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The Three-Dimensional Transient Two-Phase Flow Computer Programme 

BACCHUS-3DtrP 

The three-dimensional single-phase flow version ofthe BACCHUS code, which de
scribes the thermal behaviour of a cool an tinhexagonal bundle geometry, develop
ped earlier, provided the basis for the development of the two-phase flow version 
documented in this report. 

A detailed description is given ofthe two-phase Slip Model (SM), and ofthe Homo
geneous Equilibrium Model (HEM) as a subcase, which presents several improve
ments from both viewpoints of physical modelling and numerical treatment, with 
respect to usual models found in the literature. The most advanced Separated 
Phases Model (SPM) is then described in all analytical details necessary to fully 
understand its implementation in the code. Problems related to the link between 
the two above models into an integrated code version are then discussed. The code 
provides an additional option for modeHing of active or passive, permeable or 
impermeable blockages. This option is documented separately. New numerical 
methods for solving the algebraic systems of equations derived from the lineariza
tion of the fundamental equations have completely superseded previous ones and 
are explained in detail. 

Eventually a section is dedicated to an overview of the code verification, made 
over several years, which goes from steady state single-phase unheated bundle ex
periments up to fast transient two-phase flow experiments in electrically heated 
37-pin bundles. 

Das Computerprogramm BACCHUS-3DtrP für dreidimensionale transiente 
Zweiphasenströmungen 

Die früher entwickelte dreidimensionale einphasige Version des Rechenprogram
mes BACCHUS zur Beschreibung der Thermohydraulik eines Kühlmittels in 
hexagonaler Bündelgeometrie lieferte die Grundlage für die Entwicklung der 
zweiphasigen Version, die in diesem Bericht dokumentiert wird. 

Das Zwei-Phasen-Schlupfmodell mit dem Spezialfall des homogenen Gleichge
wichtsmodells wird detailliert beschrieben. Im Vergleich zu den üblichen Model
len, die in der Literatur beschrieben werden, enthält es mehrere Verbesserungen 
sowohl in der physikalischen Modeliierung als auch in der numerischen Behand
lung der Grundgleichungen. Das Modell der getrennten Phasen für höhere 
Dampfgehalte wird in allen analytischen Einzelheiten beschrieben, die zum vol
len Verständnis seiner ImplemeJ:?..tierung im Rechenprogramm nötig sind. Proble
me im Zusammenhang mit dem Ubergang zwischen den beiden Modellen in einer 
integrierten Programmversion werden anschließend diskutiert. 

Das Rechenprogramm enthält eine zusätzliche Option zur Modellierung von akti
ven und passiven, durchlässigen und undurchlässigen Blockaden. Diese Option 
wird zusätzlich dokumentiert. Neue numerische Methoden zur Lösung des alge
braischen Gleichungssystems, das durch die Linearisierung der Grundgleichun
gen entsteht, haben die Methoden, die früher für die einphasige Version des Re
chenprogramms benutzt wurde, vollständig ersetzt und werden in diesem Bericht 
detailliert beschrieben. 

Anschließend ist ein Abschnitt einem Überblick über die Verifikation des Pro
gramms gewidmet, die sich über mehrere Jahre erstreckt und von stationären ein
phasigenunbeheizten Bündelexperimenten bis zu schnellen transienten zweipha
sigen Experimenten in elektrisch beheizten 37-Stabbündeln geht. 
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lntroduction 

The three-dimensional two-phase flow version of the computer programme BACCHUS 

documented in this report has been developed from the single-phase flow version de

scribed in 1983 in reference [1]. Beside the new modelling of two-phase flow in bubbly 

and annular flow regimes and the provision of an option for blockage simulation, the ba

sis version of 1983 has undergone a series of improvements concerning mainly: i) a re

placement of the original explicit formulation of the code, where only friction terms 

were treated half-implicitly, by a completely implicit treatment of convective and diffu

sive terms in the transport equations; ii) the replacement of the numerical solution 

methods of the Poisson equations for pressure and enthalpy distributions, which were 

then available, with more advanced algorithms based on both direct and iterative meth

ods; iii) the provision ofplotting facilities and HISTORIAN packages for code bookkeep

ing; iv) the vectorization ofthe code. 

The code version of 1983 has been therefore completely rewritten in the course of the 

implementation of the several topics involved. Beside the new physical modelling op

tions, the code performances have been improved by a factor of 50 in computational 

speed with respect to the earlier version. 

For these reasons only few of the topics documented in [1] still retain some actuality. 

These are: 

i) The geometrical modelling of the bundle, as described in pages 3 - 13 of reference 

[1]. Because of the paramount importance of this information,and aiming at mak

ing the present report a self-contained one, we reproduced in the following "Preface 

on bundle modelling" this part ofthe earlier documentation, with only a few formal 

updating. 

ii) The calculation of the temperature distribution in the fuel pins, as documented in 

pages 25- 27, 45- 54 and 137- 14 7 of[l]. Although the basic algorithm for the nu

merical solution ofthe heat diffusion equation in the pins has remained unchanged, 

an improvement made in the present code version is worth mentioning. Since we 

model equivalent pins for every control volume and since arealpin is split in this 

way tobelang to several contiguous control cells, we computed several and different 

pin temperatures at the axis. This inconsistency has been removed by imposing a 

further constraint on the calculation, namely that all computed central tempera

tures coincide. This in turn implies a more realistic azimuthal temperature distri

bution in the simulated pins. The better solution for this problern would, however, 

beatwo-dimensional (radial and azimuthal) solution ofthe heat diffusion equation. 



iii) The modelling ofthe turbulent exchanges ofmomentum and enthalpy, as described 

in pages 150- 160 of [1]. This modelling is based on a sophisticated mixing-length 

concept which takes into account the anisotropy of the pin bundle and holds for 

single-phase flows. Its applicability to two-phase flow is object of current investiga

tions. 

The bulk ofthis report documents the to-date version ofthe code. In a few sections, men

tioned in the following, we document an intermediatestage of the code evolution or give 

details about implementation of new modelling. The purpose of documenting some in

termediate stages is twofold: first it allows one to understand how to proceed step by 

step in a code development from a preliminary stage (e.g. explicit) to an advanced stage 

(e.g. implicit); second, it allows camparisans of the theoretical background with other 

codes which have reached this degree of evolution. Since the to-date version of BAC

CHUS has reached an operational stage, but is still susceptible of improvements from 

both viewpoints of physical modelling and numerical treatment, we also explained the 

basis for future work in some sections. 

The single-phase flow version of the code is not documented separately, because it is a 

subcase ofthe slip model to which Part I is reserved. Suppressing terms ofthe slip model 

containing the slip velocity one has the single-phase flow modelling. Sections 1 - 6, 9 

and 11- 12 ofPart I refer to the to-date code version. Sections 7 and 10 document an in

termediate evolutionstage where diffusion terms in the momentum equation andin the 

enthalpy equation, respectively, were not yet treated fully implicitly. Section 8 explains 

how the Poisson equation for pressure can be solved for pressure increments öp = pn + 1 

- pn (over the time step) instead ofsolving for the pressure values pn+l. The solution for 

pressure increments is more precise than the solution for pressure values because one 

has to deal with numbers in the range ofmagnitude of 10- 102, instead of 105, and the 

relative algebraic equations are less stiff. The solution for 8p was available in an earlier 

intermediate (now obs~•lete) code variant. It has not been taken over to the new code, 

but this could be done easily, ifthe need for increased precision were felt tobe critical. 

Part II is dedicated to the model of separated phases, where basically an annular flow 

regime is assumed. Sections 1 to 7.2 refer to the present code version. Section 7.3 gives 

the rigorous theoretical treatment of the problern of calculating the mass of fluid vapor

izing or condensing per unit time and volume, taking into account not only the power 

supplied to the coolant but also pressure variations. When power is suppressed the ef

fect of pressure variations becomes dominant. This model has not yet been coded. Sec

tion 8 collects allpartial derivatives of thermodynamical quantities for the liquid and 

for the vapour phase needed in the model of separated phases. As a preparation step for 

future modelling of superheated vapour and thermodynamic disequilibrium between 

the phases we complemented this set of derivatives with those of the vapour considered 

2 



as a perfect gas (section 8.4). Section 9 sets the theoretical background for the modeHing 

of a dispersed annular flow regime. This has not been coded so far. It is important for 

simulation ofsituations where large dry-out regions appear at the pin surfaces and the 

cooling effect of transported liquid droplet impinging onto this surface cannot be ne

glected. 

Parts IIT to VI refer to the present code version. 

Part VII gives an overview ofthe programme verifications made over the last ten years, 

including the earlier single-phase flow version of 1983. Numerical computations report

ed in section 1 refer to the calibration of this single-phase version against heated and 

unheated experiments in well-instrumented pin bundles. Section 2 refer to the verifica

tion of the Improved Slip Model (ISM) which has been performed over five years mainly 

on the basis of 7 and 37 electrically heated pin bundle experiments. The same experi

ments served for calibrating the Separated Phases Model (SPM) which has been eventu

ally linked to the ISM in the combined code version. The verification of the integrated 

code version is not documented in this report, but has been explained in reference [39]. 

Likewise, the verification of the blockage option has been reported separately in refer

ences [18] and [19]. 

A quick information about the code is given in the following synopsis. 
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Synopsis ofthe BACCHUS-3D/TP code 

Description offunctions: 

The programme describes single- and two-phase flow of coolant in hexagonal bundle 

geometry under normal or accident conditions like lass of flow, inlet blockages or reac

tivity transient. The programme is based on a three-dimensional representation of the 

bundle by means of the "porous-body" model. The thermal-hydraulic calculation for the 

coolant is coupled to a pin-model describing the temperature distribution in fuel and 

cladding. Heat lasses out of the hexagonal duct and by-pass flows can be taken into ac

count. An option is provided for the simulation of active or passive, central or displaced 

blockages of arbitrary thickness. The programme can be applied to reactor subassem

blies as weil as for the theoretical interpretation of in-pile or out-of-pile experiments. 

The single-phase flow version of the code has been extensively verified (see references 

[i] to [iv]). 

The two-phase flow version is based on two physical models: 

i) a slip model based on three conservation equations for the coolant mixture; 

ii) a heterogeneaus model of separated phases described by five conservation equations 

(two mass, two momentum conservation equations and one enthalpy equation for 

the mixture). 

The two models have been coupled into an integrated code version which simulates a 

bubbly and annular flow regimes, with transition between them. An option is provided 

for using the slipmodelas stand alone code. Verification of the two-phase flow models 

has been reported in references [ v] to [ vii]. 

Numerical method: 

The ICE (Implicit Continuous-fluid Eulerian) technique is used to derive a Poisson-like 

equation describing the pressure distribution in the coolant. The Poisson equation is 

solved numerically by means of an advanced variant of the ADI (Alternating Direction 

Implicit) method or with a fast L-U matrix decomposition technique or Gauss elimi

nation. When the pressure field is known, the coolant mass flows are derived implicitly 

from the momentum equations. The coolant energy equation is also treated implicitly. 

It is also reduced to a Poisson-like equation solved numerically with the matrix decom

position technique or Gauss elimination. Alternatively, for single-phase flow calcula

tions, a Runge-Kutta method of order four can be used (speed-up by a factor oftwo). 

4 



Vectorization: 

The code is available in a version running both on scalar and VP vector computers. The 

vectorization degree is about 90% and implies a speed-up by a factor of 4 - 5 on the 

vector processor. 

Running time: 

It depends on the bundle size. Fora 37 pin bundle with about 1000 meshes one hour of 

CPU time is required on the vector computer VP50 to calculate about 40 s problern time 

in single-phase flow or about 5 s in two-phase flow. 

Programme size and core reguirements: 

The programme consists of about 30000 FORTRAN statements. Core requirements 

depend on the bundle size and on the axial discretization. Fora 37-pin bundle with 40 

axial meshes about 2000 K of core region are required including about 370 K for the 

matrix decomposition method or the Gauss elimination. When the ADI method is used 

about 170 K less are needed. Double precision calculation is compulsory. 

Further facilities: 

Dump restart files are written automatically with a given frequency and at the end of 

every run. A plot facility is available for i) axial, radial or azimuthal distributions of 

selected physical quantities at given time points; ii) time-dependent variations; iii) iso

therms and velocity vectors for a given cut through the bundle. 

Related programmes: 

PLOTCP for the plotting facility. An independent library ofmaterial functions for fuel, 

cladding, coolant (sodium or water) and structural material is coupled to the pro

gramme. 

A HISTORIAN package is available for code updating and management. 
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Preface on bundle modeHing 

Some basic information about the geometrical model used for simulating the bundle, 

which is essential for understanding the conventions used in this report, is reproduced, 

with only slight updating, from reference [1]. 

i) Control volumes 

We assume that the pins ofthe bundle are arranged on a hexagonallattice, as shown in 
Fig.A. 

The conservation equations describing the coolant flow are written first in a local form, 

then integrated over appropriate control volumes. A staggered mesh is used for defining 

the several dependent variables (components of coolant velocity, pressure, enthalpy 

etc.) and correspondingly different cells are used for the macroscopic balances. As 

shown in Figs. Bl and B2 the control cells are bounded in radial direction by planes 

parallel to the bundle z axis through the pin axes. Let Llr be the distance between the 

internal and external bounding planes, i.e. the width of the hexagonal ring. Planes 

perpendicular to the z axis define the following control cells of length Äz in the axial 

direction: 

Control volume VI is bounded in axial direction by two planes perpendicular to the 

bundle z axis and a distance Äz apart, in radial direction by planes through the pin 

axes. This control cell is used for volume-averaging the coolant energy equation, and 

the continuity equation. 

Control volume Vn is obtained by displacing VI by Llr/2 in radial direction. It is 

therefore bounded in the radial direction by planes parallel to the bundle axis 

passing midway between the pin axes. This control cell is used for volume -

averaging the radial component ofthe coolant momentum equation. 

Control volume Vm is obtained by displacing VI by ßz/2 in axial direction. It is used 

for volume- averaging the axial component ofthe coolant momentum equation. 

Control volume VIv is obtained by taking the two adjacent halves of cells like VJ. 

V1v is used for volume-averaging the azimuthal component of the coolant 

momentum equation. 

Control volume VI to VIv are bounded in the azimuthal direction by two planes 

passing through the bundle axis. Up to 48 azimuthal sectors can be considered. 
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Fig. A: Radialand azimuthal discretization in BACCHUS. 
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Vn Vm 

Fig. B1: Control volumes used for macroscopic balances. 

ii) Indexing conventions 

Following conventions are adopted for indexing the control cells: 

Axial direction. Index JC = 2, 3, ... MC denotes the control volumes Vt of length !J.z. 

Control volumes Vm, displaced by + /J.z/2 are indexed by JZ = 2, 3, ... MZ. 

Radial direction. Index IC = 1, 2, ... NC denotes the control volumes Vt. IC = 1 

refers to the inner hexagonal control volume; IC = NC is the control volume 

bounded ex~ernally by the hexagonal can and internally by a plane through the axes 

of the outermost pins. Index IR = 1, 2, ... NR refers to the control volumes Vu. 
IR = NR is the control volume bounded externally by the hexagonal can and 

internally by a plane tangent to the outermost pins. 

Azimuthai direction. Index IT = 1, 2, ... NTH refers to the azimuthal sectors 

bounded by planes passing through the bundle axis. Index ITR = 1, 2, ... denotes 

these planes. 

Control cells and indexing conventions are shown in Fig. A for the case of a 37-pin 

bundle. (IC, JC, IT) is indexedas node (i, j, k). The cells faces areindexedas i ± 112, j 

± 112, k ± 1/2, respectively. 
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Fig. B2: Centred or axially displaced control volume VI and V ur (top left), 

radially displaced control volume V !I (top right), 

azimuthal displaced control volume VIv (negative direction) 

(bottom left), 

azimuthal displaced control volume Vrv (positive direction) 

(bottom right), 
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iii) Definition of dependent variables 

Space discretization ofthe conservation equations describing the fluid flow is clone with 

reference to staggered meshes. Scalar quantities, like coolant pressure, enthalpy and 

other physical properties of the fluid, are defined at the centre point (i, j, k) of a control 

volume. Velocity components ofthe coolant (u, w, v for the r,z, s directions, respectively) 

are defined at the mid points ofthe boundary faces. These conventions are shown in 

Fig. C. 

Fig. C: Definition ofvelocity components and scalar quantities 

on staggered meshes. 

iv) Volume porosity and surface permeabilities 

Conventions used for defining geometrical data are those customary in the so-called 

"porous body" approach. All cells are characterized by a total volume V, a volume 

occupied by the fluid V r, an area Aw of the solid (wall)-fluid interfaces, by the areas of 

the lateral faces, St, Sb, (top, bottom, perpendicular to the z axis of the bundle), Si, Se 

(internal, external, perpendicular to the radial coordinate r),Sm, Sp (bounding the cell 

in the azimuthal direction, where the subscripts m (minus), p (plus) denote the sequence 

considered in the positive clockwise direction). These geometrical elements are used to 

define volumetric porosities and surface permeabilities for every cell. 
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Let Sru Srh, Sri' Sre, Srm' SrP be the cross flow areas of the bounding faces. For every cell 

we define surface permeabilities ~' 'lf, ~ for the axial, radial and azimuthal directions, 

respectively, as the ratio of the respective cross flow area to total area, for instance 

lJ!. = 8( I 8. 
I . I 

I 

~b = 8( I 8 etc. 
p p 

The volume porosity of a cell is defined as the ratio ofthe volume occupied by the fluid to 

the total cell volume, i.e.: 

In an undisturbed geometry the volume porosity is equal to the surface permeabilities 

in the axial direction. The definition of the surface permeabilities and of geometry 

coefficients for the radial direction is shown in detail in Fig. D with reference to the 

centred cells VI and to the displaced cells Vu. 

In the documentation following symbols are used according to Fig. D2: 

lJ!. = P8J(IC) 
I 

41 i + 112 = P8IR (IR) 

8.18 . = FACCM(JC) 
1 m1 

S 18 . = FACCP(JC) 
e m1 

8 ./ S = FACRM(JR) 
m1 e 

S I S = FACRP (IR) 
me e 

Furtherdetails are given in Ref. [1]. 

v) Advantages offered by the porous medium approach 

In the last two decades several computer programmes have been developed for the 

three-dimensional analysis of the coolant behaviour in fast reactor cores. Their degree 

of sophistication has grown together with the improvement of the computing facilities 

over the years. Their common feature consists in searching for an approximate solution 

of the conservation equations for mass, momentum and enthalpy by treating the 

numerical problern as an initial- value problern in time and a boundary value problern 

in space. However, some codes differ quite strongly from the viewpoint of the choice of 

the control volumes assumed for making the macroscopic balances of the dependent 

variables to be conserved. 
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Fig. Dl: Definition ofsurface permeabilities. 

IC 

IR 

Fig. D2: Definition of geometry coefficients. 
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Most of the computer codes developed earlier than BACCHUS-3D were based on the 

"subchannel-analysis" concept which assumes as control volume the standard 

triangular subchannel between three rods. Computer programmes of this category 

present some basic limitations: 

i) Scalar physical quantities (density, temperature etc.) are considered as constant 

in the control volume and velocity components are constant on the bounding 

surfaces (lumped parameter approach). Therefore the detailed distributions of 

temperature, pressure and velocity fields within a subchannel are ignored. The 

adoption of the lumped parameter approach arises from the mathematical 

treatment of the conservation equations as made in most codes. They are first 

"time-smoothed" to eliminate formally the fluctuations ofthedependent variables 

due to turbulence (this process introduces however additional terms which are 

interpreted as the components of a turbulent stress tensor) then are integrated 

over the control cells to obtain volume- averaged physical quantities. 

ii) The transversal components of the momentum equation arenot treated with the 

same mathematical rigor as the axial component. This is a consequence ofthe non

orthogonality ofthe coordinate system used on a cross section ofthe bundle. 

iii) The number of subchannels is very large in large bundles, thus implying long 

computer running timesandhigh costs. 

A successful attempt to cope with the drawbacks imposed by the subchannel analysis 

has been made by grouping some subchannels tagether to define a !arger control volume 

for the macroscopic balance of the conservation equations. According to this, the real 

geometrical configurations of the subchannels grouped tagether to form a computa

tional cell becomes irrelevant. We account for it, indirectly, by means of the new con

cepts of volume porosity, surface permeabilities, distributed frictional resistance and 

distributed heat source. Moreover, the new computational cells can be so defined that 

their bounding surfaces are orthogonal to a system of Cartesian coordinate axes. The 

basic limitation imposed by the non-orthogonality ofthe coordinate system employed by 

codes based on the subchannel-analysis concept is thus removed. 

The porous-body concept allows one to calculate also real continuum regions like a 

reactor plenum or a mixing chamber in experimental assemblies. It is sufficient to 

define unity volume porosity and surface permeabilities in these regions. Thus both 

continuum and quasi-continuum subdomains can be handled in a single computer 

programme. 
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The performancies of a fuel assembly may be affected seriously by deformed geometry, 

as pin bowing due to power skew. Codesbasedon the subchannel concept have strong 

difficulties in taking into account a deformation properly because the definition of the 

control volumes is bounded to the real geometry. In the porous body approach, con

versely, a deformed geometry can be simply accounted for by a modification ofthe coeffi

cients representing the volume porosity and the surface permeabilities of the cells 

involved. 

As in the case of codes based on the subchannel analysis, the lumped parameter 

approach is followed also in the porous body model. However, the following advantages 

areaffered by the porous-medium formulation: 

i) Reduction of the total number of cells considered, therefore of computer time. 

Obviously the control volumes should also be - on an average - larger than sub

channels, but small enough compared with the scale of phenomena to be 

investigated. 

ii) Use of an orthogonal coordinate system. This implies that the transverse momen

tum equations can be treated with the same rigor as the axial component. 

iii) Suitability for simulating a continuum as well as an heterogeneaus medium and 

geometrical deformations. 

15 



Part I 

Slip Model- (Homogeneous Equilibrium Model) (SM-(HEM)) 

by M. Bottoni 

1. Governing eguations for the slip model 

The governing equations for the conservation ofmass, momentum, andenergy ofthe coolant 

for the ~lip Model have been derived in reference [2]. Neglecting some terms (like viscous 

dissipation in the fluid) which are small compared with the dominant ones (like power 

source) these equations can be written as follows: 

Continuity Equation 

apm ( - ) 
--;;;-+V· pmum =0, 

(1.1) 

Momentum Equation 

~ ( p m ~ m) + V . ( p m ; m ~ m) + V. [ x ( l - x) p m V SI V Sl l = 
(1.2) 

Energy Equation 

a ( ) - h +V· at Pm m 

(1.3) 

ap 
= + V at m 

. V p + ( -
1 a ( 1 - a) ( p 1- p g) V SI ) · V p - V· q + Q. 

Pm 

Indices g, 1, m refer to vapour, liquid, and coolant mixture, respectively. The term R in the 

momentum equation represents the drag force per unit volume. The dynamic viscosity 11 is 

the effective one, defined as sum of molecular and turbulent contributions (see Ref. [1] for 

details). V is the N abla operator. 

The continuity equation, Eq. (1.1), is formally identical to the continuity equation for single

phase flow and reduces to it ifthe void fraction is zero. The energy and momentum equations, 

Eqs. (1.2) and (1.3), are similar to those for single-phase flow, but contain additional terms, 

which depend on the slip velocity VsL. In case the slip velocity is zero (i.e. the phases have 

the same velocity) the equation obtained are those of the Homogeneaus Equilibrium Model 

(HEM), as a subcase ofthe slip model. 
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2. Summary of basic relationships between two-phase flow parameters 

With reference to the velocity components w1 and Wg ofthe coolant liquid and vapour phases 

in the z coordinate direction, we define the mass flow rate W, the volumetric flow rate Q, and 

the main flux G by: 

W =p w A 
p p p p 

w 
Q=_!!. 

p p 
p 

G = 
w 

p 

P A 

(2.1) 

(2.2) 

(2.3) 

respectively. The index p ( = 1, g) refers to either phase; p and Aare the coolant density and 

flow area, respectively. Similar definitions are used for the other coordinate directions. The 

contribution of each phase being additive, it holds 
W =W1 + Wg, (2.4) 

(2.5) 

(2.6) 

The fraction of either phase is defined as the ratio of the cross-section occupied by the phase 

to the total cross section: 

A 
p 

a =- = 
P A 

A 
p 

We define the phase weight fraction by 
0 lP w =-

p ' 
Pm 

where 

p = a,p, + a p - m ~- t g g 

is the mixture density. The flowing quality is defined for either phase by 

X _ Wp _ Wp = a~PWP 
fp- w - w,+ w g a,p,w, + agpgwg 

It holds 
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(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 



The total mass flux can be expressedas a function ofthe flowing qualities by 

The relationship between vapour void fraction and flowing quality is given by 
1 

Theinverse relationship is: 

= 
1 

1 - ag w1p1 1+----
ag wgpg 

The relationship between vapour weight fraction wg and the vapour flowing 

quality Xfg is given by 

where 

1 
w =-Ea pw 

m p PP PP 
m 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

is the mixture velocity. Ifwm = Wg = WJ (slip ratio equal to 1), one derives Xfg= Wg. 

The following relationships arealso worth noting: 
1 -X 1 - a wlpl fg g 

= (2.19) 
xfg Q wgpg g 

wlwl 1 - (i) w, g 
= = (2.10) 

wgwl (i) w g g 

1 -X 1 (2.21) 
=--- = 

X w X H 
g 

We define slip ratio as the ratio of the vapour velocity to the liquid phase 

velocity component in the respective coordinate direction: 

H= (2.22) 
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In the theoretical description oftwo-phase flow by means of a slip model (H:t:1), the assump

tion is made that the slip ratio is constant. This assumption allows strong simplifications in 

programming. However, a more refined numerical treatment of two-phase flow, made by 

calculating the velocity components of both phases by means of separate systems of 

momentum equations in the Separated Phase Model, shows that the slip ratio is not 

constant. 

From Eq. (2.19) one derives 

H= = 
xfg 

1- X 
fg 

a 
g 

We define the thermodynamic quality ofthe mixture by 

h - h 
m l s 

x= 
h - h ) 

gs l s 

(2.23) 

(2.24) 

where h1s and hgs are the specific enthalpies ofthe liquid and vapour phases on the respective 

Saturation lines and hm is the specific enthalpy ofthe mixture defined by 

h = -
1 (a

1 
p1h1 + a p h ) . 

m p g g g 
m 

From the definition ofthe vapour flowing quality (Eq. 2.10), one derives: 
1 

=------
1 - ag p1 1 ' 

1+----
a p li 

g g 

while solving Eq. (2.21) with respect to Xfg gives 

1 
=-----

1 1 - X 
1 +- -

H X 

(2.25) 

(2.26) 

(2.27) 

Combining Eqs. (2.26) and (2.27), one derives the important relationship between the 

thermodynamic quality and the vapour void fraction: 

1-x 1- a Pt g 
= -- (2.28) 

X a Pg g 

which can also be written 

agpg agpg (1 - a 1) Pg 

X = = = (2.29) 
agpg +alpt Pm Pm 

A useful expression for the mixture density Pm is obtained by combining Eqs. (2.9) and (2.15): 

xfg + (1 - xfg) H 

= (2.30) 
xfg H 
-+-(1-x) 
p p fg 

g l 
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lntroducing Eq. (2.27) into Eq. (2.30) one derives: 

1 
=----

(2.31) 

Eq. (2.31) holds for every value ofthe slip ratio H. 
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3. Calculation ofliquid and vapour velocity components from given slip velocity 
or slip ratio 

For every coordinate direction, we define the slip velocity as the difference between the veloc

ity ofthe vapour and liquid phase. With reference to the z coordinate direction, we have 

(3.1) 

The normalized sli p veloci ty is defined as the ratio of the sli p veloci ty to the mixture veloci ty 

component in the same coordinate direction: 

WN = WSI = wg-wl 

Sl w w 
(3.2) 

m m 

Similar definitions apply forther and s coordinate directions. 

Relationships between the slip velocity, mixture velocity, and the velocity components of 

either phase can be obtained under the assumption of thermodynamic equilibrium between 

the phases (T g = TI). In this case one has x = wg = agpg/pm, (1 - x) = WI = OJPIIPm, and given 
Eq. (2.18), one derives 

(if Tg=T1) w1 = wm-xWs1 , (3.3) 

(if T = T) 
g I wg = wm + (1- x) W SI . (3.4) 

Combining the two previous equations yields the following relationship between the slip ra

tio Hand the slip velocity Ws1: 

or its inverse, 

H = w m + (1 - x) W SI 

wm-xWSI 

H-1 
W SI = w m 1 + x (H- 1) 

(3.5) 

(3.6) 

In the case ofH = 1 (the Homogeneaus Equilibrium Model), the slip velocity vanishes. 

The slip velocity can be eliminated from Eqs. (3.3) and (3.4) using Eq. (3.1), thus obtaining 

the velocity components of either phase as a function of the mixture velocity Wm and of the 

slip ratio H: 
w m 

wl = 
l-x+xH 

(3.7) 

w = Hw1 g (3.8) 

Two options are commonly used for imposing either the slip ratio or the slip velocity: 
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• Option 1: 

The slip ratios are prescribed for the three coordinate directions as 

(3.9a) 

(3.9b) 

H = VSLTPZ = w I w
1 

. z g (3.9c) 

In this case, Eqs. (3.7) and (3.8) and similar ones in the r and s coordinate directions give the 

velocity components of either phase (to be used for calculating the "momentum slip"and 

"energy slip", i.e. the terms containing the slip velocity, in the momentum and energy 

equations) 
u 1 = u I (1 - x + x· 

m H) ' s (3.10a) 

v1 = v ml (1 - x + x· H)' r (3.10b) 

w 1 = w ml (1 - x + x· H) ' z (3.10c) 

u =H· ul ' (3.1la) g r 

V =H· VI ' (3.1lb) g s 

w =H· wl. (3.1lc) g z 

The Homogeneaus Equilibrium Model (HEM) is obtained as a subcase ofthe Slip Model (SM), 

Setting Hr = Hs =Hz= 1. 

• Option 2: 

In this case, the input parameters VSLIPR, VSLIPT, and VSLIPZ have the meaning of 

normalized slip velocities defined as 

VSLRN ( = VSLTPR) = U~ = (ug - u1)1um , (3.12a) 

VSLTN ( = VSLTPT) =V~= (vg - v1)1vm (3.12b) 

(3.12c) 

U sing Eqs. 2, 3, and 4 (as weil as the analogaus equations for the r and s coordinate 

directions), one derives the following velocity components ofthe two phases: 
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N 

u g = u I ( 1 + U SI N ) = u I + U~. um 
1- x USI 

w g = w1 ( 1 + W~ N ) = w1 + W~ · W m . 

1- X W Sl 

The HEM is obtained again as a subcase in this second option setting 

In both options, one has 

• Forx=O· u = u • I m, 

v1 = Vm, 

w1 =wm, 

N N N 
U Sl = V Si = W Sl = O . 

(3.13a) 

(3.13b) 

(3.13c) 

(3.14a) 

(3.14b) 

(3.14c) 

while the vapour velocity components arenot defined (they are set to zero). 

• In the limiting case x= 1, the above equations for the phase velocity components arenot 

applicable and we set 

Ug =Um, 

Vg = Vm, 

Wg = Wm, 

while the liquid velocity components are set to zero. 
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4. Finite difference form ofthe continuity equation 

We treat the convective terms in equations (1) fully implicitly. Integrating this equation over 

a centred cell, replacing the volume integral of the divergence term by means of surface 

fluxes one derives the following finite difference form: 

1 
+

D.r. [ ( )n + 1 ( )n + 1 1 
wFpu - wFpu + 

c m m i+1f2,j,k c m m i-1f2,j,k 
I 

r ( 
~ p V )n + 1 ( ~ p V )I!+ 1 l 
CO: ß m i,j, k+ l/2 - CO: ß m iJ,k- l/2 = O . 

Equation (4.1) can be written in compact form as 

( 
ap )n+1 m 

e .. - + 
vk a t · ·k IJ 

1 ( )n+ 1 D. y. c. < p u . > 
ß{. I I lll m I 

I 

= 0 (i = r, s, z) 

with Yi surface permeability, 

Cz 1, 

er Fe = FACCM, FACCP 

(4.1) 

(4.2) 

c8 1 I cos ß; ß = angle between r-axis and azimuthal boundary surface of 

centred control volume (see Fig. D2). 

Equation (4.1) is used to derive a Poisson-like equation for the pressure distribution, as ex

plained in section 6. It is also used to derive the updated value of the void fraction. Discre

tizing the time derivative and solving with respect to Pmn + 1 one has 

1 
D. (v. c. < p u . >) ßl. 1 1 m mt 

(4.3) I! = pnl
e 

I 

Hence, from the definition Pm = apg + (1-a) PI, 

n+1 n+1 
Pt - Pm n + 1 a = = n+1 n+l 
Pt Pg 

(4.4) 

1 1 
D. (v. c. < p u . > )n + 

1 1· 
ß[. I I m llll 

I 

= 
P

n+1 n+1 
l - Pg 
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5. Fully implicit treatment of momentum conservation equation 

The scalar component ofthe momentum conservation equation (1.2) in the z-coordinate 

direction can be wri tten 

;t (pmwm)+ a;~ [(pmVma)wm+x(t-x)pm(vg-vt)a(wg-wt)]-
a 

a 
aL 

a 

(L = r, s, z) 
a 

La represent any ofthe coordinate directions (r, s, z in bundle geometry) and Va is the 

respective velocity component. 

Letting 
= x (1 - x) p 

m 

s -- ap 
- -p g - R 

z az m z z 

(momentum slip) 

(source term) 

(conuectiue plus diffusiue flux of momentum) 

equation (1) can be written 

a ( ) a - w +-at Pm m aL Jw = S · ma z 
a 

Integration over the volume Vr ofthe fluid in a control cell yields 

I ~ ( p w ) dV + I _a J w dV = I s dV . 
V at m m V aL mu V z 

f f 0 f 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

The control volume for the z-component of the momentum equation is obtained displacing a 

centred control cell (i j k) by half-mesh in the z direction. Replacing the volume integral of 

the divergence term by means ofthe fluxes through the cell bounding surfaces one derives: 

I ~ (P w ) dV + I (Jw ) dA - I (Jw ) dA + vat mm A m A . m 
f f i + l/2,} + 1/2, k r f i -1/2,} + 1/2, k r 

S dV 
z 
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We discretize this equation with respect to time treating convective, diffusive, and the pres

sure gradient term fully implicitly and the friction term half-implicitly. Replacing the sur

face integrals by the mean values over the surfaces, denoted by the symbols < >, one ob

tains: 

( ) A n + 1 (J ) A n + 1 + < Jwm z r> iJ+1,k- < wm z r> ijk + 
(5.8) 

( 
V r ) ( ) ( )n [ V ( )n + 1 ] =- - pn~l -pn~1 - V p g - _r fl w in p w . . . 
/1z iJ+ 1/2,k IJ+1,k IJ k r m z iJ+ 1!2,k 2Dh m m m IJ+lf2,k 

The averaged fluxes ofthe vector Jwm are evaluated with the upwind discretization scheme 

given in eq. (5.13): 

Jr+ = J ( Jw m) dA = < 
Ar i + 112 ,j + 112, k r 

· Ar > i+112,J+112,k (5.9) Jw 
m 

= { F · Pm w m + G ( W g- W l) - D · D. (Pm W m) } i + 112,) + 112, k ' 

with the definitions: 

F, , "" , , "" = ( A, u ) 
'' ""'•J' ""'• k \ r m I i + 112,) + 112, k 

(5.10) 

Gi+li2,J+ll2,k = l Ar 0 s1 ( ug -ul)] i + 112, j + 112, k ' (5.11) 

( 
lllll ) 

Di+112,J+112,k = Ar P D.r i+112J.+112 k' 
m ' ' 

(5.12) 

/::,. (p w ) 
m m i+ll2,j+112,k 
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For both Ui+ 112,j+ 112, k positive and negative, formula (5.9) can be written 

Jr+ = f O,F. . 110 k l (p w ) - [o, -F. 112 . 110 k l (p w ) + l t+1f2 ,J+ tL.., m m i,j+1t2, k !+ ,J+ tL.., m m i+1,j+ 1/2, k 

+ [o,Gi+1!2,)+1f2,kj (wg-wl)i,J+112,k - [o,-Gi+1t2,J+112,kj (wg-wl)i+1,)+112,k + (5.13) 

The symbol [a, b] denotes the maximum ofthe two real numbers a, b. 

Let us introduce the following subscripts to index the central node considered and the six 

neighbouring nodes in the three coordinate directions: 

0 for i,j + 1/2, k 
1 for i- 1, j + 112, k 
2 for i+1,j+ll2,k 
3 for i,j+ll2,k-1 
4 for i,j+l/2,k+l 
5 for i,j- 1/2, k 
6 for i,j+3/2,k. 

The flux Jr + and, similarly, the other ones in eq. (5.9) can be written: 

Jr+ = f A (Jwm)r dA=< (Jwm)r · Af > i+l/2,)+1/2,k = 
f i + 1f2 ,j + 1!2, k 

(5.14a) 

+ [ 0' G i + 1!2 ,J + 1!2, k l ( w g - w I ) o - [ 0' - G i + 112 ,J + 1!2, k l ( w g - w l ) 2 + 

+ D i + 1/2 ,j + 1!2, k { ( p m W m ) 
0 

- ( p m W m ) 
2 

} ' 

Jr- I 
A f i- 1/2 ,j + 1!2, k 

= ( Ju• \ • A '0> 
\ ~ m J r • f - i -112,) + lf2,k 

= [o,F. 110 . 1/2 k j (P w ) - [o, -Fz'-IIO,J'+110,k j (Pm wm)o + 1- tL.. ,J + , m m 
1 

tL.. tL.. 

(5.14b) 
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(5.14c) 

+ D · · 1 k { (p w ) - (p w ) } , 
1 ,J + , m m 

0 
m m 

6 

Jz- J (Jw ) dA = < (Jw ) · Ar > .. k A m z m z IJ 
r i,J k 

= [o,F .. k 1 (P w ) _ [o, -F .. k j (P w ) + 
IJ J m m 5 IJ m m 

0 

(5.14d) 

J 8 + = J ( J w m) s dA = < ( J w m) s . Ar > i ,J + 112,k + 112 = 
Ar i,J+ll2,k+ll2 

(5.14e) 

(5.140 
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+ f 0, Gi ,j+ll2,k-1121 ( wg -wl )3 - f 0, -Gi ,j+ll2,k+ll21 ( wg -wl )o + 

Let 

H = u I u1 , s g 

H = w lw1 z g 

be the slip ratios for the three velocity components in the radial, azimuthal and 

axial directions, respectively. 

The slip velocities can be written in terms ofthe mixture velocity and ofthe 

thermodynamic quality (see (3.6)) as -H - 1 H ,. r 
USl = ug- ul =u = Pm u 

m I+x (H - 1) m 
Pm r 

,....._ 
H - 1 H 

VSl = ug- ul 
s s 

=u = Pm u 
m 1 +x (H - 1) m 

Pm s 

H -I H 

WSl = wg- wl 
z z 

wi th the defini tions: 

H. -1 ,...., r 
H.= -----

r 1 +x (H.- 1) 
r 

(i = r, s, z) . 

With this artifice we can calculate the sum of convective terms one and three 

in formula (5.14a) as 

fo,Fi+li2,J+ll2,k 1 (Pm wm)o + fo,+ Gi+li2,J+ll2,k 1 (wg -wt)o = 

and similarly for the other convective fluxes. 
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(5.15a) 

(5.15b) 

(5.15c) 

(5.16a) 

(5.16b) 

(5.16c) 

(5.17) 

(5.18) 



Thus formulas (5.14a) to (5.14f) can be written in more compact form: 

Jr+ = Di+1J2 [(Pm wm)O -(pm wm)2 1 + 

(5.19a) 

+ [ O,Fi+1l2 + Gi+l/2 

-
+ [ O,Fj+l + Gj+l. ( :z o) 1 (Pm wm)o - [ 0,-( Fj+l + Gj+l . 

m 0 

+ G. 
J 

,.., 

+ [ 0' F k + 1J2 + G k + 112 . ( : z o ) 1 ( p m w m ) o - [ 0' - ( F k + 112 + G k+ 112 . 
m 0 

-
+ [ O,F,_,12 + c,_w · ( :::)] (P.., wm ), - [ 0,-( ~·,_w + c,_lf2 · 

Here andin the following equations indices i, j, and k are partly suppressed. 

Recalling the definitions ofG (5.11), ofmomentum slip Gs1 (5.2), and using (5.16a), 

the terms in brackets can be calculated as follows: 
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(5.19b) 

(5.19c) 

(5.19d) 

(5.19e) 

(5.19f) 



Fi-IJ2,J+lf2,k + Gi-lf2,J+112,k 

-
Fi+IJ2,)+1J2,k + Gi+112,J+ll2,k ( :z )

2 m 

( A u ) { 1 + (x (1 -x) p H ) 
f m i + 1/2,) + 112, k m r i + 112,) + 112, k 

F . . k + G .. k 
l, J, l, J, 

F. '+1 k + G .. 1 k (Hz ) 
!, J ' !, J+ ' p 6 

m 
= 

( A f W ) { 1 + (x ( 1 - x )p 
m i,j+ 1, k m Hz). '+1 k 

l,J ' 

F .. IJ k 12 + G 12 k (Hz) 
l,J+ 2, -1 i,j+1' -1J2 p 3 

m 

Fi, J+112, k+112 + 0 i, J+112, k+1/2 

( ) { (() "") A v 1 + x 1-x p H · 
f m i,j+112,k+lt2 m 8 i,j+IJ2,k+lt2 
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(5.20a) 

(5.20b) 

(5.20c) 

(5.20d) 
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(5.20f) 



,..., 

Fi+ll2,)+1f2,k + Gi+1f2,)+1f2,k ( :z )
0 

= 
m 

,... 

pi-112,)+112,k + Gi-1f2,)+1f2,k ( ~z )O 
m 

,..., 

F . . 1 k + G. . 1 k ( Hz ) 
I,J+, l,j+, p O 

m 
= 

( ) { ( ( ) __, ) A w 1 + x 1-x p H r m i,j + 1, k m z i,j + 1, k 

-
P . . k + G . . k (Hz ) 

I, J, I, J, p O 
m 

= 

= 

Fi,J+U2, k+1f2 + 0 i,J+lf2, k+l/2 ( :z )o = 
m 

Pi,J+1f2, k-1!2 + 0 i,J+lf2, k-1!2 = 

= (A v ) { 1 + (x (1-x )p H ) · 
r m i,j+lf2,k-lf2 m s i,j+l!2,k-lf2 
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(5.20g) 

(5.20h) 

(5.20i) 

(5.20j) 

(5.20k) 

(5.201) 



The diffusion coefficients in formulas (5.19a) to (5.19f) are given by 

(
A(Jlm) 

D i ± 1!2, j + 112, k = . p m 6.r i ± 1f2,j + 1!2, k 

D. · 1 k I,J+ ' 
(j) 

(
A(Jlm) 

= p !::.z i,j+1,k ' 
m (j) 

(
A(Jlm) 

Di,j+lf2, k±1f2 = pm!::.s ij+1f2, k±112 . 

Using V r = eV, introducing the convective and diffusive fluxes (5.19) evaluated 

at time level n + 1 into (5.8) and rearranging, one derives 

""' 

( H ) l l ( _z + O _ Fn+1 
p 0 ' i- 112,j + 1!2, k 

m 

+ G n+1 . 
i j k 

G
n+1 

+ i -lf2,j + 1!2, k 

(5.21a) 

(5.21b) 

(5.21c) 

(5.22) 

+ Dn+1 Dn+1 Dn+1 Dn+1 vn+1 Dn+1 } 
i+1f2,j+112,k + i-1f2j+112,k + ij+1,k + ij k + ij+112,k+1f2 + ij+112,k-1f2 + 

_, 

- ( )n+1 { [o Fn+1 +Gn+l (Hz) ]+vn+1 
Pm w m 

1 
' i -lf2,j + 1!2, k i- 1!2,) + 112, k p 1 i -1f2,j + 1!2, k 

m 

,... 

an+l (Hz))\lj+Dn+l Jl+ 
i + !f2,j + 1/2, k p 2 i + lf2,j + 1!2, k 

m 

Dn+l 
i,j + 1, k 
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....-

- w 0 Fn+1 + an+1 
( )

n + 1 { [ 
Pm m 

3 
' i,j + 1/2, k-1/2 i,j + 1/2, k-1/2 ( Hz) 1 Dn+l p 3 + i,j+1!2, k-1/2 

m 

- w 0 - Fn + 1 + an+ 1 
( )

n+ 1 { [ ( 
Pm m 

4 
' i,j+1J2,k+1!2 i,j+1J2,k+1!2 1 

+ Dn+1 } 
i,j + 1/2, k+ 1/2 

= (c~o (Pm wm):-(cvpmgz): - (c~)o (P~.;1!,k- p~;~ ). 
This equation can be wri tten in the compact form 

with the following definitions ofthe coefficients: 

(c V)0 ( c V ) 
-- + - flw ln + 

D..t 2Dh m o 

_, 

+ [ 0 • F7: 1~.J + 112, k + a~:1~,J + 112, k ( : z ) J + [ 0 • - ( Jt'~_:: ~2,J + 112, k + a~_::-1~,J + 112, k 
m 

ro F n+ 1 an+ I 
+ , i,j+l/2,k+1/2 + i,j+l/2,k+l/2. 

+ a n+1 
i j k 

(5.23) 

(5.24a) 

Dn+1 Dn+1 Dn+! vn+1 Dn+1 Dn+! } 
+ i+l/2,j+1/2,k + i-1!2J+1!2,k + iJ+1,k + ij k + iJ+!!2,k+1!2 + iJ+1!2,k-1!2 , 

'"' 

{ [o,F7~1~,J+lf2,k +a7~~2,J+!J2,k ( PHz) 1 1+D;~~~~.J+112,k} • 
m 

(5.24b) 

,-1 

( H ) ) 1 + an+l _z + Dn+1 
i + 1/2,) + 1/2, k p 2 i + 1/2,) + 1/2, k 

m 

} , (5.24c) 

{ [ F n+ 1 an+ 1 
O, i,j+l/2,k-1J2 + i,j+1!2,k-1J2 1 + v~;1 u2. k-112 } ' 

(5.24d) 

{ [ O -(Pn+1 + an+1 
1 • i,j+!!2,k+1!2 i,j+1!2,k+!t2 

( H,) ) I 
p/11 4 

+ Dn+1 
i,j + 1/2, k+ 1/2 } ' 

(5.24e) 
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..... 

{ l 0, F;~;~ + a;~;~ ( PHz )51+ v;z7l } , 
m 

(5.24f) 

(5.24g) 

(5.24h) 

(5.25) 

Defining 

(5.26) 

(5.27) 

equation (5.23) can be written 

( )

n+l 

Pm wm i,j+ll2,k 
A dw ( n+l n+l ) 
w6 - 6 Pi,J+I,k- PiJ k · (5.28a) 

Similarly one derives for the radial and azimuthal components ofthe momentum equation 

-" du n+l n+l 
( )

n+l ( ) 
p u = u - . p. . - p. . , 

m m i+ll2,j,k 2 2 t+l,J,k I,J k 
(5.28b) 

( )
n + 

1 
"' du ( n + 1 11 + 1 ) 

P v = v4 - 4 Pt·, J·, k+ I - pz. J. k ' 
· m m i,j,k+l/2 

(5.28c) 

with 

1 
6 

( r+l + b~ } , 
A {'>' u 
u2 u ~ß aß Pm um ß 

ao I 

(5.29) 

1 
6 

( r+l } , A 

{ Iß 
u + bu v4 u a[l Pm um ß 0 

ao I 

(5.30) 
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1 ( eV) du = 2 u !::.r i+112,j,k' 
ai+112,j,k 

du 
1 

( :~ ) i,j, k+ 1/2 4 u 
ai,j, k+ 112 

For the three components ofthe momentum equations, written for control volumes 

displaced by half-cell in the respective backward direction, one has (with similar 

definitions ofsymbols): 

( r+1 " du ( n+1 n+1 ) 
Pm um i-112,j,k 

u1 - p .. k - p. 1 . k ' 1 !) l- • J 

( r+1 " du ( n+ 1 n +I ) 
pmum i,j,k-112 

u3 - 3 pijk - Pi,j,k-1 ' 

( r+1 A ). dw ( n+1 n+1 
p m W m i,j- 1/2, k 

w5 - 5 Pi) k - Pi,j-1,k 

36 

(5.31) 

(5.32) 

(5.33a) 

(5.33b) 

(5.33c) 



6. Poisson equation describing the pressure distribution 

The Poisson equation describing the coolant pressure distribution is obtained by combining 

the continuity and momentum equations. By introducing eqs. (5.28) and (5.33) into (4.1) one 

derives: 

dw ( n+l n+1 ) 1 } 
5 pijk-Pi,j-1,k + 

- ( -~-) [u3 - d~ (P;1

1
:k1 - P~. 1+.~_ 1 ) 1 } = o 0 

cos ß k-1/2 

The time derivative ofthe coolant mixture density is calculated by using the equation 

ofstate 

as 

( 
ap m )n + 1 = ( ap m )II 
at ap h 

m 

n + 1 n 
pijk - pijk 

!::.t 

( hn+1- hll) 
m m ij k 

D.t ( 
ap )' 11 m + -
ahm p 

Therefore the first term in eq. (6.1) is approximated by 

m n+1 
( 

ap )n + 1 

ei j k at i j k = p ij k 

eo 
0 

k r ( ap )n LJ ll1 -- -
D.t ap h 

_ (apm)n (hn+l _ hn) 1 
ah m m "k ll1 p LJ 

ll1 

The derivatives ofthe coolant mixture density with respect to specific enthalpy and 

pressure are given [3] by 

( 
apm) 
ah P m 

2 
Pm 

T 
dp 

= 
s dT 

s 
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(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 



[ 
' dp 

X h +T-
gs s dT 

s 
= 

Ts ist the saturation temperature and the derivative dp/dT8 is given by the Clapeyron's 

equation 

1 

r' 
s 

= 
dp 

dT 
s 

= 
h - h g I 

Ts ( :g - ;) 
The derivatives h'is and p'is (i = l, g) are obtained from the functional expressions of 

density and specific enthalpy ofthe phases on the respective saturation lines 

(6.6) 

(6.7) 

his = his ( p, Ts) ' (i = l,g) (6.8) 

Formaldifferentiation yields 

dhis = ( a~s )T 
s 

( 
ah. ) 

dp + ___!!. 
ßT

8 
p 

dT 
s 

dp. 
!S ( 

ap is ) ( ap is ) = - dp + - dh . . 
ap h ah. ls 

is IS p 

Using d Ts = T's ·dp, dhis = h'is·dp and dpis = P'is ·dp one has: 

h' - dhis - ( ahis) + ( ahis) r' = ( ahis) + 
is - dp - ap Ts aT s P s ap 7' s 

f ap,_, \ 
+ \ ah-- )P 

IS 

. 
h. 

IS 

' T 
s ' 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

The subscript s denotes saturation conditions. The derivatives in eqs (6.7), (6.12) and (6.13) 

are calculated as explained in section 9. 

Introducing eq. (6.4) into eq. (6.1) and rearranging one derives the following Poisson-like 

equation: 

( 
apm )n + 
ap h 

m 

1 

D..z. 
J 

( ~) + U2 d~ + ~) - 1!2 d~ 
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+ 
1 

6-r. 
I 

n+1 
- Pi,J+1,k 

n+1 
- p.+1 . k 

I ,J, 

~j+ 1}2 

t:..z. 
J 

n+1 
- p . . k 1 I,J, + [ 6-~k ( co!ß) k+1J2 

eij k n 

du + ( ~ ) 
4 cosß k-112 d~ 1 } -

d~ 1 -

d~ 1 -

d~ 1-

n+1 
p . . 1 k I,J- ' 

n+1 
pi-1,), k 

n+1 
Pi,j,k-1 

~j -1/2 

t:..z. 
J 

d~ 1 -

[ 6.: k ( co! ß ) k- 112 

= (apm r - (apm r ( h~+1 
- h~)ijk 1 p .. k 

6.t ap h IJ ah P 
m 

~j + 1/2 A ~j -1J2 1\ 
( lp Fe )i+ 1/2 

.1\ 
( 'PFc)i-112 

w6 + ws u2 + 
t:..z. t:..z. 6-r. 6-r. 

J J I I 

This equation can be written in the compact form 

d~ 1 = 

1\ 
u1 -

An+1 Pn+1 _ Bn+1 Pn+1 _ cn+1 p~+1 _ Dn+1 n+1 En+1 n+1 
ljk l,j-1,k I,J+1,k pi-1,j,k- pi+1,jk-

_ Jn + 1 11 + 1 _ Kn + 1 n + 1 = Rn+ 1 
pij,k-1 Pi,},k+l ' 

with the following definitions ofthe coefficients: 

~j -1/2 
dw ( ~j-1J2 

( ':, :~ ~nm ) 
1 

Fwz;~~2 , CKS· 
6-z. 5 6-z. w 

J J a j-112 

cn+1 ~j + 1/2 dw 
~j + 1}2 (ev )J+ll2 1 

FWzn+ 1 
CKN· }+ 112 , 

t:..z. 6 t:..z. t:..z j + 1/2 
w 

J J aj+112 
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(6.14) 

(6.15) 

(6.16a) 

(6.16b) 



Dn+1 = 

En+1 

Jn+l 

J(n+l 

and: 

( lJI F c) i - 112 
du 

( lJI F c) i - 112 (ev}_ 112 1 
FWRn+ 1 = = CKW. 

ßr 1 ßr 6.ri-1/2 
u i -1/2' 

! ! a i -1/2 

( lV F) 
c i+1/2 

( lV F) 
. c i+1/2 

( e V )i+112 1 du = --- CKE- FWRn+ 1 

1 

ßsk 

1 

6.sk 

6.r. 2 6.r. 6.ri + 1/2 
u 

ai+1/2 ! 

( ~ ) dv = cosß k-1/2 3 

(-~ ) dv = 
cos ß k+ 1/2 4 

CKS = 

CKN = 

CKW = 

CKE = 

CKTM = 

CKTP = 

! 

( co~ ß ) k _ 112 ( e V ) k- 1/2 

6.sk 68k-112 

( co~ ß ) k+ 112 ( e V ) k+ 112 

6.sk 6.sk+ 112 

~j -1/2 

6.z 

(ev )J-112 

J 6.z j -1/2 

( ljl]? ) 
c i -1/2 

( lJ1 [t' ) 
c i + 1/2 

6.r 6.r i + 1/2 

I ~ \ 

\ co:ß )k-112 

6.s 
k 

(CO~ ß ) k+ 1/2 
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i+1/2 

1 
FWTn+ 1 = CKTM· 

V k-1/2' 
ak-112 

FWTn+ 1 = CKTP· 
V k+ 1/2' 

ak+112 

(6.16c) 

(6.16d) 

(6.16e) 

(6.16f) 

(6.17a) 

(6.17b) 

(6.17c) 

(6.17d) 

(6.17e) 

(6.170 



1 
FWZJ±ll2 = 

w 
aJ±112 

1 
FWRi±112 = u 

ai±112 

1 
FWT k ±112 = 

V 

ak ±U2 

A n+1 

Rn+ I eij k 
[ (a:Pm X n - (apm r ( h:+l h11 

) J p .. k -
ß.t IJ ah P m ij k m m 

~)+ 1/2 "" ~j -1/2 A 
( qr F c) i + 112 

A 
( qr Fc)i-1/2 

-'\ 
w6 + w5 u2 + u -

D.z. D.z. D.r. D.r. 1 
J J I I 

1 

( co~ß) k+112 

/\ 1 

( CO~ ß ) k- 1/2 

1\ 
u4 + u3 

D.s k D.sk 

The complete analytical expressions ofthe coefficients ofthe Poisson equation (6.15) 

are given, for the three coordinate directions, in Appendix LA. 
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(6.18b) 

(6.18c) 

(6.19) 
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7. Alternative half-implicit treatment of diffusion terms in the momentum equation 

When convective tems in the momentum equation are treated explicitly the time step con

straint (ßt < ßl/v) is very restrictive for small mesh lengths ßl and large fluid velocity V. 

The time step cantraint imposed by diffusive terms (ßt < ßl2/v) is, on the contrary, not very 

restrictive. It is therefore very important to remove the first constraint by treating the con

vective terms implicitly while diffusive terms can still be treated explicitly or half-implicitly. 

In section 5 we have shown a fully implicit treatment ofboth convective and diffusive terms, 

the latter ones without the turbulent contributions. We now present a half-implicit treat

ment of the diffusive terms taking into account the turbulent contributions V·tt on the ba

sis ofthe generalized mixing length model explained in reference [1]. 

In this case the numerical treatment ofthe momentum equations follows the path explained 

in section 5, but without including the diffusive terms in the definition of the vector J. The 

scalar component ofthe momentum equation for the z coordinate direction is written 

~ (P w ) + _a_ Jw at m m aL mo 
Q 

with 

a 
aL 

Q 

aw 
m 

aL 
Q 

= s z 
(7.1) 

(7.2) 

The same procedure as in section 5 yields the following equation (corresponding to (5.22)): 

(7.3) 

'""' 
+ f O Fn+1 an+1 l ' i + 1f2,j + 1!2, k + i + 1f2,j + 1!2, k ( _!!_:_ ) I + r 0 - (Fn + 1 + an+ 1 

p 0 l ' . i- 112,j + 1!2, k i -1f2,j + 1!2, k 
m 

,.... 

+ f 0' Fn + 11 k + G~ ~+11 k l I,J+ , I,J , ( }!_:_) ]+lo,-(Fn+1 +Gn+1. 
p 0 l !Jk ljk 

m 

'""' 
+ f0 Fn+l + an+l . l ' i,j + 112, k + 1!2 i,j + 112, k+ 1!2 ( H ) 1 [ ( _z +O-Fn+1 +Gn+1 . 

p 0 ' i,j+1f2,k-112 i,j+1f2,k-112 
m 
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,_, 

-(Pm wm):+
1 

{ ~ O,F~,;~112,k-112 + G~;~1/2,k-112 ( PHz )
3 

j } 
m 

_ 0 _ Fn+1 + an+1 
( )

n+ 1 { ~ ( 
Pm wm 4 ' i,j+ll2,k+ll2 i,j+112,k+112 

(e V)
0 

(Pm wm):- (eVpm gz): 
(eV) ( n+1 n+1 

)+ 
M - . tlz o Pi,)+l,k -Pi J k 

( l;A )i,j+l,k < (ll~ + ll~ ) 

aw 
-( l;A).. < (ll~ ll~ ) 

aw m 
+ > .. 1 k + > .. k + az l,j+ ' I,J ,k az l,j, 

+ ( lJl A) < ( p~1 + t ) aw -(wA)<(p~1 + t ) aw 
llm > i + 1/2, j + 112, k llm > i - 1/2, j + 1/2, k + 

ar ar 

This equation can be written in the compact form 

( )

n+ 1 

a~ Pm wm 0 -
~, ß aßw (Pm wm)ßn+1 = bw dw ( n+l n+1 ) L o- o Pi,J+!,k -pi)k 

1 

(7.4) 

with the following definitions: 

( 
C V 11 ) + -flwl + 
2D 11 o 

(7.5a) 

,-J 

+ [ o, F~:~~.J+112,k + a~:;I2,J+ll2,k ( PHz )o j + [ o, -(F;~~~2.J+ll2,k + a~~1~,J+ll2,k 
m 

f0 Fn+ 1 an+l 
+ l ' i,j + 1, k + i,j + 1, k 
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+ f0 Fn+l + an+l . l ' i,j+U2,k+ll2 i,j+U2,k+ll2 ( J!)j l ( _z + 0 - Fn+ 1 +an+ 1 . 
p 

0 
' i,j+112,k-U2 i,j+112,k-U2 

m 

...., 

ar :::: { l 0, F~~~2,j+112,k + a~~1~,j+ll2,k ( :Iz )1 J 
m 

(7.5b) 

,..., 

a~ :::: { l 0,-( F~:1~,j+112,k + a~:~~.j+U2,k ( pHz )J J } , 
m 

(7.5c) 

(7.5d) 

(7.5e) 

w :::: { l o Fn + 1 + an+ 1 
a3 'i,j+U2,k-112 i,j+U2,k-ll2 

(7.50 

w :::: { [o -(Fn+1 + an+1 
a4 ' i,j+U2,k+ll2 i,j+U2,k-112 

(7.5g) 

(7.5h) 

(p~ + ) aw 
-( ~).. < 

aw 
llt 

m 
( l + t ) + (~) < > .. 1 k > "k + 

i,j+1,k m az I,J+ ' Pm llm az l,j, 
11) ,k 

( WA) < (p~ llt ) aw -(wA) (p~ llt ) aw 
+ + > i + 1/2, j + 1/2, k < + > i - 1/2, j + 1/2, k + m ar m ar 

( ~4) (,/ .. t ' 
aw ~ ~ fu.,) ( Jll + ' t \ aw 

+ < + < ~ 

\ m t"m J as ~ i,j + U2, k + 1/2 \ "' \ m Jlm J as ~ i,j+ll2,k-U2 ' 

dw 0 :::: ( :~ )0 (7.6) 

The subsequent treatment is formally identical with that ofthe section 5 starting from 
formula (5.26) on. 
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8. Solution for pressure increments 

In terms ofpressure increments over a time step 

(8.1) 

equation (5.28) can be written 

( r+1 ~ d~ ( 8 n+1 8 n+1 ) 
Pm um i + 1f2,j, k 

u2 pi+1,j,k - p. 'k ' I,J 
(8.2a) 

( r+l ~ 8 n+1 ) - du ( 8 n+ 1 
Pm um i,j,k+1 

v4 Pi,j,k+1 - p .. k ' 4 I,J, 
(8.2b) 

( r+1 ~ 8 n+1) - dw ( 8 n+l 
Pm wm i,j+1f2,k w6 6 Pi,j+1,k - pij k ' (8.2c) 

with: 
~ A du 

( p~+1,j,k p~. k ). u2 u2- 2 I,J (8.3a) 

p~. k)' I,J, (8.3b) 

~ ,-'\ w ( /1 
w6 = w6- d6 Pi,j+1,k (8.3c) 

With similar definitions of symbols it holds 

( r+l 8 n+1 ) ~ du ( 8 n+l 
Pm um i-lf2,j,k 

- p . . k - pi-1,j k ' l 1 I,J, 
(8.4a) 

( r+1 ~ 8 n+l ) dv ( 8 n+1 
Pm um i,j,k-112 

u3 - p . . k - p . . k -1 ' 3 I,J, I,J, 
(8.4b) 

( r+1 ~ 8 n+1 ) dw ( 8 n+1 
Pm W m i,j -1!2, k w5 - p . . k - p. '-1 k ' 5 I,J, 1,) • 

(8.4c) 

with 
~ A du ( II 

P
11

-l · k ) ' u1 u - p . . k 1 1 l,J I ,J, (8.5a) 

~ A du ( II p~. k-1 ) ' v3 V - Pi j k -
3 3 I,J, (8.5b) 

ß ,A dw ( II P
11

'-1k). w5- Pi j k -5 5 I,J ' 
(8.5c) 
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The new form ofthe Poisson equation for pressure is obtained by inserting equations (8.2) 

and (8.4) into eq. (4.1): 

e. 'k (apm)n+1 + _1_ { ~i+lt2 r~6 - d~ (öp::;~I,k- Ö P~/k1) 1-
IJ at iJ k !1z . 

1 
+

ß.z. 
J 

J 

d W (Ö II + 1 Ö II + 1 ) 1 } 
5 Pijk- Pi,j-1,k + 

{ ( ) [~ du (Ö II +I Ö 11 +I ) 1 
lp' Fe i+

1
!2k u2 - 2 Pi+ l,j,k - PiJ k -

{ ( -~ ) r~ dv (ö 11+1 ö 11+1 ) 1 
cosß k+1l

2 
u4- 4 Pi,j,k+1- PiJk -

_ ( -~ ) r~ _ dv (Ö 11+ 1 _ Ö n+ I ) 1 } = Q 
cosß k- 112 u3 3 pijk Pi,j,k-l · 

(8.6) 

The time derivative ofthe coolant mixture density is calculated by using the equation of 
state yielding 

( 
ap m )II + 1 = ( ap m )II 
at ap h 

m 

11+1 11 
pijk - pijk 

6.t 

( hll+1 - h") 
m m ij k 

= + ( ::m) 
m P 

l:l.t 

(8.7) 

= ( apm )II 
ap h 

( hll+l _ hll) 
m m ij k 

l:l.t 
m 

lntroducing (8. 7) into (8.6) and rearranging one derives the following Poisson-like equation: 

Ö 11+l 
p .. k 

IJ 

+ 

ei J k ( ap )" 1 ( ) 
At __!?!. + ~j + 1f2 d~ + ~j- 112 d~ + 
u ap h l:l.z. 

1 

l:l.r. 
I 

m J 

+ + ('P F) 
c i-112 

dv +( ~) 
4 cosß k-112 

Ö 11+ I 
- p. '+1 k 1,) • 

~)+ lf2 

l:l.z. 
Ö n+l 

- p . . 1 k 
l,j- • 

~j-1/2 
ß.z. 

J J 
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0 n+ 1 

r 

( qr Fc)i+l/2 
du ] - 0 n+l I ( 'VF~:i-W du ] -p. 1 . k p. 1 . k I+ ,J, !::.r. 2 1- ,J, 1 

I I 

0 n+l l !::.:k ( CO~ ß ) k + 1/2 d~ ] 0 n+ 1 l /:::,.:k (CO~ ß) k-1/2 
d~ ] = Pi,j,k+l - p . . k 1 I,J, -

~j+ 1/2 ~j- 1/2 
( lJfF) ( lJfFc\_1/2 

~ ~ c i + 1/2 ~ ~ 
w6 + w5 u2 + ul !::.z. !::.z. !::.r. !::.r. 

J J I I 

1 

(CO~ ß ) k+ 1/2 

~ 1 

( co~ß) k-112 

~ 
u4 + v3 

!::.sk !::.sk 

This equation can be written in the compact form 

An+! Q n+l _ Bn+l s:- n+l _ cn+l Q n+l _ Dn+l s:- n+l _ E''+l s:- n+l 
upijk upi,j-l,k upi,j+l,k upi-l,j,k upi+l,j k 

_ Jn + 1 0 n + 1 _ Kn + 1 0 n + I = Rn+ 1 , 
Pij,k-1 Pi,j,k+l 

with the following definitions ofthe coefficients: 

~j -112 

!::.z. 
J 

~j + 1/2 

!::.z. 
J 

dw 
6 

( qr Fe )i-!12 
!::.r. 

I 

( lJI F c \ + 112 

!::.r. 
I 

d~ 

du 
2 

( 
~j -1/2 

!::.z. 
J 

~j+ 1/2 (ev )J+l/2 1 

l:::.z. l:::.zj+l/2 
w 

J a j + 112 

( qr F) 
c i-112 

(ev }_ 112 

!::.r. l:::.ri-112 I 

( wFc)i+ll2 ( e V )i+l/2 

!::.r. !::.ri+ 1/2 I 
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= CKS· FWzn+ 1 
j- 1/2 

CKN Fwzn+l 
j + 1/2 

1 
FWR~ {-l CKW. u J -112 

ai-112 

1 
FWRn+l CKE-u j+ 1/2 

ai+l/2 

(8.9) 

(8.10a) 

(8.10b) 

(8.10c) 

(8.10d) 



Jn+l = 1 ( S ) dv 
( CO~ ß ) k- 1t2 ( c V )k-1t2 1 

FWT~~:t2' 
(8.10e) 

= CKTM-
D.sk cosß k-112 3 D.sk D.sk-112 u 

ak-1t2 

Kn+l 1 ( S ) du 
( oo~ß) k+lt2 (c V )k+1t2 1 

FWT~: 1~2, 
(8.100 

= = CKTP· 
D.sk . cos ß k+lt2 4 D.sk D.sk+ 112 u 

ak+lt2 

and: 
1 

FWZj±lt2 w 
aj±1t2 

(8.11a) 

1 
FWRi± 112 = u 

aj±112 
(8.11b) 

1 
FWT k±112 = (8.11c) u 

ak± 112 

An+l cij k (apmy + Bn+l + cn+l + nn+l + En+l + Jn+l + Kn+l (8.12) 
ßt ' . ap h m 

Rn+1 cij k (apm r ( h:+l h" ) -
D.t ah P m ij k m 

~j + 1/2 ~ ~j-1t2 ~ 
( 'P Fc)i + 1t2 

~ 
( 'PFc)i-112 

11' -
(8.13) 

w6 + w5 + ßz. ßz. D.r. 2 D.r. 1 
J J ! ! 

1 

(CO~ ß) k+1t2 
~ 

1 

( co~ß) k-lt2 
~ 

u4 + v3 
D.sk ßsk 

A formally identical derivation holds for the half-implicit treatment ofthe diffusive terms. 
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9. Program functions for calculating the partial derivatives ofthe coolant 
mixture density 

The partial derivatives of the coolant mixture density with respect to mixture enthalpy and 

pressure are calculated using the analytical expressions (6.5) and (6.6), respectively. The fol

lowing auxiliary program functions are used for this purpose: 

DRODHL 

DRODHV 

DRODPL 

DRODPV 

DPSADT 

DHDPL 

DHDPV 

Derivative ofsubcooled and saturated liquid density with respect to enthalpy 

at constant pressure (apelahe)p (see Eq. 9.2); 

Derivative ofsaturated and superheated vapour density with respect to 

enthalpy at constant pressure (apg/ahg)p (see Eq. 9.5); 

Derivative ofsubcooled and saturated liquid density with respect to pressure 

at constant enthalpy (apelap)he (see Eq. 9.18); 

Derivative ofsaturated and superheated vapour density with respect to 

pressure at constant enthalpy (apg/ap)hg (see Eq. 9.19); 

Derivative ofsaturation pressure with respect to temperature 

[dp (T8 ) I dT8 ] (see Eq. 9.20); 

Derivative of subcooled or saturated liquid coolant enthalpy with respect to 

pressure at constant temperature (ahefap)rr (see Eq. 9.21); 

Derivative ofsaturated or superheated vapour enthalpy with respect to 

pressure at constant temperature (ahglap)T (see Eq. 9.22). 

Details about theseprogram functions are as follows: 

Function DRODHL: 

Derivative ofsubcooled and saturated liquid density with respect to enthalpy at constant 

pressure (apelahe)p. 

From the functional dependence 

one derives 

with 

cpt = ( ah, )' . 
aT1 P 
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Function DRODHV: 

Derivative of saturated and superheated vapour density with respect to enthalpy at constant 

pressure (apg/ahg)p. 

From the functional dependence 

one derives 

with 

For a perfect gas one has 

Function DRODPL: 

p g = p g ( hg ' p) ' 

Tc 
p 

ap 
g 

aT 
g 

1 

c 
pg 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

Derivative of subcooled and saturated liquid density with respect to pressure at constant 

enthalpy (apelap)he. 

Letting v1 = 1/p1 be the liquid coolant specific volume, we have 

( 
ap 1 ) 2 ( av 1 ) 
ap h = - Pz ap h . 

l l 

(9.8) 

From the thermodynamic formulas ofRef. [3] we obtain: 

[ 
c ( av 1 ) + T ( av 1 )2 _ v ( 5_ ) J 
pl a p Tl l aT I P I aT l P . 

(9.9) 

For practical applications, Eq. (9.9) can be simplified as follows. We define for either phase 

1 (~) 1 ( api) (i = l,g) ß. = = 
I V. aTi P p. aTi p I I 

(9.10) 

and 

1 ( avi) 1 ( ap.) (i = l, g). K. -- = a; T. I V. a p r. p. 
I I I I 

(9.11) 
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The liquid specific heat at constant volume is, by definition, 

= 

where u1 = h1 - pv1 is the specific internal energy. 

From the tables ofRef. [3] 

= 

hence, using Eq. (9.11) 

( 
a v1 ) 

c - + T 
pl ap T I 

l 

( ~) 
ap r 

I 

( av 1 ) + T 
1 

( a~ 1 )2 . 
ap r

1 
aT1 P 

Eventually, one derives the following relationship between the specific heats at 

constant pressure and at constant volume: 

2 
Tl ßl V/ 

Kl 

The ratio between the specific heats is given by: 

1 
= 

Klcpl 

Using Eq. (9.14) and the definitions (9.10) and (9.11), Eq. (9.9) simplifies to 

(
ap1 ) 

ap h 
l 

Using Eq. (9.16), one derives: 

= 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

(9.18) 

Assuming that, for the liquid phase, the density is a function ofthe temperature only 

[p1 = p1 (T1) ], the approximation K1 = 0 in Eq. (9.18) isjustifiable. 
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Function DRODPV: 

Derivative of saturated and superheated vapour density with respect to pressure at constant 

enthalpy (apg/ap)hg. 

The same analytical treatment as before yields: 

Function DPSADT: 

= p K + g g c 
pg 

Derivative ofsaturation pressure with respect to temperature [dp (T8 )/dT8 ]. 

This derivative is calculated from the Clapeyron equation 

h - h 
gs ls 

Function DHDPL: 

(9.19) 

(9.20) 

Derivative ofsubcooled or saturated liquid coolant enthalpy with respect to pressure at 

constant temperature (ahe/ap)T. 

From the thermodynamic formulas ofRef. [3], we have 

( ahz) 
ap r 

(9.21) 

Function DHDPV: 

Derivative ofsaturated or superheated vapour enthalpy with respect to pressure at constant 

temperature (ahg/ap)T . 

As in the previous case, 

- T 
g = (9.22) 
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10. Treatment of energy equation with implicit convective terms and explicit 

diffusion terms 

Using the identities 
(10.1) 

(10.2) 

and the following definitions of"enthalpy-slip" and "density-Slip" 

(10.3) 

(10.4) 

the energy conservation equation (1.3) can be written 

a(pm hm) 
+ v. (P h ~ ) = ap + V · (P ~ ) - p (v· ~ m) + at m m m at m 

(10.5) 

+ V . ( p R 0 SI V Sl ) - p . (V . R 0 SI V SI ) - V . q + Q - V . H Sl V Sl . 

Expressing the heat flux in terms oftemperature gradient (q = -Am VT) and introducing the 

definition ofthe energy flux vector 
JE 

m 

-
= Pm h m v m + H SI V SI ' (10.6) 

equation (10.5) becomes 

a( Pm hm) 
+ V· 'JE 

at m 

(10.7) 

+ V · ( P R o Sl V Sl ) - P · (V · R o Sl V SI ) + V · Am V T + Q · 

Integrating over the control cell occupied by the fluid volume V f = e V and denoting ii an out

ward directed vector normal to the cell bounding surfaces one derives, with the application of 

the Gauss theorem: 

p V • 
m 

n dA-
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- <p > I ; n dA + L P R o SI V SI 

r 
n dA - < p > I R o SI V SI 

Ar 
n dA+ 

Ar m 

+I Q dV + 
vr L r 

a 
aL 

0 

( J.. aT ) d V. 
m aL 

0 

(10.8) 

La represents the general coordinate direction and the symbol < > denotes mean value over 

a bounding surface. 

Equation (10.8) is discretized as follows: 

( e V ) l ( )"+I _ (p h )" j + M ijk Pm hm ijk m m ijk 

+ <JEA >n+l 
r r i + 1/2,), k 

<JEA n+1 <JEA n+! JEA > n.+.l 
r r >'-112"k+ z r> .. 112k-< r l/2k I ,J, !,J+ , Z I,J- , 

+ <JEA >n+1 
s r i,j. k+ 1/2 

<JE A > n+ 1 ( v) 
s r i,j,k-l/2 = e ij k 

<Q>n+l+ 
3 

aT n 

( A ~)J-112 
aT Tl + ( A~) < ).. a; > i,j+ll2,k < ).. 

> i,j-ll2,k + 
j+l/2 

m m az 

+ (Aw)i+112 
< ).. 

aT 
11 

( A lJ1 )i-112 
<).. 

aT 11 a-; > i+ll2,j,k - - > '-1/2. k + m m ar I ,J, 

aT 
11 

( A ~ ) k-1/2 

aT 
+ (A ~) < ).. 

--;;;- > i,j. k+ 1/2 - < ).. ->".k + 
k+l/2 m m as I,J, -112 

+ 
( e V )ij k 

( n+1 11 ) 

t::..t pij k - pij k + 

(10.9) 

+ <Ar P w > .. u2 k - <Ar P w > · ·-1/2 k + <Ar Pu > · 112 · k- <Ar Pu > · 112 · k+ m I,J + , m I,J , m 1 + ,J, m 1- ,J, 

..L.....-A ~v > <A pv ....._ · ~ "r jJ · · k u2 - I\r --- · · k 112 -m I,J, + m I,J, -
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With an upwind differencing scheme and using equations (5.16) the convective enthalpy 

fluxes are calculated as follows 

E A n+1 l ( E E < Jr f > i+112,J,k = O, F i+112,J,k + G i+112,J,k h . 'k -m,IJ 

- [ O' - (F ~ 1/2 · k + G E 112 · k . 
1 

) ] h · + 1 · k ' z+ ,J, z+ ,J, h m,z ,J 
m,i+1jk 

1 
<JEA >n+1 

r f i-1!2,j,k [ 
E E 

O, F i-112,J,k + G i-112,J,k . 
h . 1 . k 

h . 1 'k -m,z- ,J 
m,z- ,J 

[ O,- (F~-ll2,),k + G~-112,J,k. ~)] 
m,IJ k 

h "k' m,IJ 

wi th the defini tions: 

E 
F i±li2,J,k ( Ar P u ) , 

m m i±1!2,j,k 

GE+ 112 . k = (Ar x (1- x) pm (hg - h1 ) u H ) , 
1 - ,J, m r i±112,j,k 

and similarly for the other coordinate directions. 

Introducing these convective fluxes into equation (10.9) one derives 

(:~)i)k [(Pm hm rJ+kl -(Pm hm r)k] + 

E 

[ 
Gi+l/2] 

+ 0, Ff+112 + . 
h "k m,zJ 

E 

{[ 
Gi-112 

- O, Ff_li2,J,k + 
h . 1 . k rn.,l- ,J, 

[ 
G ~+112 

+ 0 ' F ~J + 112,k + 
h "k m,IJ 

hn+1 
m, ij k 

E 

h':n~Lk - [o,- ( F~J+!I2,k + a J+!l2 ) j 
h .. I k m,l,J+ , 
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hn+1 
m, i+1,j k 

hn+1 
m,i,j+1k 

(10.10) 

(10.11) 

(10.12) 

(10.13) 

(10.14) 



E E 

{ l 0' F :.j -112, k + 
G j-1f2 

hll+.1. -l 0' - ( F :.j -1f2, k + 
G i-1f2 

) 1 
hll+1 } + -

h m,I,J-1, k h m,ijk 
m,i,j-1,k m,ij,k 

E E 

+ l 0, F~.k+ 1f2 + 
G k+ 112 hll+1 -l 0,- ( Ff,j,k+1f2 + 

G k+ 1/2 

) 1 
hll+1 

h m,ij k h m, i,j k+ 1 
m,ij k m, i,j, k+ 1 

E 

{ [ 
0 k-lf2 

- O,Ff,j,k-lf2 + 
h .. k 1 m,t,J, -

cont. (10.14) 

( e v) ' < Q > 113 + 1 + 
ij k 

aT 
11 

( A ~)J-1/2 
aT 

II + ( A~) < .\ -> .. IJ2k < .\ > i,j-1f2,k + 
j+ 112 m az l,j+ • m az 

+ (Aw) <.\ 
aT 

11 
(Aw) <.\ 

aT 
11 a; > i+1f2,j,k ->. 1f2'k+ 

i+1f2 m i-lf2 m ar 1- ,j, 

+<Arpw > .. +IJ2k- <Arpw > .. _IJ2k+ <Arpu >. 1t2·k-<Arpu >. tf2'k+ m I,J , m I,J , m 1 + ,J, m 1- ,J, 

+ < Ar P u > .. k+ 112 - < Ar P u > .. k-1f2 -m I,J, m z,J, 
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Rearranging one obtains 
E E 

hn+1 { (eY n+1) + [ Gi+ll2,jk] [ ( Gi-1f2j,k )] + 
m · . k -;:-t Pm .. k 0 ' F i + 1/2,} k + + 0 ' - F i -1!2,} ,k + !J u IJ hn+ I h .. k 

m,ijk m,tJ 

E 

[ F 
G i,J + 112, k 

+ o, .. 1/2 k + !,)+ • h .. k m,tJ 

E 

1 [ ( G i,J-1t2,k ) ] 
+ O,- F i,J-112,k + + 

h .. k m,tJ, 

E 

[ 
E G i,j, k+ 1/2 

+ O, F i, J,k+112 + 
h "k m,!J 

E 

) + [o.-h,;.'-"' + 
0

~.;.•-:')] ) -
m,IJ, 

(10.15) 
E E 

hn+ 1 l 0, -( F i,J+112,k + 
G i,J + 112, k ) ] hn+1 l O, F i,J-112,k + 

G i,J-112, k 

1 -mj+1 h .. 1 k mi,j-1, k h m,ij-1,k m,t,J+ , 

E E 

hn+1 
r o. -( F i+ll2. J.k + 

G i + 112,}, k ) hn+1 
[ O, F i-112,) k + 

G i-112,J,k ] -
mi+1 h . 1 . k mi-1,} k h 

m,i-1,) k m,t+ ,J 

E E 

[0 (F G i,J,k+l/2 ) ] hn+1 [ F G i,J,k-1!2 
'- i,j,k+l/2 + - o, i,j,k-112 + 

h ''k1 mi,j,k-1 h "k1 m, I,J, + m, IJ, -

+ ( A 4) aT 
11 

( A 4)
1

_
112 

aT 
Tl < A. --;;; > i,j + 1/2, k < A. > i,j -112, k + 

j+ 1/2 
m m az 

+ (Aw) <A. 
aT 

11 (A 1J1 )i-112 
< A. 

aT n 

--a; > i + 112,}, k - > '-1/2. k + 
i+112 m m ar I ,J, 

+ (A~) <A. 
aT n 

( A ~) k-112 
< A. 

aT n 
-;;; > i,j, k+ l/2 - - > .. k 1/2 + 

k+ 1/2 m m as I,J, -

+ 
(ev)iJk 

( n+ 1 n ) + 
6.t pijk - pijk 

+ < Ar P w > .. 112 k m l,J+ , <Ar P w > .. 112 k + < Ar Pu > . + 1/2 . k - <Ar Pu > . -1/2 . k + m I,J- , m 1 ,J, m 1 ,J, 
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+ < Ar p u > . . k U2 - < Ar p u > .. k 1/2 -m I,J, + m !,J, --

+ Ar < vm + RoSl ( vg- vl )> i,J,k+l/2 - Ar < vm + RoSI ( vg- vl )> i,j,k-112] + 

(10.15)cont. 

Equation (10.15) can be written in the compact form 

hn+l 
m,i,jk 

+ EE,n+l hn+l . + JE,n+l hn+.l. +KE,n+l h . . = RE,n+l . 
m,t+ l,J k m,t,J, k-1 m,t,J, k+ 1 

The coefficients and right-hand side are given by 

(10.16) 

E GE 

AE,n+l =(eV pn+1) + fo,FE . + Gi+112,jk] + [ ( E i-112j,k )] + 
!::.t m "k t+U2,Jk hn+1 O,- F i-U2,j,k + h 

IJ m, iJ' k m,ijk 

GE. GE 

+ f 0' F i,J + 112, k + ~ J + 112k, k l + f 0' - ( F f J -112, k + ~,J -.112k, k ) l + 
m,tJ m,tJ 

E E 
G i,J, k+ 112 +-;";;..c_ __ 

h "k 

r ( GiJ·,k-112 \1 + " FE . j lU,-\ i,j"k-1/2 T h ) ' 
\ .. k m,IJ m,IJ 

f 0, 

GE, n+1 

l ' FE,n+l + 
i-112,) k 

i -112,) k hn+.l . 
m,t-l,J k 

r o. 
GE,n+l 

J ' 
FE,n+l + 

i,j+ 1/2, k 
- i+ll2,jk h m, i+ l,j k 
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(10.17b) 

(10.17c) 



f 0, 

al!·.n+1 

J ' 
JE,n+1 FE,n+1 

+ 
l,j, k-1/2 

i,j k-112 h 
m, i,j, k-1 

(10.17d) 

0 E,n+1 

) J ' 
KE, n+1 f 0 ( FE,n+1 + 

i,j, k+ 1/2 
' - i,j k+l/2 h 

m, i,j, k+ 1 

(10.17e) 

f 0, 

G~·.n+1 

l ' sE• n+1 FE, n+1 
+ 

l,j-1/2, k 

i,j -1/2, k h 
m,i,j-1, k 

(10.170 

0 E,n+1 

) J ' 
cfE.n+1 f 0 (FE, n+1 + 

i,j + 1/2, k 
' - i,j + 112, k h 

m, i,j+ 1, k 

(10.17g) 

(10.17h) 

+ (A~) 
j+ 1/2 

< A 
m 

aT n 

a; > i,j+ll2,k 

( ) 
aT n 

+ AlJl <A ->. 1f2'k 
. i+1/2 m ar I+ ,], ( A lJl). < 

1-112 
A 

m 

aT 
->~ 1!2'k+ ar I- ,], 

( ) 
aT 11 ( ) aT 11 

+ A ~ k+l/2 < Am ds > i,J,k+112 - A ~ k-112 < Am ds > i,J,k -1/2 + 

+ < Ar Pu > .. k 1/2 - < Ar P u > .. k 112 -m I,J, + m I,J, -

(10.15)ct. 
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+ < A f p R o SI ( u g - u I ) > i + 1!2,), k - < A f p R o SI ( u g - u l ) > i- 1!2,), k + 

The solution of the energy conservation equation is therefore reduced to the numerical 

solution of a system of algebraic equations (10.16) formally identical to the Poisson equation 

(6.15) describing the pressure distribution and can therefore be carried out with the same 

numerical algorithm. 

Programming note 

For the application in the code, equation (10.9) is devided by the cell volume. 

Using the relationships (F c is the coefficient er defined in the Appendix LA) 

A ( WF') 
fi±1f2 c i± 1/2 

= 
v .. k l:lr. 

IJ I 

A 
fj± 1!2 ~j± 1!2 

= 
viJ k l:lz. 

J 

A 1 

( CO: ß ) k± 1f2 
1 

fk± 1f2 
= 

V. 'k l:lsk 
IJ 

one derives 

1 
f ~ ~ j + <JE __ >n+1 _ <JE __ >~:1 = eij k · < Q >n+1 + 

l:lsk s cos ß i,j. k+ 1!2 8 COS ß I,J. k-1/2 3 

1 

f (~))+1!2 
ar 11 

- ( ~)j-1!2 
ar 

] + 
1l + < ,\ a; > i,j+1f2,k 

< ,\ > i,j -1!2, k !::.z. m m az 
J 
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(10.18) 

(10.19) 

(10.20) 

(10.21) 



+ 

+ 

1 

+ 

+ 

n+l 

D.r. 

1 
A. 

m 
aT n ] -> .. + 
ß r I - lf2,J, k 

aT n 
a; > i+112,j,k A. 

m 
I 

[ (CO: ß) < A. 
m 

aT n 
--;;; > i,j, k+ 1f2 ( -~-) < A. aT >n,·,;·.k-tf2 ] + 

. cos ß m as 

1 

D.sk 

+ 

+ 

( e ) ( n+t + - pijk 
D.t ijk 

1 

D.z. 
J 

1 

[ < F lp P Um> i + 1f2 - < F lp p um> i- 1f2 ] + 
D.r. 

I 

( -~-) < P V m > k+ 1/2 -
cos ß k+lf2 

( ~ ) ] -- < pv > -
cos ß k-lf2 m k-lf2 

-Pi) k { /:).~. 
J 

1 

[ WF + 
D.r. 

I 

1 
+ - r F w < p R SI r u _ u.) > .. 

12 
_ F w < p R_ s~ r u _ u I ) > , • ~ 1 + 

D.r. l o \ g 1 ; 1 -r 1 .t. u , , g , 1 • -LI~ 1 
I 

1 

[( ~) ( ) ( ~) ( ) ] -- p R V -V > - -- <p R V -V > 
cos ß k+lf2 oSl g l k+1f2 cos ß k-lf2 oSl g l k-lf2 · 
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Equation ((10.21) can be written 

(:Jijk [(Pm 
r+1 ( r ] hm ij k 

- p h + 
m m ijk 

,....E -E 

[ ~E G i+112 ] . hn+1 - [o,- ( F~+ 112 + 
G i+112 ) ] hn+1 + 0, Fi+112 + 

h m,ijk h m,i+1 
m,ij k m,i+1 

,...,E '"'E 

- { r ~E G i-112 hn+1 - f o,- ( F~_ u2 + 
G i-1/2 ) ] hn+1 } + O,Fi-1/2 + 

h m,i-1 h m,ij k 
m,i-1 m,ij,k 

"""E '""E 

[ -E G J+ll2 hn+1 - [o,-(F~+ 112 + 
G J+ll2 ) l hn+1 + O,FJ+U2 + 

h m,ijk h m,j+1 
m,ijk m,j+1 

,..,E 

{ [ 
GJ-112 

- O,F~-1/2 + 
h . 1 

hn+1 } + 
m,ij k 

- { 

m,J-

""E rJE 

[ ~E G k+ 112 hn+1 -[o,-(:F~+l/2 + 
G k+ 112 

) 1 
hn+1 + O, F k+U2 + 

h m,ij k h m,k+1 

[ ,..,E 
O,F k-112 + 

+ 
1 

tlz. 

+ 

J 

1 

!:lr. 
! 

m,i)k 

--'E 
G k-112 hn+l [o,-(F~_ 112 + 
h m,k-1 

m, k-l 

= Q n+1 
Ci) k • < >3 + 

aT n 
< Am a; > i,j+l/2,k 

aT n 
->. U2'k ar t+ ,j, 

<A 
m 

m, k+1 

,...,E 
G k-1/2 ) ] hn+1 
h m,ijk 

m,ij,k 

> ~j - 1/2, k ] + 

aT n ] -> .. + ar !-112,J,k 

1 

[ (CO: ß) aT n 
< A - > · · k 112 m as !,J, + ( -~-) < A aT >7,,·.k-112] + 

cos ß m as 

( 
C ) ( n+1 

+ t;i ijk pijk 
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1 
+ 

b.z. 
J 

(10.22) cont. 

1 

[ ( -~ ) < pv > - (-~ ) < pv > ] -
cos ß k+ 1/2 m k+ 112 cos ß k-l/2 m k-112 

+ 

1 

+ Ar. [ WF < um + R o Sl ( u g - u l ) > i + 112 - 'PF < um + R o SI ( u g - u l ) > i -112 ] + 
I 

[ ( ~ ) -- <v +R 
cos ß k+1/2 m oSl 

( ) ( ~ ) ( ) ]} V -V > - -- <v +R V -V > + 
g I k+l/2 cos ß k- 1/2 m oSl g l k-112 

1 

+ Ar. [ F 'V < p R o SI ( u g - u l) > i + 1/2 - F W < p R o SI ( u g - u l) > i -112 1 + 
! 

with the following definition ofthe fluxes: 

71±112 = 

71±1/2 
= (~ 

F!±1!2 = ( 
~ 

cos ß 

u ) ' m :~iJCl 
, '-..!..L/1:.. 

Pm w ) ' 
m j± 1/2 

p V ) ' m m k±1!2 
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(10.23b) 

(10.23c) 

(10.24a) 



~E [~X (1-x) Pm (hg -h1 ) ~ l GJ±ll2 = w H ' (10.24b) m z j±l/2 

F#E ~ 
x ( 1-x) p ( h - h1 ) u H ] · 0 k± 112 = (10.24c) 

cos ß m g m s k± 112 

Eventually equations formally identical with (10.15) to (10.17) are obtained,just 
,... ~ 

replacing the definitions ofFE, GE with those ofFE, GE. 

The analytical expressions ofthe coefficients ofthe enthalpy equation are summarized 

in Appendix I.B. 
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11. Fully implicit treatment ofthe energy equation 

In the most recent code version diffusive termsarealso treated implicitly. The numerical 

treatment proceeds from eq. (10.5) as follows. 

We express the heat flux in terms ofthe enthalpy gradient q = -pm'Ü.m Vhm, with Om 

Am I (pm Cpm) and introduce the following definitions: 

(11.1) 

J ~ = ; m + R oSL V SL . (11.2) 

Equation (10.5) can then be written 

"JE+ P (v. "JP) = ap + Q. 
m m at 

(11.3) 

Integrating over the control cell occupied by the fluid volume Vr = c V and denoting 

Lj (j = r, s, z) any ofthe coordinate directions one derives 

(11.4) 

I ap dV + 
= vf at 

I Q dV. 
vf 

Let the symbol < p > 3 denote pressure mean value over the cell volume. Denoting 

ii an outward directed unit vector normal to the cell boundary surfaces and replacing 

the volume integrals ofthe divergence terms by means ofsurface fluxes one derives 

r a I \ I JE L "JP 
Jv \ pm hm} dV + A n dA+<p>

3 
n dA= 

(11.5) at m m 
f f f 

= I 
ap 

dV + 
Iv 

Q dV. 
at vf f 

The surface fluxes are evaluated at time level n + 1 with an upwind scheme as follows: 
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JE 
m 

n dA = 
(11.6) 

= < .jE.n+l 
Ar > i+1t2 + <p >3 < Jp Ar >i+lf2 = mr mr 

(jE,n+1 0 E,n+1 

) ] [ 0 r,n+1 + i + 1t2 ] hn+.l _ [ 0 _ ( [?E, n+ 1 + i+1t2 hn+1 = , i + 1t2 hn+.l m,1 , i + 1/2 
1n+1 m,i+1 

m,1 ~m. i+ 1 

where 

FE,n+l = (A p u )n+1 
i+lf2 r m m i+ 1t2 

has been defined by eq. (10.12) and 

(11.8) 

(11.9) 

,..." "" ,.._ 
and similarly for the other fluxes. Hr, and similarly H 8 , Hz, is obtained expressing the 

components ofthe slip velocity as a function ofthe mixture velocity, by means of 

V LS j u . 
g} 

= u . 
mJ 

l+x(ugj -1) 
u .. 

t J 

where u is a general velocity component. 

..... 
= u . ll. 

mJ J 
(11.10) 

We distinguish between two solution methods: the first consists in discretizing as usual the 

time dependent term a (pm hm) I at and yields a Poisson-like equation which can be solved 

numerically by means of standard elliptic solvers; the second consists in retaining the time 

dependent term and yields a system of ordinary first order differential equations which can 

be integrated with the Runge-Kutta scheme. 
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11.1 Derivation of a Poisson-like equation 

We now i) introduce the fluxes defined by (11.6) (and similarly for the other boundary 

surfaces) into equation (11.5), ii) discretize the time dependent term by 

fv :t (Pm hm) dV == ev [(Pm hmr+l (Pm hmr ] 
f 

(11.11) 

and iii) divide the equation (11.5) by the cell volume, taking into account the relationships 

Af i±ll2 I V = (w F ) 1 6. r , 
. c i ± 112 

(11.12a) 

A f J ± 112 I V = ~J ± 112 I 6. z , (11.12b) 

(11.12c) 

Thus equation (11.5) yields 

e 

/).t (11.13) 

- [o,- (r,.+l/2 + (jEt.+112 11 )]hn+l+1- DE+l/2 + m,1 1 hn 
m,i+1 

( hn+1 -hnm+l)}-m,i+1 

- { [o, F'f_l/2 + af_l/2 1 
hn+1 

m,i-1 

hn+1 1 - [ o,- (r,.'-112 + (jE,·-112 _1_)] hn+1 -m, 1- hn+l m 
m 

E 
- Di-112 ( hn+l _ hn+l )} + 

m m,t-1 

+ [ O, 1+112 + G~+l/2 h:+1 l h:+
1

- [ O,- ( 111+112 + G~+112 hn:l ) ] h:~/+1 
m m,j+1 

- { [ O, F~-112 + G~-112 hn:l 
m,j-1 

h:,~/-1 - [ 0,- ( 1-112 + G~-112 h:+1 ) 1 h:+1 -
m 
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+ [ 0, Ff+l/2 + 
-E h~+l ] h~+1 - [ o,- ( Ff+t/2 + af+l/2 

1 ) j hn+ 1 
G k+ 112 hn+l m,k+l 

m m, k+l 

E ( hn+1 _ hn+1 ) _ 
Dk+l/2 m,k+1 m 

- { [ o,Ff_l/2 + 
-E 1 hn+1 

- [ o,- ( Ff-1/2 + af_IJ2 
_1 ) ] hn+1 

G k-112 hn+1 m,k-1 hn+1 m 
m,k-1 m 

( hn+1 _ hn+1 ) } = :t 
m m,k-l u 

All convective and diffusive fluxes (F, G and D's) are evaluated at time level n + 1, 

and relative superscripts have been omitted. Rearranging, equation (11.13) can be 

written as a discretized Poisson equation in the form 

An+1 hn+1 _ Bn+1 hn+l _ cn+l hn+1 _ Dn+1 hn+1 _ En+1 hn+1 
m m,J -1 m,j + 1 m, i -1 m, i + 1 

with 

+ 

+ 

+ 

_ Jn + 1 h n + 1 _ Kn + 1 h n + 1 
m,k-1 m,k+1 

e p 11 +l I !::.t+ 
m 

l E E O, Fi+l/2 + Gi+l/2 . h~+1 ] + [ 0, - ( Ff-112 + 
-E 
G i -112 

m 

l 0' r; + 112 + G~ + 112 . h~+1 ] + [o,-(F~-112+ -E 
G J-U2 

m 

[ o, Ff+t/2 + af+l/2 · h~+l ] + [ 0,- ( Ff_ 1/2 + 
-E 
G k-U2 

+ DE,n+l 
i+l/2 

m 

+ DE,n+l 
i -112 + DE,n+1 

j + 1/2 

[ o, 1-1/2 + 

-E 

+ DE, n+l 
j-1/2 

-E 
GJ-112 

hn+1 
m,j-1 

r o. - ( F~+ 1/2 + 
G J+U2 

hn+l 
m,j+ 1 
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+ DE,n+l 
k+ 112 

Dn+l 
j-112 

Dn+l 
j+ 1/2 

h'~+1 ) ] + 
m 

h'~+1 ) ] + 
m 

h~+1 ) ] + 
m 

+ DE, n+l 
k-1/2 ' 

(11.14) 

(11.15) 

(11.16) 

(11.17) 



nn+1 l 0, 1-1/2 
-E hll~ 1 1 + D E,n+1 + G i-112 i-1/2 (11.18) 

m,i-1 

En+1 l 0' - ( Ff + 1/2 
-E 1 

) 1 + 
D n+1 + G i+112 i + 1/2 ' (11.19) hn+1 

m,i+1 

-E 

Jn+1 l 0, ~-1/2 G k-112 
]+ D n+1 (11.20) + 

hn+ 1 k-1/2 
m,k-1 

-E 

Kn+1 l o,- ( ~+1/2 G k+112 
) ] + nn+1 (11.21) + 

1n+1 k+112 
~m. k+ 1 

Rn+l ( ~J ( n+1 n ) + c < Q >: c 
(Pm hmr 

(11.22) 
p - p +-

D.t 

11.2 Derivation of a system of ordinary firstorderdifferential equations 

Without discretizing the time dependent term but expanding it with the chain rule 

ah 
m 

+ h 
(11.23) 

at at m at 

and introducing into equation (11.5), we derive 

dh 1 
{ _An+ 1 

m hn+l Bn+1 hn+1 cn+1 hn+1 + vn+1 hn+l + + + 
dt cpn+1 m m,j-1 m,j+1 m,i-1 

m 

(11.24) 

+ En+1 1n+1 
~m. i+l + Jn+1 hn+1 

m,k-1 + Kn+1 hn+1 
m,k+l + Rn+l 

where all coefficients coincide with those defined previously, but 
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An+l 
[ 0, ~+lt2 + G~+lt2 . h:+l 1 [ 0,- (~-lt2 + 

-E 

h:+ 1 ) 1 + = + + G i-lt2 
m m 

+ [ 0' 1 + lt2 + G~ + lt2 . h:+l ] + fo.-(?f-tn + 
-E 
G j-lt2 h:+ 1 ) ] + 

m m 

(11.25) 

+ [ o, ~+tn + a!+tn . h:+l 1 + [ 0' - ( F!-112 + 
-E 
G k-112 h:+l ) 1 + 

m m 

+ DE,n+l 
i+lt2 

+ DE,n+l 
i-112 + DE,n+l 

j+ 1t2 + DE,n+l + 
j-lt2 

DE, n+l 
k+lt2 + DE,n+l 

k-lf2 ' 

Rn+l 
1 { (p n + 1 _ p n) I !:::. t + < Q >: _ hn+l (a;~ r } . n+l m (11.26) 

Pm 

Equation (11.24) yields a system of ordinary firstorderdifferential equations 

(11.27) 

which can be integrated with usual ODE solvers. We use Runge-Kutta algorithms of order 

four [4] (see also section V.3). Alternatively, a more precise, though time costly, scheme of 

order seven [5] might also be used. Experience suggests, however, that the Runge-Kutta 

scheme of order four gives nearly the same accuracy as the scheme of order seven butthat it 

is less computertime consuming. Therefore only the Runge-Kutta scheme of order four is 

implemented in the code. 
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12. Constitutive equations and thermodynamic disequilibrium 

i) Cladding to coolant heat transfer 

The cladding to coolant heat transfer coefficient crHK is calculated from the Nusselt 
nurober 

Nu= 
0 HK Dh 

A. 
m 

= R c3 p c4 c
1 

+ c
2 

e r , 

where the Reynolds and Prandtl numbers Re = Vm Dh I Vm and Pr = Pm Cpm I Am 

are computed using the mixture physical properties. The coefficients in (12.1) are: 

i) For sodium, Cl = 7, c2 = 0.025, c3 = C4 = 0.8; 

ii) For water, Cl = 0, c2 = 0.023, c3 = 0.8, C4 = 0.4. 

When the thermodynamic quality is larger than 0.3 dryout is simulated and crHK 

is assumed to drop to 5000 Wlm2 K. This assumption is based upon experimental 
information. 

The heat transfer coefficient a between the coolant in the outermost radial control 

volume and the hexagonal canning is calculated by means ofthe formula 

1 1 
=- + 

0 

1 

0 
c 

(12.1) 

(12.2) 

cr8K is the heat transfer coefficient structure to coolant due to convection given by 

(12.1) and crc is the heat transfer coefficient due to conduction in the hexagonal can

ning.cr c is calculated under the assumption of a linear temperature distribution along 

the thickness ofthe hexagonal canning. 

ii) Effective dynamic viscosity 

The components ofthe turbulent stress tensor are computed by using the following 

half-empirical defini tions: 

l ( )2 ( )2 J 1t2 ( a u . a u . ) ( ) t - - m1 mJ .. 
" .. = p u' . u' . = c p L. u . + L. u . -- + -- lJ=v,s,z 

m,IJ m m1 mj 0 m I mj J ml a [ . a [, 
J I 

(12.3) 

where primes and bars denote turbulent fluctuations and time mean values, respectively. 

Subscripts i, j refer to the coordinate directions. The dimensionless coefficient (c0 = 0.06) has 

been calibrated by comparison with experimental results ofturbulent velocity distributions. 

The mixing lengths are defined by Li = Yi tH'i, where y and Llf are surface permeability and 
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mesh length, respectively. Thus an effective turbulent dynamic viscosity ofthe mixture is 

defined by 

and takes into account the anisotropy ofthe porous medium. 

iii) Effective thermal diffusivity 

A turbulent energy flux vector is defined for the coolant mixture by 

I 
qm,i p h' u' . = p a 1 

. 
m m mt m nn 

(a ah;1
) 

I 

with the definition ofthe eddy diffusivities for heat transfer 

( i =r,s,z) 

(12.4) 

(12.5) 

(12.6) 

The dimensionless constant CoT (c0 T = 0.01) has been likewise evaluated by experimental 

comparison oftemperature distributions in turbulent flow fields. 

iv) Single- and two-phase pressure drops 

a) Single-phase friction pressure drops and pressure drops due to grid spacers 

The frictional pressure drops are calculated by means of the relationship by N ovendstern [ 6] 

which also takes into account the contribution due to the wire wraps. The friction coefficient 

is given by 

with 

f R -b = a · e , 
0 

f = CFM = (cFMl + CFM2 · m )

CFME2 
ReCFMEl 

72 

(12.7) 

(12.8a) 

(12.8b) 



CFMl = 1.034 

(P/D)0.124 ' 

( )

6.94 
29.7 · P/D 

CFM2 = 
(AID)2.239 

(12.8c) 

(12.8d) 

Reis the Reynolds number ofthe undisturbed flow. Pis the pitch, D the diameter ofthe pins, 

A. the pitch length of the wire wraps. For turbulent flow the following values of the 

coefficients are suggested: a = 0.316, b = 0.25, CFME1 = 0.086, CFME2 = 0.855. 

In case wire wraps arenottobe simulated, the input parameter A. ( = HELIC) is set to a large 

value, thus giving CFM2 :::::;: 0. 

If grid spacers must be simulated, the pressure drops in the grids are calculated as the sum of 

two contributions: an irreversible pressure drop at the grid entry and frictional pressure drop 

along the grid. The pressure recovery at the downstream edge of the grid is considered as 

negligible. Within the grids mass flows in transverse directions are suppressed, therefore 

only pressure drops in axial directions are taken into account. Theseare given by 

!::.p = ( !::.p )entry + ( !::.p )v . = g . r~etwn 

( 1 - ~ r + 
f L 

2 f L 
2 

p 2 r p g Wo p 2 ,. p g wo 
(12.9) = w = - K w + 

2 0 

2Dhg 
A2 2 e 0 

2Dhg 
A2 

where: 

A Sg/S = wolwg ratio ofreduced to undisturbed flow area 

Dhg hydraulic diameter ofthe grid (m) 

fr friction coefficient for the grid 

Ke (1- So/Sg)2 = (1- 1/A)2 resistance coefficient at grid inlet 

Lg grid axiallength (m) (Lg < t.\z) 

So flow area upstream ofthe grid (m2) 

Sg flow area through the grid (m2) 

Wo flow velocity upstream ofthe grid (undistrubed bundle) (m/s) 

w g flow veloci ty through the grid (m/s) 
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p coolant density (kg/m3), 

An equivalent resistance coefficient for the grid is defined by 

(12.10) 

and an equivalent friction coeffcient by 

f = K · g g (12.11) 

Dh is the hydraulic diameter ofthe channel flow without grid and 11z is the mesh length. The 

programme user can choose between modelling the grid spacers in their actual position, as 

explained above, or simulating the pressure drop by smearing the local contribution 

uniformly over all axial meshes. In the latter case, the friction coefficient due to the grid is 

f = K · g g 

Dh 

DABST 

where DABST is the distance between two consecutive grids. 

(12.12) 

The roughness of the upstream edge of the grid is taken into account by replacing the flow 

areas ratio in Ke = (1- 1/A)2 by 

(12.13) 

where c is an input coefficient ranging from 0 to 0.4. 

Taking into account the contribution to the pressure drop due to the grid spacers, the total 

friction coefficient is calculated as 

(12.14) 

which is introduced into the term (Vr/2 Dh) ft I w1ln (pJ WI)n+ 1 of equation (5.8). 
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b) Two-Phase pressure drop 

The two-phase pressure drops are calculated by 

6.p 

6.l. 
I 

= (i= 1,2,3) (12.15) 

The factor (1 + K) is thus interpreted as a two phase multiplier. The "drag function" K 

is assumed to be proportional to the sli p veloci ty 

K. = c I u . - u 1. I = c I u .1 U8~1 . (a) 
I gt I m1 I . 

(12.16) 

where c is a constant and UNsli = I Ugi - Uli I /Umi, the normalized slip velocity, is a mono

tonaus and increasing function of the void fraction a. Indices g, I refer to the vapour and 

liquid phase, respectively. In the applications we choose c = 1- 1.5 and UNsu (a) = 18a inde

pendent ofi. This approach to the problern of calculating the two-phase pressure drop turned 

out to be more convenient for large void fractions than the application of the well known 

Lockhart-Martinelli two-phase multipliers. However the factor (1 + Ki) in formula (12.15) 

can be interpreted as a two-phase multiplier for the slip model. For small void fractions the 

two approaches yield comparable results. This depends on the fact that the method by Lock

hardt and Martinelli is applicable for bubbly flow (when strictly the Slip Model holds) but not 

for separated flow at large void fractions. Thus the use ofrelationships (12.15) and 12.16) al

lows for the application ofthe Slip Model, with reasonable results, beyonditsnormal range of 

validity. 

v) Thermodynamic disequilibriurn between the phases 

Formaldifferentiation ofthe equation ofstate Pm =Pm (p, hm) yields 

dp 
m 

dt 
(12.17) 

The partial derivatives are evaluated at time Ievel tn by means of the analytical expressions 

given in section 9. Besides to allow for a smooth transition from single to two-phase flow con

ditions at boiling inception the derivatives ofthe rhs in eq. (12.17) are multiplied by smooth

ing coefficients CI, c2, respectively, which have been chosen empirically with a numerical 

value 0.01. The first of these two coefficients has a direct impact upon the relationship be

tween the thermodynamic quality and the void fraction given by 
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xß 
Q = 

I +X (ß - I) (12.18) 

with ß =CI (pJ/pg). The assumption CI = 1 would imply a thermodynamic equilibrium 

between the phases while the assumed plot a = a (x), corresponding to CI = 0.01, implies 

a thermodynamic disequilibrium, i.e. a relaxation ofthe vapour production rate. Fig. 1 shows 

the void fraction as a function ofthe quality with CI as a parameter. 

The numerical solution ofthe enthalpy equation (1.3) yields the updated value 

ofhm, hence the thermodynamic quality 

( h - h ) 
. m ls (12.19) 

X = 
( h - h ) gs ls 

The mixture density Pm, hence the updated value ofthe void fraction a, are derived by 

solving numerically the mixture continuity equation, eq. (4.1). 
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Appendix I.A. Coefficients and right hand side ofthe Poisson equation (6.15) describing 

the coolant pressure distribution (implicit formulation) 

The following conventions are used 

(1) Surface permeabilities are referred to as 'P, ~ and ~ for the radial, axial and azimuthal 

directions, respectively. c denotes the volume porosity. 

(2) Mesh lengths are Llr, Llz, Lls. 

(3) The geometry coefficients Ca are defined as follows: 

(a) for the radial direction: F = er = SIY'Sm, where Sb is the area of the inner or outer 

boundary surface, Sm the mid area. We use the FORTRAN symbols F ACCM and 

FACCP for the area ratios of the inner and outer surfaces of centered cells and the 

symbols F ACRM, F ACRP for the inner and outer surfaces of radially displaced 

cells. 

(b) for the axial direction: Cz = 1 

(c) for the azimuthal direction: c8 = 1/cos .ß; .ß = angle between r-axis and azimuthal 

boundary surface of control volume. 

(4) Only indicesdifferent from i or j or k are given. 

(5) The bundle axis is assumed tobe vertical. 

The Poisson eq. (6.15) can be written: 

An+l n+! Bn+! n+l _ cn+!. n+l vn+l. n+l _ En+I. n+! 
. p - PJ-1 Pj+! - pi-1 Pi+! 

(I.A.1) 

_ Jn+! . pn+1 _ Kn+!. n+1 _ Rn+! 
k-1 pk+1 - . 

When both convective and diffusive terms in the momentum equation are treated implicitly, 

the coefficients ofthe Poisson equation (A.1) are as follows: 

Bn+! = CKS · 

cn+ 1 = CKN · 

Fwzn+I 
J -1/2 

Fwzn+I 
j + 1/2 
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(I.A.2) 

(I.A.3) 



D 11 + 1 = CKW · 

E 11 + 1 = CKE · 

J 11 + 1 = CKTM · 

Kn+l = CKTP · 

FWR 11 +1 
i+112 

FWT 11 +1 
k-112 

An+! = (el M) ( apm lap X + Bn+l + cn+l + nn+1 + En+1 + Jn+l + Kn+1' 

m 

with the definitions: 

CKW = Wi_ 112 · FACCM · (ev )i_
112 

I ( l:lr· l:lri_ 112), 

CKE = Wi+l12 · FACCP · (ev )i+l1
2 

I ( l:lr· /:lri+t/2), 

CKTM = ~ k- 112 (e v) I ( l:ls · l:lsk_ 112 · cos ß k-l12 ) , 
k-l/2 

CKTP = ~k+ 112 (ev )k+l/2 I ( l:ls· l:lsk+l/2 · cos ßk+l/2), 

FWR n+l u 
i±lt2 = 1 lai±112' 

with 
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(I.A.4) 

(I.A.5) 

(I.A.6) 

(I.A.7) 

(I.A.8) 

(I.A.9) 

(I.A.lO) 

(I.A.ll) 

(I.A.12) 

(I.A.13) 

(I.A.14) 

(I.A.15) 

(I.A.l6) 

(I.A.17) 



a~+ 112 =(ev) lt::.t+(eVflwln1(2nh)) + fo,F~:1~ + 112 +Gn:1~ .+
112

(fi lp) ] + 
J )+1/2 )+1/2 I ,] I ,] z m )+1/2 

+ fo,-(Fn+1 +G~+1 (if lp) )] +D7:1~,J.+112 +D7~1~,J.+112 + J+1!2,k-1/2 J+112,k-1/2 z m )+!!2 (I.A.18) 

+ Dn+1 + Dn+1 + Dn+1 Dn+1 
)+1 )+1/2,k+1!2 + )+112,k-1/2 ' 

a\ 112 =(ev) ID..t+(eVflul
11
1(2n1)) + [o,Fn+\1 +G~1++11 (H./p) J + 

I i+l/2 l i+1/2 I I 1 m i+l/2 

+ r 0' - ( F n + 1 + G n + 1 (fi I p ) ) ] + r 0' F n + 1 . + G n + 1 . (il I p ) ] + 
r m i + 112 1 + 112,J + 1/2 1 + 1!2,J + 1/2 r m i + 

112 

+ r 0 ( F n + 
1 

+ G n + 
1 (n 1 ) ) J + 

' i + 112, k+ 1/2 i + 1/2, k+ 1/2 . r p m i + 
112 

r ( ( .-I ) + 0,- Fn+ 1 + G~+ 1 H lp 
1 + 1/2, k- 1/2 1 + 1/2, k-1/2 r m i + 

112 

+ D~+1 + Dn+1 + Dn+1 Dn+1 + Dn+1 + Dn+1 
1+1 i+112,j+1!2 + i+1!2,j-1!2 i+112,k+l/2 i+1!2,k-1/2 ' (I.A.l9) 

a~+ 112 =(ev) ID..t+(eVflvln1(2nh)) + [o,F~~::nk+l/2 +G'1:~2 k+ 112 (ii lp) J + 
k+l/2 k+1/2 I ' I ' 8 m k+1/2 

f f ,n+l .n+l fii . ) \ l 
+ l O, -\ F i-112,k+112 + G i-112,k+l/2 \ /Pm k+

1
!2 ) j + 

+ r 0 F n + 1 + G n + 1 (fi I ) 
' j + 1/2, k+ 1/2 j + 1/2, k+ 1/2 8 Pm k+ 

112 
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+ vn+1 + nn+1 + nn+1 + nn+1 + nn+1 + Dn+1 . (I.A.20) 
i + 112, k+ 1/2 i -112, k+ 1/2 j + 112, k+ 1/2 j -112, k+ 1/2 k+ 1 

The definitions of awj-112, aui-112, avk-112 are similar. The symbol [a, b] denotes the maximum 

ofthe two real numbers a and b. Auxiliary symbols F, G, D and H are defined as follows: 

-H = a 

u 
m 

a 
( o = r,z, s) , ( u = u , w , v ) , m m m m 

a 

( tlla = 6.r, 6.z, 6.s), 

= u I u 1 ) . ga a 

The right hand side of eq. (A.l) is given by 

- ~)+112 ;:v )+112 1 tlz + ~j-112 w j-112 1 6.z-

- lJii+ 112 · FACCP ui + 112 I 6.r + lJii _ 112 FACCM l)i _ 112 I 6.r -

- ~k+112 ~k+112 1( 6.s· cos ßk+112) + ~k-112 °k-112 I ( 6.s· cos ßk-112) • 

with 

6 
( r+l b~+l/2)' /\ 

= 1 lo;+l/2 (I Qw 
w j+ 1/2 ß Pm wm n 

+ 
' lß ' 'p ' ' 

6 
( u r+l b~+112)' "' = 1 I Q ~ + 112 ( I ou 

u i+ 112 ß Pm m + 
lß ß 

6 
( r+l b~+l/2)' "" = 1/o~+l/2 (I II + V k+ 1/2 Qß Pm um ß 

lß 
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(I.A.21) 

(I.A.22) 

(I.A.23) 

(I.A.24) 

(I.A.25) 

(I.A.26) 

(I.A.27) 

(I.A.28) 



and 

b w+ 112 = ( c v) (p w ) /!J.. t- ( c V p 
J )+112 m m j+lt2 m g ) ' 

z j+lt2 
(I.A.29) 

b ~+ 112 = ( c v) (P u ) JtJ.. t , 
1 i+l/2 m m i+l/2 

(I.A.30) 

bk11
+ 1"'=(cv) (P v) !!J..t, 

'"' k+lt2 · m m k+l/2 
(I.A.31) 

and similarly for Wj-1/2, Ui-1/2, Vk-112· The coefficients ofthe sums in (I.A.26), (I.A.27) 
and (I.A.28) are given by: 

a w = w ~ 0 F n + 1 G n + 1 (H.- I ) 1 D n + 1 
3 ° · 1"' k = ' · t?. k 1?. + · p + · J? ' ;+ u .. , -1 ;+L, -L ;+lt2,k-lt2, z m j+U2,k-l ;+lt2,k-l.~ (I.A.34) 

w 
a5 

w 
aj-lt2 

[o, Fn+l + an+l c~ ) H /p 
. z m j-112 

1 + D n+l' (I.A.36) 

-w -w [o -(Fn+l an+ I (~ ) )]+nn+l + H !p a6 = aj+3/2 ' . j+l j+l z m j+ 3t2 j+l ' (I.A.37) 

[o,Fn+l + an+l (- ) 1+Dn+l, 
u u 11 /p al 0

i-lt2 = 
r m i-112 

(I.A.38) 

-;:u -;:u r() ( ,.,n+l _L n n+l (~ I~ \ )1+Dn+l ~2 ~ i +3t2 lu' -\ • i+l 
, ..... i+ 1 \u 'P } r m i+3t2 i+l ' (I.A.39) 

(I.A.40) 

~u = [o -(Fn+l + an+l (Ji I ) ) 1 + Dn+l 
i+l/2,k+l ' i+U2,k+lt2 i+lt2,k+lt2 r Pm k+l i+lt2,k+lt2 (l.A.41) 

(I.A.42) 
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-u 
0 

i + 112,j+1 
= f 0 - ( F n + 1 + G n + 1 (Ji I ) ) l + D n + 1 

[ ' . i + 112,j + 112 i + 112,j + 112 ,. p m j + 1 i + 1/2,j + 1/2 (I.A.43) 

(I.A.44) 

a V = a V = r 0 - ( F n + 1 + G n + 1 (fi I ) ) l + D n + 1 
2 i+1,k+112 [' i+l/2,k+112 i+112,k+112 s Pm i+ 1 i+l/2,k+112 (I.A.45) 

~V = -V = r 0' F n + 1 + G n + 1 (f-1 I p ) l + D n + 1 ' 
3 a k-1/2 [ . s m k-112 (I.A.46) 

(I.A.4 7) 

(I.A.48) 

When the diffusion terms in the momentum equation are treated explicitly, the diffusion 

coefficients (D's) cancel from the following expressions 

eq. (I.A.18) 

eq. (I.A.19) 

eq. (I.A.20) 

(ß = 1, 2, ... 6) eq. (I.A.32) to (I.A.37) 

(ß = 1, 2, ... 6) eq. (I.A.38) to (I.A.43) 

(ß = 1,2, ... 6) eq. (I.A.44) to (I.A.49). 
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The diffusion terms appear then in the definitions ofthe b's coefficients eqs. (I.A.29) to 
(I.A.31) which become: 

b~+I/2 = (ev) (P w ) ID..t- (evp g) + (~A< ii' awlaz>) -
J j+l/2 m m j+ 1/2 . m z j+l/2 m j+ 1 

- ~A< jlmawlaz> + (wA< pn
1
awlar>) - (wA< pn

1
awlar>) + (I.A.50) 

i + 1/2,j + 1/2 i- 1/2,j + 1/2 

+ (~A< 'il awlas >) - (~A< 'il awlas >) , 
m j + 1/2, k + l/2 m j + 1/2, k- 1/2 

bu+l/2 =(ev) (P u ) ID..t+ (~A<'il aulaz>) -1 
i + l/2 m m i + 1/2 m i + 1/2,j + 1/2 

- (~A< 'ii auliJz>) + (wA< 'ii' aular>) -'PA< 'jl aular> + 
m i+ l/2,j-1/2 m i+1 m 

(I.A.51) 

+ ( ~A < 'il aul as>) 
· m ·i+l/2,k+l/2 

- (~A< i1 aulas>) , 
m , i + l/2, k-112 

b~+l/2 = (ev) (P v ) ID..t+ (~A< il avlaz>) -
k+l/2 m m k+l/2 m j+ll2,k+l/2 

- ( ~ A < li av I az > ) + ( lJ1 A < p av I ar > ) -
m j-112,k+112 m i+l/2,k+l/2 

(I.A.52) 

-(lJIA<p av/ar>) +(~A<'il avlas>) - ~A<'jl avlas>. 
m i-ll2,k+112 m k+l m 

83 



Appendix I.B. Coefficients and right-hand side ofthe Poisson equation describing 

the coolant specific enthalpy distribution (implicit formulation) 

We use the same conventions as in Appendix LA. The Poisson equation for the coolant 

enthalpy distribution is 

AE,n+1 hn+1 + BE,n+1 hn+1 + CE,n+l hn+1 +DE,n+1 hn+1 + 
m m,j- 1 m,j + 1 m, i- 1 

(I.B.l) 

+ EE,n+l h n+l + JE,n+1 h n+l + KE,n+1 h n+l = RE,n+1 
m,1+1 m,k-1 m,k+l ' 

with 

AE,r1+1 = eV n+1/l:lt +""' { [o FE,n+1 + 0 E,n+1;hn+1] _ 
Pm L ' a+112 a+112 m 

a 

(I.B.2) 

BE,n+l = [o FE,n+l + 0 ~,n+l/hn+l (IB 3) 
' j-112 J-112 m,J-1 • • 

[ 0 -(FE,n+l + G~,n+l;hn+.l )] 
' j + 1/2 J + 1/2 m,J + 1 (I.B.4) 

DE,n+1 = [ 0 FE,n+l + 0 E,n+1 /hn+l 
' i - 1/2 i - 1/2 m, i- l (LB.5) 

[ O -(FE,n+1 + GE,n+llh'1+l )] 
' i + 1/2 I + l/2 m, I + 1 (I.B.6) 

JE,n+1 = [ O FE,n+l + 0 E,n+1 /hn+1 
' k-112 k-l/2 m, k-1 (I.B.7) 

KE,n+1 = 
r 

O _ (FE,n+1 + 0 E,n+1 /hn+l ) I 
' k+112 k+112 m,k+l (I.B.8) 
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RE,n+l = cV <Q>3n+l +(Ar<A. aTial >)n -(Ar<A. aT/al >)n + 
m a a+l/2 m a a-1/2 

+ cV(pn+ 1 -pn)IM +(Af<pu >)n - (Af<pu >)n -
ma a+ 1/2 ma a-112 

(I.B.9) 

In equation (I.B.9) summation upon index a is implied. Furthermore we defined: 

r = (A p u ) • 
a±112 f m m a±l/2 (I.B.lO) 

(l.B.ll) 

H 0 = ( u ga I u la - 1 ) I ( 1 -X ( u ga I u la - 1 ) ) , (I.B.12) 

(l.B.13) 
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Part II 

Separated Phases Model (SPM) 

by M. Bottoni 

1. Governing equations for the separated phases model 

The model of separated phases relies upon the following modelling of the two-phase flow 

regime. In each control volume for which the conservation equations are applied in the lo

cal form and then volume-averaged, three "fields" are defined: a solid field consisting of 

the fuel pins and, if any, ofthe hexagonal can, a liquid coolant field and a vapour field. The 

calculation ofthe temperature distribution in the solid field is described in reference [1]. 

The simulation of a coolant liquid film at cladding and structure surfaces allows a descrip

tion of dryout and rewetting sequences and the correct calculation of the cladding to cool

ant heat transfer coefficient which depends strongly on the liquid film thickness. The frac

tion ofthe liquid coolant which does not adhere as a film to the walls, is assumed to consist 

of droplets carried on by the vapour flow. The dynamics of these droplets is described by 

the momentum equation for the liquid phase and by an ordinary differential equation for 

the collision rate between droplets. As a result we get the droplet size and concentration. 

The flow regimes which are simulated in this way include: (a) slug flow for void fractions 

in the range 0.6- 0.8; (b) annular flow in which the heat transfer between walland coolant 

occurs through the liquid film at the wall; (c) drop-annular flow, in which dryout has oc

curred and liquid droplets aredriven by a vapour flow; (d) vapour flow, after complete va

porization ofthe liquid droplets. 

The volume Vr = cV occupied by the coolant is distributed between liquid and vapour ac

cording to the following relations: 

(1.1) 

(1.2) 

where ur, Ub are the volume fractions occupied by the liquid film and liquid droplets, re

spectively. 

It is assumed that only the liquid phase is in contact with the cladding up to a void fraction 

Ud which corresponds to dryout. For u < Ud heat transferred to the vapour phase comes 

from evaporation of the liquid film, and the vapour phase always remains at saturation 
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temperature. Conversely, condensation occurs when heat is transferred to the cladding 

through the liquid film and the vapour phase always condenses at saturation temperature. 

When a > Ud (hence, the liquid film is completely evaporated) the vapour is in contact 

with the walland liquid droplets aredriven by the vapour flow. The frequency ofthe colli

sions ofliquid droplets with each other determines their size and concentration, while the 

frequency of im pacts of droplets wi th the surface of the cladding determines the amoun t of 

rewetting of the walls. This implies an additional cooling effect after the first dryout. 

Therefore, the heat transfer to the coolant is due to evaporation of the liquid also during 

this phase. 

When the liquid droplets have been completely evaporated, or their concentration has be

come sosmallthat the frequency ofimpacts with the walls cannot sustain a liquid film any 

longer, it is only the vapour which experiences the gain or loss of energy. At this stage the 

residual liquid droplets are driven in an environment of superheated vapour and evapa

rate rapidly. The void fraction reaches the limit a = 1, and from this time on the super

heated vapour is treated as a perfect gas. 

In the present code version flow regimes a) and b) (slug and annular flow) are fully imple

mented. The code development for drop-annular flow has been made on the theoretical ba

sis but not yet coded. 

This physical situation can be modelled by means of a six-equations Unequalphase Veloc

ity, Equal phase :[emperature (UVET) seriated two-phase continuum, which we refer to as 

the Separated Phase Model (SPM).It relies upon the following governing equations [2]. 

i) Continuity equations 

. 
(:~/) + V . ( P; VI) = - M, 

(1.3) 

. 
( ~tg) + V . (p~vg) = + M; 

(1.4) 
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ii) Momentum equations 

iii) Energy equations 

ap 
+ (1 - a) v

1 
· V p , 

at 

+ 

a ( P~ hgs) ( ) ( ) 
+V· p'hv =<t>+U +V· A.aVT + a t g gs g g g g s 

(1.5) 

(1.8) 

In these equations p'1, p'g are the macroscopic liquid and vapour densities defined by 

' ( \ 
p1 = \1 - a) p1 (1.9) 

(1.10) 

where Pl, Pg are the microscopic (physical) densities. 

The symbol [a, b] represents the maximum ofthe two real numbers a, b. 

88 



U1 and Ug are the power sources arising from viscous dissipation, given by terms of 

the type([: Vv). They are negligible compared with the inputpower sources. 

<l>l and <l>g, the power sources to the liquid and vapour phases, respectively, are calculated 

by assuming that a fraction Qg = l}Q (0 ~ ll ~~ 1) of the total power Q released to the coolant 

vaporizes a mass M = l}Qihfg of vapour per unit volume and time, while the remaining 

power fraction QI = (1 - I}) Q is released to the liquid. Thus the power sources to be insert

ed into eqs. (1.7) and (1.8) are 

A-.
1 

= - Mh + 
'+' ls (1.11) 

,h = Mh1 + Mhr = Mh 
'+'g s ,g @ (1.12) 

for the liquid and vapour phase, respectively. These equations arejustified in detail in sec

tion 7.2. In a first approximation we assumed ll = ag. However, the calculation experience 

showed that it is more convenient, after solving the liquid enthalpy equation and deriving 

the updated liquid saturation temperature TI = T8 , to use the vapour energy equation to 

calculate the vapour production M under the constraint T g = T 8 • It turns out that the as

sumption I} = ag tends tobe correct for large void fractions, while at boiling inception the 

fraction I} which implies a thermodynamic equilibrium between the phases is smaller than 

ag. 

The terms containing the function Kg represent the power generated by drag dissipation 

at the phase interface. This contribution is generally modelledas lost by the liquid and ac

quired by the vapour. 

The assumption ofthermodynamic equilibrium between the phase (Tg = TI = T8 ) implies 

that the two energy eqs (1.7) and (1.8) can be replaced by the energy equation for the mix

ture thus reducing the model to five equations. In aseparate code version we have coded 

the energy equations separately for both phases in view of code developments to simula

tion ofsuperheated vapour with thermodynamic disequilibrium between the phases (TI = 
Ts, Tg >TI). However in the following ofthis report we refer to the enthalpy equation for 

the mixture given by equation (1.3) of Part I. The numerical treatment is as explained in 

Section 11 ofParti. 
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2. Finite difference form of continuity eguations 

We treat the convective terms in equations (1.3) and (1.4) fully implicitly. Integrating 

these equations over a centred cell, replacing the volume integral of the divergence term 

by means of surface fluxes one derives the following finite difference forms for the liquid 

and vapour phases, respectively. 

i) Liquidphase 

I 

( 
apl )n+l + 

eijk at ijk 

1 
+

D..r. 
I 

1 

D..z. 
J 

l ( 1 )n + l ( 1 )n + l ] 
ljJFpu - ljJFpu + 

c l l i + lf21j' k c l l i -l/2,}' k 

I > 

l( ~plul·)n+l _ (~p1 v1 )n+l l 
cos ß i,j, k+ l/2 cos ß i,j, k-112 

M .. k 
IJ 

ii) Vapour phase 

I 

( 
apg )n+l 

e .. - + 
IJk a t iJk 

1 
+

D..r. 
I 

1 

tlz. 
J 

l (ljJF PI u )n+l - (ljJF PI u )n+l l + 
c g g i+ll2,j,k c g g i-l12,j,k 

I 

( 
~pgug )n+l l = 
cos ß i,j, k-l/2 

90 

M .. k IJ 

(2.1) 

(2.2) 



3. Implicit treatment of momentum conservation equations 

3.1 Liquidphase 

The scalar component of the momentum conservation equation (1.5) for the liquid phase in 

the z-coordinate direction can be written 

- R lz - KM ( w 1 - w g ) - ( [ 0, M 1 w 1 -[ 0, - M 1 w g ) (L = r,s,z). 
Q 

La represent any of the coordinate directions (r, s, z in bundle geometry) and Va is the re

spective velocity component. 

Letting 
ap , 

Slz = - (1 - a) az -Pt g z- Rlz - (3.1.2) 

(source term), 

(3.1.3) 

(conuectiue plus diffusiue flux of momentum), 

equation (3.1.1) can be written 

(3.1.4) 

Integration over the volume Vr ofthe fluid in a control cell yields 

(3.1.5) 

The control volume for the z-component ofthe momentum equation is obtained displacing 

a centred control cell (i j k) by half-mesh in the z direction. Replacing the volume integral 

of the divergence term by means of the fluxes through the cell bounding surfaces one de

rives: 
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dA - J ( Jwt) r dA + 
Ar i -ll2,j + 112, k 

We discretize this equation with respect to time treating convective, diffusive, and the 

pressure gradient terms fully implicitly and the friction term half-implicitly. Replacing 

the surface integrals by the mean values over the surfaces, denoted by the symbols < >, 
one obtains: 

(ev )iJ+ll2,k [( I )n+1 _ ( 1 )n 
tl.t p1 w1 p1 w1 l iJ + 1121 k + 

( ) A n + 1 (J ) A n + 1 + < Jwl f > iJ+l
1
k - < wl f > ij k + 

z z 

(eV(l- a))iJ+
1
I2

1

k 

ßz 

I \ 

n+ 1 n+l V 1 

( ) ( )

n 
p.. -p.. - e p g 

!J+11k ljk . [ Z ij+ll2,k 

\eV }i
1
j+ll2,k 

- (e v) · 
i,j+ 112, k 
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The averaged fluxes ofthe vector Jwm are evaluated with the upwind discretization 

scheme given in eq. (3.1.11). 

Jr+ (3.1.8) 

with the definitions: 

(3.1.9) 

l ( ~ ) D. . = A -,- . 
I+ 1!2,) + ])2• k r p I tlr i + 112,) + 112, k 

(3.1.10) 

For both UI,i + 1!2,j + 112, k positive and negative, formula (3.1.8) can be written 

(3.1.11) 
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Using again the following subscripts to index the central node considered and the six 

neighbouring nodes in the three coordinate directions: 

0 for i,j + 1/2, k 

1 for i-l,j+l/2,k 

2 for i + 1, j + 112, k 

3 for i, j + 112, k- 1 

4 for i, j + 1/2, k + 1 

5 for i,j- 112, k 

6 for i,j + 3/2, k, 

the flux Jr+ and, similarly, the other ones in eq. (3.1.7) can be written: 

Jr+ = I (Jwt)r dA= < (Jwl)r. Ar> i+ll2,j+lf2,k = 
Ar i + lf2 ,j + lf2, k 

(3.1.12a) 

Jr- = I (Jw,),. dA= < (Jwz),. . Ar> i-1t2,J+1f2,k = 
Ar i-lf2,J+ll2,k 

(3.1.12b) 

Jz+ = { 
JAf .. lk 

l,j+ • 

{Jw,}_ dA= 
\ 'I" 

< { Jw,)_ 
\ 'I" 

= (3.1.12c) 
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(3.1.12d) 

(3.1.12e) 

Js- = J (Jwt)s dA = < (Jwt)s . Ar> i,J+ll2,k-112 = 
Ar i,J+lf2,k-112 

(3.1.12f) 

The full expressions of the convection terms Fl in the previous equations are 

F: ± 112, J + 1!2, k = (Ar u l) i ± 1!2, j + 112, k = ( \1-' !::.s !::.z u I) i ± 1!2, J + 1!2, k ' (3.1.13) 

Fl. = (Ar wl)i,J+l,k 
= ( (!::.r !::.s w1 ) .. I, j+ 1, k 1,)+ 1, k 

(3.1.14a) 

Fl. = (Ar w l) i ,J. k 
= ( (!::.r !::.s wz). . 

I, J, k 
l,j, k 

(3.1.14b) 

= ( -~ !::.r !::.z v ) . 
cos ß l i, j + 1/2, k ± 1/2 

(3.1.15) 
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The diffusion coefficients are given by 

I _ (AfJll) 
D i ± 1/2, j + 1/2, k - . ' A . + 1 10 . 1 10 k 

p l ur 1- '"'•} + '"'• 
( 

ljl D.z D.s Jll ) 
p' D.r i± 1/2,)+ 1/2, k' 

l 

Dl. 
l,j+ 1, k 

( ~ D.~ D.s Jll) ' 
p

1 
D.z i,J+1,k (j) 

(j) 

(
Ar llt) I - -- -

D i' j + 1/2, k ± 1/2 - ' A • . 110 k + 110 -
p1us IJ+ '"'• - '"' 

( 
~ D.z D.r llz) 

p' D.s i,)+1!2,k ± 1/2. 
I 

Introducing the convective and diffusive fluxes (3.1.12) evaluated at time level 

n + 1 into (3.1.7) and rearranging, one derives 

(3.1.16) 

(3.1.17) 

(3.1.18) 

+ Dl,n+1 + Dl,n+1 + Dl,n+1 + Dl,n+1 + Dl,n+1 + Dl,n+1 } 
i+1!2,j+U2,k i-1!2J+1l2,k ij+1,k ij k ij+U2,k+1!2 ij+1!2,k-1!2 

' l,n+1 l,n+1 
( )

n+ 1 { [ J } 
- PI wl 

1 
O,Fi-1!2,)+1!2,k + Di-1!2,)+1!2,k -

-(Pt' wz)n+1 { [o,- Fl,+nl/+21.+1/2 k j + Dl,n+l } -
2 I , J , i + 1/2,) + 1/2, k 

- (p'l wl)n+1 { [o - Fl,n+1 J + Dl,n+l } -
6 ' i,j + 1, k i,j + 1, k 
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This equation can be written in the compact form 

(3.1.20) 

with the following definitions ofthe coefficients: 

(e V)0 
( e V ) ~ 1 ~ 1 __ __ n /,n+l l,n+1 

+ ([ I w II + 0 ' F. + l/'2 . + lf2 k + 0 ' - F. - lf2 . + lf2 k + D..t 2D 0 I ,J • I ,J • 
h 

(3.1.21a) 

+ [o. Fl,n+1 
' i,j+l,k 1 

+ [o _ Ft,n+l] + [o T•'l,n+l . 1 + f0 _ Fl,n+l 1 + 
• - i j k 1 ,- i,j+ll2,k+lt2 1 • i,j+ll2,k-lf2 J 

+ Dl,n+l Dl,n+l + Dl,n+l + Dl,n+1 Dl,n+l Dl,n+l 
i+lf2,j+lf2,k + i-1f2j+1f2,k ij+l,k ij k + ij+lf2,k+lf2 + ij+1f2,k-1f2 ' 

(3.1.21b) 

(3.1.21c) 

(3.1.21d) 

{ 1
0 F l,n+1 1 Dl,n+l 
,- i,j+lf2,k+lf2 + i,j+1f2,k+lf2 } ' (3.1.21e) 

(3.1.21f) 

(3.1.21g) 

97 



(3.1.2lh) 

b~ = !::.t 

d~o = cl-~) eV)
0 

(3.1.22) 

Defining 

1 
6 

( • r+l } ' A 

Iß + b~ wl6 = a~ Pt wl ß w 
alO 1 

(3.1.23) 

d~ 
d~ 1 Cl-~) eV)

0 
= = ' w w 

alO alO 

(3.1.24) 

equation (3.1.20) can be written 

( r+l ). p~wl i,j+ll2,k 

A 
- d~ (P11+l 11+l = w/6 -Pi J k i,j+l, k 

(3.1.25a) 

Similarly one derives for the radial and azimuthal components ofthe momentum 

equation for the liquid phase 

.1\ du ( 11 + 1 r1 + I ) 
u12 - 12 Pi+I.J,k- Pi,j k ' (3.1.25b) 

A dv ( 11 + I 11 + I \ 
u/4- 14 Pi,j,k+l-piJk)' (3.1.25c) 

with 

,1\ 
u/2 = 1 { 

6 
( )II + 1 } 

u I ß a ~ p ~ u I + b ro ' 
a 10 1 ß 

(3.1.26) 
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du -
/2 -

du -
/4 -

1 
u 

al, i + lf2,j, k 

1 

u 
al, i,J, k+ 112 

(3.1.27) 

( 
(1 - a) c V) 

6.r i+lf2,j,k' 
(3.1.28) 

( 
(1 - a) c V) 

6.s i,j,k+l/2. 
(3.1.29) 

For the three components ofthe momentum equations, written for control volumes 

displaced by half-cell in the respective backward direction, one has (with similar 

defini tions of symbols): 

( I r+l /\ 
drl 

( n+l n+l ) 
Pz ul i-U2,j,k 

= u /1 p .. k - p. 1 . k ' IJ 1- , J 
(3.1.30a) 

( I r+l A du ( n+l n+l ) 
p l vl i,j, k-lf2 

= u/3 - /3 pijk-Pi,j,k-1' (3.1.30b) 

( r+l P~ wz i,J-1f2,k 

A dw ( n+l n+l ) = wl5 - /5 Pi) k - Pi,j-l,k · (3.1.30c) 
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3.2 Vapour phase 

The scalar component ofthe momentum conservation equation (1.6) for the vapour 

phase in the z-coordinate direction can be written 

- R gz + KM ( w l - w g ) + ( r 0, M ] w 1 - [ 0, - M ] w g ) 

Letting 

s 
gz 

ap , 
=-a--pg-R + az g z gz 

(convective plus diffusive flux of momentum), 

equation (3.2.1) can be written 

a(.) a ( ) - w +- Jw - S · at Pg g aL ga - gz 
a 

(L
0 
= r,s,z). 

(source term), 

Integration over the volume Vr ofthe fluid in a control cell yields 

I ~ (p' w ) dV + I _a (Jw ) dV = I S d V. 
V at g g V aL ga V gz 

f f 0 f 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

The control volume for the z-component of the momentum equation is obtained displacing 

a centred control cell (i j k) by half-mesh in the z direction. Replacing the volume integral 

of the divergence term by means of the fluxes through the cell bounding surfaces one de

nves: 
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+I (Jwg) dA- I (Jwg) dA+ I (Jwg), dA- (3.2.6) 
Ar . . 1 k z Ar .. k z Ar . . 110 k 110 s 

! ,]+ • !,], ! ,]+ '"'• + '" 

We discretize this equation with respect to time treating convective, diffusive, and the 

pressure gradient terms fully implicitly and the friction term half-implicitly. Replacing 

the surface integrals by the mean values over the surfaces, denoted by the symbols < >, 
one obtains: 

( c V )iJ+1f2,k 

M 

(cva) 
ij+1f2,k ( n + 1 n + 1 ) ( ' )n p.. -p.. - cV p g 

!J+l,k !}k g z ij+1f2,k 

+ + (cv) 
. i,j+1f2,k 

KM (w - w ) 
l g i ,j + lf2, k 

+ (c v) · 
i,j + 1!2, k 

(3.2.7) 

The averaged fluxes ofthe vector Jwm are evaluated with the following upwind discretiza

tion scheme: 
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Jr+ (3.2.8) 

wi th the defini tions: 

Ff +112,J+ll2,k = ( Af ug)i+ll2,J+ll2,k ' (3.2.9) 

IYf + 112,J + 1/2, k = ( Ar . Jl ~ ) . + 1/2 . + t/2 k . 
p ur 1 ,J , 

g 

(3.2.10) 

For both ug,i + 112,j + 112, k positive and negative, formula (3.2.8) can be written 

Jr+ = [o ~ ] (p' w ) -
' i + 1/2 ,j + 1/2, k g g i,j + 1/2, k 

(3.2.11) 

- [o, -Ff+112,J+ll2,k] (P~ wg )i+1,J+ll2,k + 

With the usual indexing conventions the fluxes can be written: 

Jr+ (3.2.12a) 

= [ 0' Fg . fiO • • 1"' k ] r, p ~ w u l)o - [ 0' - F~ ' ]J'" ' ' "" k 1 ( p ·_ w .) + l lTJJ.C.,jT 1~,. 0 0 l IT ~,JTU~, j \ g g 2 

102 




