KfK 4999 März 1992

Neue Auswertemethoden für Neutronen-Messungen zur Plutoniumbestimmung in Fässern mit heterogenen und schweren Abfällen

W. Eyrich, W.-D. Klotz, G. G. Simon Institut für Neutronenphysik und Reaktortechnik Hauptabteilung Ingenieurtechnik Koordinationsstelle Internationale Forschung zur Nuklearen Entsorgung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Neutronenphysik und Reaktortechnik Hauptabteilung Ingenieurtechnik Koordinationsstelle Internationale Forschung zur Nuklearen Entsorgung

KfK 4999 PWA 39/91

Neue Auswertemethoden für Neutronen-Messungen zur Plutoniumbestimmung in Fässern mit heterogenen und schweren Abfällen

W. Eyrich W.-D. Klotz G.G. Simon *)

NUKEM GmbH
 Postfach 1313
 8755 Alzenau

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

<u>Kurzfassung</u>

Im Kernforschungszentrum Karlsruhe (KfK) wurde ein Monitorsystem zur Bestimmung des Plutoniumgehaltes und/oder der α -Aktivität in 220 l-Abfallfässern entwickelt. In der ersten Ausbaustufe wurden nur Fässer mit leichtbrennbaren Abfällen verwendet. Für diese Messungen wurde die vom KfK entwickelte Shiftregister-Methode eingesetzt. Das Meßsystem genügte allen betrieblichen Anforderungen, um Plutoniummengen von mehr als 1 mg zu bestimmen.

Die Shiftregister-Methode eignet sich nicht für Abfallfässer, die mit schweren Abfällen beladen sind, da zur Auswertung der Messung der Matrixinhalt sowie seine Verteilung und die Probenlage bekannt sein müssen. Um kleinere Mengen Plutonium in einem 220 1-Faß nachzuweisen, kann in diesem Falle auch nicht die TCA-Methode herangezogen werden. Daher wurden eine neue Meßmethode und ein spezielles Datenerfassungssystem entwickelt (LCA - local correlation analysis system). Dieses Meßsystem ermöglicht eine genaue Ortsbestimmung der Probenlage und darüberhinaus eine Unterscheidung zwischen einer homogen verteilten Probe und einer Probe, die sich im Faβzentrum befindet. Da zu jedem Neutronensignal sein Zeitpunkt und das betroffene Zählrohr registriert werden, bietet das Meßsystem die Möglichkeit, alle üblichen Auswertemethoden anzuwenden. Für Abfallfässer, die einen höheren Plutoniumgehalt besitzen, kann die Ansprechwahrscheinlichkeit unmittelbar und ohne Kenntnis der Matrixzusammensetzung und der Probenlage bestimmt werden.

Das Me β system ist so konzipiert, da β es in einen marktüblichen PC integriert werden kann. Mit diesem Me β system können die entsprechenden Verbesserungen auch bei der aktiven Messung erzielt werden. New Evaluation Methods for Plutonium Assay by Passive Neutron Interrogation of Barrels with Heavy and Heterogeneous Waste

<u>Abstract</u>

At the Kernforschungszentrum Karlsruhe (KfK) a monitoring system was developed to measure the plutonium content and/or α -activity in 220 liter waste drums. In the initial phase, only drums filled with combustible material were used. For these measurements the shift-register method developed at KfK was used fulfilling all requirements to detect plutonium down to 1 mg.

The shift-register method is not suitable for drums filled with heavier material since the matrix content, its distribution and the probe location have to be known. In this case the TCA method is also inadequate to detect minute quantities of plutonium in 220 liter drums. Therefore, a new method and a data analysis system were developed, the LCA (local correlation analysis system). With this, it is possible to determine the exact probe location. It has the ability to distinguish between a homogeneous Pu-distribution and a Pu-probe in the center of the container. Within each neutron signal, the time of pulse and the counter number are registered, therefore analysis methods currently in practice can utilize. For drums having a higher plutonium content the detection efficiency can be determined directly without knowledge of the matrix composition or the probe location.

The data analysis system is tailored to be used with an ordinary PC. With this system similar improvements of data analysis are possible for active neutron interrogation. <u>Inhalt</u>

1.	Einleitung	1
2.	Meßmethode und Meßsysteme	3
2.1	Coti-Zähler	3
2.2	Multiplizitätszähler	4
2.3	LCA-Me β system	7
3.	Messungen	12
3.1	Kalibriermessungen	12
3.2	Nachweiswahrscheinlichkeit	14
3.3	Automatischer Me eta betrieb	15
4.	Bestimmung der Probenlage und der Proben- verteilung im Abfallfaβ	16
4.1	Auswertung der Einzelzählrate	16
4.2	Auswertung der Ortskorrelation für koin- zidente Ereignisse	18
4.3	Multiplettstruktur	20
5.	Zusammenfassung	22
6.	Zitate	24
7.	Tabellen	25
8.	Abbildungen	29

Seite

1. <u>Einleitung</u>

In der Hauptabteilung Dekontaminationsbetriebe (HDB) des Kernforschungszentrums Karlsruhe (KfK) wurde vom Institut für Neutronenphysik und Reaktortechnik (KfK-INR) in Zusammenarbeit mit der Hauptabteilung Ingenieurtechnik (KfK-HIT) eine Faßmeßanlage errichtet, um den Plutoniumgehalt und die α -Aktivität in 220 l-Fässern zu bestimmen. Die Erprobung der Meßanlage und die Messungen mit realen Abfallfässern waren erfolgreich /1, 2/, so daß die Anlage für den Routinebetrieb ausgerüstet wurde.

Für Fässer mit leichtbrennbarem Inhalt waren die bereits entwickelten Me β methoden (z.B. Shiftregister) und Me β techniken ausreichend. Aber für Fässer mit heterogener Matrixverteilung und schweren Abfällen (z.B. konditionierter Abfall) versagten diese Methoden.

Für die Auswertung der Daten nach der Shiftregistermethode ist insbesondere die genaue Bestimmung der Probenlage wichtig, denn mit Variation der Probenposition im Fa β ist eine Änderung der Ansprechwahrscheinlichkeit verbunden. Dieser Effekt wird mit zunehmender Matrixdichte – insbesondere von Moderatormaterial – verstärkt.

Zur Bestimmung der Position der Probe kann in 1. Näherung der Unterschied der Zählraten der einzelnen Meßkanäle herangezogen werden. Diese Neutronenautoradiographie versagt aber bei symmetrisch verteilten Proben, insbesondere kann nicht unterschieden werden, ob sich die Probe im Zentrum befindet oder homogen im Faß verteilt ist.

Selbst bei Kenntnis der Probenlage müssen grö β ere Fehler in der Bestimmung der Ansprechwahrscheinlichkeit angenommen werden, wenn Heterogenität der Matrixverteilung und der Matrixzusammenstellung unterstellt werden mu β . Diese Nachteile sollen durch ein neues $Me\beta$ - und Auswerteverfahren behoben werden. Hierzu wurde ein neues Datenerfassungssystem (LCA) entwickelt.

Ziel der Untersuchungen war es, dieses Me β system zu testen und zu erproben.

2. <u>Meßmethode und Meßsysteme</u>

Die Fa β me β anlage der HDB des KfK basiert auf der sogenannten passiven Neutronenmessung. In 50 Detektoren, die um das auszumessende Fa β angeordnet sind, werden die emittierten Neutronen gemessen. Die Neutronenstrahlung entsteht bei Spontanspaltung der meist geradzahligen Pu- und Cm-Isotope und durch (α , n)-Prozesse, d.h. aus Reaktionen der α -Teilchen mit den in Reichweite benachbarten Elementen.

Für die Datenanalyse wurden bisher zwei Datenerfassungssysteme verwendet: Coti- und Multiplizitätszähler. Um insbesondere die Probenlage besser festlegen zu können, wurde ein neues Datenerfassungssystem (LCA) eingesetzt.

2.1 <u>Coti-Zähler</u>

Mit dem Datenerfassungssystem Coti werden die Impulsraten, getrennt nach den einzelnen Meßkanälen, erfaßt und innerhalb einer vorgegebenen Meßzeit summiert ZR_{tot}^{i} . Durch Addition der Zählraten der 50 Meßkanäle wird die Gesamtzählrate ZR_{tot} bestimmt.

$$ZR_{tot} = \sum_{\substack{\Sigma \\ i = 1}}^{50} ZR_{tot}^{i}$$
 2.1

Der Zusammenhang zwischen der Gesamtzählrate ZR_{tot} und der Neutronenquellstärke g kann in 1. Näherung durch folgende Gleichung beschrieben werden:

 $ZR_{tot} = \epsilon g$ 2.2

In dieser Näherung ist die Ansprechwahrscheinlichkeit ϵ der Me β anordnung für Spaltneutronen und Neutronen aus (α , n)-Re-aktionen gleich.

In den Eichmessungen wird die Ansprechwahrscheinlichkeit mit einer bekannten Neutronenquelle, die an verschiedenen Positionen im Fa β montiert wird, bestimmt.

Die azimutale Zählratenverteilung wird zur Bestimmung der radialen Position der Probe herangezogen. Das Verhältnis der Zählraten von den Detektoren im Deckel zu denen im Boden gibt die axiale Position der Probe an (s. Abschnitt 4).

2.2 <u>Multiplizitätszähler</u>

Die Neutroneneigenstrahlung des Abfallgebindes setzt sich aus Anteilen Spontanspaltung \underline{q}_{sp} und (α, n) -Reaktionen $\underline{q}_{\alpha n}$ zusammen.

$$\underline{q}_{g} = \underline{q}_{sp} + \underline{q}_{\alpha n}$$
 2.3

Der (α, n) -Neutronenanteil ist von der chemischen Zusammensetzung des Abfallgebindes, von der Pu-Vermischung und von der Pu-Körnung abhängig. $\underline{q}_{\alpha n}$ kann sich in schwach aktiven Abfallgebinden um bis zu einem Faktor 9 ändern.

Für eine zuverlässige Bestimmung des Pu-Gehaltes in schwach aktiven Abfallgebinden muß deshalb der (α, n) -Neutronenanteil an der Zählrate eliminiert werden. Dazu wird ausgenutzt, daß pro Spontanspaltung v_p Neutronen nahezu gleichzeitig (innerhalb ca. 1 µsec) emittiert werden. Die (α, n) -Neutronen sind dagegen statistisch verteilte Einzelneutronen. Eine Unterscheidung zwischen (α, n) -Neutronen und Spaltneutronen kann daher mit der Koinzidenzmethode getroffen werden.

In der konventionellen Koinzidenzlogik öffnet ein Zählimpuls (Trigger) ein Zeitfenster, dessen Breite /t ungefähr der mittleren Verweilzeit τ der Neutronen in der Me β kavität entspricht. Die in dieser Zeit registrierten Koinzidenzereignisse ZR_p beinhalten sowohl echte ZR_e als auch zufällige Koinzidenzen ZR_g.

$$ZR_{p} = ZR_{e} + ZR_{z}$$
 2.4

Die Einzelneutronen aus (α, n) -Reaktionen sind zeitunabhängig und tragen somit nur zu den zufälligen Koinzidenzen bei. Dieser Anteil kann durch eine Zusatzmessung bestimmt werden. Nach dem Triggerimpuls wird um ein ganzes Vielfaches von /\t verzögert ein zweites Zeitfenster der gleichen Breite /\t geöffnet und die zufälligen Koinzidenzen gemessen $ZR_z = ZR_v$. Die Verzögerungszeit t_v muß groß gegenüber der Verweilzeit τ sein t_v >> τ . Die Differenz der Zählraten $ZR_c = ZR_p - ZR_v$ ergibt damit die Spontanspaltungsneutronen.

In der konventionellen Koinzidenzlogik haben die Zeitfenstergeneratoren die Eigenschaft, da β im gekippten Zustand ein weiterer Impuls kein neues Zeitfenster triggern kann. Sie legen damit die Totzeit auf dem Triggerkanal zu /\t fest.

Um bei gröβeren Zählraten Totzeiten zu vermeiden, wird die Methode des Schieberegisters angewandt. Hierbei wird das Zeitfenster /\t in kleinere Einheiten der Länge δ t unterteilt, die nacheinander geöffnet werden und die den Zählimpulsen den Weg in verschiedene Zähler freigeben. Ist der Abstand der Triggerimpulse größer als /\t, so ist die Summe der Zählerinhalte gleich dem im ursprünglichen Fall gemessenen Inhalt des einen Zählers. Gibt es aber Triggerimpulse, die dichter als /\t aufeinanderfolgen, so können nun mehrere der kleinen Fenster gleichzeitig geöffnet sein. Das entspricht einer Überlagerung von Fenstern entsprechend der Triggerfolge.

Beim Multiplizitätszähler, der von KfK-INR entwickelt wurde /3/, wird die Anzahl der Zähler auf einen reduziert, indem für jeden ankommenden Zählerimpuls die Anzahl der im Schieberegister enthaltenen Pulse bestimmt wird. Hierzu wird ein Auf- und Ab-Zähler eingesetzt. Für jeden ankommenden Puls wird die im Schieberegister enthaltene Anzahl Pulse addiert. Damit erhält man für m Pulse innerhalb $//t = N \delta t$ eine Gesamtzählrate ZR_{CC}^{g} von

$$ZR_{C}^{g} = {\binom{m}{2}} = \frac{1}{2} m (m - 1)$$
 2.5

Nach einer Verzögerungszeit t_v wird ein zum ersten identischer Zyklus gestartet, um die zufälligen Koinzidenzen zu bestimmen.

Der Multiplizitätszähler ist so ausgelegt, da β für Zykluslängen von 10 bis 160 μ sec eine Maximalfrequenz des Taktes von 10 MHz möglich ist.

Die Koinzidenzrate ist in erster Näherung mit der Anzahl der emittierten Spaltneutronen verknüpft gemäβ:

$$ZR_{c} = \epsilon^{2} \frac{\overline{V(v-1)}}{2 \overline{V}} (1 - e^{-\alpha} \frac{/\backslash t}{2}) g_{sp} \qquad 2.6$$

g Neutronenquellstärke für Spaltneutronen

 ϵ Ansprechwahrscheinlichkeit der Meβanordnung für Neutronen

 \overline{V} (v-1)/2 mittlere Zahl der Neutronenpaare pro Spaltung \overline{V} mittlere Zahl der Neutronen pro Spaltung

- $1/\alpha$ Verweildauer der thermischen Neutronen in der Me β anordnung
- <u>/\t</u> Zeitintervall innerhalb dessen der zweite Partner zum auslösenden Ereignis erwartet wird.

Die Ansprechwahrscheinlichkeit wird in Eichmessungen bestimmt.

- 6 -

2.3 <u>LCA-Me β system</u>

Zur Koinzidenzmessung mit dem Multiplizitätszähler werden die Impulse der einzelnen 50 Me β kreise zu einem Impulsstrom zusammengefa β t. Hierbei geht die Information "Welcher Me β kreis hat angesprochen?" verloren. Daher kann diese Me β methode zur Bestimmung der Probenlage nicht genutzt werden.

Ausgangspunkt für die Entwicklung eines neuen Meßsystems war, die Koinzidenzmethode ebenfalls zu nutzen, um die Probenlage und/oder -verteilung besser bestimmen zu können. Insbesondere sollte es möglich sein, symmetrische Anordnungen unterscheiden zu können, z.B. eine Unterscheidung zwischen einer Probe, die im Zentrum positioniert ist, und einer homogen verteilten Probe im Fa β . Diese unterschiedlichen Probenverteilungen können nicht durch den Vergleich der Zählraten der einzelnen Meßkreise unterschieden werden, da sie in dem obengenannten Fall gleiche, auf Ansprechwahrscheinlichkeit korrigierte Werte zeigen würden.

Die Einbeziehung der Koinzidenzmethode in die Bestimmung der Probenlage ging von folgender Überlegung aus:

Voraussetzung für eine Koinzidenz ist, da β zwei Detektoren innerhalb einer vorgegebenen Zeit ansprechen. Wenn die Probe im Fa β zentrum positioniert ist, wird die Wahrscheinlichkeit einer Koinzidenz unabhängig von der Wahl der Detektorpaare sein, d.h. jede Kombination zweier Detektoren im Ring liefert die gleiche Koinzidenzrate. Wird die Probe vom Zentrum zum Fa β rand hin verschoben, dann werden die Detektoren in der Nähe der Quelle immer mehr bevorzugt. Dieser Effekt, der auch bei dem Vergleich der totalen Zählraten jedes Me β kreises zu beobachten ist, tritt auch bei den Koinzidenzen auf.

Um eine ringförmige Probenverteilung von einer Probe im Fa β zentrum unterscheiden zu können, wird nicht die absolute Position der Detektoren, die angesprochen haben, betrachtet, sondern der Winkel, bezogen auf das Fa β zentrum zwischen den beiden Detektoren, die die Koinzidenz ausgelöst haben.

Die Häufigkeitsverteilung der auftretenden Winkel zwischen den Detektoren in Koinzidenz, bezogen auf das Faßzentrum, ist für eine ringförmig verteilte Probe gleich der einer Punktprobe für die gleiche radiale Position. Somit kann bei symmetrischen Anordnungen der Probe, die keine Zählratenunterschiede der einzelnen Meßkreise zu den Detektoren im Ring aufweisen, die radiale Lage der Probe bestimmt werden.

Wird diese Methode auch für Detektoren im Deckel und Boden angewandt, so ist auch eine axiale Bestimmung der Probenlage möglich.

Um alle diese Informationen für die Anwendung der Koinzidenzmethode zur Bestimmung der Probenlage erfassen zu können, war ein spezielles Me β system mit entsprechender Software notwendig. Diese Aufgabe konnte durch das LCA-System gelöst werden, das als Board in einen PC installiert werden kann. Die Software wurde für einen AT-kompatiblen Rechner erstellt.

Funktionsweise des LCA-Systems:

Jeder Impuls setzt am Eingang des LCA-Me β systems ein Flip-Flop. Der Status dieses Einganges wird permanent abgefragt und zwischengespeichert . Dann wird der Eingang wieder geöffnet. Die Taktrate wurde der Pulslänge des Diskriminators von 6 μ sec angepa β t. Wenn der Zwischenspeicher gefüllt ist, wird dieser ausgelesen. Die Ereignisse werden mit dem Vermerk der Echtzeit und der Nummer des Me β kanals versehen auf die Festplatte eines PC's gespeichert. Die Datenerfassung erfolgt so lange bis die vorgegebene Me β zeit beendet ist.

Für die Auswertung stehen mit dem Einsatz des LCA-Me β systems alle Informationen zur Verfügung, so da β neben den bisheri-

gen angewandten Auswertemethoden noch weitere Auswertealgorithmen zur Anwendung kommen können.

Folgende Auswertealgorithmen können für die Datenanalyse verwendet werden:

a) Ortskorrelationsanalyse

Ein Ereignis öffnet ein Zeitfenster $/\$ t. Wird in diesem Zeitintervall ein zweites Ereignis registriert, so wird der Winkel zwischen den beiden Detektorpositionen, bezogen auf das Faßzentrum, berechnet. Liegen mehrere Ereignisse innerhalb eines Zeitfensters $/\$ t vor, so wird die Datenanalyse entsprechend der Shiftregistermethode abgearbeitet (s. Abschnitt 2.2). Anschließend wird die Häufigkeitsverteilung der auftretenden Winkel berechnet.

b) Korrelationszeit

Die Ereignisse werden zeitlich hintereinander geordnet, zu einem Impulsstrom zusammengefa β t und der zeitliche Abstand zwischen zwei aufeinander folgenden Ereignissen bestimmt. Anschlie β end wird die Häufigkeitsverteilung der zeitlichen Abstände berechnet, die Me β ergebnisse interpoliert und die mittlere Korrelationszeit berechnet.

c) Verweilzeit der Neutronen

Die Ereignisse werden zeitlich hintereinander geordnet, zu einem Impulsstrom zusammengefa β t und die Koinzidenzrate entsprechend der Shiftregistermethode berechnet. In erster Näherung gilt:

$$ZR_{c} = A (1 - e^{-\alpha / t})$$

- A Normierungskonstante
- $1/\alpha$ Verweilzeit der Neutronen

//t Zeitfensterbreite für die Koinzidenzbestimmung

Durch Variation von <u>/</u>t wird die Verweilzeit $1/\alpha$ berechnet . Für die Untersuchung genügt im Vergleich zur früheren Ausstattung der Faßmeßanlage nur eine Messung.

Die Werte für die Korrelationszeit und für die Verweilzeit sollten übereinstimmen.

d) Koinzidenzrate

Die Ereignisse werden zeitlich geordnet, zu einem Impulsstrom zusammengefa β t und die Koinzidenzrate entsprechend der Shiftregistermethode berechnet. Die Neutronenquellstärke kann entsprechend Formel 2.6 berechnet werden. Im Vergleich zur früheren Ausstattung der Fa β me β anlage kann das Zeitfenster //t entsprechend der Ansprechwahrscheinlichkeit korrigiert werden.

e) Multiplettstruktur

Das LCA-Me β system erlaubt die Datenanalyse entsprechend der TCA-Methode /4, 5/. Die Anpassung des Zeitfensters, wie sie bei der Koinzidenzbestimmung beschrieben wird, kann auch in diesem Fall verwendet werden.

f) Ortsabhängige Multiplettstruktur

Werden sogenannte Hot Spots im Abfallgebinde entdeckt, so werden zur Multiplettstrukturbestimmung nur die Me β kreise zur Auswertung herangezogen, deren Detektoren in

- 10 -

2.6.a

unmittelbarer Nähe der Hot Spots sind. Diese Datenanalyse zur Elementbestimmung wurde bisher bei der Realisierung der TCA-Methode nicht vorgenommen.

3. <u>Eichmessung</u>

Um den Me β daten die entsprechenden Neutronenquellstärken im Fa β zuzuordnen, wurden Kalibriermessungen durchgeführt. Hierzu wurden Fässer mit unterschiedlichen Polyäthylenfüllungen präpariert und ein mit Beton gefülltes Fa β verwendet. Die Neutronenquelle wurde an verschiedenen Positionen im Fa β befestigt.

Zur Bestimmung der Nachweiswahrscheinlichkeit wurden über längere Zeiten Untergrundmessungen und Messungen mit Proben durchgeführt.

Um Erfahrungen für den automatischen Me β betrieb zu sammeln, wurden über 100 Fässer vermessen, die einen Hinweis auf Pu und/oder α -Aktivität auf dem Begleitschein enthielten.

3.1 <u>Kalibriermessungen</u>

Zur Kalibrierung der Fa β me β anlage wurde eine PuO₂-Probe verwendet (Tab. 1a). Da diese Quelle nicht jederzeit zur Verfügung stand, wurden die Messungen mit einer Cf-252-Quelle ergänzt (Tab. 1b).

Abb. 1 gibt einen Überblick über die Anordnung der Komponenten der Fa β me β anlage. Die geometrischen Daten der Me β positionen können aus Abb. 2 entnommen werden.

Die Änderung der Zählrate in Abhängigkeit von der axialen Quellenposition zeigt Abb. 3. Das Ergebnis der Messungen mit leerem Fa β (Abb. 3a) zeigt, da β entsprechend der Anordnung der Detektoren (Abb. 1) das Maximum der Zählrate in halber Fa β höhe liegen mu β . Die leicht asymmetrische Form ist durch den grö β eren Abstand Fa β zum Deckel im Vergleich zum Abstand Fa β zur Bodenplatte gegeben. Der drastische Abfall der Zählrate, wenn die Quelle zur obersten Position geführt wird, wird durch die Neutronenleckage aufgrund der Polyäthylen (PE)-Aussparung unterhalb des Deckels verursacht. Diese Aussparung dient als Platz für die Me β elektronik.

Wird die Quelle im Faßzentrum von der untersten Position zur Faβmitte hin bewegt, so ist zunächst eine Zählratenabnahme zu beobachten. Sie wird durch die wachsende Entfernung der Quelle zu den Detektoren in der Bodenplatte verursacht. Mit zunehmender Höhe der Quelle im Faß erhöht sich die Zählrate von den Ringdetektoren aufgrund der günstigeren geometrischen Lage der Quelle zu den Detektoren im Ring. Dieser Effekt ist nach ~ 10 cm dominant. Im oberen Bereich ist diese lokale Zählratenerhöhung nicht zu beobachten, da dort die Neutronenleckage überwiegt. Auch nimmt die lokale Erhöhung der Zählrate in Bodennähe mit zunehmendem Radius ab, da durch die günstigere geometrische Lage der Quelle zu den Ringdetektoren die Zählrate mit wachsendem Abstand Quelle -Bodenplatte stärker ansteigt.

Mit zunehmender Beladung des Fasses wird der lokale Effekt in der Nähe der Bodenplatte stärker ausgeprägt (Abb. 3b und 3c). Denn neben der Vergrößerung des Abstandes der Quelle zu den Detektoren in der Bodenplatte kommt noch der Neutronenverlust im Matrixmaterial hinzu. Für das Betonfaß ist dieser Absorptionseffekt so stark ausgeprägt, daß keine Zählratenerhöhung zur Faßmitte hin mehr zu beobachten ist, wenn die Quelle im Faßzentrum axial bewegt wird. Die axiale Zählratenänderung am Faßrand bleibt im Vergleich zum PE-gefüllten Faß fast unverändert, wenn nur die Detektoren in unmittelbarer Quellennähe betrachtet werden. Die Absorptionserhöhung mit zunehmender Beladung verkleinert die Zählrate insgesamt.

Zur Bestimmung der Ansprechwahrscheinlichkeit für eine homogen verteilte Probe im Fa β , wurden zunächst die axialen Zählratenverteilungen durch ein Polynom interpoliert. Hierbei wurden die Endpositionen nicht berücksichtigt. Aus der axial gemittelten Zählrate, einschlie β lich der Endpositionen, wurde die Ansprechwahrscheinlichkeit für die einzelnen radialen Positionen berechnet. Diese Werte wurden ebenfalls mit einem Polynom interpoliert und daraus die volumengemittelte Ansprechwahrscheinlichkeit berechnet. Typische Werte sind in Tabelle 2 angegeben.

Abb. 4 zeigt die Änderung der axial gemittelten Zählrate in Abhängigkeit der radialen Änderung der Probenposition. Die größten Änderungen liegen am Faßrand vor. In Faßmitte (r < 15 cm) ist die Ansprechwahrscheinlichkeit nahezu konstant.

Die Ergebnisse der Eichmessungen verdeutlichen insgesamt, $da\beta$ mit wachsender Beladung eine genaue Lokalisierung der Probe immer wichtiger wird.

3.2 <u>Nachweiswahrscheinlichkeit</u>

Nach der Umrüstung der Fa β me β anlage wurden in der Zeit vom April 1989 bis November 1990 Messungen durchgeführt. In dieser Zeit konnten keine Störungen festgestellt werden.

Der Untergrund der totalen Zählrate (ZR_{tot}) ist für ein mit PE qefülltes Fa β stets < 300 ^C/10 min. Für Messungen in kurzen Zeitabständen (≤ 1 Tag) entspricht die Streuung der Da-= $(ZR_{tot})^{1/2}$. In Messungen über Zählstatistik ten der mehrere Tage können Driften bis zu 20 % festgestellt werden. Der Untergrund für die Koinzidenzrate (ZR_c) beträgt < 6 $^{\rm C}/10$ min. Er stammt vornehmlich von Spallationsneutronen. Da dieser Prozeß innerhalb der Zählstatistik nicht immer konstant ist, können während eines Tages auch spontan Werte bis zu 18 C/10 min. auftreten. Solche plötzlichen Überhöhungen der Koinzidenzrate können aber mit dem Meßsystem der Faßmeßanlage erkannt werden. Diese Messungen werden nicht in die Auswertung einbezogen.

Für Fässer, die mit Beton gefüllt sind, erhöht sich die Untergrundzählrate :

 $ZR_{tot} < 450$ ^C/10 min und $ZR_{c} < 25$ ^C/10 min.

Die erzielbaren Nachweisgrenzen sind in Tabelle 3 zusammenge-fa β t.

3.3 <u>Automatischer Meßbetrieb</u>

niedrig.

Die Messungen mit präparierten Fässern und Abfallfässern zeigen, da β ein automatischer Me β betrieb möglich ist. Schwierigkeiten traten in den Fällen auf, in denen die auf dem Begleitschein eingetragene Isotopenzusammensetzung nicht plausibel erklärt werden konnte. In diesen Fällen mü β te eine spezielle Überprüfung des Fa β inhaltes vorgenommen werden. Fässer mit signifikantem Aktivitätsinhalt (> 10⁸ Bq) zeigen eine inhomogene Verteilung der Aktivität im Fa β . Oft sind hier "hot spots" zu erkennen.

Die Resultate führen zu folgenden Schlußfolgerungen:

1. Bei vielen Fässern wird eine zu hohe α -Aktivität angegeben, und 2. In einigen Fällen ist aber auch die Aktivitätsangabe zu

Diese Ergebnisse zeigen, $da\beta$ es oft sehr schwierig ist, die Aktivität genau anzugeben. Daher sollte zur besseren Aktivitätsangabe eine Messung der α -Aktivität vorgenommen werden, insbesondere kann dadurch sichergestellt werden, $da\beta$ Grenzwerte, z.B. für eine Verbrennungsanlage, besser einzuhalten sind.

4. <u>Bestimmung der Probenlage und der Probenverteilung</u> <u>im Abfallfaβ</u>

Für die Bestimmung der Neutronenquellstärken aus der totalen Zählrate und/oder der Koinzidenzrate ist die Kenntnis der Ansprechwahrscheinlichkeit der Meßanordnung notwendig. Diese Größe ist sowohl von der Matrixzusammensetzung als auch von der Probenlage im Faß abhängig (s. Abschnitt 3).

Die Matrixzusammensetzung kann aus den Begleitpapieren zum Abfallfa β entnommen und so eine Abschätzung der mittleren Ansprechwahrscheinlichkeit vorgenommen werden.

Wie die Ergebnisse in Abschnitt 3 zeigen, wird eine drastische Änderung der Ansprechwahrscheinlichkeit durch Variation der Probenlage hervorgerufen. Da bei realistischen Abfallgebinden selten eine homogene Verteilung der Probe im Fa β vorliegt, ist eine Bestimmung der Probenlage unumgänglich.

4.1 <u>Auswertung der Einzelzählraten</u>

Um aus dem Meβergebnis einer Faβmessung die Probenlage zu bestimmen, werden im Sinne einer Neutronenautoradiographie die Unterschiede der Detektorsignale analysiert. Durch den Vergleich der Zählratenprofile mit denen der Kalibriermessungen kann auf die Probenlage zurückgeschlossen werden.

Bei den Kalibriermessungen wurde eine Cf-Quelle an verschiedenen Positionen im Fa β montiert und die unterschiedlichen Zählratenprofile untersucht.

Für die Quelle im Fa β zentrum (r = 0 cm, h = H/2, H = Fa β höhe) und bei einer homogenen Matrixverteilung im Fa β (z.B. leeres Fa β) erhält man eine konstante Zählratenverteilung (ZR_R) für die Detektoren im Ring. (Die Schwellenwerte der Diskriminatoren wurden so gesetzt, da β die Ansprechwahrscheinlichkeit jedes Me β kreises zu den Detektoren in Ring-

- 16 -

position gleich $\text{gro}\beta$ ist.) Die Summe der Zählraten zu den Detektoren im Deckel (ZR_D) ist gleich der Summe der Zählraten zu den Detektoren in der Bodenplatte (ZR_B) . (Die Schwellenwerte der Diskriminatoren wurden so gewählt, da β diese Symmetrie für diesen Fall gegeben ist.)

Wird die Quelle im Fa β zentrum von der Bodenplatte in Richtung Deckel bewegt, so bleibt die Zählratenverteilung ZR_R konstant. Die Zählrate ZR_B nimmt ab und die Zählrate ZR_D nimmt zu. Abb. 5 zeigt das Verhältnis V_{DB} = ZR_D/ZR_B. Mit zunehmender radialer Versetzung der Quelle prägt sich eine Zählratenerhöhung in der Ringverteilung aus (Abb. 6).

Für die Bestimmung der Probenlage werden als charakteristische Größen die Verhältnisse $V_{DB} = ZR_D/ZR_B$ zur Bestimmung der axialen Lage und $V_R = ZR_R^{max}/ZR_R^{min}$ zur Bestimmung der radialen Lage gewählt.

Die Änderung von V_{DB} (s. Abb. 7) kann in erster Näherung durch eine Exponentialfunktion beschrieben werden. Selbst bei geringer Beladung (Abb. 7a) ist eine axiale Positionsbestimmung auch bei schlechter Zählstatistik gut möglich (4 %/cm für das leere Fa β). Geringfügige Abweichungen sind für die axialen Endpositionen zu sehen, insbesondere wenn die Quelle am Faßrand axial bewegt wird. Für die Lokalisierung der Probe in diesem Bereich mu β der Zählratenunterschied der Einzelzählraten zu den Detektoren im Deckel bzw. in der Bodenplatte hinzugezogen werden. Unter Vernachlässigung dieses Effektes kann V_{DB}(r) = const. gesetzt werden. Diese Näherung gilt auch bei höherer Beladung (Abb. 7b und 7c). Der maximale Fehler im Randbereich beträgt bei dieser Annahme ± 5 cm.

Das Verhältnis V_R für verschiedene Probenpositionen zeigt Abb. 8. Für Beladungen bis zu 58 kg Polyäthylen kann in erster Näherung $V_R(h)$ = const. angenommen werden. Die radiale Abhängigkeit des axial gemittelten Verhältnisses V_R zeigt einen exponentiellen Verlauf (Abb. 9). Auf den ersten Blick ist diese einfache Betrachtungsweise auf das Betonfa β nicht übertragbar (Abb. 8c). Betrachtet man aber zu jeder axialen Höhenposition die radiale Änderung von V_R , so erhält man wieder einen exponentiellen Verlauf (Abb. 10). Daher kann zur Bestimmung der radialen Position der Probe die einfache Betrachtungsweise wieder angewandt werden, wenn der Bestimmung der radialen Positionierung die Bestimmung der axialen Positionierung vorangestellt wird.

Diese Untersuchungen zeigen, da β die Positionierung einer Punktprobe auf <u>+</u> 5 cm genau festgelegt werden kann.

Bei Messungen an realen Abfallfässern müssen auch verschiedene Probenverteilungen unterstellt werden, z.B. Überlagerung von verschiedenen Punktproben (Hot Spots), homogene Verteilung, ringförmige Verteilungen.

Verschieden positionierte Hot Spots sind in Form von Nebenmaxima in der Zählratenverteilung zu den Detektoren im Ring zu erkennen. Für Radien r > 20 cm sind die Maxima so stark ausgeprägt, da β der Bezugswert des Nebenminimums zur Bestimmung der radialen Lage herangezogen werden kann.

Für symmetrische Verteilungen mu β die Bestimmung der radialen Lage mit der LCA-Methode durchgeführt werden.

4.2 <u>Auswertung der Ortskorrelation für koinzidente</u> <u>Ereignisse</u>

Die Bestimmung der Probenlage und/oder Probenverteilung mit dem Auswertealgorithmus versagt, wenn eine symmetrische Verteilung unterstellt werden mu β . In diesem Falle zeigen die Zählratenverteilungen zu den Detektoren im Ring und das Verhältnis der Zählraten zu den Detektoren im Deckel zu denen in der Bodenplatte keine Unterschiede. Um diese Verteilungen unterscheiden zu können, wurden mit dem neuen Meβsystem (LCA) folgende Versuche durchgeführt:

Ein Cf-Quelle wurde radial an verschiedene Positionen im Fa β montiert und das Fa β gedreht. Abb. 11a - 11c zeigen für die 3 ausgewählten Fa β füllungen die Häufigkeitsverteilungen der gemessenen Winkel zwischen zwei Detektoren im Ring, bezogen auf das Fa β zentrum, die zu einer Koinzidenz beigetragen haben.

Wenn sich die Quelle im Fa β zentrum befindet (r = 0 cm, h = H/2, H = Fa β höhe) ist die Wahrscheinlichkeit eines Koinzidenzereignisses unabhängig von der Wahl der Detektorzuordnung. Mit radialer Verschiebung der Quelle zum Fa β rand hin, werden benachbarte Detektoren immer mehr bevorzugt. Dieser Effekt verstärkt sich mit wachsender Beladung des Fasses /6/.

Eine Zusammenfassung der Ergebnisse wird in Tabelle 4 und Abb. 12 angegeben. Selbst bei niedriger Beladung ist eine Unterscheidung zwischen einer homogen verteilten Probe und einer Probe im Faßzentrum auch bei niedriger Zählrate signifikant gegeben. Mit wachsender Beladung wird die Erhöhung wesentlich verstärkt (Faktor 2: leeres Faß, Faktor 5: Betonfaß).

Die Genauigkeit in der Bestimmung der radialen Probenlage erhöht sich zum Fa β rand hin. Diese radiale Abhängigkeit ist für die Anwendung dieser Methode besonders vorteilhaft, da sich die Ansprechwahrscheinlichkeit entsprechend ändert (s. Abb. 4).

Entsprechend der radialen Lage der Probe kann auch die axiale Lage der Probe bestimmt werden, wenn die Detektoren im Deckel bzw. Boden betrachtet werden. Die Auswertung der Koinzidenzraten in diesem Fall ist deshalb so wichtig, da

- die Auswertung von dem Verhältnis der Zählraten zu den Detektoren im Deckel zu denjenigen im Boden in diesem Bereich recht ungenau ist (s. Abb. 7), selbst wenn eine punktförmige Probe unterstellt wird, und
- eine drastische Änderung der Zählrate bei einer axialen
 Probenverschiebung entsteht (s. Abb. 3).

Die Genauigkeit nimmt mit wachsendem Abstand Quelle - Detektor entsprechend der radialen Positionsbestimmung ab. Sie ist aber ausreichend, um den Bereich der stärksten Ansprechwahrscheinlichkeitsänderung zu erfassen.

Eine direkte Bestimmung der Ansprechwahrscheinlichkeit ist durch die Einbeziehung der totalen Zählraten der Einzelkanäle möglich. Voraussetzung ist, daß eine punktförmige Probe sich im Abfallfaß befindet, die außerhalb des Faßzentrums positioniert ist. Hierbei wird der Ansprechwahrscheinlichkeitskoeffizient so lange variiert bis die Radienwerte übereinstimmen. Zum Test dieses Verfahrens müßten Messungen an realistischen Abfallfässern vorgenommen und einem Vergleich mit der "add-a-gram"-Methode unterzogen werden.

4.3 <u>Multiplettstruktur</u>

Zur Bestimmung der Multiplettstruktur wurden die Ergebnisse, die mit dem LCA-Me β system registriert wurden, zeitlich geordnet, zu einem Impulsstrom zusammengefa β t und die Koinzidenzen bestimmt (Fensterbreite 120 μ s).

Tabelle 5 zeigt die ermittelten Werte für die Cf-252-Quelle im Fa β zentrum für verschiedene Matrixfüllungen. Die höheren Ordnungen tragen mit abnehmender Ansprechwahrscheinlichkeit ϵ immer weniger bei (Abb. 13). In erster Näherung gilt

$$P_{n}(\epsilon) = \Sigma_{v \leq n} \begin{pmatrix} v \\ n \end{pmatrix} \epsilon^{n} (1-\epsilon)^{v-n} P_{v} (100 \%)$$
(4.1)

In Abbildung 14 ist das Verhältnis V_{TD} der Beiträge der Tripletts und der Dubletts in Abhängigkeit der Ansprechwahrscheinlichkeit ϵ dargestellt. Dieser funktionale Zusammenhang wird bei den TCA-Methoden verwendet, um die Ansprechwahrscheinlichkeit zu bestimmen.

In erster Näherung zeigt das Ergebnis, da β die Ansprechwahrscheinlichkeit ohne Kenntnis der Matrix und der Probenlage aus dem Verhältnis zu bestimmen ist. Um diese Verallgemeinerung vornehmen zu können, sind noch weitere Experimente mit besserer Statistik an verschieden präparierten Fässern notwendig. Abweichungen sind bei Fässern mit einem hohen Anteil an Absorptionsmaterial zu erwarten. In diesen Fällen müßte sich auch eine größere Änderung der Verweilzeit der Neutronen ergeben. Dieser Effekt kann mit dem LCA-System ebenfalls erfaßt werden. Für die Auswertung müßte noch eine zusätzliche Korrelation der Verweilzeit und des Verhältnisses V_{TD} berücksichtigt werden.

In Tabelle 6 sind die Ergebnisse zweier Fa β messungen aufgeführt. Das 1. Fa β enthielt vornehmlich Plutonium, wohingegen das 2. Fa β einen grö β eren Am-241-Anteil enthielt. Die Matrix sollte keinen unterschiedlichen Einflu β haben.

Da Am-241 kein Spontanspalter ist, sollte in 1. Näherung das Verhältnis V_{TD} dieser beiden Messungen gleich sein. Bedingt durch den Anteil der zufälligen Koinzidenzen, erhält man aber einen größeren Wert von V_{mp} .

Nach Korrektur auf die zufälligen Koinzidenzen ist dieses Verhältnis innerhalb des Meβfehlers gleich (Tabelle 6). Die Kalibriermessungen zeigen Ansprechwahrscheinlichkeitsänderungen bis zu 40 % für eine homogen verteilte Probe im mit Beton gefüllten Fa β im Vergleich zu einem leeren Fa β . Insbesondere ist die Ansprechwahrscheinlichkeit von der Lage der Probe im Fa β abhängig. Es können Unterschiede bis zu einem Faktor 7 auftreten.

Die Ergebnisse der Kalibriermessungen verdeutlichen, daß eine genaue Bestimmung der Probenlage notwendig ist. Hierzu wurden zunächst die totalen Zählraten der Einzelkanäle im Sinne einer Neutronenautoradiographie ausgewertet. Im Vergleich zu den Messungen mit geringerer Beladung kann die axiale und radiale Lage der Probe für Fässer mit höherer Beladung nicht mehr unabhängig voneinander bestimmt werden.

Mit dem neuen Me β system konnten signifikante Unterschiede zwischen symmetrisch angeordneten Probenverteilungen festgestellt werden. Insbesondere erlaubt die Methode Unterscheidungen zwischen einer homogen verteilten Probe und einer Probe im Fa β zentrum (Unterschiede in der Ansprechwahrscheinlichkeit für konditionierten Abfall: Faktor 4). Mit dieser Methode kann selbst bei einem Beton-Fa β eine punktförmige Probe auf \pm 5 cm genau lokalisiert werden.

Da alle wichtigen Informationen mit dem neuen Meβsystem zur Verfügung stehen, können neben der Bestimmung der Ortskorrelationen noch folgende Auswertungen durchgeführt werden:

- Bestimmung der Korrelationszeit
- Bestimmung der Verweilzeit der thermischen Neutronen im Meβsystem
- Koinzidenzmethode nach der Shiftregistermethode mit variablem Zeitfenster
- TCA-Methode mit variablem Zeitfenster
- TCA-Methode für ausgewählte Hot Spots.
 (TCA = Time Correlation Analysis)

Für den Einsatz dieser Methoden wären noch weiterführende Untersuchungen notwendig. Auch mü β te noch geprüft werden, ob die Ortskorrelationsanalyse im Zusammenspiel mit der aktiven Messung eingesetzt werden kann.

Die Messungen an realen Abfallgebinden zeigen, da β es oft sehr schwierig ist, die Aktivität im Abfallfa β genau anzugeben. Daher werden häufig zu konservative Werte auf dem Begleitschein notiert. Da eine Unterschätzung in Ausnahmefällen auch vorkommen kann, ist eine Messung der α -Aktivität notwendig, um Grenzwerte, z.B. für eine Verbrennungsanlage, besser einhalten zu können.

6. <u>Zitate</u>

- /1/ W. Eyrich; W.D. Klotz; H. Würz: Zerstörungsfreie Plutoniumbestimmung in Abfallgebinden der Eurochemic in Mol KfK-3369, Juli 1982
- /2/ H. Würz; W. Eyrich; W.D. Klotz: Coincidence and Pulsed Neutron Assay of Sealed α-Waste Drums KfK-4549, März 1989
- /3/ K. Böhnel: Die Plutoniumbestimmung in Kernbrennstoffen mit der Neutronenkoinzidenzmethode KfK 2203, 1975
- /4/ L. Bondar; F. Giradi: A Waste Instrument for Classifying of Pu-Contaminated Waste based on Passive Neutron Assay Proc. International Seminar on Radioactive Waste Products Jülich, 10. - 13. Juni 1985, p. 133
- /5/ D.M. Cifrarelli; W. Hage: Models for a Three Parameter Analysis of Neutron Signal Correlation Measurements for Fissile Material Assay Nuc. Instr. and Methods A 251, p. 550 - 563, 1986
- /6/ G.G. Simon; W. Eyrich: Measurement System to Detect Minute Quantity of Plutonium and Other Alpha-Emitter Proc. Spectrum '90, Knoxville, USA, 30.9. - 4.10.1990, P. 405 - 407

<u>Tabelle la:</u>	PuO2-I	?robe	9		
	Daten	vom	24.01.1980, T	U Karlsru	he
Gewicht		Pu-ç	gesamt	15,106	g
Isotopenanteile		Pu-2	238	0,09	Ş
		Pu-2	239	85,30	8
		Pu-2	240	12,90	%
		Pu-2	241	1,40	8
		Pu-2	242	0,25	9 0
		Am-2	241/Pu	0.27	8

Tabelle 1b: Cf-252-Probe

Gewicht:	1 μ g am 31.12.1968
Quellenstärke	01.11.1980

 $q_{sp} = 9,45 \times 10^4 \text{ n/sec}$

<u>Tabelle 2:</u> Ansprechwahrscheinlichkeiten ϵ (%)

	Minimum		Maximum		Mittelwert	
Faßinhalt	total	koinz.	total	koinz.	total	koinz.
leer	13,9	14,3	20,3	20,6	18,1	18,4
PE 57,5 kg	7,6	7,3	18,0	17,8	13,6	13,2
Beton	2,0	2,0	14,2	14,3	10,8	11,0

	im Faβzentrum		am Fa	βrand	für homogene	
Faβinhalt	total	koinz.	total	koinz.	total	koinz.
leer	1,2	1,0	0,9	0,6	1,0	0,7
PE 57,5 kg	2,0	3,5	1,0	0,7	1,5	1,5
Beton	35	500	3,0	10	4,0	15

Tabelle 3: Nachweisgrenze für Plutonium (Pu-240 äqu. in mg)

Tabelle 4:Verhältnis der maximalen Koinzidenzrate für zweiDetektoren untschiedlicher Entfernungen, bezogen
auf das Faβzentrum, zur mittleren Koinzidenzrate

r	leeres Faß	PE 57,5 kg	Beton- faß
(cm)			
0	1,0	1,0	1,0
8,7	1,1	1,4	2,2
17,3	1,5	2,0	3,3
26,0	2,1	3,0	4,9
30,0 *	2,4	3,7	5,8
volumen- gemittelt	2,0	2,6	4,3

* extrapolierter Wert

A) ohne Korrektur auf Zufallskoinzidenzen						
N	Leerfa β $\epsilon = 18,6\%$	Betonfa $\beta \epsilon = 2,0 $ %	PE 20 kg $\epsilon = 17,7$ %	PE 57,5 kg $\epsilon = 10,2$ %		
2	0,82	0,96	0,82	0,89		
3	0,15	0,04	0,14	0,10		
4	0,024	HOOK (111)	0,025	0,01		
5	0,004	الحما ويد عد	0,004	0,005		
6	0,0005	Niccal aggre 4000	jical illi 196			
B)	mit Korrekt	cur auf Zufa	allskoinzide	enzen		
2	0,75	0,95	0,76	0,84		
3	0,21	0,05	0,21	0,14		
4	0,038	523 gai kāl-	0,033	0,025		
5	0,005	fazzai gagan ganzai	0,005	0,005		
6	0,0005	650 ayu mu	0,0005			

Tabelle 5:Beiträge der Multiplettordnung N für Cf-Quellein Fa β mitte für verschiedene Matrixfüllungen

	ohne Korre auf Zufall denzen	ektur Lskoinzi-	mit Korrektur auf Zufallskoinzi- denzen	
N	A	В	A	В
2	0,93	0,95	0,86	0,88
3	0,067	0,049	0,13	0,11
4	0,004	0,002	0,008	0,009
5	0,0005	ALCON RECEI (MARIO	0,0005	1000 1004 title

<u>Tabelle 6:</u> Beiträge der Multiplettordnung N für Messungen mit Pu- und Am-kontaminierten Faβinhalten

 $Fa\beta$ A enthielt fast reines Pu

Fa β B enthielt einen grö β eren Am-Anteil

Abb. 1: Faßmeßanlage HDB Anordnung der Komponenten

*

30 -

LÄNGE DES HÖHENPOSITIONEN Z ROHREINSATZES FÜR DIE QUELLE AN DER MESS-IM FASS SCHNUR 800mm 8 0 **OF-QUELLE** 100mm 720mm 7 1 100mm 620mm 6 2 520mm δ-З a 46mm 420mm 4 795mm 4 ⊀ INNEN 16mm 320mm З δ 2 -220mm 6 100mm 120mm 1 7 95mm δmm 20mm 0 -8 Abb. 2b FASSBODEN FASSMONITOR II/HDB AXIALE KALIBRIER-POSITIONEN

31-

- 32 -

QUELLENPOSITIONIERUNG AUSSEN AM FASS

Abb. 2d FASSMONITOR II/HDB KALIBRIERPOSITIONEN AUSSEN AM FASS

- 36

--- 41 ----

Verhaeltnisse V(R) der max. verschiedene Hoehenposi-

Koinzidenzraten fuer zwei Detektoren unterschiedlicher Entfernung voneinander. Die Winkelangabe ist auf

Koinzidenzraten fuer zwei Detektoren unterschiedlicher Die Winkelangabe ist auf

Verhaeltnis Triplett zu Dublett (T/D) als Funktion der Ansprechwahrscheinlichkeit (ϵ) fuer unterschiedliche Fassinhalte. (Leerfass, Betonfass, PE = 20 kg, 57.5 kg) 44