M</sub><br>kg/s m²                     | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> ∕G <sub>M</sub> |  |  |
| 40.30                 | 463.1            | 60                                   | 12.57                 | 5.30                  | 0.5422    | 33820.0                                       | 33889.6                   | 1.0020                         |  |  |
| 40.30                 | 473.2            | 50                                   | 15.58                 | 5.70                  | 0.5086    | 31880.0                                       | 31784.7                   | 0.9970                         |  |  |
| 40.00                 | 483.0            | 40                                   | 19.06                 | 6.20                  | 0.4650    | 29430.0                                       | 29060.2                   | 0.9874                         |  |  |
| 40 • 00               | 493.9            | 30                                   | 23.55                 | 6.60                  | 0.4088    | 26240.0                                       | 25547.1                   | 0.9736                         |  |  |
| 39.90                 | 503.5            | 20                                   | 28.16                 | 6.80                  | 0.3428    | 23420.0                                       | 21426.1                   | 0.9148                         |  |  |
| 40.10                 | 513.4            | 10                                   | 31.20                 | 7.20                  | 0.2728    | 18650.0                                       | 17048.7                   | 0.9141                         |  |  |
| 39.70                 | 521.3            | 2                                    | 30.93                 | 7.60                  | 0.2216    | 13170.0                                       | 13848.2                   | 1.0515                         |  |  |
| 60.30                 | 489.3            | 60                                   | 21.56                 | 6.40                  | 0.6295    | 40820.0                                       | 39346.8                   | 0.9639                         |  |  |
| 59.80                 | 498.2            | 50                                   | 25.50                 | 6.70                  | 0.5884    | 38400.0                                       | 36773.3                   | 0.9576                         |  |  |
| 60.20                 | 509.2            | 40                                   | 31.04                 | 7.10                  | 0.5378    | 34550.0                                       | 33615.5                   | 0.9725                         |  |  |
| 60.30                 | 518.3            | 30                                   | 36.55                 | 7.40                  | 0.4815    | 31540.0                                       | 30091.3                   | 0.9540                         |  |  |
| 60.00                 | 528.1            | 20                                   | 43.14                 | 7.70                  | 0.4021    | 27320.0                                       | 25128.2                   | 0.9198                         |  |  |
| 60.20                 | 538.9            | 10                                   | 44.37                 | 8.00                  | 0.3305    | 22990.0                                       | 20657.0                   | 0.8985                         |  |  |
| 59.80                 | 546.5            | 2                                    | 44.12                 | 8.40                  | 0.2763    | 18840.0                                       | 17268.4                   | 0.9166                         |  |  |
| 80.60                 | 509.1            | 60                                   | 30.98                 | 7.10                  | 0.7016    | 45430.0                                       | 43851.3                   | 0.9652                         |  |  |
| 80.30                 | 517.4            | 50                                   | 35.92                 | 7.40                  | 0.6587    | 43290.0                                       | 41171.7                   | 0.9510                         |  |  |
| 80.30                 | 528.2            | 40                                   | 43.10                 | 7.60                  | 0.5971    | 39710.0                                       | 37321.3                   | 0.9398                         |  |  |
| 80.00                 | 538.1            | 30                                   | 50.64                 | 8.00                  | 0.5253    | 34960.0                                       | 32832.6                   | 0.9391                         |  |  |
| 80.10                 | 548.0            | 20                                   | 56.48                 | 8.10                  | 0.4501    | 31210.0                                       | 28129.2                   | 0.9013                         |  |  |
| 80.00                 | 557.4            | 10                                   | 56.42                 | 8.40                  | 0.3931    | 27020.0                                       | 24568.5                   | 0.9093                         |  |  |
| 80.00                 | 566.3            | 2                                    | 56.42                 | 8.80                  | 0.3400    | 22540.0                                       | 21252.5                   | 0.9429                         |  |  |
| 100.50                | 554.1            | 30                                   | 64.62                 | 8.40                  | 0.5707    | 38980.0                                       | 35667.1                   | 0.9150                         |  |  |
| 100.60                | 564.2            | 20                                   | 68.17                 | 8.50                  | 0.4955    | 34850.0                                       | 30967.3                   | 0.8885                         |  |  |
| 100.00                | 573.3            | 10                                   | 67.84                 | 9.00                  | 0.4282    | 29880.0                                       | 26764.5                   | 0.8957                         |  |  |

Tabelle 4: Daten aus Messung und Rechnung (Pana)

- 60 ---

|                       |                  |         | F 1                   |                       |           |                           |               |                                |
|-----------------------|------------------|---------|-----------------------|-----------------------|-----------|---------------------------|---------------|--------------------------------|
| P <sub>o</sub><br>bar | Т <sub>о</sub> к | ΔT<br>K | P <sub>2</sub><br>bar | P <sub>u</sub><br>bar | m<br>kg/s | G <sub>M</sub><br>kg/s m² | GR<br>kg/s m² | G <sub>R</sub> ∕G <sub>M</sub> |
| 40.40                 | 464.2            | 60      | 12.92                 | 5.80                  | 0.2287    | 16090.0                   | 15878.8       | 0.9869                         |
| 40.30                 | 473.7            | 50      | 15.79                 | 5.50                  | 0.2147    | 15570.0                   | 14906.5       | 0.9574                         |
| 40.00                 | 483.2            | 40      | 19.17                 | 5.90                  | 0.1966    | 14550.0                   | 13649.9       | 0.9381                         |
| 40.00                 | 493.8            | 30      | 20.36                 | 6.40                  | 0.1770    | 13500.0                   | 12294.3       | 0.9107                         |
| 40.40                 | 503.6            | 20      | 20.51                 | 6.80                  | 0.1611    | 12370.0                   | 11189.2       | 0.9045                         |
| 39.90                 | 513.4            | 10      | 20.32                 | 7.20                  | 0.1421    | 10730.0                   | 9868.5        | 0.9197                         |
| 39.90                 | 521.4            | 2       | 20.32                 | 7.50                  | 0.1280    | 9404.0                    | 8886.8        | 0.9450                         |
| 60.30                 | 489.0            | 60      | 21.51                 | 5.90                  | 0.2671    | 20280.0                   | 18548.7       | 0.9146                         |
| 59.90                 | 498.6            | 50      | 25.78                 | 6.20                  | 0.2487    | 19040.0                   | 17270.3       | 0.9070                         |
| 60.20                 | 508.7            | 40      | 27.63                 | 6.60                  | 0.2310    | 17690.0                   | 16044.5       | 0.9070                         |
| 60.40                 | 518.2            | 30      | 27.70                 | 6.90                  | 0.2149    | 16520.0                   | 14922.5       | 0.9033                         |
| 60.40                 | 529.3            | 20      | 27.70                 | 7.70                  | 0.1952    | 15040.0                   | 13557.1       | 0.9014                         |
| 59.90                 | 538.7            | 10      | 27.53                 | 7 <b>.</b> 90         | 0.1770    | 13630.0                   | 12291.0       | 0.9018                         |
| 60.40                 | 547.2            | 2       | 27.70                 | 8.20                  | 0.1635    | 12400.0                   | 11355.0       | 0.9157                         |
| <b>79.9</b> 0         | 508.5            | 60      | 30 • 80               | 6.60                  | 0.2960    | 22760.0                   | 20556.6       | 0.9032                         |
| 80.10                 | 518.0            | 50      | 34.07                 | 6.80                  | 0.2780    | 21860.0                   | 19308.8       | 0.8833                         |
| 80.30                 | 528.1            | 40      | 34.13                 | 7.20                  | 0.2602    | 20450.0                   | 18066.7       | 0.8835                         |
| 7 <b>9.</b> 90        | 538.1            | 30      | 34.01                 | 7.50                  | 0.2406    | 18950.0                   | 16707.1       | 0.8816                         |
| 80.20                 | 548.2            | 20      | 34.10                 | 7.70                  | 0.2230    | 17570.0                   | 15487.1       | 0.8815                         |
| 79.90                 | 558.1            | 10      | 34.01                 | 8.30                  | 0.2039    | 15700.0                   | 14162.8       | 0.9021                         |
| 79.60                 | 565.9            | 2       | 33.91                 | 8.60                  | 0.1889    | 14050.0                   | 13120.1       | 0.9338                         |

Probe: 2.13A

Spaltweite: 0.35 mm Spaltrauhigkeit: 70 μm Spaltquerschn: 28.00 mm<sup>2</sup> Reibungsbeiwert: 18.1

Tabelle 5: Daten aus Messung und Rechnung (Pana)

•

| Probe:                | 2.24A            | Spaltweite: 0.26 mm<br>Spaltquerschn: 20.80 mm² |                       |               |           | Spaltrauh<br>Reibungsb    | Spaltrauhigkeit: 70 μm<br>Reibungsbeiwert: 23.0 |                                |  |  |
|-----------------------|------------------|-------------------------------------------------|-----------------------|---------------|-----------|---------------------------|-------------------------------------------------|--------------------------------|--|--|
| P <sub>o</sub><br>bar | Т <sub>о</sub> К | ∆T<br>K                                         | P <sub>2</sub><br>bar | P<br>u<br>bar | m<br>kg/s | G <sub>M</sub><br>kg/s m² | G <sub>R</sub><br>kg/s m²                       | G <sub>R</sub> /G <sub>M</sub> |  |  |
| 40.10                 | 463.5            | 60                                              | 12.72                 | 0.00          | 0.2148    | 13930.0                   | 14132.5                                         | 1.0145                         |  |  |
| 40.08                 | 472.6            | 50                                              | 15.43                 | 0.00          | 0.2026    | 13660.0                   | 13330.5                                         | 0.9759                         |  |  |
| 39.88                 | 483.1            | 40                                              | 18.60                 | 40.20         | 0.1850    | 12670.0                   | 12169.5                                         | 0.9605                         |  |  |
| 40.12                 | 493.2            | 30                                              | 18.68                 | 6.55          | 0.1700    | 12250.0                   | 11181.8                                         | 0.9128                         |  |  |
| 40.09                 | 504.0            | 20                                              | 18.67                 | 7.33          | 0.1529    | 11270.0                   | 10056.7                                         | 0.8923                         |  |  |
| 40.10                 | 513.5            | 10                                              | 18.67                 | 8.13          | 0.1379    | 10140.0                   | 9070.0                                          | 0.8945                         |  |  |
| 39.56                 | 521.3            | 2                                               | 18.49                 | 8.37          | 0.1250    | 6221.0                    | 8221.3                                          | 1.3215                         |  |  |
| 60.12                 | 488.5            | 60                                              | 21.31                 | 6.38          | 0.2514    | 17290.0                   | 16539.0                                         | 0.9565                         |  |  |
| 60.67                 | 499.2            | 50                                              | 25.27                 | 6.81          | 0.2358    | 16710.0                   | 15510.8                                         | 0.9282                         |  |  |
| 59.94                 | 508.2            | 40                                              | 25.06                 | 7.13          | 0.2191    | 15810.0                   | 14415.6                                         | 0.9118                         |  |  |
| 59.80                 | 518.5            | 30                                              | 25.01                 | 7.42          | 0.2024    | 14750.0                   | 13317.9                                         | 0.9029                         |  |  |
| 60.69                 | 529.1            | 20                                              | 25.28                 | 7.98          | 0.1880    | 13520.0                   | 12366.6                                         | 0.9147                         |  |  |
| 59.98                 | 539.0            | 10                                              | 25.07                 | 8.25          | 0.1705    | 12370.0                   | 11217.0                                         | 0.9068                         |  |  |
| 59.06                 | 545.9            | 2                                               | 24.79                 | 8.54          | 0.1528    | 11640.0                   | 10054.2                                         | 0.8637                         |  |  |
| 80.00                 | 508.2            | 60                                              | 30.65                 | 6.27          | 0.2792    | 20260.0                   | 18369.4                                         | 0.9067                         |  |  |
| 80.11                 | 518.4            | 50                                              | 30.79                 | 7.40          | 0.2627    | 18790.0                   | 17283.0                                         | 0.9198                         |  |  |
| 80.64                 | 528.5            | 40                                              | 30.93                 | 7.52          | 0.2475    | 18630.0                   | 16285.7                                         | 0.8741                         |  |  |
| 80.27                 | 538.2            | 30                                              | 30.83                 | 7.40          | 0.2304    | 17190.0                   | 15154.9                                         | 0.8816                         |  |  |
| 80.10                 | 548.0            | 20                                              | 30.79                 | 7.67          | 0.2138    | 15940.0                   | 14064.5                                         | 0.8823                         |  |  |
| 80.84                 | 558.1            | 10                                              | 30.98                 | 8.07          | 0.1990    | 14920.0                   | 13090.7                                         | 0.8774                         |  |  |
| 80.78                 | 567.1            | 2                                               | 30.96                 | 8.60          | 0.1840    | 13170.0                   | 12105.5                                         | 0.9192                         |  |  |
| 101.30                | 524.7            | 60                                              | 36.46                 | 6.99          | 0.3056    | 22080.0                   | 20108.4                                         | 0.9107                         |  |  |
| 99.91                 | 534.1            | 50                                              | 36.11                 | 7.39          | 0.2862    | 20990.0                   | 18830.9                                         | 0.8971                         |  |  |
| 100.22                | 544.6            | 40                                              | 36.18                 | 8.19          | 0.2688    | 19650.0                   | 17686.7                                         | 0.9001                         |  |  |
| 99.68                 | 554.6            | 30                                              | 36.05                 | 8.43          | 0.2504    | 18620.0                   | 16475.5                                         | 0.8848                         |  |  |
| 100.30                | 563.6            | 20                                              | 36.20                 | 8.66          | 0.2363    | 17840.0                   | 15548.9                                         | 0.8716                         |  |  |
| 99.80                 | 573.0            | 10                                              | 36.08                 | 8.71          | 0.2191    | 16750.0                   | 14414.2                                         | 0.8605                         |  |  |
| 120.47                | 538.8            | 60                                              | 41.20                 | 7.38          | 0.3242    | 22390.0                   | 21330.0                                         | 0.9526                         |  |  |
| 120.49                | 549.0            | 50                                              | 41.21                 | 7.69          | 0.3060    | 22240.0                   | 20128.5                                         | 0.8990                         |  |  |
| 120.00                | 557.2            | 40                                              | 41.09                 | 7.99          | 0.2902    | 21230.0                   | 19094.7                                         | 0.8994                         |  |  |
| 121.22                | 548.4            | 50                                              | 41.38                 | 8.78          | 0.3085    | 20450.0                   | 20293.4                                         | 0.9923                         |  |  |

Tabelle 6: Daten aus Messung und Rechnung (Pana)

| Probe: 3.13A  |                  | Spa<br>Spa | ltweite:<br>ltquersc  | 0.<br>hn: 28.         | 35 mm<br>00 mm <sup>2</sup> | Spaltrauhigkeit: 70 μm<br>Reibungsbeiwert: 15.3 |                           |                                |  |
|---------------|------------------|------------|-----------------------|-----------------------|-----------------------------|-------------------------------------------------|---------------------------|--------------------------------|--|
| P<br>o<br>bar | т <sub>о</sub> к | ∆T<br>K    | P <sub>2</sub><br>bar | P <sub>u</sub><br>bar | m<br>kg/s                   | G <sub>M</sub><br>kg/s m²                       | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> /G <sub>M</sub> |  |
| 40.70         | 464.3            | 60         | 12.96                 | 5.20                  | 0.2760                      | 17790.0                                         | 17251.5                   | 0,9697                         |  |
| 40.70         | 474.4            | 50         | 16.05                 | 5.60                  | 0.2585                      | 16740.0                                         | 16156.8                   | 0.9652                         |  |
| 39.90         | 483.2            | 40         | 19.16                 | 6.00                  | 0.2357                      | 15490.0                                         | 14731.5                   | 0.9510                         |  |
| 39.80         | 493.2            | 30         | 21.46                 | 6.30                  | 0.2114                      | 14200.0                                         | 13210.0                   | 0.9303                         |  |
| 40.00         | 502.7            | 20         | 21.54                 | 6.10                  | 0.1912                      | 13600.0                                         | 11947.6                   | 0.8789                         |  |
| 40.60         | 513.5            | 10         | 21.79                 | 6.80                  | 0.1695                      | 12050.0                                         | 10592.4                   | 0.8790                         |  |
| 39.70         | 521.2            | 2          | 21.42                 | 7.20                  | 0.1500                      | 10000 • 0                                       | 9374.8                    | 0.9375                         |  |
| 60.30         | 488.1            | 60         | 21.14                 | 6.10                  | 0.3227                      | 20810.0                                         | 20166.7                   | 0.9691                         |  |
| 61.10         | 499.3            | 50         | 26.11                 | 6.60                  | 0.3024                      | 19950.0                                         | 18902.0                   | 0.9475                         |  |
| 60.50         | 510.1            | 40         | 29.48                 | 6.90                  | 0.2740                      | 18400.0                                         | 17123.1                   | 0.9306                         |  |
| 60.20         | 518.7            | 30         | 29.37                 | 7.10                  | 0.2536                      | 17200.0                                         | 15848.0                   | 0.9214                         |  |
| 60.40         | 529.1            | 20         | 29.45                 | 7.40                  | 0.2312                      | 15690.0                                         | 14451.0                   | 0.9210                         |  |
| 60.70         | 539.5            | 10         | 29.55                 | 7.80                  | 0.2092                      | 14150.0                                         | 13075.8                   | 0.9241                         |  |
| 60.10         | 546.9            | 2          | 29.34                 | 8.00                  | 0.1904                      | 12830.0                                         | 11899.0                   | 0.9274                         |  |
| 80.50         | 508.9            | 60         | 31.00                 | 6.60                  | 0.3570                      | 24360.0                                         | 22311.3                   | 0.9159                         |  |
| 80.50         | 517.5            | 50         | 36.16                 | 6.80                  | 0.3353                      | 23380.0                                         | 20959.2                   | 0.8964                         |  |
| 80.50         | 528.4            | 40         | 36.46                 | 7.00                  | 0.3102                      | 21090.0                                         | 19387.5                   | 0.9193                         |  |
| 80.70         | 538.6            | 30         | 36.53                 | 7.40                  | 0.2876                      | 19580.0                                         | 17975.1                   | 0.9180                         |  |
| 79.80         | 547.6            | 20         | 36.23                 | 7.60                  | 0.2638                      | 17940.0                                         | 16485.7                   | 0.9189                         |  |
| 80.10         | 557.9            | 10         | 36.33                 | 8.00                  | 0.2413                      | 16340.0                                         | 15083.1                   | 0.9231                         |  |
| 79.80         | 565.6            | 2          | 36.23                 | 8.40                  | 0.2226                      | 14940.0                                         | 13910.5                   | 0.9311                         |  |
| 99.90         | 524.4            | 60         | 40.62                 | 7.10                  | 0.3853                      | 26950.0                                         | 24082.8                   | 0.8936                         |  |
| 100.10        | 534.1            | 50         | 42.78                 | 7.30                  | 0.3619                      | 25550.0                                         | 22616.2                   | 0.8852                         |  |
| 100.10        | 543.6            | 40         | 42.78                 | 7.60                  | 0.3389                      | 24190.0                                         | 21181.6                   | 0.8756                         |  |
| 100.40        | 554.2            | 30         | 42.87                 | 7.90                  | 0.3144                      | 22080.0                                         | 19650.5                   | 0.8899                         |  |
| 100.40        | 564.0            | 20         | 42.87                 | 8.10                  | 0.2907                      | 20630.0                                         | 18169.9                   | 0.8807                         |  |

Tabelle 7: Daten aus Messung und Rechnung (Pana)

| Probe: 3.24A          |        | Sp<br>Sp | altweite:<br>altquersc | 0.<br>hn: 31.         | 34 mm<br>20 mm <sup>2</sup> | Spaltrauhigkeit: 70 μm<br>Reibungsbeiwert: 8.1 |                                       |                                |  |
|-----------------------|--------|----------|------------------------|-----------------------|-----------------------------|------------------------------------------------|---------------------------------------|--------------------------------|--|
| P <sub>o</sub><br>bar | т<br>к | ΔT<br>K  | P <sub>2</sub><br>bar  | P <sub>u</sub><br>bar | m<br>kg/s                   | G <sub>M</sub><br>kg/s m²                      | G <sub>R</sub><br>kg/s m <sup>2</sup> | G <sub>R</sub> /G <sub>M</sub> |  |
| 40.00                 | 463.3  | 60       | 12.67                  | 5.10                  | 0.4946                      | 23470.0                                        | 22896.8                               | 0.9756                         |  |
| 40.20                 | 474.1  | 50       | 15.93                  | 5.60                  | 0.4628                      | 22020.0                                        | 21425.5                               | 0.9730                         |  |
| 40.10                 | 483.1  | 40       | 19.10                  | 6.00                  | 0.4278                      | 20880.0                                        | 19804.4                               | 0.9485                         |  |
| 40.10                 | 493.9  | 30       | 23.56                  | 6.30                  | 0.3767                      | 18630.0                                        | <u>1</u> 7440.7                       | 0.9362                         |  |
| 39.50                 | 505.4  | 20       | 25.68                  | 6.60                  | 0.3123                      | 15670.0                                        | 14460.4                               | 0.9228                         |  |
| 40.10                 | 514.0  | 10       | 26.00                  | 6.60                  | 0.2772                      | 14030.0                                        | 12834.8                               | 0.9148                         |  |
| 39.90                 | 521.4  | 2        | 25.89                  | 7.20                  | 0.2425                      | 12010.0                                        | 11228.0                               | 0.9349                         |  |
| 60.40                 | 488.5  | 60       | 21.29                  | 6.20                  | 0.5815                      | 28210.0                                        | 26922.5                               | 0.9544                         |  |
| 60.10                 | 498.8  | 50       | 25.86                  | 6.70                  | 0.5399                      | 26620.0                                        | 24994.8                               | 0.9385                         |  |
| 60.30                 | 508.7  | 40       | 30.84                  | 7.00                  | 0.4969                      | 24920.0                                        | 23006.2                               | 0.9232                         |  |
| 60.30                 | 518.8  | 30       | 36.07                  | 7.20                  | 0.4410                      | 22760.0                                        | 20418.4                               | 0.8971                         |  |
| 59.70                 | 528.4  | 20       | 35.78                  | 7.50                  | 0.3898                      | 19930.0                                        | 18045.2                               | 0.9054                         |  |
| 59.60                 | 538.2  | 10       | 35.73                  | 7.70                  | 0.3407                      | 17800.0                                        | 15773.5                               | 0.8861                         |  |
| 60.40                 | 547.1  | 2        | 36.12                  | 8.20                  | 0.3128                      | 15860.0                                        | 14483.5                               | 0.9132                         |  |
| 80.10                 | 509.0  | 60       | 30.99                  | 7.00                  | 0.6414                      | 32050.0                                        | 29693.1                               | 0.9265                         |  |
| 80.20                 | 518.2  | 50       | 36.52                  | 7.20                  | 0.6001                      | 30540.0                                        | 27780.7                               | 0.8668                         |  |
| 79.80                 | 526.6  | 40       | 42.13                  | 7.30                  | 0.5530                      | 28790.0                                        | 25599.6                               | 0.8892                         |  |
| 80.30                 | 538.5  | 30       | 45.16                  | 7.50                  | 0.4964                      | 26130.0                                        | 22982.8                               | 0.8795                         |  |
| 80.00                 | 558.0  | 10       | 45.03                  | 8.20                  | 0.4021                      | 20980.0                                        | 18615.7                               | 0.8873                         |  |
| 79.80                 | 566.0  | 2        | 44.94                  | 8.70                  | 0.3627                      | 18900.0                                        | 16792.5                               | 0.8885                         |  |
| 99.80                 | 523.6  | 60       | 40.04                  | 7.90                  | 0.6984                      | 34740.0                                        | 32334.1                               | 0.9307                         |  |
| 100.10                | 534.0  | 50       | 47.46                  | 8.00                  | 0.6490                      | 32950.0                                        | 30046.6                               | 0.9119                         |  |
| 99.30                 | 543.4  | 40       | 53.18                  | 8.10                  | 0.5920                      | 30630.0                                        | 27409.4                               | 0.8948                         |  |
| 101.00                | 555.0  | 30       | 53.86                  | 8.20                  | 0.5445                      | 28400.0                                        | 25206.5                               | 0.8875                         |  |
| 100.00                | 564.3  | 20       | 53.46                  | 8.40                  | 0.4895                      | 25930.0                                        | 22661.9                               | 0.8740                         |  |
| 100.40                | 573.6  | 10       | 53.62                  | 8.50                  | 0.4457                      | 23790.0                                        | 20634.0                               | 0.8673                         |  |
| 100.00                | 582.1  | 2        | 53.46                  | 9.10                  | 0.3985                      | 21460.0                                        | 18448.2                               | 0.8596                         |  |

Tabelle 8: Daten aus Messung und Rechnung (Pana)

| Probe: 3.13B  |                     | Spa<br>Spa | ltweite:<br>ltquersc  | 0.1<br>hn: 34.4       | 34 mm<br>40 mm <sup>2</sup> | Spaltrauhigkeit: 150 μm<br>Reibungsbeiwert: 15.2 |                           |                                |  |
|---------------|---------------------|------------|-----------------------|-----------------------|-----------------------------|--------------------------------------------------|---------------------------|--------------------------------|--|
| P<br>o<br>bar | Т <sub>о</sub><br>К | ΔT<br>K    | P <sub>2</sub><br>bar | P <sub>u</sub><br>bar | °m<br>kg/s                  | G <sub>M</sub><br>kg/s m²                        | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> /G <sub>M</sub> |  |
| 40.30         | 463.8               | 60         | 12.80                 | 5.10                  | 0.2618                      | 17570.0                                          | 17223.4                   | 0.9803                         |  |
| 40.30         | 473.8               | 50         | 15.82                 | 5.50                  | 0.2454                      | 16590.0                                          | 16145.1                   | 0.9732                         |  |
| 40.10         | 483.5               | 40         | 19.28                 | 5.80                  | 0.2248                      | 15330.0                                          | 14789.3                   | 0.9647                         |  |
| 39.50         | 492.6               | 30         | 21.38                 | 6.01                  | 0.2011                      | 13970.0                                          | 13233.2                   | 0.9473                         |  |
| 40.30         | 503.8               | 20         | 21.71                 | 6.60                  | 0.1811                      | 13010.0                                          | 11912.4                   | 0.9156                         |  |
| 40.40         | 513.1               | 10         | 21.75                 | 6.10                  | 0.1614                      | 11460.0                                          | 10616.3                   | 0.9264                         |  |
| 60.20         | 488.5               | 60         | 21.30                 | 6.20                  | 0.3062                      | 20040.0                                          | 20142.5                   | 1.0051                         |  |
| 60.70         | 499.2               | 50         | 26.10                 | 6.60                  | 0.2864                      | 19610.0                                          | 18844.6                   | 0.9610                         |  |
| 60.10         | 508.7               | 40         | 29.39                 | 7.00                  | 0.2623                      | 18230.0                                          | 17254.1                   | 0.9465                         |  |
| 60.20         | 518.8               | 30         | 29.43                 | 7.20                  | 0.2412                      | 16800.0                                          | 15869.7                   | 0.9446                         |  |
| 60.30         | 529.1               | 20         | 29.46                 | 7.50                  | 0.2198                      | 15200.0                                          | 14457.6                   | 0.9512                         |  |
| 60.10         | 538.8               | 10         | 29.39                 | 7.80                  | 0.1984                      | 13580.0                                          | 13053.0                   | 0.9612                         |  |
| 80.60         | 508.2               | 60         | 30.65                 | 6.90                  | 0.3417                      | 23690.0                                          | 22480.7                   | 0.9489                         |  |
| 80.50         | 519.0               | 50         | 36.53                 | 7.30                  | 0.3159                      | 22260.0                                          | 20782.2                   | 0.9336                         |  |
| 79.90         | 528.0               | 40         | 36.33                 | 7.50                  | 0.2942                      | 20820.0                                          | 19358.1                   | 0.9298                         |  |
| 80.00         | 537.9               | 30         | 36.37                 | 7.70                  | 0.2730                      | 19350.0                                          | 17961.8                   | 0.9282                         |  |
| 80.20         | 548.3               | 20         | 36.43                 | 8.00                  | 0.2511                      | 17600.0                                          | 16517.0                   | 0.9385                         |  |
| 80.50         | 558.3               | 10         | 36.53                 | 8.20                  | 0.2301                      | 15920.0                                          | 15137.8                   | 0.9509                         |  |
| 80.10         | 566.1               | 2          | 36.40                 | 8.50                  | 0.2119                      | 13850.0                                          | 13938.7                   | 1.0064                         |  |
| 100.70        | 524.6               | 60         | 40.74                 | 7.30                  | 0.3690                      | 26400.0                                          | 24277.0                   | 0.9196                         |  |
| 100.80        | 534.4               | 50         | 43.08                 | 7.50                  | 0.3460                      | 25060.0                                          | 22761.5                   | 0.9083                         |  |
| 100.00        | 544.0               | 40         | 42.84                 | 7.60                  | 0.3216                      | 23520.0                                          | 21156.2                   | 0.8995                         |  |
| 100.90        | 554.5               | 30         | 43.11                 | 7 <b>.</b> 90         | 0.3000                      | 21980.0                                          | 19734.0                   | 0.8978                         |  |
| 100.20        | 562.3               | 20         | 42.90                 | <b>7.9</b> 0          | 0.2800                      | 20430.0                                          | 18423.2                   | 0.9018                         |  |
| 101.30        | 575.3               | 10         | 43.23                 | 8.40                  | 0.2531                      | 17890.0                                          | 16649.2                   | 0.9306                         |  |
| 100.20        | 582.1               | 2          | 42.90                 | 8.60                  | 0.2345                      | 15420.0                                          | 15425.2                   | 1.0009                         |  |

r

Tabelle 9: Daten aus Messung und Rechnung (Pana)

| Probe:        | 3.24B               | Spa<br>Spa | altweite:<br>altquersc | 0.4<br>hn: 38.4 | 48 mm<br>40 mm² | Spaltrauhigkeit: 150 μm<br>Reibungsbeiwert: 11.2 |                           |                                |  |
|---------------|---------------------|------------|------------------------|-----------------|-----------------|--------------------------------------------------|---------------------------|--------------------------------|--|
| P<br>o<br>bar | <sup>Т</sup> о<br>К | ∆T<br>K    | P <sub>2</sub><br>bar  | P<br>u<br>bar   | m<br>kg/s       | G <sub>M</sub><br>kg/s m²                        | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> /G <sub>M</sub> |  |
| 40.20         | 463.2               | 60         | 12.64                  | 5.30            | 0.4134          | 20090.0                                          | 19873.3                   | 0.9892                         |  |
| 40.20         | 473.7               | 50         | 15.80                  | 5.70            | 0.3863          | 19150.0                                          | 18573.0                   | 0.9698                         |  |
| 39.90         | 483.9               | 40         | 19.42                  | 6.10            | 0.3515          | 17670.0                                          | 16898.2                   | 0.9563                         |  |
| 40.00         | 493.4               | 30         | 23.36                  | 6.40            | 0.3146          | 16310.0                                          | 15122.7                   | 0.9272                         |  |
| 41.00         | 504.7               | 20         | 24.21                  | 6.80            | 0.2801          | 14480.0                                          | 13466.1                   | 0.9300                         |  |
| 41.70         | 516.5               | 10         | 24.54                  | 7.20            | 0.2394          | 12230.0                                          | 11510.3                   | 0.9412                         |  |
| 40.00         | 521.7               | 2          | 23.75                  | 6.80            | 0.2111          | 10260.0                                          | 10149.0                   | 0.9892                         |  |
| 60.30         | 488.5               | 60         | 21.29                  | 6.10            | 0.4834          | 24590.0                                          | 23238.8                   | 0.9450                         |  |
| 60.40         | 498.9               | 50         | 25.93                  | 6.40            | 0.4508          | 23550.0                                          | 21674.3                   | 0.9203                         |  |
| <b>59.</b> 70 | 508.5               | 40         | 30.73                  | 7.00            | 0.4102          | 21240.0                                          | 19723.2                   | 0.9286                         |  |
| 60.10         | 518.8               | 30         | 32.59                  | 7.30            | 0.3733          | 19460.0                                          | 17945.9                   | 0.9222                         |  |
| 60.00         | 528.5               | 20         | 32.55                  | 7.60            | 0.3380          | 17250.0                                          | 16248.4                   | 0.9419                         |  |
| 60.20         | 538.9               | 10         | 32.63                  | 7.80            | 0.3019          | 15220.0                                          | 14516.0                   | 0.9537                         |  |
| 60.00         | 546.8               | 2          | 32.55                  | 8.10            | 0.2725          | 13110.0                                          | 13099.7                   | 0.9992                         |  |
| 80.20         | 507.4               | 60         | 30.21                  | 8.70            | 0.5393          | 21280.0                                          | 25927.0                   | 1.2184                         |  |
| 79.20         | 516.0               | 50         | 35.20                  | 7.10            | 0.5022          | 26610.0                                          | 24144.6                   | 0.9073                         |  |
| 80.10         | 527.9               | 40         | 40.64                  | 7.50            | 0.4594          | 24630.0                                          | 22087.8                   | 0.8968                         |  |
| 80.10         | 538.8               | 30         | 40.64                  | 7.70            | 0.4196          | 22280.0                                          | 20175.4                   | 0.9955                         |  |
| <b>79.</b> 80 | 546.9               | 20         | 40.52                  | 7 <b>.</b> 90   | 0.3885          | 20400.0                                          | 18676.3                   | 0.9155                         |  |
| 79.90         | 557.2               | 10         | 40.56                  | 8.40            | 0.3516          | 17860.0                                          | 16902.0                   | 0.9464                         |  |
| 80.00         | 566.2               | 2          | 40.60                  | 8.80            | 0.3192          | 15290.0                                          | 15347.1                   | 1.0037                         |  |
| 99.60         | 523.4               | 60         | 39.90                  | 11.10           | 0.5812          | 24880.0                                          | 27940.3                   | 1.1230                         |  |
| 100.90        | 533.9               | 50         | 47.40                  | 12.50           | 0.5447          | 28410.0                                          | 26185.5                   | 0.9217                         |  |
| 99.80         | 544.4               | 40         | 47.91                  | 16.20           | 0.4977          | 20700.0                                          | 23929.6                   | 1.1560                         |  |
| 100.80        | 555.1               | 30         | 48.26                  | 19.80           | 0.4626          | 18700.0                                          | 22239.0                   | 1.1892                         |  |
| 98.40         | 573.8               | 10         | 47.42                  | 8.40            | 0.3721          | 18820.0                                          | 17890.9                   | 0.9506                         |  |
| 100.00        | 582.2               | 2          | 47.98                  | 8.40            | 0.3527          | 17820.0                                          | 16956.5                   | 0.9515                         |  |
| 120.50        | 538.0               | 60         | 50.50                  | 11.50           | 0.6205          | 32270.0                                          | 29831.6                   | 0.9244                         |  |
| 121.60        | 548.9               | 50         | 55.44                  | 12.10           | 0.5801          | 30680.0                                          | 27887.8                   | 0.9090                         |  |
| 121.30        | 558.3               | 40         | 55.34                  | 12.50           | 0.5416          | 28650.0                                          | 26036.4                   | 0.9088                         |  |
| 120.10        | 567.7               | 30         | 54.93                  | 13.00           | 0.4997          | 26430.0                                          | 24022.2                   | 0.9089                         |  |
| 119.50        | 577.5               | 20         | 54.73                  | 13.40           | 0.4592          | 24110.0                                          | 22075.6                   | 0.9756                         |  |
| 120.10        | 596.0               | 2          | 54.93                  | 7.60            | 0.3886          | 20450.0                                          | 18681.4                   | 0.9135                         |  |

Tabelle 10: Daten aus Messung und Rechnung (Pana)

.

.
| Probe:        | 2.13B                                       | Spa     | ltweite:              | 0.                    | 32 mm     | Spaltrauhigkeit: 150 µm   |                           |                                |  |
|---------------|---------------------------------------------|---------|-----------------------|-----------------------|-----------|---------------------------|---------------------------|--------------------------------|--|
|               | وربى مى | 5pa     | ltquersc              | hn: 25.               | 60 mm²    | Reibungsbe                | 1wert: 38.                | , Z                            |  |
| P<br>o<br>bar | То<br>К.                                    | ∆T<br>K | P <sub>2</sub><br>bar | P <sub>u</sub><br>bar | m<br>kg/s | G <sub>M</sub><br>kg/s m² | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> ∕G <sub>M</sub> |  |
| 40.20         | 463.6                                       | 60      | 12.76                 | 5.10                  | 0.7972    | 11270.0                   | 11071.7                   | 0.9824                         |  |
| 39.97         | 472.9                                       | 50      | 15.19                 | 5.50                  | 0.7478    | 10640.0                   | 10386.7                   | 0.9762                         |  |
| 40.10         | 483.5                                       | 40      | 15.22                 | 6.10                  | 0.6949    | 10430.0                   | 9650.9                    | 0.9253                         |  |
| 40.60         | 494.2                                       | 30      | 15.35                 | 6.50                  | 0.6458    | 9973.0                    | 8969.0                    | 0.8993                         |  |
| 40.10         | 503.6                                       | 20      | 15.22                 | 6.80                  | 0.5906    | 9109.0                    | 8202.8                    | 0.9005                         |  |
| 40.50         | 513.8                                       | 10      | 15.33                 | 7.20                  | 0.5423    | 8188.0                    | 7531.9                    | 0.9199                         |  |
| 39.80         | 521.2                                       | 2       | 15.14                 | 8.10                  | 0.4959    | 6535.0                    | 6888.1                    | 1.0540                         |  |
| 60.80         | 488.7                                       | 60      | 20.37                 | 5 • 90                | 0.9393    | 13550.0                   | 13045.5                   | 0.9627                         |  |
| 60.10         | 499.3                                       | 50      | 20.21                 | 6.40                  | 0.8754    | 12910.0                   | 12158.7                   | 0.9418                         |  |
| 60.30         | 508.3                                       | 40      | 20.26                 | 6.50                  | 0.8302    | 12590.0                   | 11530.4                   | 0.9158                         |  |
| 60.10         | 518.4                                       | 30      | 20.21                 | 6.80                  | 0.7747    | 11590.0                   | 10759.1                   | 0.9283                         |  |
| 60.00         | 529.4                                       | 20      | 20.19                 | 7.50                  | 0.7155    | 10490.0                   | 9937.9                    | 0.9473                         |  |
| 59.70         | 537.7                                       | 10      | 20.12                 | 7.70                  | 0.6685    | 9492.0                    | 9284.7                    | 0.9782                         |  |
| 60.20         | 546.9                                       | 2       | 20.24                 | 8.40                  | 0.6252    | 8316.0                    | 8683.6                    | 1.0442                         |  |
| 80.00         | 506.9                                       | 60      | 24.63                 | 6.40                  | 0.1047    | 15490.0                   | 14537.9                   | 0.9385                         |  |
| 80.00         | 517.7                                       | 50      | 24.63                 | 6.80                  | 0.9872    | 14920.0                   | 13710.5                   | 0.9189                         |  |
| 79.70         | 527.2                                       | 40      | 24.57                 | 7.30                  | 0.9322    | 13980.0                   | 12946.8                   | 0.9261                         |  |
| 80.60         | 538.5                                       | 30      | 24.76                 | 7.40                  | 0.8770    | 13530.0                   | 12180.7                   | 0.9003                         |  |
| 79.70         | 547.2                                       | 20      | 24.57                 | 7.70                  | 0.8221    | 12390.0                   | 11418.3                   | 0.9216                         |  |
| 80.10         | 557.6                                       | 10      | 24.65                 | 8.50                  | 0.7678    | 11160.0                   | 10663.8                   | 0.9555                         |  |
| 80.40         | 566.5                                       | 2       | 24.72                 | 9.00                  | 0.7207    | 9605.0                    | 10009.2                   | 1.0429                         |  |
| 100.40        | 525.3                                       | 60      | 28.79                 | 6.90                  | 0.1128    | 17150.0                   | 15670.7                   | 0.9137                         |  |
| 100.10        | 533.9                                       | 50      | 28.73                 | 7.40                  | 0.1075    | 16330.0                   | 14929.4                   | 0.9142                         |  |
| 100.90        | 545.2                                       | 40      | 28.88                 | 7.40                  | 0.1015    | 15580.0                   | 14103.8                   | 0.9052                         |  |
| 100.30        | 553.9                                       | 30      | 28.77                 | 7.60                  | 0.9597    | 14670.0                   | 13329.7                   | 0.9086                         |  |
| 100.00        | 563.6                                       | 20      | 28.71                 | 7.90                  | 0.9006    | 13580.0                   | 12508.7                   | 0.9211                         |  |
| 99.90         | 574.2                                       | 10      | 28.69                 | 8.40                  | 0.8376    | 12190.0                   | 11633.3                   | 0.9543                         |  |
| 120.00        | 537.7                                       | 60      | 32.43                 | 7.40                  | 0.1214    | 18370.0                   | 16867.5                   | 0.9182                         |  |
| 120.20        | 547.8                                       | 50      | 32.47                 | 7.60                  | 0.1154    | 17520.0                   | 16032.4                   | 0.9151                         |  |
| 119.90        | 557.7                                       | 40      | 32.41                 | 7.90                  | 0.1092    | 16660.0                   | 15170.4                   | 0.9106                         |  |
| 119.60        | 567.8                                       | 30      | 32.35                 | 8.10                  | 0.1029    | 15640.0                   | 14294.6                   | 0.9140                         |  |
| 121.00        | 578.0                                       | 20      | 32.63                 | 8.50                  | 0.9755    | 14710.0                   | 13548.9                   | 0.9211                         |  |
| 120.10        | 587.5                                       | 10      | 32.45                 | 8.80                  | 0.9123    | 13390.0                   | 12670.4                   | 0.9462                         |  |

Tabelle 11: Daten aus Messung und Rechnung (Pana)

| Probe:         | 4.24B               | Spa<br>Spa | ltweite:<br>ltquersc  | 0.<br>hn: 46.         | 58 mm<br>40 mm² | Spaltrauhigkeit: 150 μm<br>Reibungsbeiwert: 8.3 |                           |                                |  |
|----------------|---------------------|------------|-----------------------|-----------------------|-----------------|-------------------------------------------------|---------------------------|--------------------------------|--|
| P<br>o<br>bar  | Т <sub>о</sub><br>К | ΔT<br>K    | P <sub>2</sub><br>bar | P <sub>u</sub><br>bar | m<br>kg/s       | G <sub>M</sub><br>kg/s m²                       | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> /G <sub>M</sub> |  |
| 40.30          | 464.0               | 60         | 12.84                 | 8.00                  | 0.6917          | 22740.0                                         | 22753.5                   | 1.0006                         |  |
| 40.10          | 473.7               | 50         | 15.78                 | 8.60                  | 0.6469          | 21980.0                                         | 21278.4                   | 0.9681                         |  |
| 40.00          | 483.4               | 40         | 19.24                 | 9.40                  | 0.5937          | 20840.0                                         | 19529.5                   | 0.9371                         |  |
| 40.00          | 493.3               | 30         | 23.31                 | 10.30                 | 0.5284          | 18530.0                                         | 17380.6                   | 0.9380                         |  |
| 39.90          | 503.0               | 20         | 25.77                 | 11.20                 | 0.4566          | 15430.0                                         | 15019.1                   | 0.9734                         |  |
| 40.00          | 512.8               | 10         | 25.82                 | 12.30                 | 0.3945          | 13940.0                                         | 12977.5                   | 0.9310                         |  |
| 40.40          | 522.4               | 2          | 26.03                 | 11.00                 | 0.3336          | 11110.0                                         | 10975.2                   | 0.9879                         |  |
| 60.10          | 487.7               | 60         | 20.95                 | 9.60                  | 0.8126          | 26810.0                                         | 26731.8                   | 0.9971                         |  |
| <b>59.</b> 10  | 500.6               | 50         | 26.75                 | 10.60                 | 0.7315          | 24460.0                                         | 24063.0                   | 0.9838                         |  |
| 59.70          | 508.7               | 40         | 30.82                 | 11.10                 | 0.6869          | 23450.0                                         | 22594.4                   | 0.9635                         |  |
| 59.50          | 516.9               | 30         | 35.50                 | 11.80                 | 0.6190          | 21480.0                                         | 20361.2                   | 0.9479                         |  |
| 60.50          | 529.2               | 20         | 35.97                 | 11.10                 | 0.5524          | 18850.0                                         | 18169.5                   | 0.9610                         |  |
| 60.60          | 539.5               | 10         | 36.02                 | 11.80                 | 0.4880          | 16270.0                                         | 16051.0                   | 0.9865                         |  |
| 60.30          | 547.2               | 2          | 35.88                 | 12.30                 | 0.4360          | 13510.0                                         | 14342.0                   | 1.0616                         |  |
| 80.90          | 508.0               | 60         | 30.50                 | 10.30                 | 0.9078          | 29980.0                                         | 29861.1                   | 0.9960                         |  |
| 81.20          | 518.9               | 50         | 37.00                 | 10.80                 | 0.8421          | 28560.0                                         | 27700.4                   | 0.9699                         |  |
| 7 <b>9</b> .70 | 527.8               | 40         | 42.97                 | 12.30                 | 0.7613          | 24910.0                                         | 25043.3                   | 1.0053                         |  |
| 79.90          | 538.3               | 30         | 44.73                 | 12.90                 | 0.6906          | 21850.0                                         | 22718.0                   | 1.0397                         |  |
| 80.40          | 548.3               | 20         | 44.95                 | 13.60                 | 0.6302          | 20650.0                                         | 20729.9                   | 1.0098                         |  |
| 80.10          | 558.4               | 10         | 44.82                 | 11.60                 | 0.5615          | 18860.0                                         | 18470.2                   | 0.9793                         |  |
| 80.40          | 566.6               | 2          | 44.95                 | 13.40                 | 0.5108          | 16490.0                                         | 16801.6                   | 1.0189                         |  |
| 99.80          | 524.4               | 60         | 40.59                 | 13.20                 | 0.9697          | 32500.0                                         | 31899.5                   | 0.9815                         |  |
| 99.70          | 533.5               | 50         | 47.10                 | 19.80                 | 0.9061          | 30820.0                                         | 29806.8                   | 0.9671                         |  |
| 100.60         | 544.3               | 40         | 53.39                 | 14.50                 | 0.8319          | 28600.0                                         | 27363.8                   | 0.9568                         |  |
| 100.20         | 554.2               | 30         | 53.23                 | 15.10                 | 0.7579          | 25910.0                                         | 24931.5                   | 0.9622                         |  |
| 100.50         | 563.7               | 20         | 53.35                 | 15.40                 | 0.6943          | 23450.0                                         | 22838.3                   | 0.9739                         |  |
| 100.20         | 573.8               | 10         | 53.23                 | 15.10                 | 0.6188          | 20580.0                                         | 20356.9                   | 0.9891                         |  |
| 99.90          | 582.0               | 2          | 53.11                 | 16.20                 | 0.5566          | 17500.0                                         | 18307.8                   | 1.0462                         |  |
| 120.80         | 538.3               | 60         | 50.70                 | 14.90                 | 0.1041          | 35800.0                                         | 34247.7                   | 0.9566                         |  |
| 120.50         | 548.0               | 50         | 58.84                 | 12.70                 | 0.9665          | 33640.0                                         | 31794.0                   | 0.9451                         |  |
| 120.00         | 557.7               | 40         | 61.01                 | 13.20                 | 0.8917          | 31120.0                                         | 29332.7                   | 0.9425                         |  |
| 120.00         | 567.9               | 30         | 61.01                 | 13.90                 | 0.8208          | 28230.0                                         | 27001.5                   | 0.9565                         |  |
| 121.30         | 577.8               | 20         | 61.50                 | 15.30                 | 0.7609          | 25780.0                                         | 25030.2                   | 0.9709                         |  |
| 120.30         | 587.9               | 10         | 61.12                 | 14.60                 | 0.6845          | 22740.0                                         | 22516.3                   | 0.9902                         |  |
| 119.50         | 595.4               | 2          | 60.82                 | 15.30                 | 0.6258          | 20060.0                                         | 20585.4                   | 1.0161                         |  |

Tabelle 12: Daten aus Messung und Rechnung (Pana)

| Probe:                | 2 • 15 R         | Spaltweite: 0.44 mm<br>Spaltquerschn: 35.20 mm² |                       |               |                | Spaltrauhigkeit: 240 μm<br>Reibungsbeiwert: 85 |                           |                                |  |
|-----------------------|------------------|-------------------------------------------------|-----------------------|---------------|----------------|------------------------------------------------|---------------------------|--------------------------------|--|
| P <sub>o</sub><br>bar | Т <sub>о</sub> к | ∆T<br>K                                         | P <sub>2</sub><br>bar | P<br>u<br>bar | ø<br>m<br>kg/s | G <sub>M</sub><br>kg/s m²                      | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> /G <sub>M</sub> |  |
| 39.90                 | 462.8            | 60                                              | 10.53                 | 5.17          | 0.1193         | 7577.0                                         | 7457.2                    | 0.9842                         |  |
| 40.10                 | 473.3            | 50                                              | 10.56                 | 5.60          | 0.1130         | 7338.0                                         | 7060.1                    | 0.9621                         |  |
| 40.10                 | 484.1            | 40                                              | 10.56                 | 6.10          | 0.1060         | 7000.0                                         | 6624.7                    | 0.9464                         |  |
| 40.30                 | 503.8            | 20                                              | 10.59                 | 6.60          | 0.9359         | 6020.0                                         | 5849.5                    | 0.9717                         |  |
| 40.00                 | 512.4            | 10                                              | 10.54                 | 6.80          | 0.8757         | 5290.0                                         | 5473.0                    | 1.0346                         |  |
| 40.00                 | 521.8            | 2                                               | 10.54                 | 7.90          | 0.8151         | 4349.0                                         | 5094.7                    | 1.1714                         |  |
| 60.70                 | 488.6            | 60                                              | 13.88                 | 6.05          | 0.1414         | 9358.0                                         | 8835.0                    | 0.9441                         |  |
| 60.00                 | 498.3            | 50                                              | 13.77                 | 6.50          | 0.1337         | 8813.0                                         | 8354.2                    | 0.9479                         |  |
| 60.40                 | 508.5            | 40                                              | 13.83                 | 6.90          | 0.1274         | 8310.0                                         | 7962.6                    | 0.9582                         |  |
| 60.40                 | 520.0            | 30                                              | 13.83                 | 8.40          | 0.1196         | 7591.0                                         | 7475.8                    | 0.9848                         |  |
| 59.90                 | 528.2            | 20                                              | 13.76                 | 9.00          | 0.1133         | 6957.0                                         | 7080.0                    | 1.0177                         |  |
| 60.20                 | 538.7            | 10                                              | 13.80                 | 7.80          | 0.1066         | 6480.0                                         | 6664.9                    | 1.0285                         |  |
| 59.80                 | 546.6            | 2                                               | 13.74                 | 9.50          | 0.1007         | 5420.0                                         | 6292.3                    | 1.1609                         |  |
| 80.10                 | 508.6            | 60                                              | 16.65                 | 6.30          | 0.1569         | 10630.0                                        | 9807.4                    | 0.9132                         |  |
| 80.30                 | 508.8            | 60                                              | 16.68                 | 6.30          | 0.1571         | 10630.0                                        | 9817.0                    | 0.9235                         |  |
| 79.70                 | 527.9            | 40                                              | 16.60                 | 6.70          | 0.1425         | 9682.0                                         | 8907.1                    | 0.9199                         |  |
| 00.08                 | 537.8            | 30                                              | 16.64                 | 6.90          | 0.1359         | 9034.0                                         | 8491.9                    | 0.9400                         |  |
| 79.30                 | 547.0            | 20                                              | 16.54                 | 7.80          | 0.1283         | 8199.0                                         | 8021.8                    | 0.9784                         |  |
| 80.90                 | 558.8            | 10                                              | 16.76                 | 8.50          | 0.1220         | 7332.0                                         | 7627.5                    | 1.0403                         |  |
| 79.90                 | 566.1            | 2                                               | 16.62                 | 6.90          | 0.1155         | 6440.0                                         | 7216.7                    | 1.1206                         |  |
| 99.40                 | 523.1            | 60                                              | 19.18                 | 6.80          | 0.1712         | 11390.0                                        | 10698.3                   | 0.9393                         |  |
| 00.10                 | 533.5            | 50                                              | 19.26                 | 7.20          | 0.1641         | 10810.0                                        | 10257.8                   | 0.9489                         |  |
| 00.60                 | 545.6            | 40                                              | 19.33                 | 7.70          | 0.1555         | 10160.0                                        | 9721.7                    | 0.9568                         |  |
| 00•40                 | 554.8            | 30                                              | 19.30                 | 7 <b>.</b> 90 | 0.1483         | 9599.0                                         | 9271.9                    | 0.9659                         |  |
| 0.50                  | 564.1            | 20                                              | 19.31                 | 8.20          | 0.1413         | 9065.0                                         | 8833.5                    | 0.9744                         |  |
| 00.00                 | 573.2            | 10                                              | 19.25                 | 8.40          | 0.1339         | 8372.0                                         | 8368.9                    | 0.9996                         |  |
| 00.70                 | 582.5            | 2                                               | 19.34                 | 10.30         | 0.1276         | 7128.0                                         | 7974.4                    | 1.1187                         |  |
| 20.40                 | 538.4            | 60                                              | 21.72                 | 7.10          | 0.1833         | 12380.0                                        | 11456.7                   | 0.9254                         |  |
| 20.50                 | 548.3            | 50                                              | 21.73                 | 7.30          | 0.1755         | 11940.0                                        | 10971.4                   | 0.9189                         |  |
| 20.10                 | 557.8            | 40                                              | 21.68                 | 7.70          | 0.1675         | 11380.0                                        | 10468.5                   | 0.9199                         |  |
| 20.60                 | 568.2            | 30                                              | 21.74                 | 8.00          | 0.1598         | 10690.0                                        | 9985.8                    | 0.9341                         |  |
| 20.10                 | 576.9            | 20                                              | 21.68                 | 8.50          | 0.1522         | 9872.0                                         | 9515.4                    | 0.9639                         |  |
| 20.60                 | 588.2            | 10                                              | 21.74                 | 8.50          | 0.1438         | 8895.0                                         | 8986.2                    | 1.0102                         |  |

Tabelle 13: Daten aus Messung und Rechnung (Pana)

| , energia de la constante de la |                  | Spa     | altquersc             | hn: 43.               | 20 mm <sup>2</sup> | Reibungsbeiwert: 43       |                           |                                |  |
|-----------------------------------------------------------------------------------------------------------------|------------------|---------|-----------------------|-----------------------|--------------------|---------------------------|---------------------------|--------------------------------|--|
| P <sub>o</sub><br>bar                                                                                           | т <sub>о</sub> к | ∆T<br>K | P <sub>2</sub><br>bar | P <sub>u</sub><br>bar | m<br>kg/s          | G <sub>M</sub><br>kg/s m² | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> /G <sub>M</sub> |  |
| 39.60                                                                                                           | 462.7            | 60      | 12.50                 | 4.80                  | 0.2493             | 10700.0                   | 10389.0                   | 0.9709                         |  |
| 39.60                                                                                                           | 473.3            | 50      | 14.33                 | 5.50                  | 0.2332             | 10210.0                   | 9716.0                    | 0.9516                         |  |
| 40.00                                                                                                           | 486.0            | 40      | 14.43                 | 5.90                  | 0.2150             | 9394.0                    | 8958.4                    | 0.9536                         |  |
| 40.00                                                                                                           | 493.3            | 30      | 14.43                 | 5.30                  | 0.2036             | 8722.0                    | 8481.5                    | 0.9724                         |  |
| 40.40                                                                                                           | 505.5            | 20      | 14.53                 | 7.00                  | 0.1858             | 7620.0                    | 7741.9                    | 1.0160                         |  |
| 39.90                                                                                                           | 512.9            | 10      | 14.41                 | 6.70                  | 0.1725             | 6766.0                    | 7188.4                    | 1.0624                         |  |
| 40.90                                                                                                           | 522.8            | 2       | 14.66                 | 7.00                  | 0.1596             | 6234.0                    | 6649.3                    | 1.0666                         |  |
| 60.10                                                                                                           | 488.8            | 60      | 19.15                 | 5 <b>.</b> 90         | 0.2930             | 13360.0                   | 12209.0                   | 0.9138                         |  |
| 60.10                                                                                                           | 498.5            | 50      | 19.15                 | 6.20                  | 0.2774             | 12570.0                   | 11556.4                   | 0.9194                         |  |
| 59.90                                                                                                           | 508.7            | 40      | 19.11                 | 6.60                  | 0.2602             | 11650.0                   | 10840.9                   | 0.9305                         |  |
| 59.30                                                                                                           | 517.4            | 30      | 18.97                 | 6.80                  | 0.2439             | 10700.0                   | 10163.9                   | 0.9499                         |  |
| 59.80                                                                                                           | 528.3            | 20      | 19.08                 | 7.30                  | 0.2282             | 9498.0                    | 9508.7                    | 1.0011                         |  |
| 59.90                                                                                                           | 537.9            | 10      | 19.11                 | 7.60                  | 0.2130             | 8417.0                    | 8876.6                    | 1.0546                         |  |
| 60.20                                                                                                           | 546.9            | 2       | 19.17                 | 8.00                  | 0.1994             | 7282.0                    | 8310.1                    | 1.1412                         |  |
| 80.80                                                                                                           | 508.5            | 60      | 23.45                 | 6.40                  | 0.3292             | 14910.0                   | 13717.4                   | 0.9200                         |  |
| 79.80                                                                                                           | 517.8            | 50      | 23.26                 | 6.70                  | 0.3105             | 14100.0                   | 12938.8                   | 0.9176                         |  |
| 80.40                                                                                                           | 528.3            | 40      | 23.38                 | 6.90                  | 0.2943             | 13170.0                   | 12261.8                   | 0.9310                         |  |
| 80.50                                                                                                           | 537.8            | 30      | 23.40                 | 7.30                  | 0.2784             | 12250.0                   | 11599.1                   | 0.9468                         |  |
| 80.00                                                                                                           | 548.3            | 20      | 23.30                 | 7.60                  | 0.2594             | 10870.0                   | 10808.1                   | 0.9943                         |  |
| 80.20                                                                                                           | 558.2            | 10      | 23.34                 | 7.90                  | 0.2431             | 9697.0                    | 10128.2                   | 1.0445                         |  |
| 80.00                                                                                                           | 566.1            | 2       | 23.30                 | 8.30                  | 0.2292             | 8458.0                    | 9548.9                    | 1.1290                         |  |
| 100.00                                                                                                          | 523.8            | 60      | 27.12                 | 7.10                  | 0.3573             | 15510.0                   | 14889.4                   | 0.9600                         |  |
| 100.40                                                                                                          | 534.3            | 50      | 27.19                 | 7.60                  | 0.3396             | 14600.0                   | 14151.9                   | 0.9693                         |  |
| 100.00                                                                                                          | 543.2            | 40      | 27.12                 | 7.60                  | 0.3227             | 13840.0                   | 13445.2                   | 0.9715                         |  |
| 99.70                                                                                                           | 553.5            | 30      | 27.07                 | 7 <b>.</b> 90         | 0.3034             | 12680.0                   | 12640.8                   | 0.9969                         |  |
| 100.40                                                                                                          | 563.5            | 20      | 27.19                 | 8.00                  | 0.2874             | 11740.0                   | 11975.0                   | 1.0200                         |  |
| 100.30                                                                                                          | 573.3            | 10      | 27.17                 | 8.10                  | 0.2696             | 10610.0                   | 11231.9                   | 1.0586                         |  |
| 120.60                                                                                                          | 538.9            | 60      | 30.69                 | 7.80                  | 0.3819             | 16510.0                   | 15911.6                   | 0.9637                         |  |
| 119.90                                                                                                          | 557.5            | 40      | 30.58                 | 7.80                  | 0.3453             | 14930.0                   | 14389.3                   | 0.9638                         |  |
| 119.80                                                                                                          | 566.3            | 30      | 30.56                 | 7.80                  | 0.3286             | 13960.0                   | 13691.4                   | 0.9807                         |  |
| 119.20                                                                                                          | 577.3            | 20      | 30.47                 | 7 <b>.</b> 90         | 0.3068             | 12700.0                   | 12784.5                   | 1.0066                         |  |
| 120.20                                                                                                          | 588.2            | 10      | 30.63                 | 8.40                  | 0.2886             | 11400.0                   | 12026.8                   | 1.0550                         |  |
| 119.90                                                                                                          | 595.3            | 2       | 30.58                 | 8.90                  | 0.2747             | 10170.0                   | 11444.9                   | 1.1253                         |  |

Probe: 3.15R Spaltweite: 0.54 mm Spaltrauhigkeit: 240 μm

Tabelle 14: Daten aus Messung und Rechnung (Pana)

4

| Probe:    | 4 • 15 R            | Sp.<br>Sp: | altweite:<br>altquerscl | 0.6<br>hn: 51.2 | 54 mm<br>20 mm <sup>2</sup> | Spaltrauhigkeit: 240 μm<br>Reibungsbeiwert: 23.5 |                           |                                |  |
|-----------|---------------------|------------|-------------------------|-----------------|-----------------------------|--------------------------------------------------|---------------------------|--------------------------------|--|
| Po<br>bar | т<br>к <sup>о</sup> | ∆T<br>K    | P <sub>2</sub><br>bar   | P<br>u<br>bar   | m<br>kg/s                   | G <sub>M</sub><br>kg/s m²                        | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> /G <sub>M</sub> |  |
| 40.20     | 463.5               | 60         | 12.73                   | 7,30            | 0.4483                      | 14480.0                                          | 14009.9                   | 0.9675                         |  |
| 40.40     | 473.5               | 50         | 15.74                   | 8.30            | 0.4220                      | 13660.0                                          | 13188.5                   | 0.9655                         |  |
| 40.00     | 483.6               | 40         | 18.49                   | 9.10            | 0.3848                      | 12560.0                                          | 12024.1                   | 0.9573                         |  |
| 40.10     | 493.6               | 30         | 18.52                   | 10.90           | 0.3530                      | 11380.0                                          | 11031.9                   | 0.9694                         |  |
| 40.00     | 504.1               | 20         | 18.49                   | 11.70           | 0.3177                      | 9742.0                                           | 9927.7                    | 1.0191                         |  |
| 39.70     | 512.8               | 10         | 18.39                   | 12.30           | 0.2881                      | 8434.0                                           | 9002.7                    | 1.0674                         |  |
| 39.80     | 521.3               | 2          | 18.42                   | 12.90           | 0.2604                      | 6984.0                                           | 8137.2                    | 1.1651                         |  |
| 60.00     | 488.3               | 60         | 21.22                   | 8.00            | 0.5237                      | 17200.0                                          | 16366.6                   | 0.9515                         |  |
| 60.30     | 499.0               | 50         | 24.95                   | 10.80           | 0.4897                      | 16310.0                                          | 15301.6                   | 0.9382                         |  |
| 60.00     | 508.7               | 40         | 24.86                   | 11.60           | 0.4560                      | 15150.0                                          | 14248.6                   | 0.9405                         |  |
| 60.40     | 519.1               | 30         | 24.98                   | 12.20           | 0.4241                      | 13800.0                                          | 13254.0                   | 0.9604                         |  |
| 60.20     | 528.6               | 20         | 24.92                   | 13.00           | 0.3918                      | 12010.0                                          | 12243.9                   | 1.0195                         |  |
| 59.60     | 537.7               | 10         | 24.74                   | 13.50           | 0.3584                      | 10480.0                                          | 11198.8                   | 1.0686                         |  |
| 60.20     | 547.1               | 2          | 24.92                   | 14.70           | 0.3310                      | 8914.0                                           | 10345.2                   | 1.1605                         |  |
| 79.70     | 507.8               | 60         | 30.47                   | 10.90           | 0.5812                      | 18980.0                                          | 18163.7                   | 0.9570                         |  |
| 80.00     | 517.7               | 50         | 30.50                   | 11.60           | 0.5492                      | 18050.0                                          | 17161.4                   | 0.9508                         |  |
| 79.80     | 527.8               | 40         | 30.45                   | 12.00           | 0.5133                      | 16990.0                                          | 16039.5                   | 0.9440                         |  |
| 80.50     | 537.6               | 30         | 30.63                   | 12.50           | 0.4836                      | 15620.0                                          | 15112.0                   | 0.9675                         |  |
| 80.00     | 548.0               | 20         | 30.50                   | 13.10           | 0.4451                      | 13720.0                                          | 13910.1                   | 1.0138                         |  |
| 80.80     | 558.7               | 10         | 30.70                   | 14.50           | 0.4128                      | 12100.0                                          | 12901.0                   | 1.0662                         |  |
| 80.00     | 565.9               | 2          | 30.50                   | 14.80           | 0.3836                      | 10460.0                                          | 11988.8                   | 1.1461                         |  |
| 100.30    | 524.7               | 60         | 35.87                   | 11.30           | 0.6322                      | 20880.0                                          | 19756.9                   | 0.9462                         |  |
| 100.30    | 544.3               | 40         | 35.87                   | 12.60           | 0.5621                      | 18980.0                                          | 17565.3                   | 0.9255                         |  |
| 99.60     | 553.9               | 30         | 35.69                   | 12.70           | 0.5245                      | 17740.0                                          | 16390.2                   | 0.9239                         |  |
| 100.20    | 564.7               | 20         | 35.84                   | 13.40           | 0.4886                      | 16000.0                                          | 15267.3                   | 0.9542                         |  |
| 99.90     | 573.8               | 10         | 35.77                   | 14.00           | 0.4547                      | 14490.0                                          | 14208.8                   | 0.9806                         |  |
| 100.20    | 582.2               | 2          | 35.84                   | 14.50           | 0.4259                      | 11860.0                                          | 13310.5                   | 1.1223                         |  |
| 120.00    | 537.9               | 60         | 40.70                   | 11.30           | 0.6771                      | 22400.0                                          | 21159.6                   | 0.9446                         |  |
| 120.30    | 548.5               | 50         | 40.77                   | 12.10           | 0.6390                      | 21070.0                                          | 19967.7                   | 0.9477                         |  |
| 120.20    | 557.8               | 40         | 40.75                   | 12.60           | 0.6039                      | 19710.0                                          | 18871.0                   | 0.9574                         |  |
| 120.30    | 568.3               | 30         | 40.77                   | 12.90           | 0.5653                      | 18020.0                                          | 17665.2                   | 0.9803                         |  |
| 120.70    | 578.1               | 20         | 40.87                   | 13.20           | 0.5300                      | 16850.0                                          | 16562.0                   | 0.9829                         |  |
| 120.20    | 587.2               | 10         | 40.75                   | 12.90           | 0.4945                      | 14730.0                                          | 15454.5                   | 1.0492                         |  |
| 120.10    | 595.5               | 2          | 40.72                   | 13.40           | 0.4633                      | 13210.0                                          | 14476.6                   | 1.0959                         |  |

Tabelle 15: Daten aus Messung und Rechnung (Pana)

| Probe: 2              | 2 • 24 C         | Spa<br>Spa | ltweite:<br>ltquersc  | 0.<br>hn: 20.         | 25 mm<br>00 mm² | Spaltrauhi<br>Reibungsbe  | trauhigkeit: 100 μm<br>oungsbeiwert: 28.2 |                                |  |
|-----------------------|------------------|------------|-----------------------|-----------------------|-----------------|---------------------------|-------------------------------------------|--------------------------------|--|
| P <sub>o</sub><br>bar | Т <sub>о</sub> к | ∆T<br>K    | P <sub>2</sub><br>bar | P <sub>u</sub><br>bar | m<br>kg/s       | G <sub>M</sub><br>kg/s m² | G <sub>R</sub><br>kg/s m²                 | G <sub>R</sub> /G <sub>M</sub> |  |
| 40.30                 | 463.5            | 60         | 12.72                 | 4.90                  | 0.1442          | 13570.0                   | 12871.1                                   | 0,9485                         |  |
| 40.60                 | 474.1            | 50         | 15.93                 | 5.60                  | 0.1354          | 12860.0                   | 12087.3                                   | 0.9399                         |  |
| 40.30                 | 483.4            | 40         | 17.33                 | 6.00                  | 0.1251          | 12050.0                   | 11168.3                                   | 0.9268                         |  |
| 40.10                 | 493.6            | 30         | 17.26                 | 6.20                  | 0.1143          | 11230.0                   | 10207.7                                   | 0.9090                         |  |
| 40.00                 | 503.4            | 20         | 17.23                 | 6.60                  | 0.1042          | 10240.0                   | 9307.2                                    | 0.9089                         |  |
| 39.90                 | 513.2            | 10         | 17.20                 | 7.20                  | 0.9426          | 9330.0                    | 8415.8                                    | 0.9020                         |  |
| 40.10                 | 521.9            | 2          | 17.26                 | 7.70                  | 0.8600          | 7925.0                    | 7678.6                                    | 0.9689                         |  |
| 59.90                 | 488.4            | 60         | 21.26                 | 5.80                  | 0.1677          | 16470.0                   | 14975.6                                   | 0.9092                         |  |
| 60.50                 | 499.0            | 50         | 23.20                 | 6.30                  | 0.1581          | 15950.0                   | 14113.8                                   | 0.8849                         |  |
| 60.10                 | 508.3            | 40         | 23.09                 | 6.50                  | 0.1478          | 15220.0                   | 13199.2                                   | 0.8672                         |  |
| 60.10                 | 528.8            | 20         | 23.09                 | 7.10                  | 0.1271          | 12990.0                   | 11345.2                                   | 0.8734                         |  |
| 59.70                 | 538.8            | 10         | 22.98                 | 7.30                  | 0.1161          | 11900.0                   | 10370.5                                   | 0.8715                         |  |
| 60.00                 | 546.6            | 2          | 23.06                 | 7.80                  | 0.1088          | 10010.0                   | 9717.6                                    | 0.9708                         |  |
| 80.50                 | 507.7            | 60         | 28.40                 | 6.30                  | 0.1883          | 19150.0                   | 16809.5                                   | 0.8778                         |  |
| 80.10                 | 518.1            | 50         | 28.30                 | 6.90                  | 0.1766          | 18090.0                   | 15770.7                                   | 0.8718                         |  |
| 80.30                 | 528.3            | 40         | 28.35                 | 7.20                  | 0.1663          | 17190.0                   | 14844.2                                   | 0.8635                         |  |
| 80.30                 | 538.4            | 30         | 28.35                 | 7.50                  | 0.1556          | 16220.0                   | 13893.1                                   | 0.8565                         |  |
| 80.30                 | 548.6            | 20         | 28.35                 | 7.90                  | 0.1448          | 15160.0                   | 12932.5                                   | 0.8531                         |  |
| 80.10                 | 557.4            | 10         | 28.30                 | 8.10                  | 0.1352          | 14120.0                   | 12071.1                                   | 0.8549                         |  |
| 80.10                 | 566.2            | 2          | 28.30                 | 8.40                  | 0.1259          | 12670.0                   | 11242.4                                   | 0.8873                         |  |
| 100.00                | 524.0            | 60         | 33.03                 | 6.60                  | 0.2037          | 21750.0                   | 18189.7                                   | 0.8363                         |  |
| 100.00                | 534.1            | 50         | 33.03                 | 6.80                  | 0.1925          | 20910.0                   | 17190.8                                   | 0.8221                         |  |
| 100.30                | 544.1            | 40         | 33.10                 | 7.10                  | 0.1819          | 19810.0                   | 16239.6                                   | 0.8197                         |  |
| 100.50                | 554.1            | 30         | 33.15                 | 7.40                  | 0.1710          | 18670.0                   | 15271.8                                   | 0.8180                         |  |
| 99.90                 | 564.2            | 20         | 33.00                 | 7.80                  | 0.1590          | 17320.0                   | 14197.2                                   | 0.8197                         |  |
| 100.60                | 574.0            | 10         | 33.17                 | 8.30                  | 0.1491          | 15900.0                   | 13316.0                                   | 0.8375                         |  |
| 99.40                 | 578.4            | 2          | 32.88                 | 8.10                  | 0.1425          | 15120.0                   | 12725.5                                   | 0.8416                         |  |

Tabelle 16: Daten aus Messung und Rechnung (Pana)

| Probe: 3.13C  |                     | Spa<br>Spa | ltweite:<br>ltquersc  | 0.4<br>hn: 34.4 | 3 mm<br>0 mm <sup>2</sup> | Spaltrauhigkeit: 100 μm<br>Reibungsbeiwert: 7.8 |                           |                                |  |
|---------------|---------------------|------------|-----------------------|-----------------|---------------------------|-------------------------------------------------|---------------------------|--------------------------------|--|
| P<br>o<br>bar | <sup>т</sup> о<br>К | ∆T<br>K    | P <sub>2</sub><br>bar | P<br>u<br>bar   | m<br>kg/s                 | G <sub>M</sub><br>kg/s m²                       | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> /G <sub>M</sub> |  |
| 40.20         | 462.8               | 60         | 12.53                 | 9,80            | 0.5446                    | 23060.0                                         | 23473.3                   | 1.0179                         |  |
| 40.10         | 473.5               | 50         | 15.71                 | 5,30            | 0.5077                    | 22270.0                                         | 21884.6                   | 0.9827                         |  |
| 39.10         | 481.8               | 40         | 18.63                 | 5.60            | 0.4625                    | 20660.0                                         | 19937.4                   | 0.9650                         |  |
| 40.00         | 493.6               | 30         | 23.44                 | 6.00            | 0.4124                    | 18720.0                                         | 17774.2                   | 0.9495                         |  |
| 39.90         | 503.7               | 20         | 26.17                 | 6.30            | 0.3525                    | 16240.0                                         | 15193.0                   | 0.9355                         |  |
| 40.30         | 513.1               | 10         | 26.38                 | 10,90           | 0.3076                    | 13960.0                                         | 13259.9                   | 0.9498                         |  |
| 39.60         | 521.2               | 2          | 26,00                 | 11.50           | 0.2629                    | 10440.0                                         | 11332.9                   | 1.0855                         |  |
| 60.20         | 488.5               | 60         | 21.28                 | 9,90            | 0.6346                    | 27600.0                                         | 27354.9                   | 0.9911                         |  |
| 60.30         | 498.9               | 50         | 25,91                 | 10.70           | 0.5919                    | 26370.0                                         | 25511.9                   | 0.9674                         |  |
| 60.20         | 509.1               | 40         | 31.03                 | 6,90            | 0.5407                    | 24360.0                                         | 23307.5                   | 0.9568                         |  |
| 60.20         | 519.3               | 30         | 36.44                 | 7.20            | 0.4779                    | 22260.0                                         | 20600.4                   | 0.9254                         |  |
| 60.40         | 529.0               | 20         | 36.54                 | 7.30            | 0.4310                    | 20000.0                                         | 18576.3                   | 0.9288                         |  |
| 60.30         | 538.3               | 10         | 36.49                 | 7.50            | 0.3837                    | 17760.0                                         | 16537.4                   | 0.9311                         |  |
| 60.00         | 546.8               | 2          | 36.35                 | 13.20           | 0.3363                    | 13920.0                                         | 14496.1                   | 1.0414                         |  |
| 80.20         | 508.0               | 60         | 30.49                 | 11.20           | 0.7065                    | 31400.0                                         | 30454.4                   | 0.9699                         |  |
| 81.10         | 519.9               | 50         | 37.57                 | 12.30           | 0.6544                    | 29620.0                                         | 28206.0                   | 0.9522                         |  |
| 80.70         | 528.3               | 40         | 43.28                 | 12.70           | 0.6020                    | 27680.0                                         | 25946.2                   | 0.9374                         |  |
| 80.40         | 538.0               | 30         | 45.78                 | 13.40           | 0.5446                    | 25360.0                                         | 23475.6                   | 0.9257                         |  |
| 80.40         | 548.6               | 20         | 45.78                 | 14.10           | 0.4902                    | 22530.0                                         | 21130.4                   | 0.9379                         |  |
| 80.30         | 558.5               | 10         | 45.73                 | 14.50           | 0.4391                    | 20030.0                                         | 18927.6                   | 0.9450                         |  |
| 80.10         | 566.3               | 2          | 45.64                 | 15.20           | 0.3966                    | 15910.0                                         | 17093.6                   | 1.0744                         |  |
| 100.30        | 524.6               | 60         | 40.70                 | 11.80           | 0.7624                    | 35350.0                                         | 32863.0                   | 0.9296                         |  |
| 100.00        | 534.1               | 50         | 47.48                 | 12.30           | 0.7092                    | 33460.0                                         | 30569.6                   | 0.9136                         |  |
| 100.10        | 544.4               | 40         | 54.19                 | 12.80           | 0.6464                    | 31100.0                                         | 27861.4                   | 0.8958                         |  |
| 100.10        | 554.0               | 30         | 54.19                 | 13.50           | 0.5924                    | 28580.0                                         | 25534.0                   | 0.8934                         |  |
| 100.40        | 564.1               | 20         | 54.32                 | 14.50           | 0.5387                    | 25580.0                                         | 23221.1                   | 0.9078                         |  |
| 100.70        | 573.9               | 10         | 54.45                 | 14.90           | 0.4870                    | 21510.0                                         | 20990.0                   | 0.9758                         |  |
| 100.20        | 582.0               | 2          | 54.24                 | 16.40           | 0.4363                    | 22270.0                                         | 18807.7                   | 0.8445                         |  |

Tabelle 17: Daten aus Messung und Rechnung (Pana)

— 73 —

| Probe: 4.13C  |                  | Spa<br>Spa | ltweite:<br>ltquerscl | 0.5<br>hn: 44.0 | 5 mm<br>0 mm <sup>2</sup> | Spaltrauhigkeit: 100 µm<br>Reibungsbeiwert: 6.4 |                           |                                |  |
|---------------|------------------|------------|-----------------------|-----------------|---------------------------|-------------------------------------------------|---------------------------|--------------------------------|--|
| P<br>o<br>bar | т <sub>о</sub> к | ∆T<br>K    | P <sub>2</sub><br>bar | P<br>u<br>bar   | m<br>kg/s                 | G <sub>M</sub><br>kg/s m²                       | G <sub>R</sub><br>kg/s m² | G <sub>R</sub> /G <sub>M</sub> |  |
| 39.80         | 463.3            | 60         | 12.66                 | 9.20            | 0.8104                    | 24800.0                                         | 25323.9                   | 1.0211                         |  |
| 40.30         | 474.4            | 50         | 16.00                 | 9.30            | 0.7613                    | 23430.0                                         | 23791.1                   | 1.0154                         |  |
| 40.00         | 483.5            | 40         | 19.27                 | 10.00           | 0.6988                    | 21710.0                                         | 21836.9                   | 1.0058                         |  |
| 40.10         | 495.4            | 30         | 24.23                 | 10.80           | 0.6060                    | 20500.0                                         | 18938.1                   | 0.9238                         |  |
| 40.00         | 504.5            | 20         | 27.46                 | 11.50           | 0.5166                    | 17890.0                                         | 16142.8                   | 0.9023                         |  |
| 39.70         | 512.2            | 10         | 27.29                 | 11.80           | 0.4518                    | 15280.0                                         | 14118.2                   | 0.9239                         |  |
| 40.20         | 522.2            | 2          | 27.58                 | 12.50           | 0.3764                    | 12350.0                                         | 11761.0                   | 0.9523                         |  |
| 60.40         | 490.7            | 60         | 22.20                 | 10.70           | 0.9436                    | 31770.0                                         | 29487.3                   | 0.9281                         |  |
| 59.70         | 498.4            | 50         | 25.64                 | 11.30           | 0.8858                    | 30200.0                                         | 27681.7                   | 0.9166                         |  |
| 59.70         | 507.2            | 40         | 30.05                 | 11.80           | 0.8207                    | 28320.0                                         | 25646.3                   | 0.9056                         |  |
| 60.00         | 518.7            | 30         | 36.83                 | 12.10           | 0.7184                    | 25360.0                                         | 22449.0                   | 0.8852                         |  |
| 60.10         | 528.8            | 20         | 38.34                 | 12.80           | 0.6318                    | 21890.0                                         | 19743.4                   | 0.9019                         |  |
| 60.40         | 537.6            | 10         | 38.50                 | 13.20           | 0.5678                    | 19140.0                                         | 17743.4                   | 0.9270                         |  |
| 59.70         | 546.4            | 2          | 38.14                 | 13.70           | 0.4770                    | 15980.0                                         | 14904.8                   | 0.9327                         |  |
| 80.20         | 508.2            | 60         | 30.57                 | 12.70           | 0.1061                    | 33680.0                                         | 33155.1                   | 0.9844                         |  |
| 79.20         | 515.3            | 50         | 34.75                 | 11.50           | 0.9979                    | 34320.0                                         | 31185.4                   | 0.9086                         |  |
| 79.80         | 527.2            | 40         | 42.53                 | 12.10           | 0.9040                    | 31340.0                                         | 28250.5                   | 0.9014                         |  |
| 79.50         | 537.5            | 30         | 47.97                 | 12.50           | 0.8024                    | 26950.0                                         | 25075.1                   | 0.9304                         |  |
| 79.60         | 547.0            | 20         | 48.02                 | 12.80           | 0.7266                    | 24020.0                                         | 22705.2                   | 0.9453                         |  |
| 80.50         | 558.7            | 10         | 48.44                 | 13.70           | 0.6439                    | 21780.0                                         | 20122.1                   | 0.9239                         |  |
| <b>79.</b> 80 | 565.9            | 2          | 48.11                 | 13.30           | 0.5752                    | 19180.0                                         | 17976.0                   | 0.9372                         |  |
| 100.40        | 526.0            | 60         | 41.61                 | 13.30           | 0.1137                    | 36480.0                                         | 35522.1                   | 0.9737                         |  |
| 99.60         | 533.6            | 50         | 47.09                 | 13.40           | 0.1066                    | 31890.0                                         | 33326.6                   | 1.0450                         |  |
| 101.30        | 545.8            | 40         | 57.03                 | 13.40           | 0.9669                    | 31570.0                                         | 30214.3                   | 0.9570                         |  |
| 100.90        | 554.7            | 30         | 57.83                 | 13.80           | 0.8826                    | 28680.0                                         | 27581.8                   | 0.9617                         |  |
| <b>99.</b> 70 | 564.2            | 20         | 57.30                 | 14.50           | 0.7869                    | 25450.0                                         | 24589.5                   | 0.9662                         |  |
| 100.40        | 574.3            | 10         | 57.61                 | 14.20           | 0.7066                    | 21620.0                                         | 22080.3                   | 1.0213                         |  |
| 100.10        | 581.9            | 2          | 57.48                 | 14.80           | 0.6363                    | 19050.0                                         | 19885.8                   | 1.0439                         |  |

Tabelle 18: Daten aus Messung und Rechnung (Pana)

| Probe:                | 2.24D            | Spaltweite: 0.28 mm<br>Spaltquerschn: 22.40 mm <sup>2</sup> |                       |               |           | Spaltrauhi<br>Reibungsbe  | gkeit: 50 μm<br>iwert: 7.5 |                                |  |
|-----------------------|------------------|-------------------------------------------------------------|-----------------------|---------------|-----------|---------------------------|----------------------------|--------------------------------|--|
| P <sub>o</sub><br>bar | т <sub>о</sub> к | ∆T<br>K                                                     | P <sub>2</sub><br>bar | P<br>u<br>bar | m<br>kg/s | G <sub>M</sub><br>kg/s m² | G <sub>R</sub><br>kg/s m²  | G <sub>R</sub> /G <sub>M</sub> |  |
| 40.00                 | 463.6            | 60                                                          | 12.74                 | 4.80          | 0.3034    | 23450.0                   | 23705.4                    | 1.0109                         |  |
| 39.80                 | 474.1            | 50                                                          | 15.93                 | 5.30          | 0.2820    | 22420.0                   | 22032•4                    | 0.9827                         |  |
| 39.90                 | 484.9            | 40                                                          | 19.80                 | 5.70          | 0.2569    | 20870.0                   | 20070.2                    | 0.9617                         |  |
| 39.90                 | 493.5            | 30                                                          | 23.38                 | 6.10          | 0.2314    | 19150.0                   | 18077.3                    | 0.9440                         |  |
| 40.30                 | 504.0            | 20                                                          | 26.65                 | 6.50          | 0.1988    | 16760.0                   | 15530.8                    | 0.9266                         |  |
| 39.80                 | 512.9            | 10                                                          | 26.37                 | 6.80          | 0.1702    | 13920.0                   | 13294.3                    | 0.9550                         |  |
| 39.80                 | 521.2            | 2                                                           | 26.37                 | 7.10          | 0.1464    | 10790.0                   | 11435.2                    | 1.0413                         |  |
| 60.10                 | 489.3            | 60                                                          | 21.60                 | 5.70          | 0.3543    | 29040.0                   | 27682.8                    | 0.9533                         |  |
| 60.00                 | 498.7            | 50                                                          | 25 • 80               | 10.40         | 0.3316    | 26200.0                   | 25906.0                    | 0.9888                         |  |
| 59.50                 | 508.5            | 40                                                          | 30.76                 | 11.10         | 0.3017    | 24230.0                   | 23566.6                    | 0.9726                         |  |
| 60.80                 | 530.0            | 20                                                          | 37.14                 | 12.70         | 0.2398    | 19690.0                   | 18736.9                    | 0.9516                         |  |
| 59.70                 | 538.2            | 10                                                          | 36.61                 | 13.00         | 0.2085    | 17310.0                   | 16286.5                    | 0.9409                         |  |
| 59.90                 | 546.7            | 2                                                           | 36.70                 | 14.40         | 0.1860    | 13980.0                   | 14534.2                    | 1.0396                         |  |
| 78.30                 | 505.7            | 60                                                          | 29.36                 | 6.40          | 0.3945    | 33170.0                   | 30817.2                    | 0.9291                         |  |
| 00.08                 | 518.1            | 50                                                          | 36.47                 | 6.70          | 0.3681    | 31610.0                   | 28761.0                    | 0.9099                         |  |
| 80.10                 | 527.5            | 40                                                          | 42.72                 | 6.90          | 0.3382    | 29290.0                   | 26424.5                    | 0.9022                         |  |
| 79.60                 | 537.4            | 30                                                          | 45.97                 | 7.00          | 0.3037    | 26580.0                   | 23725.5                    | 0.8926                         |  |
| 79.70                 | 546.0            | 20                                                          | 46.01                 | 7.30          | 0.2787    | 24070.0                   | 21776.5                    | 0.9047                         |  |
| 79.70                 | 558.0            | 10                                                          | 46.01                 | 7.50          | 0.2437    | 19950.0                   | 19039.7                    | 0.9544                         |  |

Tabelle 19: Daten aus Messung und Rechnung (Pana)

— 75 —

## Anhang B (Abb. 32 bis 38)

Diagramme für die Bestimmung der Massenstromdichte in rauhen Rissen

In den Abbn. 32 bis 38 werden die mit dem Pana-Modell gerechneten kritischen Massenstromdichten über dem Reibungsbeiwert  $\zeta_A$  dargestellt. Der Parameter p<sub>o</sub> ist der Stagnationsdruck vor dem Spalt. Jedes der 7 Arbeitsdiagramme wurde für eine andere Unterkühlungstemperatur berechnet. Zur überschlägigen Bestimmung einer zu erwartenden Massenstromdichte bei einer Leckage aus einem Riß kann zunächst aus der auf den Diagrammen angegebenen Formel der Reibungsbei-wert errechnet werden, wenn die Werte R, d<sub>H</sub> und L bekannt sind. Sie müssen nach der im Abschnitt 2.2 gegebenen Beschreibung definiert sein. Mit dem errechneten Wert  $\zeta_A$  kann die Massenstromdichte dem entsprechenden Diagramm entnommen werden.



Abb. 32 Diagramm für die Bestimmung der Massenstromdichte in rauhen Rissen



Abb. 33 Diagramm für die Bestimmung der Massenstromdichte in rauhen Rissen







Abb. 35 Diagramm für die Bestimmung der Massenstromdichte in rauhen Rissen



Abb. 36 Diagramm für die Bestimmung der Massenstromdichte in rauhen Rissen



Abb. 37 Diagramm für die Bestimmung der Massenstromdichte in rauhen Rissen



