KfK 5355 Juni 1994

Tritium Release and Gamma Activity of Various Lithium Ceramics Irradiated by Fast and Thermal Neutrons (COMPLIMENT Experiment)

L. Dörr, D. Schild, H. Werle Institut für Neutronenphysik und Reaktortechnik Projekt Kernfusion Association KfK-EURATOM

Kernforschungszentrum Karlsruhe

Kernforschungszentrum Karlsruhe Institut für Neutronenphysik und Reaktortechnik Projekt Kernfusion Association KfK-EURATOM

KfK 5355

Tritium Release and Gamma Activity of Various Lithium Ceramics Irradiated by Fast and Thermal Neutrons (COMPLIMENT Experiment)

L. Dörr, D. Schild, H. Werle

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

ISSN 0303-4003

.

Tritium Release and Gamma Activity of Various Lithium Ceramics Irradiated by Fast and Thermal Neutrons (COMPLIMENT Experiment)

Abstract

In the COMPLIMENT experiment the various ceramic breeder materials (LiAlO₂, Li₂O, Li₂ZrO₃, Li₂SiO₂ and Li₄SiO₄) studied within the European Fusion Technology Program were irradiated in parallel with epithermal neutrons in the HFR Petten and with thermal neutrons in the OSIRIS reactor at Saclay up to a total damage of 2 dpa (displacements per atom). The objectives of this irradiation were

- 1. to compare the radiation damage effects caused by fast neutrons and by the charged particles of the 6 Li(n, α) t reaction and
- 2. to compare the irradiation behavior of the various ceramics in an identical test environment.

Tritium release of the irradiated samples was studied by out-of-pile annealing. These studies indicate that the tritium release kinetics is not significantly affected by

- the specific tritium inventory (i.e. the release process is first order)
- the Li-burnup (up to 2 %)
- the type of radiation damage (induced by fast neutrons or charged particles)

The gamma activity of the investigated ceramics was found to be mainly due to stainless steel contaminations and sample impurities. The activity of the main constituents was comparatively small, even for zirconate.

Some of the ceramics decomposed into pieces or particles, especially during the 425 °C, high power density ($\approx 60 \text{ W/cm}^3$) and high Li-burnup (2 %) OSIRIS irradiation. This unexpected observation requires further irradiations under DEMO-relevant conditions to qualify the reference ceramic materials.

Tritiumfreisetzung und Gammaaktivität verschiedener, mit schnellen und thermischen Neutronen bestrahlten Lithium-Keramiken (COMPLIMENT-Experiment)

Zusammenfassung

Im COMPLIMENT-Experiment wurden die verschiedenen, innerhalb des Europäischen Fusionstechnologie-Programms untersuchten Brutkeramik-Materialien (LiAlO₂, Li₂O, Li₂ZrO₃, Li₂SiO₂ und Li₄SiO₄) parallel mit epithermischen Neutronen im HFR Petten und mit thermischen Neutronen im OSIRIS-Reaktor in Saclay bis zu einer Gesamtschädigung von 2 dpa ("displacements per atom") bestrahlt. Die Ziele des Bestrahlungsexperiments waren:

- 1. Vergleich der durch schnelle Neutronen und der durch die geladenen Partikel von der ⁶Li(n, α) t Reaktion hervorgerufenen Strahlenschäden
- 2. Vergleich des Bestrahlungsverhaltens der verschiedenen Materialien unter identischen Testbedingungen.

Die Tritiumfreisetzung der bestrahlten Proben wurde durch out-of-pile-Ausheizen untersucht. Die Untersuchungen zeigen, daß die Tritiumfreisetzungs-Kinetik nur unmerklich von folgenden Parametern abhängt:

- Spezifisches Tritiuminventar (d.h. die Freisetzungsprozesse sind erster Ordnung)
- Li-Abbrand (bis 2 %)
- Art der Strahlenschäden (durch schnelle Neutronen oder durch geladene Teilchen verursacht)

Ein Teil der Proben zerfiel während der Bestrahlungen in Stücke bzw. Partikel. Dies gilt insbesondere für die Bestrahlung im OSIRIS-Reaktor (hohe Leistungsdichte ≈ 60 W/cm³ und hoher Abbrand ≈ 2 %) bei 425 °C. Dieses überraschende Ergebnis zeigt, daß weitere Bestrahlungen unter DEMO-relevanten Bedingungen für eine Qualifizierung der Referenz-Brutmaterialien notwendig sind.

Contents

			page				
1.	Introc	luction	1				
2.	Irradi	ation conditions and sample characteristics	1				
3.	Exper	iments	2				
	3.1	Irradiation behavior	2				
	3.2	Tritium release	4				
	3.3	Gamma activity	7				
4.	Concl	usions	7				
Ackno	wledg	gements	8				
Refer	ences		8				
Table	Tables						
Figure	es		24				

1. Introduction

The various ceramic breeder materials studied within the European Fusion Technology Program were irradiated in parallel in an epithermal neutron field (behind a cadmium screen) in the HFR reactor at Petten and in a thermal neutron field in the OSIRIS reactor at Saclay up to a total damage of about 2 dpa (displacements per atom), corresponding to about 3 months operation of a 1 MW/m² blanket [1, 2]. The objectives of this irradiation, named COMPLIMENT (comparison of <u>lithium materials damage effects by fast neutrons and 6Li(n, α) <u>t</u> - reactions) were</u>

- 1. to compare the radiation damage effects caused by fast neutrons and by the charged particles of the 6 Li(n, α) t-reaction and
- 2. to compare the irradiation behavior of the various ceramics in an identical test environment.

The neutron field and the induced radiation damage in the HFR is representative for the inner regions near the first wall, those of OSIRIS for the outer regions of a fusion reactor blanket.

2. Irradiation conditions and sample characteristics

Details of the irradiations have been described previously [1, 2], important characteristics are summarized in table 1.

The ceramics were irradiated in 6 mm outer, 5.24 mm inner diameter and 100 mm total length tubes made of 1.4970 grade stainless steel. The breeder material occupied about half of the tube volume, the remaining volume constitutes a gas plenum. The ceramics were thoroughly dried, filled into the tubes under a dry he-lium atmosphere at 300 °C and the tubes were closed by a welded end cap.

In table 2 sample characteristics and irradiation conditions of all tested samples are summarized. Each irradiation tube is identified by a sample number. In addition, sample material, sample type (P pellets, MS molten and SS sintered spheres), density (% theoretical density) and the supplying laboratories are indicated.

All pellet samples were fabricated by cold pressing and sintering of chemically precipitated powder. The orthosilicate spheres were produced either by a melting process (MS) or by granulation, spherodization and sintering (SS). While the pellets are foreseen for the "breeder in tube (BIT)" blanket concept, the spheres or pebbles are used in the "breeder out of tube (BOT)" concept.

For the samples fabricated by Casaccia and by KfK, additional data are available and are given in table 3 [3 - 5, 12]. For the KfK samples the measured densities differ somewhat from the specified values used to identify the samples.

3. Experiments

The sample tubes have been examined by neutron radiography at HFR Petten and by gamma radiography at OSIRIS Saclay and were then returned to KfK for dismantling. After dismantling a few samples were sent to Casaccia and Saclay, the bulk stayed at KfK for post irradiation examination.

3.1 Irradiation behavior

Radiographic results (swelling) and KfK observations from visual inspection, from ceramography and concerning compatibility with stainless steel have been compiled in [4, 5], KfK results from mechanical tests and on chemical reactivity in [6, 7].

The microstructure of the KfK silicate samples changed remarkably during irradiation: the grain size of all samples increased (table 3), whereas the amount of open porosity decreased for the molten (MS), but increased for the sintered (SS) spheres [4].

Irradiation induced dimensional and weight changes for the KfK pellets are compared in the table below:

			Change (%)						
Sample type	no	no Irradiation		diam.	weight				
Li4SiO4 90 % P	109	HFR 400 °C	+ 1.0	+ 1.1	+ 1.0	- 0.6			
	110	HFR 650 °C	+ 1.3	+ 2.8	- 1.0	- 4.4			
Li ₂ SiO ₃ 90 % P	101	HFR 400 °C	+ 2.5	+ 1.5	+ 0.8	+ 2.3			
	102	HFR 650 °C	+ 3.0	+ 3.1	+ 2.9	+ 2.0			
	104	OSIRIS 650 °C	+ 3.3	+ 2.9	+ 2.8	+ 1.9			

Except for sample number 110, where the height of two from three pellets decreased during irradiation, the radiographically determined changes in stack length [4] are in reasonable agreement with the diameter and height change of the three pellets studied here (table 8). Values for the unirradiated pellets are given in [3]. Usually some weight loss is observed for ceramics which are kept at elevated temperatures for longer times. In contrast to this, a remarkable weight increase was consistently found for the Li₂SiO₃ pellets.

The mechanical stability of the ceramics decreased remarkably during irradiation [6]. This was already indicated by the visual inspection after dismantling [4, 5] and during handling in the tritium release tests (table 4 to 7). The state of specimens after irradiation is indicated in table 2 behind the sample number: "st" means the sample had got stuck to the tube and could not be removed, "pi" sample decomposed into large pieces and "pa" into small particles or dust. Especially for the 400 °C OSIRIS irradiation, a large fraction of the samples, including all KfK samples, decomposed. This is probably due to the high power density and/or thermal transients during reactor trips. Power densities induced by the ⁶Li (n, α) treaction have been calculated according to $q_n [W/cm^3] = 7.66 \times 10^{-13} \times p [1/cm^3s]$ [4] (p tritium production rate) and are given for some representative samples in the table below. The gamma heating in both irradiations (HFR and OSIRIS) was $\leq 5 W/cm^3$.

Sample		Irradiation	р	q _n
type	no.		(10 ¹² /cm ³ s)	(W/cm ³)
LiAlO ₂ 84 % P	142	HFR 400 °C	4.6	3.5
	150	OSIRIS 400 °C	100	78
Li ₄ SiO ₄ 98 % MS	173	HFR 400 °C	5.7	4.4
	175	OSIRIS 400 °C	75	57
Li ₄ SiO ₄ 85 % SS	113	HFR 400 °C	4.5	3.4
	115	OSIRIS 400 °C	72	55

In table 4 conditions and state of samples after irradiation for previous high power density and high burnup irradiations are summarized [7 - 10, 15 - 17]. As can be seen, COMPLIMENT was the first irradiation where a massive decomposition of the molten and sintered Li₄SiO₄ spheres was observed, although in some previous irradiations (ALICE-3, SIBELIUS) both, the power density and the burnup were comparable or even higher. The reason for the serious mechanical failure of most samples in the COMPLIMENT irradiation is yet unclear. A tentative explanation are steep temperature transients caused by trips in the OSIRIS reactor. As the power density in the OSIRIS irradiation was comparable to that in a DEMO fusion reactor ($\approx 50 \text{ W/cm}^3$), the OSIRIS results indicate that further irradiations under DEMO-relevant conditions concerning power density and burnup are necessary to quality the reference breeder ceramics.

3.2 Tritium release

Annealing was performed in a device described earlier [14]. The main characteristics are: the sample chamber is connected by a short, heated line (≈ 300 °C) to a Zn reductor (390 °C). The reductor transforms any tritium water to tritium gas. This avoids problems with tritium water adsorption and allows quantitative tritium measurements. The tritium activity is measured in parallel with a ionization chamber and a proportional counter. In all cases, the agreement between the two detectors was excellent. Therefore only the ionization chamber data are given.

The samples were purged with 50 standard-cm³/min He + 0.1 % H₂ (purity 99.9999 %). Two heating procedures were used: linear ramps with 5 °C/min (occasionally with 10 °C /min) or fast, stepwise temperature increase holding each temperature level for about 2 h, up to a final temperature of 850 °C, which was hold for \geq 3 h.

All KfK materials and in addition LiAlO₂ 84 % P Sayclay, LiAlO₂ "P" 80 % P Casaccia, Li₂O P Springfield, Li₂ZrO₃ 80 % P Springfield and Li₂SiO₃ 82 % P Mol have been studied. Usually three pellets from each of these stacks have been annealed. The geometrical data, the mass before and after annealing and the tritium release per sample and per g are given in table 5 to 8. In addition it is indicated if the samples were decomposed after irradiation or after annealing. The specific tritium release of pellet number 1, located at the end of the stack, is generally remarkably higher (up to a factor two) than that of pellets (number 3 to 6) from the central region of the stack. This is probably due to the temperature drop at the end of the stack.

In table 9 and 10 irradiation data and specific tritium release data are summarized for the HFR and OSIRIS irradiation, respectively. Irradiation data for the HFR (temperature, damage, tritium production and burnup) have been reported in [4, 8, 9].

For the OSIRIS irradiation until now no measured temperatures are available. Damage and tritium production are from [10] and burnup has been calculated from the tritium production. In purged inpile tests under steady-state conditions, the tritium residence time is equal to the ratio of tritium inventory and tritium production rate. The residence times determined by this relation for the closed capsule irradiation studied here are generally about two orders of magnitude higher than the inpile residence times. Evidently the stainless steel walls constitute effective barriers for tritium permeation, leading to high tritium tritium partial pressures in the gas plenum and to high inventories in the samples. This is consistent with the observation that the tritium inventory in the gas plenum is of the same order of magnitude as that in the samples. Accordingly, the ratios of released tritium (tritium inventory) to tritium production are pretty high and ly

for	HFR 400 °C	in the range	7 - 23 %
"	HFR 650 °C	11	0.3 - 5 %
"	OSIRIS 400 °	С "	20 - 45 %
"	OSIRIS 650 °	С "	1 - 3 %

Exceptional high inventories were observed for Li₄SiO₄ 98 % MS KfK in HFR 400 °C (42 %) and for Li₂SiO₃ 90 % P KfK in all irradiations (\approx 100 % in OSIRIS 400 °C). Exceptional low was the inventory of Li₂O 82 % P Springfield in OSIRIS 400 °C (2.5 %). Generally, the inventories at 650 °C are more than one order of magnitude smaller than that at 400 °C. This is not the case for Li₂ZrO₃ 80 % P Springfield in HFR and for Li₂O P Springfield in OSIRIS.

In the table below tritium release determined in Casaccia [12, 13] is compared with results of this study:

Sample		Irradiation	Tritium rele	ease (10 ¹⁰ Bq/g)		
type	no		Casaccia	This work		
LiAlO ₂ "P" 80 % P Casaccia	117 155	HFR 400 °C OSIRIS 400 °C	0.333 15.91	0.782		
Li ₄ SiO ₄ 90 % P KfK	109	HFR 400 °C	1.465	2.171		

Taking into account the scatter of individual values from the same stack (table 5 to 8), the agreement is very satisfactory.

In fig. 1 to 8 the release rates (per sample) and the temperatures as function of time are shown for the 5 °C/min ramp annealing tests. Irradiation conditions, sample and pellet number and specific tritium release are indicated. In some tests

with high inventories the ramp was terminated before the 850 °C final temperature was achieved to avoid overloading of the ionization chamber amplifier. The achieved temperature was hold for several hours and two or more runs were necessary to achieve the final temperature of 850 °C in these cases. In fig. 9 and 10 tritium release during stepwise temperature increase (350, 450, and 650 °C) is shown for samples irradiated at 400 °C in the HFR.

As can be seen from fig. 1 to 8 the release curves have a quite complex structure indicating that tritium release from ceramics can be considered as desorption from different sites, each characterized by the number of sites and an activation energy [14, 15]. These hitherto unknown parameters would be required for a quantitative description of tritium release. Because of this lack in modeling capability, a quantitative comparison of tritium release from closed capsule tests with purged inpile tests is not possible.

Nevertheless, a qualitative ranking with respect to tritium release kinetics based on the temperature at which the bulk of the tritium is released during the ramp tests yields:

Li ₂ O, Li ₂ ZrO ₃	bulk tritium release at	\leq 500 °C
Li ₄ SiO ₄ SS	n	$\approx 550 ^{\circ}\text{C}$
LiAlO ₂ , Li ₄ SiO ₄ MS,	Ρ "	$\approx 600 \ ^{o}C$
Li ₂ Si _O 3	п	$\approx 650 ^{\circ}\text{C}$

This ranking is consistent with the temperature-step annealing (fig. 9, 10) and with results of purged inpile tests [16, 17].

Comparing the general shape and the temperature of maximum release of the ramp tests and the fractional release and the slope of the release at the different temperatures in the temperature step tests, no remarkable difference could be observed for the same specimens irradiated under different conditions. From this we conclude, in agreement with Casaccia's COMPLIMENT study [12], that the tritium release kinetics is not significantly affected by

- 1. the specific inventory (i.e. the release rate was observed to be proportional to the specific inventory, indicating that the release process is first order),
- 2. the Li-burnup (up to about 2 %)
- 3. the type of radiation damage (induced by fast neutrons or by the charged particles from the 6 Li(n, α) t-reaction).

These conclusions are in agreement with earlier work [15], where it is also claimed that tritium release is essentially a first order process and with the observation of the EXOTIC-6 inpile test, that the tritium residence times of LiAlO₂, Li_2ZrO_3 and Li_4SiO_4 are not affected by a Li-burnup of up to 3 % [17].

3.3 Gamma activity

The dose rate (per pellet) in different distances and the gamma spectrum have been determined for several pellets October/November 1992, i.e. nearly four years after irradiation. For the gamma spectrum measurements, performed with a calibrated Ge(Li)-semiconductor detector, the pellets were enclosed in an aluminum capsule with 1 mm wall thickness. In table 11 the results are summarized. The dose rate refer to the whole pellet, the gamma activity values of the different lines have been transformed to specific values using the pellet mass, both sets of data refer to October/November 1992.

Li₂ZrO₃ has the highest dose rate and this is mainly due to Eu impurities, whereas the activity of the major component Zr is pretty small. In contrast to the other ceramics, the zirconate pellet irradiated in the epithermal HFR spectrum exhibits a higher activity than that irradiated in the thermal OSIRIS spectrum. The pretty high activity of LiAlO₂ "P" pellets is mainly due to Zn and Sb impurities, in accordance with a previous neutron activation analysis (LiAlO₂ "P": Zn 92 ppm, Sb 0.10 ppm, LiAlO₂ "A2": Zn 3.1 ppm, Sb 0.034 ppm [19]). For all other pellets the main activities are Co and Mn, which are probably due to stainless steel contamination caused by machining and/or contact with the stainless steel tubes during irradiation.

4. Conclusions

COMPLIMENT was the first irradiation, where a massive decomposition of the molten and sintered Li_4SiO_4 spheres was observed, although in some previous irradiations both, the power density and the burnup were comparable or even higher. A tentative explanation are steep temperature transients caused by reactor trips. Further irradiations under DEMO-relevant conditions concerning power density and burnup are required to quality the reference breeder ceramics.

The tritium release kinetics of the various ceramics investigated is not significantly affected by

- the specific tritium inventory (indicating that the release process is first order)
- the Li-burnup (up to 2 %)
- the type of radiation damage (induced by fast neutrons or by the charged particles from the ⁶Li(n, α) t-reaction).

The gamma activity of all investigated ceramics is mainly due to stainless steel contaminations (from machining and/or from contact with the cladding during irradiation) and due to sample impurities. The activity of the main constituents is, even for the zirconate, comparatively small.

Acknowledgements

The authors thank the staff of the hot cells and especially T. Eberle and J. Lebkücher for performing the experiments.

This work was performed in the framework of the KfK Nuclear Fusion Project and is supported by the European Communities within the European Fusion Technology Program.

References

- [1] K.R. Kummerer, H.-J. Ritzhaupt-Kleissl, "Comparative Irradiation of different Lithium Ceramics", J. Nucl. Mater. 179-181 (1991), 831 - 834.
- K.R. Kummerer, L. Dörr, "Comparison of Lithium Ceramics in the COM-PLIMENT Irradiation Experiment", Fusion Technology 1990, (B.E. Keen, M. Huguet, R. Hemsworth, edts.), North-Holland (1991), vol. 1, p. 827 - 831.
- [3] H. Elbel, Internal KfK Report (July 1989).
- [4] H. Steiner, P. Weimar, D. Schild, Internal KfK Report (September 1993).
- [5] P. Weimar, H. Steiner, L. Dörr, "Results of Post Irradiation Examination of the Breeder Pebbles of the Irradiation Experiments COMPLIMENT and ALICE-3", to be presented at the 18th SOFT-Karlsruhe, August 22 - 26, 1994.
- [6] W. Dienst and H. Zimmermann, "Strength Change and Chemical Reactivity of Ceramic Breeder Materials near Operation Conditions", Sixth Int. Conf. on Fusion Reactor Materials, Stresa, 1993, to be published in J. Nucl. Mater.
- [7] H. Zimmermann, P. Weimar, "Post-Irradiation Examinations of Ceramic

Breeder Pellets in the Experiment COMPLIMENT", to be presented at the 18th SOFT, Karlsruhe, August 22 - 26, 1994.

- [8] R. Conrad, L. Debarberis, "Irradiation of Ceramic Tritium Breeding Blanket Materials for Thermonuclear Fusion Reactors under a fast Neutron Spectrum in the HFR Petten, ELIMA02, Design and Safety Report", Technical Note P/F1/88/5, JRC Petten (1988).
- [9] R. Conrad, "Irradiation of Ceramic Blanket Breeder Materials under a Fast Neutron Spectrum in the HFR Petten, COMPLIMENT (ELIMA-02), Final Irradiation Report", Report P/F1/91/18, JRC Petten (1991).
- [10] G. Thevenot, CEN Saclay, private communication, April 1993.
- [11] N. Roux, CEN Saclay, private communication, June 1992.
- [12] C. Alvani, P.L. Carconi, S. Casadio and A. Moauro, "Tritium Removal from Various Lithium Aluminates Irradiated by Fast and Thermal Neutrons (COMPLIMENT Experiment)", Report RTI/INN(93)7, ENEA Casaccia (1993), to be published in J. Nucl. Mater.
- [13] P.L. Carconi, S. Casadio and A. Moauro, "Tritium Concentration and Relase Rate for the Li₄SiO₄ Pellets Irradiated in ELIMA-2 (COMPLIMENT Experiment)", Report DOC. N. 122/CER, ENEA Casaccia (1993).
- [14] W. Breitung, H. Elbel, J. Lebkücher, G. Schumacher and H. Werle, "Out-ofpile Tritium Extraction from Lithium Silicate", J. Nucl. Mater. 155 - 157 (1988) 507 - 512.
- [15] W. Breitung, H. Elbel, H. Wedemeyer, H. Werle, "Tritium Release from Lowand High-Density Lithium Meta- aund Orthosilicate (Irradiation DELICE 2)", Fusion Technology 1990 (B.E. Keen, M. Huguet, R. Hemsworth, eds.) North-Holland (1991), Vol. 1, p. 886 - 890.
- [16] H. Kwast, R. Conrad, R. May, S. Casadio, N. Roux, H. Werle, "The Effects of Purge Gas Composition on the Release of tritium from Ceramic Breeder Materials Irradiated in EXOTIC-6", Report ECN-RX-92-056 (1992).
- [17] H. Kwast, R. Conrad, R. May, S. Casadio, N. Roux, H. Werle, "The Behavior of Ceramic Breeder Materials with Respect to Tritium Release and Pellet/Pebble Mechanical Integrity", Report ECN-RX-93-097 (1993).
- [18] C.E. Johnson et al., "BEATRIX-I Program", Internal ANL Report (1992).
- [19] S. Casadio, ENEA Casaccia, private communication (July 1986).

·

Table 1 COMPLIMENT irradiation data

Reactor Neutron spectrum	HFR Petten Cd-screened	OSIRIS Saclay Thermal				
Irradiation	April 88 - January 89	October 88 - February 89				
Full power days	178	77				
Temperature *	400 - 650 -	· 450 °C · 700 °C				
Lithium burnup*	≈ 0.25 %	≈ 1 %				
Radiation damage*						
fast neutrons	1.6 dpa	1.1 dpa				
d+t	0.2 dpa	0.7 dpa				
total	1.8 dpa	1.8 dpa				

*Pre-irradiation estimation

Table 2 Sample characteristics and irradiation conditions

	ELIMA 2	/HFR-Pet	ten				DELICE 03/OSIRIS-Saclay								Sum of		
	Matrix I 400–450 °	С		Matrix II 650–700 ° C				Matrix III 400–450°C			Matrix IV 650–700°	с			samples		
CEA, Saclay	LiAlO ₂	78% ^{a)}	P	139 ^{b)} pi⇔	LiAlO ₂	78%	Р	143	LiAlO ₂	78%	Р	147 st	LiAlO ₂	78%	Р	151	··
	LiAlO ₂	78%	Р	140 st	$LiAlO_2$	78%	Р	144 st	LiAlO ₂	78%	Р	148 st	LiAlO ₂	78%	Р	152 st	
	LiAlO ₂	62%	Р	141 pa	$LiAlO_2$	62%	Р	145 st	$LiAlO_2$	62%	Р	149 st	$LiAlO_2$	62%	Р	153 st	
	LiAlO ₂	84%	Р	142 pa	LiAlO ₂	84%	Р	146	LiAlO ₂	84%	Р	150 _{pa}	LiAlO ₂	84%	Р	154	16
ENEA,	LiAlO ₂	80%	Р	117	LiAlO ₂	80%	Р	120	LiAlO,	80%	Р	155 pi	LiAlO ₂	80%	Р	158	
Casaccia	$LiAlO_2$	80%	Р	118	LiAlO ₂	80%	Р	121	LiAlO	80%	Р	156	LiAlO ₂	80%	Р	159	
	LiAlO ₂	80%	Р	119 -	LiAlO ₂	80%	Р	122	LiAlO ₂	80%	Р	157	LiAlO ₂	80%	Р	160	12
UKAEA,	Li ₂ O	83%	Р	131	Li ₂ O	80%	Р	133	Li ₂ O	79%	Р	135 ^{pi}	Li ₂ O	82%	Р	137 pi	
Springfields	Li ₂ O	79%	Р	132 st	Li ₂ O	82%	р	134 st	Li ₂ O	81%	Р	136 st	Li ₂ O	82%	Р	138 st	8
	Li_2ZrO_3	80%	Р	123	Li_2ZrO_3	80%	P	125 st	Li_2ZrO_3	80%	Р	127 st	$Li_2 ZrO_3$	80%	р	129 st	
	Li ₂ ZrO ₃	80%	Р	124	Li ₂ ZrO ₃	80%	р	126	Li ₂ ZrO ₃	80%	р	128 pi	Li ₂ ZrO ₃	80%	p	130 pi	8
CEN, Mol	Li ₂ SiO ₃	82%	Р	161	Li ₂ SiO ₃	82%	Р	162 st	Li ₂ SiO ₃	82%	Р	167 pi	Li ₂ SiO ₃	82%	Р	168 st	
	Li ₂ SiO ₃	82%	Р	163 st	Li ₂ SiO ₃	75%	Ρ	166 st	Li ₂ SiO ₃	82%	Р	169 st	Li ₂ SiO ₃	75%	Р	172 st	10
	Li ₂ SiO ₃	75%	Р	165	Li ₂ ZrO ₃	80%	Р	164	Li ₂ SiO ₃	75% ·	Р	171 st	Li ₂ ZrO ₃	80%	P	170	2
KfK,	Li₄SiO₄	98%	MS	173	Li₄SiO₄	98%	MS	174	Li₄SiO₄	98%	MS	175 pa	Li ₄ SiO ₄	98%	MS	176	4
Karlsruhe	Li₄SiO₄	85%	SS	113 pa	Li ₄ SiO ₄	85%	SS	114	Li ₄ SiO ₄	85%	SS	115 pa	Li ₄ SiO ₄	85%	SS	116	4
	Li₄SiO₄	90%	Р	109	Li ₄ SiO ₄	90%	Р	110	Li ₄ SiO ₄	90%	Р	111 pa	Li₄SiO₄	90%	Р	112 ра	4
	Li ₂ SiO ₃	90%	Р	101	Li ₂ SiO ₃	90%	Р	102	Li ₂ SiO ₃	90%	Р	103 pa	Li ₂ SiO ₃	90%	Р	104	4
Sum		1	8			18				18	3			18			72

Identification of samples. P = sintered pellets, MS = molten spheres and SS = sintered spheres

^{a)} % Theoretical density. ^{b)} KfK rod number.

c) st sample had got stuck in tube, could not be removed

pi sample decomposed into (large) pieces

pa sample decomposed into (small) particles or dust

Table 3Characteristics of Casaccia and KfK samples

Laboratory	Sample	% theor. density	Spec. surface (m²/g)	Mean grain size (µm)
Casaccia [12]	LiAlO ₂ "P" 80 % P	80	2.6	0.6
KfK [3 - 5]	Li ₄ SiO ₄ 98 % MS 0.5 mm \emptyset (type Schott 86, temp.)	93.3 (57*)	5.9	19 (32**)
	Li ₄ SiO ₄ 85 % SS 0.5 mm $Ø$	91.6 (51*)	2.1	36 (62**)
	Li ₄ SiO ₄ 90 % P	90.0	1.54	45 (76**)
	Li ₂ SiO ₃ 90 % P	93.7	0.67	19 (37**)

ដ

KfK samples: porosity $\approx 100 \%$ open

* density of sphere bed

** after irradiation [4, 5]

Irradiation		Irrac	Sample state		
Reactor	Sample	Temp. (°C)	Power dens. (W/cm ³)	Li-burnup (%)	after irradiation
BEATRIX-I, FUBR-1B ^{a)} [18] EBR-II, 560 FPD, 1988 - 89	Li ₄ SiO ₄ 92 % P, 9.5 mm \emptyset Li ₄ SiO ₄ 85 % SS, 1 mm \emptyset	≤ 550 ≤ 475	30 - 60 30 - 60	6 6	Appear intact
ALICE-3 ^{a)} [11] OSIRIS, 46 FPD, 1990 - 91	Li ₄ SiO ₄ 96 % MS, 0.5 mm Ø (Schott 89/3,7) Li ₄ SiO ₄ 85 % SS, 0.5 mm Ø Li ₂ ZrO ₃ 86 % SS, 0.5 mm Ø (HITEC)	600 600 600	74 70 51	2.7 2.7 3.8	Intact Intact Some dust
SIBELIUS ^{b)} [11] SILOE, 70 FPD, 1990	Li ₄ SiO ₄ 98 % MS, 0.5 mm \emptyset (Schott 86 temp.) Li ₄ SiO ₄ 90 % P, 8 mm \emptyset	270 - 470 ≈ 550	68 117	1.8 2.2	Intact Intact
EXOTIC.6 ^{b)} [16, 17] HFR, 200 FPD, 1991 - 92	Li ₄ SiO ₄ 95 % MS, 0.5 mm Ø (Schott 90/1 temp.) Li ₂ ZrO ₃ 86 % SS, 0.5 mm Ø (HITEC)	430 - 640 400 - 640	≈ 40 ≈ 30	3.1 3.1	Intact Intact
COMPLIMENT ^{a)} OSIRIS, 77 FPD, 1988 - 89	Li ₄ SiO ₄ 98 % MS, 0.5 mm \emptyset (Schott 86 temp.) Li ₄ SiO ₄ 85 % SS, 0.5 mm \emptyset	400 - 450 400 - 450	≈ 60 ≈ 60	1.8 2.0	50 % dust 70 % dust

a) Sample capsule closed
 b) Sample capsule purged

Table 5Saclay and Casaccia LiAl2O3 pellets

	Irradia	ation	C l -	Dellet	Annealing			Pel	let		Released Tritium		Remarks	
Sample type	Reactor	т (°С)	No.	No.	Date	Date type		Dim (mm) Diam. Height		Mass (g) before after		per g (MBq/g)	a.i. = after irradiation a.a. = after annealing	
LiAlO ₂ 84 % P Saclay	HFR	400	142	5 c 5 b 5 a	24.7.90 9.8.90 12.3.91	S R R	5.0955 5.1090 5.0975	≈6.1 ≈4.5 ≈9.5	0.2230 0.1499 0.3686	0.2223 0.1494 0.3682	1245 816 2027	5583 5444 5449	2 pieces a.i.	
	OSIRIS	400	150	1	15.3.91	R	-	-	0.1712	0.1710	41145	240333	Particles + dust a.i.	
LiAlO ₂ "P" 80 % P Casaccia	HFR	400	117	2	18.7.90	R	4.8130	5.3360	0.2025	0.2019	1583	7817		
	OSIRIS	400	155	1	25.3.91	R	4.8655	5.0385	0.1898	0.1882	28373	149489		

5

Purge gas: $50 \text{ SCCM He} + 0.1 \% \text{ H}_2$

- S: temperature steps 350, 450, 600, 850 °C
- R: linear ramp 5 °C/min to 850 °C
- R*: linear ramp 10 °C/min to 850 °C

Table 6 Springfield pellets

	Irradiation		- ·		Annea	ling		Pe	llet		Released	Tritium	Remarks
Sample type	Reactor	T (°C)	Sample No.	Pellet No.	Date type		Dim Diam.	(mm) Height	Mas before	s (g) after	per sample (MBq)	per g (MBq/g)	a.i. = after irradiation a.a. = after annealing
Li ₂ O P Springfield	HFR	400	131 (83 %)	1 2 3	4.10.90 9.10.90 7.3.91	R S R	4.6958 4.8380 4.8675	5.0460 5.1980 4.9345	0.1222 0.1297 0.1275	0.1015 0.1291 0.1264	1697 1613 1475	16605 12436 11569	
		650	133 (80 %)	1 2 3	10.4.91 11.4.91 15.4.91	R R* S	4.4625 4.4220 4.4590	4.3040 4.7745 4.9945	0.1094 0.1201 0.1281	0.1076 0.1187 0.1267	≈130 89 101	≈1200 741 788	
	OSIRIS	400	135 (79 %)	-	13.7.92 15.7.92	R S	-	-	0.0205 0.0166	0.0197 0.0159	726 523	35415 31506	Pieces a.i.
		650	137 (82 %)	1 2 3 - 8	18.3.92 19.3.92 24.3.92	R S R*	- - -	- - -	0.0808 0.0989 0.1849	- 0.0985 0.1835	1165 1392 1890	14418 14075 10222	Pieces a.i., 100 % dust 2 pieces a.i., 4 pieces a. Particles a.i.
Li ₂ ZrO ₃ 80 % P Springfield	HFR	400	124	3 5 6	31.1.91 6.2.91 12.2.91	R R S	4.9710 4.9840 4.9810	4.9865 4.8840 4.9520	0.3275 0.1341 0.3190	0.3260 0.3126 0.3178	1519 1432 1239	4638 4559 3884	
		650	126	1 2 3	17.4.91 19.4.91 22.4.91	R R* S	4.9850 4.9980 4.9975	4.8705 4.8950 4.9230	0.3084 0.3034 0.3120	0.3084 0.3033 0.3120	1128 634 537	3658 2090 1721	
	OSIRIS	400	128	1 2 " 3	30.1.92 11.3.92 13.3.92 23.4.92	S R S R	5.0830 - - 5.0250	5.0210 - - 4.9160	0.3171 0.0192 0.0214 0.3037	0.3160 0.0192 0.0213 0.3009	≈35000 1257 1243 26090	≈ 110000 65469 58084 85907	Pieces a.i.
		650	130	1 2 3	4.2.92 6.2.92 11.2.92	R S R*	- 5.0120 5.0155	- 4.9185 4.9875	0.2627 0.3104 0.3228	0.2622 0.3100 0.3244	3366 1660 1830	12813 5348 5669	2 pieces a.i.

16 1

Purge gas: 50 SCCM He + 0.1 % H₂ S: temperature steps 350, 450, 600, 850 °C R: linear temperature ramp 5 °C/min to 850 °C R*: linear temperature ramp 10 °C/min to 850 °C

	Irradiation				Annea	ling		Pe	llet		Released	d Tritium	Remarks	
Sample type	Reactor	T (°C)	Sample No.	Pellet No.	Date	type	Dim Diam.	(mm) Height	Mas: before	s (g) after	per sample (MBq)	per g (MBq/g)	a.i. = after irradiation a.a. = after annealing	
Li ₂ SiO ₃ 82 % P Mol	HFR	400	161	1 2 3	15.1.90 28.2.91 5.3.91	R R S	4.9950 5.0040 5.0160	6.4960 6.5170 6.4740	0.2571 0.2594 0.2592	0.2567 0.2587 0.2586	1783 2578 3139	6935 9938 12110		
	OSIRIS	400	167	2 ″ 1 3	2.3.92 6.3.92 9.4.92 13.4.92	R S R R	-	- - -	0.0188 0.0261 0.2524 0.2605	0.0187 0.0259 0.2516 0.2508	523 877 11865 6760	27819 33602 47009 25950	3 pieces a.i. 2 pieces a.i.	
Li ₄ SiO ₄ 98 % (57 %)	HFR	400	173	-	13.11.90 19.11.90	R S	-	-	0.1854 0.1952	0.1843 0.1940	8981 9429	48441 48304		
MS KfK		650	174	-	13.6.91 17.6.91	R S	-	-	0.2104 0.2064	0.2093 0.2055	462 469	2196 2272		
	OSIRIS	400	175	-	13.2.92 17.2.92	R S	-	-	0.0250 0.0237	0.0244 0.0230	4064 3945	162560 166456	50 % dust a.i.	
		650	176	-	21.6.91 12.8.91	R S	-	-	0.2108 0.2191	0.2102 0.2182	1212 1249	5750 5701		
Li ₄ SiO ₄ 85 % (51 %)	HFR	400	113	-	25.10.90 5.11.90	R S	-	-	0.1234 0.1358	- 0.1352	2747 3053	22261 22482	50 % dust a.i.	
SS KfK		650	114	-	6.6.91 10.6.91	R S	-	-	0.1985 0.2021	0.1962 0.2005	218 135	1098 668		
	OSIRIS	400	115	-	20.2.92 25.2.92	R S	-	-	0.0204 0.0216	0.0200 0.0208	2588 3350	126863 155093	70 % dust a.i.	
		650	116	-	27.1.92 28.1.92	R S	-	-	0.1023 0.1110	0.1018 0.1102	1075 1135	10508 10225		

Table 7 Mol Li₂ZrO₃ pellets and KfK Li₄SiO₄ spheres

Purge gas: 50 SCCM He + 0.1 % H₂ S: temperature steps 350, 450, 600, 850 °C R: linear temperature ramp 5 °C/min to 850 °C R*: linear temperature ramp 10 °C/min to 850 °C

Table 8 KfK pellets

	Irradia	ation			Annea	ling		Pe	llet		Released	Tritium	Remarks	
Sample type	Sample type Reactor T (°C)		Sample No.	Pellet No.	Date	type	Dim Diam.	(mm) Height	Mas before	s (g) after	per sample (MBq)	per g (MBq/g)	a.i. = after irradiation a.a. = after annealing	
Li ₄ SiO ₄ 90 % P KfK	HFR	400	109	5 6 3	9.4.90 20.4.90 6.6.90	R S R	5.0330 5.0320 5.0170	5.0190 5.1375 5.1130	0.1998 0.2060 0.2060	0.1969 0.2030 0.2048	4602 5091 3579	. 23033 24714 17374	-	
		650	110	5 6 3	16.5.90 22.5.90 25.6.90	R S R	5.1081 5.1153 5.1120	4.9831 4.8771 4.9845	0.1931 0.1921 0.1917	0.1929 0.1920 0.1913	520 567 484	2693 2952 2525		
	OSIRIS	400	111	-	3.7.92 7.7.92	R S	-	-	0.0204 0.0230	0.0200 0.0225	2409 2837	118088 123348	Pieces and particle a.i.	
		650	112	-	25.6.92 30.6 <i>.</i> 92	R S	-	-	0.2134 0.2157	0.2112 0.2145	4062 3861	19035 17900	Particles and dust a.i.	
Li ₂ SiO ₃ 90 % P KfK	HFR	400	101	5 6 3	17.4.90 25.4.90 19.6.90	R S R	4.8455 4.8830 4.8610	5.1285 4.9175 5.0645	0.2142 0.2076 0.2122	0.2135 0.2068 0.2113	13520 14126 12276	63119 68044 57851		
		650	102	5 6 3	29.5.90 31.5.90 27.6.90	R S R	4.9588 4.9426 4.9218	5.0671 5.3261 5.4218	0.2104 0.2189 0.2214	0.2103 0.2186 0.2212	440 468 528	2091 2138 2385		
	OSIRIS	400	103	1	26.3.92 2.4.92	R S	-	-	0.0203 0.0237	0.0202 0.0237	10937 11801	538768 497932	Particles a.i.	
		650	104	1 2 3	24.4.91 24.5.91 29.5.91	R S R*	4.9255 4.9020 4.9340	4.7195 4.8750 4.8860	0.1943 0.1996 0.2015	0.1941 0.1993 0.2014	10635 8881 7720	54735 44494 38313		

Purge gas: 50 SCCM He + 0.1 % H₂ S: temperature steps 350, 450, 600, 850 °C R: linear temperature ramp 5 °C/min to 850 °C R*: linear temperature ramp 10 °C/min to 850 °C

.

HFR, irradiation conditions and tritium release Table 9

Sample type	Sample no.	Position level/hole	Temp. (°C)	Li-burnup (%)	Dam (d n	nage pa) α+t	Production 10 ¹⁹ T/g	Tritium Rele 10 ¹⁰ Bq/g	ase 10 ¹⁹ T/g
LiAlO ₂ 84 % P Saclay	142	2/6	474	0.36	2.18	0.07	3.2	0.551	0.31
LiAlO ₂ "P" 80 % P Casaccia	117	2/7	474	0.36	2.18	0.07	3.2	0.782	0.44
Li ₂ O 83, 80 % P Springfield	131	1/7	458	0.27	0.88	0.11	10.9	1.354	0.76
	133	4/6	686	0.38	1.21	0.16	15.2	0.091	0.051
Li ₂ ZrO ₃ 80 % P Springfield	124	2/2	474	0.45	2.27	0.11	3.6	0.436	0.25
	126	4/8	686	0.37	1.85	0.09	2.9	0.249	0.14
Li ₂ SiO ₃ 82 % P Mol	161	1/1	458	0.35	1.80	0.08	4.7	0.966	0.54
Li ₄ SiO ₄ 98 % MS KfK	173	1/4	458	0.35	1.60	0.10	6.5	4.837	2.72
	174	3/4	637	0.46	2.10	0.14	8.5	0.223	0.13
Li ₄ SiO ₄ 85 % SS KfK	113	1/5	458	0.31	1.41	0.09	5.7	2.237	1.26
	114	3/5	637	0.41	1.87	0.12	7.5	0.088	0.050
Li ₄ SiO ₄ 90 % P KfK	109	1/6	458	0.28	1.29	0.08	5.3	2.171	1.22
	110	3/6	637	0.38	1.70	0.11	7.0	0.272	0.15
Li ₂ SiO ₃ 90 % P KfK	101	1/3	458	0.36	1.90	0.08	4.9	6.301	3.55
	102	4/1	686	0.37	2.73	0.09	5.0	0.221	0.12

19

Completure	Sample	Position	Temp.	Damag	ge (dpa)	Tritium	Li-burnup	Tritium Release		
	no.	level/hole	(°C)	n	$\alpha + t$	10 ¹⁹ T/g	(%)	10 ¹⁰ Bq/g	10 ¹⁹ T/g	
LiAlO ₂ 84 % P Saclay	150	8/2	425	1.69	0.75	30.2	3.3	24.033	13.5	
LiAlO ₂ "P" 80 % P Casaccia	155	7/5	425	1.73	0.82	34.3	3.8	14.949	8.37	
Li ₂ O 79, 82 % P Springfield	135	10/4	425	0.74	0.85	73.7	1.8	3.346	1.87	
	137	2/3	675	0.51	0.50	43.1	1.1	1.291	0.72	
Li ₂ ZrO ₃ 80 % P Springfield	128	10/6	425	0.87	0.66	20.1	2.6	7.987	4.47	
	130	5/6	675	0.94	0.62	18.9	2.4	0.794	0.44	
Li ₂ SiO ₃ 82 % P Mol	167	10/2	425	1.24	0.69	31.7	2.4	3.360	1.88	
Li ₄ SiO ₄ 98 % MS KfK	175	11/3	425	0.91	0.71	36.8	1.8	16.451	9.21	
	176	4/3	675	1.02	0.65	34.0	1.7	0.573	0.32	
Li ₄ SiO ₄ 85 % SS KfK	115	11/5	425	0.91	0.66	39.4	2.0	14.098	7.89	
	116	4/5	675	1.02	0.61	36.7	1.8	1.037	0.58	
Li ₄ SiO ₄ 90 % P KfK	111	12/4	425	0.76	0.56	31.5	1.6	12.072	6.76	
	112	4/1	675	1.02	0.62	35.3	1.8	1.847	1.03	
Li ₂ SiO ₃ 90 % P KfK	103	11/1	425	1.08	0.69	29.1	2.2	51.835	29.0	
	104	1/2	675	0.69	0.34	14.1	1.1	4.585	2.57	

- 20 -

Table 11 Dose rate and specific gamma activity

(reference time October/November 1992)

Sample			Pellet		Dose rate (µSv/h)				Specific gamma activity (10 ⁴ Bq/g)											
type	no.	Irra- diation	no	mass (g)	Con- tact	5	10	15 cm	Mn 54	Co 60	Zn 65	Zr 95	Ag 110	Sb 125	Ba 133	Cs 134	Cs 137	Eu 152	Eu 154	Та 182
Casaccia LiAlO ₂ "P"	118 155	HFR 400 °C OSIRIS 400 °C	3 1	0.1926 0.1887	16 62	1.9 5.7	0.6 1.9	0.2 0.9	0.81 1.6	2.4 12	5.2 9.0	-	-	4.1 5.6	-	0.28 0 <i>.</i> 56	-	-	0.37 0.27	-
Casaccia LiAlO ₂ "A2"	119 156	HFR 400 °C OSIRIS 400 °C	2 1	0.2089 0.2036	8.6 36	0.6 3.8	0.3 1.1	0.1 0.4	0.51 1.0	2.0 9.1	0.25 0.63	-	0.03 0.04	0.08 0.13	-	- -	- 0.06	-	0.03 -	
Spring- field Li ₂ ZrO ₃	124 128	HFR 400 °C OSIRIS 400 °C	2 3	0.3221 0.3010	218 46	23 4.7	7.3 1.0	3.9 0.8	0.29 0.27	0.58 1.2	-	0.41 0.13	-	-	-	-	-	38 1.9	38 9.8	2.0 0.96
Mol Li ₂ SiO ₃	161	HFR 400 °C	4	0.2577	10	1.1	0.4	0.1	0.09	2.1	0.18	-	0.02	0.07	-	0.04	-	-	-	-
KfK Li4SiO4, P	109	HFR 400 °C	4	0.2017	4.9	0.4	0.2	0.1	0.27	1.2	0.41	-	0.02	0.05	0.02	-	-	-	-	-
KfK Li ₂ SiO ₃ , P	101 103	HFR 400 °C OSIRIS 400 °C	4 3	0.2078 0.2053	7.5 18	0.7 1.5	0.3 0.3	0.1 0.1	0.31 0.45	1.7 4.3	0.49 1.3	-	0.01	0.17 0.34	- 0.02	0.11 0.12	-	-	-	-

- 22

| 23

ſ

- 27 -

- 28 -

- 29

Fig. 9 Tritium release of various ceramics irradiated in HFR at 400 - 450 °C. Temperature steps (350, 450, 600 °C), purge gas He + 0.1 % H₂

- 30 |

Fig. 10 Tritium release of KfK ceramics irradiated in HFR at 400 - 450 °C. Temperature steps (350, 450, 600 °C), purge gas He + 0.1 % H_2

-31 -