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Abstract: 

A sum-rule model (ESM) accounting for dissipative processes in heavy ion 

collisions is discussed and applied to the analyses of intermediate-mass fragment 

emission observed in light and heavy ion induced reactions. It reproduces the 

observed Z distributions ofthe complex fragments at low and intermediate energies 

and reueals the angular momentum localization of various contributing 

mechanisms. 

ASPEKTE DER ENERGIE-DISSIPATION BEI DER EMISSION 

MITTELSCHWERER FRAGMENTE BEI NUKLEAREN STÖSSEN 

Es wird ein Summenregel-Modell, das dissipative Prozesse in Schwerionen

reaktionen berücksichtigt, diskutiert und in Analysen experimenteller 

Beobachtungen der Emission mittelschwerer Fragernente in Leicht- und 

Schwerionen induzierten Reaktionen angewandt. Das Modell gibt gut die 

Elementverteilung der komplexen Ejektile bei niederen und mittleren 

Projektilenergien wieder, und es zeigt die Lokalisation verschiedenartiger 

Mechanismen im Drehimpulsraum auf. 
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1. lntroduction 

The study of intermediate-mass fragment (IMF) emission in low- and 

intermediate-energy collisions has revealed interesting features of a reaction 

mechanism, which can be attributed neither to a direct reaction mode nor to the 

formation of a completly equilibrated compound nucleus. The general interest in 

details of the mechanism stems from potential information about the compression 

stages formed by the colliding nuclei. We observe: 

• forward peaked angular distributions at the grazing angle, which 

characterize a fast process, 

linear dependence of the cross-sections on the groundstate Q-value, a typical 

feature of a statistical reaction mechanism, 

• transfer oflarger nucleon clusters between the reaction partners. 

A concept introduced to describe the new, somehow hybrid reaction mechanism is 

the concept of partial statistical equilibrium, assuming that the system of colliding 

ions approaches a statistical equilibrium with respect to a subset of the degrees of 
freedom [1]. 

In the low energy region, the major part of particle emission can be attributed to 

incomplete fusion processes. Using the concept of partial statistical 

equilibrium [1], a sum-rule modelwas elaborated with a successful description of 

complete and incomplete fusion processes in the collisions of 140 MeV 14N + 159tfb 

[2]. The model, predicting a narrow localization in t-space for the emission of 

different clusters, leads to a good agreement with the experimental Z distribution 

ofthe emitted complex fragments. 

Assuming the formation of a strongly interacting dinuclear system, this original 

sum-rule model (OSM) has been based on following basic assumptions: 

• the probability for emission through a partial statistical equilibrium is given 

by an exponential factor [1]: 

(1) 

where T is the effective temperature, Qc (i) is the charge transfer at the 

relative distance Re = r0c (A1 113 + A2113) and Qgg is the ground-ground state 

value. 

the concept of a generalized critical angular momentum that allows the 

transfer of a cluster from the projectile to target (and inverse) only if the 

relative orbital angular momentum of the subsystem (cluster plus target or 
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projectile) is smaller than the corresponding critical angular momentum for 

fusion. By this condition the transmission coefficients, parametrized in the 

form: 

(2) 

determine the localization in f-space for different clusters. The limiting 

value elim is related to the crititcal angular momentum for fusion(see ref. 10). 

invoking the unitarity condition (exhausting the total reaction cross section 

crR), the sum-rule [2] is formulated by : 

Ne { ~ Te (i) P (i)} = K e 
!=1 

(3) 

with Ne being the normalization factors as determined by the contribution of 

the particular angular momentum to crR. 

lntroducing the scattering amplitudes Se which can be deduced from elastic 
scattering the total reaction cross section is given by the well-known relation 

so that 

o R = nlk
2 L (2e + 1) (1 - 1 s e 12

) 

e 

2 Ke=(I-ISel ) 

Originally the sharp Cutoffapproximation 

enuu: 
OR = nlk2 L (U + 1)-+ nR2 

e 

1 for e s; e 
K= nuu: 

e 0 for e > e 
nuu: 

(4a) 

(4b) 

(4c) 

has been used. A realistic estimate of contributions araund the grazing angular 
momentum, however, needs the smooth transition of Se from 0 to 1 as provided by 
optical model calculations, e.g. 

With increasing projectile energy complete and incomplete fusion modes are less 

important, but nevertheless IMF emission gets more pronounced. The application 

ofthe OSM at higher incident energies is questionable due to following features: 

(i) The OSM is a static model assuming an equilibrium condition of 

nuclear, Coulomb, and centrifugal forces to define the critical angular 

momenta fcr (i), which determine the transmission coefficients Te (i). 
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(ii) The derivation ofthe reaction cross-sections within the OSM ignores the 

energy dissipation. Only for explaining some features seen in the energy 

spectra and the Qopt-values, it has been additionally assumed that an 

equal amount of energy is dissipated in the entrance channel, 

independently ofthe actual mass transfer. 

The questions associated with IMF production at intermediate energies are : 

• What are the sources ofiMF emission? 

• By which mechanism are the fragments emitted? 

Some studies associate IMF emission to binary decays of a fully equilibrated 

compound nucleus [3, 4], formed in complete and incomplete fusion processes. 

Alternatively [5, 6] deep inelastic collisions have been shown to be an important 

source of complex fragment emission. 

The energy dissipation in intermediate heavy ion collisions [7] and the type of 

interaction are dependent on the impact parameter: 

• In more central collision (low impact parameters) IMF emission originates 

from incomplete fusion. Backward emitted particles are evaporated from the 

incompletely fused system, forward emitted particles are due to 

preequilibrium emission or are projectile-like fragments as remnants of 

incomplete fusion. 

In peripheral collisions (large impact parameters) deep inelastic collisions 

occur up to 50 Me V/u, and a "participant - spectator" mechanism (like 
projectile breakup) is evolving at higher energies. 

There are uncertainties about the energy deposit [8] which may show a saturation 

effect, and about the onset of multifragmentation with more than two fragments 

in the exit channels [9]. 

In the following an extended sum-rule model (ESM) is described which takes into 

account the dynamical evolution of the dinuclear system, via partially 

equilibrated states on the way to fusion.lt suggests a new mechanism : dissipative 

fragmentation, covering very asymmetric fast fission, quasifission and deep 
inelastic reaction modes [10]. 
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2. Dissipative phenomena viewed by ESM 

The extension of the sum-rule model is based on the idea that in heavy ion 

collisions dissipative phenomena are crucial and cannot be ignored in modeling 

the reaction mechanism. Classical models are able to describe strong dissipative 

processes like deep inelastic collisions and fusion [11]. Using a simple description 

[12] of the formation of a dinuclear system when the ions collide, the time 

evolution of the system may be characterized by the evolution of three collective 

variables : r = the distance between the center-of-mass of the nuclei, E> = the 

deflection angle and the mass asymmetry x = (A2 - A1) I (A1 + A2). 

In the actual calculations of the classical trajectories by solving the equation of 

motion a proximity potential has been used [13]: 

(5a) 

with 

{V -O.'l7 2 > O} 
0

e s , s-
V N(r, x) = 2 . 

V 0 + 6.3 s , s < 0 

(5b) 

G (x) is a geometric factor 

( 
A )113 (1 - x2)113 

G(x) = -
2 (1 - x)113 + (1 + x)113 (5c) 

and 

( A )113 [ 113 113 ] s = r - r 0 2 ( 1 - x ) + (1 + x) (5d) 

with r0, V0 being the parameters ofthe nuclear potential. 

Introducing energy dissipation by friction forces [14], the friction tensor y has 

been taken diagonal with components corresponding to radial and tangential 

motion and to mass transfer : 

y = C I a VN I ar I 
2 

rr r 

(6) 

y = y laVN/arl 
XX X 

The idea is to define a dynamical critical angular momentum, corresponding to the 

case that the friction forces are sufficient to fuse the dinuclear system. 
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Using the proximity potential shown in fig. 1, the classical trajectories for 
collisions of 156 MeV 6Li with natAg have been calculated [15] (fig. 2). Obviously 

for angular range 50-65 Ii deep inelastic collisions occur. 
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Classical trajectories for 156 MeV 6Li + natAg collisions. 

Tab. 1 shows that for increasing interaction times at lower i-values the energy 

dissipation is increasing,too. For damped collisions, e = 50 - 55 h, the energy is 

dissipated mainly through the radial component, leading to large internal 

excitations. For higher i-values, 65-70 h, the radial dissipation appears to be 

reduced, and (smaller) dissipation is due to the nucleon transfer. 

Fig. 3 displays the time evolution of the reaction in a channel of an angular 
momentum close to ecrdyn = 51 h. Strong energy dissipation of the radial 
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Tab. 1: Dynamical parameters of collisions of 156 MeV 6Li ions with natAg 

resulting from classical trajectory calculations with friction forces. The 

interactiontime while energy dissipation occurs is defined as the time 

till the system has reseparated, reaching a distance of r = 11 fm 

(r = 30 fm, respectively, for the values given in Fig. 1). 

w 

<l 

e (h) t (10- 21 s) !1 Er (MeV) !1 Etg (MeV) !1Ex (MeV) E*(%) 

49 fusion 

50 1.2 -72.8 - 1.36 -39.5 49 

52 1.0 -59.5 -0.82 -34.6 40 

55 0.7 -37.2 -0.46 -29.1 25 

60 0.6 -9.4 -0.12 -19.5 6 

65 0.56 - 0.8 -0.01 -7.2 

70 0.54 -0.3 -0.007 - 1.8 
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Fig. 3: 

Time evolution of the collective 
coordinates center-of-mass 
distance r, deflection angle e 
and of energy dissipation (!1E) 

for the e = 52 h trajectory in 
collisions of 156 MeV 6Li ions 
with natAg. 
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component accompanies the formation of the dinuclear system at about 0.4 · 

l0-21s. Subsequently transfer of nucleons occurs and the system starts rotating, 

as indicated by the energy dissipation of the tangential component and by the 

mass transfer. The time dependence of the distance between the center-of-mass of 

the two colliding nuclei and ofthe deflection angle is additionally shown. 

The basic assumption of the ESM is that fragments of intermediate mass are 

produced during the dynamical evolution of the dinuclear system before the 

complete fusion takes place. Associated with dissipative processes, the 

corresponding transmission coefficients are considered to depend on the 

dynamical critical angular momentum for fusion ecrdyn. 

Thus, assuming that all processes simultaneously compete, an extension of the 

sum-rule is proposed [10], namely: 

Ne { ± Te(i)P(i) + ± T'ePW} = Ke 
i=l i=2 

(7) 

where again Ne are normalization factors accounting additionally for the 

fragmentation ofthe dinuclear system. 

The extension with the transmission coefficients T 'e depending on fc/yn is 

parametrized tobe identical for all exit channels: 

(8) 

Consequently, the cross section for each channel (i) is given by a sum of two 

contributions: 

where 

atot (i) = a (i) + a' (i) 

emax 
a (i) = nA. 2 I (2e + 1) Ne Te (i) P (i) 

l=O 

(9) 

(10) 

accounts for the complete (i = 1) and incomplete (i = 2, ... n) fusion contributions, 

while 

emax 
a'(i) = nA. 2 I (2e + l)Ne T'eP(i) 

e=o 
(11) 

represents the light and intermediate mass fragment emission by dissipative 

fragmentation ofthe dinuclear system in the exit channels: i = 2, ... n. In this case, 
for e < ecrdyn, dissipative fragmentation can be associated to phenomena similar to 
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very asymmetric fast fission or quasifission phenomena, while for e >ec/yn 

contributions from deep inelastic collisions are expected. 

3. Extended sum-rule analysis ofiMF emission from 6Li and 4He induced 

reactions at 26 MeV/amu 

Measurements of IMF emission have been performed for rather asymmetric 

systems of 6Li reactions with 46Ti, natcu and natAg at incident energies of 26 

MeV/amu [16]. Fig. 4 displays the comparison of experimental element 

distribution with the results from OSM and ESM (parameter values for ESM 

given in Fig. 4). From the improvement by the ESM it may be deduced that with 

increasing asymmetry in the entrance channel, dissipative effects get more 

pronounced. The discrepancies are largely removed by the second term of eq. 9. 
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Fig.4: 

The experimental element distributions 

from reactions of 156 MeV 6Li with 46Ti, 
natcu and natAg as compared with the 

results of the ESM (full line) and OSM 

(dashed line). 

Both sum-rule models imply three parameterstobe adjusted : T, - the effective 

temperature, Re- the distance where the charge transfer occurs and 1:1e- the half

width in the t-space. The calculations prove tobe rather insensitive to 1:1e, which 

has been fixed to 3 h in all the cases. There is a strong correlation between T and 

Re since the probability P (i) is essentially determined by the product Re· T. 
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Fig. 5: 

The experimental elemen t 

distributions from reactions of 104 

MeV a-particles with 46tfi, 58Ni and 

natAg as compared with the results 

of the ESM analysis. 

The resulting values of the temperatureTarein good agrement with the usual 

estimate from statistical considerations [17] : T = vE*c/A where E* is the 

excitation energy and c = 8. 

The reaction cross sections values are computed in the frame of OSM and ESM by 

using the computer code LIMES [18] including a programm [19], which calculates 

the values of the dynamical critical angular momenta by solving the equation of 

motion with friction forces. TheKe values or the ISel, respectively, are taken from 

results of elastic scattering analyses. 

Fig. 5 compares ESM predictions for reactions of 104 MeV a-particles with 46tfi, 
58Ni and natAg [20] to experimental data. The agreement is particularly good for 

clusters with Z > 9. The excess in the experimental distributions around C and 0 

might be explained by small C and 0 impurities in the targets. 

The validity of ESM at larger incident energies has been tested by applying to 

further cases of asymmetric systems [21, 22]. Fig. 6 presents the experimental 

element distributions measured in the collisions ofvarious projectiles at different 

energies: 40Ar (30 MeV/amu), 12C (48 MeV/amu), 20Ne (48 MeV/amu) and 3He (66 

MeV/amu) colliding with natAg targets, and compared to calculated values by 

ESM. 
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Fig. 6: 

Comparison of ESM results with 

experimental Z-distributions from 

various colliding systems. 

Tab.2: Values of the apparent temperature T obtained from ESM analysis, T ' 

from statistical estimate and T " from analysis of the slope of energy 

spectra. 

Reaction Eine T T' T" 

6Li + 46Ti 26 MeV/amu 4.63 4.93 4.9 
natcu 4.3 4.29 4.2 
natAg 3.89 3.48 3.4 

4He + 46Ti 26MeV/amu 4.96 4.18 
5sNi 3.75 3.75 
natAg 1.97 2.77 

40Ar + natAg 30 MeV/amu 5.92 7.3 5.5 

12c + natAg 48MeV/amu 6.19 6.32 6.0 

20Ne + natAg 48MeV/amu 8.38 7.65 6.0 

3He + natAg 66 MeV/amu 3.43 4.0 3.9 
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Tab. 2 presents the temperature values T resulting from the analysis showing 

increased apparent temperatures for higher incident energies. They are in good 

agreement with the values T' estimated by statistical considerations [17] and with 

the values T" found in the analysis of the experimental energy spectra of the 

fragments. 

4. Alternative formulation and refinement ofthe ESM 

Arguments and results presented up to this point are based on the assumption 

that all contributing processes are simultaneously proceeding and competing. 

Alternatively [3, 4] IMF emission has been also associated to the decay of a 

completely equilibrated system after fusion. Following this view a variant of the 

ESM can be alternatively formulated including a refinement accounting for 

particle emission from the evolution ofthe incomplete fusion channels [23]. 

Fig. 7: 
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Application of a simplified two-step procedure to experimental data for 
156 MeV 6Li collisions with natAg. 

We still consider the formation of equilibrated nuclei and the dissipative 

fragmentation as competing processes during dynamical evolutions of the 

dinuclear systems, following an initial reaction step which has two modes, called 

in a rather general sense, complete and incomplete fusion entries, respectively, 

accounting for the cases when the total system starts a further dissipative 
evolution or only a particular participant part ofit. 



- 12 -

Like in OSM the first step is governed by a normalization condition 

n 

Ne L Te(t)Pli = Ke 
i=l 

(12) 

assuming that complete (i = 1) and incomplete (i > 1) entry reaction paths exhaust 

the total reaction cross section. 

The first step leadstoapartial cross section for emission offragments i 

Te (t)Pli 
oe(i) = n!k2 (2e + 1) _n ___ _ 

L Te(J)PlJ 
j=l 

(13) 

In the equilibration phase (second step) compound nucleus formation and 

dissipative processes compete in all channels, and, in general, dissipative 

fragmentation of incomplete fusion channels k may additionally feed all exit 

channels (i > 1). This implies the relations 

N~t> [Te (1) P ti + ~ T' e (1) P ti ] = Ne Te (1) P ti 
z=2 

in the complete fusion channel and 

N~k> [re(k)Pkk + i. T'e(k)Pki] =Ne(k)P1k 
z=2 

for incomplete fusion channels (k > 1) with 

n 

Te(k)Pkk + I T'e(k)P~ 
j=2 

(14a) 

(14b) 

(15) 

We note that the Te (k) and the probabilities Pkj (k denoting the entry mode) 

depend on the particular channel through different values of ecritdyn. 

Simplifying the further procedure we neglect for the moment dissipative 

fragmentation in the incomplete fusion channels and write 

(16) 

which corresponds to the dissipative fragmentation term of the ESM, but 

renormalized for a sequential process ( through N / 1> ). 
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Some exploratory calculations have been performed applying the two-step 

procedure to the Z-distributions from 156 MeV 6Li collisions with natAg. The data 

can be described only with unreasonable values of the apparent temperature and 

the Coulombradius (Fig. 7). We conclude from this finding that, at least in the 

considered case, IMF emission is not dominated by a simple two-step mechanism. 

5. Angular momentum localization by the reaction dynamics 

The two terms in the sum-rule expression lead to different localizations in the 

angular momentum space. This is demonstrated for reaction of 336 MeV 40 Ar with 
natAg, measured at large angles [24]. Fig. 8 shows Z-distribution and fig. 9 displays 

the corresponding partial cross-sections with contribution of the first term, and of 

the sum given by eqs. 10 and 11. It is obvious that the emission of fragments 

measured in the backward region has tobe mainly attributed to the second term of 

eq. 9, i. e. to dissipative processes. These results are in good agreement with 

experimental findings about angular momenta windows, deduced from 

coincidence measurements of light particles emission [25]. Incomplete fusion 

channels have been attributed to angular momenta less than 100 Ii, whereas the 

quasifission appears with larger values momentum, e = (103- 133) Ii. 

The situation is different in the case of a-particle and 6Li reactions at 26 Me V/amu 

where the reaction is strongly localized around the grazing e-value : egraz - emax' 
This feature would no more tolerate the previously used approximation Ke = 1 

(see eq. 4). 
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Fig. 8: 

Eiemental distribution of IMF emission 
in reactions of 336 MeV Ar ions with 
natAg: experimental data [24] compared 

with ESM result . 

This is indicated in fig. 10 showing the partial cross sections of collisions of 156 
MeV 6Li with natAg. 
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Fig. 10 : Partial cross sections of IMF emission of collisions of 156 MeV 6Li ions 

with natAg, calculated with the extended sum-rule model. 

The suggestions of the ESM are supported by the impact parameter description in 

classical trajectory calculations (see sect. 2). The study of the dynamics of the 

reaction 40Ar + natAg at 27 MeV/amu by analysing the correlation between heavy 

residues and IMF [6], shows experimentally that the dominant mechanism is of 

binary type. The IMF angular distributions, strongly forward peaked, ressemble 

to incomplete deep inelastic collisions at low energy. 
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Using Landau-Vlasov equation approach, the dissipative mechanism has been 

detailed for the transfer of energy into intrinsic excitation energy. It gives 

evidence for various impact parameter ranges governed by different reaction 

mechanisms with different interaction times, ca. 0.5 - 1. · 10- 21 s for deep 

inelastic collisions, thus supporting our analysis. 

6. The role of dissipationindifferent approaches 

The original sum-rule model implies that fusion takes place only if the 

bombarding energy is larger than the fusion barrier at the impact parameter 

under consideration (static fusion barrier). The influence of friction in fusing a 

dinuclear system has been considered by Ngö [11], introducing the dynamical 

"surplus" energy and by Swiatecki [26] as extrapush energy. Both models are 

successful in describing various features of dissipative processes, but the physical 

role of the dynamical surplus energy differs from that associated with the extra

push energy. In the dynamical surplus energy hypothesis the extra energy is 

supplied to overcome the friction forces. 
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Fig.ll: 

IMF emission experimentally observed for 

various colliding systems : 

comparison of results of the extended sum

rule model (full line) with those of the 

approach ofBhattacharya et al. [27]. 

The ESM is related to the dynamical surplus energy consideration since the 

transmission coefficients T 'e are depending on the dynamical critical angular 

momentum ec/yn for fusion. We emphasize that on this way friction forces play an 

important role in the entrance channel, as the main part ofthe energy is dissipated 

in forming a dinuclear system. 
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In contrast, IMF emission has been also analysed [27] with a model based on the 

view that the collision of two nuclei forms a compound nucleus with excitation 

energiesandangular momenta sufficient to undergo dynamical deformation [26]. 

Such a mechanism is assumed to appear in the exit channel towards a neck

development of the system. The cross-sections for the fragment production are 

calculated by means of decay widths, depending on the barrier height, the 

compound nucleus excitation energy and the temperature at the saddle point. 

These are also the ingredients of multistep evaporation models used in IMF 

emission analyses [28]. As seen in fig. 11, which compares the ESM results with 

results of ref. 27, IMF emission in 198 MeV 3He, 156 MeV 6Li and 576 MeV 12C 

colliding with natAg target is weil predicted for larger Z-values, but the 

underestimation for low Z-values indicates the existence of additional sources, not 

accounted by the decay ofthe fully equilibrated system. 

A recent approach [29] introduced dissipative effects through two different 

probabilities P (i) with two different Q-values : Q1F (i,e) representing the radial 

kinetic energy dissipation for incomplete fusion processes and Q01c (i,e) calculated 

foreachein the sticking limit for deep inelastic collisions. By such a modification 

of the OSM, introducing an explicit dependence of the reaction cross sections on 

the dissipated energy, the limitations of OSM are considerably alleviated. The 

approach has been successfully applied to reactions of 120 MeV 19F with 64Ni [29]. 

We emphasize that these analyses of dissipative mechanisms have been made in 

the same spirit as in our previous paper [30], analysing 156 MeV 6Li + 46Ti, natcu 

and natAg reactions and treating deep inelastic collisions on the same footing as 

incomplete fusion. In fact, with increasing incident energy, a major part of IMF 

emission is expected to emerge from deep inelastic collisions, as experimentally 
revealed in 40Ar induced reactions with natAg at 27 MeV/amu [5]. 

To explain the energy spectra measured for different emergent particles in 14N + 
159Tb reactions at high er incident energy 22 Me V/amu [31], the random walk 

model [32] has been extended to include random momentum transfer due to 

internal motion ofthe nucleons. The calculated spectra contain two contributions, 

a quasielastic component occuring at an optimum Q-value and a second 

component associated with additional exchange of nucleons leading to more 

inelastic collisions. Similary, results based on a diffusion model [33] reveal two 

possible mass-relaxation modes in asymmetric heavy ions collisions leading to a 

system Z = 108 : "fast fusion" and "quasifission". Differences found in the 

experimental mass distributions for 192 MeV 328 + 238U and 220 MeV 40Ar + 
232Th reactions might be explained in this way. 
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There is a growing role of preequilibrium emission with increasing energy, a 

feature well reproduced by Laundau-Vlasov simulations of the collisions. The 

results for 40Ar + Ag collisions at 27 MeV/amu indicate that a larger amount of 

excitation energy is carried by the fragments of (binary) deep inelastic processes 

within an impact parameter range of 5-8 fm, smaller values leading to fusion and 

to increased preequilibrium emission when increasing energy. This may be 

understood in applying the basic idea of an existence of a participant zone. For 

collisions at intermediate energies (20-200 MeV/amu) a dissipative process has 

been suggested [34] as proceeding through a two-step mechanism : the two 

partners first sticking together with an overlap (i.e. neck) defined by the impact 

parameter and with dissipation (converting radial kinetic energy into intrinsic 

energy ofthe fragmentsandorbital rotational energy into fragment spins). This is 

followed by some kind of abrasion, thus pointing to reconciling with the spectator

participant picture with three types of ejectiles at higher energies: projectile-like, 

target-like fragments and a "fire ball" (participant). 

7. Conclusions 

The analysis of light and intermediate mass fragment emission by the ESM 

follows the basic assumption that all competing processes proceed through partial 

statistical equilibria. The fragments originate from the evolution of a dinuclear 

system, and the emission probability is proportional to an exponential factor 

depending on Qgg and on the apparent temperature T, which can be considered to 

be a measure of the excitation energy transferred to the intrinsic degrees of 

freedom by the friction forces. 

The way, how the dinuclear system timely evolves, depends on the angular 

momenta involved, leading to different reaction paths. For low angular momenta 

complete and incomplete fusion dominate while for larger impact parameters a 

dissipative fragmentation of the dinuclear system shows up before complete 

equilibration. Consequently, two different types of transmission coefficients 

appear in the formulation ofthe ESM. The first (Te) is responsible for complete and 

incomplete fusion, being limited to specific regions in the angular momentum 

space, the second (T'e) associates IMF emission to dissipative fragmentation 

accounting for a class of processes with energy dissipation in different angular 

momen turn regimes : 
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(i) for angular momenta less than ec/yn, dissipative fragmentation induces IMF 

emission through phenomena similar to asymmetric fast fission or 

quasifission processes, 

(ii) for angular momenta larger than ec/yn deep inelastic collisions are a source. 

The coherent view stems from the conunon origin of the dinuclear system with a 

time evolution driven by the same forces : conservative (nuclear, Coulomb and 

centrifugal) forces and dissipative forces ofthe nuclear friction. This view includes 

also the concept of centrifugal fragmentation discussed by Volkov [35]. 

We emphasize that ESM describes the fragment emission by dissipative effects in 

the entrance channel [11]. Comparing our results with that obtained following the 

Moretto - Swiatecki view [3, 26] the experimetal data obviously favor the ESM. 

N evertheless the sum-rule model does not specify in detail the dissipative 

mechanisms which enter only through a simple quantity: ec/yn. 
The modelleads to a good prediction ofthe element production for a large range of 

incident energies and for asymmetric systems, and it reveals reliably the 

localization of different dissipative mechanisms in the angular momentum space. 

In addition, as the sum-rule model is easily to handle, it provides a convenient tool 

to analyse and to characterize quickly experimental data ofiMF emission. 
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