
KfK 5160 
September 1993 

Numerical Simulation of 
Liquid - Metal Flows in Radial -

Toroidal - Radial Bends 

S. Molokov, l. Bühler 
Institut für Angewandte Thermo- und Fluiddynamik 

Projekt Kernfusion 

Kernforschungszentrum Karlsruhe 





Kernforschungszentrum Karlsruhe 

Institut für AngewandteThermo-und Fluiddynamik 

Projekt Kernfusion 

KfK 5160 

Numerical Simulation of Liquid- Meta! Flows 

in Radial- Toroidal- Radial Bends 

S. Molokov and L. Bühler 

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe 



Als Manuskript gedruckt 
Für diesen Bericht behalten wir uns alle Rechte vor 

Kernforschungszentrum Karlsruhe GmbH 
Postfach 3640, 76021 Karlsruhe 

ISSN 0303-4003 



Numerical Simulation of Liquid- Metal Flows 

in Radial- Toroidal- Radial Bends 

Abstract 

3 

Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with 

reference to the radial-toroidal-radial concept of a self-cooled liquid-meta} blanket. The 

ducts composing bends have reetangular cross-section. The applied magnetic field is 

aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann 

number the flow region is divided into cores and boundary layers of different types. The 

magnetohydrodynamic equations are reduced to a system of partial differential equa.tions 

governing wall electric potentials and the core pressure. The system is solved numerically 

by two different methods. The first method is iterative with iteration between wall 

potential and the core pressure. The second method is a general one for the solution of the 

core flow equations in curvilinear coordinates generated by channel geometry and magnetic 

field orientation. In the present report a detailed description of the methods is given. 

Results obtained by the two methods are in good agreement. Both methods show, that the 

3D -pressure drop of MHD flows in a. U -bend is not a critical issue for blanket a.pplications. 
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Numerische Simulation von Flüssigmetall- Strömungen 

in Radial- Toroidal- Radial Krümmern 

Zusammenfassung 

Gegenstand dieses Berichts sind magnetohydrodynamische Strömungen in einer U

Umlenkung und in einer rechtwinkligen Umlenkung, als Elemente eines selbstgekühlten 

radial-toroidal-radialen Flüssigmetall-Blankets. Das angelegte Magnetfeld zeigt in Rich

tung des toroidalen Kanals und steht senkrecht zur radialen llichtung. Für große 

Hartmann -Zahlen teilt sich das Strömungsgebiet in Kernströmungsbereiche ( Cores) und in 

Grenzschichten. Die magnetohydrodynamischen Gleichungen lassen sich zu einem System 

von partiellen Differentialgleichungen zur Bestimmung des elektrischen Potentials der 

Kanalwand und des Core-Drucks vereinfachen. Dieses System wird mit zwei verschiedenen 

Verfahren numerisch gelöst. Bei der ersten Methode handelt es sich um ein iteratives 

Verfahren mit Iterationen zwischen den Werten des Wandpotentials und des Core-Drucks. 

Das zweite Verfahren ist ein allgemeines Verfahren zur Lösung der Kernströmungs

gleichungen in gekrümmten Koordinaten, die durch die Kanalgeometrie und durch die 

Orientierung des Magnetfeldes vorgegeben werden. Dieser Bericht gibt eine Beschreibung 

beider Verfahren. Die Ergebnisse, die mit beiden Methoden gewonnen wurden, stimmen gut 

überein. Beide Methoden zeigen, daß 3D-Druckverluste von MHD Strömungen in einer 

U-U mlenkung für Blanket- Anwendungen unkritisch sind. 
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1 Introduction 

Magnetohydrodynamic (MHD) flows play an important role in liquid metal cooled fusion 

reactor blankets. Since an electrically conducting fluid has to flow through regions of the 

plasma confining strong magnetic field, currents are induced within the fluid. They close 

their loop in thin boundary layers or in electrically conducting channel walls and create 

considerably high pressure drop and a quite different flow structure compared to ordinary 

hydrodynamic (OHD) flows. 

In several blanket designs effort has been made to achieve high velocities for an 

effective heat transfer in the plasma facing first wall coolant channels. lt is proposed to 

reduce MHD pressure drop by choosing the flow clirection aligned with the main toroidal 

component of the magnetic field. Toroidal channels are fed by larger poloidal ones (Smith 

et al. 1985) or as in the Radial- Toroidal- Radial (RTR)- concept (Malang et al. 1988) by 

radial channels. In these channels, where the flow suffers from strong MHD interaction, the 

fluid flows over a short distance. Both designs of liquid metal blankets involve MHD flows 

in straight ducts where the magnetic field is nearly perpendicular to the mean flow 

direction or nearly OHD flow in ducts aligned with the magnetic field, far away from the 

region where 3-D effects are important. 

The MHD flow exhibits the core and boundary layers as the ratio of electromagnetic to 
l 

viscous force given by the square of the Hartmann number Jf = B0L ( u / pv ) 2 is large. Here 

B0 is the applied constant magnetic field, L is a characteristic dimension of the cross section 

and u, p, v are electrical conductivity, density and kinematic viscosity of the fluid. In fully 

developed MHD flows in reetangular ducts two main types of boundary layers occur. The 

first type, which is called the Hartmann layer, appears at walls perpendicular to magnetic 

field lines. lts thickness is 0 ( M- 1}. The Hartmann layer matches the core of the fluid, 

where viscous effects are negligible, to conditions at walls. The flow in the Hartmann layer 

is governed by a system of ordinary differential equations. If the magnetic field is 

tangential to a channel wall, referred by many authors as a side wall, the second type of 

boundary layer appears at a side wall with dimensionless thickness 0 ( Jf -t). The flow in 

the layer is governed by a system of diffusion equations, and therefore this layer is called 

parabolic. At large Jf this layer can carry an 0 ( 1) volume flux since high fluid velocities 
1 

0 (M 2
) are possible inside. If there is no component of the magnetic field perpendicular to 

duct walls, i.e. the magnetic field is aligned with the flow, MHD is reduced to OHD with 

velocity profiles of Poiseuille type for fully developed flows. 
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According to the RTR concept we call the ducts with axes perpendicular to the 

magnetic field the radial ducts, whereas ducts aligned with the field are called the toroidal 

ducts. Radial and toroidal ducts are connected by bends which may cause considerable 3-D 

effects on pressure drop and velocity distribution. The geometry of a symmetric radial -

toroidal - radial U-bend which is treated in this paper, is shown in figure 1.1. The 

characteristic length L is half the distance between the side walls. This geometry includes 

two limiting cases, namely a 90 ° bend, if the length of toroidal duct is infinite ( l --+ m) and 

the 180 ° bend, if the toroidal duct length reaches its sm~lest value l =a. The magnetic 

field may be perfectly aligned with the toroidal direction y or slightly turned in the xOy 

plane by the angle of a. Bends with positive or negative inclination are called forward or 

backward elbows, respectively. 

3-D effects which are critical issues for any toroidal concept were estimated in the past 

by Hunt & Holroyd (1977) and Holroyd (1980), or analyzed recently in detail by Moon & 

Walker (1990), Moon, Hua & Walker (1990) or Hua & Walker (1991) for a 900bend with 

non - perfectly aligned toroidal duct ( af 0°). All referred works are based on the 

assumption, that the magnetic field is constant and not affected by the flow (small 

magnetic Reynolds number). It has also been supposed, that inertial effects, which are 

always present in real 3-D flows, had negligible influence on the flow structure, since the 

ratio of electromagnetic force to inertial force is assumed to be sufficiently large. If v0 is a 

characteristic velocity, this ratio is determined by the interaction parameter N = 
uLB02jpv0• Inertial effects can be neglected if N >> Jf 

3
/ 2 (Hunt & Leibovich 1967). The 

present report treats the flow in a U -bend and in a 90° bend for a=OO. This case has not 

been covered in any of the cited papers. The assumptions are the same as in the above 

mentioned papers. The equations governing the flow are reduced to the core flow equations. 

The latter are solved by the two different methods. The aim of the present report is to 

present descriptions of both methods and comparison of results. The detailed flow analysis 

is given by Molokov & Bühler (1993). 
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2. Formulation 

Consider the steady flow of a viscous conducting incompressible fluid in a U-bend 

(figure 1.1a). The U-bend consists of three parts: 

- radial duct 1 at 

- radial duct 2 at 

- toroidal duct at 

x.s_O, -1.{z.{1, 

x.s_O, -1.{z.{1, 

O.s_x.s_d, ~t.s_z.s_t, 

All ducts have reetangular cross-section. 

0 .{ y .{ a; 

2l-a.s_y.s_2Z; 

0.{y.{2l. 

A strong uniform external magnetic field ß_ = 80 y (a=0°)is aligned with four walls of 

the toroidal duct, namely, z=::t1, x=O, and x=d. The U-bend is supposed tobe symmetric 

with respect to both y= Z and z:::::O planes, and since inertial effects are neglected, the flow 

in the quarter of the duct y.s_ Z, z.LO is considered under appropriate symmetry conditions. 

The walls of this part ofthebend are numbered from 1 to 7, as shown in figure 1.1a. 

The dimensionless inertialess inductionless equations governing the problern are ( e.g. 

Moon & Walker 1990) 

-2\12 A 

II V E. + iX y = V p' {1a) 

i = -V tjJ + E_X y' (1b) 

V·v=O, (1c) 

V·i=O, (1d) 

where the fluid velocity 11. = ux + vy + wz, the electric current density i, the electric 

potential tjJ and the pressure p are normalized by v0 ( the average fluid velocity at a 

cross-section x=const of the radial duct 1), O"v0B0, v 0B0L and O'V0B0
2L, respectively. 

The boundary conditions at each wall are the non-slip condition 

v=O (1e) 

and the thin-wall condition 
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(1f) 

where 11; is the normal unit vector to the wall i, into the fluid. V; is the gradient in the 

plane of the wall; ~i is the fluid potential on the wall i (i=l, ... , 7). Since walls of the 

ducts are thin and electric potential is continuous across the fluid -wall interface wall 

potential is equal to ~i as well. Once ~i is known, the currents i; in the wall i are 

determined from equation 

. (}' ''\1 A. l.i = - ---Ly i<ri. 
(}' 

The symmetry conditions for pressure and electric potential are 

~ = p = 0 at y = l, 

* = ~ = 0 at z = 0. 

(2) 

(1g,h) 

(1 i' j) 

In the radial duct, far away from the junction, the flow is fully developed. This reflects 

in the conditions 

{1k-m) 

The symmetry conditions and the conditions at infinity for other flow variables are not 

used here. They can be derived from the conditions ( 1 i-m) and the governing equations. 

The fluid velocity satisfies the constant volume-flux condition 

1 a 

J dzJ udy = a (1n) 
0 0 

at cross-section x=const of the radial duct and 

1 d 

J dzJ vdx = a (1o) 
0 0 
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at cross-section y=const of the toroidal duct in the region a ~ y ~ l . 

In section 2 an asymptotic solution ( as M-+ m) to the problern (1) is constructed by 

means of matched asymptotics. 
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3. Solution by method 1 

As lt! -+ oo, the interior of the bend may be divided into certain subregions (figure 

1.1b,c), where the flow is governed by the reduced equations. Most of the flow region is 

occupied by the inviscid cores CR in the radial duct 1 and CT in the toroidal duct. Cores 

of both ducts are separated frorn the walls and from each other by the layers of two types: 

the Hartmann layers ß near the walls perpendicular to the magnetic field with a 

thickness of 0( M- 1); 
the parabolic layers parallel to the magnetic field with 0( lt! -f) thickness. 

The latter ones are at the side walls of both ducts ( regions SR and ST ) , the first wall 

( region F ), the second wall ( region S ), and inside the fluid at the junction x=O (internal 

layer, region 1). At y=a layers I and S merge, and therefore they must be treated 

sim ul t aneously. 

Near the corners z=1, x=d and z=1, x=O, where layers STand SR intersect with 

layers F, S, and I, layers Al and A2 are formed with x- and z- dimensions both of 

0( 1t! -f ). The flow in the layers Al and A2 is governed by a system of two-dimensional 

diffusion equations, and therefore they may be called two-dimensional parabolic layers. 

Similar to the core regions, parabolic layers are separated from the walls perpendicular to 

the field by the Hartmann layers. 

In the core regions viscous terms in the equation ( 1 a) may be neglected. This 

corresponds to the limit lt! -+ oo. The general solution of the resulting equations is ( e.g. 

Moon & Walker 1990) 

W __ 8</Jc _ ~ 
c- 8x 8z ' 

-~ 
Jxc = 8z ' 

. 8</Jr. 
)yc = - 7Jij' 

{3a) 

{Sb) 

{Sc) 

. ~ 
Jzc = - 8x ' {3d-f) 

{3g) 
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here Pc ( x, z) is the core pressure; 9n ( x, z) ( n=l-3) are integration functions. 

Throughout this paper subscripts of flow variables denote the flow subregion, where 

corresponding limit equations are valid. Subscript c denotes both CT and CR. 

The jumps in the component of electric current normal to the wall across the 
1 

Hartmann layers and parabolic layers are at most O(M-1) and O(M - 2 ), respectively. The 

jump of the core potential across the Hartmann layers is at most 0( M- 2). Neglecting these 

jumps has the following consequences: 

normal component of core velocity vanishes at the tops and the bottoms of both 

ducts, i.e. 

Vcn = 0 at y=O and at y=a, x~O; (4a) 

VCT = 0 at y=O, X20; (4b) 

core current satisfies the thin-wall conditions (1f) at all walls, i.e. 

2 
ic · !!:_i = c/fli c/Ji at wall i (i=l, .. , 7); (4c) 

core potentials, estimated on walls 4, 6, and 7 are equal to potentials of these 

walls, i.e. 

c/Jc = c/Ji at wall i (i=4,6, 7). (4d) 

3.1 Core of the radial duct 

Su bsti tu ting expressions ( 3) into the equa tions ( 4 a- d) determines the unknown 

functions 9n to give the expressions for the core-flow variables in the radial duct in terms 

of wall potentials and core pressure, namely 

ucn = - .!!.J!s..JJ. + ( 1 - _jJ_) öcp7 + _jJ_ Ör/J6 
öx- a 7fZ a 7fZ' (5a) 

(Sb) 

Wen = - .!l.J!s..n. + (_jj_ - 1) Ör/J7 - _jJ_ Ör/Jn öz · a 7iX a 7fX ' (Sc) 
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~CR = ~6 + ( 1 - --!-) (~'I - ~6) , (5d) 

·~ 
JxCR = ßz ' 

·~ 
)zCR = - ßx ' (5e-g) 

and provides the equations 

(6a) 

(6b) 

(6c) 

~~ 
ßx 2 + Oz 2 = 0 · {6d) 

In the radial duct 1 the volume flux in the x-direction is carried by the core CR and 

the side layer SR, so that it is a sum of volume fluxes Qcn and Qsn, which read 

1 

QcR,x = -a J ß~gRdz + 2a [~6(x, Z=1) + ~r(x, Z=1J] , 
0 

a 

Qsn,x = J ~s(x,y)dy- 2a [~6(x,z=1) + ~r(x,z=1J] 
0 

(7a) 

(7b) 

The expression (7b) is obtained by the integration of the z-component of the Ohm's law 

across the layer SR (e.g. Moon & Walker 1990). Substituting (7a) and (7b) into the 

equation ( 1 n) gi ves the condition 

a 1 

f ~s(X, y)dy- a J ß~gR(x, z)dz = a. (6e) 
0 0 



16 

3.2 Core of the toroidal duct 

Substituting the equations (3) into the equations (4b-d) and the symmetry 

conditions ( 1 g, h) gives the equations governing the wall potentials of the toroidal duct, 

namely 

(Ba-d) 

The core variables are expressed in terms of wall potentials as follows: 

PCT= 0; (9a,b) 

u = Oe/JeT= (i _ _jj_) ÖcP4. 
CT ---az- l Oz' (9c) 

(9d) 

WcT = - ö~~T = - (1 - f-JZ%4; (9e) 

(9f-h) 

Consider now the boundary conditions for the equations ( 6) and ( 8) . If walls i and k 

have a common boundary rik' continuity of the potential and the normal component of 

current density requires that 

{10a,b) 

where ß..bß..k are outward normal vectors to rik in the planes of the walls i and k, 

respectively. 

Conditions ( 1 k, l) of fully developed flow at infinity in the radial duct 1 give 

{10c-f) 

Condition (im) is satisfied by the function PeR automatically. 
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The symmetry conditions ( 1 g-;') give 

{10g-l) 

{10m-o) 

The system of equations ( 6) and ( 8), subject to the conditions ( 1 0) is solved 

numerically. After the solution is obtained, the flow in the core is reconstructed using the 

expressions {5) and {9). The condition {1o) has not been used for derivation of the 

equations {8). 

3.3 Numerical algorithm 

The systems of equations ( 6) and ( 8) are solved numerically. The numerical method 

is iterative with iterations between domains 1 to 7 and Eq. 6d for the core pressure. 

The boundary conditions are approximated as follows. If for the domain i potential at 

the boundary rik is given (Eq. 1 Oa), then for the domain k derivative of potentials is 

given, and vice versa. For approximating derivatives of potentials, underrelaxation is used 

in case of small ratio ck/ ci. 

For the pressure the boundary condition 

a 
21!_ = 1J ßr/>s d 
ßz a 8x Y 

0 

at z=1 

is used, which results from Eq. {6e). 

Since all equations are of Laplace and Helmholtz type on a rectangle, a fast Poisson 

solver has been used. Iterations were stopped when the differences in nodal pressures and 

wall potentials at two subsequent steps were less than 0.1 per cent. 
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4. Solution by method 2 

4.1 The code 

The other numerical calculation procedure applied to the radial-toroidal-radial 

U-bend problern is the core-flow code for calculating MHD-flows in general geometries 

and arbitrary magnetic fields. (Bühler 1993). The wall conductance ratio of channel walls 
_1 

should satisfy the relation c>>ll 2 if interior layers or side layers appear like in the 

considered flow problem. This assumption ensures that the conductivities of interior layers 

and side layers are unimportant for the flow outside these layers. However, if side layers 

appear and the above mentioned condition does not hold they are treated approximately by 

the code. 

This code, which takes profit of characteristic MHD- properties along magnetic field 

lines, is designed for solving MHD -flow problems where the direction of the main flow is 

not aligned with the magnetic field lines. This fact requires some modifications of the 

standard code, since in toroidal duct all volume flux has to be carried exactly in the 

magnetic field direction. These modifications are outlined in the following chapters. 

Flows in general geometries are calculated by means of a coordinate transformation. A 

transformation of the type 

(11 a) 

transforms every arbitrary channel geometry to a standard volume 

(11 b) 

Ji is an average surface and h. is the half height of the channel cross section in l!..- direction. 

Unfortunately, a transformation of this kind excludes walls, exactly parallel to magnetic 

field lines. For a treatment of flows in ducts with reetangular cross section (walls parallel 

to the .l!..- field are called side walls) these channels are approximated by channels with 

slightly elliptically deformed side walls. This approximation gives excellent results over a 

wide range of Hartmann- numbers or wall conduction ratios (Bühler 1993). The elliptical 

deformation of .l!.. -field -parallel walls is used for side walls of radial ducts and also for side 

walls of toroidal duct. Walls 1 and 2 are chosen slightly deformed to avoid the same 

singular transformation problems. The whole geometry is shown in figure 4.1. Flow in this 

geometry approximates the flow of interest if the deformations € sw, € 2w and € Iw are 
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sufficiently small. 

Figure 4.1 
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As boundary condition for potential at solid walls the thin wall condition formulated 

in arbitrary non-mthogonal wall coordinates is used. 

2 2 

i·!!. =-L, -l,L, cAg&u§%k {12) 

j =1 k =1 

c is 'the wall conductance ratio, which may be an arbitrary function of both independent 

coordinates wl=u 1 and w2=u 2 tangential to the walls u a=:t1. The shape of the channel is 

represented by the contravariant components of the metric tensor gwik due to the use of a 

wall fitted coordinate system 

{11c) 

with 

{11d) 

The coordinate w3 in the wall normal direction n is eliminated from the equation of charge 

conservation in the wall by an integration in direction normal to the wall to give ( 12). A 

represents the transformation of an area element of the wall fluid interface. 

At the symmetry plane x3=0 the potential is given by the symmetry condition 

~=0 {1g) 

and has not to be calculated by by the using ( 12). 

After integration of the mass conservation equation the kinematic boundary conditions 

at all walls give the equation for calculating the core pressure p ( u 1, u 2) • Along the 

symmetry plane x 3= 0 pressure p is already defined by the symmetry condition 

p = 0. {1h) 

An integration of the mass conservation equation with known pressure p=O gives here the 

distribution of volume flux in the plane of symmetry. 

The length of the radial duct ZRAn was chosen long enough that the conditions of fully 

developed flow 
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p = const, Z% 2 = 0 (ik} 

may be applied at x 2= 0. 

A more detailed description of this solution method, is given by Bühler (1993). 

4.2 The grid 

The used numerical grid is shown in figure 4.2. A non uniform grid spacing is used in 

the radial direction to resolve 3-D effects near the junction. The requirement of the 

numerical code to use a discretization with magnetic cross sections leads to an abrupt 

change in the step width in the region of ZRAv-E 2w<x 2<lRAD· There is a jump between 

small steps at the top wall and larger steps at the secend wall and between small steps and 

much smaller steps at at the side wall. This fact, and the strongly trapezoidal shape of wall 

elements near the junction can reduce the accuracy of the numerical solution, especially if 

the length of the toroidal channel is large. This may explain some discrepancy between 

results in table 1. If the flow is sensitive to small changes in wall potential (if c is small) 

this effect is more expressed. Nevertheless, results are in good agreement to such obtained 

by method 1, which is designed speci:fically to solve this problem. This can be checked in 

the table of comparison in the chapter 5.3. 
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Figure 4.2 Used numerical grid 
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5. Results 

5.1 Flow distribution in the radial duct 

The flow structure in the radial duct does not show any unexpected behavior. Far 

away from the junction the flow exhibits the flat core and the high velocity side layers of a 

fully developed flow in a channel of thin conducting walls. If the fluid approaches the 

junction, velocity profilein the core is deformed. 3-D currents lead to a reduction of fluid 

velocity in the center of the duct, and to an increase of flow near the side walls. It is well 

known that this effect occurs in many three dimensional MHD flows ( flows in variable 

fields, in expansions or contractions, or in bends). Figure 5.1 shows the x-component of the 

core velocity at several cross sections of the radial duct for parameters of the 'case 2c' (see 

table 5.1). 

5.2 Flow distribution in the toroidal duct 

Equations (Sb) and ( 9d} indicate that in both cores the velocity component parallel 

to magnetic field lines is zero. For the toroidal duct this result means that the core does 

not carry volume flux in the main-flow direction and all volume flux is carried by 

high-velocity jets in the parabolic layers ST, F, I and S. 

The total volume fluxes carried by layers F, ST, S and I in the y-direction at any 

cross section y=const read (see Molokov & Bühler 1993) 

y 

QF,y = J f/J1(y, z=1}dy =- c1
1
I1z, 

0 

y 

Qs,y = a- J f/J3(x=O,y) dy 
0 

1 

QI,y =- Y J ~(x=O, z) dz 
0 

{13) 

(14) 

{15} 
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Figure 5.1 Velocityprofiles in the raclial duct 
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y 

QsT,y = J [~a(x=O,y)- ~a(x=d,y)] dy 
0 

25 

{16) 

These flow rates give the most essential information about flow distribution in the toroidal 

duct. 

5.3 Compa.rison between two methods 

A comparison of results obtained by method 1 and method 2 is presented in table 5.1. 

The length of the considered radial duct is l RAv=6. 

Calculations by method 1 were done on a grid with 32 points per unit length in each 

direction. 

A discretisation for the wall surface ( u3 = .:!::.1) of lOOx160 points in the radial direction 

( x 2-direction, 0 .S. u 2 .s. 1) and along the channel wall of one half of a cross section 

(xLdirection, 0 .S. x 1 .s. 1), respectively, is used for calculations by method 2. The 

ma:ximum residual error due to the direct solution method of the used solver for linear 

algebraic equations was smaller than 1 o- 6, 



Table 5.1 Comparison of results for pressure drop /::" p in a half of a U-bend ( y < l) 
with a radial length of lRAv = 6. 0 and for flow rates in one half of the 

toroidal duct (O<z<i) at the symmetry plane y=l, obtained by the two 

different methods for several combinations of parameters. 

Parameter QF,y QsT,y Qs,y /::"p Method 

CT = (I) 2.000 0.9690 1 
la 

c = 0.1 2.000 0.9619 2 

CT = (I) 2.000 2.0936 1 
lb 

c = 0.5 2.000 2.0946 2 

CF = CD 1.430 0.570 0.5338 1 
2a c = 0.1 

l = 2.0 1.424 0.576 0.5445 2 

CF = ID 0.826 1.174 1.8889 1 
2b c = 0.5 

l = 2.0 0.828 1.172 1.9147 2 

CF = CD 1.868 0.132 0.4931 1 
2c c = 0.1 

l = 4.0 1.866 0.134 0.5159 2 

CF = CD 1.156 0.844 1.8273 1 
2d c = 0.5 

l = 4.0 1.138 0.862 1.8613 2 

c = 0.1 0.108 1.354 0.538 0.5133 1 
3a 

l = 2.0 0.072 1.356 0.572 0.5447 2 

c = 0.5 0.082 0.754 1.164 1.8859 1 
3b 

l = 2.0 0.052 0.780 1.168 1.9029 2 

c = 0.1 0.390 1.490 0.120 0.4812 1 
3c 

l = 4.0 0.392 1.582 0.026 0.5228 2 

c = 0.5 0.270 0.930 0.800 1.8206 1 
3d 

l = 4.0 0.256 0.928 0.816 1.8726 2 
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6 Conclusions 

The present analysis shows that 3-D pressure drop of MHD flows in U-bends and in 

right- angle bends is not a critical issue for applications in self- cooled liquid rnetal 

blankets. It is alrnost unirnportant, cornpared to the 2-D pressure drop in the straight 

ducts perpendicular to the field (the radial ducts), which form one part of the bends. In 

this first part ofthebend the flow exhibits the well known structures of 3-D MHD flows. 

Near the junction the fluid is pushed towards the side- regions and fluid velocity is 

deceased in the center of the duct and increased near the sides. In the other part of the 

bend (in the toroidal duct), however, the flow distribution is rather unexpected. The core 

of the toroidal duct does not carry any 0(1) volurne flux. The total volurne flux is confined 

to thin boundary layers along duct walls, which are aligned with the rnagnetic field and to 

the interior layer at the junction. A significant part of the total volurne flux is carried 

along the first wall in a thin, high velocity layer if this wall is not a perfect conductor. This 

rnay lead to favorable heat transfer conditions. 

Results were obtained by two cornpletely different rnethods. The good agreernent of 

results obtained by both rnethods validates both approaches and confirrns the non trivial 

flow structure. 
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