A Method of Determination of the Regular Stress Term for an Arbitrary Joint Geometry under Thermal Loading

Y. Y. Yang, D. Munz
Institut für Materialforschung

Kernforschungszentrum Karlsruhe

 Institut für Materialforschung
A Method of Determination of the Regular Stress Term for an Arbitrary Joint Geometry under Thermal Loading

Y.Y.Yang, D.Munz

Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640,7500 Karlsruhe 1

ISSN 0303-4003

A Method of Determination of the Regular Stress Term for an Arbitrary Joint Geometry under Thermal Loading

Abstract

:

The problem is treated of a two dissimilar materials joint with arbitrary edge angles under thermal loading. Emphasis is placed on the investigation of the regular stress term, which is independent of the distance r, in the stress field near the singular point. A method of calculating the regular stress term $\sigma_{i j 0}(\theta)$ analytically for arbitrary angles θ_{1} and θ_{2} is presented. Numerical results of $\sigma_{i j}$ for special wedges are included for all possible Dundurs parameters. It is shown that under thermal loading conditions the regular stress term is very important to the stress distribution in the near field of the singularity point.

Eine Methode zur Bestimmung von regulärem Spannungsterm für Verbund

 mit beliebigen Winkeln bei thermischer Belastung
Zusammenfassung:

Das Problem von Zweistoffverbunden mit beliebigen Winkeln bei thermischer Belastung wird behandelt. Der Schwerpunkt liegt auf der Untersuchung des regulären Spannungsterms im Spannungsfeld in der Nähe der Singularitätsstelle. Der reguläre Spannungsterm ist unabhängig vom Abstand r. Eine analytische Methode zur Bestimmung des regulären Spannungsterms $\sigma_{10}(\theta)$ fur beliebige Winkel θ_{1} und θ_{2} wird angegeben. Numerische Ergebnisse von $\sigma_{i j 0}$ werden für spezielle Winkel θ_{1}, θ_{2} als Funktion der Dundurs Parameter dargestellt. Es wird gezeigt, daß bei thermischer Belastung der reguläre Spannungsterm einen wesentlichen Beitrag zur Spannungsverteilung in der Nähe der Singularitätsstelle liefert.

Contents

1. Introduction 3
2. Fundamental relations 3
3. Solution for $\omega_{0}=0$ 7
4. The regular stress term for special cases 13
$4.1 \theta_{1}-\theta_{2}=\pi$ 13
$4.2 \theta_{1}=\pi$ and θ_{2} is arbitrary 14
5. Stress distribution in the near field of the singularity point 16
6. Conclusions 17

	Notation
E	Young's modulus
$\boldsymbol{f}_{\text {Ik }}(\boldsymbol{\theta})$	Angular function
G	Shear modulus
K_{k}	Stress intensity factor
L	Characteristic length
$\boldsymbol{r}, \boldsymbol{\theta}$	Polar coordinates
ΔT	Temperature difference
u, v	Displacement in polar coordinate system
x, y	Rectangular coordinates
α	1) Coefficient of thermal expansion
	2) Dundurs parameter
β	Dundurs parameter
$\varepsilon_{i \prime}$	Strain tensor
$\varepsilon_{r}, \varepsilon_{0}, \gamma_{r o}$	Strain component in polar coodinates
v	Poisson's ratio
ω_{k}	Stress exponents
Φ	Stress function
$\sigma_{i j}$	Stress tensor
$\sigma_{r}, \sigma_{0}, \sigma_{r 0}$	Stress component in polar coodinates
$\sigma_{x}, \sigma_{y}, \sigma_{x y}$	Stress component in rectangular coodinates
$\sigma_{i j 0}(\theta)$	Regular stress term
σ_{0}	$\sigma_{0}=\sigma_{\theta 0}$ for $\theta=0$
θ_{1}, θ_{2}	Angles of the two free edge

1. Introduction

If two different materials are bound together thermal stresses are developing during cooling or heating due to the different thermal expansions. Very high stresses occur near the edge of the interface of the compound and singularities of the stresses appear at point A in Fig.1. These stresses in the near field of the singularity point can be described analytically by

$$
\begin{equation*}
\sigma_{i j}(r, \theta)=\sum_{k=1}^{N} \frac{K_{k}}{(r / L)^{\omega_{k}}} f_{i j k}(\theta)+\sigma_{i j 0}(\theta) \tag{1}
\end{equation*}
$$

where r and θ are polar coordinates as shown in Fig. 1 and L is a characteristic length of the compound. The stress exponents ω_{k} and the angular functions $f_{j k}$ can be calculated as a function of the elastic constants $E_{1}, E_{2}, v_{1}, v_{2}$ and the geometrical angles θ_{1} and θ_{2} [1] [2]. The stress intensity factors K_{k} and the regular stress term $\sigma_{i j 0}(\theta)$ are proportional to the temperature difference ΔT and dependent on the elastic constants, the thermal expansion coefficients, and the geometrical angles.

Here the stress intensity factor K_{k} is different from that in fracture of mechanics. According to the definition in Eq.(1), K_{k} has the dimension of the stress and is independent of the size of the compound. They can be calculated by applying the results from the numerical method, e.g. the finite element method [3].

For the special geometry of $\theta_{1}=90^{\circ}, \theta_{2}=-90^{\circ}$ the regular stress term $\sigma_{i j 0}(\theta)$ was calculated analytically [2], [4]. In this paper a method of calculating $\sigma_{i j 0}(\theta)$ analytically for arbitrary angles θ_{1} and θ_{2} will be presented.

2. Fundamental relations

For a two-dimensional problem the stresses can be analysed by means of the stress function. The following stress function was used for the problem shown in Fig.1.

$$
\begin{align*}
\Phi_{j}(r, \theta) & =\sum_{n=0}^{\infty} r^{\left(2-\omega_{n}\right)}\left\{A_{j n} \sin \left(\omega_{n} \theta\right)+B_{j n} \cos \left(\omega_{n} \theta\right)\right. \\
& \left.+C_{j n} \sin \left[\left(2-\omega_{n}\right) \theta\right]+D_{j n} \cos \left[\left(2-\omega_{n}\right) \theta\right]\right\} \tag{2}
\end{align*}
$$

The subscript j denotes the two materials $(\mathrm{j}=1,2)$.

The stresses are obtained from Eq.(2) :

$$
\begin{align*}
& \sigma_{r}=\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}} \tag{3a}\\
& \sigma_{\theta}=\frac{\partial^{2} \Phi}{\partial r^{2}} \tag{3b}\\
& \tau_{r \theta}=-\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \Phi}{\partial \theta}\right) \tag{3c}
\end{align*}
$$

Introducing Eq.(2) in Eq.(3) yields

$$
\begin{align*}
& \sigma_{j r}(r, \theta)=\sum_{n} r^{-\omega_{n}\left(1-\omega_{n}\right)\left\{A_{j n}\left(2+\omega_{n}\right) \sigma+B_{j n}\left(2+\omega_{n}\right) \& c o .\right.} \begin{array}{l}
\left.-C_{j n}\left(2-\omega_{n}\right) \& \operatorname{si2}-D_{j n}\left(2-\omega_{n}\right) \& c o 2 .\right\} \\
\sigma_{j \theta}(r, \theta)=\sum_{n} r^{-\omega_{n}\left(2-\omega_{n}\right)\left(1-\omega_{n}\right)\left\{A_{j n} \sigma+B_{j n} \& c o .\right.} \\
\left.\quad+C_{j n} \& s i 2 .+D_{j n} \& \operatorname{co2} .\right\} \\
\tau_{j r \theta}(r, \theta)=-\sum_{n} r^{-\omega_{n}\left(1-\omega_{n}\right)\left\{A_{j n} \omega_{n} \& c o .-B_{j n} \omega_{n} \sigma\right.} \\
\left.\quad+C_{j n}\left(2-\omega_{n}\right) \& \operatorname{co2} .-D_{j n}\left(2-\omega_{n}\right) \& s i 2 .\right\} \\
\quad(j=1,2)
\end{array}
\end{align*}
$$

For plane stress the relations between the stresses and strains are given by

$$
\begin{align*}
& \varepsilon_{r}=\frac{1}{E}\left(\sigma_{r}-v \sigma_{\theta}\right)+\alpha \Delta T \tag{5a}\\
& \varepsilon_{\theta}=\frac{1}{E}\left(\sigma_{\theta}-v \sigma_{r}\right)+\alpha \Delta T \tag{5b}\\
& \gamma_{r \theta}=\frac{1}{G} \tau_{r \theta} \tag{5c}
\end{align*}
$$

with the shear modulus G, Young's modulus E, Poisson's ratio v.

The components of the strain are related to the displacements by

$$
\begin{align*}
& \varepsilon_{r}=\frac{\partial u}{\partial r} \tag{6a}\\
& \varepsilon_{\theta}=\frac{u}{r}+\frac{1}{r} \frac{\partial v}{\partial \theta} \tag{6b}
\end{align*}
$$

$$
\begin{equation*}
\gamma_{r \theta}=\frac{1}{r} \frac{\partial u}{\partial \theta}+\frac{\partial v}{\partial r}-\frac{v}{r} \tag{6c}
\end{equation*}
$$

The displacements u_{j} and v_{j} are obtained from Eqs.(4), (5), and (6) after vanishing of the rigid body displacements as

$$
\begin{align*}
& u_{j}(r, \theta)=\sum_{n} \frac{r^{\left(1-\omega_{n}\right)}}{E_{j}}\left\{A_{j n}\left[2\left(1-v_{j}\right)+\omega_{n}\left(1+v_{j}\right)\right] \sigma\right. \\
& \quad+B_{j n}\left[2\left(1-v_{j}\right)+\omega_{n}\left(1+v_{j}\right)\right] \& c o . \\
& \quad-C_{j n}\left(1+v_{j}\right)\left(2-\omega_{n}\right) \& s i 2 . \\
& \left.\quad-D_{j n}\left(1+v_{j}\right)\left(2-\omega_{n}\right) \& c o 2 .\right\}+r \cdot \alpha \cdot \Delta T \tag{7a}\\
& v_{j}(r, \theta)=\sum_{n} \frac{r^{\left(1-\omega_{n}\right)}}{E_{j}}\left\{A_{j n}\left[2\left(1-v_{j}\right)+\left(2-\omega_{n}\right)\left(1+v_{j}\right)\right] \& c o .\right. \\
& \quad-B_{j n}\left[2\left(1-v_{j}\right)+\left(2-\omega_{n}\right)\left(1+v_{j}\right)\right] \sigma \\
& \quad-C_{j n}\left(1+v_{j}\right)\left(2-\omega_{n}\right) \& c o 2 . \\
& \left.\quad+D_{j n}\left(1+v_{j}\right)\left(2-\omega_{n}\right) \& s i 2 .\right\} \tag{7b}
\end{align*}
$$

In order to determine the unknown coefficients $A_{j n}, B_{j n}, C_{j n}, D_{j n}, \omega_{n}$, the following boundary conditions were used.

For $\theta=\theta_{1}: \quad \sigma_{1 \theta}\left(r, \theta_{1}\right)=0 \quad \tau_{1+\theta}\left(r, \theta_{1}\right)=0$
For $\theta=\theta_{2}: \quad \sigma_{2 \theta}\left(r, \theta_{2}\right)=0 \quad \tau_{2 r \theta}\left(r, \theta_{2}\right)=0$
For $\theta=0^{\circ}: \quad \sigma_{1 \theta}(r, 0)=\sigma_{2 \theta}(r, 0) \quad \tau_{1 r \theta}(r, 0)=\tau_{2 r \theta}(r, 0)$

$$
u_{1}(r, 0)=u_{2}(r, 0) \quad v_{1}(r, 0)=v_{2}(r, 0)
$$

These 8 relations lead to the following 8 equations:

$$
\begin{align*}
& \sum_{n} r^{-\omega_{n}\left(2-\omega_{n}\right)\left(1-\omega_{n}\right)\left\{A_{1 n} \& s / 1 .+B_{1 n} \& c / 1\right.} \\
& \left.\quad+C_{1 n} \& s 2 / 1 .+D_{1 n} \& c 2 / 1 .\right\}=0 \tag{8a}
\end{align*}
$$

$$
\begin{align*}
& \sum_{n} r^{-\omega_{n}}\left(\omega_{n}-1\right)\left\{A_{1 n} \omega_{n} \& c / 1 .-B_{1 n} \omega_{n} \& s / 1 .\right. \\
& \left.+C_{1 n}\left(2-\omega_{n}\right) \& c 2 / 1 .-D_{1 n}\left(2-\omega_{n}\right) \& s 2 / 1 .\right\}=0 \tag{8b}\\
& \sum_{n} r^{-\omega_{n}\left(2-\omega_{n}\right)\left(1-\omega_{n}\right)\left\{A_{2 n} \& s / 2 .+B_{2 n} \& c / 2 .\right.} \\
& \left.+C_{2 n} \& s 2 / 2 .+D_{2 n} \& c 2 / 2 .\right\}=0 \tag{8c}\\
& \sum_{n} r^{-\omega_{n}}\left(\omega_{n}-1\right)\left\{A_{2 n} \omega_{n} \& c / 2 .-B_{2 n} \omega_{n} \& s / 2 .\right. \\
& \left.+C_{2 n}\left(2-\omega_{n}\right) \& c 2 / 2 .-D_{2 n}\left(2-\omega_{n}\right) \& s 2 / 2 .\right\}=0 \tag{8d}\\
& \sum_{n} r^{-\omega_{n}}\left\{\left(2-\omega_{n}\right)\left(1-\omega_{n}\right)\left(B_{1 n}+D_{1 n}\right)-\left(2-\omega_{n}\right)\left(1-\omega_{n}\right)\left(B_{2 n}+D_{2 n}\right)\right\}=0 \tag{8e}\\
& \sum_{n} r^{-\omega_{n}\left(1-\omega_{n}\right)\left\{A_{1 n} \omega_{n}+C_{1 n}\left(2-\omega_{n}\right)-A_{2 n} \omega_{n}-C_{2 n}\left(2-\omega_{n}\right)\right\}=0.003} \tag{8}\\
& \sum_{n} r^{1-\omega_{n}}\left\{B_{1 n} \mu\left[2\left(1-v_{1}\right)+\omega_{n}\left(1+v_{1}\right)\right]-D_{1 n} \mu\left(1+v_{1}\right)\left(2-\omega_{n}\right)\right. \\
& \left.-B_{2 n}\left[2\left(1-v_{2}\right)+\omega_{n}\left(1+v_{2}\right)\right]+D_{2 n}\left(1+v_{2}\right)\left(2-\omega_{n}\right)\right\} \\
& =r \Delta T \cdot E_{2}\left(\alpha_{2}-\alpha_{1}\right) \\
& \sum_{n} r^{1-\omega_{n}}\left\{A_{1 n} \mu\left[2\left(1-v_{1}\right)+\left(2-\omega_{n}\right)\left(1+v_{1}\right)\right]-C_{1 n} \mu\left(1+v_{1}\right)\left(2-\omega_{n}\right)\right. \\
& \left.-A_{2 n}\left[2\left(1-v_{2}\right)+\left(2-\omega_{n}\right)\left(1+v_{2}\right)\right]+C_{2 n}\left(1+v_{2}\right)\left(2-\omega_{n}\right)\right\}=0 \tag{8h}
\end{align*}
$$

where $\mu=E_{2} / E_{1}, \alpha_{1}, \alpha_{2}$ are the thermal expansion coefficients.

To satisfy Eq. $(8 \mathrm{~g})$ one of the values ω_{n} - denoted ω_{0} - has to be zero. This case will be treated in section 3. As r in Eq.(8) is arbitrary, if $\omega_{n} \neq 0$, we obtain

$$
\begin{aligned}
& A_{1 n} \& s / 1 .+B_{1 n} \& c / 1 .+C_{1 n} \& s 2 / 1 .+D_{1 n} \& c 2 / 1 .=0 \\
& A_{1 n} \omega_{n} \& c / 1 .-B_{1 n} \omega_{n} \& s / 1 . \\
& \quad+C_{1 n}\left(2-\omega_{n}\right) \& c 2 / 1 .-D_{1 n}\left(2-\omega_{n}\right) \& s 2 / 1 .=0
\end{aligned}
$$

$$
\begin{align*}
& A_{2 n} \& s / 2 .+B_{2 n} \& c / 2 .+C_{2 n} \& s 2 / 2 .+D_{2 n} \& c 2 / 2 .=0 \\
& A_{2 n} \omega_{n} \& c / 2 .-B_{2 n} \omega_{n} \& s / 2 . \\
& \quad+C_{2 n}\left(2-\omega_{n}\right) \& c 2 / 2 .-D_{2 n}\left(2-\omega_{n}\right) \& s 2 / 2 .=0 \\
& B_{1 n}+D_{1 n}-B_{2 n}-D_{2 n}=0 \\
& A_{1 n} \omega_{n}+C_{1 n}\left(2-\omega_{n}\right)-A_{2 n} \omega_{n}-C_{2 n}\left(2-\omega_{n}\right)=0 \\
& \mu\left[2\left(1-v_{1}\right)+\omega_{n}\left(1+v_{1}\right)\right] B_{1 n}-\mu\left(1+v_{1}\right)\left(2-\omega_{n}\right) D_{1 n} \\
& \quad-\left[2\left(1-v_{2}\right)+\omega_{n}\left(1+v_{2}\right)\right] B_{2 n}+\left(1+v_{2}\right)\left(2-\omega_{n}\right) D_{2 n}=0 \\
& \mu\left[2\left(1-v_{1}\right)+\left(2-\omega_{n}\right)\left(1+v_{1}\right)\right] A_{1 n}-\mu\left(1+v_{1}\right)\left(2-\omega_{n}\right) C_{1 n} \\
& \quad-\left[2\left(1-v_{2}\right)+\left(2-\omega_{n}\right)\left(1+v_{2}\right)\right] A_{2 n}+\left(1+v_{2}\right)\left(2-\omega_{n}\right) C_{2 n}=0 \tag{9}\\
& \quad(n=1,2, \ldots)
\end{align*}
$$

Equation (9) can be rewritten

$$
\begin{equation*}
\left[A_{n}\right]\left\{X_{n}\right\}=\{0\} \tag{10}
\end{equation*}
$$

$\left[A_{n}\right]$ is the coefficient matrix in Eq. (9) and $\left\{X_{n}\right\}=\left\{A_{1 n}, B_{1 n}, C_{1 n}, D_{1 n}, A_{2 n}, B_{2 n}, C_{2 n}, D_{2 n}\right\}^{\top}$. To obtain a non-trivial solution of $\left\{X_{n}\right\}$ in Eq.(10) $\left|A_{n}\right|=0$ has to be satisfied. Its solutions are the eigenvalues of the problem. The displacements must be finite at $r=0$, so that only the solution with $\omega_{n} \leq 1$ need to be considered. It was shown by Bogy [1] that dependent on the material properties and the angles θ_{1} and θ_{2}, there may be one or two positive values of ω_{n} which lead to stress singularities, Also complex values of ω_{n} are possible. This will not be discussed in this paper.

3. Solution for $\omega_{0}=0$

The solution $\omega_{0}=0$ is a trivial solution of Eq.(8). For $\omega_{0}=0$ by application of normal solving method a solution of Eq.(8) exists only for special values of θ_{1} and θ_{2}. These are $\theta_{1}-\theta_{2}=\pi$ or $\theta_{1}-\theta_{2}=2 \pi$ or $\theta_{1}=\pi$ and θ_{2} arbitrary or $\theta_{2}=\pi$ and θ_{1} arbitrary.

A general solution can be obtained by using a limit process, i.e. in Eq.(8) putting $\omega_{0} \neq 0$, but $\omega_{0} \rightarrow 0$. Then Eq.(8) can be written

$$
\begin{aligned}
& \lim _{\omega_{0} \rightarrow 0}\left\{A_{10} \sin \left(\omega_{0} \theta_{1}\right)+B_{10} \cos \left(\omega_{0} \theta_{1}\right)\right. \\
& \left.\quad+C_{10} \sin \left[\left(2-\omega_{0}\right) \theta_{1}\right]+D_{10} \cos \left[\left(2-\omega_{0}\right) \theta_{1}\right]\right\}=0
\end{aligned}
$$

$$
\begin{align*}
& \lim _{\omega_{0} \rightarrow 0}\left\{A_{10} \omega_{0} \cos \left(\omega_{0} \theta_{1}\right)-B_{10} \omega_{0} \sin \left(\omega_{0} \theta_{1}\right)\right. \\
&\left.+C_{10}\left(2-\omega_{0}\right) \cos \left[\left(2-\omega_{0}\right) \theta_{1}\right]-D_{10}\left(2-\omega_{0}\right) \sin \left[\left(2-\omega_{0}\right) \theta_{1}\right]\right\}=0 \\
& \lim _{\omega_{0} \rightarrow 0}\left\{A_{20} \sin \left(\omega_{0} \theta_{2}\right)+B_{20} \cos \left(\omega_{0} \theta_{2}\right)\right. \\
&\left.+C_{20} \sin \left[\left(2-\omega_{0}\right) \theta_{2}\right]+D_{20} \cos \left[\left(2-\omega_{0}\right) \theta_{2}\right]\right\}=0 \\
& \lim _{\omega_{0} \rightarrow 0}\{ \left\{A_{20} \omega_{0} \cos \left(\omega_{0} \theta_{2}\right)-B_{20} \omega_{0} \sin \left(\omega_{0} \theta_{2}\right)\right. \\
&\left.+C_{20}\left(2-\omega_{0}\right) \cos \left[\left(2-\omega_{0}\right) \theta_{2}\right]-D_{20}\left(2-\omega_{0}\right) \sin \left[\left(2-\omega_{0}\right) \theta_{2}\right]\right\}=0 \\
& B_{10}+ D_{10}-B_{20}-D_{20}=0 \\
& \lim _{\omega_{0} \rightarrow 0}\left\{A_{10} \omega_{0}+C_{10}\left(2-\omega_{0}\right)-A_{20} \omega_{0}-C_{20}\left(2-\omega_{0}\right)\right\}=0 \\
& \lim _{\omega_{0} \rightarrow 0}\{\mu {\left[2\left(1-v_{1}\right)+\omega_{0}\left(1+v_{1}\right)\right] B_{10}-\mu\left(1+v_{1}\right)\left(2-\omega_{0}\right) D_{10} } \\
&\left.-\left[2\left(1-v_{2}\right)+\omega_{0}\left(1+v_{2}\right)\right] B_{20}+\left(1+v_{2}\right)\left(2-\omega_{0}\right) D_{20}\right\}=E_{2} \Delta T\left(\alpha_{2}-\alpha_{1}\right) \\
& \lim _{\omega_{0} \rightarrow 0}\{\mu {\left[2\left(1-v_{1}\right)+\left(2-\omega_{0}\right)\left(1+v_{1}\right)\right] A_{10}-\mu\left(1+\dot{v}_{1}\right)\left(2-\omega_{0}\right) C_{10} } \\
&\left.\quad-\left[2\left(1-v_{2}\right)+\left(2-\omega_{0}\right)\left(1+v_{2}\right)\right] A_{20}+\left(1+v_{2}\right)\left(2-\omega_{0}\right) C_{20}\right\}=0 \tag{11}
\end{align*}
$$

These relations can be written

$$
\begin{aligned}
& A_{10} \sin \left(\omega_{0} \theta_{1}\right)+B_{10} \cos \left(\omega_{0} \theta_{1}\right) \\
& \quad+C_{10} \sin \left[\left(2-\omega_{0}\right) \theta_{1}\right]+D_{10} \cos \left[\left(2-\omega_{0}\right) \theta_{1}\right]=\delta \\
& A_{10} \omega_{0} \cos \left(\omega_{0} \theta_{1}\right)-B_{10} \omega_{0} \sin \left(\omega_{0} \theta_{1}\right) \\
& \quad+C_{10}\left(2-\omega_{0}\right) \cos \left[\left(2-\omega_{0}\right) \theta_{1}\right]-D_{10}\left(2-\omega_{0}\right) \sin \left[\left(2-\omega_{0}\right) \theta_{1}\right]=\delta \\
& A_{20} \sin \left(\omega_{0} \theta_{2}\right)+B_{20} \cos \left(\omega_{0} \theta_{2}\right) \\
& \quad+C_{20} \sin \left[\left(2-\omega_{0}\right) \theta_{2}\right]+D_{20} \cos \left[\left(2-\omega_{0}\right) \theta_{2}\right]=\delta \\
& A_{20} \omega_{0} \cos \left(\omega_{0} \theta_{2}\right)-B_{20} \omega_{0} \sin \left(\omega_{0} \theta_{2}\right) \\
& \quad+C_{20}\left(2-\omega_{0}\right) \cos \left[\left(2-\omega_{0}\right) \theta_{2}\right]-D_{20}\left(2-\omega_{0}\right) \sin \left[\left(2-\omega_{0}\right) \theta_{2}\right]=\delta \\
& B_{10}+D_{10}-B_{20}-D_{20}=0 \\
& A_{10} \omega_{0}+C_{10}\left(2-\omega_{0}\right)-A_{20} \omega_{0}-C_{20}\left(2-\omega_{0}\right)=\delta
\end{aligned}
$$

$$
\begin{align*}
& \mu\left[2\left(1-v_{1}\right)+\omega_{0}\left(1+v_{1}\right)\right] B_{10}-\mu\left(1+v_{1}\right)\left(2-\omega_{0}\right) D_{10} \\
& \quad-\left[2\left(1-v_{2}\right)+\omega_{0}\left(1+v_{2}\right)\right] B_{20}+\left(1+v_{2}\right)\left(2-\omega_{0}\right) D_{20}=E_{2} \Delta T\left(\alpha_{2}-\alpha_{1}\right)+\delta \\
& \mu\left[2\left(1-v_{1}\right)+\left(2-\omega_{0}\right)\left(1+v_{1}\right)\right] A_{10}-\mu\left(1+v_{1}\right)\left(2-\omega_{0}\right) C_{10} \\
& \quad-\left[2\left(1-v_{2}\right)+\left(2-\omega_{0}\right)\left(1+v_{2}\right)\right] A_{20}+\left(1+v_{2}\right)\left(2-\omega_{0}\right) C_{20}=\delta \tag{12}
\end{align*}
$$

where ω_{0} and δ are infinitesimal.
Equation (12) can be written in matrix form

$$
\begin{equation*}
\left[A_{0}\right]\left\{X_{0}\right\}=\left\{B_{0}\right\} \tag{13}
\end{equation*}
$$

where $\left[A_{0}\right]$ is the coefficient matrix in Eq.(12), $\left\{X_{0}\right\}=\left\{A_{10}, B_{10}, C_{10}, D_{10}, A_{20}, B_{20}, C_{20}, D_{20}\right\}^{\top}$, and $\left\{B_{0}\right\}=\left\{\begin{array}{lllllll}\delta & \delta & \delta & \delta & 0 & \delta & E_{2} \Delta T\left(\alpha_{2}-\alpha_{1}\right)+\delta\end{array} \delta\right\}^{\top}$.

The coefficients $\left\{X_{0}\right\}$ can be solved by application of the Cramer's principle, e.g.

$$
\begin{align*}
& A_{10}=\frac{\left|\Delta_{A_{10}}\right|}{\left|A_{0}\right|} \\
& B_{10}=\frac{\left|\Delta_{B_{10}}\right|}{\left|A_{0}\right|} \tag{14}
\end{align*}
$$

and corresponding relations for the other coefficients. $\left|\Delta_{A_{10}}\right|$ is the determinant obtained by replacing the first column of $\left|A_{0}\right|$ by $\left\{B_{0}\right\},\left|\Delta_{B_{10}}\right|$ by replacing the second column ..., and so on.

Then the stress terms corresponding to $\omega_{0}=0$ are given by

$$
\begin{align*}
& \sigma_{j r 0}(\theta)=\lim _{\substack{\omega_{0} \rightarrow 0 \\
\delta \rightarrow 0}}\left\{r ^ { - \omega _ { 0 } } (1 - \omega _ { 0 }) \left[A_{j 0}\left(2+\omega_{0}\right) \sin \left(\omega_{0} \theta\right)+B_{j 0}\left(2+\omega_{0}\right) \cos \left(\omega_{0} \theta\right)\right.\right. \\
& \left.\left.\quad-C_{j 0}\left(2-\omega_{0}\right) \sin \left[\left(2-\omega_{0}\right) \theta\right]-D_{j 0}\left(2-\omega_{0}\right) \cos \left[\left(2-\omega_{0}\right) \theta\right]\right]\right\} \tag{15a}\\
& \sigma_{j \theta 0}(\theta)=\lim _{\substack{\omega_{0} \rightarrow 0 \\
\delta \rightarrow 0}}\left\{r ^ { - \omega _ { 0 } } (2 - \omega _ { 0 }) (1 - \omega _ { 0 }) \left[A_{j 0} \sin \left(\omega_{0} \theta\right)+B_{j 0} \cos \left(\omega_{0} \theta\right)\right.\right. \\
& \left.\left.\quad+C_{j 0} \sin \left[\left(2-\omega_{0}\right) \theta\right]+D_{j 0} \cos \left[\left(2-\omega_{0}\right) \theta\right]\right]\right\} \tag{15b}\\
& \tau_{j r \theta 0}(\theta)=\lim _{\substack{\omega_{0} \rightarrow 0 \\
\delta \rightarrow 0}}\left\{-r^{-\omega_{0}}\left(1-\omega_{0}\right)\left[A_{j 0} \omega_{0} \cos \left(\omega_{0} \theta\right)-B_{j 0} \omega_{0} \sin \left(\omega_{0} \theta\right)\right.\right. \\
& \left.\left.\quad+C_{j 0}\left(2-\omega_{0}\right) \cos \left[\left(2-\omega_{0}\right) \theta\right]-D_{j 0}\left(2-\omega_{0}\right) \sin \left[\left(2-\omega_{0}\right) \theta\right]\right]\right\} \tag{15c}\\
& \quad(j=1,2)
\end{align*}
$$

In Eq.(14), if $\omega_{0}=0$ and $\delta=0$, there is

$$
\begin{align*}
& \left|A_{0}\right|=\left|\Delta_{B_{10}}\right|=\left|\Delta_{C_{10}}\right|=\left|\Delta_{D_{10}}\right|=\left|\Delta_{B_{20}}\right|=\left|\Delta_{C_{20}}\right|=\left|\Delta_{D_{20}}\right|=0 \tag{16a}\\
& \left|\Delta_{A_{10}}\right|=-128 E_{2}\left(\alpha_{2}-\alpha_{1}\right) \Delta T \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\left[\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)-\cos \left(\theta_{2}\right) \sin \left(\theta_{1}\right)\right] \tag{16b}\\
& \left|\Delta_{A_{20}}\right|=-128 E_{2} k\left(\alpha_{2}-\alpha_{1}\right) \Delta T \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\left[\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)-\cos \left(\theta_{2}\right) \sin \left(\theta_{1}\right)\right] \tag{16c}
\end{align*}
$$

However in Eq.(15) the coefficient $A_{j 0}$ is always combined with $\sin \left(\omega_{0} \theta\right)$ or $\omega_{0} \cos \left(\omega_{0} \theta\right)$. For arbitrary angles θ, if $\omega_{0}=0$ and $\delta=0$, there are

$$
\begin{equation*}
\left|\Delta_{A_{j 0}}\right| \sin \left(\omega_{0} \theta\right)=0 \tag{17a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\Delta_{A_{j 0}}\right| \omega_{0} \cos \left(\omega_{0} \theta\right)=0 \tag{17b}
\end{equation*}
$$

Consequently, the l'Hospital principle can be used here and it holds

$$
\begin{align*}
& \bar{A}_{j 0}=\lim _{\substack{\omega_{0} \rightarrow 0 \\
\delta \rightarrow 0}} A_{j 0} \omega_{0} \cos \left(\omega_{0} \theta\right) \\
& =\lim _{\substack{\omega_{0} \rightarrow 0 \\
\delta \rightarrow 0}} \frac{\left|\Delta_{A_{j 0}}\right| \omega_{0} \cos \left(\omega_{0} \theta\right)}{\left|A_{0}\right|}=\frac{\left|\Delta_{A_{j 0}}\right|_{\omega_{0}=0}^{\delta=0}}{}=\frac{A_{j}^{*}}{\frac{\partial\left|A_{0}\right|}{\partial \omega_{0}} \left\lvert\, \begin{array}{c}
\mid \omega_{0}=0 \\
\delta=0
\end{array}\right.} \tag{18a}\\
& \lim _{\substack{\omega_{0} \rightarrow 0 \\
\delta \rightarrow 0}} A_{j 0} \sin \left(\omega_{0} \theta\right)=\lim _{\substack{\omega_{0} \rightarrow 0 \\
\delta \rightarrow 0}} \frac{\left|\Delta_{A_{j 0}}\right| \sin \left(\omega_{0} \theta\right)}{\left|A_{0}\right|} \\
& =\frac{\left|\Delta_{A_{j 0}}\right|_{\omega_{0}=0}^{\delta=0}}{} \theta=\bar{A}_{j 0} \theta \tag{18b}\\
& \bar{B}_{10}=\lim _{\substack{\omega_{0} \rightarrow 0 \\
\delta \rightarrow 0}} \frac{\left|\Delta_{B_{10}}\right|}{\left|A_{0}\right|} \\
& =\frac{\left.\frac{\partial\left|\Delta_{B_{10}}\right|}{\partial \omega_{0}}\right|_{\substack{\omega_{0}=0 \\
\delta=0}}}{\frac{\partial\left|A_{0}\right|}{\partial \omega_{0}} \left\lvert\, \begin{array}{c}
B_{1} \\
Z \\
\delta=0 \\
\delta=0
\end{array}\right.} \tag{18c}
\end{align*}
$$

and corresponding relations for the other coefficients. Finally, the regular stress terms $\sigma_{\text {jp }}(\theta)$ can be calculated analytically by

$$
\begin{align*}
& \sigma_{j 00}(\theta)=2\left\{\bar{A}_{j 0} \theta+\bar{B}_{j 0}-\bar{C}_{j 0} \sin (2 \theta)-\bar{D}_{j 0} \cos (2 \theta)\right\} \tag{19a}\\
& \sigma_{j \theta 0}(\theta)=2\left\{\bar{A}_{j 0} \theta+\bar{B}_{j 0}+\bar{C}_{j 0} \sin (2 \theta)+\bar{D}_{j 0} \cos (2 \theta)\right\} \tag{19b}\\
& \tau_{j r \theta 0}(\theta)=-2\left\{\frac{1}{2} \bar{A}_{j 0}+\bar{C}_{j 0} \cos (2 \theta)-\bar{D}_{j 0} \sin (2 \theta)\right\} \tag{19c}
\end{align*}
$$

The displacements according to $\omega_{0}=0$ are

$$
\begin{align*}
& u_{j 0}(r, \theta)=\frac{2 r}{E_{j}}\left[\bar{A}_{j 0} \theta\left(1-v_{j}\right)+\bar{B}_{j 0}\left(1-v_{j}\right)-\bar{C}_{j 0}\left(1+v_{j}\right) \sin (2 \theta)\right. \\
& \left.\quad-\bar{D}_{j 0}\left(1+v_{j}\right) \cos (2 \theta)\right] \tag{19d}\\
& v_{j 0}(r, \theta)=\frac{2 r}{E_{j}}\left[-\bar{C}_{j 0}\left(1+v_{j}\right) \cos (2 \theta)+\bar{D}_{j 0}\left(1+v_{j}\right) \sin (2 \theta)\right]+H_{j 0} r-\frac{2 \bar{A}_{j 0}}{E_{j}} r \ln (r) \tag{19e}\\
& \quad(j=1,2)
\end{align*}
$$

where $H_{j 0}$ is the unknown constant.
The coefficients $\bar{A}_{j 0}, \bar{B}_{j 0}, \bar{C}_{j 0}, \bar{D}_{j 0}$, can be calculated analytically by means of the following equations

$$
\begin{align*}
Z= & \alpha^{2}\left[F_{4 s}-\left(\theta_{1}+\theta_{2}\right)\left(F_{12}+F_{21}\right)-3 F_{4 c}+2 F_{1 p}-1\right] \\
& +2 \alpha \beta\left[\left(F_{21}-\sin \left(2 \theta_{2}\right)\right) \theta_{2}+\left(F_{12}-\sin \left(2 \theta_{1}\right)\right) \theta_{1}+2 F_{4 c}-2 F_{1 p}+2\right] \\
& +2 \alpha\left[F_{21} \theta_{2}-F_{12} \theta_{1}+F_{1 n}\right] \\
& +2 \beta\left[\left(F_{12}-\sin \left(2 \theta_{1}\right)\right) \theta_{1}-\left(F_{21}-\sin \left(2 \theta_{2}\right)\right) \theta_{2}\right] \\
& +\left[-F_{4 s}+\left(\theta_{1}-\theta_{2}\right)\left(F_{21}-F_{12}\right)-F_{4 c}+1\right] \tag{20a}\\
A_{1}^{*}= & \frac{1}{2} q(\alpha+1)\left\{\left(F_{21}-\sin \left(2 \theta_{2}\right)\right)-\left(F_{12}-\sin \left(2 \theta_{1}\right)\right)\right\} \tag{20b}\\
B_{1}^{*}= & \frac{1}{4} q\left\{\alpha\left[F_{4 s}-2\left(F_{21}-F_{12}+\sin \left(2 \theta_{1}\right)\right) \theta_{1}-2 \sin \left(2 \theta_{2}\right) \theta_{2}+F_{4 c}-2 F_{1 p}-F_{1 n}+3\right]\right. \\
& \left.+\left[F_{4 s}-2\left(F_{21}-F_{12}+\sin \left(2 \theta_{1}\right)\right) \theta_{1}+2 \sin \left(2 \theta_{2}\right) \theta_{2}+F_{4 c}+F_{1 n}-1\right]\right\} \tag{20c}\\
C_{1}^{*}= & \frac{1}{4} q\left\{\alpha\left[2 F_{4 s}\left(\theta_{1}+\theta_{2}\right)+\left(F_{21}-\sin \left(2 \theta_{2}\right)\right)+3\left(F_{12}-\sin \left(2 \theta_{1}\right)\right)\right]\right. \\
& \left.+\left[2 F_{4 s}\left(\theta_{1}-\theta_{2}\right)+\left(F_{21}-\sin \left(2 \theta_{2}\right)\right)-\left(F_{12}-\sin \left(2 \theta_{1}\right)\right)\right]\right\}
\end{align*}
$$

$$
\begin{align*}
D_{1}^{*}= & -\frac{1}{4} q\left\{\alpha\left[F_{4 s}-2 F_{21}\left(\theta_{1}+\theta_{2}\right)-3 F_{4 c}+2 F_{1 p}-F_{1 n}-1\right]\right. \\
& \left.+\left[F_{4 s}+2 F_{21}\left(\theta_{2}-\theta_{1}\right)+F_{4 c}+F_{1 n}-1\right]\right\} \tag{20e}\\
A_{2}^{*}= & -\frac{1}{2} q(\alpha-1)\left\{\left(F_{21}-\sin \left(2 \theta_{2}\right)\right)-\left(F_{12}-\sin \left(2 \theta_{1}\right)\right)\right\} \tag{20f}\\
B_{2}^{*}= & \frac{1}{4} q\left\{\alpha\left[F_{4 s}+2\left(F_{21}-F_{12}-\sin \left(2 \theta_{2}\right)\right) \theta_{2}-2 \sin \left(2 \theta_{1}\right) \theta_{1}+F_{4 c}-2 F_{1 p}-F_{1 n}+3\right]\right. \\
& \left.+\left[-F_{4 s}-2\left(F_{21}-F_{12}-\sin \left(2 \theta_{2}\right)\right) \theta_{2}-2 \sin \left(2 \theta_{1}\right) \theta_{1}-F_{4 c}+F_{1 n}+1\right]\right\} \tag{20g}\\
C_{2}^{*}= & \frac{1}{4} q\left\{\alpha\left[2 F_{4 s}\left(\theta_{1}+\theta_{2}\right)+\left(F_{12}-\sin \left(2 \theta_{1}\right)\right)+3\left(F_{21}-\sin \left(2 \theta_{2}\right)\right)\right]\right. \\
& \left.+\left[2 F_{4 s}\left(\theta_{1}-\theta_{2}\right)+\left(F_{21}-\sin \left(2 \theta_{2}\right)\right)-\left(F_{12}-\sin \left(2 \theta_{1}\right)\right)\right]\right\} \tag{20h}\\
D_{2}^{*}= & -\frac{1}{4} q\left\{\alpha\left[F_{4 s}-2 F_{12}\left(\theta_{1}+\theta_{2}\right)-3 F_{4 c}+2 F_{1 p}+F_{1 n}-1\right]\right. \\
& \left.+\left[-F_{4 s}+2 F_{12}\left(\theta_{2}-\theta_{1}\right)-F_{4 c}+F_{1 n}+1\right]\right\} \tag{20i}
\end{align*}
$$

where α, β are the Dundurs parameter

$$
\begin{aligned}
& \alpha=\frac{m_{2}-k m_{1}}{m_{2}+k m_{1}} \\
& \beta=\frac{\left(m_{2}-2\right)-k\left(m_{1}-2\right)}{m_{2}+k m_{1}}
\end{aligned}
$$

with

$$
k=\frac{G_{2}}{G_{1}}
$$

and

$$
m= \begin{cases}\frac{4}{(1+v)} & \text { for plane stress } \\ 4(1-v) & \text { for plane strain }\end{cases}
$$

$$
q=\frac{1+\alpha}{2} E_{2}^{\prime} \Delta T \Delta \alpha
$$

with

$$
E_{2}^{\prime}=\left\{\begin{array}{cc}
E_{2} & \text { for plane stress } \\
\frac{E_{2}}{\left(1-v_{2}^{\prime}\right)} & \text { for plane strain } \\
12
\end{array}\right.
$$

$$
\Delta \alpha= \begin{cases}\alpha_{1}-\alpha_{2} & \text { for plane stress } \\ \alpha_{1}\left(1+v_{1}\right)-\alpha_{2}\left(1+v_{2}\right) & \text { for plane strain }\end{cases}
$$

The parameters $F_{4 s}, F_{4 c}, F_{12}$, etc. are

$$
\begin{aligned}
& F_{1 n}=\cos \left(2 \theta_{2}\right)-\cos \left(2 \theta_{1}\right) \\
& F_{1 p}=\cos \left(2 \theta_{2}\right)+\cos \left(2 \theta_{1}\right) \\
& F_{4 c}=\cos \left(2 \theta_{2}\right) \cos \left(2 \theta_{1}\right) \\
& F_{4 s}=\sin \left(2 \theta_{2}\right) \sin \left(2 \theta_{1}\right) \\
& F_{12}=\sin \left(2 \theta_{1}\right) \cos \left(2 \theta_{2}\right) \\
& F_{21}=\sin \left(2 \theta_{2}\right) \cos \left(2 \theta_{1}\right)
\end{aligned}
$$

If $\bar{B}_{j 0}+\bar{D}_{j 0} \neq 0$ a characteristic stress can be defined as

$$
\sigma_{0}=\left.\sigma_{\theta 0}\right|_{\theta=0}=2\left(\bar{B}_{j 0}+\bar{D}_{j 0}\right)
$$

Then the regular stress terms can be rewritten

$$
\begin{align*}
& \sigma_{j r 0}(\theta)=\sigma_{0}\left\{\bar{A}_{j 0} \theta+\bar{B}_{j 0}-\bar{C}_{j 0} \sin (2 \theta)-\bar{D}_{j 0} \cos (2 \theta)\right\} /\left(\bar{B}_{10}+\bar{D}_{10}\right) \tag{21a}\\
& \sigma_{j \theta 0}(\theta)=\sigma_{0}\left\{\bar{A}_{j 0} \theta+\bar{B}_{j 0}+\bar{C}_{j 0} \sin (2 \theta)+\bar{D}_{j 0} \cos (2 \theta)\right\} /\left(\bar{B}_{10}+\bar{D}_{10}\right) \tag{21b}\\
& \tau_{j r \theta 0}(\theta)=-\sigma_{0}\left\{\frac{1}{2} \bar{A}_{j 0}+\bar{C}_{j 0} \cos (2 \theta)-\bar{D}_{j 0} \sin (2 \theta)\right\} /\left(\bar{B}_{10}+\bar{D}_{10}\right) \tag{21c}
\end{align*}
$$

Generally, the regular stress term can be written

$$
\begin{equation*}
\sigma_{i j 0}(r, \theta)=\sigma_{0} f_{j 0}(\theta) \tag{22}
\end{equation*}
$$

4. The regular stress term for special cases

$4.1 \theta_{1}-\theta_{2}=\pi$

In this case the coefficients are

$$
\begin{align*}
Z= & \left\{\alpha^{2} \& c 1 \cdot\left[-\sin \left(2 \theta_{1}\right)\left(2 \theta_{1}-\pi\right)-2 \& c 1 .+2\right]\right. \\
& +\alpha \beta(\& c 1 .-1)\left[\sin \left(2 \theta_{1}\right)\left(2 \theta_{1}-\pi\right)+2(\& c 1 .-1)\right] \\
& \left.-\alpha \sin \left(2 \theta_{1}\right) \& c 1 . \pi+\beta \sin \left(2 \theta_{1}\right) \pi(\& c 1 .-1)\right\} \tag{23a}
\end{align*}
$$

$$
\begin{align*}
& A_{1}^{*}=0 \tag{23b}\\
& B_{1}^{*}=-\frac{1}{4} q\left\{\alpha\left[2(\& c 1 .-1)+\sin \left(2 \theta_{1}\right)\left(2 \theta_{1}-\pi\right)\right]+\pi \sin \left(2 \theta_{1}\right)\right\} \tag{23c}\\
& C_{1}^{*}=\frac{1}{4} q \sin \left(2 \theta_{1}\right)\left\{\alpha\left[2(\& c 1 .-1)+\sin \left(2 \theta_{1}\right)\left(2 \theta_{1}-\pi\right)\right]+\pi \sin \left(2 \theta_{1}\right)\right\} \tag{23d}\\
& D_{1}^{*}=\frac{1}{4} q \& c 1 \cdot\left\{\alpha\left[2(\& c 1 .-1)+\sin \left(2 \theta_{1}\right)\left(2 \theta_{1}-\pi\right)\right]+\sin \left(2 \theta_{1}\right) \pi\right\} \tag{23e}\\
& A_{2}^{*}=A_{1}^{*} \quad B_{2}^{*}=B_{1}^{*} \quad C_{2}^{*}=C_{1}^{*} \quad D_{2}^{*}=D_{1}^{*}
\end{align*}
$$

If $\theta_{1}=-\theta_{2}=90^{\circ}$ there are

$$
\begin{align*}
& \bar{B}_{1}=\bar{B}_{2}=\bar{D}_{1}=\bar{D}_{2}=-\frac{q}{4(\alpha-2 \beta)} \tag{24a}\\
& \bar{A}_{1}=\bar{A}_{2}=\bar{C}_{1}=\bar{C}_{2}=0 \tag{24b}
\end{align*}
$$

and

$$
\begin{align*}
& \sigma_{x 0}=\tau_{x y 0}=0 \tag{25a}\\
& \sigma_{y 0}=-\frac{q}{\alpha-2 \beta} \tag{25b}
\end{align*}
$$

If In Eq.(23) $Z=0$, but $A_{j}^{\hat{k}}, B_{j}^{\lambda}, C_{j}^{\hat{*}}, D_{j}^{\lambda} \neq 0$, there is $\sigma_{j j 0} \rightarrow \infty$. The corresponding conditions for $\sigma_{j 0} \rightarrow \infty$ are

$$
\begin{equation*}
\alpha=\beta\left(1-\frac{1}{\cos \left(2 \theta_{1}\right)}\right) \tag{26a}
\end{equation*}
$$

for $\cos \left(2 \theta_{1}\right) \neq 0$ and

$$
\begin{equation*}
\beta=0 \tag{26b}
\end{equation*}
$$

for $\cos \left(2 \theta_{1}\right)=0$.
In Fig. 2 to Fig. $5 \sigma^{*}$ is plotted in the α, β diagram for different combinations of θ_{1} and θ_{2}, where σ^{*} is defined as

$$
\begin{equation*}
\sigma^{*}=-\frac{\sigma_{0}}{\left(E_{1}^{\prime}+E_{2}^{\prime}\right) \Delta \alpha \Delta T} \tag{27}
\end{equation*}
$$

All possible values of the Dundurs parameters α, β were considered.

$4.2 \theta_{1}=\pi$ and θ_{2} is arbitrary

In this case the coefficients are

$$
\begin{align*}
\mathrm{Z}= & \left\{\alpha^{2}\left[\sin \left(2 \theta_{2}\right)\left(\theta_{2}+\pi\right)+\cos \left(2 \theta_{2}\right)-1\right]\right. \\
& \left.-2 \alpha\left[\left(\cos \left(2 \theta_{2}\right)-1\right)+\sin \left(2 \theta_{2}\right) \theta_{2}\right]+\left[\sin \left(2 \theta_{2}\right)\left(\theta_{2}-\pi\right)+\left(\cos \left(2 \theta_{2}\right)-1\right)\right]\right\} \tag{28a}\\
B_{1}^{*}= & \frac{1}{2} q\left\{\alpha\left[\left(\cos \left(2 \theta_{2}\right)-1\right)+\sin \left(2 \theta_{2}\right)\left(\theta_{2}+\pi\right)\right]\right. \\
& \left.+\left[\sin \left(2 \theta_{2}\right)\left(\pi-\theta_{2}\right)-\left(\cos \left(2 \theta_{2}\right)-1\right)\right]\right\} \tag{28b}\\
D_{1}^{*}= & -B_{1}^{*} \tag{28c}\\
A_{1}^{*}= & C_{1}^{*}=A_{2}^{*}=B_{2}^{*}=C_{2}^{*}=D_{2}^{*}=0 \tag{28d}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{B}_{1}=\frac{q}{2(\alpha-1)} \tag{28e}
\end{equation*}
$$

where $\theta_{2} \neq-\pi$. The regular stress terms are

$$
\begin{align*}
& \sigma_{y 0}=\tau_{x y 0}=0 \tag{29a}\\
& \sigma_{1 \times 0}=\frac{2 q}{\alpha-1} \tag{29b}\\
& \sigma_{2 x 0}=0 \tag{29c}
\end{align*}
$$

For $\alpha=1$ there is $\sigma_{j j 0} \rightarrow \infty$.
If $\theta_{1}=-\theta_{2}=\pi$ the coeffients are

$$
\begin{align*}
& Z=16 \pi^{2} \tag{30a}\\
& B_{1}^{*}=-D_{1}^{*}=-4 q \pi^{2} \tag{30b}\\
& B_{2}^{*}=-D_{2}^{*}=4 q \pi^{2} \tag{30c}\\
& A_{1}^{*}=C_{1}^{*}=A_{2}^{*}=C_{2}^{*}=0 \tag{30d}
\end{align*}
$$

The regular stress terms follow

$$
\begin{align*}
& \sigma_{y 0}=\tau_{x y 0}=0 \tag{31a}\\
& \sigma_{1 \times 0}=-q \tag{31b}\\
& \sigma_{2 x 0}=q \tag{31c}
\end{align*}
$$

In this case, the regular stress terms are independent of β. In Fig. $6 \sigma^{*}$ is plotted versus α for $\left|\theta_{2}\right| \neq \pi$ and $\left|\theta_{2}\right|=\pi$. As in this case $B_{1}+D_{1}=0$, i.e. $\sigma_{x 0}=0, \sigma^{\wedge}$ is defined as

$$
\begin{equation*}
\sigma^{*}=-\frac{\sigma_{1 \times 0}}{\left(E_{1}^{\prime}+E_{2}^{\prime}\right) \Delta \alpha \Delta T} \tag{32}
\end{equation*}
$$

In Fig. 7 the stress exponents $\omega_{k}\left(\omega_{k}=\left\{\operatorname{Re}\left(\lambda_{n}\right) \mid-0.5 \leq \operatorname{Re}\left(\lambda_{n}\right) \leq 0.5\right\}\right)$ are plotted versus $\left|\theta_{2}\right|$ for $\theta_{1}=180^{\circ}$ and the material data are

$$
\begin{array}{ll}
E_{1}=280(\mathrm{GPa}) & v_{1}=0.26 \\
E_{2}=72(\mathrm{GPa}) & v_{2}=0.30
\end{array}
$$

It can be seen that if $\left|\theta_{2}\right| \neq 180^{\circ}$ but close to 180°, there are three non-zero stress exponents ω_{k} in the range $-0.5 \leq \omega_{k} \leq 0.5$. Thus, even if $\left|\theta_{2}\right|$ changes from $\left|\theta_{2}\right| \neq 180^{\circ}$ to $\left|\theta_{2}\right|=180^{\circ}$ there is a jump of the regular stress $\sigma_{i j 0}(\theta)$ at $\left|\theta_{2}\right|=180^{\circ}$, the stresses are continuous.

5. Stress distribution in the near field of the singularity point

As an example, a joint with $\theta_{1}=115^{\circ}, \theta_{2}=-45^{\circ}$ is considered which is shown in Fig.8. The material data are

$$
\begin{array}{lll}
E_{1}=280(G P a) & v_{1}=0.26 & \alpha_{1}=2.5 \times 10^{-6} / \mathrm{K} \\
E_{2}=14000(\mathrm{GPa}) & v_{2}=0.30 & \alpha_{2}=18.95 \times 10^{-6} / \mathrm{K}
\end{array}
$$

and $\Delta T=-100 \mathrm{~K}$. For the given material data and plane strain the stress exponents are

$$
\begin{aligned}
& \omega_{1}=0.0879 \\
& \omega_{2}=-0.059259
\end{aligned}
$$

The distribution of the regular stress term is shown in Fig. 9 and the constant stress σ_{0} is

$$
\sigma_{0}=30611 \mathrm{MPa}
$$

The angular functions $f_{j j k}$ for each stress exponent are given in Fig. 10.
The FEM was used to determine the stress intensity factors $K_{k}(k=1,2)$. By application of the method given in [3], the values of K_{k} were obtained. For this example the stress intensity factors K_{k} are

$$
\begin{aligned}
& K_{1}=-10433 \mathrm{MPa} \\
& K_{2}=-20960 \mathrm{MPa}
\end{aligned}
$$

From Eq.(1) the stress distributions were calculated along different lines, where $N=2$. The stress term $\sigma_{i j}, \sigma_{i j 2}, \sigma_{i j 0}$ was drawn as σ_{1}, σ_{2}, and σ_{0} respectively in the following fig-
ures. In Fig. 11 the stress distributions σ_{θ} and $\tau_{r \theta}$ for $\theta=0$ are indicated. In Fig. 12 and in Fig. 13 the stress distribution σ_{r} for $\theta=115^{\circ}$ and $\theta=-45^{\circ}$ is shown.

It can be seen that the regular stress term $\sigma_{i j 0}(\theta)$ is very important to the stress distribution in the near field of the singularity point under conditions of thermal loading $(\Delta T \neq 0)$.

6. Conclusions

The stresses in the near field of the singularity point can be described analytically by

$$
\sigma_{i j}(r, \theta)=\sum_{k=1}^{N} \frac{K_{k}}{(r / L)^{\omega_{k}}} f_{j j k}(\theta)+\sigma_{j j 0}(\theta)
$$

Under thermal loading conditions the regular stress term is very important to the stress distribution in the near field of the singularity point.

For an arbitrary geometry with angles θ_{1} and θ_{2} the regular stress term can be calculated analytically by the method given in this paper.

REFERENCE

[1] D. B. Bogy, "Edge - Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading, "

Trans. of the ASME, J. of Applied Mechanics (1968 Sept.) pp.460-466.
[2] O.lancu, "Berechnung von thermischen Eigenspannungsfeldern in Keramik/Metall - Verbunden, "

Bericht VDI, Reihe 18 Nr.74, VDI Verlage, Düsseldorf (1989).
[3] D. Munz, Y.Y. Yang, " Stresses near the edge of bonded dissimilar materials described by two stress intensity factors, "

Int. J. Fract. to be published.
[4] K.Mizuno, K.Miyazawa, T.Suga, " Characterization of Thermal Stress in Ceramic/Metal-Joint, "
J. of the Faculty of Eng., The Univ. of Tokyo (B) Vol.XXXIX, No. 4 (1988).

Fig. 1 The general configuration of a joint of dissimilar materials.

Fig. 2 The $\boldsymbol{\sigma}_{0}^{*}$ distribution for the joint with $\theta_{1}=90^{\circ}, \theta_{2}=-90^{\circ}$.

Fig. 3 The $\boldsymbol{\sigma}_{0}^{*}$ distribution for the joint with $\theta_{1}=120^{\circ}, \theta_{2}=-60^{\circ}$.

Fig. 4 The σ_{0}^{2} distribution for the joint with $\theta_{1}=135^{\circ}, \theta_{2}=-45^{\circ}$.

Fig. 5 The σ_{0}^{*} distribution for the joint with $\theta_{1}=150^{\circ}, \theta_{2}=-30^{\circ}$.

Fig. 6 The $\boldsymbol{\sigma}_{0}^{*}$ distribution for the joint with $\theta_{1}=\pi$.

Fig. 7 The ω_{k} distribution for the joint with $\theta_{1}=\pi$.

Fig. 8 The geometry of the joint with $\theta_{1}=115^{\circ}, \theta_{2}=-45^{\circ}$.

Fig. 9 The regular stress term for the example.

(b)
θ

Fig. 10 The angular functions for ω_{1} and ω_{2}.

Fig. 11 The stress distribution σ_{θ} and $\tau_{r \theta}$ for $\theta=0$.

Fig. 12 The stress distribution $\boldsymbol{\sigma}_{r}$ for $\boldsymbol{\theta}=115^{\circ}$.

Fig. 13 The stress distribution σ_{r} for $\theta=-45^{\circ}$.

