KfK 4784 Oktober 1990

Gamma-Spectroscopic Measurements of the ²³⁵U Isotope Abundance in a UF₆ Sample (Performed in the Framework of the REIMEP-86 Interlaboratory Exercise)

P. Matussek Institut für Kernphysik Projekt Wiederaufarbeitung und Abfallbehandlung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Kernphysik Projekt Wiederaufarbeitung und Abfallbehandlung

KfK 4784 PWA 36/90

Gamma-Spectroscopic Measurements of the ²³⁵U Isotope Abundance in a UF₆ Sample (Performed in the Framework of the REIMEP-86 Interlaboratory Exercise)

P. Matussek

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Abstract

This report describes the measurement of the 235 U/U isotope abundance in a certified UF₆ sample by means of gamma spectrometry. The work was performed in the framework of the REIMEP-86 interlaboratory exercise. The 235 U/U abundance value obtained from the measurements presented in this report was $3.5005 \pm 0.0031 \% ^{235}$ U/U which compares very well to the certified value of $3.5001 \pm 0.0010 \% ^{235}$ U/U. The report describes in detail the experimental set-up, the data evaluation and the error analysis. Some hints are given to improve the precision and to reduce the measurement time in future experiments of this type.

Gammaspektroskopische Bestimmung der 235 U Isotopenanreicherung in einer UF₆ Probe (durchgeführt im Rahmen des Interlaboratoriumsprogramms REIMEP-86)

Zusammenfassung

Der vorliegende Bericht beschreibt die gammaspektroskopische Bestimmung der 235 U/U Isotopenanreicherung an einer genau spezifizierten UF₆ Probe. Die Messungen wurden im Rahmen des Interlaboratoriumsprogramms REIMEP-86 durchgeführt. Die in diesem Bericht beschriebene 235 U Anreicherungsmessung ergab 3,5005 ± 0,0031 % 235 U/U, was in guter Übereinstimmung zum spezifizierten Wert von 3,5001 ± 0,0010 % 235 U/U steht. Der Meßaufbau, die Datenauswertung und die Fehleranalyse werden detailliert beschrieben. Es werden ferner einige Hinweise gegeben, wie bei künftigen Messungen dieser Art die Genauigkeit verbessert und die Meßzeit verkürzt werden kann.

CONTENT

	Introduction	1
1.	Experimental set-up	2
1.1	Counting geometry	2
1.2	Counting electronics	6
2.	Thickness correction for container windows	9
3.	Data evaluation	14
3.1	Evaluation of net-peak counts	14
3.2	Correction for pulse losses	17
3.2.1	Stability of reference peaks	17
3.2.2	Dead-time and pile-up correction	21
3.3	Calibration	33
4.	Evaluation of ²³⁵ U/U isotope abundance	37
	Summary and conclusions	43
	References	46

Appendix A

REIMEP UF₆ 1986 exercise. Data from gamma-spectrometric measurements recorded to file ' UDATA ' .

Appendix B

Calibration measurements. Corrected 185 keV counting rates, evaluation of calibration constants.

Appendix C

Measurements of UF₆ samples. Corrected 185 keV counting rates, evaluation of ²³⁵U enrichment and of associated errors.

Appendix D

Stability of spectral peaks. Peak positions, peak counting rates and peak-shape parameters.

Appendix E

Certified and specified data for the Reference Samples EC-NRM-171 and the REIMEP-86 UF₆ sample.

Appendix F

Relevant formulae, values and figures from "User's manual", KfK Report 3752

INTRODUCTION

The purpose of the <u>Regular European Interlaboratory Measurement</u> <u>Evalutation Program (REIMEP) is, like other programs of similar type, to</u> demonstrate the interlaboratory spread of measurement results and to allow the participants to compare their results to a certified value and to the results of other laboratories. Extending previous programmes the present REIMEP-86 UF₆ exercise was not restricted to a particular measurement technique but includes for the first time both mass spectrometry and gamma-ray spectrometry as representatives for destructive (DA) and non-destructive (NDA) analysis techniques, respectively. In case of the gamma-spectrometric assay the comparison to the well established and routinely used mass spectrometry provides the chance to demonstrate the potential of this NDA technique and to recognize the limitations for its application.

Highly accurate determinations of the 235 U abundance by means of gamma-ray spectrometry are only possible when the measurements are performed relative to carefully characterized reference materials. Such internationally certified Reference Material for NDA 235 U - abundance measurements is available since 1985 as EC-NRM-171/NBS SRM-969 from CBNM, Geel, and from NBS, Washington. The measurements of the unknown REIMEP-86 UF₆ sample presented in this paper have been performed relative to this Reference Material.

The REIMEP-86 UF₆ sample was shipped in a well characterized monel can containing about 80 g UF₆ as a solid sample. The areal density of the UF₆ material provided more than 99.9% of the characteritic 185 keV gamma radiation perpendicular to the sample surface as compared to an infinitely thick sample. If a suitable collimator is used, the observed 185 keV gamma radiation originating from the decay of 235 U atoms serves as a direct measure for the 235 U abundance of the sample material in such a quasi-infinite-thickness geometry. However, corrections have to be applied for the different matrix composition of the reference material and the unknown UF₆ sample, respectively (U₃O₈ versus UF₆), for the different gamma attenuation in the container walls, and for counting losses due to pile-up and dead-time effects in the counting electronics.

In order to evaluate the accuracy limits of the gamma-spectrometric ²³⁵U - abundance measurement technique and to identify possible, so far unknown sources of systematic errors, all measurement parameters affecting the assay accuracy have been examined very carefully. The measurements and the data evaluation are described in detail in the present paper.

1. EXPERIMENTAL SET-UP

This chapter describes the sample - collimator - detector geometry and the counting electronics used for the measurements presented in this paper. The former aspect is of particular importance for the applicability of the "enrichment - meter" principle.

1.1. Counting geometry

The "enrichment - meter" principle used for the gamma-spectrometric determination of the 235 U abundance in the present paper is based on the assumption that the unknown sample to be assayed is quasi-infinitely thick, i.e., that the surface-radiation intensity of the characteristic 185 keV gamma rays is almost the same as obtained from a really infinite sample of identical sample material (see ref. /1/).

Of course, in case of a limited sample size the quasi-infinite-sample condition can only be defined with respect to a collimator that limits the solid angle through which the sample surface is seen from the detector. In turn, for a given collimator the sample size required for quasi-infinite-thickness geometry depends on the density and the chemical composition of the sample material, and on the distance between sample and collimator. In order to simplify this complex multiparameter relation, the considerations in ref. /1/ have been restricted to cylindrical shapes of sample and collimator, respectively, and to a fixed distance of 3 mm between collimator entrance plane and sample surface (not container surface). Further, the quasi-infinite-sample condition has been defined in terms of a minimum areal density providing 99.9% of the characteristic gamma-ray intensity expected from a really infinite sample in direction perpendicular to the sample surface. The minimum areal density for UF₆ is given by (see eq. 3.3c in ref/1/ and Appendix F in this paper):

$$\rho_{min}^{area} (UF_6) = \frac{6.908}{\mu (UF_6)} = 6.68 \, g \, cm^{-2}$$
(1.1)

where μ denotes the mass attenuation coefficient. The value of 8.2 g cm⁻² specified for the areal density of the REIMEP-86 UF₆ sample is clearly above the required minimum value. The problem remains to find a suitable collimator for quasiinfinite-sample geometry.

Fig. 1Relation between collimator dimensions, sample size and minimum sample density for
UO2. Dashed lines in the left hand part indicate collimator geometries with equal gamma
counting rate. Collimator geometries in the shaded region do not fulfill the "quasi-infinite"
thickness condition for the Reference Samples EC-NRM-171/NBS-SRM-969.

Observing the restrictions mentioned above the relation between required collimator diameter, collimator height, sample diameter and sample density is displayed in fig. 1. The left hand part of fig. 1 combines the characteristics of the collimator : The collimator diameters are given on the abscissa, the collimator heights are shown as parameters of the set of curves. Dashed lines indicate collimator geometries that exhibit equal 185 keV gamma counting rates. The right hand part of fig. 1 presents the sample characteristics given as differences between sample diameter and collimator diameter (always > 0), with the minimum sample-density values shown as parameters of the set of straight lines. Both parts of the figure are connected by a common arbitrary scale.

Fig. 1 is a more general presentation of the relation between sample size and collimator as compared to fig. 3.7 in ref. /1/ where this relation is given only for a fixed sample diameter of 7 cm. Note, that in contrast to the latter figure the density values given here refer to UO_2 instead of U_3O_8 . In order to utilize fig. 1 also for uranium compounds other than UO_2 one has to use an effective, UO_2 equivalent density instead of the true compound density $\rho(x)$:

$$\rho_{eff} = \frac{\mu(x)}{\mu(UO)_{2}} \rho(x)$$
 (1.2)

where μ denotes the corresponding mass attenuation coefficients. Taking the μ values from Table C2 in Appendix F, and using a density of 5.2 g cm⁻³ for the REIMEP-86 UF₆ sample we arrive in this case at an effective sample density of

$$\rho_{eff}$$
 (REIMEP UF₆) = 4.10 g cm⁻³ > 4 g cm⁻³

Thus the dashed-dotted line drawn in parallel to the 4 g cm⁻³ – line in fig. 1 at a distance of 3.5 cm (corresponding to the sample diameter) shows the maximum permissable collimator configurations for the REIMEP -86 sample. Of course, any collimator parameters below this line will also satisfy the quasi-infinite-thickness condition at the expense of a lower counting rate. However, any collimator configuration above this line will violate this condition.

For the measurements presented in this paper we have used a collimator with 2 cm diameter and 2 cm height. It can be deduced from fig. 1 that this collimator - sample configuration does fulfill the quasi-infinite-thickness condition for 3.5 cm-diameter samples. It should be noted that the data presented in fig. 1 have been calculated for 3 mm distance between sample and collimator, and for 2 mm aluminium absorber between sample and collimator. In the present measurements the sample-collimator distance is slightly larger (4 mm instead of 3 mm). However, this effect is compensated by the higher photon attenuation in the additional 2 mm thick monel layer causing a stronger forward peaking of the gamma-ray flux entering the collimator, and by a safety margin used for the effective sample density (4.0 g cm⁻³ instead of 4.1 g cm⁻³).

Fig. 2 Schematic view of the sample - collimator - detector arrangement

Fig. 2 shows schematically the sample - collimator - detector - arrangement used for the measurements. The lead shielding has been rigidly fixed to the flange of the detector cap in order to prevent variations of the distance between collimator and detector. Also the ²⁴¹Am source has been fixed to the collimator by means of screws to provide a geometrically stable reference gamma source. Not shown in fig. 2 are the calibration disks that are positioned between sample container and collimator. The calibration samples with 2 mm aluminium bottom have been measured with the 2 mm monel calibration disk, the UF₆ sample with 2 mm monel bottom has been measured with the 2 mm aluminium calibration disk, so that in all measurements the gamma rays had to penetrate always 2 mm monel and 2 mm aluminum before entering the collimator. In fig. 2 the counting arrangement is given for the case of the calibration samples, in case of the UF₆ sample, exhibiting a smaller diameter, a tighter polyethelene centering ring has been used.

1.2 Counting electronics

A schematic view of the counting electronics ranging from the detector to the multichannel analyzer is given in fig. 3. A medium size Ge(Li) is used for the detection of the gamma rays penetrating the collimator. Through a preamplifier with resistive feedback the signal is transfered to a main amplifier providing semi-gaussian shaped output pulses. These pulses are analyzed in a Wilkinsontype ADC running with 80 MHz. The analyzed pulse heights corresponding to the energies of the gamma rays registered in the detector are stored and evaluated in a computer-controlled multichannel analyzer (MCA). The gamma spectra have been stored to magnetic disk for later evaluation.

A digital spectum stabilizer has been added to the system in order to improve the reliability of the measurements. The gamma peak at 59 keV originating from the ²⁴¹Am reference gamma source attached to the collimator (see fig. 2), and the 185 keV gamma peak from the decay of ²³⁵U, present in all samples assayed, have been used as reference peaks for the digital stabilizer. In addition, pulser signals from a high-precision pulse generator with adjustable rise- and fall-time are fed into the preamplifier and are treated by the pulseprocessing chain in the same manner as signals originating from gamma events in the detector. The signals from the electronic pulser may serve as an indicator for the stability of the system and may be used for second-order corrections as demonstrated in Chapter 3 of this manual.

It is of special importance to carefully supervise the frequency of the almost periodic pulser. Therefore the number of pulser events during measurement time as well as the real measurement time must be recorded in order to arrive at the true mean pulser rate during assay time. This has been achieved here by feeding the digital trigger output of the pulser (having a fixed amplitude of 4.5 V) to a second ADC running in parallel with the spectrum ADC. This results in a background-free spectrum with a single peak corresponding to the 4.5 V of the

Fig. 3 Schematic view of the counting electronics used

input signal. Note that no pulse pile-up is possible in this particular case of a periodic pulser. The integrated number of pulser events and the real counting time have been printed out but have not been recorded to magnetic disk. From both values the mean pulse rate is evaluated and is used for pile-up and dead-time corrections relative to the pulser. Since the printer failed during measurements #35 to #40 no correction of this type could be done in these cases.

The multichannel analyzer was always operated in live-time mode, i.e., the MCA timer is gated off in its high-frequency part whenever the MCA is busy with analyzing and storing of an event. Thus the preset live time is simply the sum of time intervalls during which the system is not busy. The real measurement time is the sum of the preset live time plus the system-busy time. Note that no pile-up rejection circuit was implemented in the pulse-processing chain since the total counting rate of less than 1 kcps in all cases looked comparatively low.

Table 1 displays the type, the manufacturer, the settings and the main characteristics of all electronic components used in the measurements.

DEVICE	MANUFACTURER/TYPE	PARAMETERS / REMARKS
DETECTOR	PHILIPS APY41SQ/N	GE(LI) SINGLE OPEN-ENDED COAX ACTIVE VOLUME = 18 CCM ACTIVE DIAMETER = 3.1 CM DEPLETION LAYER = 1.2 - 1.4 CM WINDOW = 0.5 MM AL CAP-DET DISTANCE = 8 MM
PREAMPLIFIER	PHILIPS 56019	RESISTIVE FEED-BACK
HV SUPPLY	WENZEL N-DS-400	POT. = 5.6 (+ 2250 V)
AMPLIFIER	ORTEC 572	COARSE GAIN = 100 FINE GAIN = 10.01 SHAPING TIME = 1 MICROSECOND BLR = AUTO DELAY = ON NEGATIVE INPUT UNIPOLAR OUTPUT
ADC 1 (SPECTRUM)	NUCLEAR DATA 571	GROUP = 4K CONVERSION = 4K LLD = 0.04 ULD = 10.00 ZERO = 1.45 DIG. OFFSET = OFF
DIGITAL SPECTR. STABILIZER	NUCLEAR DATA 595	ZERO (59 KEV): CENTER CHN = 480 WINDOW = 6 RATE = 2 GAIN (185 KEV): CENTER CHN = 1820 WINDOW = 6 RATE = 2
PULSER	BNC DB2	FREQUENCY = 140 HZ MODE = REP RANGE = 1V NORMALIZE = 0.0 AMPLITUDE = 9.725 RISE TIME = 0.2 MICROSECONDS FALL TIME = 1000 MICROSECONDS REFERENCE = INT ATTENUATION = X2 / X10
ADC2 (PULSER DIG.)	NUCLEAR DATA 571	GROUP = 512 CONVERSION = 2K LLD = 0.20 ULD = 9.80 DIG. OFFSET = OFF
MULTICHANNEL ANALYZER	NUCLEAR DATA 6600	LIVE-TIME MODE

TABLE 1 COUNTING ELECTRONICS USED. CHARACTERISTICS AND SETTINGS.

2. THICKNESS CORRECTION FOR CONTAINER WINDOWS

Basically the enrichment-meter principle relies on the absolute determination of the characteristic gamma-counting rate emitted by a quasi-infinite sample into a fixed solid angle. In practice the 185 keV gamma counting rate of the unknown sample is measured relative to the corresponding counting rates observed from well specified calibration samples. Since in NDA applications the gamma radiation is always measured through the container wall it becomes clear that the attenuation of the gamma rays in the wall will directly affect the observable 185 keV gamma counting rate and thus the assay result. It is therefore required that the container windows through which the gamma radiation is measured are identical for the calibration samples and for the unknown sample as well, or that appropriate corrections are applied that account for different gamma attenuation in the container walls.

In our case the container materials of the UF_6 sample and of the reference samples are quite different - 2 mm monel and 2 mm aluminium, respectively resulting in about 20% differing gamma attenuation. In order to keep the required attenuation correction small, we have measured the reference samples with an additional monel absorber and, vice versa, the UF_6 sample with an additional aluminium absorber, thus providing nearly identical windows for all measurements, namely about 2 mm monel plus 2 mm aluminium.

For high-precision measurements the effect of the still remaining wallthickness differences has to be examined in more detail. Using the correction factors given in the REIMEP-86 data sheet:

3.4 % per 1 mm aluminium and13 % per 1 mm monel,

we arrive at an estimate for the accuracy of the wall-thickness determination required to keep this contribution to the relative error of the enrichment assay below our target value of $\pm 0.05\%$:

 \pm 0.015 mm for aluminium and \pm 0.004 mm for monel.

The window-thickness data specified in the Dimensional Control Sheet in case of the Reference Samples, and in the REIMEP-86 Data Sheet in case of the UF₆ sample (for both see Appendix E) are well within the above tolerance limits.

TABLE 2 CONTAINER-BOTTOM THICKNESS MEASUREMENTS. ULTRASONIC MEASUREMENTS (US) RELATIVE TO 1. 9950 MM AL AND TO 2. 0000 MONEL DISKS, MICROMETER MEASUREMENTS (MS).

A> SCHEMATIC VIEW OF MEASUREMENT POINTS AT CONTAINER BOTTOM _____

B) MEASUREMENT RESULTS

MEAS. POINT	#194 US (MM)	#295 US (MM)	#446 US (MM)	UF6 US (MM)	AL DISK MS (MM)	MONEL DISK MS (MM)
# 4	4 994	1 976	1 995		1 995	2 000
# 2	1 991	1 982	1 984		1 997	1 999
# ~	1 982	1 981	1 984		1 995	2 000
# 4	1 997	1 981	1.984		1.995	2,000
# 5	1. 981	1.982	1. 983		1.995	2,000
# 6	1.986	1, 979	1, 981		1. 995	2,000
# 7	1. 981	1. 979	1. 979		1.995	1, 999
# 8	1. 986	1. 979	1. 978		1, 995	2,000
# 9	1. 983	1. 988	1. 990		1. 995	2, 000
#10	1. 979	1. 989	1. 990			
#11	1. 980	1. 992	1. 984		1. 995	1, 999
#12	1. 980	1. 990	1, 992			
#13	1, 985	1. 992	1. 985		1. 995	1, 999
#14	1. 982	1.991	1. 988			
#15	1. 985	1. 991	1. 989		1. 995	1, 999
#16	1, 989	1. 992	1. 992			
#17	1. 993	1. 992	1. 992	2.004		
#18	1, 992	1. 992	1,991	2.003		
#19	1.993	1. 992	1.991	2.002		
#20	1. 995	1, 990	1, 991	2.003		
#21	1. 989	1. 977	1. 982			
#22	1, 987	1. 982	1.983			
#23	1. 987	1. 986	1, 984			
#)24	1.987	1.979	1.981			
#25	1.980	1.985	1.981			
#26	1.979	1.977	1.981			
#27 #00	1.983	1.978	1.373			
#28	1. 989	1. 980	1.978			
#29	1. 982	1. 989	1. 987			
#30	1. 979	1. 992	1.981			
#31	1.981	1.989	1, 986			
#32	1.982	1.987	1,985			
#33	1.980	1.991	1.985			
#34	1.985	1.987	1. 988			
#15	1.984	1.990	1. 204			
₩7.20	1. 978	1. 983	1. 203			
#37 	1. 993	1. 985	1. 990	2. 004	1. 995	2.001
MEAN	1, 985	1. 986	1. 985	2. 003	1. 995	2,000
RMS ERR	0.005	0. 005	0. 004	0. 001		
						0.0000
ZEISS PR	ECISION PP	ISSAMETER MEA	SUREMENTS		1. 9900	2,0000 0 0005

ALONG FOUR DIAGONALS

^{0.0005}

These wall-thickness values along with the stated uncertainties are summarized in the upper part of Table 3. Note that we have used a very narrow collimator of 2 cm diameter only. Therefore only the thickness values in the central region of the counting window have been used in case of the Reference Samples, the mean value of which is labeled X5 in the Dimensional Sheets.

Facing the extremely low tolerance limits for the thickness of the counting windows we have decided to validate the stated values by own measurements. For the thickness measurements we have used an ultrasonic thickness gauge, in case of the calibration disks additional measurements have been performed using a micrometer and a high precision Zeiss Passameter. The corresponding precisions obtained at the 1 σ level are:

- \pm 0.001 mm for the ultrasonic thickness gauge,
- \pm 0.001 mm for the micrometer, and
- \pm 0.0005 mm for the Zeiss Passameter.

The calibrations of the ultrasonic thickness gauge have been made relative to the thickness of the corresponding calibration disk determined from the Passameter measurement.

The results of our measurements are displayed in Table 2. The upper part of the table shows schematically the position of the measurement points relative to the container label imprinted on each Reference Sample. The mean values and the RMS errors are given at the bottom of the table. Note that the RMS error presents a conversative error estimate because it does not account for real inhomogeneities in the window thickness of the Reference cans that are clearly observed within the precision limits of the ultrasonic thickness gauge. For the thickness values of the calibration disks we have used the more accurate data from the Passameter measurements.

The final results of our thickness measurements and the associated errors are shown in Table 3 along with the corresponding values from the Dimensional Control Sheets of the EC-NRM-171-008 Reference material and of the REIMEP-86 UF₆ sample, respectively. Comparing both data sets one recognizes a small disagreement for the thickness of the aluminium calibration disk and for the monel bottom of the UF₆ container, that is outside the stated 1 σ errors. We have therefore performed the data evaluation described in the following chapters for both sets of thickness values independently. Table 4 shows the corresponding

MATERIAL +-	THICKNESS (MM) RMS ERROR (MM)	DEVIATION FROM REFERENCE (MICRON)
A) THICKNESS FROM CERTI AND FROM UF6 REIMEP-	FICATE EC-NRM-171-00 86 DIMENSION SHEET A	8 (X5) PP. 6
FOR U30S MEASUREMENTS: MONEL DISK AL BOTTOM #446 AL BOTTOM #295 AL BOTTOM #194	2.000 +- 0.001 1.983 +- 0.005 1.988 +- 0.002 1.983 +- 0.007	0 +- 1 (REF.) - 17 +- 5 - 12 +- 2 - 17 +- 7
FOR UF6 MEASUREMENTS: AL DISK MONEL BOTTOM UF6	2. 000 +- 0. 003 2. 000 +- 0. 001	0 +- 3 (REF.) 0 +- 1
B) THICKNESS FROM ULTRA FERFORMED AT KFK	SONIC AND MICROMETER	MEASUREMENTS
FOR U308 MEASUREMENTS: MONEL DISK AL BOTTOM #446 AL BOTTOM #295 AL BOTTOM #194	2.0000 +- 0.0005 1.985 +- 0.004 1.986 +- 0.005 1.985 +- 0.005	0 +- 0.5 (REF.) - 10 +- 4 - 9 +- 5 - 10 +- 5
FOR UF6 MEASUREMENTS: AL DISK MONEL BOTTOM UF6	1.9950 +- 0.0005 2.003 +- 0.001	0 +- 0.5 (REF.) + 3 +- 1

TABLE 3 THICKNESS OF SAMPLE CONTAINER BOTTOMS AND CALIBRATION DISKS

correction factors used to compensate for different attenuation of the 185 keV gamma rays in both cases.

It can be seen from Table 4 that the corrections required are comparatively small ($\approx 0.05\%$). We have therefore neglected any second order correlations like the collimator - dependent effective mean pass length of the gamma rays through the container wall that adds another correction of < 0.005% to these correction factors (see ref. /1/ Appendix A.3). Also the uncertainties of the linear attenuation coefficients given have been neglected.

```
CORRECTION FOR ATTENUATION OF 185 KEV GAMMAS
IN CONTAINER BOTTOMS AND CALIBRATION DISKS.
TABLE 4
ATTENUATION OF 185 KEV GRMMA RAYS (REIMEP-86 APP. 7/APP. NDA-1);
              3.4 % PER MM ALUMINIUM USED
            - 13 % PER MM MONEL USED
           _____
SAMPLE !
                CORRECTION I
                                                   CORRECTION II
                                             DIMENSIONS FROM ULTRASONIC
MEASUREMENTS AT KFK
PLUS
          DIMENSIONS FROM CERTIFICATE
DISK
           AND REIMEP-86 APPENDIX 6
# 446
              0.99942 +- 0.00021
+ MONEL!
                                                 0.99966 +- 0.00015
# 295
               0.99959 +- 0.00015
+ MONEL!
                                                 0.99969 +- 0.00018
# 194
+ MONEL
               0.99942 +- 0.00027
                                                 0.99966 +- 0.00018
UE6
+ AL
              1.00000 +- 0.00017
                                                 1.00039 +- 0.00013
```

- 12 -

A special problem that we faced in our ultrasonic thickness measurements should be mentioned: Whereas the ultrasonic measurements of the aluminium layers created no problems we observed that the measured thickness values of the UF₆ monel bottom slightly increased (by a few micron) from the center of the counting window towards the outer diameter. A similar effect was observed also with the ultrasonic measurements of the calibration disk though the passameter measurements assure a thickness homogeneity of better than \pm 0.0005 mm. So far we have no explanation for this effect. Thus we have restricted our measurements to the central region of the counting window in case of the UF₆ monel bottom as can be seen from Table 3. Doing so we arrive at a window thickness of 2.003 \pm 0.001 mm for the UF₆ monel bottom, a value that is clearly outside the specification of 2.000 \pm 0.001 mm given in the REIMEP data sheet. Nevertheless we have used the former value for the attenuation data set II shown in Table 4 that is the basis of our finally reported ²³⁵U/U abundance value

For the case that our ultrasonic thickness determination of the monel is erroneous, and an equal thickness of both the UF₆ monel bottom and the monel calibration disk can be assured by other means, then our reported 235 U % enrichment value has to be lowered by 0.0014, i.e, instead of

 $3.5005 \pm 0.0031 \% ^{235}$ U/U abundance, as reported,

we would get then

 $3.4991 \pm 0.0031 \% 235 U/U$ abundance.

3. DATA EVALUATION

This chapter describes the evaluation of the 185 keV counting rate from the peak counts observed in the measured MCA spectra and from the measurement live time. It also comprises corrections for pulse losses due to dead-time and pileup effects. Finally the calibration procedure is summarized.

3.1 Evaluation of net-peak counts

Standard procedures have been used for the evaluation of net peak areas from the measured spectrum. A complete program listing and a thorough description of the input parameter is given in ref. /2/. Here we summarize the salient points only.

All relevant measurement parameters are written to an analysis file on magnetic disk prior to the start of the actual measurements. The informations required for data analysis are always taken from this file. The content of the file is given in fig. 4. It comprises the number of peaks to be analysed and their characteristics like energy, position in the MCA spectrum, background windows on the low- and high-energy side of the respective peak, the type of background subtraction to be applied, and the information whether the peak shall be used for

ANALYSIS FILE	: ELMI.AZ		
1) NUMBER OF I	NTEGRATIONS :		5
2) NORMALIZATI	ON TO REFERENCE PEAK IN N	REGION :	1
LIVE TI	ME OF THE REF. MEASUREMEN	NT (SEC) :	30000.
COUNTS	IN REFERENCE PEAK :		4153728.
ERROR C	F REFERENCE PEAK (COUNTS)) :	1952.
3) INTEGRATION	WIDTH IN FWHM(KEV) BELO	W AND ABOVE	2 20
	THE PEAK	PUSITION :	2.20
4) FOI ENGY	FOS BGL (CH) BGR	STEP/LINE	CAL FULS
47 NOT CHUI			
1 59.54	479 376 397 498	506 S	Y N
2 143.77	1374 1306 1327 1419	1428 S	Y N
3 163.37	1582 1535 1555 1603	1619 S	Y N
4 185.72	1819 1745 1767 1843	1857 S	Y N
5 266.00	2672 2626 2650 2696	2714 L	N T
ACT HOBATE .	11 FFB 1987 11:35:08 A	м	
NEU HEDATE	16 FEB 1987 3:21:53 F	M	
NEW OF DHIE 4	10 100 1707 0101100 -		

Fig. 4 Content of analysis file

evaluation of the FWHM as a function of energy, and wether it is a pulser peak or not. Moreover the analysis file also contains the indicator for a reference peak that may be used for normalization purposes. We didn't make use of this option for reasons that will be discussed in the next section.

Another important parameter is defined in the analysis file: the integration width in units of FWHM. This integration window determines the limits for the channel-content summation after subtraction of an appropriate background. It should be noted that, in contrast to the background windows, this window is not fixed, but its position and width is derived from the peak centroid and the FWHM fitted individually for each actually measured spectrum and for the respective peak. Integration is performed in fractions of channels by linear interpolation. We have selected a width of 2.2. FWHM units for the peak-summation window according to the recommendation given in ref. /1/. This setting provides a good signal-to-background ratio with an acceptable susceptibility to peak-parameter variations. The window is placed symetrically to the peak centroid and comprises about 99% of the total peak area in case of a purely gaussian peak shape.

Fig. 5 Window settings for the 185 keV peak

A typical example for the setting of the peak- and background windows, for the step-like background subtracted and for the evaluated net-peak area is shown in fig. 5 for the spectral region around the 185 keV peak originating from decay of ²³⁵U used here for the determination of the ²³⁵U/U abundance.

16 FEB 1987 3:24:06 PM SAMPLE 1 295-008 ELAPSED LIVE ELAPSED REAL FILEZ ACQUIRE ELEMENT START TINE (SEC) TIME (SEC) 15: 9:58 30711. MESS .112981 31/ 1/1987 30000. SLOPE (EV/CH) : 94.169 OFFSET (KEV) 14.423 ; COUNTRATE (CPS) 756. LINEAR REGRESSION (FWHM) FIT COEFF. : A0 = 0.4808003E 00 A1 = 0.1921846E-02 CORR.COEFF. : R**2 = 0.9874887E 00 ROI FACKGROUND WINDOWS STEF ENERGY POSITION FWHM FWTM FWFM (EV) (EV) (EV) (CHANNEL) /LINE (KEV) (CHANNEL) 59.54 479.13 376 397 498 506 S 776. 774. 1451. 3064. 1 1306 1327 1419 1428 143.77 1373.74 872. 872. 1556. 2072. 2 L 3 1535 1555 1603 S 163.37 1581.74 885. 894. 1615. 2052. 1619 1745 1767 1843 1857 s 185.72 1819.05 925. 917. 1677. 2215. 4 5 2650 2696 266.00 2669.87 998. 2626 2714 L ENERGY AREA ERROR (KEV) (COUNTS) (COUNTS) (%) 4051802. 2050. 0.05 59.54 143.77 92286. 415. 0.45 163.37 362. 56469. 0.64 799172. 185.72 935. 0.12 4217088. 265.00 2066. 0.05

Fig. 6 Typical print-out from the evaluation program

A short description of the flow of the data evaluation program is summarized below:

1) Linear energy calibration using the two gamma peaks with lowest and highest gamma energy in the analysis file as reference peaks.

- 2) Subtraction of a smoothed step-like function as a background approximation below the peak of interest (see ref. /3/). The boundary conditions for this step function are taken from the adjacent background windows.
- 3) Determination of peak centroids for the peaks of interest using a gaussian fit to five channels around the peak maximum.
- Determination of the energy resolution of selected gamma peaks in the spectrum (FWHM, FWTM FWFM = <u>Full Width at Half-, Tenth-,</u> <u>Fiftieth- Maximum</u>).
- 5) Calculation of net-peak counts by channel-content summation of the background-corrected spectra within a window 2.2. FWHM units wide around the peak centroid.

A typical print-out of the evaluation program is shown in fig. 6.

3.2. Correction for pulse losses

Gamma-spectromectric ²³⁵U abundance measurements are based on the accurate determination of the characteristic 185 keV gamma <u>counting rate</u>. Therefore, dead-time and pulse pile-up causing counting losses in the measured 185 keV peak require careful corrections. Countermeasures and correction methods are described in detail in ref. /1/. One of the proposed methods is the normalization of the 185 keV counting rate relative to the counting rate observed in a reference peak. In the following two subsections we discuss the stability of the reference peaks in our measurements and the correction procedure finally applied in our data evaluation.

<u>3.2.1</u> Stability of reference peaks

Pulse losses can be corrected for if we relate the counting rate in the peak of interest to the counting rate in a reference peak. However, a prerequisite for this method is that the input counting rate of the reference source is extremely constant or can be exactly measured. If we assume that the reference pulses underly the same counting-loss process as the peak events of interest do, then we can simply normalize the counting rate observed in the peak of interest to a constant counting rate in the reference peak, e.g., if the reference-peak counting rate observed in an actual measurement is 10% higher than in the reference run we have to divide all peak counting rates in this spectrum by a factor of 1.1, etc. Note however that in contrast to random gamma pulses the assumption of an identical pulse-loss behaviour for all pulses processed is not exactly fulfilled in case of a periodically running electronic pulser since such pulser pulses cannot pile up with each other. This will be discussed in the next Sub-Section 3.2.2.

In our measurements we have used two different reference-pulse sources:

- 1. a ²⁴¹Am gamma source attached to the collimator at a fixed distance from the detector, and
- 2. an electronic pulser fed into the test input of the preamplifier.

As mentioned above the normalization procedure to a reference peak necessitates a very stable input pulse rate to the counting system: Instabilities in the input pulse rate of the reference source will directly propagate into instabilities of the normalized counting rate in the peak of interest. It is therefore of utmost importance to verify the stability of the input pulse rate of the reference source.

Normally one cannot directly observe the input pulse rate for a gamma source. In this case one has to provide an invariable counting geometry and a gamma source with a comparatively long half-life in order to assure a constant input rate. In contrast to this, for an electronic pulser one can measure exactly the input pulse rate by means of an external counter and timer. These steps have been taken for both reference-pulse sources used as described in Chapter 1 of this paper.

Besides the pulse-rate constancy also the stability of the input amplitude of the reference pulse has to be observed. Whereas this is assured from physical principles of the detection process in case of a gamma source it may pose problems in case of an electronic pulser. As schown in Table D 1 in Appendix D we have indeed observed a slow drift in the amplitude of the pulser corresponding to a shift of the pulser-peak position of \pm 4 channels in the spectrum during the measurement period. In contrast to this the positions of the two gamma peaks at 59 keV and 185 keV which have been used for digital stabilization purposes have been found to be extremely stable: The RMS deviation from the mean value of the respective peak positions was only 2% of a channel through all measurements performed. Also the stability of the energy resolution of the system or, correspondingly, of the peak-shape parameters is of particular interest. Variations of these parameters have been observed in our measurements too, as shown in

Fig. 7 Relative deviations of uncorrected peak counting rates from their respective mean values shown for the pulser peak, the 59 keV peak of ²⁴¹Am and the 185 keV peak of ²³⁵U (normalized to 1 % ²³⁵U/U isotope abundance)

Tables D2 and D3 in Appendix D. It should be noted that in our particular data evaluation program instabilities of peak position and energy resolution play only a secondary role because the position and width of the integration windows are always adjusted to the actual peak maximum and FWHM determined for each peak and each measurement individually. Facing the impossibility to observe the gamma <u>input rate</u> directly we have plotted in fig. 7 the relative deviations of three <u>output counting rates</u> from their respective mean values as a function of the measurement date. These output counting rates refer to the uncorrected net-peak areas evaluated from the spectrum and to the live-time of the corresponding measurement. The figure shows from top to bottom the pulser counting rate, the counting rate in the 59 keV peak from the ²⁴¹Am reference source, and the 185 keV peak counting rate normalized to 1% ²³⁵U/U abundance. The error bars given refer to the uncertainties in the background subtraction and to counting statistics.

Ideally all three counting rates should exhibit a similar behaviour since they all suffer from the same pulse-loss mechanism. Fig. 7 clearly demonstrates that this was not observed. Whereas the 185 keV counting rate was fairly stable, the counting rates in our "reference peaks" show variations of about \pm 0.5%, and these variations are not correlated. From this finding we must conclude that our reference sources are not sufficiently stable to be used for normalization purposes. In case of the pulser the variation of the true input rate (measured by an external counter/- timer) is also shown in fig. 7 in form of a histogramme. A comparison of both pulser rates demonstrates that the observed variation of the pulser rate is really caused by frequency instabilities of the electronic pulser. The observed instability of the ²⁴¹Am reference source was somewhat discouraging as we had taken a lot of efforts to keep the counting geometry stable. The effect may be explained by the extreme sensitivity even to small distance variations if detector and source are located in close vicinity and a 2n geometry is used. We must conclude that the detector position relative to the flange of the detector cap that serves as reference point for the position of the gamma source is not invariably fixed but is susceptible to the filling level of liquid nitrogen and to mechanical schocks.

Therefore, a simple counting-loss correction by normalization to a reference peak could not be performed for the present measurements due to the apparent instabilities of our reference sources that are far away from the desired accuracy level. However, in case of the pulser we have observed both the true input rate and the peak counting rate in the MCA spectrum. The ratio of these two values can give the required information for pulse losses. This method has already been mentioned in ref. /1/ for normalization to randomly triggered pulsers. It will be discussed in more detail in the following Sub-Section.

3.2.2 Dead-time and pile-up correction

This Sub-Section gives some more information on the impact of system dead-time and pile-up effects on the result of the 235 U enrichment assay and it describes the correction procedure applied for the present REIMEP-86 UF₆ measurements.

As shown in the previous section the direct normalization of the value of interest - here the 185 keV peak counts - to a reference peak failed due to instabilities (geometrical and electronic, respectively) of both reference sources used for the measurements. In order to further investigate the effect of counting losses, fig. 8 shows again the relative deviation of the uncorrected 185 keV peak counting rates from their mean value, this time along with the total gamma counting rate observed for the corresponding measurements. The 185 keV counting rates have been normalized to 1% ²³⁵U abundance, the mean values of successive measurements of identical samples are indicated by dashed lines. Though somewhat hidden in the counting statistics one can clearly observe an anticorrelation between total gamma counting rate and 185 keV peak counting rate, i.e., with increasing total gamma counting rate the 185 keV counting rate decreases, the effect is about 0.2% for a variation of the total counting rate by 130 cps only. Considering our goal of highest possible assay accuracy this effect cannot be tolerated, thus we have to look more carefully for the interdependence of total counting rates and peak counting rates.

Fig. 8 shows also the percentage correction finally applied to the observed 185 keV peak counting rates, anticipating the results of the considerations in this Sub-Section. The corrected peak counting rates are calculated from

$$\dot{N}_{corr}^{185} = \dot{N}_{peak}^{185} \cdot C_{el}$$
(3.1)

where the correction factor C_{el} is derived from the true pulser input rate \dot{p} and the pulser-peak counting rate \dot{P}_{peak} obtained from the spectrum accumulated during the measurement live-time :

$$C_{el} = \frac{\dot{p}}{\dot{P}_{peak}} \quad .* \tag{3.2}$$

^{*} Note that capital letters $(N, P, \dot{N}, \dot{P},)$ describe counts and counting rates, respectively, observed in the MCA spectrum, whereas small letters (\dot{n}, \dot{p}) denote true input counting rates that would be observed with ideal electronics not suffering from dead-time and pile-up effects.

Fig. 8 Total gamma counting rate, variation of uncorrected 185 keV peak counting rate (normalized to 1 % 235U abundance) and correction for counting losses versus counting date

A more detailed description of the notation is given below. It can be estimated from fig. 8 that this correction reduces the counting rate dependence of the 185 keV peak rate significantly. Note the different scales in fig. 8 for the 185 keV counting rate variation and the correction, respectively.

In the following we discuss a simple model for a better quantitative understanding of the impact of dead-time and pile-up effects on the peak counts in gamma peak and the pulser peak, respectively. We follow here to some extent the arguments and considerations given in ref. /4/. Let us first define some relevant terms:

- <u>dead-time TD</u>

is the sum of all time intervalls during that the system is not ready to accept

incoming pulses because it is busy with processing and storing of a previous event, thus causing counting losses for those events that occur during the dead-time. Dead-time effects increase with increasing total input counting rate. Since in our pulse processing system we have no pulsed feed-back preamplifier and no pile-up rejector, the system dead-time is determined by the characteristics of the ADC/MCA only.

- <u>live-time *TL*</u>

is the sum of all time intervals during which the system is ready to accept incoming pulses, i.e., when it is not busy.

- real-time or clock-time TR is then simply the sum of live-time and dead-time.
- live-time operation of the MCA

is available for most MCA's: In this mode the high frequency part of the system timer clock is gated off during dead-time thus prolongating the real counting time by the dead-time. The live-time operation mode eliminates dead-time effects almost completely if the time distribution of incoming pulses is governed by Poisson statistics which can be assumed for gamma rays from radioactive decay of istotopes with long half-lives. This dead-time correction method fails, however, for non-random events like periodically running pulsers as shown below.

- real-time operation of the MCA

is based on a continuously running system clock in contrast to live-time operation where the system clock is gated off during dead-time.

- pulse pile-up

is observed when the time interval between two or more succeeding pulses is so short that the pulses will partly or totally overlap and the multiple pulse presented to the analyzer is treated as one event. Of course, pile-up events result in distorted pulse amplitudes being analyzed and stored in the MCA spectrum. Thus an event that would have been registered in the peak if no pile-up occured is removed from the peak by pile-up. Pile-up will affect the peak counting rate of gamma pulses and pulser pulses as well.

In our measurements we have operated the MCA always in live-time mode, as recommended in ref. /1/, however the measurement real-time is also simultaneously recorded in the MCA.

If both the gamma pulses and pulser pulses are presented to the input of the counting system and the MCA is operated in live-time mode, then the real counting time TR is simply the sum of the system's live-time TL and the dead-time due to processing of gamma or pulser events, TDg and TDp, respectively:

$$TR = TL + TD_{g} + TD_{p} \tag{3.3}$$

By definition we attribute to the pulser dead-time all those processed events where the pulser is involved: undistorted pulser events, pulser events contaminated by gamma interference, and gamma events disturbed by pulser interference.

First we consider the effect of dead-time and pile-up on the <u>pulser-peak</u> counts observed in the MCA spectrum. A constant-repetition-rate pulser differs from a "random" gamma source in two respects:

- 1) a pulser pulse cannot pile up with another pulser pulse, and
- 2) a pulser pulse will never find the system busy with processing of a previous pulser event.

From 1) we conclude that the probability to find an undistorted pulser event is equal to the probability that no gamma event is observed during the critical time interval t_1 around the pulser event which is given by

$$W_{non-pile-up \, pulser} = e^{-nt_1} \quad , \tag{3.4}$$

where \dot{n} is the total gamma input rate. The critical time interval t_1 during which the appearance of another pulse will disturb the amplitude of the pulse being analyzed, is also called ' pulse-pair resolving time ' of the MCA or ' pile-up inspection time '. Its value depends on the width and shape of the pulses presented to the analyzer, and on details of the analyzer logic (e. g., pulse-peak detector). As a rough estimate we can assume that t_1 is equal to the pulse width. We assume that the pulse widths of gamma- and pulser-pulses are equal. If a pile-up rejector is used in the pulse-processing chain, its resolving time and internal logic must also be taken into account.

From 2) we see that the time the pulser will find the system live is just the real counting time TR minus the time during which the system is busy with the processing of gamma events (see eq. 3.3):

$$TL_{p} = TR - TD_{g} = TL + TD_{p} \qquad (3.5)$$

Therefore the number of pulser events expected in the pulser peak during the real counting time TR is given by

$$P_{peak} = \dot{p} \cdot TL_{p} \cdot W_{non-pile-uppulser} = \dot{p} \cdot (TL + TD_{p}) \cdot e^{-nt_{1}}, \qquad (3.6)$$

where \dot{p} is the true pulser input rate that is measured externally by use of a counter/timer.

The system dead time TD_p due to the processing of undistorted and distorted pulser events, P_{peak} and $P_{non-peak}$, respectively, is given by

$$TD_p = t_2 P_{peak} + t'_2 P_{non-peak} , \qquad (3.7)$$

where t_2 is the conversion time of the ADC (inclusive overhead such as latency and storage time) for an undistorted pulser event, t_2 is the corresponding value for conversion of a distorted pulser event. In order to simplify the calculations we assume that

$$t'_2 = t_2$$
 , (3.8)

i.e., that the processing time for a pile-up contaminated pulser event is equal to the processing time for an undisturbed pulser pulse. Whereas this assumption is justified for an ADC with fixed conversion time, it is not true for a Wilkinson-type ADC: Pulse summing of unipolar pulses will always cause the amplitude of a distorted pulser event to be higher than that of an undistorted event, thus resulting in a longer conversion time. On the other hand, considering our definition of TD_p and considering the possibility that gamma- and pulser-pulse do only partly overlap, it may happen that the peak detector of the ADC will lock on the amplitude of a leading gamma event being smaller than that of the pulser, thus resulting in a shorter conversion time. This time jitter of t_2 depends on peculiarities of the pulse processing system and, to some extent, on the pulse-height distribution of the spectrum being analyzed. However, for a comparatively small pile-up probability of less than 1% in our case, eq. 3.8 seems to be an acceptable approximation.

We further assume that the ratio of disturbed to undisturbed pulser events is equal for the incoming pulse train and for the corresponding pulser events really analysed, i.e.:

$$\frac{P_{non-peak}}{P_{peak}} = \frac{1 - e^{-\dot{n}t_1}}{e^{-\dot{n}t_1}} = e^{\dot{n}t_1} - 1 \quad , \tag{3.9}$$

and we define the observed pulser-peak counting rate as the number of pulser events registered in the pulser peak in the MCA spectrum per measurement livetime :

$$\dot{P}_{peak} = : \frac{P_{peak}}{LT} \qquad (3.10)$$

Combining eqs. 3.6 - 3.10 we finally arrive at an expression for the observed pulser-peak counting rate :

$$\dot{P}_{peak} = \dot{p} \cdot \frac{e^{-\dot{n}t_1}}{1 - \dot{p}t_2}$$
 (3.11)

Similar considerations are now applied to counts observed in a gamma peak in the MCA spectrum, in our case the counts in the 185 keV peak originating from the decay of ²³⁵U. The probability to find a gamma event not disturbed by pile-up is given by the combined probability of non-pile-up with a pulser pulse and nonpile-up with another gamma pulse :

$$W_{non-pile-up\,gamma} = (1-\dot{p}t_1) \cdot e^{-\dot{n}t_1} , \qquad (3.12)$$

using the same notation as above. The time a gamma event finds the system live is equal to the real-time minus the dead time due to processing of gamma and pulser events. According to eq. 3.3 the live-time for gamma events is then

$$TL_{g} = TL \qquad (3.13)$$

The peak counts in the 185 keV peak observed in the MCA spectrum during realtime TR, or correspondingly, live-time TL is then given by :

$$N^{185} = \dot{n}^{185} \cdot TL \cdot (1 - \dot{p}t_1) \cdot e^{-\dot{n}t_1} , \qquad (3.14)$$

where \dot{n}^{185} is the true input peak counting rate that would be observed in the MCA spectrum with an ideal analyzer exhibiting no dead-time and pile-up effects. Defining the observed 185 keV counting rate from measured peak counts during live-time *TL*:

$$\dot{N}^{185} = \frac{N^{185}}{TL}$$
 , (3.15)

we get an expression for the observed 185 keV-peak counting rate:

$$\dot{N}^{185} = \dot{n}^{185} \cdot (1 - \dot{p}t_1) \cdot e^{-\dot{n}t_1}$$
 (3.16)

Combining eqs. 3.11 and 3.16 we arrive at the pile-up and dead-time-corrected 185 keV peak counting rate

$$\dot{n}^{185} = \dot{N}^{185} \cdot \frac{\dot{p}}{\dot{p}_{peak}} \cdot \frac{1}{(1 - \dot{p}t_1)(1 - \dot{p}t_2)}$$
(3.17)

Comparing eqs. 3.2. and 3.17 we find that the correction used in our data evaluation and the more exact correction given in eq 3.17 differ by the factor K:

$$K = \frac{1}{(1 - \dot{p}t_1)(1 - \dot{p}t_2)} , \qquad (3.18)$$

that describes different counting losses for gamma-peak counts and pulser-peak counts, respectively. Note that for a constant-repetition-rate pulser ($\dot{p} = \text{const.}$) with fixed amplitude the factor K is also a constant because the parameters $t_2 = \text{conversion}$ time for a pulser event, and $t_1 = \text{pulse-pair}$ resolving time are then fixed characteristics of the pulse-processing system, and do not depend on the counting rate of the input gamma spectrum. Therefore the correction for pile-up and dead-time applied in the present data evaluation according to eq. 3.2 seems to be justified.

It will be of interest to compare the predictions of our model with the experimental results. For this we rewrite eqs. 3.11 and 3.16 to present the relative deviations of the observed peak counting rates from the true input counting rates for the pulser and the 185 keV peak, respectively. Expanding the expressions into power series and neglecting nonlinear terms - which can be done for small pile-up and dead-time effects (about 1% in our case) - we get the following relations for both peak counting rates :

$$\frac{\dot{P}_{peak} - \dot{p}}{\dot{p}} = -\dot{n}t_1 + \dot{p}t_2 , \text{ and } (3.19)$$

$$\frac{\dot{N}^{185} - \dot{n}^{185}}{\dot{n}^{185}} = -\dot{n}t_1 - \dot{p}t_1 \tag{3.20}$$

Fig. 9 Relative deviations of the observed pulser-peak counting rates from the corresponding true pulser input rates versus total gamma counting rate.

Fig. 10 Relative deviations of observed 185 keV peak counting rates from the corrected mean value versus total gamma counting rate (open circles). Corrected values according to eq. 3.1 are given by closed circles. The corresponding peak counting rates in units of counts per second live-time are given on the right-hand scale.

Eqs. 3.19 and 3.20 show that the relative deviations of the observed peak counting rates from the input counting rates are linear functions of the total gamma input rate exhibiting the same slope but different offsets. Because we cannot directly observe gamma input counting rates, instead of n^{185} in eq. 3.20 we refer to the mean value of the corrected 185 keV peak counting rates according to eq. 3.1. Note that all 185 keV counting rates are normalized to 1% ²³⁵U abundance. For the relative deviation of the observed 185 keV counting rate per % enrichment from this mean value we obtain :

$$\frac{\dot{N}^{185} - \bar{N}_{corr}^{185}}{\bar{N}_{corr}^{185}} = -\dot{n}t_1 + \dot{p}t_2 \qquad (3.21)$$

Comparing eqs. 3.19 and 3.21 we expect the same functional dependence of the relative deviations for both types of peak counting rates when plotted versus total gamma counting rate \dot{n} . The experimental results are displayed in fig. 9 for the pulser peak (corresponding to eq. 3.19) and in fig. 10 for the 185 keV peak (corresponding to eq. 3.21). The data points given are mean values of measurements with same total gamma counting rates, the error bars represent the RMS errors from repeated measurements. The total gamma input rate \dot{n} has been estimated from the total number of events registered in the MCA during live-time *TL* reduced by the pulser rate. The straight lines given in both figures have been obtained from weighted linear least-squares fits of the data. From these fits we can derive the system parameters t_1 and t_2 using the mean pulser input rate $\dot{p} = 140.79$ cps from Table D4 in Appendix D:

	from fig. 9	from fig. 10
pulse-pair resolving time:	$t_1 = (10 \pm 1) \cdot 10^{-6} \mathrm{s}$	$t_1 = (12 \pm 3) \cdot 10^{-6} \mathrm{s}$
pulser-pulse conversion time:	$t_2 = (51 \pm 4) \cdot 10^{-6} \mathrm{s}$	$t_2 = (60 \pm 13) \cdot 10^{-6} \mathrm{s}$

Within the error limits the values of t_1 and t_2 compare quite well for the two types of peak counting rates considered indicating that our model is not in conflict with the experimental results. As expected the corrected 185 keV peak counting rates in fig. 10 are less dependent on the total gamma counting rates than the corresponding uncorrected values. Remembering the physical meaning of the parameters t_1 and t_2 , the fitted values do not look very unrealistic : As mentioned above the pulse-pair resolving time is approximately equal to the total pulse width. For an amplifier shaping time of 1 µs used in the present experiments the total pulse width from the fit would then be about 10 times the shaping time which is a normal value for semi-gaussian filtering. The fitted pulser-pulse conversion time t_2 of about 50 µs also compares quite well to the ADC conversion time of 38 µs calculated from the ADC manual considering that the latter value does not include the transfer time to the MCA and the corresponding overhead.

In our data evaluation we have used eq. 3.1 for dead-time and pile-up correction instead of the correct formula given in eq. 3.17 assuming that the factor Kdefined in eq. 3.18 is constant. This assumption is not strictly fulfilled because the pulser frequency varied by $\pm 0.5\%$ during the measurements. Using the fitted values of t_1 and t_2 we can get an estimate of the impact of pulser-rate variations on K and thus on the assay result. From Table D4 in Appendix D we get for the input pulser rate \dot{p} and its variations :

$$\dot{p} = (140.79 \pm 0.37) \,\mathrm{cps}$$
 $\dot{p}_{min}(\#1) = 139.98 \,\mathrm{cps} (-0.58\%)$
 $(\pm 0.26\%)$ $\dot{p}_{max}(\#44) = 141.46 \,\mathrm{cps} (+0.48\%)$

resulting in the corresponding values and variations of K :

$$K = (1.008611 \pm 0.000023) \qquad \qquad K_{min} = 1.008561 \ (-0.005\%) \\ (\pm 0.0023\%) \qquad \qquad K_{max} = 1.008652 \ (+0.004\%)$$

The variation of K is well below our desired accuracy level. Therefore the use of the more simple dead-time and pile-up correction according to eq. 3.1 is justified in our case thus avoiding the evaluation of the parameters t_1 and t_2 required for the more exact formulat 3.17.

If - for whatever reasons - the pulser rate is varied strongly then one should use eq. 3.17 instead of eq. 3.1 for dead-time and pile-up correction. In this case the determination of the required parameters is possible in a simple way from two measurements performed in addition to the routine assay :

1) measurement of the *pulser alone* : $\dot{p} = 0$, $\dot{n} = 0$, recording *TL* and *TR*, and the background-free pulser-peak counts. From eqs. 3.5 - 3.11 we obtain for this particular case :

$$\dot{p} = \frac{P_{\mu cak}}{TR} \qquad (3.23)$$
$$l_2 = \frac{TR - TL}{P_{peak}} , \qquad (3.24)$$

$$1 - \dot{p}t_2 = \frac{TL}{TR}$$
 (3.25)

2) measurement of a gamma source alone (either the actual RM or an unknown uranium sample): $\dot{p} = 0$, $\dot{n} \neq 0$, recording the net-peak counting rate (per live-time) of a prominent gamma peak, here the 185 keV peak of the uranium sample. From eq. 3.16 we get

$$\dot{N}_{without\,pulser}^{185} = \dot{n}^{185} e^{-\dot{n}t_1} \tag{3.26}$$

3) routine measurement with pulser and gamma source (same sample as in measurement 2 must be used - equal \dot{n}): $\dot{p} \neq 0$, $\dot{n} \neq 0$, recording net-peak counting rate (per live-time) of same gamma peak as in 2). Now we get

$$\dot{N}_{with \ pulser}^{185} = \dot{n}^{185} \cdot (1 - \dot{p}t_1) \cdot e^{-\dot{n}t_1}$$
(3.27)

From eqs. 3.26 and 3.27 we obtain the desired values of $(1 - \dot{p}t_1)$ and t_1 :

$$1 - \dot{p}t_1 = \frac{\dot{N}_{with \, pulser}^{185}}{\dot{N}_{with \, out \, pulser}^{185}} , and \qquad (3.28)$$

$$t_{1} = \frac{1}{\dot{p}} \left(1 - \frac{\dot{N}_{with \, pulser}^{185}}{\dot{N}_{with \, out \, pulser}^{185}} \right)$$
(3.29)

Once the constants t_1 and t_2 are known one can do the corrections of further routine assays according to eq. 3.17 using the true pulser input rate \dot{p} and the pulser-peak counting rate \dot{P}_{peak} recorded in the MCA spectrum.

Summary of Section 3.2:

For highly accurate gamma-spectroscopic ²³⁵U enrichment assays the counting losses due to pulse pile-up and system dead-time must be corrected for, even at the comparatively low counting rates observed with this NDA technique. The simple correction by normalizing the peak counting rate of interest to a constant peak counting rate in a reference peak failed in our measurements due to instabilities of the reference sources used (²⁴¹Am and electronic pulser).

The counting-rate instability of the reference gamma source attached to the collimator is most probably caused by small distance variations between source and detector during the measurements. The counting geometry used – small source-to-detector distance and 2π radiation characteristic of the gamma source - is extremely susceptible to distance variations. Instead of this geometry we will use in future measurements a highly collimated gamma reference source with the beam axis directed towards the center of the detector crystal hoping to arrive at a better counting rate stability.

The dead-time- and pile-up-correction with reference to an electronic pulser is possible and was applied for the data evaluation presented in this paper. However, due to frequency instabilities of the pulser used this could be achieved only at the cost of an external counter/timer for the determination of the true pulser input rate. Therefore it seems to be desirable to put a special wish on the "letter to Santa-Claus", i.e., the electronics industries, namely to provide a real "highprecision" pulser with a guaranteed stability of better than 10⁻⁴ in repetition rate and amplitude under all working conditions (temperature, line voltage), quartzcontrolled with digital parameter selection (avoiding error-prone switches and pot's) and with selectable rise- and fall-time to allow the matching of pulser pulses to the shape of gamma pulses.

3.3 Calibration

Once the correction for pulse losses due to the counting electronis and for wall-thickness differences are made as described in the previous sections we expect a linear relationship between the corrected 185 keV peak counting rate and the ²³⁵U/U enrichment:

$$enr \ \% = A \cdot \dot{N}_{corr}^{185} + C_{int}$$
, (3.30)

where the parameter C_{int} accounts for interfering gamma rays from the decay of the ²³⁸U daughter ²³⁴Pa. For low enriched uranium and ²³⁴Pa being in secular equilibrium with ²³⁸U (about 30 days after chemical separation) the value of C_{int} is estimated in ref. /1/ to

$$C_{int} = 0.001 \, (enr \,\%)$$

The determination of the parameters A and C_{int} for the assay system to be calibrated is generally performed by measurements of suitable reference materials with known ²³⁵U/U abundance. For our calibration measurements we have used samples #194, #295 and #446 of the set No. 008 of the Reference Material EC-NRM-171/NBS-SRM-969 that is specially designed for gamma-spectrometric ²³⁵U enrichment assay (quasi-infinite samples) and exhibits very tightly specified ²³⁵U/U abundance values and a well characterized sample canning (see Appendix E).

The sequence of the calibration measurements with embedded measurements of the unknown UF₆ sample is given in Table 5. The table also shows the number of repeats and the preset live-time for each measurement. In order to test the stability of our assay system we have subdivided the series of measurements into two groups : group 1 comprises measurement #1 to #46, group 2 measurement #47 to #61. The data evaluation, the calibration and the determination of the 235 U enrichment have been performed for both groups independently. In addition to this we have done the evaluation also for all measurements #1 to #61 together, resulting in three different data sets being used. The corresponding total counting times and the total number of 185 keV peak counts accumulated are displayed in Table 6 which may give an impression of the effort spent for the measurements in the present REIMEP-86 exercise.

TABLE 5	MEASUREMENTS	PERFORMED	WITH	CALIBRATION	SAMPLES
	AND REIMEP-8	6 UF6 SAMPL	_E.		

MERSUREMENT	-+ ! !	NUMBER OF REPEATS	!	SAMPLE	•+ ! !	COUNTING TIME (SECONDS)
# 1 - #10 #11 - #20 #21 - #30 #30 - #46 #47 - #51 #52 - #56 #57 - #61		10 10 10 10 (16)* 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RM 4,5 % RM 3,0 % RM 2,0 % UF6 RM 4,5 % UF6 RM 3,0 %	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 000 30 000 45 000 30 000 20 000 30 000 30 000

TABLE 6 TOTAL COUNTING TIMES AND TOTAL 185 KEV NET COUNTS ACCUMULATED IN THE MCA SPECTRUM.

DATA SET	COUNTING TIME (HOURS)	185 KEY COUNTS (MILLION COUNTS)		
1 : FIRST 40 (46)* MEAS	SUREMENTS :			
CALIBRATION RUNS (30) UF6 RUNS (10/16*) ALL RUNS (40/46*)	270.1 H 85.1 H (136.1 H) 355.2 H (406.3 H)	23.9 MIO 9.2 MIO (14.7 MIO) 33.1 MIO (38.6 MIO)		
2 : LAST 15 MEASUREMENT	5 :	!		
CALIBRATION RUNS (10) UF6 RUNS (5) ALL RUNS (15)	71.1 H 42.5 H 113.7 H	8.0 MIO 4.6 MIO 12.6 MIO		
3 : ALL 55 (61)* MERSUR	REMENTS :			
CALIBRATION RUNS (40) UF6 RUNS (15/21*) ALL RUNS (55/61*)	341.4 H 127.6 H (178.7 H) 468.9 H (520.0 H)	! 32.0 MIO ! 13.7 MIO (19.2 MIO) ! 45.7 MIO (51.2 MIO)		

*> FOR MEASUREMENTS #35 TO #40 THE EXTERNALLY DETERMINED TRUE COUNTING RATE OF THE PULSER HAVE NOT BEEN RECORDED DUE TO A PRINTER FAULT. THEREFORE THESE MEASUREMENTS HAVE BEEN INCLUDED IN THE EVALUATION PROCEDURE ONLY IN THOSE CASES WHERE NO NORMALISATION TO THE PULSER COUNTING RATE IS PERFORMED. THE CORRESPONDING COUNTING TIMES AND TOTAL 135 KEV COUNTS ARE GIVEN IN BRACKETS.

The calibration has been performed following the procedure given in Section 5.4.3 in ref. /1/ and outlined in the BASIC program ER2FIT in Appendix E of ref. /1/. Only minor changes have been made to the version of ER2FIT listed in /1/: The variance and covariance values are not multiplied by omega-square, and omega-square is set arbitrarily to 1 if the degree of freedom is zero. The program ER2FIT calculates the linear least-squares-fit solution for the parameters A and C_{int} in eq. 3.20 taking into account that both variables - the stated ²³⁵U enrichment value and the 185 keV counting rate - are subject to errors. The former uncertainties have been taken from the certificate accompanying the Reference Material (see Appendix E of this paper). Note that the program ER2FIT expects the errors at the 1 σ level as input so that the uncertainties given in the certificate at 2 σ have to be divided by a factor of 2.

When using the program ER2FIT one should consider that it is based on the assumption that all input values are independent from each other. In repeated measurements this condition is not fulfilled for the observations of the ²³⁵U enrichment and of the wall thickness because these values are unique for a

particular sample and they are not determined independently anew for each repeat in contrast to the gamma counting rate. It is therefore recommended to evaluate first the mean values of 185 keV counting rates from repeated measurements of each particular sample and then to use these mean values as input to ER2FIT in order to provide independence of input data and to arrive at correct error estimates of the calculated fit parameters.

Two independent error estimates have been obtained for the counting statistics in the 185 keV peak : 1. from the peak evaluation of the spectral data for each measurement, 2. from the variance of repeated measurements. Though the differences of both error estimates turned out to be comparatively small we have performed the calculations for both types of error estimates separately. Note that the uncertainty from the wall-thickness determination has to be added to the error due to counting statistics to arrive at the total counting-rate error being input to ER2FIT.

In order to investigate the impact of the various corrections applied we have further carried out the data evaluation with and without correction for counting losses, and using both the wall-thickness values from the data sheets and from our own ultrasonic measurements.

The different data-evaluation conditions can be grouped in the following scheme:

- a) no correction for dead-time and pile-up effects, correction for dead-time and pile-up,
- b) wall-thickness correction from data sheets,
 wall-thickness correction from own measurements,
- c) counting errors from peak evaluation, counting errors from repeated measurements,
- measurements #1 to #46 only, measurements #47 to #61 only, all measurements.

Out of these conditions all possible combinations have been formed resulting in 24 different data sets. For each of these data sets the calibration and the evaluation of the ²³⁵U/U abundance has been performed individually.

The input data and the results of the 24 calibration runs are given in Appendix B. The tables and printouts are self-explaining and do not require detailed comments. The Tables B1 to B4 in Appendix B display the corrected 185 keV gamma counting rates of individual calibration measurements evaluated according to combinations of conditions a) and b) given above. The errors are given at the 1 σ level. Besides the total error of the 185 keV peak counting rate also its two constituents are shown : the error due to counting statistics and the uncertainty from the wall-thickness correction. The statistical counting error is taken from the spectrum evaluation of a single measurement. It comprises the variance of the peak counting rate, the error from background subtraction and the error from pulse-loss corrections if applicable. The tables B1 to B4 also show the stated ²³⁵U enrichment values of the respective Reference Material used. The given ²³⁵U enrichment uncertainties refer to the 1 σ errors from the Certificate.

Following each of the Tables B1 to B4 the unweighted mean values of the 185 keV counting rates from the Reference Materials involved are listed along with the associated errors (two types of errors according to condition c above). The calibration has been performed for three different groups of measurements (see condition d above), so that finally from each of the Tables D1 to D4 six different sets of calibration parameters have been derived.

Note that in the printouts of the programme ER2FIT given in Appendix B the calibration parameters A and C_{int} of eq. 3.20 are denoted as "slope" and "offset", respectively. The variance and covariance values of "slope" and "offset" are shown at the end of the respective printout and will be used to determine the calibration error at the 185 keV counting rate of the unknown sample as described below.

The quality of the fits - i.e., the consistency of the data and of the associated errors with the assumption of a linear model including a fixed gamma-interference term $C_{int} = 0.001$ - has been tested as described in Section 5.4.4 in ref. /1/: All fitted values of C_{int} passed the t-test, and also the omega-square test - if applicable. It shows that our data are in good agreement with the assumed linear relationship between the 185 keV gamma counting rate and the 235 U/U abundance.

4. EVALUATION OF ²³⁵U/U ISOTOPE ABUNDANCE

The 235 U abundance is obtained by inserting the corrected 185 keV gamma counting rate observed from the measurement of the unknown sample into eq. 3.30 given in the previous Section using the parameters A and C_{int} from the corresponding calibration run. Note however, that we have to account for different gamma attenuation in the UF₆ samples and the U₃O₈ Reference Material used for calibration of the assay system. This matrix attenuation correction factor

$$K_{n} = 1.0231$$
 (normalizes UF_6 to U_3O_8)

has to be applied to the corrected 185 keV gamma counting rate of UF₆ material in order to normalize it to the 185 keV counting rate of U₃O₈ - the material used for calibration. The value of K_m given is taken from the data sheets REIMEP-86 App. 7 (see Appendix E of the present paper). A possible error for the matrix attenuation factor K_m is not accounted for in the present data evaluation. Normalization of the 185 keV counting rate from the UF₆ sample is done by

$$\dot{N} = : K_m \cdot \dot{N}_{corr\ all}^{185} , \qquad (4.1)$$

where $\dot{N}^{185}_{corr all}$ is the observed 185 keV counting rate corrected for wall-thickness differences (see Table 4) and - if applicable - for counting losses due to pile-up and dead-time (see eqs. 3.1 and 3.2). Using the abbreviation

$$C = :C_{int} \tag{4.2}$$

and eq. 4.1 we arrive at a corresponding form of eq. 3.30 for the UF_6 samples:

$$enr \,\% = A \cdot \dot{N} + C \tag{4.3}$$

where the calibration constants A and C must be taken from the particular calibration run observing the same evaluation conditions. The error estimate for the 235 U/U abundance obtained from eq. 4.3 is given by:

$$\Delta \operatorname{enr} \mathscr{U} = \sqrt{A^2 \cdot \Delta^2 \dot{N} + \dot{N}^2 \cdot \operatorname{var}(A) + 2 \dot{N} \cdot \operatorname{cov}(A, C) + \operatorname{var}(C)}$$
(4.4)

The uncertainty of the 185 keV counting rate ΔN comprises both the counting rate error and the wall-thickness correction error as well. The variance and covariance values are taken from the corresponding calibration runs. The first term of the square root in eq. 4.4 represents the error due to the measurement of the unknown UF₆ sample, the remaining three terms are considered as calibration error.

The 235 U/U abundance of the unknown UF₆ sample has been determined following the same scheme of evaluation conditions as outlined in the previous

Section. Therefore we obtain 24 different 235 U/U values for the UF₆ sample according to the selection of various data sets and of various corrections applied using the corresponding 24 sets of calibration constants evaluated under same conditions. The calculations are documented in Appendix C. The tables and listings given are mostly self-explaining, they show the corrected 185 keV counting rates of individual measurements of the UF₆ sample, the associated errors, the mean values of the counting rates and the 235 U/U abundance values finally obtained. Besides the estimate of the total error of the 235 U enrichment also the two constituents - measurement error of UF₆ sample and calibration error, respectively - are listed in Appendix C.

TABLE 7 235U % ABUNDANCE VALUES OBTAINED FROM GAMMA-SPECTROMETRIC MEASUREMENTS OF THE REIMEP-86 UF6 SAMPLE USING DIFFERENT DATA SETS AND OB-SERVING VARIOUS DATA-EVALUATION CONDITIONS. ESTIMATES OF TOTAL ERRORS AT 1 SIGMA LEVEL (68 % CONFIDENCE) ARE GIVEN BELOW 235U AB-UNDANCE VALUES AT CORRESPONDING DECIMALS.

CONDITIONS OF DATA EVALUATION	DATA FROM FIRST MEASURE- MENTS ONLY	DATA FROM LAST MEASURE- MENTS ONLY	DATA FROM ALL MEASURE- MENTS
COUNTING-ERROR ESTIMATES FROM SP	ECTRUM EVALUAT	ION	
NO COUNTING TIME CORRECTION,	3, 5046	3. 5000	3. 5034
THICKNESS FROM DATA SHEETS	17	25	15
NO COUNTING TIME CORRECTION,	3. 5054	3. 5009	3. 5042
THICKNESS MEASURED AT KFK	16	24	15
COUNTING TIME CORRECTION,	3. 5007	3. 4970	3. 4996
THICKNESS FROM DATA SHEETS	20	26	17
COUNTING TIME CORRECTION,	3. 5014	3. 4979	3. 5004
THICKNESS MEASURED AT KFK	19	26	17
COUNTING-ERROR ESTIMATES FROM REF	PEATED MEASURE	MENTS	• • • • • • • • • • • • • • • • • • •
NO COUNTING TIME CORRECTION,	3. 5049	3. 5000	3.5036
THICKNESS FROM DATA SHEETS	18	23	16
NO COUNTING TIME CORRECTION,	3.5056	3. 5009	3. 5043
THICKNESS MEASURED AT KFK	17	22	15
COUNTING TIME CORRECTION,	3.5009	3. 4970	3. 4997
THICKNESS FROM DATA SHEETS	17	21	15
COUNTING TIME CORRECTION,	3, 5016	3. 4979	3.5005 *
THICKNESS MEASURED AT KFK	17	21	15 *

* 2350 % ABUNDANCE VALUE AND ASSOCIATED ERROR REPORTED TO COMM GEEL.

The results of all 24 calculated 235 U/U abundance values and the associated errors at the 1 σ level are summarized in Table 7 along with the matching dataevaluation conditions. It can be seen from Table 7 that the differences of corresponding 235 U/U abundance values calculated with the two counting-error estimates (type I: from spectral evaluation of single measurements and type II: from the variance of repeated measurments), are very small. They correspond to a mean bias of

Bias (counting error estimate Π/I) = + 0.0001 enr% (+0.003 % rel.)

for counting-error estimate type II as compared to type I. This difference is considered as statistically not significant. It demonstrates that both types of independent error estimates are in good agreement. Thus in the following we have somewhat arbitrarily used the mean value of the 235 U/U abundance and of the associated errors obtained with the two different types of counting-error estimates. Also the graphic presentation of the assay results shown in fig. 11 and the final 235 U/U abundance value reported to CBNM Geel refer to these mean values.

From Table 7 we can also extract information on the impact of the two different types of wall-thickness corrections performed (see Chapter 2): type I: all wallthickness values from data sheets, and type II: all wall-thickness values from own ultrasonic measurements,. The resulting bias is

Bias (wall-thickness corr. I/II) = -0.0008 enr% (-0.023 % rel.)

with correction type I as compared to correction type II which is finally used for the reported 235 U/U abundance. It should be noted here again that we had difficulties in measuring the wall thickness of the monel bottom of the UF₆ sample (see Chapter 2): Our measured value was about 3 µm thicker than that of the reference monel disk supplied with the REIMEP-86 sample, whereas the data sheet indicates identical thickness of both monel items with uncertainties of 1 µm only. Assuming same wall thickness for the UF₆ sample bottom and for the reference monel disk, and using the thicknes values from our own measurements in all other cases we arrive at a third type of wall-thickness correction. Compared to this correction our reported 235 U/U abundance value has a positive bias of

Bias (wall-thickness corr. Π/Π) = + 0.0014 enr% (+ 0.04 % rel.).

This demonstrates that the thickness of the counting window of the sample to be measured must be very carefully controlled in order to arrive at highly accurate assay results.

The most important contribution to systematic errors in the present measurements is due to dead-time and pile-up effects. Table 7 shows that the $^{235}U/U$ abundance values calculated without counting loss correction exhibit a positive bias of

Bias (without/with counting loss corr.) =
$$+ 0.0036 \text{ enr}\%$$
 (+ 0.1%).

Therefore, counting-loss corrections should be applied to the measured 185 keV peak counts even at the comparatively low counting rates normally observed with gamma-spectrometer assays of low enriched uranium samples.

Fig. 11 235U/U abundance of the REIMEP-86 UF₆ sample obtained from different measurement-data sets using various corrections. Errors are given at the 2 σ level (95 % confidence).

- 1) No counting-loss corrections, wall thickness from data sheets
- 2) No counting-loss corrections, wall thickness from KfK measurements
- 3) Correction for counting loss, wall thickness from data sheets
- 4) Correction fro counting loss, wall thickness from KfK measurements

* 235U/U abundance value and associated error reported to CMNM Geel

It may also be of interest to observe the time dependence of the assay results. Though the number of measurements is too small to get valid information at the desired accuracy level we may compare the 235 U/U abundance value obtained from the first 46 measurements to that independently evaluated from the last 15 measurements. The former value is about 0.1 % higher than the latter one. This difference is slightly outside the range expected from the counting statistics, however it does not give a clear indication for a time dependence of the measurement results.

The results shown in Table 7 obtained from different data sets, different evaluation conditions and different corrections applied are displayed in fig. 11. The data given in the figure are mean values of the corresponding data in the upper and lower half of Table 7. The error bars shown present the total uncertainty of the 235 U/U abundance values at the 2 σ level (95 % confidence) in contrast to Table 7 that gives the errors at the 1 σ level. These errors comprise the stated uncertainties of the 235 U/U values of the Reference Material used for calibration, the uncertainties introduced by wall-thickness corrections, counting statistics and, if applicable, by pulse-loss corrections. The certified 235 U/U abundance value for the REIMRP-86 UF₆ sample and its error are indicated by horizontal lines in fig. 11, the relative deviations from this value are given on the right-hand scale in the figure.

The data shown in fig. 11 clearly demonstrate that pulse losses due to dead-time and pile-up effects contribute in our measurements the most important fraction to the systematic error. Applying pulse-loss corrections and using all measurement data we finally arrive at three different values of the $^{235}U/U$ abundance of the REIMEP-86 UF₆ sample according to different data for the container-wall thickness:

1. Wall-thickness values from data sheets:

 $3.4997 \pm 0.0033 \% ^{235} U/U$

2. Wall-thickness values from measurements at KfK:

 $3.5005 \pm 0.0031 \% ^{235} U/U$

3. Wall-thickness values from measurements at KfK, except for the monel bottom of the UF_6 sample whose thickness is assumed here to be identical to that of the monel calibration disk:

 $3.4991 \pm 0.0031 \% ^{235}$ U/U.

Closing this Section, Tab. 8 shows the contribution of various errors to the final accuracy of the gamma-spectrometric 235 U/U abundance determination of the REIMEP-86 UF₆ sample given in terms of absolute and relative errors at the 2 σ level. It can be deduced from Table 8 that in our measurements we have brought down the counting error to the same magnitude as the contribution of the remaining uncertainties. Further, it can be seen that the errors due to the calibration and due to the measurement of the unknown sample, respectively, are approximately equal. Note however that an extremely long counting time of about 500 hours was required to arrive at this goal.

TABLE 8 CONTRIBUTION OF VARIOUS ERRORS TO FINAL ACCURACY OF THE GAMMA-SPECTROSCOPIC 235U ABUNDANCE DETER-MINATION OF THE UF6 SAMPLE REIMEP-86. (UNCERTAINTIES ARE GIVEN IN TERMS OF ABSOLUTE AND RELATIVE ERRORS AT 2 SIGMA = 95 % CONFIDENCE.)

SOURCE OF ERROR	ABSOLUTE 235U ABUNDANCE ERROR 3.5005 +)	RELATIVE 235U ABUNDANCE ERROR (%)
1) ERRORS DUE TO CALIBRATION U	JSING REFERENCE MATERI	ALS :
ERROR DUE TO UNCERTAINTIES OF NRM 2350 ABUNDANCES :	! +- 0.0016	0.046 %
ERROR DUE TO THICKNESS UNCERTAINTIES OF NRM BOTTOMS :	! +- 0. 0007	0.021 %
COUNTING ERRORS FROM PEAK EVALUATIONS : (FROM REPEATED MEASUREMENTS :)	! +- 0.0015 ! < +- 0.0017	0.044 % 0.050 % >
ALL CALIBRATION ERRORS AT 3.5 % U235 ABUNDANCE : (SEE ABOVE)	+- 0,0023 (+- 0,0025	0.067 % 0.071 % >
2) ERRORS DUE TO UF6 SAMPLE ME	EASUREMENTS :	ه ولا عله الله الله الله الله الله الله الل
ERROR DUE TO THICKNESS UNCERT- AINTY OF UF6 SAMPLE BOTTOM :	 ! ! +- 0.0009	0. 026 %
COUNTING ERRORS FROM PEAK EVALUATIONS : (FROM REPEATED MEASUREMENTS :)	+- 0.0021 (+- 0.0013	0.061 % 0.036 % >
HLL ERRORS FROM REIMEP-86 UF6 SAMPLE MEASUREMENTS : (SEE ABOVE)	+- 0.0023 (+- 0.0015	0.066 % 0.044 % >
3> ERROR CONTRIBUTION OF BOTH (CALIBRATION- AND UF6-M	IEASUREMENTS :
ALL ERRORS EXCEPT COUNTING ERRORS *> :	 ! ! +- 0.0020	0. 057 %
ONLY COUNTING ERRORS FROM PEAK EVALUATIONS : (FROM REPEATED MEASUREMENTS :)	: +- 0.0026 : < +- 0.0021 :	0.075 % 0.061 % >
*****	+	***
TOTAL ERROR :	: ! +- 0,0033	0.094 %
(VALUES IN BRACKETS REFER TO COUNTING-ERROR ESTIMATES FROM REPEATED MEASUREMENTS.)	< +- 0.0029 ! !	0.084 % >
، هذه براج هم خان گله بلغ وي هي هند براي كله براي جي ايند بلين جي اين چيد منه خلم جي بري بين منه بري بين هي كله خلم وي بري		والما حلك الالة الالة الاله ومن عنو الله على على عبد عبد عبد البرو الله عن عبد ب

*> DOESN'T INCLUDE UNCERTAINTY OF THE MATRIX CORRECTION FACTOR KM = 1.0231 GIVEN IN REIMEP-86 APP. 7/APP. NDA-1 THAT ACCOUNTS FOR DIFFERENT GAMMA ABSORPTION IN THE UF6 SAMPLE AND THE U308 NRM'S.

SUMMARY AND CONCLUSIONS

The REIMEP-86 exercise has shown that gamma-spectroscopic 235 U/U abundance measurements can deliver assay results with a relative accuracy of the order of 0.1 % at the 2 σ level (95 % confidence). This accuracy can only be achieved when the assay system is calibrated with adequately specified reference material. In our measurements the calibration was performed using the Reference Material EC-NRM-171 for gamma-spectroscopic 235 U enrichment assays providing a certified accuracy of about 0.05 % relative with respect to the 235 U/U isotope abundance.

The "enrichment-meter" principle applied for the measurement is based on the exact determination of the characteristic 185 keV gamma-radiation intensity emitted from a "quasi-infinite" ²³⁵U bearing sample. The method is therefore susceptible to violations of the "quasi-infinite" sample condition, to varying gamma attenuation in the counting windows of the sample containers used, and to counting losses introduced by the electronic pulse-processing. A general scheme for the selection of counting geometries providing the "quasi-infinite-sample" condition is given in Chapter 1 of this report. The counting set-up used for the present measurements assures this condition for all samples assayed. The wall thickness of the sample containers used - Reference Material and UF₆ sample as well - have been remeasured at KfK by means of an ultrasonic thickness gauge (Chapter 2). The final 235 U/U abundance value of the REIMEP-86 UF₆ sample reported to CBNM Geel refers to these measured thickness values. The evaluation of the 185 keV net-peak counting rate and the correction for counting losses are described in Chapter 3 of the report. It should be noted that the counting-loss correction contributed the most important fraction to all corrections applied to the raw measurement data.

The total counting time spent for the measurements presented in this report was about 500 hours, more than 50 000 000 counts have been accumulated in the 185 keV peak of the measured spectra. The best value of the 235 U/U abundance of the REIMEP-86 UF₆ sample - evaluated from our measurements and reported to CBNM Geel was

```
3.5005 \pm 0.0031 \% ^{235}U/U (measured at KfK)
```

where the total error is given at the 2σ level, ie., the true 235 U/U abundance value is expected to be enclosed within the error limits with a probability of 95 %. The total error given comprises uncertainties due to counting statistics, due to wallthickness measurements and due to the limited accuracy of the Reference

	REIMEP-86 UF6			OPTIMIZED SET-UP
			h	
SHIPLE DIHNETER :	3.5 UN			6.0 CM
MIN. RECOMMENDED *) UF6 SAMPLE MASS :	70 G			205 G
ACTUAL UF6 SAMPLE MASS (80 G		-3	235 G
UF6 SAMPLE DENSITY :		5.1 G	CM _2	
UF6 SAMPLE AREAL DENSITY :		8.2 G	CM	
COLLIMATOR PARAMETERS :				
COLLIMATOR DIAMETER : COLLIMATOR HEIGHT :	2 CM 2 CM			4 CM 2 CM
ENTRANCE AREA :	2 3.14 CM			2 12.6 CM
REL. COLLIMATOR TRANSMISSION *>	0. 172			0. 382
GAMMA-ATTENUATION CORRECTIONS :				
GEOMETRY FACTOR K *) : ABS	1. 095			1. 23
LIN. ATT. COEFF. MONEL : THICKNESS MONEL : TRANSMISSION MONEL *) :	0. 752	1, 3 0, 2	-1 CM CM	0. 726
LIN. ATT. COEFF. AL : THICKNESS AL : TRANSMISSION AL *>) :	0, 928	0.34 0.20	-1 CM CM	0. 920
TRANSMISSION TOTAL :	0, 698			0, 668
MATRIX CORR. BETA(UF6/U METAL)	*) :	0. 9	963	
185 KEV PEAK COUNTING RATES :			+	anna ann ann ann ann ann ann ann ann an
SPECIFIC 185 KEV SURFACE ACTIVI FOR THICK U METAL SAMPLE *> :	тү 77	CPS CI	 -2 1 <%	-1 ENR)
EXPECTED MAX. COUNTING RATE AT COLLIMATOR OUTPUT *> :	27. 9 CPS (%ENR)	-1	!	-1 237.8 CPS (%ENR)
OBSERVED COUNTING RATE :	8.7 CPS (%ENR)	-1	!	-1 95.1 CPS (%ENR)
> TOT. FEAK EFFICIENCY :	31 %		! !	40 %
			+	والم الله حيد عيد عيد بري ويد الله الله عنه عنه جه جي وي ياله الله
ESTIMATED COUNTING TIME REQUIRED F	OR 0.09 % REL. BUNDANCE (FROM	ACCUR	+ ACY (NT EX	2 SIGMA) ERCISE):
CALIBRATION : ACCUMULATED 185 KEV COUNTS :	341 HOURS	32 00	+ ! 3 000	31 HOURS
UF6 MEASUREMENT : ACCUMULATED 185 KEV COUNTS :	128 HOURS	13 70	! ! 3 000 !	12 HOURS
ESTIMATED COUNTING TIME REQUIRED F FOR A UF6 SAMPLE WITH 3.5 % 2350 F	OR 0.2 % REL. I IBUNDANCE :	ACCURA	+ CY (2	SIGMA)
CALIBRATION : ACCUMULATED 185 KEV COUNTS :	341 HOURS	32 00	9 000	31 HOURS
UF6 MEASUREMENT : ACCUMULATED 185 KEY COUNTS :	12 HOURS	1 30	: ! 0 000	1 HOUR
	, ann ann ann ann ann aite aite ann ann bha inn dhù ann ann agus ann a			

TABLE 9 CHARACTERISTICS OF THE COUNTING SET-UP USED FOR REIMEP-86 UF6 SAMPLE COMPARED TO A VIRTUAL SET-UP OPTIMIZED FOR SHORT COUNTING TIME.

*) FROM " USER'S MANUAL " FOR EC NRM 171 (KFK REPORT 3752), (SEE APPENDIX F)

Material used for calibration. The error does not include uncertainties of the matrix correction factor K_m used for normalization of UF₆ material (REIMEP-86 sample) to U₃O₈ material (EC-NRM-171). The contribution of counting statistics to the total relative error of 0.09 % was about 0.07 % whereas the remaining uncertainties (wall thickness, ²³⁵U/U abundance) added up to about 0.06 %.

The certified value for the 235 U/U abundance of the REIMEP-86 UF₆ sample

 $3.5001 \pm 0.0010 \% ^{235}$ U/U (certified by CBNM Geel)

reported by CBNM Geel after completion of the REIMEP-86 exercise compares very well with our result.

The experience gained from our measurements can be summarized in four salient points:

- 1. It must be stressed that "enrichment-meter" assays of low enriched uranium (LEU) are inherently suited only for measurements of bulk material quantities. This is due to the "quasi-infinite-sample" postulate and due to the comparatively low emission rate of the 185 keV gamma rays in LEU. In the present measurements an unduely long counting time was required to bring the statistical counting error down to a level comparable to the remaining uncertainties. A larger sample could have reduced the required counting time significantly. As shown in Table 9 we have calculated the peak counting rate expected from a larger sample with 6 cm diameter containing about 235 g UF₆ instead of 80 g UF₆ used in the REIMEP-86 sample. With this larger sample a 10 times higher counting rate is achievable, thus the counting time spent for the present exercise would have been reduced from one month to about 3 days preserving the same counting precision.
- 2. Relative errors of about $0.1 \% (2 \sigma)$ for gamma-spectroscopic ²³⁵U enrichment assays seem to be the ultimate accuracy limit. This is mainly due to practical reasons: counting time, accuracy of calibration standards, wall-thickness control. For in-field operations an accuracy limit of 0.2 % relative looks more realistic (see Table 9). When 250 g samples are used for the assays then counting times of one to two hours are required to arrive at relative accuracies of 0.2% at 2 σ . Note that the error in this case is dominated by the counting statistics from the measurement of the unknown sample. The errors due to calibration and due to the various corrections are assumed to be comparatively small. Therefore, in order to maintain the high performance of

the assay system, dynamic calibration strategies (i. e., when, how long, and which reference material should be measured) and quality control measures need to be developed.

- 3. The exact determination of the wall thickness of the sample containers presents a serious problem since a precision of few µm is required when ultimate measurement accuracy is desired.
- 4. Counting-loss corrections are necessary even at comparatively small variations of the input counting rates. The availability of a highly accurate electronic pulser is strongly desired. The positional stability of the gamma-ray reference source relative to the detector created difficulties in our present measurements. The use of a collimated gamma source will probably remove this problem.

REFERENCES

- /1/ P. Matussek, "Accurate Determination of the ²³⁵U Isotope Abundance by Gamma Spectrometry - A User's Manual for the Certified Reference Material EC-NRM-171/NBS-SRM-969", Report KfK 3752 (1985)
- /2/ H. Eberle, P. Matussek, "Computer Programs for the Accurate Determination of the ²³⁵U Isotope Abundance by Gamma Spectrometry", unpublished internal report of the KfK (1987).
- /3/ R.Gunnink, J.B. Niday, "Computerized Quantitative Analysis by Gamma-Ray Spectrometry", Report UCRL.51061 (1971).
- /4/ E.T. Cohen, "Live Time and Pile-up Correction for Multichannel Analyzer Spectra", Nucl. Instr. and Meth. 121 (1974) 25.

Appendix A

REIMEP UF₆ 1986 exercise.

Data from gamma-spectrometric measurements recorded to file ' UDATA ' .

TABLE A1	DATA FORMAT ON FILE 'UDATA'
HEADER RECORD:	'STANDARD'/'UNKNOWN', 235U ABUNDANCE (%), ERROR OF 235U ABUNDANCE, LIFE TIME OF MEASUREMENT (S), BOTTOM THICKNESS CORRECTION I (CBNM VALUES), ERROR OF BOTTOM THICKNESS CORRECTION, BOTTOM THICKNESS CORRECTION II (KFK VALUES), ERROR OF BOTTOM CORRECTION II,
DATA RECORD:	DATE OF MEASUREMENT, TIME OF DAY MEASUREMENT START, REAL TIME PULSER COUNTER (S), TOTAL COUNTS PULSER COUNTER, NET COUNTS OF PULSER IN MCA SPECTRUM, ERROR OF OF PULSER COUNTS IN MCA SPECTRUM, NET COUNTS OF 59 KEV PEAK IN MCA SPECTRUM, NET COUNTS OF 185 KEV PEAK IN MCA SPECTRUM, NET COUNTS OF 185 KEV PEAK IN MCA SPECTRUM, TOTAL COUNTING RATE IN MCA SPECTRUM, TOTAL COUNTING RATE IN MCA SPECTRUM (1/S), CHANNEL POSITION OF 59 KEV PEAK, FWHM OF 59 KEV PEAK (EV), FWTM OF 59 KEV PEAK (EV), FWHM OF 185 KEV PEAK (EV), FWHM OF PULSER PEAK (EV), FWHM O
DATA RECORD:	
DELIMITER:	"END"
TABLE A2	CONTENT OF FILE 'UDATA'
STANDARD, 4. 5168 FR/09/JAN/1987, 815., 479. 10, 778 FR/09/JAN/1987, 815., 479. 12, 765 SA/10/JAN/1987, 815., 479. 12, 765 SA/10/JAN/1987, 815., 479. 12, 759 SA/10/JAN/1987, 815., 479. 16, 750 SA/10/JAN/1987, 815., 479. 16, 752 SU/11/JAN/1987, 815., 479. 12, 767 SU/11/JAN/1987, 815., 479. 12, 772 SU/11/JAN/1987, 815., 479. 12, 772 STANDARD, 2, 9857 MO/12/JAN/1987, 756., 479. 08, 783 TU/13/JAN/1987, 756., 479. 08, 783 TU/13/JAN/1987, 756., 479. 08, 784 HE/14/JAN/1987, 756., 479. 08, 784 HE/14/JAN/1987, 756., 479. 10, 803 TH/15/JAN/1987, 755., 479. 10, 803 TH/15/JAN/1987, 755. 75	. 0016, 20000., 99942. 00021., 99966. 00015 15:37:55, 20512, 2871168, 2800436, 1633, 2687549, 1672, 802899, 927 1477, 3101, 1819, 05, 920, 1686, 2242, 2668, 54, 709, 1305, 1700 21:21:00, 20507, 2872953, 2802890, 1684, 2685674, 1675, 806274, 929 1457, 3057, 1819, 05, 915, 1674, 2218, 2668, 23, 699, 1280, 1673 31:03:55, 20512, 2875363, 2805702, 1685, 2682189, 1677, 806622, 929 .1442, 3094, 1819, 07, 911, 1665, 2206, 2668, 08, 691, 1269, 1654 33:46:53, 20508, 2879079, 2808981, 1686, 2668913, 1681, 804857, 929 .14412, 292, 1819, 07, 993, 1640, 2156, 2668, 23, 679, 1233, 1592 14:29:48, 20516, 2882961, 2811899, 1686, 2668913, 1681, 804857, 929 .1412, 2949, 1819, 07, 995, 1639, 2164, 2668, 40, 681, 1236, 1597 20:12:50, 20511, 2883023, 2812671, 1687, 2689866, 1633, 805128, 929 .1415, 2925, 1819, 05, 902, 1639, 2164, 2668, 34, 690, 1252, 1620 20:15:51, 49, 20520, 2881666, 2812216, 1687, 2689616, 1673, 805877, 929 .1415, 2925, 1819, 05, 902, 1639, 2164, 2668, 34, 690, 1252, 1620 20:15:49, 20520, 2881666, 2812216, 1687, 2689616, 1673, 805836, 928 .1453, 3104, 1819, 05, 913, 1673, 2212, 2667, 29, 702, 1287, 1677 38:56, 20504, 2882200, 2812530, 1687, 2689616, 1673, 805836, 928 .1463, 3104, 1819, 05, 914, 1682, 2220, 2667, 29, 702, 1287, 1677 39:144, 20515, 2884361, 2814786, 1687, 2684961, 1675, 804319, 928 .1455, 3101, 1819, 03, 912, 1672, 2223, 2666, 93, 698, 1283, 1671 19:04:49, 20508, 2883370, 2813372, 1688, 2690386, 1672, 804862, 928 .1463, 3079, 1819, 06, 914, 1682, 2226, 2667, 46, 704, 1293, 1683 .00105, 30000, 99559, 00015, 99959, 00018 15:44:08, 30713, 4322827, 422636, 2064, 405134, 2071, 798856, 935 .1480, 3100, 1819, 02, 926, 1691, 2228, 2668, 86, 712, 1303, 1691 17:23:06, 30721, 4321550, 4226402, 2067, 403553, 2044, 796702, 934 .1470, 3108, 1819, 03, 927, 1696, 2224, 2669, 18, 717, 1307, 1692 18:29:20, 30705, 4325016, 422924, 2668, 403569, 2061, 796969, 932 .1478, 3158, 1819, 03, 927, 1696, 2224, 2668, 47, 736, 1342, 1737 19:02:11, 30708, 4325046, 4225210, 2068, 4035890, 2061, 79670,

(CONTINUED)

CONTENT OF FILE 'UDATA

TABLE A2 (CONTINUED)

STRNDARD, 1. 9664, 0007, 45000, 99942, 00027, 99966, 00018 FR/16/JAN/1987, 15:49:22,46044,6485203,6346474,2534,6051854,2501,788869.94; 723. , 479. 12, 803, 1510, 3184, 1819. 08, 945, 1720, 2258, 2666. 89, 745, 1345, 1736 SR/17/JRN/1987, 04:38:01, 46000, 6482803, 6345374, 2534, 6054308, 2522, 789907. 946 723. , 479. 12, 804, 1512, 3172, 1819. 04, 942, 1722, 2275, 2667. 09, 742, 1343, 1732 723. , 479. 12, 809, 1502, 3159, 1819. 65, 941, 1716, 2249, 2666. 74, 739, 1343, 1725 SU/18/JAN/1987, 06:14:12, 46037, 6491092, 6352820, 2535, 6052303, 2530, 789875, 947 723., 479, 14, 792, 1487, 3132, 1819, 01, 932, 1703, 2235, 2666, 02, 733, 1324, 1710 SU/18/JRN/1987, 19:02:36, 46037, 6490756, 6352229, 2535, 6040214, 2497, 790076, 947 723. , 479. 12, 785, 1476, 3137, 1819. 08, 932, 1700, 2231, 2666. 13, 726, 1311, 1695 M0/19/JAN/1987, 16:13:08, 46045, 6499308, 6361387, 2536, 6041344, 2502, 790195, 949 723. , 479. 11, 772, 1488, 3086, 1819. 04, 920, 1674, 2211, 2664. 87, 709, 1281, 1660 723. , 479. 10, 759, 1430, 3028, 1319. 03, 907, 1652, 2188, 2664. 39, 693, 1267, 1680 723. , 479. 10, 759, 1430, 3028, 1319. 03, 907, 1652, 2188, 2664. 39, 693, 1267, 1647 TU/20/JAN/1987, 17:49:43,46024,6503191,6364863,2538,6018443,2507,790591,949 723. , 479. 09, 748, 1411, 3007, 1819. 03, 899, 1643, 2156, 2664. 24, 667, 1230, 1602 VE/21/JAN/1987, 12:05:36, 46029, 6509456, 6371357, 2540, 6009696, 2515, 789559, 942 723. 479. 11, 734, 1382, 2957, 1819. 02, 888, 1623, 2148, 2663, 13, 623, 1186, 1557 TH/22/JAN/1987,00:54:00,46021,6506821,6368157,2537,6010089,2518,788301,943 723. , 479. 10, 730, 1376, 2908, 1819. 06, 883, 1618, 2138, 2663. 19, 628, 1186, 1554 UNKNOWN, 3. 5000, . 0000, 30000, 1. 00000, . 00017, 1. 00039, . 00013 TH/22/JAN/1987, 15:12:48, 30636, 4326858, 4245207, 2068, 4008126, 2051, 915886, 983 688. , 479. 11, 740, 1397, 2947, 1819. 07, 891, 1634, 2147, 2663, 47, 634, 1203, 1579 TH/22/JAN/1987, 23:44:38, 30631, 4326151, 4245499, 2068, 4008971, 2048, 917370, 982 688, 7479, 11, 739, 1396, 2967, 1819, 05, 889, 1635, 2161, 2663, 61, 650, 1209, 1581 FR/23/JAN/1987, 08:16:17, 30631, 4327599, 4246800, 2068, 4008304, 2051, 916200, 983 688, 7479, 11, 730, 1375, 2911, 1819, 04, 882, 1616, 2130, 2664, 48, 662, 1206, 1572 FR/23/JAN/1987, 16:47:56, 30631, 4325045, 4243912, 2067, 4011549, 2051, 915478, 982 687. , 479. 10. 734, 1382, 2972, 1819. 05, 888, 1619, 2151, 2664, 84, 662, 1205, 1572 58/24/JAN/1987, 01:19:35, 00000, 0000000, 4244772, 2068, 4007023, 2050, 916417, 982 688. , 479. 10, 734, 1383, 2934, 1819. 03, 883, 1623, 2137, 2664, 69, 670, 1213, 1580 SR/24/JRN/1987, 09:51:15,00000,0000000,4249635,2069,4011231,2053,915413,982 688. , 479. 11, 732, 1376, 2877, 1819. 01, 885, 1616, 2129, 2663. 48, 633, 1187, 1663 SA/24/JAN/1987, 18:22:50,00000,000000,4250794,2069,4013840,2055,914739,983 688. , 479. 11, 728, 1369, 2860, 1819. 05, 881, 1613, 2116, 2663. 05, 641, 1185, 1543 5U/25/JAN/1967, 02:54:29, 00000, 0000000, 4252264, 2070, 4015352, 2055, 917389, 984 688. , 479. 12, 727, 1369, 2889, 1819. 05, 876, 1608, 2120, 2662, 57, 609, 1165, 1527 SU/25/JAN/1987, 11:26:04, 00000, 0000000, 4253183, 2070, 4012572, 2053, 916890, 983 688. , 479. 11. 727, 1367, 2865, 1819. 03, 878, 1603, 2107, 2661. 90, 534, 1127, 1497 5U/25/JAN/1987, 19:57:43, 00000, 0000000, 4250147, 2069, 4009425, 2054, 916374, 984 688. , 479. 12, 727, 1367, 2850, 1819. 04, 880, 1612, 2119, 2662. 48, 560, 1140, 1508 M0/26/JAN/1987, 10:15:31, 30628, 4322815, 4240803, 2066, 4015961, 2049, 915652, 982 687. , 479. 12, 746, 1396, 2934, 1819. 05, 891, 1634, 2156, 2665. 24, 712, 1259, 1621 M0/26/JAN/1987, 18:48:06, 30636, 4329252, 4248382, 2068, 4018534, 2045, 917057, 938 688. , 479. 14, 752, 1406, 2934, 1819. 05, 897, 1633, 2153, 2664. 56, 720, 1259, 1621 TU/27/JAN/1987, 03:20:25, 30632, 4326242, 4245101, 2068, 4014924, 2046, 916590, 988 688. , 479. 13, 753, 1408, 2969, 1819. 04, 899, 1638, 2144, 2665. 14, 709, 1243, 1603 TU/27/JAN/1987, 11:52:39, 30632, 4333103, 4250658, 2069, 4012104, 2047, 914668, 987 688. , 479. 14, 749, 1399, 2966, 1819. 06, 898, 1634, 2149, 2663. 62, 679, 1226, 1586 TU/27/JAN/1987, 20:24:53, 30632, 4327773, 4246391, 2068, 4013907, 2048, 915513, 982 688. , 479. 13, 744, 1394, 2957, 1819, 07, 890, 1629, 2142, 2664, 64, 702, 1232, 1586 WE/28/JAN/1987, 04:57:08, 30633, 4325810, 4243611, 2067, 4015243, 2050, 915837, 982 688. , 479. 13, 743, 1392, 2926, 1819. 02, 893, 1627, 2146, 2665. 00, 700, 1229, 1582 STANDARD, 4. 5168, 0016, 20000, 00042, 00021, 99966, 00015 WE/28/JAN/1987, 13:58:14, 20507, 2888987, 2819050, 1689, 2669820, 1678, 805468, 924 814. , 479. 14, 745, 1393, 2926, 1819. 08, 891, 1625, 2142, 2666. 37, 685, 1225, 1581 TH/28/JAN/1987, 19:42:08, 20516, 2886227, 2816728, 1688, 2668596, 1677, 806438, 924 814, ,479, 12, 749, 1402, 2983, 1819, 06, 895, 1628, 2150, 2667, 14, 682, 1226, 1584 TH/29/JAN/1987, 01:25:47, 20508, 2883497, 2813890, 1687, 2673125, 1678, 807634, 930 814. , 479. 12, 752, 1408, 2969, 1819. 08, 898, 1637, 2155, 2667. 85, 685, 1233, 1598 TH/29/JAN/1987, 07:09:18, 20492, 2883936, 2813962, 1687, 2672953, 1678, 806415, 924 814. , 479. 13, 751, 1405, 2940, 1819. 03, 895, 1633, 2154, 2667. 75, 687, 1236, 1598 TH/29/JAN/1987, 14:05:05, 20496, 2889654, 2819795, 1690, 2675095, 1676, 805026, 923 814., 479, 13, 758, 1411, 2959, 1819, 04, 900, 1646, 2167, 2666, 19, 704, 1249, 1608 UNKNOWN, 3, 5000, , 0000, 30000, 1, 00000, 0, 00017, 1, 00039, , 00013 TH, 29/JAN/1987, 20:08:11, 30619, 4308359, 4227845, 2068, 4015055, 2042, 915182, 987 687. , 479. 12, 758, 1416, 3015, 1819. 05, 901, 1645, 2169, 2667. 55, 698, 1256, 1623 FR/30/JAN/1987, 04:40:37, 30620, 4303438, 4222996, 2062, 4017873, 2044, 916468, 987 687, , 479, 11, 758, 1422, 3033, 1819, 04, 905, 1647, 2172, 2668, 70, 693, 1249, 1614 FR,/30/JAN/1987, 13:12:39, 30628, 4307872, 4226558, 2063, 4059956, 2049, 915642, 986 689, , 479, 13, 767, 1432, 3058, 1819, 07, 910, 1665, 2190, 2668, 56, 712, 1276, 1647 FR/30/JAN/1987, 21:44:50, 30628, 4300938, 4220417, 2062, 4053508, 2047, 916762, 987 688, 479, 13, 770, 1411, 3068, 1819, 05, 916, 1667, 2189, 2669, 94, 712, 1282, 1657 SA/31/JAN/1987, 06:17:00, 30632, 4297093, 4216437, 2061, 4056579, 2044, 916225, 986 688, , 479, 12, 780, 1458, 3045, 1819, 07, 918, 1673, 2208, 2670, 86, 714, 1287, 1660 STANDARD, 2. 9857, 00105, 30000, 99959, 00015, 99969, 00018 SR/31/JAN/1987, 15:09:58, 30713, 4312734, 4217257, 2066, 4052670, 2049, 799708, 935 756, 479, 13, 776, 1451, 3064, 1819, 05, 925, 1677, 2215, 2669, 87, 721, 1301, 1684 SA/31/JAN/1987, 23:43:56, 30713, 4307082, 4211549, 2064, 4052325, 2048, 800993, 936 756, 479, 11, 782, 1466, 3120, 1819, 05, 921, 1677, 2223, 2671, 00, 718, 1291, 1668 50/01/FEB/1987, 08:17:31, 30716, 4311329, 4214777, 2065, 4055714, 2050, 798369, 935 756. , 479. 12, 775, 1454, 3079, 1819. 04, 919, 1675, 2222, 2670. 07, 732, 1323, 1713 50/01/FEB/1987, 16:51:10, 30716, 4314610, 4219183, 2066, 4049597, 2051, 800941, 936 756. , 479. 12, 772, 1448, 3094, 1819. 06, 920, 1671, 2201, 2669. 42, 712, 1284, 1657

M0/02/FEB/1987, 01:24:50, 30718, 4312046, 4216427, 2066, 4052318, 2049, 800861, 935 756., 479. 13, 775, 1453, 3080, 1819. 04, 918, 1675, 2198, 2670. 20, 713, 1286, 1662 END

Appendix B

Calibration measurements.

Corrected counting 185 keV rates, evaluation of calibration constants.

TABLE B1	CALIBRATION DATA SET NR. 1,
	WITHOUT COUNTING-TIME CORRECTION
	BOTTOM THICKNESS: X5 FROM CERTIFICATE EC-NRM-171/
	MONEL FROM DIMENSION SHEET UF6-REIMEP 1986 APP 6

085	195	KEV COLIN	TING POTE		STAN	NARDS
ND.	COUNTING			TUTCEN	22511	END
DIS	DOTE	/ EBBOD		FOODE	2300	EPPOP
	KHIL	7 ERROR	ERROR P	ERROR	EDD.	ERROR
4	40 404 60	94799	04670	00040	4 5460	004.0
1	40.12168	. 04708	04632	. 00842	4. 5168	. 0016
~	40. 29033	. 04719	. 04643	. 00546	4. 3166	. 0016
ک	40. 30772	. 04/19	. 04643	. 00846	4.5168	. 0016
4	40 21952	. 04/18	. 04642	. 00844	4. 5168	. 0016
5	40. 25406	. 04694	. 04617	. 00840	4. 5168	. 0016
5	40.23306	. 04718	. 04642	00844	4. 5168	. 0016
<u> </u>	40.27050	. 04719	. 04643	. 00845	4. 5168	. 0016
8	40.26845	. 04714	. 04638	00845	4. 5168	. 0016
9	40.19263	04713	. 04637	00844	4. 5168	. 0016
10	40. 21977	. 04714	. 04638	. 00844	4. 5168	. 0016
11	26. 65608	. 03144	. 03118	00400	2. 9857	. 00105
12	26. 61762	. 03141	. 03116	00399	2. 9857	. 00105
13	26. 54585	. 03137	. 03112	00398	2. 9857	. 00105
14	26.70189	. 03144	. 03118	00400	2. 9857	. 00105
15	26. 64145	. 03141	03115	. 00399	2. 9857	. 00105
16	26. 55475	. 03131	. 03106	00398	2. 9857	. 00105
17	26. 66787	. 03138	. 03112	00400	2. 9857	. 00105
18	26. 67076	. 03138	. 03112	00400	2. 9857	00105
19	26. 61832	. 03138	03113	00399	2. 9857	. 00105
20	26. 67030	03154	. 03129	00400	2. 9857	. 00105
. .			, , , , , , , , , , , , , , , , , , , ,			
21	17. 52026	. 02156	. 02104	00473	1. 9664	. 0007
22	17. 54331	02154	02101	00473	1. 9664	. 0007
23	17.57860	02156	. 02103	00474	1. 9664	. 0007
24	17. 54260	. 02156	. 02103	00473	1. 9664	. 0007
25	17. 54707	02156	. 02103	00473	1. 9664	. 0007
26	17. 54971	. 02160	. 02107	00474	1. 9664	. 0007
27	17. 56130	. 02160	. 02107 .	00474	1. 9664	. 0007
28	17.55850	. 02160	. 02107 .	00474	1. 9664	. 0007
29	17. 53559	. 02145	. 02092 .	00473	1. 9664	. 0007
30	17. 50764	. 02147	. 02094 .	00472	1. 9664	. 0007
47	40 05000	04604	04647	00045		004.0
47	40. 20006	. 04694	. 04617 .	00845	4. 5168	. 0016
48	40. 29853	. 04694	. 04617 .	00846	4. 5168	. 0016
49	40. 35829	. 04724	. 04647	00847	4. 5168	. 0016
50	40. 29738	. 04694	. 04617	00846	4. 5168	. 0016
51	40. 22797	. 04689	. 04612 .	00844	4. 5168	. 0016
57	26 64681	07141	07115	00400	2 9957	00105
58	26 69897	07144	07110	00400	2 0057	00105
59	26 60140	03144	07116	00700	2, 2001	00105
60	20. 00140	. 03171	. 03110 .	00400	2. 2031	. 00103
60	20.00110	. 03144	. 03118 .	00400	2.903/	. 00105
9 T	20. 00443	. 03141	. 03115	00400	2. 9837	. 00102

MEAN VALUES FROM FIRST 30 MEASUREMENTS IN TABLE B1 COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK-AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS> 185 KEV COUNTING RATE STANDARDS NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR 2350 ENR. REPEATS RATE ENR. ERROR 40.23778 .01692 .01467 .00845 (.01902 .01704 .00845) 4.5168 0.00160 10 26.63449 .01063 .00985 .00399 (.01666 .01617 .00399) 10 2.9857 0.00105 17.54446 .00816 .00665 .00473 (.00797 .00642 .00473) 10 1 9664 0 00070 ******* CALIBRATION RUN 81-1 ****** INPUT DATA TO EVALUATION PROGRAM 1 E R 2 F I T 1 212: (MEAN VALUES FROM FIRST 30 MEASUREMENTS IN TABLE B1, COUNTING-RATE ERRORS FROM PEAK-AREA EVALUATIONS> 40. 23778 0. 01692 4.51680 2.98570 0.00160 1 2. 26. 63450 0.01063 0.00105 3. 17. 54446 0. 00816 1. 96640 0.00070 TABLE OF RESIDUALS EXPECTED CONFIDENCE ÚBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT ------_____ 4. 51538 4. 5168 -0.00142 +-0.00248 +-0.00215 1. 2. 2. 9857 2. 98715 0.00145 +-0.00159 +-0.00096 3. 1. 9664 1. 96594 -0.00046 +-0.00115 +-0.00108 *********** 0.1123434E+00 +- 0.1149222E-03 - 5064172E-02 +- 0.2794709E-02 SLOPE OFFSET -OMEGA SOLIARE 1. 310 DEGREES OF FREEDOM = 1 = 0.1320712E-07 VARIANCE SLOPE VARIANCE OFFSET = 0.7810400E-05 COV (SLOPE, OFFSET) = -. 3050646E-06 **** CALIBRATION RUN B1-2 ***** INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM FIRST 30 MEASUREMENTS IN TABLE B1, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS) 40. 23778 0.01902 4. 51680 0. 00160 1 26.63450 2. 0. 01666 2. 98570 0.00105 3 17. 54446 0.00797 1. 96640 0.00070 TABLE OF RESIDUALS EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT 4. 51575 4. 5168 -0.00105 +-0 00267 +-0.00241 1 +-0.00215 +-0.00109 2. 2. 9857 2.98740 0 00170 +-0.00114 -0.00029 +-0.00109 3. 1.9664 1.96611 ****** = 0.1123518E+00 +- 0.1224513E-03 = -.5038684E-02 +- 0.2865131E-02 SLOPE OFFSET = 0.843 = 1 OMEGA SQUARE DEGREES OF FREEDOM = = 0.1499433E-07 = 0.8208976E-05 VARIANCE SLOPE VARIANCE OFFSET COV (SLOPE, OFFSET) = - 3314161E-06

MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B1 ****************** COUNTING EPROPS GIVEN PEFER. H) TO EPROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS) 185 KEV COUNTING RATE STANDARDS NR OF COUNTING / TOTAL / COUNT / THICKN, 2350 ENR. REPEATS RATE / ERROR / ERROR / ERROR ENR. ERRO FEROR 40.28645 .02233 .02067 .00846 4.5168 0.00160 (.02408 .02255 .00846) 5 26.66156 .01450 .01394 .00400 (.01746 .01700 .00400) 5 2.9857 0.00105 ****** CALIBRATION RUN 81-3 ********* INPUT DATA TO EVALUATION PROGRAM 4 E R 2 F I T 4 212: (MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B1, COUNTING-RATE ERRORS FROM PEAK-AREA EVALUATIONS) 40. 28645 0. 02233 4. 51680 0.00160 1 2. 0. 01450 26. 66156 2. 98570 0.00105 TABLE OF RESIDUALS EXPECTED CONFIDENCE OBS. VALUE OBS. NR ESTIMATE RESIDUAL ERROR LIMITS OF FIT ____ +-0.00298 +-0.00298 +-0.00194 +-0.00194 4 5168 4.51680 1 0 00000 2 2, 9857 0. 00000 +-0.00194 2.98570 +*++*++***** = 0.1123752E+00 +- 0.2606753E-03 = -.1040075E-01 +- 0.8171051E-02 SLOPE OFFSET OMEGA SQUARE OMEGA SQUARE = 1.000 DEGREES OF FREEDOM = 0 = 0.6795163E-07 = 0.6676611E-04 VARIANCE SLOPE VARIANCE OFFSET COV (SLOPE, OFFSET) = -. 2087484E-05 ******* * * CALIBRATION RUN 81-4 **** INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B1, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS> 40. 28645 0. 02408 4. 51680 0.00160 0. 02700 0. 01746 2. 98570 2 26.66156 0, 00105 TABLE OF RESIDUALS EXPECTED CONFIDENCE ESTIMATE RESIDUAL OBS, NR OBS. VALUE ERROR LIMITS OF FIT 0. 00000 4. 5168 4. 51680 +-0.00314 +-0.00314 1. 2. 2. 9857 2.98570 0.00000 +-0.00223 +-0.00223 ******* = 0.1123750E+00 +- 0.2826872E-03 = -.1038529E-01 +- 0.9007676E-02 SLOPE OFFSET OMEGA SQUARE 1.000 DEGREES OF FREEDOM = 0 VARIANCE SLOPE = 0.7991208E-07 VARIANCE OFFSET = 0.8113821E-04 COV (SLOPE, OFFSET) = -. 2494051E-05

MEAN VALUES FROM ALL 40 MEASUREMENTS IN TABLE B1

COUNTING ERPORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS)								
185 KEV NR OF COUNTING / TO REPEATS PATE / FR	COUNTING RATE DTAL / COUNT / THICKN	STANDARDS 235U ENR. ENR EPROP						
15 40. 25400 . 00 (. 0)	1464 . 01196 . 00845 1679 . 01451 . 00845	4, 5168 0. 00160						
15 26. 64351 . 0((. 0:	0898 .00804 .00399 1293 .01230 .00399)	2. 9857 0. 00105						
10 17.54446 .00 (.00	0816 .00665 .00473 0797 .00642 .00473)	1.9664 0.00070						
**************************************	**************************************	**************************************						
INPUT DATA TO EVALUA (MEAN VALUES FROM AL ERRORS FROM PEAK-ARE	ATION PROGRAM / E R 2 LL 40 MEASUREMENTS IN EA EVALUATIONS>	F I T (212) TABLE B1, COUNTING-RATE						
1. 40. 25400 2. 26. 64351 3. 17. 54446	0.01464 4.5168 0.00898 2.9857 0.00816 1.9664	0 0.00160 0 0.00105 0 0.00070						
TABLE OF RESIDUALS								
OBS. NR OBS. VALUE	ESTIMATE RESIDUAL	ERROR LIMITS OF FIT						
1. 4. 5168 2. 2. 9857 3. 1. 9664	4.51523 -0.00157 2.98728 0.00158 1.96580 -0.00060	+-0.00129 +-0.00199 +-0.00146 +-0.00090 +-0.00115 +-0.00107						
****	*****	****						
SLOPE = OFFSET =	= 0.1122622E+00 +- =3774424E-02 +-	0. 1086724E-03 0. 2702347E-02						
OMEGA SQUARE = DEGREES OF FREEDOM =	= 1.921 = 1							
VARIANCE SLOPE = VARIANCE OFFSET = COV (SLOPE, OFFSET) =	= 0.1180968E-07 = 0.7302681E-05 =2790926E-06							
****	******	****						
* * *	CALIBRATION RUN B	1-6 *						
INPUT DATA TO EVALUA (MEAN VALUES FROM AL ERRORS FROM STANDARD	ATION PROGRAM ' E R 2 LL 40 MEASUREMENTS IN) DEVIATION OF REPEAT	F I T / /1/: TABLE B1, COUNTING-RATE ED MEASUREMENTS)						
1. 40. 25400 2. 2. 2.6. 64351 3. 17. 54446 3. 17. 54446 3.	0.01679 4.5168 0.01293 2.9857 0.00797 1.9664	0 0. 00160 0 0. 00105 0 0. 00070						
TABLE OF RESIDUALS								
OBS. NR OBS. VALUE	ESTIMATE RESIDUAL	EXPECTED CONFIDENCE ERROR LIMITS OF FIT						
1. 4. 5168 2. 2. 9857 3. 1. 9664	4.51545 -0.00135 2.98747 0.00177 1.96597 -0.00043	+-0.00247 +-0.00220 +-0.00179 +-0.00100 +-0.00114 +-0.00108						
ગ્રેમ એલ એલ એન્ડ સેન્ડ	ie ade ade ade ade ade ade ade ade ade ad	***						
SLOPE : OFFSET :	= 0.1122645E+00 +- =3647095E-02 +-	0. 1148289E-03 0. 2764972E-02						
OMEGA SQUARE * DEGREES OF FREEDOM *	= 1.420 = 1							
VARIANCE SLOPE = VARIANCE OFFSET = COV (SLOPE, OFFSET) =	= 0.1318567E-07 = 0.7645070E-05 =3004278E-06							

TABLE B2 CALIBRATION DATA SET NR. 2, WITHOUT COUNTING-TIME CORRECTION, BOTTOM THICKNESS: FROM ULTRASONIC MEASUREMENTS NORMALIZED TO 1,9950 MM AL CALIBRATION DISK AND 2,0000 MM MONEL CALIBRATION DISK.

nec	185	KEV COUN	TING PATE	-	STAN	heens
NDD.	COUNTING		Z COUNT Z	THICKN	2750	ENP
ans.	EATE	/ FRROR	/ FRENE /	FREDR	ENE	FRENR
1	40 17170	94672	04677	00602	4 5168	8816
2	40. 20000	04607	ØAEAA	00604	4 5168	0016
2	40. 30000	04603	04644	00605	4 5168	0016
Ā	40. 31. 32	04692	04647	00602	4 5169	0016
5	40.22711	04652	04619	00603	4 5168	0016
2	40.20371	04692	04647	00607	4 5160	0016
~	40. 29211	04602	04643	00503	4 5160	0016
6	40.20010	04679	04679	00604	4 5168	0016
ä	40.20000	04677	04639	00607	4.5160	0010
10	40.20220	04677	04630	00407	4 5460	0016
10	40.22342	. 04077	. 04030	. 00003	4. 0100	. 6010
4.4	26 65874	07156	07119	00480	2 9857	00105
12	26 62029	03152	07115	00479	2 9857	00105
47	26. 02025	07449	07117	00470	2 9957	00105
14	26. 34031	07156	07119	00404	2.2007	80105
15	26. 70430	03150	07115	00470	2. 9957	00105
16	20. 04411	03132	031105	00479	2 9957	00105
17	20. 00/40	07449	07110	00470	2 9957	00105
15	26. 67000	07149	03112	00480	2. 2057	00105
10	20.01344	071.19	07112	00400	2. 9057	00105
20	26.62036	03145	07129	00475	2 9957	00105
2.0	20. 01231	. 03100	. 0.3.2.2	. 00401	2. 5051	. 00100
21	17 52446	02127	02107	00315	1 9664	0007
22	17 54752	02125	92191	00316	1 9664	0007
27	17 58282	02127	02107	00316	1 9664	0007
24	17 54681	92127	02107	00316	1 9664	6007
25	17 55128	024.27	02103	00316	1 9664	0007
26	17 55792	02127	02109	00310	1 9664	0007
20	47 56552	02432	. 02100	. 00310	4 0664	. 0001
20	47 56002	02132	. 02100	00310	1. 9664	. 0007
20	17. 30212	02132	. 02100	. 00316	1. 9004	. 0007
27	17. 53979	. 02116	. 02092	. 00315	1.9664	. 0007
02	17. 51184	. 02118	. 02094	. 00315	1. 9664	. 0007
47	40.05074	04650	04648	00504	4 5460	004.6
47	40.209/1	. 04658	. 04619	. 00504	4.5168	. 0015
48	40. 30819	. 04658	. 04619	. 00604	4. 5168	. 0016
49	40. 36797	. 04688	. 04649	. 00605	4. 5168	. 0016
50	40. 30704	. 04658	. 04619	. 00604	4.5168	. 0016
51	40. 23762	. 04653	. 04614	. 00603	4.5168	. 0016
F 7	00 04000	07460	07445	00400	0.0057	004.05
57	26. 64868	03152	. 03115	. 00480	2.9857	. 00105
38 50	26. 69150	. 03156	. 03119	. 00480	2.9857	. 00105
59	26. 60406	. 03152	. 03115	. 00479	2. 9857	. 00105
60	26. 68976	. 03156	. 03119	. 00480	2. 9857	. 00105
61	26. 68710	. 03152	. 03115	. 00480	2. 9857	. 00105

MEAN VHLUES FROM FIRST 30 MEASUREMENTS IN TABLE B2 COUNTING EFFORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES) GIVEN IN BRACKETS) 185 KEV COUNTING RATE STANDARDS NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR 2350 ENR. ENR. ERROR 40.24742 .01586 .01467 .00604 (.01808 .01704 .00604) 10 4.5168 0.00160 26.63716 .01096 .00985 .00480 (.01687 .01617 .00480) 10 2.9857 0.00105 17.54867 .00736 .00665 .00316 <.00715 .00642 .00316> 10 1.9664 0.00070 ***** :44 CALIBRATION RUN 82-1 ******* INPUT DATA TO EVALUATION PROGRAM 1 E R 2 F I T 1 212: (MEAN VALUES FROM FIRST 30 MEASUREMENTS IN TABLE 82, COUNTING-RATE ERRORS FROM PEAK-AREA EVALUATIONS) 4. 51680 40. 24742 0.01586 0.00160 1 26. 63716 17. 54867 0.01096 2. 98570 0.00105 2. 3. 0.00736 1. 96640 0.00070 TABLE OF RESIDUALS EXPECTED CONFIDENCE ESTIMATE RESIDUAL OBS, NR OBS. VALUE EREOR LIMITS OF FIT 4. 51572 -0.00108 1 4. 5168 +-0.00239 +-0.00210 0.00124 +-0.00162 2. 2. 9857 2. 98694 +-0.00094 3. 1. 9664 1. 96607 -0. 00033 +-0. 00108 +-0.00102 ****** 0.1123257E+00 +- 0.1102869E-03 -.5099622E-02 +- 0.2654445E-02 SLOPE OFFSET 9**2**2 OMEGA SOLIARE 0 884 DEGREES OF FREEDOM = 1 = 0.1216320E-07 = 0.7046075E-05 VARIANCE SLOPE VARIANCE OFFSET COV (SLOPE, OFFSET) = -. 2776104E-06 ***** CALIBRATION RUN 82-2 ж, **** INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM FIRST 30 MEASUREMENTS IN TABLE B2, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS) 0. 01808 4. 51680 0.00160 40. 24742 1 26. 63716 17. 54867 0.01687 2. 98570 0. 00105 2 3. 0.00715 1. 96640 0.00070 TABLE OF RESIDUALS EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT 4. 51599 -0. 00081 +-0.00259 +-0.00235 4. 5168 1. +-0.00217 +-0.00106 2. 2. 9857 2. 98712 0.00142 -0.00021 +-0.00107 +-0.00103 3. 1.9664 1. 96619 ****** = 0.1123320E+00 +- 0.1180040E-03 = -.5084083E-02 +- 0.2728310E-02 SLOPE OFFSET OMEGA SQUARE = 0.567 DEGREES OF FREEDOM = 1 = 0.1392494E-07 = 0.7443671E-05 VARIANCE SLOPE VARIANCE OFFSET COV (SLOPE, OFFSET) = - 3040652E-06

******* COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES) GIVEN IN BRACKETS> 185 KEV COUNTING RATE STANDARDS NE OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR 2350 ENR. ENR. ERROR 40.29611 02154 02068 00604 (.02335 02256 00604) 5 4.5168 0.00160 . 00604) 26.66422 .01474 .01394 .00480 (.01767 .01700 .00480) 5 2. 9857 0. 00105 ******* CALIBRATION RUN 82-3 ж ****** INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B2, COUNTING-RATE ERRORS FROM PEAK-AREA EVALUATIONS) 40. 29611 0. 02154 4. 51680 0.00160 2. 26. 66422 0.01474 2. 98570 0.00105 TABLE OF RESIDUALS EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT -----____ +-0,00290 +-0.00290 +-0.00196 +-0.00196 4.5168 4.51680 0. 00000 1 2. 98570 2 2.9857 0. 00000 ******************** = 0.1123177E+00 +- 0.2568188E-03 = -.9166546E-02 +- 0.8110003E-02 SLOPE OFFSET OMEGE SQUARE 1. 000 ø DEGREES OF FREEDOM = = 0.6595587E-07 = 0.6577215E-04 VARIANCE SLOPE VARIANCE OFFSET COV (SLOPE, OFFSET) = -. 2040602E-05 ****** * CALIBRATION RUN 82-4 ×k. ****** INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B2, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS) 40. 29611 0. 02335 4. 51680 0.00160 1 0. 01767 0. 00105 2 26.66422 2.98570 TABLE OF RESIDUALS EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT 0 00000 +-0 00307 +-0.00307 4. 5168 4.51680 1. 0. 00000 +-0.00225 +-0.00225 2. 9857 2.98570 2 ****** = 0.1123176E+00 +- 0.2791388E-03 = -.9158528E-02 +- 0.8953312E-02 SLOPE OFFSET OMEGA SQUARE 1.000 -DEGREES OF FREEDOM = 0 VARIANCE SLOPE = 0.7791845E-07 VARIANCE OFFSET = 0.8016178E-04 COV (SLOPE, OFFSET) = -. 2447455E-05

MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B2

COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS> 185 KEV COUNTING RATE NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR STANDARDS 2350 ENR. ENR. ERROR 40. 26365 . 01340 . 01196 . 00604 15 4.5168 0.00160 (.01572 .01451 .00604) 26.64618 .00937 .00804 .00480 (.01320 .01230 .00480) 2.9857 0.00105 15 17.54867 .00736 .00665 .00316 (.00715 .00642 .00316) 10 1.9664 0.00070 ******** CALIBRATION RUN 82-5 ******* INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/ (MEAN VALUES FROM ALL 40 MEASUREMENTS IN TABLE B2, COUNTING-RATE ERRORS FROM PEAK-AREA EVALUATIONS) 40. 26365 4. 51680 2. 98570 0.00160 0.01340 1. 26. 64618 17. 54867 0.00937 0.00105 3. 0.00736 1. 96640 0.00070 TABLE OF RESTDUELS EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT ------_____ _____ 1. 4. 5168 4. 51558 -0. 00122 +-0.00220 +-0.00193 2. 2. 9857 2. 98710 0. 00140 +-0.00149 +-0. 00088 3. 1. 9664 1. 96595 -0. 00045 +-0.00108 +-0. 00101 0.1122442E+00 +- 0.1037255E-03 - 3783234E-02 +- 0.2558164E-02 SLOPE OFFSET # OMEGA SQUARE 1. 363 DEGREES OF FREEDOM = 1 = 0. 10758988-0. = 0. 6544200E-05 VARIANCE SLOPE VARIANCE OFFSET COV (SLOPE, OFFSET) = -. 2515911E-06 ***** , ie CALIBRATION RUN 82-6 244 ****** INPUT DATA TO EVALUATION PROGRAM " E R 2 F I T " /1/: (MEAN VALUES FROM ALL 40 MEASUREMENTS IN TABLE B2, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS) 0.01572 40. 26365 4. 51680 0.00160 26. 64618 2 0.01320 2.98570 0.00105 3 17. 54867 0.00715 1. 96640 0.00070 TABLE OF RESIDUALS EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT 1 4. 5168 4. 51574 -0.00106 +-0. 00238 +-0.00213 +-0.00182 2. 2 9857 2.98724 0. 00154 +-0 00097 3. 1.9664 1.96608 -0.00032 +-0.00106 +-0.00102 ****** = 0.1122458E+00 +- 0.1101316E-03 = -.3680989E-02 +- 0.2623718E-02 SLOPE OFFSET OMEGA SQUARE 1. 005 1 22 DEGREES OF FREEDOM = = 0.1212897E-07 = 0.6883894E-05 VARIANCE SLOPE VARIANCE OFFSET COV (SLOPE, OFFSET) = -. 2731015E-06

MEAN VALUES FROM ALL 40 MEASUREMENTS IN TABLE 82

	MONEL	FROM DIM	ENSION S	HEET UF6-F	REIMEP 19	36 APP. 6
OBS.	185	KEV COUN	TING RAT	 E	STAN	DARDS
NR	COUNTING	/ TOTAL	/ COUNT .	/ THICKN	2350	ENR.
	RATE	/ ERROR	/ ERROR	ERROR	ENR.	ERROR
1	40. 10828	. 05288	. 05221	. 00842	4. 5168	. 0016
2	40. 27659	. 05302	. 05234	. 00845	4. 5168	. 0016
3	40. 27739	. 05299	. 05231	. 00845	4. 5168	. 0016
4	40. 20206	. 05298	. 05230	. 00844	4.5168	. 0016
5	40. 23334	. 05275	. 05207	. 00844	4. 5168	. 0016
6	40, 21199	. 05297	. 05229	. 00844	4. 5168	. 0016
7	40. 21922	. 05294	. 05226	00844	4. 5168	0016
8	40.25160	05294	05226	00845	4. 5168	0016
9	40, 15219	05288	. 05220	00843	4. 5168	0016
10	40. 19939	05293	05225	00844	4. 5168	. 0016
11	26. 63171	. 03401	. 03377	. 00399	2. 9857	. 00105
12	26. 59666	. 03398	. 03375	. 00399	2. 9857	. 00105
13	26. 52432	. 03393	. 03370	. 00398	2. 9857	. 00105
14	26. 66225	. 03400	. 03376	. 00400	2. 9857	. 00105
15	26. 60662	. 03396	. 03372	. 00399	2. 9857	. 00105
16	26. 53397	. 03387	. 03364	. 00398	2. 9857	. 00105
17	26. 64560	. 03395	. 03371	. 00400	2. 9857	. 00105
18	26. 64315	. 03395	. 03371	. 00399	2. 9857	. 00105
19	26. 59047	. 03394	. 03371	. 00399	2. 9857	. 00105
20	26. 63836	. 03409	03386	. 00399	2. 9857	. 00105
21	17 49730	02263	02213	00472	1 9664	0007
22	17 53363	02264	02214	00472	1 9664	0007
22	17 55024	92264	02214	00474	1 9664	0007
24	17 52967	02264	92214	00473	1 9664	0007
25	17 52586	92264	02214	00473	1 9664	0007
26	17 52727	02267	02217	00477	1 9664	0007
27	47 55054	02270	02220	00473	1 9664	0007
20	47 54095	02260	02220	00477	1 9664	0007
20	47 54650	. 02203	. 02213	00473	1. 9004	. 0007
27	47 49499	. 02233	02203	00473	1. 2004	. 0007
20	17. 45155	. 02200	. 02205	. 00472	1. 9664	. 6667
47	40. 22881	. 05274	. 05206	. 00844	4. 5168	. 0016
48	40.25428	. 05273	. 05205	. 00845	4. 5168	. 0016
49	40.33219	. 05304	. 05236	. 00846	4. 5168	. 0016
50	40. 30786	. 05281	. 05213	. 00846	4. 5168	. 0016
51	40.22696	. 05272	. 05204	. 00844	4. 5168	. 0016
					_	
57	26. 61668	. 03398	. 03374	. 00399	2. 9857	00105
58	26. 66060	. 03402	. 03378	. 00400	2. 9857	. 00105
59	26. 57649	. 03397	. 03374	. 00398	2. 9857	. 00105
60	26. 65453	. 03401	. 03377	. 00400	2. 9857	. 00105
61	26. 65171	. 03398	. 03374	. 00400	2. 9857	. 00105

TABLE B3 CALIBRATION DATA SET NR. 3, WITH COUNTING-TIME CORRECTION FROM PULSER, BOTTOM THICKNESS: X5 FROM CERTIFICATE EC-NRM-171, MONEL FROM DIMENSION SHEFT UF6-REIMER 1986 APP 6

MEAN VALUES FROM FIRST 30 MEASUREMENTS IN TABLE B3 COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS) 185 KEY COUNTING RATE STANDARDS NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR 235U ENR ENR EREOR -----40.21321 .01855 .01652 .00844 (.01871 .01670 .00844) 4.5168 0.00160 10 26.60731 .01139 .01067 .00399 (.01543 .01490 .00399) 2.9857 0.00105 10 17.52496 .00845 .00700 .00473 (.00789 .00632 .00473) 10 1.9664 0.00070 ****** ж, CALIBRATION RUN 83-1 * **** INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM FIRST 30 MEASUREMENTS IN TABLE B3, COUNTING-RATE ERRORS FROM PEAK-AREA EVALUATIONS) 0. 01855 1. 40. 21321 4. 51680 0.00160 26. 60731 0. 01139 2. 98570 0.00105 2. 3 17. 52496 0.00845 1.96640 0.00070 TABLE OF RESIDUALS EXPECTED CONFIDENCE DBS VALUE ESTIMATE RESIDUAL OBS. NR ERFOR LIMITS OF FIT 4. 5168 4. 51575 -0.00105 +-0. 00263 1 +-0.00227 2 2. 9857 2. 98674 0. 00104 +-0.00166 +-0.00101 1. 96608 +-0.00118 +-0.00111 1. 9664 -0 00032 3. ******* = 0.1123782E+00 +- 0.1202293E-03 = - 3341003E-02 +- 0.2897120E-02 SL OPE OFFSET OMEGA SQUARE 0.628 DEGREES OF FREEDOM = VARIANCE SLOPE VARIANCE OFFSET = 0.1445508E-07 = 0.8393306E-05 COY (SLOPE, OFFSET) = -.3309932E-06***** CALIBRATION RUN 83-2 xk *** INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM FIRST 30 MEASUREMENTS IN TABLE B3, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS> 0. 01871 4. 51680 0.00160 40. 21321 26. 60731 0.01543 2.98570 1.96640 0.00105 2. 0.00070 7 0.00789 TABLE OF RESIDUALS EXPECTED CONFIDENCE OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT OBS. NR -0.00081 +-0.00264 +-0.00237 4. 5168 4. 51599 1. 0.00119 +-0.00203 +-0.00107 2.9857 2.98689 2. +-0. 00108 -0.00022 +-0. 00113 3. 1. 9664 1. 96618 ***** 0.1123846E+00 +- 0.1209758E-03 -.3359130E-02 +- 0.2839295E-02 SLOPE OFFSET 22 OMEGA SQUARE 0, 480 DEGREES OF FREEDOM = 1 VARIANCE SLOPE = 0.1463514E-07 VARIANCE OFFSET = 0.8061594E-05 COV (SLOPE, OFFSET) = -. 3247693E-06

MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B3 COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS
 B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES) GIVEN IN BRACKETS) ______ 185 KEV COUNTING RATE STANDARDS NR OF COUNTING / TOTAL / COUNT / THICKN. 235U REPEATS RATE / ERROR / ERROR / ERROR ENR. ENR ERROR 40.27002 .02480 .02331 .00845 4.5168 0.00160 (.02294 .02133 .00845) 5 .01561 .01510 .00399 (.01635 .01586 .00399) 5 26. 63200 2. 9857 0. 00105 ****** CALIBRATION RUN 83-3 **** INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B3, COUNTING RATE ERRORS FROM PEAK-AREA EVALUATIONS) 40. 27002 0.02480 4. 51680 0.00160 26. 63200 0. 01561 2 2.98570 0.00105 TABLE OF RESIDUALS EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL LIMITS OF FIT FEROR ______ ----4. 5168 4. 51680 0. 00000 +-0. 00321 1. +-0.00321 2 2.9857 2.98570 0. 00000 +-0.00204 +-0.00204 ****** = 0.1122672E+00 +- 0.2790736E-03 = -.4200596E-02 +- 0.8701348E-02 SL OPE OFFSET OMEGA SQUARE 1.000 DEGREES OF FREEDOM = ด = 0.7788208E-07 = 0.7571345E-04 VARIANCE SLOPE VARIANCE OFFSET COV (SLOPE, OFFSET) = -, 2380193E-05 CALIBRATION RUN 83-4 ık, × ***** INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B3, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS) 0. 00160 0.02294 4.51680 40. 27002 1 2 98570 0.00105 2 26, 63200 0, 01635 TABLE OF RESIDUALS EXPECTED CONFIDENCE LIMITS OF FIT OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR -----0. 00000 +-0. 00303 +-0.00303 4 5168 4.51680 1 0. 00000 +-0.00211 +-0.00211 2. 9857 2.98570 2 ***** = 0.1122669E+00 +- 0.2710474E-03 = -,4190058E-02 +- 0.8604872E-02 SLOPE OFFSET 1. 000 0 OMEGA SQUARE = DEGREES OF FREEDOM = VARIANCE SLOPE = 0.7346668E-07 VARIANCE OFFSET = 0.7404382E-04 COV (SLOPE, OFFSET) = -.2284456E-05

MEAN VALUES FROM ALL 40 MEASUREMENTS IN TABLE B3

COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS)							
NR OF COU	185 KEV NTING / TO	COUNTING RAT	E / THICKN	STANDAR 2350 E	RDS ENR.		
REPERIS R		CUR / ERRUR	/ ERRUR	ENK. 1			
15 40.3	23215 . 01 (. 01)	591 .01348 589 .01463	. 00844 . 00844)	4. 5168 0.	00160		
15 26.0	61554 . 00: (. 01:	958 .00871 203 .01135	. 00399 . 00399)	2. 9857 0.	00105		
10 17.5	52496 .000 (.00	345 .00700 789 .00632	. 00473 . 00473)	1.9664 0.	00070		
******	****	*****	****	*****	****		
* *		CALIBRATI	ON RUN B3-	-5	*		
***	મને મોર મેર મેર સેર સેર સેન્દ્ર મેર સેન્દ્ર મેર સેન્દ્ર મેર	લ ગોલ છોય ત્યું કરે છે. તે ગોલ	: મ્લેન સ્વેત ટ્યૂન સ્વેન સ્વેન સ્વેન મ્લેન મેને મેને મ	ફેર કર્યુવ કર્યુવ કર્યુવ કર્યુવ સ્ટ્રેવ કર્યુવ ક	મે પ્રયુદ્ધ માંત માંત માંત માંત માંત માંત માંત માંત		
INPUT DATA (MEAN VALU ERRORS FRO	TO EVALUA ES FROM ALI M PEAK-AREI	TION PROGRAM 40 MEASURE 3 EVALUATION	YER2F MENTSIN S)	F I T 4 212 TABLE 83, CO	JUNTING-RATE		
1.	40. 23215	0.01591	4. 51680	0.00160			
3.	17. 52496	0. 00845	1. 96640	0. 00070			
TABLE OF RE	ESIDUALS			EXPECTEN	CONFIDENCE		
OBS. NR O	BS. VALUE	ESTIMATE	RESIDUAL	ERROR	LIMITS OF FIT		
1. 2. 2 3.	4. 5168 2. 9857 1. 9664	4.51572 - 2.98676 1.96601 -	0. 00108 0. 00106 0. 00039	+-0.00240 +-0.00150 +-0.00118	+-0, 00208 +-0, 00093 +-0, 00110		
**	***	દિ સ્કૃત શ્રીન સ્કૃત	ગ્રેન મહેર મહેર મહેર મહેર મહેર મહેર મહેર મ	*****	****		
SLOPE	=	0. 1122867E	+00 +- (8. 1127577E-0	33		
OFFSET	=	1811625E	-02 +- 0	0. 2786709E-0	32		
OMEGR SQUAI DEGREES OF	RE = FREEDOM =	0.810 1					
VARIANCE SLOPE = 0.1271430E-07 VARIANCE OFFSET = 0.7765747E-05 COV (SLOPE, OFFSET) =2986926E-06							
માં	nên xên xên xên hên hên sên sên sên hên hên hên di	加冰冰的冰水的	પ્રફેર કોર્ટન કોર્ટ્સ કોર્ટ્સ કોર્ટ્સ કોર્ટ્સ કોર્ટ્સ કોર્ટ્સ કોર્ટ્સ કોર્ટ્સ કોર્ટ્સ	****	计神经外动电子中部的中心中		
ж ж		CALIBRATI	ON RUN 83-	-6	ate Ate		
જે જ	ગફેલ અનેત અનેત અનેત અનેત અનેત અનેત અનેત અનેત	1998年1999年1999年1999年1999年1999年1999年1999	**********	和陈谢谢学师神学神神神	化水杨烯 化合合化合金合合合合合合		
INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM ALL 40 MEASUREMENTS IN TABLE B3, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS)							
1. 2. 3.	40. 23215 26. 61555 17. 52496	0.01689 0.01203 0.00789	4. 51680 2. 98570 1. 96640	0.00160 0.00105 0.00070			
TABLE OF RE	ESIDUALS						
OBS. NR OF	BS. VALUE	ESTIMATE	RESIDUAL	EXPECTED ERROR	CONFIDENCE LIMITS OF FIT		
1.	4. 5168	4. 51584 -	0. 00097	+-0.00248	+-0.00218		
2. 2 3. 1	2. 9857 1. 9664	2. 98686 1. 96610 -	0.00116 0.00030	+-0. 00171 +-0. 00113	+-0.00098 +-0.00107		
****	*****	ાં ગોન ગોન લોન કરેન લોન કરેન કરે કરીન લોન ગોન કરેના ગોન કરીન	અને કહેદ કહેક કહેક અને અને કહેદ તેમ બંધ તે છે.	****	ફેર કર્યુવ કહેત કરીન કરીન કહેત કહેત કર્યુન કહેત કહેત કહેત કહેત કર્યુત કરીન કરીન કરીન કરીન		
SLOPE OFFSET	19. 19	0. 1122875E 1734481E	+00 +- (-02 +- (0. 1145904E-0 0. 2756965E-0	33 32		
OMEGA SQUAR DEGREES OF	RE = FREEDOM =	0. 682 1					
VARIANCE SU VARIANCE OF COV (SLOPE)	LOPE = FFSET = OFFSET) =	0.1313097E 0.7600360E - 2993578E	-07 -05 -06				

	WITH C	OUNTING-	TIME CORF	ECTION F	ROM PULSER	,
	BOTTOM	THICKNES	SS: FRUP	1 ULIRHSO	NIC MEASUR	EMENTS
	NORMAL	IZED TU	1. 9950 MM	1 HL CHLI	BRATION DI	SK AND
	2. 0000	MM MONE	_ CHLIBRH	TION DIS	K.	
085.	185	KEV COUN	TING RATE	Ξ	STAND	ARDS
NR	COUNTING	/ TOTAL .	COUNT /	' THICKN	2350	ENR.
	RATE	/ ERROR /	/ ERROR /	' ERROR	ENR.	ERROR
1	40, 11790	. 05256	. 05221	00602	4. 5168	. 0016
2	40.28625	. 05270	05235	. 00604	4. 5168	. 0016
3	40. 28706	. 05268	. 05233	. 00604	4. 5168	. 0016
4	40, 21172	. 05266	. 05231	. 00603	4. 5168	. 0016
5	40.24300	. 05244	. 05209	00603	4. 5168	. 0016
6	40, 22162	05265	. 05230	. 00603	4. 5168	. 0016
7	40.22887	. 05263	. 05228	. 00603	4. 5168	. 0016
8	40, 26125	. 05262	. 05227	. 00604	4. 5168	. 0016
9	40.16182	. 05256	. 05221	. 00602	4. 5168	. 0016
10	40. 20903	. 05261	. 05226	. 00603	4. 5168	. 0016
11	26 63437	R 7412	87778	00479	2 9857	00105
12	26 59972	07409	07774	00479	2 9857	00105
17	26 52697	07407	07769	00477	2 9857	00105
14	26. 66490	07410	03376	00480	2 9857	00105
45	20.00420	97497	07777	00479	2 9957	00105
14	20.00720 96.57667	03707	07767	00478	2. 2007	00105
47	20. 32002	07406	03303	00470	2. 2031	00105
۲.L. ۱۰۰۵	20.04020	03405	07771	00400	2 9957	00105
10	26. 59717	03400	03371	00479	2 9957	00105
20	26. 641.02	. 03420	03386	. 00479	2. 9857	. 00105
21	17. 50150	. 02276	00044	0074 5	1 9664	0007
~~	47 53704		. 02214	. 00315	1. 9664	. 0007
22	17.33784	. 02236	. 02214	. 00310	1. 3664	. 0007
د نه	17. 33443	. 02237	. 02213	. 00310	1. 9004	. 0007
24	17.32467	. 02237	. 02215	. 00313	1. 3004	. 0007
20	17. 33006	. 02231	. 02210	. 90313	1. 3004	. 0007
20	17. 32148	. 02240	. 02218	. 99313	1. 7004	. 0007
27	17. 35475	02242	02220	. 00316	1. 9664	. 0007
28	17.54516	. 02242	02220	. 00316	1.9664	. 0007
29	17, 51936	02226	02204	. 00315	1. 9664	. 0007
30	17. 49619	. 02228	. 02206	. 00315	1. 9664	. 8807
47	40. 23846	. 05242	. 05207	. 00603	4. 5168	. 0016
48	40. 26393	. 05241	. 05206	. 00604	4. 5168	. 0016
49	40.34186	. 05272	. 05237	. 00605	4. 5168	. 0016
50	40. 31753	. 05249	. 05214	. 00605	4. 5168	. 0016
51	40. 23662	. 05240	. 05205	00603	4. 5168	. 0016
57	26 61974	07409	Q7774	00479	2 9857	00105
59	26 66726	07417	07779	00490	2 9957	00105
50	20,00320	07400	03312	00400	2. 2031	00105
59	20.31713	03408	. 03314	00400	2. 2021	00105
60	20.00119	. 03412	. 03370	. 00400	2. 2037	. 00100
61	26.63437	. 03409	. 67772	. 00480	2.9837 /	. 66162

TABLE B4 CALIBRATION DATA SET NR. 4,

MEAN VALUES FROM FIRST 30 MEASUREMENTS IN TABLE 84 ******

.

COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS)

				. میں میں جات عنہ منہ عنہ عند مند مند مد جرد		
NR OF C REPEATS	185 KEY OUNTING / T RATE / E	COUNTING RE OTAL / COUNT RROR / ERROF	TE THICKN. C ERROR	STANDI 235U ENR.	ARDS ENR. ERROR	
10 4	0.22285 .0 (.0	1759 .01653 1776 .01670	. 00603 . 00603>	4. 5168	00160 7. 00160	
10 2	6.60997 .0 (.0	1169 .01067 1565 .01490	. 00479 . 00479)	2. 9857 (ð. 00 10 5	
10 1	7.52916 .0 (.0	0768 .00700 0706 .00632	00315 00315 00315	1. 9664 (3. 00070	
****	****	****	ર મહેત સ્ક્રેત સ્કેત સ્કેત સ્કેત સ્કેત મહેત મહેત મહેત સ્કેત સ્કેત સ્	***	***	
₩ ₩		CALIBRAT	ION RUN B4	-1	**	
મુંદ મુંદ મુંદ મુંદ મુંદ મુંદ મુંદ મુંદ	***	****	ર કર્મન કર્મર ગર્મન કર્મન ક	***	ફેર ગણેર ગણેર ગણેન મહેત મહેત કહેત ગણે મણેન ગણેન ગણેન મહેત મહેત મહેત મહેત ગણે.	
INPUT DA (MEAN VAI ERRORS FI	TA TO EVALU LUES FROM F ROM PEAK-AR	ATION PROGRA IRST 30 MEAS EA EVALUATIO	IM ' E R 2 I UREMENTS II INS)	F I T / /1. N TABLE B4,	COUNTING-RATE	
1.	40. 22285	0. 01759	4. 51680	0.00160		
2. 3.	26.60997 17.52916	0.01169 0.00768	2. 98570 1. 96640	0.00105		
	RESTOLIOUS					
INDER OF	RESIDURES					
OBS. NR	OBS. VALUE	ESTIMATE	RESIDUAL	EXPECTED ERROR	CONFIDENCE LIMITS OF FIT	
1.	4.5168 2.9857	4. 51606	-0.00074	+-0.00254	+-0.00222 +-0.00099	
3.	1. 9664	1. 96619	-0. 00021	+-0. 00111	+-0.00105	
કર્ણન પ્રફોન કર્ણન કર્ણન કર્ણન કર્ણન કર્ણન કર્ણન ક	ત્વેલ કહેત કહેત ત્રફેર ત્રફેર કહેત કહેત કહેત કહેત કહેત કહેત કહેત કહેત	ફેર કરેન લ્વેન કરેદ લ્વેન કરેદ કરેન સ્વેન સ્વેન સ્વેન સ્વેન	angan angan sagan angan angan angan angan angan angan angan a	લેન કહેવ કહેવ છે. છેલ કહેવ કહેવ છેલ ગાંધ પ્રથ કહેવ કહેવ છે છ	je odce bije sajec odjec sajec sajec bijet bijet vijet sajec sajec sajec sajec	
SLOPE OFFSET	1	= 0. 1123603 = 3392914	E+00 +- (E-02 +- (0. 1158251E- 0. 2761771E-	-03 -02	
OMEGA SQU DEGREES (UARE OF FREEDOM 4	= 0.354 = 1				
VARIANCE VARIANCE COV (SLO	SLOPE OFFSET PE, OFFSET	= 0.1341546 = 0.7627379 = - 3035588	E-07 E-05 E-06			
મને મને સંબ મને બને મને સ્વેપ સંગ ર	****	****	**	**	******	
ж 		COL TODAT	TON PHN PA.	-7	nột nột	
т ж		CHEIDKHI	TON KON BY	L	nột.	

1.	40. 22285	0.01776	4. 51680	0.00160		
2. 3.	17. 52916	0.00706	1. 96640	0. 00105		
TABLE OF	RESIDUALS					
OBS. NR	OBS. VALUE	ESTIMATE	RESIDUAL	EXPECTED ERROR	CONFIDENCE LIMITS OF FIT	
1.	4. 5168	4. 51623	-0. 00057	+-0.00256	+-0.00231	
2. 3.	2.9857 1.9664	2. 98662 1. 96625	-0.00015	+-0.00205	+-0.00102	

SLOPE OFFSET	, 1	= 0. 1123650 = 3409313	E+00 +- 0 E-02 +- 0	0. 1165068E 0. 2701323E	-03 -02	
OMEGA SQI DEGREES (JARE - DF FREEDOM -	= 0,270 = 1				
VARIANCE VARIANCE COV (SLOF	SLOPE OFFSET PE, OFFSET)	= 0. 1357384 = 0. 7297145 = 2974625	E-07 E-05 E-06			

MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE 84 ********

.

.

COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS)

185 KEV COUNTING RATE STANDARDS NR OF COUNTING / TOTAL / COUNT / THICKN. 235U ENR. REPEATS RATE / ERROR / ERROR / ERROR ENR. ERROR							
5 40.27969 02409 02332 00604 4.5168 0.00160 (.02217 02133 00604)							
5 26.63466 .01584 .01510 .00479 2.9857 0.00105 (.01657 .01586 .00479)							

*							
* CALIBRATION RUN 84-3 * * * * * * * * *********************							
INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE B4, COUNTING-RATE ERRORS FROM PEAK-AREA EVALUATIONS)							
1. 40.27969 0.02409 4.51680 0.00160 2. 26.63466 0.01584 2.98570 0.00105							
TABLE OF RESIDUALS							
EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT							
1. 4.5168 4.51680 0.00000 +-0.00314 +-0.00314 2. 2.9857 2.98570 0.00000 +-0.00206 +-0.00206							

SLOPE = 0. 1122093E+00 +- 0. 2754694E-03 OFFSET = 2955425E-02 +- 0. 8644700E-02							
OMEGA SQUARE = 1.000 DEGREES OF FREEDOM = 0							
VARIANCE SLOPE = 0.7580340E-07 VARIANCE OFFSET = 0.7473085E-04 COV (SLOPE, OFFSET) =2333450E-05							

* * CRLIBRATION RUN B4-4 *							
* * **							
INPUT DATA TO EVALUATION PROGRAM ' È R 2 F I T ' /1/: (MEAN VALUES FROM LAST 10 MEASUREMENTS IN TABLE 84, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS)							
1. 40.27969 0.02217 4.51680 0.00160 2. 26.63466 0.01657 2.98570 0.00105							
TABLE OF RESIDUALS							
EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FIT							
1. 4. 5168 4. 51680 0. 00000 +-0. 00296 +-0. 00296 2. 2. 9857 2. 98570 0. 00000 +-0. 00214 +-0. 00214							

SLOPE = 0.1122096E+00 +- 0.2673515E-03 OFFSET = - 2961775E-02 +- 0.8547844E-02							
OMEGA SQUARE = 1.000 DEGREES OF FREEDOM = 0							
VARIANCE SLOPE = 0.7147681E-07 VARIANCE OFFSET = 0.7306558E-04 COV (SLOPE, OFFSET) =2237913E-05							

MEAN VALUES FROM ALL 40 MEASUREMENTS IN TABLE B4 ****

COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS)

د							
185 KEV COUNTING RATE STANDARDS NR OF COUNTING / TOTAL / COUNT / THICKN. 235U ENR. REPEATS RATE / ERROR / ERROR ENR. ERROR							
15 40.24180 .01477 .01348 .00603 4.5168 0.00160 (.01583 .01464 .00603)							
15 26.61820 .00994 .00871 .00479 2.9857 0.00105 (.01232 .01135 .00479)							
10 17.52916 .00768 .00700 .00315 1.9664 0.00070 (.00706 .00632 .00315)							
*****	s.						
* CALIBRATION RUN 84-5	*						
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*						
INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM ALL 40 MEASUREMENTS IN TABLE B4, COUNTING-RATE ERRORS FROM PEAK-AREA EVALUATIONS)							
1. 40.24180 0.01477 4.51680 0.00160 2. 26.61820 0.00994 2.98570 0.00105 3. 17.52916 0.00768 1.96640 0.00070							
TABLE OF RESIDUALS							
EXPECTED CONFIDENCE OBS. NR OBS. VALUE ESTIMATE RESIDUAL ERROR LIMITS OF FI	T						
1. 4.5168 4.51604 -0.00076 +-0.00230 +-0.00202 2. 2.9857 2.98654 0.00084 +-0.00153 +-0.00091 3. 1.9664 1.96614 -0.00026 +-0.00111 +-0.00104							

SLOPE = 0. 1122680E+00 +- 0. 1079940E-03 OFFSET = 1827861E-02 +- 0. 2646672E-02							
OMEGR SQUARE = 0.469							
VARIANCE SLOPE = 0.1166271E-07 VARIANCE OFFSET = 0.7004876E-05 COV (SLOPE, OFFSET) =2711301E-06							
****	*						
* CALIBRATION RUN B4~6	* *						
********	*						
INPUT DATA TO EVALUATION PROGRAM ' E R 2 F I T ' /1/: (MEAN VALUES FROM ALL 40 MEASUREMENTS IN TABLE B4, COUNTING-RATE ERRORS FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS)							
1. 40.24180 0.01583 4.51680 0.00160 2. 26.61820 0.01232 2.98570 0.00105 3. 17.52916 0.00206 1.96640 0.00020							
TABLE OF RESIDUALS							
EXPECTED CONFIDENCE	.						
UBS. NR UBS. VHLUE ESTIMATE RESIDUAL ERROR LIMITS OF FI	-						
1. 4. 5168 4. 51611 -0.00069 $+-0.00239$ $+-0.00212$ 2. 2. 9857 2. 98661 0.00091 $+-0.00174$ $+-0.00096$							
<i>s.</i> 1. 9664 1. 96620 -0. 00020 +-0. 00106 +-0. 00101							
~~~~~~~ <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>							
SLOPE         =         0. 1122685E+00         +-         0. 1099201E-03           OFFSET         =         1773634E-02         +-         0. 2615252E-02							
OMEGA SQUARE = 0.394 DEGREES OF FREEDOM = 1							
VARIANCE SLOPE = 0.1208243E-07 VARIANCE OFFSET = 0.6839540E-05 COV (SLOPE. DEESET) = - 2720525E-06							

÷
# Appendix C

 $Measurements \ of \ UF_6 \ samples.$ 

Corrected 185 keV counting rates, evaluation of ²³⁵U enrichment and of associated errors.

TABLE C1	UF6 MEASUREMENT DATA SET NR. 1,
	WITHOUT COUNTING-TIME CORRECTION,
	BOTTOM THICKNESS: FROM DIMENSION SHEET
	UF6-REIMEP 1986 APP. 6

OBS. NR	185 COUNTING RATE	KEY COUN / TOTAL / ERROR	TING RATH / COUNT / / ERROR /	E 7 THICKN. 7 ERROR	UF6 9 2350 ENR.	ENR. ERROR
31	30, 52954	. 03318	. 03277	. 00519	?	?
32	30, 57900	. 03314	. 03273	. 00520	?	?
33	30.54000	. 03318	. 03277	. 00519	?	?
34	30, 51594	. 03314	. 03273	. 00519	?	?
35	30. 54725	. 03314	. 03273	. 00519	?	?
36	30. 51377	. 03314	. 03273	. 00519	?	?
37	30. 49131	. 03317	. 03276	. 00518	?	?
38	30. 57963	. 03321	. 03280	. 00520	?	?
39	30.56300	. 03318	. 03277	. 00520	?	?
40	30. 54580	. 03321	. 03280	. 00519	?	?
41	30. 52174	. 03314	. 03273	. 00519	?	?
42	30. 56857	. 03334	. 03293	. 00520	?	?
43	30. 55300	03334	. 03293	. 00519	?	?
44	30. 48894	. 03331	. 03290	. 00518	?	?
45	30. 51710	03314	. 03273	. 00519	?	?
46	30, 52790	. 03314	. 03273	. 00519	?	?
		00004	00000	00540	2	•
ರಷ ೯೧	30. 50607	. 12220	03290	. 00519	5	2
ರು ೯.4	30. 34893	. 122201	07290	. 00019	á	5
34 55	20 52140	. 03327	03280	. 00019	2	:
33 50	20. 33874	. 03331	. USZ7U 07706	00519	Ś	2
96	20. 24083	12260	. 03200	. 00019	?	:

MEAN VALUE OF FIRST 16 MEASUREMENTS IN TABLE C1 COUNTING EPRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS
 B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES) GIVEN IN BRACKETS> 185 KEV COUNTING RATE UF6 185 KEY COUNTING KILL NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR 235U ENR. ENR. FRROR 30.53641 .00970 .00820 .00519 (.00873 .00702 .00519) ? 2 16 ****** PRODUCTION RUN C1-1 * * -INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30. 53641 +- 0. 00970 (MEAN OF FIRST 16 MEASUREMENTS IN TABLE C1, COUNTING-RATE ERROR FROM PEAK-AREA EVALUATIONS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN B1-1, MATRIX CORRECTION FACTOR 1. 0231) ABSOLUTE 2350 REL. THEREOF ERRORS THROUGH ENRICHMENT UF6 MEASUREMENT / CALIBRATION ERROR ERROR 3. 50463 0.00168 0.048% 0. 032% 0. 036% ********** PRODUCTION RUN C1-2 INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30. 53641 +- 0. 00873 (MEAN OF FIRST 16 MERSUREMENTS IN TABLE C1, COUNTING-RATE ERROR FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN 81-2, MATRIX CORRECTION FACTOR 1. 0231> THEREOF ERRORS THROUGH UF6 MEASUREMENT / CALIBRATION 235U ABSOLUTE REL. ENRICHMENT ERROR ERROR

3. 50492 0. 00175 0. 050% 0. 029% 0. 041%

MEAN VALUE OF LAST 5 MEASUREMENTS IN TABLE C1 COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS (B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES) GIVEN IN BRACKETS> 185 KEV COUNTING RATE NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR UF6 2350 ENR. ENR. ERROR _____ _ __ __ __ __ __ __ ----------30. 53520 . 01560 . 01471 . 00519 (. 01084 . 00952 . 00519) 2 5 2 ******* * PRODUCTION RUN C1-3 ***** INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30, 53520 +- 0, 01560 (MEAN OF LAST 5 MEASUREMENTS IN TABLE C1, COUNTING-RATE ERROR FROM PEAK-AREA EVALUATIONS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN 81-3, MATRIX CORRECTION FACTOR 1. 0231) ABSOLUTE REL THEREOF ERRORS THROUGH UF6 MERSUREMENT / CALIBRATION 2350 ENRICHMENT ERROR ERROR 0. 00245 0. 070% 3 50002 0.051% 0.048% ****** . PRODUCTION RUN C1-4 ***** INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30, 53520 +- 0, 01084 (MEAN OF LAST 5 MEASUREMENTS IN TABLE C1, COUNTING-RATE ERROR FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN B1-4, MATRIX CORRECTION FACTOR 1. 0231> THEREOF ERRORS THROUGH UF6 MEASUREMENT / CALIBRATION ABSOLUTE 2350 REL. ENRICHMENT ERROR ERROR 3. 50003 0. 00225 0. 064% 0.036% 0. 053% 

COUNTING ERR A> TO ERRC B> TO STAN GIVEN I	ORS GIVEN R ESTIMATE DARD DEVIA N BRACKETS	REFER: S FROM PI TIONS OF	EAK AREA EVAL REPEATED MEA	UATIONS SUREMEN	TS (VALUES
NR OF COUNT REPEATS RAT	185 KEV CO ING / TOTP E / ERRO	DUNTING R AL / COUN DR / ERRO	ATE T / THICKN. R / ERROR	U 235U ENR.	F6 ENR. ERROR
21 30. 53	612 . 0088 (. 0077	34 . 0071 71 . 0057	5 .00519 0 .00519>	?	?
****	****	****	****	***	ઝેર મેર કોર કોર કોર કોર કોર કોર કોર કોર કોર કો
*		PRODUCT	ION RUN C1-5		
******	*****	*******	*******	4c >4c 14c 14c 14r 14r 14r 14r	*******
INPUT DATA T	O EVALUATI	ON PROGRE	9M :		
U	F6 COUNTIN	IG RATE =	30. 53612 +-	0. 00884	
(MEAN OF ALL ERROR FROM P CONSTANTS FR	21 MEASUR EAK-AREA E OM RUN B1-	EMENTS IN VALUATION 5, MATRI	N TABLE C1, C NS, CORRESPON CORRECTION	OUNTING DING CA FACTOR	-RATE LIBRATION 1.0231>
235U ENRICHMENT	ABSOLUTE ERROR	REL. ERROR	THEREOF UF6 MEASURE	ERRORS	THROUGH CALIBRATIC
3. 50338	0. 00154	0, 044%	0, 029	×.	0. 033%
****	****		an man, dan wai ang	*******	an a
w.		PRODUCT	ION RUN C1-6		
and a star star star star star star star st	شر عاد بقد باد باد باد باد باد باد باد			år når slæ slæ slæ slæ	nde nie nie sie nie nie nie nie nie
TNOUT COTO T			5M ·		****
		IG POTE -	70 57642 +- 1	9 99774	
			JU. JULE 7" 1		-DOTE
ERROR FROM S CORRESPONDIN CORRECTION F	TANDARD DE G CALIBRAT ACTOR 1.02	VIATION ( ION CONS 31)	THBLE CI, CI DF REPEATED MI TANTS FROM RUI	EASUREM	ENTS, MATRIX
235U ENRICHMENT	ABSOLUTE ERROR	REL. ERROR	THEREOF UF6 MEASURE	ERRORS	THROUGH CALIBRATIC

#### TABLE C2 UF6 MEASUREMENT DATA SET NR. 2, WITHOUT COUNTING-TIME CORRECTION, BOTTOM THICKNESS: FROM ULTRASONIC MEASUREMENTS: 2.003 MM MONEL PLUS 1.995 MM ALUMINIUM

		*******				
OBS.	185	KEV COUNT	ING RATE		UF6 S	SAMPLE
NR	COUNTING	2 TOTAL 2	COUNT /	THICKN	2350	ENR.
	RATE	Z ERROR Z	ERROR /	ERROR	ENR.	ERROR
31	30. 54145	. 03302	. 03278	. 00397	?	?
32	30. 59094	. 03299	. 03275	. 00398	?	?
33	30. 55192	. 03302	. 03278	. 00397	?	?
34	30, 52784	. 03298	. 03274	. 00397	?	?
35	30.55915	03299	03275	. 00397	?	?
36	30. 52568	. 03298	03274	. 00397	?	?
37	30. 50320	. 03302	. 03278	. 00397	?	?
38	30. 59157	03305	. 03281	00398	?	?
39	30. 57493	. 03302	. 03278	. 00398	?	?
40	30. 55772	. 03305	. 03281	. 00397	?	?
41	30. 53365	. 03299	. 03275	. 00397	?	?
42	30.58050	03318	. 03294	. 00398	?	?
43	30, 56492	. 03318	. 03294	. 00397	?	?
44	30. 50083	. 03315	. 03291	. 00397	?	?
45	30. 52901	. 03299	. 03275	. 00397	?	?
46	30. 53982	. 83299	. 03275	. 00397	?	?
52	30. 51797	. 03315	. 03291	. 00397	?	?
53	30. 56086	. 03315	. 03291	. 00397	?	?
54	30. 53331	. 03312	03288	. 00397	?	?
55	30. 57066	. 03315	. 03291	. 00398	?	?
56	30. 55275	. 03312	. 03288	. 00397	?	?

#### MEAN VALUE OF FIRST 16 MEASUREMENTS IN TABLE C2 ***** COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES) GIVEN IN BRACKETS> 185 KEV COUNTING RATE UF6 NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR 235U ENR. ENR. ERROR ____ 30.54832 .00911 .00820 .00397 (.00807 .00703 .00397) 16 ? 2 *** *** PRODUCTION RUN C2-1 **** INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30. 54832 +- 0. 00911 (MEAN OF FIRST 16 MEASUREMENTS IN TABLE C2, COUNTING-RATE ERROR FROM FEAK-AREA EVALUATIONS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN B2-1, MATRIX CORRECTION FACTOR 1.0231) 2350 ABSOLUTE ENRICHMENT ERPOR THEREOF ERRORS THROUGH UF6 MEASUREMENT / CALIBRATION REL ERROR ____ 0. 030% 3. 50541 0 00161 0 046% 0 035% 38 * PRODUCTION RUN C2-2 * ******* INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30. 54832 +- 0. 00807 (MEAN OF FIRST 16 MEASUREMENTS IN TABLE C2, COUNTING-RATE ERROR FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN 82-2, MATRIX CORRECTION FACTOR 1. 0231> THEREOF ERRORS THROUGH UF6 MEASUREMENT / CALIBRATION ABSOLUTE 2350 REL ENRICHMENT ERROR ERROR 3.50562 0.00168 0.048% 0. 026% 0. 040%

MEAN VALUE OF LAST 5 MEASUREMENTS IN TABLE C2 COUNTING ERRORS GIVEN REFER: A> TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES GIVEN IN BRACKETS> 185 KEY COUNTING RATE NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR UF6 235U ENR. ENR. ERROR ----------30.54711 .01524 .01471 .00397 (.01032 .00953 .00397) ? 2 5 ****** PRODUCTION RUN C2-3 HA: ******* INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30. 54711 +- 0. 01524 (MEAN OF LAST 5 MEASUREMENTS IN TABLE C2, COUNTING-RATE ERROR FROM PEAK-AREA EVALUATIONS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN 82-3, MATRIX CORRECTION FACTOR 1.0231) THEREOF ERRORS THROUGH UF6 MERSUREMENT / CALIBRATION 2350 ABSOLUTE REL. ENRICHMENT ERROR ERROR 3. 50086 0. 00242 0. 069% 0. 050% 0. 048% ****** * PRODUCTION RUN C2-4 ****** INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30. 54711 +- 0. 01032 (MEAN OF LAST 5 MEASUREMENTS IN TABLE C2, COUNTING-RATE ERROR FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN B2-4, MATRIX CORRECTION FACTOR 1.0231) THEREOF ERRORS THROUGH UF6 MEASUREMENT / CALIBRATION 2350 ABSOLUTE REL. ENRICHMENT ERROR ERROR 3. 50086 0. 00222 0. 063% 0. 034% 0. 053%

COUNTING ER A) TO ERF B) TO STF GIVEN	RORS GIVEN OR ESTIMAT INDARD DEVI IN BRACKET	REFER: ES FROM P ATIONS OF S)	EAK AREA EVAL REPEATED MER	LUAT I ONS ASUREMEN	TS (VALUES
NR OF COUN REPERTS RF	185 KEV C ITING / TOT	DUNTING R RL / COUN DR / ERRO	ATE T / THICKN. R / ERROR	U 235U ENR.	F6 ENR. ERROR
21 30.5	4804 . 008: (. 006:	19 0071 95 0057	6 .00397 1 .00397>	?	?
**	****	******	*******	લ મહેર મેહ મોર સ્વેત સ્વેત મેહ મોર સ્વેત	***
ander soller soller soller soller soller soller soller soller soller soller soller soller	: sie	****		< sile sile sile sile sile sile sile	súr sile sile sile sile sile sile sile si
INPUT DATA	TO EVALUAT	ION PROGR	AM :		
	UF6 COUNTI	NG RATE =	30. 54804 +-	0. 00819	
(MEAN OF AL ERROR FROM CONSTANTS F	L 21 MEASU PEAK-AREA I ROM RUN B2	REMENTS I EVALUATIO -5, MATRI	N TABLE C2, C NS, CORRESPON X CORRECTION	COUNTING IDING CA FACTOR	-RATE LIBRATION 1. 0231)
ENRICHMENT	ERROR	REL. ERROR	UF6 MERSURE	ERRURS	CALIBRATIC
3. 50418	0. 00147	0. 042%	0. 027	<b>.</b> %	0. 032%
	***	ğa sığır sığır sığır sığır sığır sığır sığır siğa	લે કરીને એટ એટ એટ એટ એટ એટ અંદ અંદ અંદ અંદ અંદ અંદ અંદ અંદ અંદ		મેદ મેદ પર પ્રદેશોય છે. તે તે પ્રદેશો છે. તે કે પ્રદેશો છે. તે કે પ્રદેશો છે. તે કે પ્રદેશો છે. તે કે પ્રદેશો છ
*		PRODUCT	ION RUN C2-6		
*****	*****	****	*****	******	***
INPUT DATA	TO EVALUAT	ION PROGR	AM :		
	UF6 COUNTIN	NG RATE =	30. 54804 +-	0. 00695	
(MEAN OF AL ERROR FROM CORRESPONDI CORRECTION	L 21 MEASU STANDARD DE NG CALIBRA FACTOR 1.02	REMENTS II EVIATION ( FION CONS ² 231)	N TABLE C2, C DF REPEATED M TANTS FROM RL	OUNTING IEASUREM IN B2-6,	-RATE ENTS, MATRIX
235U ENRICHMENT	ABSOLUTE ERROR	REL. ERROR	THEREOF UF6 MEASURE	ERRORS	THROUGH CALIBRATIC

.

TABLE C3	UF6 MEASUREMENT DATA SET NR. 3,
	WITH COUNTING-TIME CORRECTION FROM PULSER,
	BOTTOM THICKNESS: FROM DIMENSION SHEET
	UF6-REIMEP 1986 APP.6

OBS.	185 KEV COUNTING RATE	UF6 SAMPLE
NR	COUNTING / TOTAL / COUNT / THICK	N. 2350 ENR.
	RATE / ERROR / ERROR / ERROR	R ENR. ERROR
	 که دان ملک کمه بود کمه کمه کمه میو خود بید ۲۸۰ میله کمه کمه کمه کمه کمه می داند است می بود باید ماه کمه کمه کمه کمه کمه کمه کمه کمه کمه کم	
31	30.47075 .03629 .03592 .00518	3 ? ?
32	30.51802 .03626 .03589 .00519	9 ? ?
33	30.47995 .03628 .03591 .00518	3 ? ?
34	30.45868 .03625 .03588 .00518	3 ? ?
41	30,47406 .03627 .03590 .00518	3 ? ?
42	30.50378 .03643 .03606 .00519	, ,
43	30,49457 .03644 .03607 .00518	3??
44	30.43904 .03640 .03603 .00517	7 7 7
45	30.46026 .02625 .03588 .00518	3 ? ?
46	30,47618 03626 03589 00518	3 ? ?
52	30.45856 .03644 .03607 .00518	3 7 ?
53	30, 50050 , 03644 , 03607 , 00519	<b>,</b> , ,
54	30, 47074 , 03640 , 03603 , 00518	8 ? ?
55	30. 50323 . 03643 . 03606 . 00519	) ? ?
56	30,48287 03640 03603 00518	3 ? ?

*> FOR MEASUREMENTS #35 TO #40 NO TIME CORRECTION COULD BE PERFORMED DUE TO FAILURE IN RECORDING TOTAL COUNTS AND REAL TIME OF PULSER.

MEAN VALUE (	)F FIRST 10 ******	MEASUREMEN	ITS IN TABLE	C3		
COUNTING ERR A> TO ERRC B> TO STAN GIVEN J	ORS GIVEN DR ESTIMATE DARD DEVIF N BRACKETS	REFER: S FROM PEAK TIONS OF RE	RREA EVALL PEATED MEAS	IAT I ONS SUREMEN	TS (VALUES	
NR OF COUNT REPERTS RAT	185 KEV CO ING / TOTH E / ERRO	DUNTING RATE	THICKN. ERROR	U 235U ENR.	IF6 ENR. ERROR	
16 30.47	753 . 0124 (. 0089	9 .01137 97 .00732	. 00518 . 00518>	?	?	
*****	*****	ત અનેત અનેત અનેત અનેત અનેત અનેત અનેત અને	ર મોર મોર મોર મોર સેવ મોર મોર મોર મોર મોર મોર મોર મોર મેર	****	ર ગ્રેન ગ્રેન ગ્રેન ગ્રેન ગ્રેન ગ્રેન સેન સેન્ટ નેન્ટ	*****
* *		PRODUCTION	I RUN C3-1			 + *
****	ર ગોન મોન મોન મોન મોન મોન મોન મોન ગોન ગોન ગોન ગોન	ા માંગ મંત્રેલ મંત્રે	ત મહેત કહેત મહેર કહેત મહેર ગઈને કહેને કહેત કહેત છે.	( H) H) H) H) H) H)		*****
INPUT DATA 1	O EVALUATI	ON PROGRAM				
ι	F6 COUNTIN	IG RATE = 38	). 47753 +- e	. 01249	I	
(MEAN OF FIR ERROR FROM F CONSTANTS FR	ST 10 MEAS EAK-AREA E OM RUN B3-	UREMENTS IN VALUATIONS, 1, MATRIX (	I TABLE C3, CORRESPOND CORRECTION F	COUNTI ING CA ACTOR	NG-RATE LIBRATION 1.0231>	
235U ENRICHMENT	ABSOLUTE ERROR	REL. ERROR L	THEREOF E	RRORS	THROUGH CALIBRATIO	N
3. 50071	0. 00195	0, 056%	0. 041%	:	0. 037%	
*********** * * **********************	**************************************	PRODUCTION	**************************************	e ade ade ade ade ade ade ade	1. 1960 1960 1960 1960 1960 1960 1960 1960	****** * * *
L	IF6 COUNTIN	10 RATE = 30	). 47753 +- 0	. 00897		
(MEAN OF FIR ERROR FROM S CORRESPONDIN CORRECTION F	ST 10 MEAS TANDARD DE IG CALIBRAT ACTOR 1.02	UREMENTS IN VIATION OF ION CONSTAN 21)	I TABLE C3, REPEATED ME ITS FROM RUN	COUNTI ASUREM 1 B3-2,	NG-RATE ENTS, MATRIX	
235U ENRICHMENT	ABSOLUTE ERROR	REL. ERROR L	THEREOF E	RRORS	THROUGH CALIBRATIO	N
3. 50089	0. 00173	0. 050%	0. 029%	:	0. 040%	

- C 10 -

MEAN VALUE OF LAST 5 MEASUREMENTS IN TABLE C3 COUNTING ERRORS GIVEN REFER: B) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES) GIVEN IN BRACKETS) _____ 185 KEV COUNTING RATE UF6 NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR 230 ENR. 235U ENR. ERROR ____ 30.48318 .01694 .01612 .00518 (.01000 .00855 .00518) ? ? 5 ****** ia de sia de sia PRODUCTION RUN C3-3 ******* INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30, 48318 +- 0, 01694 (MEAN OF LAST 5 MEASUREMENTS IN TABLE C3, COUNTING-RATE CONSTANTS FROM RUN B3-3, MATRIX CORRECTION FACTOR 1.0231) ABSOLUTE REL. THEREOF ERRORS THROUGH 235U 235U ABSOLUTE ENRICHMENT ERROR ERROR UF6 MEASUREMENT / CALIBRATION _____ 3. 49702 0. 00263 0. 075% 0. 056% 0.050% *********** * * PRODUCTION RUN C3-4 * ****** INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30. 48318 +- 0. 01000 (MEAN OF LAST 5 MEASUREMENTS IN TABLE C3, COUNTING-RATE ERROR FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN B3-4, MATRIX CORRECTION FACTOR 1. 0231> 235U ABSOLUTE REL. THEREOF ERRORS THROUGH ENRICHMENT ERROR ERROR UF6 MEASUREMENT / CALIBRATION -----0. 00212 0. 061% 0. 033% 3. 49702 0.051%

MEAN VALUE OF ALL 15 MEASUREMENTS IN TABLE C3 ***** COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES) GIVEN IN BRACKETS> ____ 185 KEV COUNTING RATE NR OF COUNTING / TOTAL / COUNT / THICKN. REPEATS RATE / ERROR / ERROR / ERROR UF6 2350 ENR. ENR. ERROR 15 30. 47941 . 01064 . 00929 . 00518 (. 00757 . 00552 . 00518) ____ -----? ? ****** . PRODUCTION RUN C3-5 ****** INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30. 47941 +- 0. 01064 (MEAN OF ALL 15 MEASUREMENTS IN TABLE C3, COUNTING-RATE CONSTANTS FROM RUN B3-5, MATRIX CORRECTION FACTOR 1.0231) ABSOLUTE REL. ERROR ERROR THEREOF ERRORS THROUGH UF6 MEASUREMENT / CALIBRATION 2350 ENRICHMENT ERROR 0.00171 0.049% 3. 49964 0. 035% 0.034% ****** * PRODUCTION RUN C3-6 * * ****** INFUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30, 47941 +- 0, 00757 (MEAN OF ALL 15 MEASUREMENTS IN TABLE C3, COUNTING-RATE ERROR FROM STANDARD DEVIATION OF REPEATED MEASUREMENTS, CORRESPONDING CALIBRATION CONSTANTS FROM RUN B3-6, MATRIX CORRECTION FACTOR 1. 0231> THEREOF ERRORS THROUGH UF6 MEASUREMENT / CALIBRATION ABSOLUTE RFI 2350 ENRICHMENT ERROR ERROR 3. 49974 0.00154 0.044% 0. 025% 0. 036% 

TABLE C4	UF6 MEASUREMENT DATA SET NR. 4,
	WITH COUNTING-TIME CORRECTION FROM PULSER,
	BOTTOM THICKNESS: FROM ULTRASONIC MEASUREMENTS:
	2,003 MM MONEL PLUS 1,995 MM ALUMINIUM

OBS. NR	185 KEV COUNTING RATE COUNTING / TOTAL / COUNT / THICKN RATE / ERROR / ERROR / ERROR	UF6 SRMPLE 235U ENR. ENR. ERROR
31	30. 48264 . 03615 . 03593 . 00396	??
32	30 52993 . 03613 . 03591 . 00397	? ?
33	30, 49185 . 03615 . 03593 . 00397	· · · · ·
34	30, 47056 . 03612 . 03590 . 00396	? ?
41	30.48595 .03613 .03591 .00396	??
42	30.51568 .03630 .03608 .00397	? ?
43	30. 50647 . 03630 . 03608 . 00397	2 2
44	30. 45092 . 03627 . 03605 . 00396	· · ·
45	30. 47215 . 03612 . 03590 . 00396	? ?
46	30.48808 .03613 .03591 .00396	· · · · · · · · · · · · · · · · · · ·
52	30.47044 .03630 .03608 .00396	??
53	30.51240 .03630 .03608 .00397	??
54	30.48263 .03626 .03604 .00396	??
55	30.51513 03630 03608 00397	??
56	30. 49477 03626 03604 00397	? ?
	الله الناء بين الله خلا إذه الله الله خلو بالله الله عنه الله الله خلو بين حلك عليه إزين وي الله خلم خلير بين الله عليه عن عنه اليه ع	

*> FOR MEASUREMENTS #35 TO #40 NO TIME CORRECTION COULD BE PERFORMED DUE TO FAILURE IN RECORDING TOTAL COUNTS AND REAL TIME OF PULSER.

.

.

MEAN VALUE OF	F FIRST 10	MEASUREMEI	NTS IN TABLE *****	C4 ***		
COUNTING ERR A> TO ERRO B> TO STAN GIVEN I	ORS GIVEN I R ESTIMATE DARD DEVIA N BRACKETS	REFER: 5 FROM PEA TIONS OF R >	K AREA EVALU EPEATED MEAS	ATIONS UREMENT	S (VALUES	
NR OF COUNT REPEATS RATI	185 KEV CO ING / TOTA E / ERRO	JNTING RAT 2 COUNT R 2 ERROR	E / THICKN. / ERROR	UF 235U ENR.	6 ENR. ERROR	
10 30.48	943 . 0120 (. 0083	4 .01137 3 .00732	. 00396 . 00396)	?	?	
**************************************	****	PRODUCTIO	**************************************	*****	****	***** * *
, *******	nder soller soller niger soller niger soller so	ભેર કહેવા કહેવ ગણા ગણા ગણા કહેવા કહેવા કહેવા કહેવા કહેવા ક	મોન ગોમ મહેદ મોદ મોદ મોદ મોદ મોટ ગોન ગોન ગોન ગોન મોદ	****	ર મોદ મોદ મોદ મોદ મોદ મોદ મોટ સંદ સંદ સંદ સંદ	4-34-34-34-34-
INPUT DATA T	O EVALUATI	DN PROGRAM	:			
U	F6 COUNTIN	G RATE = 3	0. 48943 +- 0	. 01204		
(MEAN OF FIR: ERROR FROM PI CONSTANTS FRI	ST 10 MEASI EAK-AREA E OM RUN B4-:	UREMENTS I VALUATIONS 1, MATRIX	N TABLE C4, , CORRESPOND CORRECTION F	COUNTIN ING CAL ACTOR 1	IG-RATE IBRATION 0231)	
235U ENRICHMENT	ABSOLUTE ERROR	REL. ERROR	THEREOF E UF6 MERSUREM	RRORS 1 ENT / C	HROUGH	
3. 50147	0. 00189	0. 054%	0. 040%		0. 037%	
******	*****	****	*****	*****	e ada ada ada ada ada ada ada ada ada ad	 ***** *
*		PRODUCTIO	N RUN C4-2			*
* ************	*****	***	****	*****	****	* *****
INPUT DATA TO	O EVALUATI	DN PROGRAM	:			
U	F6 COUNTIN	G RATE = 3	0. 48943 +- 0	. 00833		
(MEAN OF FIR ERROR FROM S CORRESPONDING CORRECTION FI	ST 10 MEAS TANDARD DE G CALIBRAT ACTOR 1.02	JREMENTS I VIATION OF ION CONSTA 31)	N TABLE C4, REPEATED ME NTS FROM RUN	COUNTIN ASUREME B4-2,	IG-RATE INTS, MATRIX	
235U ENRICHMENT	ABSOLUTE ERROR	REL. ERROR	THEREOF E UF6 MEASUREM	RRORS T	HROUGH	
3. 50160	0. 00167	0. 046%	0. 027%		0. 039%	

COUNTI A> T B> T G	NG ERRO O ERROM O STANO IVEN IN	DRS GIVEN R ESTIMATE DARD DEVIE N BRACKETS	REFER: ES FROM P ATIONS OF 5)	EAK AREA EVAL REPEATED MEA	UATIONS ISUREMEN	TS (VALUES
NR OF	1 COUNT S RATE	LES KEV CO ING / TOTH E / ERRO	DUNTING R AL / COUN DR / ERRO	ATE T ∕ THICKN. R ∕ ERROR	U 235U ENR.	F6 ENR. ERROR
5	30. 495	508 . 0166 <. 0094	51 . 0161 13 . 0085	3 .00397 6 .00397>	?	?
*****	*****	K 74K 74K 74K 74K 74K 74K 74K 74K 74	***	સંત મહેર મહેર મહેર મહેર મહેર મહેર મહેર મહેર	ર મહેત મહેર મહેર સ્વેદ મહેર મહેર મહેર	***
*			PRODUCT	ION RUN C4-3		
* *****	*****	****	****	****	< +< +< +< +< +< +< +< +<	*****
INPUT I	рата то	EVALUATI	ON PROGRI	AM :		
	UF	6 COUNTIN	G RATE =	30. 49508 +-	0. 01661	
(MEAN ) ERROR   CONSTAI	DF LASI FROM PE NTS FRO	1 5 MEASUF EAK-AREA E DM RUN B4- ABSOLUTE	REMENTS IN VALUATION -3, MATRI: REL.	N TABLE C4, C NS, CORRESPON X CORRECTION THEREOF	COUNTING IDING CA FACTOR ERRORS	-RATE LIBRATION 1.0231) THROUGH
ENRIC	HMENT	ERROR	ERROR	UF6 MEASURE	MENT /	CALIBRATION
3. 49	785	0. 00260	0. 074%	0. 055	57	0. 051%
			ا الله حلك حلك مينية الألاة الألف العلم وعن ال	والم وي منه		
*****	******	****	******	સંદ એન્ટ એન્ટ એન્ટ એન્ટ એન્ટ એન્ટ એન્ટ એન્ટ	******	મોદ મોદ મોન સંદ સંદ મોદ મોત મોત સંદ સંદ સંદ સંદ સંદ
*			PRODUCT	ION RUN C4-4		
* ***	*****	****	*****	****	***	***
INPUT I	DATA TO	EVALUATI	ION PROGR	AM ·		
			JA PATE =	70 49508 +-	0 00947	
					U. UUD73	
CORRESI	FROM ST FROM ST PONDING TION FF	5 MEASUR ANDARD DE CALIBRAT ACTOR 1.02	EVIATION ( ION CONS 231)	N THBLE C4, C DF REPEATED M TANTS FROM RU	UUNTING IEASUREM IN 84-4,	-KHIE ENTS, MATRIX
2351 ENRICI	J HMENT	ABSOLUTE ERROR	REL. ERROR	THEREOF UF6 MEASURE	ERRORS	THROUGH CALIBRATION

MEAN VALUE OF ALL 15 MEASUREMENTS IN TABLE C4 ******** COUNTING ERRORS GIVEN REFER: A) TO ERROR ESTIMATES FROM PEAK AREA EVALUATIONS
 B) TO STANDARD DEVIATIONS OF REPEATED MEASUREMENTS (VALUES) GIVEN IN BRACKETS) 185 KEV COUNTING RATE NR OF COUNTING / TOTAL / COUNT / THICKN REPEATS RATE / ERROR / ERROR / ERROR UF6 2350 THICKN ENR. REPEATS RATE ENR. FEROR ----. 00396 30.49131 .01010 .00929 ? ? 15 (. 00679 . 00552 . 00396> ***** PRODUCTION RUN C4-5 ******* INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30, 49131 +- 0. 01010 (MEAN OF ALL 15 MERSUREMENTS IN TABLE C4, COUNTING-RATE CONSTANTS FROM RUN 84-5, MATRIX CORRECTION FACTOR 1.0231) 2350 ABSOLUTE REL. THEREOF ERRORS THROUGH ENRICHMENT ERROR ERROR UF6 MEASUREMENT / CALIBRATION 3. 50040 0.00165 0.047% 0. 033% 0. 034% **** PRODUCTION RUN C4-6 4 ****** INPUT DATA TO EVALUATION PROGRAM: UF6 COUNTING RATE = 30. 49131 +- 0. 00679 (MEAN OF ALL 15 MEASUREMENTS IN TABLE C4, COUNTING-RATE ERROR FROM STANDARD DEVIATION OF REPEATED MERSUREMENTS. CORRESPONDING CALIBRATION CONSTANTS FROM RUN 84-6, MATRIX CORRECTION FACTOR 1. 0231) THEREOF ERRORS THROUGH UF6 MEASUREMENT / CALIBRATION 2350 ABSOLUTE REL. ERROR ENRICHMENT ERROR 3. 50048 0.00147 0.042% 0. 022% 0. 036%

# Appendix D

Stability of spectral peaks.

Peak positions, peak counting rates and peak-shape parameters.

-	D	1	-		

S9         KEV         PERK         DUS         PERK         DUS         PERK         DUS         PERK         DUS         PERK         DEVIATION         FROM MEAN         OCHNO         CCHNO         CCHN				ابه ببد وی ۱۰۰ مدر بده بید وی الله دند د			
MER.         PERK         Rev region         Rev region		59 15	U DEOK	405 V	TU DEOV		D DEAV
PRE         PERM         DEVINITION         PERM         POSITION         CENN         CCHN         CCN         CCN <thcn< th=""> <thcn< th=""> <thcn< th=""></thcn<></thcn<></thcn<>	MEOC	DEOK	NEUTOTION	100 N	EY FERK	DEDV	NEUTOTION
NR.         POSITION         PROM TERM         POSITION         PROM TERM         POSITION         CCHN0         CCHN0           # 1         479.12         0.00         1819.05         0.00         2668.24         1.5           # 2         479.12         0.00         1819.05         0.00         2668.24         1.5           # 4         479.16         0.04         1819.05         0.02         2668.23         1.4           # 5         479.16         0.04         1819.05         0.02         2668.34         1.5           # 6         479.12         0.00         1819.05         0.00         2667.29         0.5           # 8         479.12         0.00         1819.05         0.00         2667.46         0.6           # 11         479.06         -0.04         1819.02         -0.02         2668.26         1.6           # 11         479.08         -0.04         1819.02         -0.02         2668.26         1.6           # 11         479.08         -0.04         1819.02         -0.02         2669.18         2.4           # 11         479.08         -0.04         1819.02         -0.02         2666.9         1.6           # 12	HERD.		DEVINITON	BOCITION	EDOM MEON	DOCITION	COOM MEGN
(CHR)         (CHR) <th< td=""><td>NR.</td><td>PUSITION</td><td>FRUM MEMN</td><td>PUSITION</td><td></td><td>FUSITION</td><td>FROM MEMO</td></th<>	NR.	PUSITION	FRUM MEMN	PUSITION		FUSITION	FROM MEMO
# 1       479       10       -0. 62       1819. 65       0. 00       2668. 54       1.7         # 2       479       12       0. 60       1819. 65       0. 00       2668. 26       1.5         # 4       479       12       0. 60       1819. 67       0. 62       2668. 23       1.4         # 5       479       16       0. 64       1819. 67       0. 62       2668. 34       1.5         # 6       479       16       0. 64       1819. 65       0. 60       2667. 69       6.3         # 8       479       12       0. 60       1819. 65       0. 60       2667. 46       0.6         # 11       479       10       -8. 62       1819. 62       -8. 62       2668. 84       1.6         # 11       479. 08       -0. 64       1819. 62       -8. 62       2668. 86       1.9         # 14       479. 98       -0. 64       1819. 62       -8. 62       2668. 81       2.6         # 15       479. 98       -0. 62       1819. 61       -0. 62       2668. 67       1.6         # 14       479. 91       -0. 62       1819. 61       -0. 64       2666. 89       0.1         # 16       479. 10 <td></td> <td>(CHN)</td> <td>(CHN)</td> <td>(CHN)</td> <td>(CHN)</td> <td>(LMN)</td> <td>(CHN)</td>		(CHN)	(CHN)	(CHN)	(CHN)	(LMN)	(CHN)
****       2       10       -0       02       100       2660       2660       34       1       1         ************************************		470 40		4040 05		0000 E4	4 70
	41	479.10	-0.02	1819.05	0,00	2000. 34	1.75
* 3       479       12       0       00       1819       07       0       02       2668       08       1.3         * 5       479       16       0.04       1819       07       0.02       2668       40       1.6         * 6       479       16       0.04       1819       05       0.00       2668       41       1.5         * 7       479       12       0.00       1819       05       0.00       2667       03       2         * 9       479       12       0.00       1819       03       -0.02       2667       46       0.6         * 110       479       08       -0.04       1819       02       -0.03       2668       68       2.1         * 113       479       08       -0.05       1819       03       -0.02       2668       68       2.0       0       2668       1.6       1.6         * 114       479       08       -0.01       1819       03       -0.02       2668       1.6       1.6         * 117       479       12       0.00       1819       03       -0.02       2666       1.6       1.6         * 1	# 2	479. 12	0.00	1819. 05	0.00	2668, 28	1, 50
# 4       479, 16       0.04       1819.07       0.02       2660.23       1.4         # 5       479, 16       0.04       1819.05       0.00       2668.34       1.5         # 7       479, 12       0.00       1819.05       0.00       2667.29       0.5         # 8       479, 12       0.00       1819.05       0.00       2667.46       0.6         # 10       479, 12       0.00       1819.02       -0.02       2668.68       2       1.6         # 11       479, 10       -0.02       1819.02       -0.03       2668.68       2       1.6         # 11       479, 08       -0.04       1819.02       -0.03       2668.68       2       1.6         # 14       479, 08       -0.04       1819.03       -0.02       2669.18       2.4         # 15       479, 10       -0.02       1819.05       0.00       2666.67       1.6         # 14       479, 11       -0.02       1819.05       0.01       2669.15       2.3         # 16       479, 12       0.00       1819.06       0.01       2666.74       0.0         # 15       479, 12       0.00       1819.05       0.00       2666.74	# 3	479. 12	0.00	1819.07	0. 02	2668. 08	1.30
# 5       479, 16       0.04       1819, 07       0.02       2668, 34       1.5         # 7       479, 12       0.00       1819, 05       0.00       2667, 29       0.5         # 9       479, 11       -0.01       1819, 05       0.00       2667, 29       0.5         # 9       479, 12       0.00       1819, 03       -0.02       2666, 74       0.6         #10       479, 12       0.00       1819, 03       -0.02       2667, 41       0.6         #11       479, 08       -0.04       1819, 02       -0.03       2668, 86       1.6         #13       479, 08       -0.04       1819, 03       -0.02       2668, 13       2.6         #14       479, 08       -0.04       1819, 03       -0.02       2668, 13       2.6         #14       479, 10       -0.02       1819, 03       -0.02       2668, 16       1.6         #17       479, 11       -0.01       1819, 03       -0.02       2668, 16       2.6         #18       479, 10       -0.02       1819, 06       0.01       2666, 12       2.6         #18       479, 10       -0.02       1819, 03       -0.02       2666, 14       1.6	幹 4	479. 16	0.04	1819. 07	0. 02	2668. 23	1.45
i       6       479       12       0       00       1819       05       0       00       2667       29       0.5         i       9       479       12       0       00       1819       05       0.00       2667       29       0.5         i       9       479       12       0.00       1819       05       0.00       2666       93       0.5         i       10       479       12       0.00       1819       02       -0.02       2667       46       0.6         i       11       479       08       -0.04       1819       02       -0.03       2668       66       1.8       0.8       1.4       479       08       -0.05       1819.03       -0.02       2668.18       2.4       4       416       479.12       0.00       1819.05       0.00       2666.67       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6	# 5	479.16	0.04	1819, 07	0.02	2668.40	1. 62
***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ****       ****       *****       *****       *****       ******       ******       *******       *******       *********       ****************       ************************************	# 6	479 16	0 04	1819 05	0 00	2668 34	1 56
****       ************************************	* 7	470 40	0,04	4040 05	0.00	2667 09	0.74
***       9       479       11       -0       01       1819       05       0.02       2666.23       0.1         ***       9       479       12       0.00       1819       03       -0.02       2667.46       0.6         ***       9       479       12       0.00       1819       03       -0.02       2667.46       0.6         ***       11       479       08       -0.04       1819.02       -0.03       2668.88       2.1         ***       11       479.08       -0.04       1819.03       -0.02       2668.83       2.0         ***       11       479.08       -0.04       1819.03       -0.02       2668.71       1.6         ***       12       479.10       -0.02       1819.03       -0.02       2668.91       2.3         ***       13       479.10       -0.02       1819.03       -0.02       2666.91       0.2       2         ***       479.12       0.00       1819.04       -0.01       2666.02       0.1       2         ***       479.12       0.00       1819.05       0.00       2666.13       -0.2       2       2       6         ***	w r	473.12	0.00	1019.00	0.00	2007.03	0.51
# 9       479.12       0.00       1819.03       -0.02       2666.93       0.1         #10       479.12       0.00       1819.03       -0.02       2667.46       0.6         #11       479.08       -0.04       1819.02       -0.03       2668.86       1.8         #13       479.08       -0.05       1819.03       -0.02       2668.918       2.4         #15       479.08       -0.05       1819.03       -0.02       2668.18       2.0         #15       479.08       -0.01       1819.05       0.02       2668.18       2.4         #16       479.11       -0.01       1819.06       0.01       2668.67       1.6         #17       479.10       -0.02       1819.06       0.01       2666.17       2.6         #20       479.12       0.00       1819.04       -0.01       2666.74       -0.0         #21       479.12       0.00       1819.04       -0.01       2666.74       -0.0         #24       479.12       0.00       1819.04       -0.01       2666.74       -0.0         #22       479.14       0.02       1819.03       -0.02       2666.13       -0.7         #25	# 8	479.11	-0.01	1819.05	0.00	2667.29	0.51
#10       479.12       0.00       1819.06       0.01       2667.46       0.6         #11       479.10       -0.02       1619.02       -0.02       2667.41       0.6         #11       479.08       -0.04       1819.02       -0.03       2668.86       2.1         #13       479.08       -0.02       1668.86       2.0         #14       479.07       -0.05       1819.03       -0.02       2668.87       1.6         #14       479.07       -0.01       1819.03       -0.02       2668.67       1.6         #15       479.10       -0.02       1819.03       -0.02       2669.15       2.3         #19       479.10       -0.02       1819.03       -0.02       2669.15       2.3         #20       479.12       0.00       1819.06       0.03       2666.74       0.0         #21       479.12       0.00       1819.05       0.00       2667.49       0.1         #21       479.12       0.00       1819.05       0.00       2666.74       0.0         #22       479.12       0.00       1819.05       0.00       2666.74       0.0         #23       479.14       0.02       181	# 9	479. 12	0,00	1819. 03	-0.02	2666. 93	0.15
#11       479.10       -0.02       1819.02       -0.02       2667.41       0.6         #12       479.08       -0.04       1819.02       -0.03       2668.66       1.8         #14       479.07       -0.05       1819.03       -0.02       2668.66       1.8       2.4         #15       479.08       -0.04       1819.03       -0.02       2668.67       1.6         #17       479.11       -0.01       1819.06       0.01       2668.71       2.4         #16       479.12       0.00       1819.06       0.01       2669.15       2.3         #19       479.10       -0.02       1819.08       0.03       2666.89       0.1         #20       479.12       0.00       1819.08       0.03       2666.79       0.3         #21       479.12       0.00       1819.08       0.03       2666.71       0.0         #22       479.12       0.00       1819.04       -0.01       2666.71       0.0         #24       479.12       0.00       1819.03       -0.02       2666.71       -0.0         #24       479.11       -0.02       1819.03       -0.02       2664.24       -1.9 <td< td=""><td>#10</td><td>479. 12</td><td>0.00</td><td>1819. 06</td><td>0. 01</td><td>2667.46</td><td>0.68</td></td<>	#10	479. 12	0.00	1819. 06	0. 01	2667.46	0.68
112 $479$ , $08$ $-0$ , $04$ $1819$ , $02$ $-0$ , $03$ $2668$ , $86$ $21$ $113$ $479$ , $08$ $-0$ , $04$ $1819$ , $03$ $-0$ , $02$ $2668$ , $83$ $2$ $0$ $115$ $479$ , $08$ $-0$ , $04$ $1819$ , $03$ $-0$ , $02$ $2668$ , $83$ $2$ $0$ $117$ $479$ , $10$ $-0$ , $04$ $1819$ , $03$ $-0$ , $02$ $2669$ , $15$ $2.3$ $119$ $479$ , $10$ $-0$ , $02$ $1819$ , $06$ $01$ $2666$ $2666$ $11$ $119$ $479$ , $10$ $-0$ , $02$ $1819$ , $06$ $01$ $2666$ $15$ $2.3$ $120$ $479$ , $12$ $0$ , $00$ $1819$ , $06$ $03$ $2666$ $06$ $1819$ $04$ $-0$ $12$ $2667$ , $09$ $0.3$ $122$ $479$ , $12$ $0$ , $00$ $1819$ , $03$ $-0$ $02$ $2666$ $13$ $-6$ $03$ $2666$ $11$ $03$ $03$ $2666$ $11$ $1819$ $03$ $-0$ $2664$ $11$ $03$ $03$	#11	479. 10	-0.02	1819. 03	-0.02	2667.41	0.63
113 $179$ $06$ $-0.$ $04$ $19319$ $02$ $-0.$ $03$ $2668.$ $66.$ $1.$ $08$ $114$ $479.$ $08$ $-0.$ $04$ $1819.$ $03$ $-0.$ $02$ $2668.$ $03$ $2.$ $06.$ $1819.$ $03$ $-0.$ $02$ $2668.$ $1.$ $0.$ $1819.$ $03$ $-0.$ $02$ $2668.$ $1.$ $0.$ $1.$ $1.$ $0.$ $0.$ $1.$ $1.$ $0.$ $0.$ $1.$ $0.$ $0.$ $1.$ $1.$ $0.$ $0.$ $1.$ $0.$ $0.$ $1.$ $0.$ $0.$ $1.$ $0.$ $0.$ $1.$ $0.$ $0.$ $1.$ $0.$ $0.$ $1.$ $0.$ $0.$ $1.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ $0.$ <t< td=""><td>#12</td><td>479 08</td><td>-0 04</td><td>1819 02</td><td>-0 03</td><td>2668 88</td><td>2 10</td></t<>	#12	479 08	-0 04	1819 02	-0 03	2668 88	2 10
*114       479.07       -0.05       1813.02       -0.03       2668.83       2.0         #15       479.08       -0.04       1819.03       -0.02       2668.13       2.0         #16       479.11       -0.01       1819.01       -0.02       2669.18       2.4         #18       479.10       -0.02       1819.06       0.01       2668.67       1.0         #19       479.10       -0.02       1819.06       0.01       2669.15       2.3         #20       479.12       0.00       1819.06       0.01       2667.09       0.3         #21       479.12       0.00       1819.06       0.03       2666.89       0.1         #22       479.12       0.00       1819.08       0.03       2666.13       -0.0         #24       479.14       0.02       1819.03       -0.02       2664.13       -1.0         #25       479.10       -0.01       1819.03       -0.02       2664.13       -3.1       -3.6         #26       479.11       -0.01       1819.03       -0.02       2664.13       -3.5       -3.5         #28       479.09       -0.03       1819.02       -0.03       2663.11       -3.5	***	470.00	-0.04	4040.02	-0.07	2000.00	4 00
#14       479, 08       -0, 05       1819, 03       -0, 02       2668, 18       2. 4         #15       479, 08       -0, 00       1819, 03       -0, 02       2668, 47       1. 6         #11       479, 11       -0, 01       1819, 01       -0, 04       2668, 47       1. 6         #13       479, 10       -0, 02       1819, 06       0, 01       2669, 15       2. 3         #19       479, 10       -0, 02       1819, 06       0, 01       2669, 42       2. 6         #20       479, 12       0, 00       1819, 03       -0, 02       2666, 62       2. 6         #21       479, 12       0, 00       1819, 04       -0, 01       2666, 74       -0, 03         #24       479, 12       0, 00       1819, 03       -0, 02       2664, 13       -0, 61         #24       479, 11       -0, 01       1819, 03       -0, 01       2666, 13       -0, 7         #25       479, 11       -0, 02       1819, 03       -0, 01       2664, 13       -2, 5         #29       479, 11       -0, 01       1819, 03       -0, 01       2663, 11       -3, 5         #31       479, 11       -0, 01       1819, 04       -0, 01 <td< td=""><td>#1.3</td><td>479.08</td><td>-0.04</td><td>1019.02</td><td>-0.03</td><td>2000.00</td><td>1.00</td></td<>	#1.3	479.08	-0.04	1019.02	-0.03	2000.00	1.00
#15       479, 08       -0. 04       1819. 03       -0. 02       2669. 18       2.         #16       479, 11       -0. 01       1819. 05       0. 00       2668. 67       1. 6         #18       479, 10       -0. 02       1819. 06       0. 01       2669. 10       2.3         #20       479, 10       -0. 02       1819. 06       0. 01       2669. 16       2.3         #21       479, 12       0. 00       1819. 04       -0. 02       2669. 03       2666. 89       0.1         #22       479, 12       0. 00       1819. 04       -0. 01       2666. 03       0.3         #23       479, 12       0. 00       1819. 05       0. 00       2666. 13       -0. 67         #24       479, 14       0. 02       1819. 04       -0. 01       2666. 13       -0. 7         #25       479, 10       -0. 02       1819. 03       -0. 02       2664. 13       -2. 3         #26       479, 10       -0. 02       1819. 03       -0. 02       2664. 13       -3. 5         #31       479, 10       -0. 02       1819. 03       -0. 02       2663. 14       -3. 5         #32       479, 11       -0. 01       1819. 04       -0. 01<	#14	479. 07	-0.05	1819. 03	-0.02	2668.83	2.05
#16       479, 12       0.00       1819.05       0.00       2668.47       1.6         #17       479, 11       -0.01       1819.01       -0.04       2668.67       1.0         #19       479, 10       -0.02       1819.06       0.01       2669.15       2.3         #20       479, 10       -0.02       1819.03       -0.02       2669.42       2.6         #21       479, 12       0.00       1819.04       -0.01       2667.09       0.3         #23       479, 12       0.00       1819.04       -0.01       2667.09       0.3         #24       479.12       0.00       1819.04       -0.01       2666.02       -0.7         #25       479.12       0.00       1819.03       -0.02       2664.39       -2.3         #27       479.10       -0.02       1819.03       -0.02       2664.13       -3.6         #28       479.09       -0.01       1819.02       -0.03       2663.13       -3.6         #31       479.11       -0.01       1819.05       0.00       2663.61       -3.1         #33       479.11       -0.01       1819.05       0.00       2664.48       -2.3         #33 <td>#15</td> <td>479. 08</td> <td>-0.04</td> <td>1819. 03</td> <td>-0.02</td> <td>2669. 18</td> <td>2.40</td>	#15	479. 08	-0.04	1819. 03	-0.02	2669. 18	2.40
#17       479.11       -0.01       1819.01       -0.04       2668.67       1.0         #18       479.10       -0.02       1819.06       0.01       2669.10       2.3         #20       479.10       -0.02       1819.06       0.01       2669.15       2.3         #20       479.12       0.00       1819.03       -0.02       2669.42       2.6         #21       479.12       0.00       1819.04       -0.01       2667.09       0.1         #24       479.14       0.02       1819.01       -0.04       2666.13       -0.02         #25       479.11       -0.01       1819.04       -0.01       2664.27       -1.9         #25       479.11       -0.02       1819.03       -0.02       2664.29       -2.9         #26       479.11       -0.01       1819.03       -0.02       2664.29       -2.9         #27       479.10       -0.02       1819.04       -0.01       2664.24       -2.5         #29       479.11       -0.01       1819.07       0.02       2663.13       -3.5         #31       479.10       -0.02       1819.05       0.00       2663.47       -3.3         #32	#16	479.12	0, 00	1819. 05	0.00	2668.47	1. 69
1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.       1.1.	#17	479 14	-0 01	1819 01	-0 04	2668 67	1 89
1-0 $1-7$ $10$ $-0$ $02$ $1613$ $06$ $01$ $2669$ $10$ $2.3$ $#20$ $479$ $10$ $-0$ $02$ $1819$ $03$ $-0$ $02$ $2669$ $42$ $2.669$ $42$ $2.669$ $42$ $2.667$ $09$ $0.1$ $#22$ $479$ $12$ $0$ $00$ $1819$ $06$ $001$ $2666$ $09$ $0.1$ $#24$ $479$ $14$ $0.02$ $1819$ $03$ $-0.02$ $2666.13$ $-0.02$ $#25$ $479$ $11$ $-0.01$ $1819$ $03$ $-0.02$ $2664.24$ $-2.5$ $#26$ $479$ $11$ $-0.02$ $1819.02$ $-0.03$ $2663.13$ $-3.5$ $32.666.3$ $13$ $-3.5$ $33.2$ $479.11$ $-0.02$ $1819.02$ $-0.03$ $2663.47$ $-3.3$ $34.479.11$ $-0.01$ $1819.05$ $0.02$ $2663.47$ $-3.3$ $33.3$ $479.11$ $-0.01$ $1819.04$ $-0.01$ $2664.64$ <	440	A70 40	-0.01	1010 01	0.04	2000.01	2 20
$x_{12}$ $479, 16$ $-0, 62$ $1819, 03$ $-0, 02$ $2669, 15$ $2.3$ $w20$ $479, 12$ $0, 00$ $1819, 03$ $-0, 02$ $2669, 42$ $2.6$ $w21$ $479, 12$ $0, 00$ $1819, 04$ $-0, 01$ $2667, 09$ $0.3$ $w22$ $479, 12$ $0, 00$ $1819, 04$ $-0, 01$ $2666, 74$ $-0, 02$ $w24$ $479, 12$ $0, 00$ $1819, 03$ $-0, 02$ $2666, 13$ $-0, 02$ $w25$ $479, 10$ $-0, 02$ $1819, 03$ $-0, 02$ $2664, 29$ $-2, 3$ $w27$ $479, 10$ $-0, 02$ $1819, 03$ $-0, 02$ $2664, 39$ $-2, 3$ $w28$ $479, 99$ $-0, 02$ $1819, 03$ $-0, 02$ $2663, 15$ $-3, 5$ $w31$ $479, 11$ $-0, 01$ $1819, 07$ $0, 02$ $2663, 47$ $-3, 3$ $w33$ $479, 11$ $-0, 01$ $1819, 05$ $0, 00$ $2664, 84$ $-1, 9$ $w33$ $479, 10$ $-0, 02$ $1819, 05$ $0, 00$ $2664, 84$	#10 #10	479.10	-0.02	1013 00	0.01	2007 10	e. 3e
#20       479.10       -0.02       1819.03       -0.02       2669.42       2.66         #21       479.12       0.00       1819.04       -0.01       2667.09       0.3         #23       479.12       0.00       1819.05       0.00       2666.74       -0.0         #24       479.14       0.02       1819.03       -0.04       2666.13       -0.6         #25       479.10       -0.01       1819.03       -0.02       2664.13       -0.6         #25       479.10       -0.02       1619.03       -0.02       2664.24       -2.5         #26       479.11       -0.01       1819.02       -0.03       2663.13       -3.6         #27       479.10       -0.02       1819.07       -0.02       2664.24       -2.5         #30       479.11       -0.01       1819.07       0.02       2664.64       -2.3         #31       479.11       -0.01       1819.07       0.02       2664.84       -1.9         #33       479.11       -0.01       1819.07       0.02       2664.84       -2.3         #34       479.10       -0.02       1819.07       0.02       2664.86       -3.3         #34 <td>#19</td> <td>479.10</td> <td>-0.02</td> <td>1819.06</td> <td>0.01</td> <td>2669.15</td> <td>2. 37</td>	#19	479.10	-0.02	1819.06	0.01	2669.15	2. 37
w121       479       12       0       00       1819       08       0       03       2666       89       0.1         w22       479       12       0       00       1819       05       0.0       2667       09       0.3         w24       479       12       0.00       1819       05       0.00       2666.       02       -0.0         w24       479       14       0.02       1819.01       -0.04       2666.13       -0.0         w25       479       10       -0.01       1819.03       -0.02       2664.24       -2.5         w27       479       10       -0.01       1819.05       -0.02       2663.19       -3.5         w28       479.91       -0.02       1819.05       0.00       2663.47       -3.3         w30       479.11       -0.01       1819.05       0.00       2664.84       -2.3         w31       479.11       -0.01       1819.03       -0.02       2664.84       -1.9         w33       479.11       -0.01       1819.03       -0.02       2664.84       -2.3         w34       479.11       -0.01       1819.03       -0.02       2664.48	#20	479. 10	-0. 02	1819.03	-0.02	2669. 42	2.64
#22       479.12       0.00       1819.04       -0.01       2667.09       0.3         #23       479.12       0.00       1819.05       0.00       2666.74       -0.0         #25       479.12       0.00       1819.01       -0.04       2666.02       -0.7         #25       479.12       0.00       1819.03       -0.02       2664.13       -2.3         #26       479.10       -0.02       1619.03       -0.02       2663.13       -3.6         #27       479.10       -0.02       1819.06       0.01       2663.15       -3.5         #28       479.01       -0.02       1819.05       0.00       2663.15       -3.5         #31       479.11       -0.01       1819.05       0.00       2663.61       -3.1         #32       479.11       -0.01       1819.05       0.00       2664.48       -2.3         #34       479.10       -0.02       1819.05       0.00       2663.61       -3.1         #34       479.11       -0.01       1819.05       0.00       2663.48       -1.9         #35       479.10       -0.02       1819.05       0.00       2663.05       -3.7         #36	#21	479. 12	0.00	1819. 08	0. 03	2666. 89	0. 11
122 $122$ $0.00$ $1219.05$ $0.02$ $1261.07$ $0.02$ $1266.74$ $-0.01$ $824$ $479.14$ $0.02$ $1819.01$ $-0.04$ $2266.022$ $-0.76$ $825$ $479.12$ $0.00$ $1819.03$ $-0.03$ $22664.87$ $-1.9$ $826$ $479.11$ $-0.01$ $1819.03$ $-0.02$ $22664.87$ $-1.9$ $827$ $479.10$ $-0.02$ $1819.03$ $-0.02$ $22664.24$ $-2.3$ $828$ $479.09$ $-0.03$ $1819.03$ $-0.02$ $22663.13$ $-3.5$ $830$ $479.10$ $-0.02$ $1819.07$ $0.02$ $22663.47$ $-3.3$ $831$ $479.11$ $-0.01$ $1819.07$ $0.02$ $22663.47$ $-3.3$ $833$ $479.11$ $-0.01$ $1819.05$ $0.00$ $22664.48$ $-2.3$ $833$ $479.11$ $-0.01$ $1819.05$ $0.00$ $22664.48$ $-2.3$ $833$ $479.10$ $-0.02$ $1819.05$ $0.00$ $22664.48$ $-1.9$ $835$ $479.10$ $-0.02$ $1819.05$ $0.00$ $22664.48$ $-3.3$ $837$ $479.11$ $-0.01$ $1819.05$ $0.00$ $22664.48$ $-3.3$ $837$ $479.11$ $-0.01$ $1819.05$ $0.00$ $22664.48$ $-3.3$ $837$ $479.11$ $-0.01$ $1819.05$ $0.00$ $22664.90$ $-3.7$ $838$ $479.12$ $0.00$ $1819.05$ $0.00$ $22664.90$ $-3.7$ $844$ $479.12$ <t< td=""><td>#22</td><td>479 12</td><td>0 00</td><td>1819 04</td><td>-8.01</td><td>2667 09</td><td>0. 31</td></t<>	#22	479 12	0 00	1819 04	-8.01	2667 09	0. 31
$m_{2,1}$ $m_{7,2}$ $12$ $0$ $00$ $1613, 90$ $00$ $2666, 17$ $-0.7$ $m_{2,2}$ $479, 12$ $0.00$ $1819, 01$ $-0.01$ $22664, 13$ $-2.3$ $m_{2,2}$ $479, 10$ $-0.02$ $1919, 03$ $-0.02$ $22664, 24$ $-2.5$ $m_{2,2}$ $479, 10$ $-0.02$ $1819, 03$ $-0.02$ $22664, 24$ $-2.5$ $m_{2,2}$ $479, 10$ $-0.02$ $1819, 06$ $0.01$ $2663, 13$ $-3.5$ $m_{3,3}$ $479, 11$ $-0.02$ $1819, 05$ $0.00$ $2663, 47$ $-3.3$ $m_{3,3}$ $479, 11$ $-0.01$ $1819, 05$ $0.00$ $2663, 46$ $-2.3$ $m_{3,4}$ $479, 10$ $-0.02$ $1819, 05$ $0.00$ $2664, 48$ $-2.3$ $m_{3,4}$ $479, 10$ $-0.02$ $1819, 03$ $-0.02$ $2664, 48$ $-2.3$ $m_{3,5}$ $479, 10$ $-0.02$ $1819, 05$ $0.00$ $2663, 65$ $-3.7$ $m_{3,6}$ $479, 11$ $-0.01$ $1819, 05$	****	470 40	0.00	4040 0	0.01	2666 7A	-0.04
$w_{24}$ $4.79, 14$ $0, 02$ $1819, 01$ $-0.04$ $22666, 02$ $-0.7$ $w_{25}$ $479, 11$ $-0, 01$ $1819, 04$ $-0, 01$ $22664, 39$ $-2.3$ $w_{27}$ $479, 10$ $-0, 02$ $1819, 03$ $-0, 02$ $22664, 24$ $-2.5$ $w_{29}$ $479, 11$ $-0, 01$ $1819, 03$ $-0, 02$ $22664, 24$ $-2.5$ $w_{29}$ $479, 11$ $-0, 01$ $1819, 07$ $0, 02$ $22663, 13$ $-3.6$ $w_{30}$ $479, 11$ $-0, 01$ $1819, 07$ $0, 02$ $22664, 24$ $-2.3$ $w_{31}$ $479, 11$ $-0, 01$ $1819, 05$ $0, 00$ $22664, 48$ $-2.3$ $w_{33}$ $479, 10$ $-0, 02$ $1819, 03$ $-0, 02$ $2664, 48$ $-1.9$ $w_{33}$ $479, 11$ $-0, 01$ $1819, 05$ $0, 00$ $2662, 365$ $-3.7$ $w_{33}$ $479, 11$ $-0, 01$ $1819, 05$ $0, 00$ $2662, 48$ $-3.3$ $w_{33}$ $479, 12$ $0, 00$ $1819, 05$ $0, 00$	# <b>Z</b> .5	479.12	U. UU	1013 03	0.00	2000. (4	-0.04
#25479120.001819.080.032666.13-0.6#26479.11-0.011819.04-0.012664.87-1.9#27479.10-0.021819.03-0.022664.24-2.3#28479.09-0.011819.03-0.022663.13-3.6#29479.11-0.011819.05-0.032663.13-3.5#30479.10-0.021819.060.012663.61-3.1#32479.11-0.011819.050.002663.61-3.1#33479.11-0.011819.050.002664.84-2.3#34479.10-0.021819.050.002664.84-1.9#35479.10-0.021819.03-0.022664.69-2.0#36479.11-0.011819.01-0.042663.05-3.7#37479.11-0.011819.050.002662.57-4.2#39479.11-0.011819.050.002664.64-2.1#40479.120.001819.050.002665.24-1.5#42479.140.021819.050.002665.14-1.6#44479.130.011819.070.022664.64-2.1#43479.130.011819.070.022665.14-1.6#44479.130.011819.070.022665.14-1.6#44479.130.011819.070.022665.60<	<b>#24</b>	479.14	0.02	1819.01	-0.04	2666. 82	-0.76
#26479.11-0.011819.04-0.012664.67-1.9#27479.10-0.021019.03-0.022664.24-2.5#29479.11-0.011819.02-0.022663.13-3.5#31479.10-0.021819.060.012663.47-3.5#31479.11-0.011819.070.022663.47-3.5#31479.11-0.011819.070.022663.47-3.5#32479.11-0.011819.050.002663.61-3.1#33479.11-0.011819.050.002664.48-2.3#34479.10-0.021819.050.002664.69-2.0#35479.10-0.021819.050.002664.69-2.0#36479.11-0.011819.050.002663.05-3.7#38479.120.001819.050.002663.48-3.3#37479.11-0.011819.050.002664.56-2.2#44479.120.001819.050.002664.56-2.2#42479.130.011819.050.002665.14-1.6#44479.130.011819.070.022664.66-2.1#45479.130.011819.060.012665.00-1.7#44479.120.001819.070.022664.56-2.2#51479.130.011819.060.012665.00-1.	#25	479. 12	0.00	1819. 08	0.03	2666. 13	-0.65
$w_{27}$ $479, 10$ $-0, 02$ $1019, 03$ $-0, 02$ $2664, 39$ $-2, 3$ $w_{28}$ $479, 09$ $-0, 03$ $1019, 03$ $-0, 02$ $2664, 24$ $-2, 5$ $w_{30}$ $479, 10$ $-0, 01$ $1019, 02$ $-0, 03$ $2663, 13$ $-3, 5$ $w_{31}$ $479, 11$ $-0, 01$ $1019, 07$ $0, 02$ $2663, 47$ $-3, 3$ $w_{32}$ $479, 11$ $-0, 01$ $1019, 07$ $0, 02$ $2663, 61$ $-3, 1$ $w_{32}$ $479, 11$ $-0, 01$ $1019, 05$ $0, 00$ $2664, 84$ $-2, 20$ $w_{33}$ $479, 10$ $-0, 02$ $1019, 05$ $0, 00$ $2664, 69$ $-2, 00$ $w_{33}$ $479, 11$ $-0, 01$ $1019, 05$ $0, 00$ $2663, 05$ $-3, 7$ $w_{33}$ $479, 11$ $-0, 01$ $1019, 05$ $0, 00$ $2662, 06$ $-3, 3$ $w_{33}$ $479, 12$ $0, 00$ $1819, 05$ $0, 00$ $2662, 46$ $-4, 2$ $30$ $w_{33}$ $479, 12$ $0, 00$ $1819, 05$	#26	479. 11	-0.01	1819. 04	-0.01	2664.87	-1, 91
122 $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $122$ $1222$ $1222$ $1222$ $1222$ <td>#27</td> <td>479 10</td> <td>-0 02</td> <td>1819 07</td> <td>-0 02</td> <td>2664 39</td> <td>-2 39</td>	#27	479 10	-0 02	1819 07	-0 02	2664 39	-2 39
12.5 $11.9.05$ $10.05$ $10.15.05$ $10.05$ $20.02$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ $20.03$ </td <td>#28</td> <td>479 00</td> <td>-0.07</td> <td>1010 07</td> <td>-0.02</td> <td>2664 24</td> <td>-2 54</td>	#28	479 00	-0.07	1010 07	-0.02	2664 24	-2 54
$w_{22}$ $w_{12}$ $11$ $-0.01$ $1819.02$ $-0.03$ $2663.19$ $-3.5$ $w_{33}$ $479.10$ $-0.02$ $1819.06$ $0.01$ $2663.19$ $-3.5$ $w_{33}$ $479.11$ $-0.01$ $1819.07$ $0.02$ $2663.61$ $-3.1$ $w_{33}$ $479.11$ $-0.01$ $1819.07$ $0.02$ $2663.61$ $-3.1$ $w_{33}$ $479.11$ $-0.01$ $1819.04$ $-0.01$ $2664.84$ $-2.3$ $w_{34}$ $479.10$ $-0.02$ $1819.03$ $-0.02$ $2664.69$ $-2.0$ $w_{35}$ $479.10$ $-0.02$ $1819.03$ $-0.02$ $2664.69$ $-2.0$ $w_{35}$ $479.10$ $-0.02$ $1819.03$ $-0.02$ $2664.69$ $-2.0$ $w_{36}$ $479.11$ $-0.01$ $1819.05$ $0.00$ $2663.05$ $-3.7$ $w_{36}$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.57$ $-4.2$ $w_{39}$ $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-1.5$ $w_{44}$ $479.12$ $0.00$ $1819.05$ $0.00$ $2665.14$ $-1.6$ $w_{44}$ $479.13$ $0.01$ $1819.05$ $0.00$ $2665.14$ $-1.6$ $w_{44}$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.14$ $-1.6$ $w_{44}$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.14$ $-1.6$ $w_{44}$ $479.13$ $0.01$ $1819.06$ $0.01$ $2667.14$ $0.3$ $w_{45}$ $4$	#20 #20	470 44	-0.03	1017.03	-0.02	2007.24	-2.04
3.0 $479.10$ $-0.02$ $1819.06$ $0.01$ $2663.19$ $-3.5$ $831$ $479.11$ $-0.01$ $1819.07$ $0.02$ $2663.47$ $-3.3$ $832$ $479.11$ $-0.01$ $1819.07$ $0.02$ $2663.61$ $-3.1$ $833$ $479.11$ $-0.01$ $1819.07$ $0.00$ $2664.48$ $-2.3$ $834$ $479.11$ $-0.01$ $1819.05$ $0.00$ $2664.69$ $-2.0$ $835$ $479.10$ $-0.02$ $1819.05$ $0.00$ $2664.69$ $-2.0$ $836$ $479.11$ $-0.01$ $1819.05$ $0.00$ $2662.57$ $-4.2$ $837$ $479.11$ $-0.01$ $1819.05$ $0.00$ $2662.57$ $-4.2$ $839$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.48$ $-4.8$ $841$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.48$ $-4.3$ $841$ $479.12$ $0.00$ $1819.05$ $0.00$ $2665.14$ $-1.6$ $844$ $479.13$ $0.01$ $1819.07$ $0.02$ $2664.56$ $-2.2$ $843$ $479.13$ $0.01$ $1819.07$ $0.02$ $2665.14$ $-1.6$ $844$ $479.13$ $0.01$ $1819.07$ $0.02$ $2664.64$ $-2.1$ $844$ $479.13$ $0.01$ $1819.06$ $0.03$ $2665.00$ $-1.7$ $844$ $479.13$ $0.01$ $1819.08$ $0.03$ $2665.16$ $-2.5$ $855$ $479.13$ $0.01$ $1819.08$ $0.03$ $2665.$	キイゴ	479.11	-0.01	1819.02	-0.03	2003.13	- <u>-</u> . 60
#31479.11 $-0.01$ 1819.07 $0.02$ 2663.47 $-3.3$ #32479.11 $-0.01$ 1819.05 $0.00$ 2663.61 $-3.1$ #33479.11 $-0.01$ 1819.04 $-0.01$ 2664.48 $-2.3$ #34479.10 $-0.02$ 1819.03 $-0.02$ 2664.69 $-2.0$ #35479.10 $-0.02$ 1819.03 $-0.02$ 2664.69 $-2.0$ #36479.11 $-0.01$ 1819.01 $-0.04$ 2663.48 $-3.3$ #37479.11 $-0.01$ 1819.05 $0.00$ 2662.57 $-4.2$ #38479.12 $0.00$ 1819.05 $0.00$ 2662.57 $-4.2$ #39479.11 $-0.01$ 1819.05 $0.00$ 2665.24 $-1.5$ #40479.12 $0.00$ 1819.05 $0.00$ 2665.24 $-1.5$ #41479.13 $0.01$ 1819.05 $0.00$ 2665.14 $-1.6$ #44479.13 $0.01$ 1819.07 $0.02$ 2664.64 $-2.1$ #44479.13 $0.01$ 1819.07 $0.02$ 2664.64 $-2.1$ #44479.13 $0.01$ 1819.07 $0.02$ 2665.00 $-1.7$ #47479.14 $0.02$ 1819.06 $0.01$ 2665.14 $-1.6$ #44479.12 $0.00$ 1819.08 $0.03$ 2666.37 $-0.4$ #46 $479.13$ $0.01$ 1819.03 $-0.02$ 2664.64 $-2.1$ #51 $479.13$ $0.01$ 1819.05 $0.00$ 2667.14 $0$	#30	479. 10	-0.02	1819. 06	0.01	2663. 19	-3. 59
#32479.11 $-0.01$ 1819.05 $0.00$ $2663.61$ $-3.1$ #33479.11 $-0.01$ 1819.04 $-0.01$ $2664.48$ $-2.3$ #34479.10 $-0.02$ 1819.05 $0.00$ $2664.84$ $-1.9$ #35479.10 $-0.02$ 1819.03 $-0.02$ $2664.69$ $-2.0$ #36479.11 $-0.01$ 1819.03 $-0.02$ $2664.69$ $-2.0$ #36479.11 $-0.01$ $1819.05$ $0.00$ $2663.05$ $-3.7$ #38479.12 $0.00$ $1819.05$ $0.00$ $2662.57$ $-4.2$ #39479.11 $-0.01$ $1819.03$ $-0.02$ $2661.90$ $-4.8$ #40479.12 $0.00$ $1819.05$ $0.00$ $2662.48$ $-4.3$ #41479.12 $0.00$ $1819.05$ $0.00$ $2665.24$ $-1.5$ #42479.14 $0.02$ $1819.05$ $0.00$ $2665.14$ $-1.6$ #44479.13 $0.01$ $1819.07$ $0.02$ $2665.14$ $-1.6$ #44479.13 $0.01$ $1819.07$ $0.02$ $2665.14$ $-1.6$ #44479.13 $0.01$ $1819.06$ $0.01$ $2665.14$ $-2.1$ #45 $479.13$ $0.01$ $1819.06$ $0.03$ $2666.37$ $-0.4$ #46 $479.13$ $0.01$ $1819.06$ $0.03$ $2667.85$ $1.00$ #51 $479.13$ $0.01$ $1819.05$ $0.00$ $2667.75$ $0.7$ #52 $479.13$ $0.01$	#31	479. 11	-0.01	1819. 07	0. 02	2663. 47	-3. 31
479 $11$ $-0.01$ $1819.04$ $-0.01$ $2664.48$ $-2.3$ #34 $479.10$ $-0.02$ $1819.05$ $0.00$ $2664.48$ $-1.9$ #35 $479.10$ $-0.02$ $1819.03$ $-0.04$ $2663.48$ $-3.3$ #37 $479.11$ $-0.01$ $1819.01$ $-0.04$ $2663.48$ $-3.3$ #37 $479.11$ $-0.01$ $1819.05$ $0.00$ $2662.57$ $-4.2$ #38 $479.12$ $0.00$ $1819.05$ $0.00$ $2662.48$ $-4.3$ #40 $479.12$ $0.00$ $1819.05$ $0.00$ $2662.48$ $-4.3$ #41 $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-4.43$ #41 $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-4.3$ #41 $479.13$ $0.01$ $1819.05$ $0.00$ $2665.14$ $-1.6$ #42 $479.13$ $0.01$ $1819.07$ $0.02$ $2664.64$ $-2.1$ #44 $479.13$ $0.01$ $1819.07$ $0.02$ $2664.64$ $-2.1$ #44 $479.13$ $0.01$ $1819.07$ $0.02$ $2664.64$ $-2.1$ #47 $479.14$ $0.02$ $1819.06$ $0.01$ $2665.14$ $-1.6$ #44 $479.13$ $0.01$ $1819.06$ $0.01$ $2667.14$ $0.3$ #47 $479.14$ $0.02$ $1819.08$ $0.03$ $2666.37$ $-0.4$ #50 $479.13$ $0.01$ $1819.05$ $0.00$ $2667.55$ $0.7$ #	#32	479 11	-0 01	1819 05	0 00	2663 61	-3.17
3.3 $47.5$ $11$ $-0.01$ $1012.04$ $-0.01$ $2054.48$ $-2.3$ $#34$ $479.10$ $-0.02$ $1819.05$ $0.00$ $2664.84$ $-1.9$ $#35$ $479.10$ $-0.02$ $1819.05$ $0.00$ $2664.69$ $-2.0$ $#36$ $479.11$ $-0.01$ $1819.05$ $0.00$ $2663.05$ $-3.7$ $#38$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.57$ $-4.2$ $#39$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.48$ $-4.3$ $#44$ $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-4.3$ $#41$ $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-1.5$ $#44$ $479.13$ $0.01$ $1819.05$ $0.00$ $2665.14$ $-1.5$ $#44$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.14$ $-1.7$ $#44$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.164$ $-2.1$ $#44$ $479.13$ $0.01$ $1819.06$ $0.03$ $2666.37$ $-0.4$ $#44$ $479.13$ $0.01$ $1819.06$ $0.03$ $2667.14$ $0.3$ $#45$ $479.13$ $0.01$ $1819.06$ $0.03$ $2667.55$ $0.7$ $#51$ $479.13$ $0.01$ $1819.05$ $0.00$ <td< td=""><td>#77</td><td>470 44</td><td>-0.01</td><td>4040 04</td><td>-0.00</td><td>2664 40</td><td>-2 70</td></td<>	#77	470 44	-0.01	4040 04	-0.00	2664 40	-2 70
3.4 $4.79.16$ $-0.62$ $1819.65$ $0.60$ $2664.64$ $-1.9$ $3.35$ $479.10$ $-0.62$ $1819.03$ $-0.62$ $2664.69$ $-2.66$ $3.37$ $479.11$ $-0.61$ $1819.01$ $-0.64$ $2663.48$ $-3.3$ $3.37$ $479.11$ $-0.01$ $1819.05$ $0.00$ $2663.05$ $-3.7$ $438$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.57$ $-4.2$ $439$ $479.12$ $0.00$ $1819.03$ $-0.02$ $2661.90$ $-4.8$ $440$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.49$ $-4.3$ $441$ $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-1.5$ $442$ $479.14$ $0.02$ $1819.05$ $0.00$ $2664.56$ $-2.2$ $443$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.14$ $-1.6$ $444$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.62$ $-3.1$ $444$ $479.13$ $0.01$ $1819.02$ $-0.03$ $2666.37$ $-0.4$ $444$ $479.13$ $0.01$ $1819.08$ $0.03$ $2666.37$ $-0.4$ $444$ $479.12$ $0.00$ $1819.08$ $0.03$ $2666.37$ $-0.4$ $444$ $479.13$ $0.01$ $1819.08$ $0.03$ $2666.37$ $-0.4$ $444$ $479.12$ $0.00$ $1819.08$ $0.03$ $2666.37$ $-0.4$ $444$ $479.12$ $0.00$ $1819.08$ $0.03$	<b>د</b> د <del>۳</del>	473.11	-0.01	1013.04	-0.01	2004.48	-2. 20
#35 $479.10$ $-0.02$ $1019.03$ $-0.02$ $2664.69$ $-2.0$ $#36$ $479.11$ $-0.01$ $1819.01$ $-0.04$ $2663.48$ $-3.3$ $#37$ $479.11$ $-0.01$ $1819.05$ $0.00$ $2663.05$ $-3.7$ $#38$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.57$ $-4.2$ $#39$ $479.11$ $-0.01$ $1819.03$ $-0.02$ $2661.90$ $-4.8$ $#40$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.48$ $-4.3$ $#41$ $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-1.5$ $#42$ $479.14$ $0.02$ $1819.05$ $0.00$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.07$ $0.02$ $2664.64$ $-2.1$ $#44$ $479.13$ $0.01$ $1819.07$ $0.02$ $2666.37$ $-9.4$ $#44$ $479.13$ $0.01$ $1819.06$ $0.01$ $2667.14$ $0.3$ $#47$ $479.14$ $0.02$ $1819.08$ $0.03$ $2666.37$ $-9.4$ $#44$ $479.12$ $0.00$ $1819.08$ $0.03$ $2666.37$ $-9.4$ $#44$ $479.12$ $0.00$ $1819.08$ $0.03$ $2666.37$ $-9.4$ $#50$ $479.13$ $0.01$ $1819.05$ $0.00$ $2667.55$ $0.7$ $#51$ $479.13$ $0.01$ $1819.05$ $0.00$ $2667.55$	#34	479. 10	-0.02	1819. 05	0.00	2664.84	-1. 94
#36 $479.11$ $-0.01$ $1819.01$ $-0.04$ $2663.48$ $-3.3$ $#37$ $479.11$ $-0.01$ $1819.05$ $0.00$ $2663.05$ $-3.7$ $#38$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.57$ $-4.2$ $#39$ $479.12$ $0.00$ $1819.03$ $-0.02$ $2661.90$ $-4.8$ $#40$ $479.12$ $0.00$ $1819.03$ $-0.02$ $2665.24$ $-4.3$ $#41$ $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-1.5$ $#42$ $479.14$ $0.02$ $1819.05$ $0.00$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.04$ $-0.01$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.07$ $0.02$ $2664.56$ $-2.2$ $#43$ $479.13$ $0.01$ $1819.07$ $0.02$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.07$ $0.02$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.07$ $0.02$ $2667.14$ $0.3$ $#46$ $479.13$ $0.01$ $1819.08$ $0.03$ $2667.14$ $0.3$ $#47$ $479.12$ $0.00$ $1819.08$ $0.03$ $2667.14$ $0.3$ $#47$ $479.13$ $0.01$ $1819.03$ $-0.02$ $2667.75$ $0.7$ $#51$ $479.13$ $0.01$ $1819.05$ $0.00$ $2667.55$ $0.7$ $#55$ $479.13$ $0.01$ $1819.07$ $0.02$ $2667.55$ <td>#35</td> <td>479.10</td> <td>-0.02</td> <td>1819. 03</td> <td>-0.02</td> <td>2664. 69</td> <td>-2.09</td>	#35	479.10	-0.02	1819. 03	-0.02	2664. 69	-2.09
#37479.11 $-0.01$ 1819.05 $0.00$ $2663.05$ $-3.7$ #38479.12 $0.00$ 1819.05 $0.00$ $2662.57$ $-4.2$ #39479.11 $-0.01$ 1819.03 $-0.02$ $2661.90$ $-4.8$ #40479.12 $0.00$ 1819.04 $-0.01$ $2662.48$ $-4.3$ #41479.12 $0.00$ 1819.05 $0.00$ $2665.24$ $-1.5$ #42479.14 $0.02$ 1819.05 $0.00$ $2665.24$ $-1.5$ #44479.13 $0.01$ 1819.07 $0.02$ $2664.56$ $-2.2$ #43479.13 $0.01$ 1819.07 $0.02$ $2664.64$ $-2.1$ #44479.13 $0.01$ 1819.07 $0.02$ $2666.36.62$ $-3.1$ #45479.13 $0.01$ 1819.02 $-0.03$ $2665.00$ $-1.7$ #46479.13 $0.01$ 1819.02 $-0.03$ $2666.37$ $-0.4$ #47479.14 $0.02$ 1819.08 $0.03$ $2666.37$ $-0.4$ #47479.12 $0.00$ 1819.08 $0.03$ $2667.14$ $0.3$ #49 $479.12$ $0.00$ 1819.08 $0.03$ $2667.15$ $1.0$ #50 $479.13$ $0.01$ 1819.05 $0.00$ $2667.55$ $0.7$ #51 $479.13$ $0.01$ 1819.05 $0.00$ $2668.76$ $1.9$ #54 $479.13$ $0.01$ 1819.07 $0.02$ $2668.56$ $1.7$ #55 $479.13$ $0.01$ 1819.05 $0$	<b>#36</b>	479. 11	-0.01	1819. 01	-0. 04	2663. 48	-3. 30
438 $479.12$ $0.00$ $1819.05$ $0.00$ $2662.57$ $-4.2$ $#39$ $479.11$ $-0.01$ $1819.03$ $-0.02$ $2661.90$ $-4.8$ $#40$ $479.12$ $0.00$ $1819.05$ $0.00$ $2662.54$ $-4.3$ $#41$ $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-1.5$ $#42$ $479.14$ $0.02$ $1819.05$ $0.00$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.04$ $-0.01$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.14$ $-1.6$ $#44$ $479.13$ $0.01$ $1819.07$ $0.02$ $2665.14$ $-2.1$ $#44$ $479.13$ $0.01$ $1819.07$ $0.02$ $2665.14$ $-2.1$ $#44$ $479.13$ $0.01$ $1819.07$ $0.02$ $2666.362$ $-3.1$ $#44$ $479.13$ $0.01$ $1819.02$ $-0.03$ $2666.37$ $-0.4$ $#44$ $479.12$ $0.00$ $1819.08$ $0.03$ $2666.37$ $-0.4$ $#44$ $479.12$ $0.00$ $1819.08$ $0.03$ $2667.14$ $0.3$ $#49$ $479.12$ $0.00$ $1819.03$ $-0.01$ $2666.19$ $-0.5$ $#50$ $479.13$ $0.01$ $1819.05$ $0.00$ $2667.55$ $0.7$ $#51$ $479.13$ $0.01$ $1819.05$ $0.00$ $2667.55$ $0.7$ $#55$ $479.13$ $0.01$ $1819.05$ $0.00$ $2667.56$ </td <td><b>#37</b></td> <td>479.11</td> <td>-0.01</td> <td>1819.05</td> <td>0, 00</td> <td>2663.05</td> <td>-3. 73</td>	<b>#37</b>	479.11	-0.01	1819.05	0, 00	2663.05	-3. 73
#39       479.11       -0.01       1819.03       -0.02       2661.90       -4.8         #40       479.12       0.00       1819.03       -0.02       2661.90       -4.8         #41       479.12       0.00       1819.05       0.00       2665.24       -1.5         #42       479.14       0.02       1819.05       0.00       2665.14       -1.6         #43       479.13       0.01       1819.06       0.01       2665.14       -1.6         #44       479.13       0.01       1819.07       0.02       2664.64       -2.1         #45       479.13       0.01       1819.07       0.02       2665.00       -1.7         #46       479.13       0.01       1819.06       0.01       2665.14       -0.4         #46       479.12       0.00       1819.07       0.02       2666.37       -0.4         #48       479.12       0.00       1819.08       0.03       2665.14       0.3         #47       479.12       0.00       1819.08       0.03       2667.14       0.3         #49       479.12       0.00       1819.03       -0.01       2667.14       0.3         #50       479	#7P	479 12	0 00	1819 05	0 00	2662 57	-4 21
$x_{3.5}$ $x_{7.5}$ $x_{7.7}$ <td># 3 O</td> <td>ATO 44</td> <td>0.00</td> <td>1017.00</td> <td>0,00</td> <td>2002. 31</td> <td></td>	# 3 O	ATO 44	0.00	1017.00	0,00	2002. 31	
440       479.12       0.00       1819.04       -0.01       2662.49       -4.3 $441$ 479.12       0.00       1819.05       0.00       2665.24       -1.5 $442$ 479.14       0.02       1819.05       0.00       2664.56       -2.2 $443$ 479.13       0.01       1819.04       -0.01       2665.14       -1.6 $444$ 479.13       0.01       1819.06       0.01       2663.62       -3.1 $445$ 479.13       0.01       1819.07       0.02       2664.64       -2.1 $446$ 479.13       0.01       1819.02       -0.03       2665.00       -1.7 $444$ 479.14       0.02       1819.08       0.03       2666.37       -0.4 $444$ 479.12       0.00       1819.06       0.01       2667.14       0.3 $449$ 479.12       0.00       1819.03       -0.02       2667.75       0.9 $451$ 479.13       0.01       1819.03       -0.01       2666.19       -0.5 $452$ 479.13       0.01       1819.05       0.00       2667.55       0.7	***	479.11	-0.01	1013.03	-0.02	2001. 90	-4.88
411 $479.12$ $0.00$ $1819.05$ $0.00$ $2665.24$ $-1.5$ $#42$ $479.14$ $0.02$ $1819.05$ $0.00$ $2664.56$ $-2.2$ $#43$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.14$ $-1.6$ $#44$ $479.14$ $0.02$ $1819.06$ $0.01$ $2665.162$ $-3.1$ $#45$ $479.13$ $0.01$ $1819.06$ $0.01$ $2665.00$ $-1.7$ $#46$ $479.13$ $0.01$ $1819.02$ $-0.03$ $2665.00$ $-1.7$ $#47$ $479.14$ $0.02$ $1819.08$ $0.03$ $2666.37$ $-0.4$ $#48$ $479.12$ $0.00$ $1819.08$ $0.03$ $2667.85$ $1.0$ $#49$ $479.12$ $0.00$ $1819.08$ $0.03$ $2667.85$ $1.0$ $#50$ $479.13$ $0.01$ $1819.03$ $-0.02$ $2667.55$ $0.7$ $#51$ $479.13$ $0.01$ $1819.05$ $0.00$ $2667.55$ $0.7$ $#55$ $479.13$	#4Ø	479. 12	0.00	1819. 04	-0.01	2662.48	-4.30
#42       479.14       0.02       1819.05       0.00       2664.56 $-2.2$ #43       479.13       0.01       1819.04 $-0.01$ 2665.14 $-1.6$ #44       479.13       0.01       1819.06       0.01       2665.62 $-3.1$ #45       479.13       0.01       1819.07       0.02       2664.64 $-2.1$ #46       479.13       0.01       1819.07       0.02       2665.00 $-1.7$ #46       479.13       0.01       1819.08       0.03       2665.00 $-1.7$ #47       479.14       0.02       1819.08       0.03       2666.37 $-0.4$ #48       479.12       0.00       1819.08       0.01       2667.14       0.3         #49       479.12       0.00       1819.08       0.03       2667.85       1.0         #50       479.13       0.01       1819.03 $-0.02$ 2667.75       0.9         #51       479.13       0.01       1819.05       0.00       2667.55       0.7         #52       479.12       0.00       1819.05       0.00       2668.76       1.9         #54 <td>#41</td> <td>479. 12</td> <td>0.00</td> <td>1819. 05</td> <td>0.00</td> <td>2665. 24</td> <td>-1. 54</td>	#41	479. 12	0.00	1819. 05	0.00	2665. 24	-1. 54
111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       1111       111       111	#42	479 14	0 02	1819 05	0 00	2664 56	-2.22
W143       479.14       0.02       1819.06       0.01       2663.62       -3.1         W44       479.13       0.01       1819.06       0.01       2663.62       -3.1         W45       479.13       0.01       1819.07       0.02       2664.64       -2.1         W46       479.13       0.01       1819.02       -0.03       2665.00       -1.7         W47       479.14       0.02       1819.08       0.03       2665.00       -1.7         W47       479.12       0.00       1819.06       0.01       2667.14       0.3         W49       479.12       0.00       1819.08       0.03       2667.85       1.0         W50       479.13       0.01       1819.03       -0.02       2667.75       0.9         W51       479.13       0.01       1819.04       -0.01       2666.19       -0.5         W52       479.12       0.00       1819.05       0.00       2667.55       0.7         W52       479.11       -0.01       1819.07       0.02       2668.56       1.7         W54       479.13       0.01       1819.07       0.02       2668.56       1.7         W54       479.1	WA7	470 47	0.04	1010 04	-0.00	2665 44	_4 64
#44       479.14       0.02       1819.06       0.01       2663.62       -3.1         #45       479.13       0.01       1819.07       0.02       2664.64       -2.1         #46       479.13       0.01       1819.07       0.02       2665.00       -1.7         #47       479.14       0.02       1819.08       0.03       2665.37       -0.4         #48       479.12       0.00       1819.08       0.03       2667.14       0.3         #49       479.12       0.00       1819.08       0.03       2667.05       1.0         #50       479.13       0.01       1819.03       -0.02       2667.75       0.9         #51       479.13       0.01       1819.04       -0.01       2666.37       -0.5         #52       479.13       0.01       1819.04       -0.01       2667.55       0.7         #52       479.13       0.01       1819.05       0.00       2667.55       0.7         #53       479.11       -0.01       1819.07       0.02       2668.56       1.7         #54       479.13       0.01       1819.07       0.02       2667.94       1.9         #54       479.13<		473 13	0.01	1019.04	-0.01	2003.14	-1.04
#45 $479.13$ $0.01$ $1819.07$ $0.02$ $2664.64$ $-2.1$ $#46$ $479.13$ $0.01$ $1819.02$ $-0.03$ $2665.00$ $-1.7$ $#47$ $479.14$ $0.02$ $1819.02$ $-0.03$ $2666.37$ $-0.4$ $#48$ $479.12$ $0.00$ $1819.06$ $0.01$ $2667.14$ $0.3$ $#49$ $479.12$ $0.00$ $1819.06$ $0.01$ $2667.14$ $0.3$ $#49$ $479.12$ $0.00$ $1819.03$ $-0.02$ $2667.75$ $0.9$ $#50$ $479.13$ $0.01$ $1819.03$ $-0.02$ $2667.75$ $0.9$ $#51$ $479.13$ $0.01$ $1819.05$ $0.00$ $2667.55$ $0.7$ $#52$ $479.12$ $0.00$ $1819.05$ $0.00$ $2668.70$ $1.9$ $#54$ $479.13$ $0.01$ $1819.07$ $0.02$ $2668.56$ $1.7$ $#55$ $479.13$ $0.01$ $1819.07$ $0.02$ $2667.86$ $4.0$ $#57$ $479.13$	<b>#44</b>	479.14	0. 02	1819. 06	0.01	2663. 62	-3.16
#46 $479.13$ 0.01 $1819.02$ $-0.03$ $2665.00$ $-1.7$ #47 $479.14$ 0.02 $1819.08$ 0.03 $2665.00$ $-1.7$ #48 $479.12$ 0.00 $1819.08$ 0.03 $2665.00$ $-1.7$ #49 $479.12$ 0.00 $1819.06$ 0.01 $2667.14$ 0.3         #50 $479.12$ 0.00 $1819.08$ 0.03 $2667.85$ 1.0         #50 $479.13$ 0.01 $1819.03$ $-0.02$ $2667.75$ 0.9         #51 $479.13$ 0.01 $1819.05$ 0.00 $2667.55$ 0.7         #52 $479.12$ 0.00 $1819.05$ 0.00 $2667.55$ 0.7         #53 $479.11$ $-0.01$ $1819.05$ 0.00 $2668.70$ 1.9         #54 $479.13$ 0.01 $1819.07$ 0.02 $2668.56$ 1.7         #56 $479.12$ 0.00 $1819.07$ 0.02 $2667.86$ 4.0         #57 $479.13$ 0.01 $1819.05$ 0.00 $2669.9$	#45	479. 13	0.01	1819. 07	0.02	2664.64	-2.14
447 $479.14$ $0.02$ $1819.08$ $0.03$ $2666.37$ $-0.4$ $#48$ $479.12$ $0.00$ $1819.06$ $0.01$ $2667.14$ $0.3$ $#49$ $479.12$ $0.00$ $1819.08$ $0.03$ $2667.14$ $0.3$ $#50$ $479.12$ $0.00$ $1819.08$ $0.03$ $2667.85$ $1.0$ $#50$ $479.13$ $0.01$ $1819.03$ $-0.02$ $2667.75$ $0.9$ $#51$ $479.13$ $0.01$ $1819.05$ $0.00$ $2667.55$ $0.7$ $#53$ $479.11$ $-0.01$ $1819.05$ $0.00$ $2668.70$ $1.9$ $#54$ $479.13$ $0.01$ $1819.07$ $0.02$ $2668.56$ $1.7$ $#55$ $479.13$ $0.01$ $1819.07$ $0.02$ $2669.94$ $3.1$ $#56$ $479.12$ $0.00$ $1819.07$ $0.02$ $2667.86$ $4.0$ $#57$ $479.13$ $0.01$ $1819.05$ $0.00$ $2669.87$ $3.0$ $#58$ $479.11$ <	<b>#46</b>	479. 13	0.01	1819. 02	-0. 03	2665.00	-1. 78
wirr       wirz	*17	170 44	0 00	1010 00	0 97	2000 22	-0 44
#48       479.12       0.00       1819.06       0.01       2667.14       0.3         #49       479.12       0.00       1819.08       0.03       2667.85       1.0         #50       479.13       0.01       1819.03       -0.02       2667.75       0.9         #51       479.13       0.01       1819.04       -0.01       2666.19       -0.5         #52       479.12       0.00       1819.05       0.00       2667.55       0.7         #53       479.11       -0.01       1819.05       0.00       2667.55       0.7         #53       479.11       -0.01       1819.07       0.02       2668.70       1.9         #54       479.13       0.01       1819.07       0.02       2668.56       1.7         #55       479.13       0.01       1819.07       0.02       2668.56       1.7         #55       479.13       0.01       1819.07       0.02       2669.94       3.1         #56       479.12       0.00       1819.07       0.02       2670.86       4.0         #57       479.13       0.01       1819.05       0.00       2669.87       3.0         #58       479.11	***	479.14	0.02	1913 08	0.05	2000. 37	-0.41
#49       479.12       0.00       1819.08       0.03       2667.85       1.0         #50       479.13       0.01       1819.03       -0.02       2667.75       0.9         #51       479.13       0.01       1819.04       -0.01       2667.55       0.7         #52       479.12       0.00       1819.05       0.00       2667.55       0.7         #53       479.11       -0.01       1819.07       0.01       2668.70       1.9         #54       479.13       0.01       1819.07       0.02       2668.56       1.7         #55       479.13       0.01       1819.07       0.02       2668.94       3.1         #56       479.13       0.01       1819.07       0.02       2668.56       1.7         #56       479.12       0.00       1819.07       0.02       2667.86       4.0         #57       479.13       0.01       1819.07       0.02       2667.86       4.0         #57       479.13       0.01       1819.05       0.00       2669.97       3.0         #58       479.11       -0.01       1819.05       0.00       2669.87       3.0         #58       479.11	<b>#48</b>	479. 12	0.00	1819. 06	0. 01	2667.14	0.36
#50       479.13       0.01       1819.03       -0.02       2667.75       0.9         #51       479.13       0.01       1819.04       -0.01       2666.19       -0.5         #52       479.12       0.00       1819.05       0.00       2667.55       0.7         #53       479.11       -0.01       1819.04       -0.01       2668.70       1.9         #54       479.13       0.01       1819.07       0.02       2668.56       1.7         #55       479.13       0.01       1819.07       0.02       2669.94       3.1         #56       479.12       0.00       1819.07       0.02       2669.94       3.1         #56       479.12       0.00       1819.07       0.02       2669.97       3.0         #57       479.13       0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2671.00       4.2         #59       479.12       0.01       1819.05       0.00       2671.00       4.2	<b>#49</b>	479. 12	0.00	1819. 08	0.03	2667.85	1. 07
#51       479.13       0.01       1819.04       -0.01       2666.19       -0.5         #52       479.12       0.00       1819.05       0.00       2667.55       0.7         #53       479.11       -0.01       1819.04       -0.01       2668.70       1.9         #54       479.13       0.01       1819.07       0.02       2668.56       1.7         #55       479.13       0.01       1819.07       0.02       2668.56       1.7         #55       479.13       0.01       1819.07       0.02       2668.94       3.1         #56       479.12       0.00       1819.07       0.02       2670.86       4.0         #57       479.13       0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2670.07       3.2	#50	479. 13	0.01	1819. 03	-0.02	2667. 75	0, 97
#52       479.12       0.00       1819.05       0.00       2667.55       0.7         #53       479.11       -0.01       1819.04       -0.01       2668.70       1.9         #54       479.13       0.01       1819.07       0.02       2668.56       1.7         #55       479.13       0.01       1819.07       0.02       2669.94       3.1         #56       479.12       0.00       1819.07       0.02       2670.86       4.0         #57       479.13       0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2670.00       4.2         #59       479.12       0.01       1819.05       0.00       2671.00       4.2	#51	479. 13	0. 01	1819. 04	-0. 01	2666. 19	-0.59
$\pi_{52}$ 479.12       0.00       1819.05       0.00       2667.55       0.7 $\#53$ 479.11       -0.01       1819.04       -0.01       2668.70       1.9 $\#54$ 479.13       0.01       1819.07       0.02       2668.56       1.7 $\#55$ 479.13       0.01       1819.07       0.02       2669.94       3.1 $\#56$ 479.12       0.00       1819.07       0.02       2670.86       4.0 $\#57$ 479.13       0.01       1819.07       0.02       2669.87       3.0 $\#58$ 479.13       0.01       1819.05       0.00       2669.87       3.0 $\#58$ 479.13       0.01       1819.05       0.00       2669.87       3.0 $\#58$ 479.11       -0.01       1819.05       0.00       2671.00       4.2 $\#59$ 479.12       0.01       1819.05       0.00       2671.00       4.2							
#53       479.11       -0.01       1619.04       -0.01       2668.70       1.9         #54       479.13       0.01       1819.07       0.02       2668.56       1.7         #55       479.13       0.01       1819.05       0.00       2669.94       3.1         #56       479.12       0.00       1819.07       0.02       2669.87       3.0         #57       479.13       0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2671.00       4.2         #58       479.11       -0.01       1819.05       0.00       2670.86       3.0	<b>#52</b>	479. 12	0.00	1819. 05	0.00	2667.55	0.77
#54       479.13       0.01       1819.07       0.02       2668.56       1.7         #55       479.13       0.01       1819.05       0.00       2669.94       3.1         #56       479.12       0.00       1819.07       0.02       2670.86       4.0         #57       479.13       0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2671.00       4.2         #59       479.11       -0.01       1819.05       0.00       2671.00       4.2	#53	479. 11	-0.01	1819. 04	-0.01	2668. 70	1. 92
#55       479.13       0.01       1819.05       0.00       2669.94       3.1         #56       479.12       0.00       1819.07       0.02       2670.86       4.0         #57       479.13       0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2670.86       4.2	#54	479.13	0. 01	1819 07	0.02	2668 56	1 78
#56       479.13       0.01       1619.05       0.00       2659.94       3.1         #56       479.12       0.00       1819.07       0.02       2670.86       4.0         #57       479.13       0.01       1819.05       0.00       2669.87       3.0         #58       479.11       -0.01       1819.05       0.00       2671.00       4.2         #59       479.12       -0.01       1819.05       0.00       2670.86       4.2	#55	479 47	0 04	1919 05	0 00	2669 94	2 16
#JO +77.12 0.00 1819.07 0.02 2670.86 4.0 #57 479.13 0.01 1819.05 0.00 2669.87 3.0 #58 479.11 -0.01 1819.05 0.00 2671.00 4.2	 452	470.40	0.01	1012 03	0.00	2007. 74 0670 oc	a. 10
#57 479.13 0.01 1819.05 0.00 2669.87 3.0 #58 479.11 −0.01 1819.05 0.00 2671.00 4.2 #59 479.12 0.00 1819.04 _0.01 2670.07 3.2	#J6	479.12	0.00	1819.07	0. 02	2670.86	4.08
#58 479.11 -0.01 1819.05 0.00 2671.00 4.2	<b>#57</b>	479. 13	0.01	1819. 05	0.00	2669. 87	3. 09
	#58	479 14	-0 01	1819 05	0 00	2671 00	4 22
жан алмата инии амачийи шина 2670-07 7 7	#00 #E0	470 40	-0.01	1013.03	0.00	2011.00	7. 66
<b>HOD HID IZ 0.00 IGLD 04 -0.01 ZOID 01 3.2</b>	707	479.12	0.00	1819.04	-0.01	2670.07	3. 29
#60 479.12 0.00 1819.06 0.01 2669.42 2.6	<b>#60</b>	479. 12	0.00	1819. 06	0.01	2669. 42	2. 64
<b>#61 479. 13 0. 01 1819. 04 −0. 01 2670. 20 3. 4</b>	#61	479. 13	0.01	1819. 04	-0.01	2670. 20	3. 42
MEAN 479, 12 1819, 03 2666, 78	MERN	479. 12		1819 05		2666. 78	
	MC EPD	0 00		0.00		2 20 20	

#### TABLE D1 STABILITY OF PEAK POSITIONS IN MCA SPECTRUM

FWHM = FULL WIDTH AT HALF MAXIMUM FWTM = FULL WIDTH AT TENTH MAXIMUM FWFM = FULL WIDTH AT FIFTIETH MAXIMUM

MEAS.	53	9 KEV PI	EAK	185	S KEV PI	EAK	PUL	SER PE	R.
NR	FINHM	FWTM	FWFM	FWHM	FWTM	FWFM	FWHM	FNTM	FWFM
	(EV)	(EV)	(EV)	(EV)	(EV)	(EV)	(EV)	(EV)	(EV)
# 1	778	1477	3101	920	1686	2242	709	1305	1700
# 2	765	1457	3057	915	1674	2218	699	1280	1673
# 3	259	1442	7094	911	1665	2296	691	1269	1654
# A	750	1414	2024	697	4640	2456	670	4077	1507
* *	700	7477	2720	093	1040	<b>ZT20</b>	679	1233	1092
# 5	103	1412	2949	895	1639	2164	681	1236	1597
<b>#6</b>	752	1415	2925	902	1639	2164	690	1252	1620
# 7	767	1453	3026	913	1673	2212	699	1282	1667
<b>₩ B</b>	770	1463	3104	916	1682	2220	702	1287	1677
# 9	768	1455	3101	912	1672	2223	698	1283	1671
#10	770	1467	7079	94.4	1692	2226	794	4007	4607
#10	112	7407	2013	914	100%	~~~0	104	1233	1007
#11	766	1454	3078	. 913	1679	2212	710	1306	1701
#12	783	1480	3100	920	1700	2226	720	1351	1703
#13	779	1470	3108	926	1691	2228	712	1303	1691
#14	774	1469	3089	922	1683	2226	710	1297	1681
#15	784	1478	7158	927	1696	2224	717	1707	1692
#4.0	007	4840	2200	074	4748	2224	770	4340	47777
#16	802	1512	3222	934	1/15	2220	136	1342	1/3/
#17	799	1508	3180	941	1718	2265	732	1337	1727
#18	803	1515	3195	940	1713	2264	738	1343	1733
<b>#19</b>	804	1511	3203	941	1721	2271	738	1343	1732
#20	804	1511	3135	937	1720	2253	737	1349	1727
404	007	4840	74 04	045	1700	2250	745	1715	1770
#21	207	1010	3794	540	1120	2230	140	1340	7120
#22	804	1512	3172	942	1722	22/3	742	1343	1732
#23	800	1502	3159	941	1716	2249	739	1335	1725
#24	792	1487	3132	932	1703	2235	733	1324	1710
#25	785	1476	3137	932	1700	2231	726	1311	1695
#26	772	1488	7086	920	1674	2211	709	1281	1660
407	760	4470	2020	997	4680	2400	697	4967	1647
₩ <b>2</b> 7	739	1430	2020	507	1002	2100	073	1201	1041
₩28	748	1411	3007	833	1643	2136	667	1230	1602
#29	734	1382	2957	888	1623	2148	623	1186	1557
#30	730	1376	2908	883	1618	2138	628	1186	1554
<b>#31</b>	740	1397	2947	891	1634	2147	634	1203	1579
472	779	1796	2967	889	1675	2161	650	1209	1581
477	770	4775	2011	007	1616	24 70	660	4200	4570
17.2.5	120	13/3	2711	002	1010	2130	662	1200	1572
#34	734	1382	2972	888	1619	2151	662	1205	1572
#35	734	1383	2934	883	1623	2137	670	1213	1580
#36	732	1376	2877	885	1616	2129	633	1187	1663
<b>#37</b>	728	1369	2860	881	1613	2116	641	1185	1543
# <b>7</b> 9	727	1769	2889	876	1608	2120	609	1165	1527
420	707	4367	2005	070	4600	24.07	574	4407	4497
433	(2)	1301	2003	010	1002	2107	534	1121	1437
#4U	727	1367	2850	880	1612	2119	560	1140	1508
幹41	746	1396	2934	891	1634	2156	712	1259	1621
#42	752	1406	2934	897	1633	2153	720	1259	1621
#47	753	1408	2969	899	1638	2144	709	1247	1693
#44	740	1700	2966	000	1671	21 49	679	1226	1596
****	742	1377	2200	070	1074	6147 0440	700	1000	1000
#45	744	1394	2957	890	1629	2142	702	1232	1586
#46	743	1392	2926	893	1627	2146	700	1229	1582
#47	745	1393	2926	891	1625	2142	685	1225	1581
#48	749	1402	2997	005	1629	2150	692	1226	1584
#40	ィッフ	4400	2203	090	4.277	2455	202	4077	4500
サイブ	102	1408	2707	878	103(	£133	683	1022	1070
#50	751	1405	2940	895	1633	2154	687	1236	1598
<b>券51</b>	758	1411	2959	900	1646	2167	704	1249	1608
#52	759	1416	7015	901	1645	2169	698	1256	1623
	100	4400	2010	005	4647	2472	607	4249	1611
903 	128	1422	2202	202	1647	2112	220	1647	1014
#54	767	1432	3058	910	1665	2190	712	1276	1647
#55	770	1411	3068	916	1667	2189	712	1282	1657
#56	780	1458	3845	918	1673	2208	714	1287	1660
		2.00					· — ·	<b>.</b>	
453		A 48-	2004	0.05	4 677	224 E	704	1704	1604
構つ了	776	1451	3064	925	16//	4413	121	1301	1004
<b>#58</b>	782	1466	3120	921	1677	2223	718	1291	1668
#59	775	1454	3079	919	1675	2222	732	1323	1713
#60	772	1448	3094	920	1671	2201	712	1284	1657
461	775	1457	7090	919	1675	2198	717	1286	1662
HOT	112	2002	2000	210	2010	s	<del>د</del> يد ،	~~~~	
MEAN	763	1435	3029	908	1660	2188	693	1264	1640
MEAN	763	1435 45	3029 98	908 19	1660 34	2188 45	693 42	1264 54	1640 62

	59	KEV PE	AK	18	5 KEV PER	ak.	PU	LSER PEA	ĸ
	FWHM	FUTM	FUFM	FWHM	FWTM	FUEM	FUHM	FWTM	FWFM
	DEV	DEV	DEV	DEV	DEV	DEV	DEV	DEV	DEV
MEAC	EPOM	EDUM	EDUM	FROM	FROM	FROM	EPOM	FROM	EDOM
ND.	MEON	COUSE	COUCE	MEON	DOUGC	PRUH	MEON	COUCE	COUSE
ants.	100	un035	unu <i>ss</i>	2005	unuss	01055	MERINI VEUS	40055	GHUSS
		<i>.</i>	~	(EV)	<u> </u>	7.	(Ev)	7.	7.
• 1	15.2	4 16%	67 78%	11 6	0 55%	2 58%	16 3	A 99%	8 97Y
2	2.2	4.50%	68 21%	6.6	0 38%	2 94%	6 3	8 47%	0 752
	-3.8	4 24%	71 592	2.6	A 282	1 977	-1 7	0 76%	0 757
	-12.0	7 222	64 222	-15 4	0.201	4 674	-47 7	-0.774	-4 742
•••	-12.8	3. 224	54. 22A	-10.4	0. 104	1. 03%	-13.7	-0.37%	-1. 31%
1 2	-9.8	2. 88%	64.85%	-1.5. 4	0. 48%	1. 78%	-11.7	-0.42%	-1. 29%
6	-10.8	3. 24%	63. 73%	-6.4	-0.30%	0, 99%	-2.7	-0.45%	-1.17%
17	4. 2	3. 94%	66. 07%	4.6	0.54%	1, 98%	6.3	0.63%	0.39%
8	7.2	4. 25%	69. 68%	7.6	0.75%	2.02%	9.3	0, 59%	0.56%
9	5.2	3.95%	69.96%	3.6	0.59%	2.68%	5.3	0.85%	0.77%
10	9. 2	3. 98%	67. 88%	5.6	0. 97%	2. 52%	11. 3	0.77%	0.63%
11	3.2	4. 15%	69. 14%	4.6	0.90%	1.98%	17.3	0. 92%	0.85%
12	20.2	3. 71%	66. 65%	11.6	1. 38%	1.85%	27.5	2. 95%	-0.44%
13	16. 2	3. 53%	67. 94%	17.6	0 19%	1, 28%	19. 3	0.41%	-0.03%
14	11. 2	4. 13%	67. 99%	13.6	0.15%	1. 63%	17. 3	0. 23%	-0.34%
15	21. 2	3. 43%	69. 55%	18.6	0.38%	0.99%	24. 3	0. 01%	-0.67%
16	39. 2	3. 44%	69.11%	25, 6	0.74%	0, 32%	43 3	0. 04%	-0. 66%
17	36.2	3.55%	67 572	72 6	0.17%	1 322	797	0 212	-0 69%
18	40 2	7 849	67 494	21 C	-0 022	1 707	45 7	-0 167	-1 162
10	44 0	3. 31/4 7 444	67 COV	34.0	0. 044	4 50%	7J. 3 AE 7	-0.10%	-1 -10%
17	41.2	J. 117	or. 03%	<u>عد</u> 6	0. 33%	1 39%	40.3	-0.16%	-1. 21/
20	41. 2	3. 11%	64. 13%	28.6	0. 71%	1. 21%	44. 3	-0.24%	-1.36%
21	40.2	3. 17%	66. 91%	36. 6	-0.14%	0, 58%	52.3	-0. 95%	-1. 91%
22	41.2	3.18%	66. 07%	33.6	0. 30%	1.662	49 3	-0.69%	-1. 74%
27	77 2	7 017	66 227	72 6	0 05Y	A CAY	46 7	-0 997	-1 749
24	20.2	3.014	CC 4CV	22.0	0.00%	0.007	40.3	0.00%	-4 001
44 05	27.2	3. 014	00. 40%	23.0	0. 23%	0. 344	40.3	-0. 90%	-1. 00%
25	22.2	3. 16%	68. 21%	23.6	0.08%	0. 76%	2.2	-0.92%	-1. 72%
26	9.2	5. 75%	68. 26%	11.6	-0. 17%	1. 16%	16. 3	-0.87%	-1.45%
27	-3.8	3. 37%	67. 93%	-1.4	-0. 07%	1. 54%	0.3	0. 31%	0.04%
28	-14.8	3. 50%	69. 22%	-9.4	0. 27%	0, 95%	-25. 7	1. 19%	1. 10%
29	-28.8	3. 30%	69. 58%	-20.4	0. 28%	1. 82%	-69. 7	4. 45%	5. 20%
30	-32. 8	3. 42%	67. 68%	-25.4	0. 54%	1, 92%	-64. 7	3. 62%	4. 16%
74	<u></u>	3 501	C7 C74	-47.4	0.60%	4 434		A A A *	4 074
31	-22.8	3. 38%	67. 634	-17.4	0.02%	1. 43%	-36.7	9. 11%	9.034
32	-23. 8	3. 64%	69. 00%	-19.4	0.91%	2. 32%	-42.7	2.05%	జి. చెరిగ
33	-32.8	3. 34%	67.85%	-26.4	0. 53%	1. 65%	-30.7	-0.05%	-0.04%
34	-28. 8	3.30%	70.44%	-20.4	0.03%	1 96%	-30.7	-0.13%	-0.04%
35	~28. 8	3.38%	68. 26%	-25.4	0.85%	1.87%	-22. 7	-0.67%	-0.74%
36	-30.8	3. 14%	65. 44%	-23. 4	0. 19%	1, 26%	-59.7	2. 88%	10.59%
37	-34.8	3. 18%	65. 37%	-27.4	0.45%	1, 10%	-51. 7	1. 43%	1.33%
28	-75 8	3 322	67 27%	-72 4	0 71%	1 87%	-87 7	4 96%	5 54%
20	-75 0	7 474	65 007	-70 4	0 177	1 01 2	-150 7	15 797	19 002
10		3. 2. 6	55.00A		0. 217	4 700	-170.7	44 602	17 754
-+0	-30.8	3.116	00.014	-20.4	0. 30%	1. 30%	-132.1	11.076	13.30% 
41	-16.8	2. 67%	60.00%	-17.4	0.02%	1. 66%	19.3	-2. 98%	-4.17%
42	-10.8	2. 58%	64. 23%	-11.4	-0.12%	1.03%	27. 3	-4, 06%	-5. 23%
43	-9.8	2. 59%	65. 97%	-9.4	-0. 03%	0.39%	16. 3	-3.81%	-4. 83%
44	-13.8	2.48%	66. 69%	-10.4	-0. 17%	0.73%	-13.7	-0. 93%	-1. 68%
45	-18.8	2.80%	67, 30%	-18.4	0.42%	1, 31%	9.3	-3. 71%	-4. 90%
46	-19.8	2. 79%	65. 77%	-15.4	-0. 04%	1. 16%	7.3	-3. 67%	-4.87%
		<b>_</b>							o
47	-17.8	2. 59%	65. 32%	-17.4	0.06%	1, 19%	-7. 7	-1.88%	-2.85%
48	-13.8	2. 70%	67. 64%	-13. 4	-0.20%	1. 12%	-10.7	-1. 37%	-2. 24%
49	-10.8	2. 73%	66. 19%	-10.4	0. 02%	1. 01%	-7.7	-1. 24%	-1. 80%
50	-11.8	2.65%	64, 79%	-13. 4	0. 11%	1. 31%	-5.7	-1. 29%	-2. 09%
51	-4.8	2. 13%	64. 32%	-8.4	0. 34%	1. 35%	11. 3	-2. 66%	-3. 86%
		_	· - ·						o
52	-4.8	2. 49%	67. 43%	-7.4	0.17%	1.33%	5.3	-1.27%	-2.12%
53	-4.8	2. 93%	68. 43%	-3.4	-0.15%	1. 02%	0.3	-1.11%	-1. 364
54	4.2	2. 44%	67. 82%	1.6	0.39%	1. 30%	19.3	-1.67%	-2.65%
55	7.2	0.54%	67. 72%	7.6	-0.15%	0.59%	19. 3	-1. 21%	-2.04%
56	17. 2	2. 56%	64. 33%	9.6	-0.01%	1. 24%	21. 3	-1. 10%	-2.14%
c-7	47.0	0 504	66 00%	AG C	-0 577	0 00V	28.2	-1 00%	-1 692
37	13.2	2. 39%	66. 20%	10.6	-0. 334	0.00A 1 60V	20.3	-1 75%	-2 012
38	19.2	2.86%	67. 94%	12.0	-0.10%	1 224	20.0	-0.049	-1 40
59	12.2	2. 94%	67. 23%	10.6	0. 00%	1. ///	37.5	-0. 04%	-1. 47A
60	9. 2	2. 91%	68, 70%	11. 6	-0.35%	0.70%	19.3	-1.06%	-2. 64%
								4 0 482	

MEAS. NR	TOTAL COUNT. RATE (CPS)	PULSER COUNT RATE (CPS)	(EXT.) DEV. FROM MEAN	PULSER COUNT. RATE (CPS)	(MCA) DEV. FROM MEAN	59 KEV COUNT. RATE (CPS)	PEAK DEV. FROM MEAN	185 KEV COUNT. PATE (CPS)	PEAK +> DEV FROM MEAN
# 1	815	139. 98	-0. 58%	140. 02	-0. 71%	134. 38	0. 13%	8, 885	-0.43%
# 2	815	140.10	-0.49%	140.14	-0.62%	134. 28	0.06%	8. 922	-0.02%
# 4	815	140.18	-0.437	140.29	-0.52%	134.11	-0.07% 0.182	8,926	-0.03%
# 5	815	140. 52	-0.19%	140.59	-0.30%	134. 31	0.08%	8, 914	-0.11%
#6	815	140.56	-0.16%	140.63	-0.27%	134. 49	0. 22%	8. 910	<b>-0.16</b> %
# 7	815	140.43	-0.25%	140.61	-0. 29%	134.35	0.11%	8.918	-0.06%
# G	815	140.57	-0.16%	140.63	-0.28%	134.48	0.21%	8.917	-0.07% -0.262
#10	815	140.60	-0. 14%	140.67	-0. 25%	134. 52	0. 24%	8. 907	-0. 19%
#11	756	140. 75	-0. 03%	140. 88	-0. 10%	134. 39	0.14%	8, 929	0, 06%
#12	756	140.61	-0.13%	140.72	-0.21%	134.84	0.48%	8. 916	-0.09%
村工ご 毎14	756	140.73	-0.04%	140.84	-0.12%	134.40	0.19%	8.892	-0.36% 0.222
#15	756	140, 66	-0.09%	140.84	-0.13%	134.78	0. 43%	8, 924	0. 00%
#16	756	140.86	0. 05%	140.97	-0. 04%	134. 53	0. 24%	8, 895	-0. 32%
#17	756	140.79	0.00%	140.91	-0. 08%	134. 33	0.10%	8. 933	0. 10%
#18	756	140.73	-0.04%	140.88	-0.10%	134.35	0. 11%	8.934	0. 11%
#20 #20	756	140.67	-0. 08%	140.88	-0 13%	134. 14	0. 14%	8. 934	-6. 68% 9. 11%
#21	723	140.85	0. 04%	141.03	0.01%	134. 49	0. 21%	8. 912	-0. 13%
サビビ 持つて	723	140.93	0.107	141.01	-0.01%	134.04	0.20%	8,924 8 942	0.00% 0.20%
#24	723	141.00	0. 15%	141.17	0 11%	134. 50	0.22%	8. 923	-0. 00%
#25	723	140. 99	0. 14%	141. 16	0. 10%	134. 23	0. 02%	8. 926	0. 02%
#26	723	141.15	0. 26%	141.36	0. 25%	134.25	0.04%	8. 927	0. 04%
π∠( #23	723	141 36	0.417	141.40	0.317 0 702	133.93	-0.20%	8. 933 8 971	0.10%
#29	723	141. 42	0. 45%	141 59	0.40%	133. 55	-0. 49%	8. 920	-0. 04%
#30	723	141. 39	0. 43%	141. 51	0.35%	133. 56	-0. 48%	8. 906	-0. 20%
#31 #32	688	141.23	0.32% 0.72%	141.51	0.35% 0.75%	133.60	-0.45%	8. 927	0. 04% 0. 20%
#33	688	141.23	0.35%	141.52	0.33%	133.63	-0.44%	8.931	0.02%
#34	687	141. 20	0. 29%	141. 46	0.32%	133.72	-0.36%	8. 923	-0. 00%
#35	688	- +>	-	141. 49	0.34%	133. 57	-0. 47%	8. 933	0. 10X
#36	688	-	-	141.65	0.45%	133.71	-0.37%	8.923	-0.01%
#38	688		-	141.74	0.51%	133.85	-0.27%	8.942	0. 21%
#39	688	-	-	141.77	0. 54%	133. 75	-0. 34%	8, 937	0.15%
#40	688	-	-	141.67	0.46%	133. 65	-0. 41%	8. 932	0. 10%
#41	687	141. 14	0.25%	141.36	0.24%	133. 87	-0.25%	8. 925	0. 02%
#42 #47	688	141.31	0.37%	141.61	0.42%	133.95	-0.19%	8. 939	0.17%
#44	688	141 46	0. 327	141.50	0.347	133.03	-0.20%	8 916	-0.127
#45	688	141.28	0. 35%	141.55	0.37%	133.80	-0. 30%	8, 924	0. 00%
#46	688	141. 21	0.30%	141.45	0. 31%	133. 84	-0.27%	8. 927	0. 04%
#47	814	140. 88	0. 06%	140. 95	-0. 05%	133. 49	-0. 53%	8. 913	-0.12%
#48	814	140, 68	-0. 08%	140.84	-0. 13%	133. 43	-0. 58%	8, 924	0.00%
#49 #50	814	140,60	-0.13%	140.69	-0.23%	133.66	-0. 41%	8, 937	0.15%
#51	814 814	140. 73	0. 14%	140.99	-0. 02%	133. 65 133. 75	-0. 33%	8. 924 8. 908	-0. 17%
#52	687	140. 71	-0. 06%	140. 93	-0.06%	133. 84	-0. 27%	8, 921	-0. 03%
#53 #54	687	140.54	-0.17%	140.77	-0.18%	133.93	-0. 20%	8. 933	0.11%
#34 #55	688 688	140.60	-0.10% -0.26%	140.89 140 69	-0.09% -0.24%	130.22 175 12	0 84% 0 68%	8, 925 8 974	0.02% 0.14%
#56	688	140. 28	-0. 36%	140.55	-0. 33%	135. 22	0. 76%	8. 931	0. 03%
#57	756	140. 42	-0. 26%	140.58	-0.31%	135. 09	0. 66%	8. 925	0. 02%
#58	756	148.24	-0.39%	140.38	-0.45%	135.08	0.65%	8, 940	0.18%
#37 #60	735	140.36	-0.30% -0.27%	140.49 140 64	-0 37%	174 99	0 74%	8, 910 8 979	-0.10% 0.17%
#61	756	140.38	-0. 29%	140. 55	-0.33%	135. 08	0. 65%	8. 938	0.16%
	PD	140.79		141.02		134.20		8. 924	
	r.r.	6.57		0.43		0. JI		0. 013	

TABLE D4 STABILITY OF COUNTING RATES

*) 185 KEV GAMMA COUNTING RATES ARE GIVEN PER % 2350 ABUNDANCE. ABUNDANCE VALUES FOR REFERENCE MATERIALS ARE TAKEN FROM EC-NRM-171 CERTIFICATE, FOR UF6 3.5001 % 2350 AND MATRIX CORRECTION FACTOR OF 1.0231 IS ASSUMED. WALL THICKNESS CORRECTION IS MADE ACCORDING TO VALUES MERSURED AT KFK.

+> DUE TO PRINTER FAULT EXTERNALLY MEASURED PULSER COUNTING RATES ARE NOT RECORDED.

Appendix E

Certified and specified data for the Reference Samples EC-NRM-171 and the REIMEP-86 UF₆ sample.

# Certified Nuclear Reference Material Certificate of Analysis

EC CERTIFIED NUCLEAR REFERENCE MATERIAL 171 ²³⁵U Isotope Abundance Certified Reference Material (U₃O₈) for Gamma-Spectrometry.

## ²³⁵U/U Abundances

Material Atom percent Mass percent Uncertainties

031	0.3206	0.3166	+ 0.0002	
071	0.7209	0.7119	+ 0.0005	
194	1.9664	1.9420	+ 0.0014	
295	2.9857	2.9492	+ 0.0021	
446	4.5168	4.4623	+ 0.0032	

The indicated uncertainties, valid for the atom and mass abundances, correspond to a confidence level of 95%. This certificate applies to the reference samples:

CBNM 031 -CBNM 071 -CBNM 194 -CBNM 295 -CBNM 446 -

The Certified Nuclear Reference Material has been prepared in cooperation with the National Bureau of Standards (NBS), Gaithersburg, MD, USA. <u>EC Certified Nuclear Reference</u> <u>Material 171 corresponds to NBS Standard Reference</u> <u>Material 969</u>

Commission of the European Communities Joint Research Centre Geel Establishment (CBNM)



## EC Nuclear Reference Material Set 171 ²³⁵Uranium Isotope Abundance certified Reference Material for Gamma Spectrometry

Container N*+	CBNM 194 - 008	Bottom thickness 1	2.001 mm	
Tot Mass U.O.	$(200.1 \pm 0.2)q$	2	1.996	
A :	54.20 mm	3	2,000	
В.	11.98	4	2 003	
C :_	30.00	5	1.998	
ów: _	69.88	5	1.996	
		7	1.996	
d :_	1_983	8	1.996	
н:_	88,99	9	1,978	
h :_	.87_00	10	1.984	
j:_	1.02	11	1.980	
¢ _X :_	70.03	12	1.978	
dy:_	.66_0	13	1.995	
ø _{z: _}	79.97			
D.	52 77	x _o	1,993	
Ε.	20.79	5,,,	0.009	
£ :_	<			
· · ·		x.	1.983	
			0.007	
		~ <b>.</b> .		
I				i
	В	Ŕ		
			$\mathcal{S}$	
			¥⁄A –	!
			¥A	
11-11-11-1	A	Ę	¥////	
111. 844		l l	Visili	Bille
lin her starte			Si filin	MANIA.
<u>IIIIIXIIii</u>		. 1	Yuuuu	
¢w			j.	I ,
			Lanno	- tom
		1-6	3. A	
1		ø	8	
				-+-
ļ	B		$\mathcal{A}$	- `
	N †			411

o dimensions and U.O. mass <u>-</u>







С

## EC Nuclear Reference Material Set 171 ²³⁵Uranium Isotope Abundance certified Reference Material for Gamma Spectrometry

Container N*: <u>CBNM 295 - 008</u>	Bottom thickness : 1 _1.980 mm	
lot. Mass $U_3O_8: (200.1 \pm 0.2)g$	2 1.981	
A : <u>54.20 ma</u>	3 1.500	
B : <u>11.98</u>	4 <u>1.391</u>	
C : <u>79.99</u>	5	
e ^M : <u>07.89</u>	7 1 990	
d : <u>1,988</u>	/	
H : <u>88,98</u>	0 1 990	
h : <u>87.00</u>	9 <u>1,550</u>	
j : <u>1.02</u>	11 1 005	
Øx:70_04	11	
dy:66.0	12 1.901	
Ø7: 79.97	13 1.291	
-	x., <u>1.986</u>	
D : <u>52.80</u>	5, 0.004	
E :20_82		
f :		
	x _s <u>1.988</u>	
	<u>s</u> <u>0.002</u>	
A A		
h		

С

н

j

mmn øу

¢x

øz

Can dimensions and U₃0₈ mass





#### EC Nuclear Reference Material Set 171 235 Uranium Isotope Abundance certified Reference Material for Gamma Spectrometry

Can dimensions and  $U_3 O_8$  mass

## NDA-U₃O₈ RM programme.



D

App. 6

UF6 REIMEP 1986

### Dimensions in mm

UF₆ sample for NDA (UF₆ weight 80±1g)



- */ height for 99.9 % infinite thickness for 185.7 keV γ-line and radiation perpendicular to the sample surface
- ++/ height of used amount UF6 in solid state equivalent to a surface density of 8,2.± 0,4 g cm⁻² (at 25°C)

## **Calibration Disks**



*/ materials identical with those used for UF6 test samples and reference samples EC NRM 171 respectively

#### App. NDA-1

#### <u>UF₆ IMEP 1986</u>

#### FURTHER INFORMATION

#### Measurement of 235U atomic isotope abundance by Gamma Spectrometry and

#### using EC NRM 171 for calibrations (see also App. NDA-2).

#### 1) <u>UF₆ Sample</u>

- The <u>impurity content</u> of the UF₆ was determined by SSMS (spark source mass spectrometry) after conversion to  $U_30_8$  and found to be less than 200 ±  $100 \,\mu g \cdot g^{-1}$ .
- The date of the filling of the monel containers with  $UF_6$  (equivalent to the <u>date of</u> <u>chemical separation of protactinium</u>) is given below (please note that the individual sample N° is located on the top of each sample):

Sample N° 2 3 4 6 7 8 10 11 12 14	Sample N°	2	3	4	6	7	8	10	11	12	14
-----------------------------------	-----------	---	---	---	---	---	---	----	----	----	----

Filling date (1986) 01.08 31.07 24.07 24.07 07.08 31.07 24.07 30.07 29.07 30.07

- In order to obtain a uniform <u>sample thickness</u> in solid state (temperature < 65°C!!) and almost infinite thickness for 185.7 keV gamma rays over almost the full sample surface, a special temperature treatment has been performed ensuring an infinity of thickness > 99.9 %.

#### 2) Calibration of gamma measurements by using EC NRM 171

- Participants are invited to study the <u>User's Manual</u> for EC NRM 171 (KFK Report 3752) supplied together with the reference samples.
- All participants are requested to use the same matrix correction factor. Km = 1.0231 for calibrating their UF₆ gamma measurements with U_{30g} reference material in order to get comparable results. CBNM is presently working on an accurate experimental determination of Km and will inform participants about the results as soon as these are available.
- <u>Container windows</u> through which the gamma radiation is measured are different for UF₆ samples (~ 2 mm monel) and EC NRM 171 reference samples (~2 mm aluminium). In order to avoid or minimize correction procedures calibration disks are provided which will allow to perform all measurements with almost identical windows. For performing corrections:
  - the window thicknesses of EC NRM 171 samples are available together with the corresponding documentation (the material for the EC NRM 171 windows is identical to the one of the Al calibration disks).
  - the attenuation of gamma rays of 185.7 keV is (for small corrections):

- 3.4 % per mm for the aluminium used.

- 13 % per mm for the monel used.

# Appendix F

Relevant formulae, values and figures from "User's manual", KfK Report 3752



Fig. 3.7 Recommended collimator dimensions, expected counting rates and approximate counting times. Upper limits for collimator dimensions given by dashed lines refer to the indicated U₃08 material density, and to standard sample containers with 7 cm inner diameter. Collimator geometries in the shaded region do not fulfill the "quasi-infinite" sample condition for the Reference Samples EC-NRM-171/NBS-SRM-969. Fig. 3.7 can be utilized also to determine the suitable collimator geometries if uranium compounds other than  $U_30_8$  are measured in the empty reference can. In this case, instead of using the true sample density  $\rho_x$  of the uranium compound x under assay, an effective sample density  $\rho_{eff}$  must be applied in Fig. 3.7:

$$\rho_{\text{eff}} = \frac{\mu(x)}{\mu(U_3 0_8)} \cdot \rho_{x'}$$
(3.9)

where  $\mu(x)$  and  $\mu(U_{3}0_{8})$  denote the mass attenuation coefficients of the uranium compound x and  $U_{3}0_{8}$ , respectively. For  $U0_{2}$ , e.g., the  $\mu$  ratio in eq. 3.9 evaluates to a value of 1.035, which is very close to 1. Therefore, Fig. 3.7 may be directly used for both types of uranium oxides,  $U0_{2}$  and  $U_{3}0_{8}$ , as well.

		N = 1 1			
fc	or some	uranium	compounds.		
				_	

Table C2 Mass attenuation coefficients for 185.7 keV photons

Uranium compound	Molecular mass (g·mol ⁻¹ ) [21]	Mass attenuation coefficient (cm ² ·g ⁻¹ )
U metal	238	1.473
U0 ₂	270	1.313
^U 3 ⁰ 8	842	1.268
UF ₄	314	1.145
UF ₆	352	1.034
Uranyl nitrate U0 ₂ (NO ₃ ) ₂ .6H ₂ O	502	0.767

# 3.3 Sample matrix composition

All elements other than uranium present in the sample material are considered here as matrix material. Obviously, the attenuation of photons in the matrix material reduces the observed 186 keV gamma-ray flux at the sample surface, and thus influences the measured  235 U enrichment value. This influence is described by the matrix attenuation factor ß derived in Appendix A:

$$B = \frac{1}{1 + \sum_{\substack{i \neq U}} \frac{N_i \cdot \sigma_i}{N_U \cdot \sigma_U}}$$
(3.16)

for the case that the matrix is given in terms of atom fraction  $N_i/N_{ii}$ , or, equivalently,

$$B = \frac{1}{1 + \Sigma \frac{\rho_{i} \cdot \mu_{i}}{\rho_{U} \cdot \mu_{U}}}$$
(3.16a)

if the matrix is given as mass fraction  $\rho_i/\rho_U$  of uranium.  $\rho_i/\rho_U$  are the mass ratios,  $N_i/N_U$  are the atom ratios,  $\mu_i$  and  $\mu_U$  are the mass attenuation coefficients, and  $\sigma_i$  and  $\sigma_U$  are the photon attenuation cross sections for matrix material i and uranium, respectively. The summation extends over all matrix elements i.

Table 3.4 Matrix attenuation factors, matrix correction factors, and relative change of the 186 keV gamma-ray counting rate for some uranium compounds  $(U_3 0_8$  used as reference)

Uranium Mat compound	rix attenuation factor ß	Relative change of 186 keV gamma counting rate	Matrix correction factor
U metal	1.0000	+ 1.51 %	0.9849
U0 ₂	0.9886	+ 0.38 %	0.9962
U ₃ 0 ₈	0.9849	0 (reference)	1
UF ₄	0.9750	- 1.00 %	1.0101
UF ₆	0.9630	- 2.22 %	1.0228
Uranyl nitrat	e 0.9098	- 7.62 %	1.0825
$U0_2 (N0_3)_2 \cdot 6H_2$	0		

## A.2 Gamma-ray transmission through a collimator

For a cylindrically shaped collimator with a diameter  $D_{c}$  and a height  $H_{c}$ , we get the number of 186 keV photons penetrating this collimator per unit time:

$$I_{\gamma}^{cyl} = enr \cdot I_{186} \left( \frac{D_{c}^{2}}{4} \right) \cdot \left[ \frac{2H_{c}^{2}}{D_{c}} \left( 1 + \frac{D_{c}^{2}}{2H_{c}^{2}} - \sqrt{1 + \frac{D_{c}^{2}}{H_{c}^{2}}} \right) \right]$$

$$(A22)$$

$$collimator-$$

$$entrance$$

$$area$$

Number of 185.7 keV photons emitted per cm² surface area of an infinitely thick U metal sample into the halfspace  $(2\pi)$  per second per % ²³⁵U isotope abundance (atom %), neglecting coherent photon scattering and assuming uniform ²³⁵U isotope abundance in the sample:

$$I_{186} = \frac{n_{186}}{4 \cdot \sigma_{U}} \cdot \frac{1}{100}$$
  
= (77+4) [cm⁻²·s⁻¹·(% ²³⁵U)⁻¹]

## A.3 Gamma absorbing material between sample and detector

In a real gamma counting set-up one will always find some gamma-absorbing material between sample and detector, as, e.g., the sample containment or, at least, the detector cover. It is of interest here to quantify the influence of such absorber materials on the observed gamma counting rate. We assume that it is possible to combine all absorbers to a layer of uniform thickness, which is oriented in parallel to the collimator surface. As can be seen from Fig. A4, the path length of an 186 keV photon through the absorber layer depends on the inclination angle  $\theta$  between the direction of the radiation and the collimator axis. The photon attenuation increases with increasing angle  $\theta$ .



Fig. A4 Path length of gamma rays through an absorber layer.

The mean path length through the absorber with respect to the photons, which are observed in the gamma detector, depends on the angular distribution of the radiation source and on the angular acceptance of the counting geometry. The photon attenuation in an absorbing layer is usually given as the ratio of photon counting rates observed with and without the absorber. In order to simplify the presentation of the attenuation correction required for varying container wall thickness d, we define a wall thickness correction factor  $K_{abs}$  by:

$$\frac{N_{186}(d)}{N_{186}(d=0)} =: e^{-\lambda \cdot K_{abs} \cdot d}.$$
(A27)
$$K_{abs} =: \frac{\ln N_{186}(d=0) - \ln N_{186}(d)}{\lambda \cdot d}.$$

or

Then the term

$$K_{abs} \cdot d = d_{eff}$$

describes the effective mean path length  $d_{eff}$  of the photons through the absorbing layer with a thickness d. It should be noted that the value of  $K_{abs}$  depends on the specific parameters of the particular counting geometry and on properties of the canning of the samples under assay.



Fig. A6 Fractional increase of the effective absorber thickness (K - 1) relative to a very narrow collimator as a function of the collimator geometry, given for three types of gamma detectors.

Absorber material	(g·cm ⁻³ )	Linear attenuation coefficient (cm ⁻¹ )
Polyethylene (CH ₂ ) _n	0.95	0.14
Aluminium	2.70	0.329
Steel	7.9	1.25
Copper	8.92	1.38
Brass (61.5 % Cu 35.5 % Zn 3.0 % Pb)	8.5	1.58
Cadmium	8.64	2.78
Lead	11.3	12.8
Tungsten	19.4	17.1

Table C3 Linear attenuation coefficients for 185.7 keV photons for some absorber materials.