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Abstract 

A description of light heavy-ion fusion, taking into account both entrance

channel characteristics and compound-nucleus properties, is derived within a 

unified theory of nuclear reactions. The dependence of the imaginary fusion 

potential on the level density ofthe compound nucleus is revealed. The 12C + 12C, 

12C + 14N lOB+ 160 and 160 + 160 fusion cross sections are calculated for , 

Ecm < 120 MeV and compared with experimental data. The excitation energy 

dependence of the level-density parameter of 24Mg, 26Al and 328 is inferred 

below 5 MeV/A. A realistic nuclear level-density model, describing the 

experimental level-density parameters of highly excited nuclei, is shown to be 

consistent with both the global features and details of the fusion cross section. 

12C + 12C and 160 + 160 fusion cross section oscillations are predicted at large 

excitation energies, reflecting the structure of the level density of the highly 

excited light compound nuclei. Differences of the 12C + 14N and lOB+ 160 fusion 

reaction mechanisms are discussed in terms of specific entrance-channel 

characteristics. 



HIN ZU EINER EINHEI'I'LICHEN BESCHREIBUNG DER 

ANREGUNGSFUNKTIONEN FÜR DIE FUSION LEICHTER IONEN 

Im Rahmen der einheitlichen Theorie der Kernreaktionen wird e1ne 

Beschreibung der Fusion leichter Schwerionen unter Berücksichtigung der 

Eingangskanal-Charakteristika und der Compound-Kern-Eigenschaften 

gegeben. Die Abhängigkeit des imaginären Fusionspotentials von der 

Niveaudichte des Compound-Kernes wird deutlich gemacht. Die 12C + 12C, 

12C + 14N, lOB+ 160 und 160 + 160 Fusionswirkungsquerschnitte werden für den 

Energiebereich Ecm < 120 MeV berechnet und mit experimentellen Daten 

verglichen. Die Energieabhängigkeit der Niveaudichte-Parameter von 24Mg, 

26Al und 328 wird für Anregungsenergien unterhalb 5 MeV/A abgeleitet. Die 

Konsistenz eines realistischen Niveaudichte-Modells mit den globalen 

Eigenschaften und Details der Fusionsquerschnitte wird aufgezeigt. Für 

12C + 12C und 160 + 160 wird bei hohen Anregungsenergien ein oszillatorisches 

Verhalten der Fusion-Anregungsfunktionen vorausgesagt, das die Niveaudichte 

der hochangeregten Compound-Kerne widerspiegelt. Unterschiede in den 

12C + 14N und lüß + 160 Fusionsmechanismen werden als Folge spezifischer 

Eingangskanal-Charakteristika diskutiert. 
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"Ein stiller Geist istjahrelang geschäftig. 

Die Zeit nur macht die feine Gärung kräftig." 

Johann Wolfgang von Goethe (Faust 1) 

1. lntroduction 

Since the first sturlies of the limiting conditions of nuclear fusion [1, 2], the 

identification of specific entrance-channel [3-5] and compound nucleus [6-10] 

characteristics, which determine the salient features of the fusion cross sections 

in various energy regimes, has been a topic of considerable interest. Ignoring 

usually the spins ofthe colliding nuclei, the sharp cut-off approximation has been 

invoked. It assumes that relative angular momenta e smaller than a particular 

critical angular momentum Jcr contribute to complete fusion, while higher 

values of e are associated with direct (peripheral) processes. At lower incidenf 

energies (denoted region I) the fusion cross section OF exhausts nearly the total 

reaction cross section OR and the critical value Jcr is essentially determined by 

the entrance-channel properties. However, especially for light and symmetric 

mass systems limitations for compound nucleus formation are also evident at 

higher excitation energies (denoted regions TI and ill) where OF is significantly 

smaller than OR. For different entrance channels, leading to the same compound 

nucleus, a single locus of Jcr develops in the angular momentum-excitation 

energy U plane, to the left ofthe Yrast line [6, 11, 12]. The statistical Yrast line, 

defined by shifting the Yrast line by an amount ßQ parallel to the energy axis, 

describes this locus well [7, 10]. From point of view of the statistical approach to 

level densities [13], the statistical Yrast line represents the locus of a constant 

compound nucleus state density w(U, M) [14, 15]: 

w(U, M:::: J (V)):::::: p(llQ) :::: constant 
er 

(1.1) 

Here p is the level density and M the total angular momentum projection. At 

higher energies (region ill) experimental data indicate a saturation of Jcr for 
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light systems [11, 12, 16-18] near the value where the fission barrier vanishes 

according to the rotating liquid drop model [19,20]. 

There is some theoretical evidence [21] that the level density of highly excited 

nuclei is drastically reduced as compared to the predictions of the traditional 

description [13], mainly as a consequence ofthe finite depth ofthe self-consistent 

potential which limits the relevant single particle space to a finite number of 

states. Because of the induced distortion of the contour lines of p(U, J) [22] and w 

(U, M) towards smaller J, M at higher excitation energies, an alternative 

explanation ofthe compound nucleus limitations to fusion in region ill might be 

possible. Infact, for A= 114-160 nuclei a considerable decrease of the level

density parameter, varying from a=AJ8 [MeV-1) at low e= U/A to a=AJ13 [MeV-

1] at e = 3Me VIA has been observed [26-28]. For light nuclei (A < 40), a value 

a=AJ8 [MeV-1) has been inferred with a similar tendency at higher excitation 

energies e = 2-3 Me VIA [29]. 

For severallight systems, especially for the spin-zero cases 12C + 12C [30,31,34], 

160 + 160 [32-34] and the 12C + 160 [34,35], an oscillation pattern is 

superimposed on the general trend of OF below Ecm=30 MeV. The structures 

have been related to entrance channel characteristics [36,37]. But these as well 

as the smooth 12C + 16N, lOB+ 160 fission excitation functions have been equally 

well described by a phenomenological parametrization ofthe fusion transmission 

coefficients T~<'e• which encompasses the constraints due to the effective 

interaction in the entrance channel at low energy and to the angular momentum 

dependent compound nuclear level density at higher energy [8,9]. For light 

nuclei (A < 40) combinatorial calculations [15] reveal structures in cu(U, M), p(U, 

J) even at high U. A significant correlation (eq. 1.1) between Jcr(U) of the 

12C + 12C, 160 + 160 and 160 + 24Mg systems with oscillating op and the 

structured contours of the compound nucleus state density cu(U, M) [14, 15] has 

been observed. For Ecm::::: 30 MeV o", has been measured in relatively large 
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energy steps, leaving the question open if corresponding structures exists at 

higher energy. Extrapolating eq. (1.1) to · higher energies suggests that 

oscillations of aF may persist. It is important to understand which entrance 

channel characteristics allow aJ<, to be sensitive or insensitive to such details of 

compound-nucleus level density. 

Actually, the unified description of excitation functions oflight systems covering 

a broad energy range requires the proper consideration of the competition 

between direct processes and fusion for the flux absorbed from the entrance 

channel, in terms of ingredients from both nuclear dynamics and structure. In 

this sense, it has been shown phenomenologically [8, 9, 39-41] andjustified in the 

frame-work of general reaction theories [15, 25, 42-45] that the optical model 

description of fusionisasimple but relevant and efficient procedure. In analogy 

with the expression of UR [ 46] (and Te) UF and T~<'e are expressed [39] in terms of 

optical model wave functions and WF, the imaginary part ofthe potential which 

is responsible for absorption due to fusion. Formal expressions of the optical 

potential U =V+ iW and of Wp, derived in the frame-work of projection operator 

[ 44, 45] formalisms, include the effects of channel-coupling on fusion cross 

sections (polarization effects in V, contributions to WF related to particular 

fusion mechanisms) and apply to the case of heavy assymmetric mass systems at 

energies below and around the Coulomb barrier. For light systems, however, the 

distinct mark of properties of the highly exci ted compound nucleus J er on GF has 

a correspondent in W p [15], when isolated in the formal expression of the optical 

modelpotential within the unified theory ofnuclear reactions [47-49]. 

In this paper we investigate the relation between the features of light heavy-ion 

fusion and specific properties of the level density of highly excited light nuclei. 
.. 

For reference the formalism is recalled in sect. 2 and approximations of the 

optical model potential, W p and TF e are deri ved and their dependence on 

quantities describing the reaction dynamics and of the compound nucleus level 
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density is discussed. On this basis a new method to study the excitation energy 

dependence of the level-density parameter of highly excited light nuclei using 

fusion excitation functions is proposed and illustrated for 24Mg, 26Al and 328. A 

realistic level-density model is presented and its predictions are compared with 

the experimental information on the level density of highly excited nuclei. 

8pecific properties of the level density of highly excited light nuclei, e.g. the 

pari ty dependence, are discussed in the frame of this model. Exact combinatorial 

calculations of J, parity (II), isopin (T) dependent level densities of 24Mg, 26Al 

and 328 are performed for c < 5 Me VIA. The results are used for the unified 

description of 12C + 12C, 12C + 14N, lOB+ 160 and 160 + 160 total fusion data. 

Oscillations related to the structures in the compound nucleus level density are 

predicted in the 12C + 12C and 160 + 160 fusion excitation functions at high 

energy. The decrease of the sensitivity of aF to the structures in the compound 

nucleus level density with increasing channel spin is illustrated. Differences in 

the 12C + 14N and lOB+ 160 fusion mechanisms are discussed. It is shown that 

the anomalies of the lOB+ 160 fusion cross section at moderate energies are 

consistent with a significant contribution of non-elastic fusion. 

2. Optical Model Description of Fusion 

Following [47-49], the operators P, I, N, Q are defined to project onto the open 

channel, entrance channel, non-elastic channel and closed channel subspaces, 

respectively. Let H be the total Hamiltonian of the system. The projectives 

ÜKL= KOL (K,L= P,I,N,Q) are defined for an operator 0. The strongly energy 

dependent compound nucleus processes are related to the finite number of 

eigenstates lx8 >of HQQ which lie in the interval ßE araund E. We define the 

projection operator R = ~lxs > < x81 on the resonance subspace. The true 

resonance states IXt> are solutions of the eigenvalue problern 

(Et-HRR"WRR) IXt> =0, where WRR = HRP I (E+ -H') )HpR 
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and H' = Hpp + HpQ( (Q-R)) I (E-HQQ)HQP· 

The detailed formal expression of the en trance-channel optical potential [ 4 7 -49] 

reads as 

U=Vn + HIH YHHI +(H' IN+ HIR YHHN)GNN(HNR YHRI+ H' N/ 

where 
(T is the kinetic energy), 

Y=Z/(l+ZWRH)' Z=-inR/ÄE 

GNN=li(E+ -H'NN-HNRYHRN) 

is the Green' s operator. 

(2.1) 

and finally 

Due to the fact that the formal manipulations leading to (2.1) preserve rotational 

invariance, parity and other symmetries of H, the operators arising in the 

expression of U and U itself act within or couple subspaces with the same J, M, IT, 

etc. These dynamical angular-rnomenturn coupling effects on elastic scattering 

(and on absorption from the entrance-channel) are reglected and any vector 

coupling, in the case of non-zero projectile and target spins I1. I2 is implied. The 

nonlocal radial dependence of U is formally obtained as the partial expectation 

value UJtsn = (JlsiiiUIJlsii) where IJlsii) denotes the wave function of the 

intrinsic state of projectile, target, and the relative angular motion e in the 

entrance-channel coupled with the entrance-channel spin s to J. 

The operators HKR YHRL (K, L= I, N) describe effects oftransitions mediated by 

compound-nucleus states, where Y accounts for effects due to the finite life-time 

and to the correlation of compound-nucleus states, arising from their coupling to 

the P space. If ilE is !arge in comparison with the effective coupling WRR, one 

may replace Y by Z, leading to the approximation 

HKH YHRL =inp(U,J, TI) 

[HKRI(X)(X!HRL]= -ip(U,J, TI) [HKRix)(x!HRL) 
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where the brackets [ ] signify averaging over the relevant compound-nucleus 

states. The short equilibration time of about 2.10-22 s in light ion collisions [50] 

and the empirical systematics of compound-nucleus widths [51] indicate the 

scaling law 6.E-Y c so that LlE can be chosentobe a few MeV (when the excitation 

energy c< 5MeV/A). 

A transparent expression ofU results 

UJlsii = (JlsTII{VII-inp[HIRix) (x[HR1J+(H'1N-iup[H'IRix) (xiHRN]) • 

(E+ - H 'NN- inp[HN Rix) (x[H RN])-
1 

(H 'NI- inp[HN Rix) (xiH RI]) }I JlsTI) (2.2) 

H 'NN does not commute with [HNR!x)(x!HRNL reflecting the inultistep nature of 

the effects contained in the optical potential. Generally, [HKRix)(xiHRLJ with (K, 

L= I, N) is expected tobe small due to the complicated nature of the compound-

nucleus. 

Also in region II and III (for J> Jcr) the density of compound-nucleus levels with 

specified J, II, T=O is lower than 50-100 levels/MeV. Therefore compound

nucleus effects in (2.2) are treated only up to the first order. For simplicity also 

the non-local expressions [(JlsiiiOtRix)(xiORIIJlsii)] are replaced with the local 

ones [i(Jlsiii0RIIx)!2]. Then the following approximations for V and W are 

obtained 

(2.3) 

W =WD +WF 
J lsiT Jlsii JlsiT 

(2.4) 

(2.5) 

WFJlsii = -np(U, J, Il)(A Jlsll +B Jlsll +CJlsfl +D Jlsii):50 
(2.6) 

(2.7) 

(2.8) 

(2.9) 
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(2.10) 

(2.11) 

Neglecting of D and E on random-phase arguments, V is determined by direct 

contributions and W is the sum of the direct term WD and the fusion term WF, 

both tobe defined negative. The part WD is related to the polarization term in V 

by a dispersion relation and WF displays the strong U, J dependence of the 

compound-nucleus level density. The terms A, B and C describe different 

mechanisms: (A) fusion in the entrance-channel, (B) fusion while propagating on

energy-shell .in the N subspace after a direct transition _from the entrance

channel, (C) fusion in non-elastic channels virtually populated from the 

entrance-channel by direct couplings. 

For J< Jcr. the terms [HKR!x)(x!HRLJ (K:;t: L= I, N), although small, are 

multiplied with the strongly increasing p(U, J). Neglecting the direct I, N 

channel couplings in the third term of (2.2), W Jlsll contains only terms related to 

initial compound-nucleus formation from the entrance-channel, therefore 

W Jlsll = WFJltiil· 

The transition between the extremes of low p for J>Jcr and high p for J <Jcr is 

assumed to occur sufficiently fast. For J values above the Yrast values p(U,J) = 0 

and the optical potential is influenced by direct effects only. The transmission 

coefficients for fusion areexpressedas 

,F 2J
00 

I 12 F T Jls I1 = 8nk/h o dr IV Jlsii (- W Jlsll) (2.12) 

and satisfy the inequality o<TFJlsTI::;TJJsll< 1. Here 'PJJsTI" is the radial wave 

function generated with the optical potential UJlsii" The fusion cross section is 

now written in analogy with the reaction cross section as 
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l+s 

[1 + n(( -l}(l + s)] "'' r~<' 
L g J Jlsli 

J=ll-sl 
(2.13) 

where k is the the wave vector, n 1s 1 for identical wns and 0 otherwise, 

gJ = (2J + 1)/(211 + 1)/(212 + 1). 

The calculations performed in this paper use phenomenological Woods-Saxon 

optical potentials V +iW with energy dependent parameters taken from Refs. 

[52], [53], [11], [54], and describing elastic scattering and reaction cross section. A 

more detailed analysis of the radial, energy, angular momentum dependence of 

the contributions A, B, C is left for a later work. Here, the influence of these 

dynamical factors is treated on the simplifying assumption that the energy and J 

dependence of WF is dominated by p. Usually, the radial dependence of 

F=A+B+C is assumed to depend on the overlap of two spheres with radii 

Ri = r pAi 113 and r F = 1.35 fm i.e. on the separation of the two centers, roughly 

simulating the volume-type radial dependence of A. Additional surface type 

contributions of B, C are assumed to be absorbed by increasing the value of ro. 

The magnitude of Fis normalized by the condition 

F(r=O,E ) = KiW(r=O,E )I 
cm cm 

(2.14) 

The constant K is considered tobe equal for all systems: K = 5 10-3 when isospin is 

considered a conserved quantum number, and K = 2.5 10-3 otherwise. This makes 

WFJ!sn(O)=W(O) for p(U, J, rr, T=0)=64 levels/MeV and p(U, J,II)=127 

levels/Me V, respecti vely. 

The analysis of this paper attempts to explore the sensitivity of fusion cross 

sections to details of the compound nucleus level density p(U, J, II) at higher 

excitation energies. Experimental12C + 12C [16, 31, 34], 12C + 14N [11, 17, 31, 34] 

and 160 + 160 [56] fusion cross sections and results of quantum molecular 

dynamics calculations [57] are compared with the fusion excitation functions 

calculated in the framework ofthe present model. The familiar expression [13] 
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/ 
/ 0 / 

/ 0 0 

0 0 

12C + 14N 

40 60 80 100 120 
Ecm (M€N) 

Fig. 1: Totalfusioncross sections for 12C + 14N: comparison of values calculated 

within the present model (solid line with crosses) for different values of the 

inverse level-density parameter Ala attached to the curves in paranthesis using 

either a constant value ofthe moment of inertia 8 or an experimentally suggested 

spin cut off factor a (value of A/a primed). Experimental values a F are taken from 

refs. 11, 17, 31, 34, 55. The open circles represent the total reaction cross section 

f 17}, compared with optical model predictions ( dashed). 
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p(U, J, IT)= (2J + 1) I (48 v'2a 114U514a~ q(U, J) 

is used with 

(2.15) 

(2.16) 

The moments ofinertia 8 an related to the experimental spin cut-offfactors a [58] 

by 

(2.17) 

A comparison ofthis model with different values of A/a to data is shown in fig. 1. 

It turns out that the experimental data indicate a decreasing level-density 

parameter a=:::.A/7 for e<3 MeV/A to a=:::.A/10. at e-=:::.5 MeV/A in the case oflight 

nuclei. The results of the method which provides an alternative access to the 

quantity a complements the information obtained from the study of energy 

spectra and multiplicities of evaporated light particles in heavy-ion fusion 

reactions [59]. 

3. The Nuclear Level-density Model 

The basic ingredien t of the formalism to calcula te OF is the level densi ty p of the 

highly excited compound nucleus, as a function ofthe excitation energy U, spin J, 

parity IT and isospin T, and parametrized with various parameters as e.g. the 

level-density parameter a or its inverse A/a, and the spin-cut off parameter o. In 

other work various theoretical features, especially effects due the finite depth of 

the mean-field potential [21, 23, 60-65], ground state correlations [66], couplings 

of the single-particle degrees of freedom to collective motion [67] and dynamical 

polarization [68-73] have been considered. 

The level density model discussed here considers the excited nucleus as an 

isolated system, which confines its constituent Z protons and N neutrons for a 

sufficiently long time. The nuclear states are classified with respect to the 



- 11-

excitation energies and total quantum numbers by means of the independent 

(i particle- i hole) proton and (j particle- j hole) neutron configurations. The set of 

relevant single particle states, comprising the bound and resonant states, is 

finite due to the finite depth and finite spatial extension ofthe nuclear potential. 

The single-particle states are calculated on the basis of a local, spherically 

symmetric, real nuclear potential V (r, e, c), with volume and surface components 

depending on r, the single-particle e and the excitation energy c, parametrized 

consistent with global results on the nucleon-nucleus potential [68-70] and with 

theoretical predictions of the radial, single-particle energy and temperature 

dependence ofthe effective mass m*/m [66, 67, 71, 72]: 

(3.1) 

V 0 (r) is a Woods-Saxon potential with depth Vo +1; 33(N-Z)/A (1; = + 1 for protons 

and 1;= 1 for neutrons), reduced radius r0 , and surface diffuseness a with eF being. 

the Fermi energy. 

The term n(r, e, c) is given as 

n = [1- a (1- g(e, c)) /(r)] [1 - ß g(e, c) df(r)!drl 

with 

{=[1 +exp((r-zA v3)/c))- 1 

1/3 2 g=exp(-clc
0
)1[1 +((e-e

1
)A /82) I . 

(3.2) 

(3.3) 

(3.4) 

The vanous parameters (a, ß, z, c, c) are specified in the context of the 

calculations (see below figs. 2-4). The Z- and N-dependence of the surface

coupling lengths ß is adopted from ref. [67]. Spin-orbit terms and the Coulomb 

potential ofthe protons are taken into account. 

A discrete single-particle energy e is associated to each resonant single-particle 

state. Its width r sp characterizes the average life time of a nucleon, in this state. 

For h/f sp much larger than the relaxation time for nucleonic degrees of freedom 

( = 5 10-23s [7 4]), such a particle is expected to behave in many respects similarly 

to nucleons in bound states. On the other hand, excitations corresponding to 
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configurations with particles in resonant states can promptly disintegrate by 

direct emission of nucleons and are not necessarily tobe considered to represent 

states of the excited nucleus. The prompt nucleon emission width r d of a 

configuration is equal to the sum of the fsp of the populated resonant states. A 

condition is then imposed that rd must be smaller than a suitable upper limit rc 
( U). As single-particle resonances lying above the effective interaction barrier 

are some MeV broad, the set ofrelevant states consists in fact ofbound and quasi-

bound states satisfying fsp<fc (U). Qualitative consistency ofthe present level

density model with the statistical model of nuclear reactions is achieved by 

choosing rc(U)<r(U), where r(U) is the statistical model prediction of the 

average level-width calculated with (model) level densities satisfying r d < r c (U). 

Empirically it turnsout that the procedure to adopt fc (U) proportional to the 

neutron evaporation width [13] normalized to 1 MeV at e<3 MeV/A, 1.5 MeV at 

e = 3 Me VIA and 2 MeV at e = 5 Me VIA, for A = 114-160, A = 36-40 and A = 24-32 

nuclei, respectively, is acceptable. 

To compare the predictions of the level-density model with available 

experimental information of highly excited nuclei [26-28, 59] the statistical 

approach is invoked to evaluate the total state density w( U). Following the 

theory of statistical fluctuations for the grand-canonical ensemble [75], as 

applied to nuclear level densities [15, 62], the distribution of r d araund its 

average value r dav(U) is assumed tobe a Gaussian 

w(U, r d) ::::w(U) I (2no d 
2)U2exp[- (I'd- I'/v)2 I (2o d 

2
)] 

(3.5) 

Where Gcl(U) is the Standard deviation of f d from its average Value f daV(U) at 

exci tation energy U. The quanti ties r dav( U) and Gd( U) are expressed in terms of 

single-particle quantities. The nuclear state density Wcn(U) (with r d < r d(U) ) is 

approximated by 

w (U) ::::w(U)I2 {1 + sign (r - rdav) erft 1r - rdav !1(2ad2)112J} 
cn c c 

(3.6) 

where sign(x) denotes the sign of x and erfis the error function. 
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The excitation energy dependence of the parameter a is extracted by comparing 

the calculated Wcn(U) with the Fermigasexpression for the state density 

(3.7) 

Except for low excitation energies, where the pre-exponential factor in (3. 7) is 

dominant, the parameter a is very close to 82/4U, where S is the nuclear entropy. 

At the low excitation energies the level-density parameter a is mainly 

determined by the properties of the single-particle spectrum araund the Fermi 

energy eF and by the degree of proton and neutron shell closures. With the 

parametrization of eqs. 3.1-3.4 values of a are obtained,which are close to those 

resulting from calculations using an e, e-independent nuclear potential term 

V0 (r). In figs. 2 to 4 we show results of our calculations for the inverse Ievel 

density for heavy and medium heavy nuclei. As is seen in these figures, the trend 

of the shell effects in experimental systematics of a in the neutron resonance 

region [76], is reasonably well reproduced (compare results for 208Pb and 198Ft 

(fig. 2), 40Ca and 35Cl (fig. 3) ). At very high excitation a rather reflects global 

characteristics of the energy (and width) distribution of the finite number of 

available proton and neutron single-particle states [15, 62, 78] and of the level

density model consistency condition fd<fc(U). For e~eo and g(e,e)=O the 

results approach those of calculations with the e-independent potential 

V0(r) + (e-eF) (1-a,ftr)) and with m*/m =:::: 1-a,ftr) < l.However, the predictions of the 

model are restricted to e::;_ 3 MeV/A for A> 114, e< 5 MeV/A for A=24-32 nuclei, 

where strong experimental evidence for equilibration in highly excited nuclei 

exists [26-28], [11, 16, 17]. For nuclei between closed proton and neutron shells, 

a(c) is steadily decreasing with increasing e (figs. 2-4). At the same value of e and 

for the same set of potential parameters A/a is generally decreasing with 

decreasing A [73]. Nevertheless, an additional dependence of a on N-Z is 

observed. Dynamical effects enhance a at moderate excitations, as long as the 

number of single-particle Ievels increases on both sides of eF, The increase of r sp 
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of the quasi-hound levels leads to a further reduction of a at high excitation (see 

results for 160Tb in fig. 2). A realistic description of the e, c-dependence of the 

mean potentialleads to better agreement with data from refs. 26-28, especially in 

the transition regionaraund 1.2 Me VIA. For In, Sn, Sb isotopes araund the Z =50 

magic number the calculations result in a nearly constant value a = N(8.5-9) for 

c< 0.7 MeV/A, while the general trend of decreasing a starts at higher c values. 

Significant shell effects exist for nuclei close to doubly-magic nuclei, especially 

for 208Pb. In fig. 2 the curves referring to 208Pb and 198Pt approach the region of 

values of a(c) for (Z, N) = (77 -88, 120-132) nuclei. For 208Pb, a increases from 

=N20 at low excitation [76] to about N12 at about 0.5 MeV/A, while its decrease 

at higher excitations depends on dynamical effects, which are represented in V of 

eqs. (3.1-3.4) by the term g (c). 

Several potential parameter sets have been used in calculations for A = 35-40 

nuclei. Although the values of a(c) for a specified nucleus slightly depend on the 

particular parameter set, the trend ofthe results is similar in all cases. While for 

A= 160 nuclei at c=3 MeV/A three neutron and 10 proton-quasi-bound single

particle levels satisfy fsp<fc (c=3 MeV/A), for A=40 nuclei only two neutron 

and two proton-quasi-bound single-particle levels must be taken into account. 

The strong reduction of the number of relevant (especially proton) resonant 

single-particle levels induces a weak dependence of a on fc (c) for light nuclei. 

Agreement is found for the present calculations for non-closed shell A=40 nuclei 

(e.g. 35Cl) with the experimental result a=N8 for c< 1.7 MeV/A [59] and with 

theoretical results [73] (fig. 3). Simplified calculations for 40Ca, using a 

particular set of experimental bound and (discrete) resonant single-particle 

levels from ref. 77 and ignoring the restrictions r sp. r d < r c ( U), lead to a(c) 

values fairly close to those of the complete model, but the decrease of a occurs at 

excitation energy beyond 3 Me VIA (fig. 3). 
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Fig. 2: Energy dependence of the inverse level-density parameter A/a calculated in 

the framework ofthe present model for various mass numbers A: 

Parameter values: 

Vo=51MeV, r0 =1.26 fm, 6=0.67 fm, z=1.15 fm, c=0.6 fm, a=0.36, 

e0 =1.6MeV/A (forA=198-208) and e0 =1.05+28!A213 (forA=114-164), rc (e=3 

MeVIA)=l MeV. The results of this model (solid lines) are compared to 

experimental data from ref.<;. 26, 27, 28 and 78 and various theoretical calculations: 

Calculations neglecting the second, (e, e) - dependent term in V {15, 63] (short 

dash); from ref. 73 (lang dash); a =S2/4U [23] ( dash-dot). 



14 

12 

> QJ 

2: 
~10 
~ 
<( 

8 40 ---

6 

0 

- 16-

1 2 3 
E (MeV/A) 

c 
b' 
b 
a 
c 
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Fig. 3: Energy dependence ofthe inverse level-density parameter A/a of 35Cl and 

40Ca given by the present model (solid lines) with different parameter values. The 

common parameter values are: e0 =5.4 MeV!A, r c (e=3 MeVIA)= 1.5 MeV. 

For different curves: 

a. Vo=51 MeV, r0 =1.26 fm, a=0.67 fm, z=1.15 fm, c=0.6 fm, a=0.36; 

b. Vo=58.8 MeV, r0 =1.18 fm, a=0.7 fm, z=l.4 fm, c=0.2 fm, a=0.36; 

c. like b. with a =0.45; 

b '. like b. with rc(e=3 MeVIA)=0.3 MeV; 

d. Results with bound and ( discrete) resonant Levelstaken from ref. 77. 

The predictions of the present level-density model are consistent with the trend 

of a(e) for A=24-36 nuclei with e 5 MeV/A, inferred from total fusion excitation 

functions, and with level-density parameters at low excitation energies from 

statistical model calculations for the 14N, 16,180 + 12C reactions [79]. 
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Fig. 4: Energy dependence of the inverse level-density parameter Ala of 24Mg, 

26Al and 32S, calculated within the present level-density model ( dashed line). 

Parameter values: 

Vo=58.8 MeV, r0 =1.18 fm, a=0.7 fm, z=1.4 fm, c=0.6 fm, a=0.45, ea=6.4 

MeV/A, r(e=5 MeV!A)=2 MeV. 

The calculations shown by solid lines resuZt from the set of bound and quasi

baund single-particle Levels recommended in ref. 15. The ( simplified model) 

values represented by rectangles are taken from ref. 79. 
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The gross features of p(U, J) oflight nuclei can be described in a simplified model 

[15]. It is based on a set of single-particle states deduced from experimental 

results and complemented with deeply lying levels calculated with a Woods

Saxen potential (V
0
=51 MeV, r0 =1.27 fm, a=0.67 fm). The set ofsingle-particle 

levels is restricted to the 1svz to 2P312 levels for 24Mg and 26Al, and to 1svz to 

2pvzlevels with the condition rsp<1 MeV. The calculated level density p(U) is 

shifted on the U-scale by ß=5 MeV (24Mg), 1 MeV (26Al) and 4 MeV (358), 

respecti vely in order to obtain a better agreemen t wi th da ta a t c < 1 MeV I A. This 

empirical procedure takes into account phenomenologically the effects ofresidual 

interactions. The result of this simplified description is also displayed in fig. 4. 

The calculated spin cut-off factors o(U) are in fair agreement with 

phenomenologically derived values (fig. 5). 

Due to specific features of the statistical approach to level densities, a grand 

canonical ensemble is used for a nucleus in such a way, that N, Z, U, Mare the 

averages and most probable values of the relevant distributions. For light 

systems the value ofthe fluctuations ofthese quantities is a considerable fraction 

of their average values, and interesting details of the level densities are 

smoothed out [15, 62]. In addition it has been shown that the usual assumption of 

a uniform distribution of parity, based on the statistical random-coupling 

argument [13], does not apply to light nuclei with A~ 40 [15, 38]. These 

limitations of the statistical approach have been avoided by exact combinatorial 

(micro-canonical) level-density calculations. Forthat purpose the combinatorial 

method and the computer code elaborated in ref. 15 have been used. Advantage is 

taken of the fact that the simplified level-density model gives an acceptable 

description of the gross properties of p(U, J) of light nuclei so that large-scale 

combinatorial calculations can be performed on the basis of it. This fact 

drastically reduces the computational effort. 
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Fig. 5: Values ofthe spin Cut-offparameter a. The results displayed by the solid 

lines correspond to the calculations shown in fig. 4. The dashed lines are deduced 

from experimental values (using eqs. 2.16-2.17). 

Foreach nucleus (24Mg, 26Al, 328) and for given values ofiT, Tatwo-dimensional 

matrix p( (V], J, IT, T) has been constructed. The quantity [V] is the integer part 

of U + 0.5 MeV with U < 5A MeV. The contour lines of p( [V], J, I1 = + 1, T = 0) of 

24Mg (fig. 6) illustrate the typical features of the predicted level densities of 

highly excited light nuclei. Grass structures, about 20 MeV broad, are evident. A 
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Fig. 6: Contour lines ofthe (T =0, II = + 1) nuclear level-density in the J-e plane, 

as derived for 24Mg with a set of single-particle states corresponding to the results 

displayed in figs. 4 and 5 (solid line). The experimental values of Jcr indicated 

are from data{16] by using the relation ap=nlk2 (Jcr+ 1)2 • 

fine structure, a few MeV broad, is superimposed. Both gross and fine structure of 

the different contour lines are remarkably well correlated in energy. 
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4. Fusion Excitation Functions 

The calculations were performed for 12C+12C, 12C+14N, 10B+14N and 

160 + 160 total fusion cross section excitation functions over the broad energy 

range Ecm < 120 MeV using realistic combinatoriallevel densities p(U, J, II, T) 

for 24Mg, 26 Al and 328 from our model (sect. 3) for e < 5 MeV I A. Assuming isospin 

conservation only compound nucleus levels with T=O are involved. The results 

are given in figs. 7 to 9. 

The strong selectivity due to conserved quantum numbers for the 12C + 12C and 

160 + 160 systems of identical spin-zero ions leads to an extreme sensitivity of 

the fusion cross section to details of the compound nucleus level-density. 

Structures in experimental I2C + I2C, 160 + 160 fusion cross sections appear to 

be correlated to structures ofin p( [U], J, II = + 1, T=O) of24Mg, 328 for Ecm < 12-

35 MeV, and 18-35 MeV, respectively. The calculations with level densities 

deduced from the model globally reproduce the fusion cross section structures. 

However, the amplitude of oscillations overestimated. This is due to the neglect 

of residual interactions in the model leading to too high degeneracy and is 

corrected by an appropriate redistribution ofthe modellevels. 

The smoothed level density Ps resulting from such procedure retains the main 

features ofthe U dependence ofthe exact combinatorial p, but it is less dependent 

on artefacts arising from the simplification of the nuclear model. The 

calculations with p8 ( [U], J, II = + 1,T= 0) reproduce the oscillating 12C + 12C [31, 

34] and 160 + 160 [32-34] fusion excitation functions within the experimental 

uncertainties (figs. 7). The good agreement with data from ref. 32 is shown in fig. 

7b. The fusion cross section oscillations are very sensitive to a change ofthe shifts 

6. (defined in sect. 3). A variation of!::.. by 1-2 MeV deteriorates the agreement 

with the data. 

The trend of 12C+I2C [16, 34] and 160+160 [60] tOtal fusion excitation 

functions, found in measurements with large energy steps and in quantum 
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from ref.31 
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Fig. 7: Total fusion cross 

sections for 12C + 12C ( a) and 

160 + 160 (b): 

Theoretical results using 

combinatorial compound-

nucleus level densities ( fat 

solid line with dots) compared 

to the following experimental 

results: 

(a) ref /34] (dots with error 

bars; ref [31] (thin line with 

dots) and including 12C +3a 

breakup correction ( thin line). 

(b) ref. [32} ( dots with error 

bars connected by thin line). 

For 12C + 12C also the optical 

model reaction cross section is 

given. 
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Fig. Ba: Totalfusioncross sections excitations functions for 12C + 12C, calculated 

within the present fusion model using combinatorial compound-nucleus level 

densities p(U, J, II = + 1, T =0) and compared to experimental results from ref 

[16] (dots with error bars) and [34] (dots on thin line). The fat solid line 

represents calculations with a smoothed p, the dashed line with p(U, J, II = + 1, 

T =0) = 112 p(U, J, T =0). Full dots represent calculations with unsmoothed p. 

The thin lines with crosses are calculations like in fig. 1 with the label indicating 

the values ofthe inverse level-density parameter. 

molecular dynamic calculations of 160 + 160 fusion cross sections at Ecm =90, 

110 MeV [61], is reproduced by the present calculations (figs. 8 a, b). About 20 

MeV broad gross structures with about 100 mb peak-to-valley differences are 

predicted over the whole energy range. Assuming parity to be uniformly 
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Ecm(MeV) 

Fig. 8 b: Totalfusioncross sections excitations functions for 160 + 160, calculated 

within the present fusion model as in fig. Ba ( dots on fat line, unsmoothed p). 

They are compared to experimental results ([56] dots) and to calculated values of 

a F ([58}, squares). 

distributed, i.e. p8 ([U], J, II= +1, T=O)=l/2 Ps ([U], J, T=O), significantly 

changes the oscillation pattern in aF. The gross structures disappear and the 

oscillations are weakened. 

For spin-zero non-symmetric ions, even and odd l partial waves are present in the 

entrance-channel and compound-nucleus states with parity II = (-1)1 II1II2, and 

angular momentum J = l are populated from the l partial wave. For non-zero 
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channel spin s, the l partial wave populates compound-nucleus states with 

ll=(-1)1 I11I12, but different J=ll-s I, ..... , l+s. In addition compound-nucleus 

states with J and ll=-1, +1 are fed from neighbouring partial waves. In this 

case, the fusion cross section exhibits the structures of the compound-nucleus 

level density in a less pronounced way. 

1.2 
12 14 N 

( + 
a) 

.. 

bu_ 

0.6 

0 20 40 60 80 100 120 
~m (MeV) 

Fig. 9a: 12C + 14N total fusion cross section calculated within the present fusion 

model, using combinatorial compound-nucleus Ievel densities (fat dots on line), 

and compared to experimental results { 11, 17, 31, 34, 551. 

Fig. 9a displays the calculated 12C + 14N fusion excitation cross section and 

shows agreement with data [11, 17, 31, 34, 55]. The weak gross structure reflects 

the structure in the level-density of26Al and is also seen in the calculation ofthe 

lOB+ 160 case (fig. 9 b). However, when taking into account the channel spin 
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Fig. 9b: 160 +lOB total fusion cross section calculated within the present fusion 

modeland compared to experimental results [11]. Calculation are without ( dots 

an thin line) and with ( dots an dashed line) inclusion of the spin of lOB. A 

peripheral nonelastic fusion component added to the volume part ofWF improves 

the agreement ofthe calculations ( fat dotted line) with the data. 

s = 3h the structure is further smoothed, and the fusion excitation function 

becomes insensitive to details ofthe level density ofthe highly excited compound-

nucleus. 

The theoretical lOB+ 160 fusion cross section considerably underestimates the 

experimental results [11]. In fact, the lOB+ 160 system exhibits several 

peculiarities as compared to the cases shown in figs. 7 and 8. The nucleus lOB has 

an increased number of low-lying excited states, the lOB+ 160 channel has a 
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higher Q-value for compound-nucleus formation, and there is a strong absorption 

of partial waves with large 1 due to direct couplings to numerous well-matched 

non-elastic channels. This is reflected in the empirical optical potential with a 

comparatively strong energy variation of dW/d.Ecm = -0.31. 

According to eqs. 2.3- 2.11, a good matehing between the entrance-channel and 

many non-elastic channels for J> J er( U) leads to strong absorption, and increases 

the absorption by WF for J< Jy.l. too, due to non-negligeable contributions of 

terms B (and C) in addition to A in eq. (2.6). The absorption of apart of the flux 

from the entrance-channel into non-elastic-channels due to direct coupling 

enhances the total fusion cross section. In the actual calculations contributions to 

F of eq. (2.14) due to terms B (and C) of surface type are simulated as the 

difference between F for rF=l.6 fm, K=5 10-3 and rF=1.35 fm K=5 10-3. The 

improved agreement with lOB+ 160 total fusion data [11] is shown in fig. 9 b. 

5. Conclusions 

The present optical model description of light heavy-ion fusion takes into account 

properties of the compound-nucleus, characteristics of the entrance-channel and 

of the reaction dynamics, in a way consistent with general constraints of the 

unified theory of nuclear reactions. The basic quantities in the expression of the 

fusion cross section (and the fusion transmission coefficients) are the imaginary 

fusion potential and the wave functions generated by the total optical potential 

in the entrance-channel. 

Over a broad energy range, a competition between direct processes and total 

fusion of approximately mass-symmetric light systems mainly occurs for angular 

momenta corresponding to the relatively low level-density region on the left 

hand side of the Yrast line ofthe compound-nucleus. In this paper the compound

nucleus effects in the formal expression of the entrance-channel optical potential 
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are treated in first-order approximation. This leads to a proportionality of the 

imaginary fusionpotential with both the Ievel density of the compound-nucleus 

and with the sum of dynamical terms which determine the relative importance of 

elastic and non-elastic fusion mechanisms. These depend on entrance-channel 

characteristics, i.e. the direct coupling-strength and the matehing with non

elastic channels. 

While the elastic-fusion dynamical term seems tobe reasonably weil described in 

a macroscopic way, the non-elastic fusion terms require further consideration of 

the direct reaction dynamics and the nuclear structure of the contributing non

elastic channels. 

12C + 12C 12C + 14N lOB+ 160 and 160 + 160 total fusion excitation functions ' , 

have been calculated for Ecm < 120 MeV. Both the total optical potential and the 

dynamical fusion terms are treated in a phenomenological procedure. The 

analysis of the trend of experimental fusion excitation functions using classical 

level-density expressions reveals clear evidence for a decrease of the level

density parameter from a-::::::.A/7 for c-::::::.3 MeV/A to a-::::::.A/10 at c=5 MeV/A for 

A = 24-32 nuclei,. 

Special attention has been paid to the analysis of the relation between the 

properties of light heavy-ion fusion cross sections and specific properties of the 

level density of highly excited light compound-nuclei. A realistic level-density 

model, taking into account the finiteness and the excitation energy dependence of 

the mean-field nuclear potential, and the finite life-time of the highly excited 

compound-nucleus, gives a reasonable description of experimental data. Large 

scale combinatOrial calculations of excitation energy, angular momentum, parity 

and isospindependent Ievel densities of24Mg, 26Al and 32 S at excitations below 

5 Me VIA were performed on the basis of a simplified, nevertheless realistic 

version of the level-density model. Effects of residual interactions are 

phenomenologically taken into account. It is found that parity is not uniformly 
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distributed and structures are present in the calculated micro-canonical level 

density ofhighly excited lightnuclei. 

Fusioncross section calculations which treat exactly angular momentum, parity 

and isospin conservation, and use combinatorial level densities give a good 

description of both global and detailed properties of experimental fusion 

excitation functions. The fusion oscillations of the special 12C + 12C and 

160 + 160 systems with spin-zero identical ions are weil reproduced. Distinct 

oscillations, correlated with the structures in the level density of the compound

nucleus, are predicted at high energies. These structures are weakened, but 

remain in the calculated fusion excitation function of 12C + 14N. The rather large 

. channel spin of the lOB+ 160 system makes the fusion excitation function 

insensitive to the structures in the level density ofthe 26Al compound nucleus. 

The anomalaus behaviour of the lOB+ 160 fusion cross sections at moderate 

energies is attributed to a substantial contribution of non-elastic fusion, 

consistent with specific entrance-channel properties ofthis system. 

A microscopic derivation of the radial, angular momentum and energy 

dependence of the dynamical fusion terms and a simultaneaus description of 

elastic scattering, total fusion and direct cross sections over a broad energy 

range, with better consistency within a detailed optical model formalism, are 

desirable. This would lead to a precise treatment of the fusion dynamics. Then, 

more accurate information on the properties ofhighly excited light nuclei at high 

angular momenta could be obtained from the detailed study of fusion cross 

section excitation functions. 
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Editorial Remark 

Through a tragic accident the author ofthis work, 1991/92 guest scientist in KfK 

and collaborator with our insitute, passed away in March, 16, 1994. The edition of 

his final work, prepared for publication, follows the original draft and the left 

suggestions of changements. The final version is prepared by H. Rebel, with 

helpful advices of H. H. Wolter. 
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IN MEMORIAM KARL-WILHELM ZIMMER 

In 16th of March 1994 Karl-Wilhelm Zimmer passed away through a tragic 

accident whose background features withdraw from simple explanation and 

arguing. The message ofhis death in Cologne has petrified us all, his friends and 

colleagues in Romania, Germany and abroad. It appeared just when we hoped 

that he will soon integrate in Germany and is going to find a new field for his 

scientific talent. 

Karl-Wilhelm Zimmer was born in October 13, 1951, in Agnita (near Sibiu), 

Romania. He studied physics at the University of Bucharestand completed his 

diploma, and then his Ph. D. with a doctoral thesis on the subject: "State and 

Level Densities of Highly Excited Nuclei" in 1987 in the Institute of Atomic 

Physics of Bucharest under the scientific guidance of Marin Petrascu. From 

1975-1993 he has been appointed scientist in this institute, finally as scientific 

researcher in the Department of Heavy Ion Physics. Since 1990 he has been the 

leading scientist of a research group performing experimental spectroscopy of 

high-energy cosmic ray muons. This research was related to an international 

collaboration research project (KASCADE in Kernforschungszentrum 

Karlsruhe), which is focused to observation of cosmic ray induced extensive air 

showers. In May 1993 he left the Institute of Atomic Physics ofBucharest in view 

ofemigration with his family to Germany. 

His scientific interests span the horizon of atomic and nuclear physics problems, 

specifically with an improved understanding of formation and decay of the 

compound nucleus and the level density of highly excited nuclei. In addition he 

developed dedicated particle detection techniques and contributed to the 

technical achievements of Bucharest tandem and postacceleration system. In 

1987 he received the Dragomir-Hurmuzescu prize of the Romanian Academy of 

Sciences. Finally, distinctly changing the research field, in a situation and period 

when most among us would have had avoided any personal risk, he took the 

responsibility in establishing an astrophysically motivated research project, 

exploring experimentally the spectroscopic response of an electromagnetic 

calorimeter to high-energy cosmic ray muons. He did so since he had obviously 

recognized the chance to extend the research possibilities of the institute to 

nonaccelerator particle physics, being embedded in a larger international 

collaboration. His courage following this view deserves our respect and 

admiration. 
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When he decided to emigrate to Germany where he had many relatives living, 

this decision has not been easy for him. He discussed the arguments and the 

implications for the research project in a fair way with his friends and 

collaborators. Born in Romania, the country which he loved as his home of 

childhood, education and sturlies and where he married and his son was born, and 

being from German origin he feit hirnself as a mediator, pointing to the common 

roots of our culture, cultivating mutual respect and understanding of different 

mentalities. He could suffer very much from realizing small-minded thinking 

and discriminating behaviour, distorting a common responsibility for the reality 

to accuses of the neighbours. It might have been the tragedy of his life that his 

modesty was too reluctant to expresshispersonal suffers to helping friends. 

In Karl-Wilhelm Zimmer we have lost a highly respected scientist, a kind 

colleague and a dear friend. 

(H. Rebel) 



i 

L : 
·~--v --.""),.< ,..... I ...... ~·.~~. __ . 

,,1· 


	Blank Page

