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Abstract 

The first version of the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) 

is described that is designed to simulate dynamical szenarios of the atmosphere between 

10 and 100 km Altitude on the global scale. Idealized transport processes based on these 

seenarios can also be investigated. 

This nwJel pruvide~:> the fundamentals of an entire modelsystem that is currently in 

development at the research centre Karlsruhe. This purpese of this modelsystem is the 

interpretation of measurernents of trace gas distributions in the middle atmosphere. 

The development of the numerical scheme based on the meteorological set of the 

primitive equations is described in detail. The physical parameterizations applied to 

force the model are described briefly. The appendix repeats some general mathematical 

relations used in the body of the manual and a cross reference of the most important 

modules of the model. 

Das Karlsruher Simulationsmodell der mittleren At­

mosphäre KASIMA, Version 1 

Zusammenfassung 

Die erste Version des Karlsruher Simulationsmodells der mittleren Atmosphäre (KASIMA) 

ist beschrieben, das entwickelt ist, dynamische Szenarien der Atmosphäre auf globaler 

Skala zwischen 10 und 100 km Höhe zu simulieren. In idealisierter Weise können auch 

damit verbundene Transportprozesse studiert werden. 

Dieses Modell bildet die Basis für ein am Forschungszentrum Karlsruhe in Entwick­

lung befindliches Modellsystem, mit dem Interpretationen von Spurengasmessungen in 

der mittleren Atmosphäre durchgeführt werden sollen. 

Die Ableitung der numerischen Methoden zur Integration des meteorologischen Grund­

gleichungssystems ist detailliert beschrieben. Die augewandten physikalischen Paramete­

risierungen sind nur in ihrer numerischen Implementierung wiedergegeben. Im Anhang 

werden allgemeine mathematische Relationen wiederholt, die im Textteil wichtig sind. 

Außerdem wird eine Liste der wichtigsten Module des Modells bereitgestellt. 
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1 lntroduction 

This manual contains a technical description of the 3-dimensional global spectral prim­

itive equation model KASIMA (KArlsruher Simulationsmodell der Mittleren Atmosphäre, 

KArlsruhe Simulationmodel of the Middle Atmosphere) of the Institut für Meteorologie 

und Klimaforschung, Forschungszentrum Karlsruhe. Its use is primarily for scientists who 

intend to work with the model either by application or by development. 

Section 2 develops the meteorological equations from the set of partial differential 

equations to the finite difference scheme used in the model. Section 3 describes the 

algorithm used to transport a set of idealized tracers by the model atmosphere. Section 

4 describes the physical parameterizations used to drive the model. 
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2 The Meteorology 

2.1 Introduction 

This section develops the set of primitive equations as used in the model. Section 2.2 

introduces to the differential equations. Sectioll 2.3 Jevelovt; Lhe Ji.ITereuLial equatiow; a.t:i 

a series of coefficients of spherical harmonics. Section 2.4 describes the finite difference 

scheme used in the model and develops the finite difference equations. 

2.2 The Differential Equations 

The model is based on the full set of the primitive equations with a logarithmic pressure 

z as vertical coordinate. Following the notation of Holton [1975] the horizontal momen­

tum equation, the thermodynamic equation, the hydrostatic equation and the continuity 

equation are: 

Dilp ...... ...... ...... ...... 
Dt + f k X Vp + \1 p<I> - F = 0 (2.1) 

DT "" -+wT--Q=O 
Dt H 

(2.2) 

ß<I> RT 
ßz H 

(2.3) 

f; .iJ +I_ ßpow = 0 
P P Po ßz 

(2.4) 

Equation 2.1 can be decomposed into its zonal and meridional component yielding: 

Du (t u tan rp) 1 ß<I> F _ 0 -- + v+ -- >.-
Dt a a cos rp 8).. 

(2.5) 

Dv (t u tan rp) 1 ß<I> F, _ 0 -+ + u+--- -
Dt a aßrp ~ 

(2.6) 
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Instead of having two prognostic equations for the horizontal velocity vector components 

(equations 2.5, 2.6) two equivalent equations for the scalar quantities ( = k · VpXVp (the 

relative vorticity) and D = V p'Vp (horizontal divergence) can be obtained by applying 

k ·V P x and V P • on equation 2.1 From the horizontal momentum equation 2.1 in advection 

and flux form the following alternative sets of equations are derived: 

1. For the advection form it is convenient to rewrite the advection term in equation 

2.1 using equation A.22 or A.25: 

(2.7) 

The vorticity- and divergence equation thus become in advection form: 

(2.8) 

and 

(2.9) 

2. Equation 2.7 becomes for the momentum flux: 

(2.10) 

so that the vorticity and divergence equations become in flux form 

(2.11) 

and 
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2.3 The Spectral Representation 

The model is based on the vorticity equation 2.11 and the divergence equation 2.12 in flux 

form, the thermodynamic equation 2.2 in flux form, the hydrostatic equation 2.3, and the 

continuity equation 2.4. Equations for the spherical harmonic coefficients are obtained by 

multiplying the equations 2.11, 2.12, 2.2, 2.3, and 2.4 with P~(JL)e-tm>. and integrating 

over the sphere (see equation A.44): 

where 

m +1 27r [ l ß(n = _1_ J J _ 1 ßf{ V ßKu pm( ) -tm>.dA.d (F.) m 
at 47ra (1 - J.L2) a>.. + 8jL n J-l e J-l + ( n 

-1 0 

ßD~ 
at 

+1 27r [ l __ 1_ j j 1 ßKu ßKv pm( ) -tm>.dA.d 
47ra (1 - J.L2) a>.. + 8jL n J-l e J-l 

-1 0 

Dm + 2_ ßW~ = 0 
n Po ßz 

18WU 
Ku=-((+ !)V+ DU+ --

8
-

Po z 

18WV 
Kv = +(( + f)U + DV + --

8
-

Po z 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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1 oUT + ! oVT + _!_ oWT + wT ~ 
a(1 - p,2) o>.. a op, Po oz H 

1 oUT 1 oVT 1 oryWT 
a(1- p,2) o>.. + ~-0-p,- + -'YP-o _;_o_z- (2.20) 

In equation 2.20, 'Y is the conversion factor between the temperature and the potential 

temperature and is defined by equation A.12. 

Using equations A.41, A.45 and A.46 the vorticity equation 2.13 and the divergence 

equation 2.14 may be written: 

(2.21) 

oDm __ n 

ot 

(2.22) 

The equations 2.21, 2.22, 2.15, 2.16, and 2.17 are a complete set of equations for the 

modelvariables (~(t, z), D~(t, z), T~(t, z), <P~(t, z), and W~(t, z), 

In order to compute Ku(>.., p,, z), Kv(>.., p,, z), and Kr(>.., p,, z) in equations 2.21, 2.22, 

and 2.15 the values for ((>.., p,, z), D(>.., p,, z), and T(>.., p,, z) can immediately be obtained 

from the transformation equation A.43. U(>.., p,, z) and V(>.., p,, z) can be computed from 

equations A.7 and A.9 by means of A.39, A.41, and A.44 yielding: 

U = a f: t 1 [-imD~ P~(p,)- (~ H~(p,)] e~m>. 
n=Om=-nn(n + 1) 

(2.23) 

V= a ~ ~ 1 [Dm Hm(11.) - imrm pm(''·)] etm>. 
t:om~nn(n + 1) n n ,_., '>n n ,_., 

(2.24) 

6 2. The Meteorology 



The spherical harmonic coefficients of the horizontal fiux terms in equation 2.20 are com­

puted using equations A.45 and A.46: 

/+1/27f 1 (öUT(A, t-t) (1 _ 2) öVT) pm( ) -tm>..d)..d 
{1 - t-t2) ()).. + 1-t Of-t n 1-t e 1-t 

-1 0 

+127f 1 
j j ( 

1 
_ 2) ( imUT Pr;: (t-t) + VT Hr;: (t-t)) e-tm>.. d>-.dt-t 

-10 1-t 
(2.25) 

The first integral of the solution of equation A.4ö vanishes because all the terms Ku, 

Kv, and VT in the equations 2.21, 2.22, and 2.25 vanish for t-t = ±1. 

2.4 The Numerical Methods 

2.4.1 The Horizontal Truncation 

A fully triangular truncation scheme is used in the model: All series are truncated after 

the degree n = Nmax, suchthat 0::::; n::::; Nmax and -n::::; m::::; n. 

The integration with respect to ).. is clone on an equally spaced grid with at least 

Igrid = 3Nmax + 1 gridpoints [e.g. Machenhauerand Rasmussen, 1972]. 

The integrals with respect to t-t are computed using Gaussian quadrature. The Gaus­

sian grids are obtained from the zeros of the Legendre polynomial P~ .d, where N9rid is 
grt 

the nurober of gridpoints in meridional direction. The Gaussian weights !:lt-ti at gridpoint 

i are obtained from equation A.14 [e.g. Korn and Korn, 1968]). The integrals with respect 

to f-t are therefore approximated by: 

+1 Jgrid 

j X (t-t )dt-t = ~ X (t-ti) !:lt-ti 
-1 t=l 

(2.26) 

2.4.2 The Vertical Discretization 

The hydrostatic equation 2.16 is integrated vertically from the bottom to the upper 

boundary in order to compute the geopotential. If subscript k denotes the actual model 

layer, <.I>k is computed by: 

(2.27) 
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At the bottarn boundary the actual temperature and geopotential field is taken from the 

ECMWF consolidated dataset. These fields are interpolated linearily in time in order to 

be applied for the actual timestep. 

The continuity equation 2.17 is integrated downward from the upper boundary to 

the bottarn boundary in order to compute p0w. At the upper boundary it is assumed 

that w = 0: 

The vertical flux terms in 2.18, 2.19, and 2.20 are approximated by: 

where a = { U, V, 7T}. 

2.4.3 The Semi-implicit Time Integration Scheme 

The time integration scheme is adapted from the semi implicit scheme developed by 

Haltiner and Williams [1980]. All the terms that describe fast propagating internal gravity 

waves are treated implicitly, whereas for the other terms an explicit leapfrog scheme is 

applied. The terms being treated implicitely are the Laplacian of the geopotential in the 

divergence equation 2.22 and the vertical heat flux terms in the thermodynamic equation 

2.15. Consequently, the continuity equation and the hydrostatic equation have to be 

treated implicetely. One entire column of modellayers has to be computed simultaneously, 

because the continuity equation and the hydrostatic equation are integrated from the top 

to the bottarn boundary and vise versa, respectively. Therefore the equations have to be 

written in matrix form. Since the vertical velocity defined between two modellayers, the 

vertical grid is now defined as being twice as large as the vertical modellayers, where the 

vertical velocity is defined on odd gridpoints and the other variables are defined on even 

gridpoints. 

Because the Laplacian of the Geopotential is involved in the semi-implicit formulations, 

all derivations shown in this section have to be clone in terms of the spherical harmonics of 

the variables, which is straight foreward because of the linearity of the equations discussed 
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here. As long as subscripts in the equations describe the vertical modellayer considered, 

their meaning is changed for convenience in this section: even subscripts denote the 

variable is defined on the modellayer and odd subscripts denote their definition between 

the modellayer. 

The hydrostatic 2.27 and the continuity equation 2.28 can be written in matrix 

form with these conventions: 

(2.30) 

(2.31) 

In equations 2.30 and 2.31 the subscripts k and l denote the vertical model grid with 

1 ::; k, l ::; kgrid, where kgrid is the number of model layers and <I>% is specified from the 

lower boundary condition. 

From equations 2.27 and 2.28 the matrix equations 2.30 and 2.31 are explicitely: 

<I>2 1 0 0 0 0 T2 <I>s 

<I>4 2 1 0 0 0 T4 <I>s 

<I>6 Rb..z 2 2 1 0 0 T6 <I>s 
(2.32) -- + 

I 0 0 0 0 I I 0 
2H . . . . . . . . . . . . . . . . . ....... 

<I>2kgrid-2 2 2 2 1 0 T2kgrid-2 
<I>s 

<I>2kgrid 2 2 2 2 1 T2kgrid 
<I>s 

w1 Po2 Po4 Po6 P02kgrid-2 P02kgrid D2 

w3 0 Po4 Po6 P02kgrid-2 P02kgrid D4 

Ws 
= b..z 

0 0 Po6 P02kgrid-2 P02kgrid D6 
(2.33) 

. . . . . . . . 1 10 0 I 0 I I 0 0 0 0 0 0 0 0 I I 0 0 I 0 0 0 I 0 0 I I I 0 0 0 0 0 0 ........ 

w2kgrid-3 0 0 0 P02kgrid-2 P02kgrid D2kgrid-2 

w2kgrid-1 0 0 0 0 P02kgrid D2kgrid 

<l> 8 is specified from the lower boundary condition as: 

<I>s _ Rb..z T, <I> 
- 2H o + o (2.34) 

where T0 and <I>0 are the lower boundary temperature and Geopotential, defined one model 

layer below the lower boundary. 

2.4. The Numerical Methods 9 



The vertical heat flux terms are linearized for the purpose of the semi-implicit treat­

ment by separating the temperature: 

T(A, JL, z, t) = T*(z) + T'(A, JL, z, t) (2.35) 

The linearized part of the vertical heat ftüx I<Y, 

K* = _ _!___ a1VvT* _ DT* 
T "/Po az (2.36) 

is treated implicitely, whereas the nonlinear part is treated explicitely. Using equations 

2.29 equation 2.36 can be written in matrix form: 

(2.37) 

For k = k9rid, W2k+l = 0 and for k = 1, T; is taken from the reference temperature. 

The Laplacian of the geopotential can immediately be obtained in spherical har­

monic coefficients from equation 2.22: 

[V2 <I> ]m = n(n + 1) [<I> )m 
p 2k 2 2k n 

n a 
(2.38) 
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The semi-implicit Formulation of the divergence equation 2.22 and the thermody­

namic equation 2.15 can be derived with the matrix equations derived in this section. If 

the superscripts denote the timestep and the subscripts the vertical gridpoint, one obtains 

for the relevant terms of the divergence and thermodynamic equation: 

Dn+l nn-1 
k - k 

2/:lt 

T n+l Tn-l 
k - k 

2!:lt 

(2~8) v; ( q>k+l) + explicit terms 

(2~o) n2 (A rn+l + <Ps,n+l) + (:·~~) 
V p k,m m l 

(,". B T* ) (nn+I) (2.40) 
1 k,l l,m - k,m m + · · · 

(2.39) 

(2.40) 

In equation 2.39 the values for <I>k are taken frorn the lower boundary condition using 

equation 2.34. Solving equation 2.40 for TJ:+l and inserting the result into 2.39 gives an 

equation for Dk+1
: 

I T X ) nn+l 
~lk,l- k,l l + (Ik,t + Xk,t) D!-1 

+(2/:lt)v;Ak,m ( r~- 1 + (2/:lt) (:·~~)) 

where 

+(2/:lt)v; ( <I>~·n+l) 

( 
A ) (2.39) + 2ut · · · 

and h,1 is the identity matrix. 

2.4.4 The Finite Difference Equations 

(2.41) 

(2.42) 

A computational overview for the computation of one timestep is presented together with 

the finite difference equations in the following list: 

1. The spherical harmonics of the vorticity and the temperature of the the deviation 

from the reference temperature T' (see equation 2.35) of the actual timestep is 

2.4. The Numerical Methods 11 



transformed Oll gridpoints using equation A.43: 

Nma"' n 

((--\, J-L) = I: I: (~ P~(J-L)e~m>. (2.43) 
n=O m=-n 

Nma"' n 

D(A, J-L) = L L D~ P~(J-L)e~m>. (2.44) 
n=O m=-n 

Nma"' n 

T'(--\,J-L)= LI: T'~P~(J-L)etm>. (2.45) 
n=O m=-n 

2. The values of U, V, and W are computed at the actual timestep Oll gridpoints by 

means of equations 2.23, 2.24, 2.28 using the transformation A.43: 

U N~., ~ 1 [ . Dm pm( 1) rmHm( )] tm>. = a L..J L-1 ( ) -'tm n ~ n /J - .,n - n Jl e 
n=O m=-nn n + 1 

Nma"' n 1 
V= a L I: - [D~1H~(J-L) -im(~ P~(J-L)] etm>. 

n=O m=-nn(n + 1) 

Wk-o.s = Wk+o.s + Pokf:::,.zDk(A, J-L) 

(2.46) 

(2.47) 

(2.48) 

3. The non-linear terms Ku and K v used in the vorticity equation 2.21 and in the 

divergence equation 2.22 are computed for the actual timestep Oll gridpoints from 

equations 2.18 and 2.19 using 2.29: 

(2.49) 

K = (~'" f)U DV Wk+o.s(Vk+l + h)- Wk-o.s(Vk + h-1) 
V +."+ + + 2 A Pouz 

(2.50) 

4. With the separation of the temperature 2.35 and the implicit treatment of the 

vertical heat flux of associated with the reference temperature T* (see Section 2.4.3) 

the explicitely treated non-linear terms of the thermodynamic equation 2.15 Kr are 

computed using T' only in equation 2.20. The spherical harmonic coefficients (Kr')~ 

are then computed using 2.25 and A.6: 

1 J~I~d imUT' P~ (Jlj) + VT' H~ (J-Lj) -tm>.. A , A 
(Kr')~ = +- LJ LJ 2 e • U/\Ujlj 

47ra j=l i=l (1 - Jlj) 
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5. The vorticity equation 2.21 is solved explicitely. Using a leap-frog scheme and let 

the superscript t denote the timestep, one obtaines from equation 2.21: 

(2.52) 

6. The divergence- and thermodynamic equation arealready discussed in Section 2.4.3. 

The explicitely computed terms marked by · · · in equations 2.40 and 2.41 now 
I 

become: 

(2.39) 

(2.53) 

2.4. The Numerical Methods 13 





3 Transport of idealized Tracers 

3.1 lntroduction 

The behavor of middle atmospheric trace constituents is simulated entirely on the Gaus­

sian grid introduced in Section 2.4. 

Section 3.2 describes the algorithm that computes the flux divergencies of the prog­

nostic chemical variables. In this model, the transport algorithm is applied to a set of 

idealized tracers only that is described in section 3.3. In future versions of the model 

this algorithm will be applied to transport chemical active middle atmospheric trace con­

stituents. Their chemical sources and sinks will be simulated by a detailled chemical 

module. 

3.2 The Transport Algorithm 

The behavor of atmospheric trace constituents is simulated by integrating balance equa­

tions for their mixing ratios in time of the form: 

ßq =-V ·(v q) _ ~ ßpowq + 8 
8t P P Po ßz 

(3.1) 

where q and S denote the mixing ratio and the sources and sinks, respectively. 

The first two terms on the right hand side of equation 3.1 describe the horizontal and 

vertical flux divergence. When reduced to a one dimensional problem, the flux divergence 

is computed by 

ßuq fi+o.5 - fi-0.5 
- ~ ---'-----
ßx ~x 

(3.2) 

where f = uq is the flux of q, the subscript i is the actual gridpoint and ~x is the distance 

between the gridpoints. The flux f is computed using a two step flux corrected transport 

(FCT) algorithm introduced by Zalesak [1979]: 

15 



1. An 1. order upwind scheme from Courant et al. [1952]: 

(3.3) 

2. An antidiffusive step based on the difference between the Lax-Wendrof [Lax and 

Wendroff, 1960] and the 1. order upwind scheme multiplied by a limiter function 

<I>(r): 

JFC 
i+0.5 +0.5 (u·i+0.5 + lv·i-10.51) 'li + OJ) (uHo.s- lui+o.51) Qi+l 

. . . . I D.t, ,\ , , 
+<I>(ri+o.s)0.5lui+o.sl \1- D.x IUi+o.siJ {Qi+l - Qi) 

where the limiter function <I>(r) is given by Roe and Baines [1982]: 

<I>(r) = max (0, min(2r, 1), min(r, 2)) 

with 

The total flux is given by 

f JUP jFC i+0.5 = i+0.5 + i+0.5 

for ui+l 2:: 0 

for ui+l < 0 

3.3 Transport of idealized Tracers 

(3.5) 

(3.6) 

(3.7) 

With this version the transport of 4 idealized tracers is possible. The difference between 

these tracers is the initial condition, that is defined as follows: 

• The sine of geographic latitude 

e The pressure altitude in km 

• Ertel's potential vorticity of the initialization timestep 

• The potential temperature of the initialization timestep 

The tracers have no chemical sources or sinks. 
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4 Physical Parameterizations 

4.1 lntroduction 

The model is driven by the competetive action of the net heating rate and the effects 

of breaking gravity waves on the model atmosphere. A detailled description of their 

algorithms is given in Sections 4.2 and 4.3. 

4.2 The liadiation 

The net heating rate Q is obtained from the balance of the absorption of ultraviolet solar 

radiation by ozone in the stratosphere and molecular oxygene in the thermosphere and 

the infrared cooling. 

The absorption of ultraviolet radiation is parameterized by the scheme of Strobel 

[1978]. It takes into account the radiative heating by ozone absorption in the Hartley 

region (200-300 nm), Huggins bands (300-350 nm), and Chappius bands (450-750 nm). 

Above the mesopause, 0 2 absorption in the Schumann-Runge bands (175-205 nm) and 

the Schumann-Runge continuum (125-175 nm) is included. 

The parameterization is based on the computation of either constant or exponentially 

functions dependent on the wavenumber of the absorption cross sections and the solar 

fluxes. Same Parameters are modifies according to Apruzese et al. [1982]. The single 

absorption bands are parameterized by the following formulars: 

• The Chapius Bands: 

(4.1) 

with Fe= 3.7 x 105 ergs cm-2 s-1 and CJc = 2.85 x 10-21 cm2 . 

• The Hartley Region: 

~J = FHaCJHa exp( -CJHaNa) (4.2) 
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with FHa = 4600 ergs cm-2 s- 1 and aHa= 8.8 X 10~ 18 cm2. 

• The Huggins Bands: 

QHu = - 1-{(!1 + (/2- ft)exp(-aHuN3e-M>-,ong) 
(03] MN3 

(4.3) 

with lt = 59.2 ergs cm-2 s-1 A-I, /2 = 40.0 ergs cm-2 s-1 A-1, M = 0.0127 A-I, 

>.short = 2R05 A, Atong = 3055 A, and aHu = 0.0125 cm2. 

• The Herzberg Continuum: 

QHz = FHz {aHz(02)[02] + C1Hz(03)[03]} 

exp(-aHz(02)N2- C1Hz(03)N03] (4.4) 

with FHz = 1.2 X 103 ergs cm-2 s-1, C1Hz(02) = 6.6 X w-24cm2, and C1Hz(03) = 

4.9 X 10-18cm2 • 

• The Schumann-Runge Continuum is computed in two terms: 

Qsnc 
(02) 

(4.5) 

with Fsnc = 1.1 ergs cm-2 s-1, asnc = 10-17cm2, fJ = 3.43 ergs cm-2 s-I, 

Jj = 1.35 ergs cm-2 s-1 , CJt = 2.9 X 10-19cm2', CJm = 1.7 X 10-18cm2, and CJ8 

1.1 X 10-17cm2. 

• The Schumann-Runge Bands: 

QsnB { 1/(aN2 + bN~·5 ) for N2 ;::: 1018 cm-2 

(02] = 2.43 X w-19ergs s-1 for N2 < 1018 cm-2 (4.6) 

with a = 0.67, and b = 3.44 x w-19 (in cgs units). 

In the equations 4.1-4.6 N2, N3 , (02), and (03] denote the colmumn densities and 

concentratopns of 0 2 and 0 3, respectively. The heating rate due to the absorption of UV 

radiation Quv is then computed by the sum of equations 4.1-4.6: 

(4.7) 

The cooling rates due to infrared radiation are parameterized in two steps: 
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1. An only vertical and time dependent term being equal to the global mean value of 

Quv: 

1 +127r 

QIR1 (z, t) = -
4

7r j j Quv(A, p,, z, t)d>.dp, (4.8) 
-1 0 

2. A Newtonian Cooling Term of the form: 

QIR2 (z, t) = -a(z){T(A, p,, z, t) - T*(z)} (4.9) 

v,rhara fhn l\Jnnrf"Dl,""' """l;nn' ror-.roffinl',-.nt r>o( 7:}\ 1'~ f.~l1\.rp 1n1 f1~uAilll V ~.LVL V U.LJ.V .1. \..J VV UV .l U..U. VVV .1J..l5 \.JV{J.l \... 'CI.l.l ..__... \,._.. ._, vLU ...., Wehrbein and Leovy 

[1982]. 

4.3 The Effects of Breaking Gravity Waves 

The effects of gravity waves are implemented according to the theory of breaking grav­

ity waves of Lindzen [1981]. Lindzen applied the theory of internal gravity waves on a 

basic fiow with weak vertical shear compared to the vertical component of the gravity 

wavenumber vector in an atmosphere with constant static stability. With these assump­

tions a simplified set of the primitive equations 2.1-2.4 describing internal gravity waves 

can be solved analytically. From the solution the following quantities relevant for the 

parameterization scheme can be derived [Holton, 1982]: 

• The breaking level Zb is computed from the assumption of momentum and energy 

conservation of an undamped gravity wave leading to an increase of wave amplitude 

with height due to the decrease of density. Assuming a non-zero vertical momen­

tum fiux of the gravity wave, the static becomes locally unstable at some altitude 

resulting in convection. This breaking level is computed by: 

where 

z = 3Hln (Iu- cl) 
b - ' u 

( 
_ N)l/3 

u = 2 u'w' k 

(4.10) 

(4.11) 

is a measure of wave amplitude, u is the component of the horizontal basic fiow 

parallel to the horizontal wavenumber vector, u'w' is the vertical momentum fiux 

devided by the basic state density p0 , k is the absolute value of the horizontal wave 

number vector and c is the phase velocity of the gravity wave. 
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• The critical level is the level where the component of the basic flow parallel to the 

wavenumber vector is equal to the phase velocity of the gravity wave. 

• Between the breaking and the criticallevel the convection processes are parameter­

ized by vertical diffusion D and an force per unit mass F parallel to the horizontal 

wavenumber vector: 

D = k(ü- c)
4 r-1- _ ~ 8ü/8z1 

N 3 2H 2 ü- c ' 
~ -

N 2D 
F=--

- ' u-c 

where k is the absolute value of the horizontal wavenumber vector. 

(4.12) 

(4.13) 

The parameterization scheme described above is actually implementedas follows: 

• The vertical momentum flux is an analytical function of the phase velocity and 

direction of the horizontal wavenumber vector: 

(4.14) 

where (u'w') = 10-3 rn2
/8

2 c = 8 rn/8 cos (} and a = . fa 2 + a 2 with a = 0 ,o ' yx y x 

25 rn/ 8 cos B, and ay = 20 rn/ 8 sin B, is. (} is the angle towards east of the horizontal 

wavenumber vector. 

• The absolut value of the horizontal wavenumber vector is constant: 

k = 21f 
120 krn 

(4.15) 

• A spectrum of 12 independent gravity waves is implemented with three phaseveloc­

ities (8, 16, and 41 m/s) and four directions of the horizontal wavenumber vector 

pointing to the four cardinal points. 
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A Mathematical Symbols and Relations 

A.l List of Symbols 

a Rauius uf Lhe earLh (u = G3GG km) 

Cp Specific heat of dry air at constant pressure ( cp = 1005 J kg- 1 K-1) 

D Horizontal divergence 

Da 
Dt 

f 

D 
~ ~ --.12 
\1 p'Vp = \1 pX 

1 8u 1 8v cos <p ---+-----
a cos <p 8 >. a cos <p 8<p 

1 8U 18V 
--;------::-:--+--
a(1 - J-L2) 8>. a 8J-L 

(A.1) 

time rate of change of a following the motion 

l.The advection form: 
Da 8a _, .... 8a 
- -+v ·\l a+w-
Dt 8t P P 8z 

8a u 8a v 8a 8a -+ -+--+w-
8t a cos <p 8). a 8<p 8z 

8a U 8a V 8a 8a -+ -+--+w- (A2) 
8t a(1 - J-L2 ) 8). a 8J-L 8z · 

2.The flux form is obtained using equation 2.4: 

Da 8a n (_, ) 1 8p0wa - -+v ·Va +---
Dt 8t P P Po 8z 

-+ -+---8a 1 (8ua 8vacos <p) 
8t a cos ifJ 8 >. 8<p 

1 8p0wa +---
Po 8z 

8a 1 8Ua 18Va 1 8p0wa 
ßt + a(1- J-L2 ) ß>: +-;;, 8J-L + p0 8z (A.3) 

Coriolis Parameter (! = 20 sin <p = 20J-L) 

23 



H 

fgrid 

T -"gnd 

kgrid 

.... 
J 

p 

Po 

T 

T*(z) 

Q 

R 

u 

u 

Additional forces in zonal and meridional direction, respectively 

F, = k · -QpxF 

Fv = -QP.p 

Atmospheric Scale Height (H = 7 km) 

No. of zonal 

No. of meridional gridpoints 

No. of modellayers 

Zonal unit vector 

Meridional unit vector 

Vertical unit vector 

Pressure 

Constant reference pressure (Po= 1013 hPa) 

Temperature 

Reference temperature (US-Standard Atmosphere) 

Net Heating Rate 

Gas constant of dry air (R = 287.04 J kg-1 K-1) 

Zonal component of velocity 

(A.4) 

(A.5) 

1 ox 1 aw 1 ox v'1 - JJ2 aw 
u = a cos <p 8>. - ~ ß<p = ay'1 - /J2 8>. - a OJJ (A.ß) 

u u cos <p 
1 ox cos <p 8\II 
-------
a 8>. a ß<p 
1 ßx (1- JJ2

) 8\II 
(A.7) ---

a 8>. a 0/J 
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V 

V 

iJ 

w 

w 

z 

X 

!:lt 

!:lz 

Meridional component of velocity 

V V cos <p 
cos l.fJ ax Ißw ---+--

a o<p a o"A 

(1 - p,2 ) äx 1 aw ...:..___:__:_ -- + --
a ßp, a 8).. 

(A.9) 

Three dimensional velocity vector ( iJ = ui + v] + wk) 

Horizontal velocity vector on pressure surface 

(A.lO) 

Vertical component of velocity 

W=pow (A.ll) 

Vertical coordinate (z = -H ln (P/Po)) 

Gonversion factor between temperature and potential temperature () = 
f'(z)T: 

!'(z) = exp ( ;;) (A.l2) 

Horizontalvelocity potential on pressure surface (see equation A.l) 

Timestep 

Distance between 2 model layers 

Distance between 2 zonal gridpoints 

f':l).. = 27f 
Igrid 

Gaussian weight at p, = P,i 

(A.l3) 

(A.l4) 
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Po 

Geopotential 

Geographicallatitude 

Ratio of gas constant over specific heat at constant pressure of dry air 

(~ = Rjcp) 

Geographical longitude 

A 1' J • 1• _ 1 _ 1" .L " ( \ A.nernate menmona1 coorumaLe ;.t - sm <p J 

J-1, = sin cp (A.15) 

Vertical component of velocity stream function (see equation A.16) 

Basic state densi ty (Po rv exp (-z I H)) 

Absolute value of angular velocity of the earth n = 21rday-1 

Angularvelocity of the earth 

Relative vorticity 

.,.,. _, -f -*2 
k · \1 p X Vp = \1 P W 

1 8v 1 8ucos <p 
--

a cos cp 8).. a cos cp 8cp 
1 8V 1 8U ----

a(1 - J-1,2 ) 8).. a 8J1, 

Absolute vorticity ( (a = ( + f) 

Gradient of a on constant pressure surface 

1 8a_, 1 8a .... 
---i+--j 
a cos cp 8).. a 8cp 

1 8a.... v'1 - 112 8a _, 
i + r j 

av'1 - J-1,2 8).. a 8J1, 

Divergence of ä = a>.i + a'PJ on pressure surface 

(A.16) 

(A.17) 

(A.18) 
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Vertical component of V X ä, ä = a>.i + acp] on pressure surface 

1 äa'P _ 1 Öa>. cos <p 

a cos <p 8).. a cos <p Öt.p 

1 äa'P 1 äa).. v".-1---f-J,-,...2 

av1 - JL2 8).. - ;;, ÖJL 
(A.19) 

Horizontal Laplacian of a on pressure surface 

(A.20) 

A.2 Vector Operations 

If A, iJ, C denote arbitrary three-dimensional vectorfields and a denotes an arbitrary 

scalar field, the following vector Operations apply (partly adapted from Haltiner and 

Williams [1980]). 

A. (B XC) (A X B). c 
(C X A). B 

A X (B X C) = (A. C)B- (A. B)C 

(A.21) 

(A.22) 
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V x Va - 0 

V·Vx1- o 

v. (a1) 

\7 x ( aÄ) - a V x Ä - Ä x "\7 a 

(A.23) 

'A "4' \ ,.<;, ) 

V(A. B) = (.4. '\?)B + (B. '\7)_4 + 1 X (V X B) + B X (V X 1) (A.25) 

V . ( 1 X B) = B . V X 1- 1. V X B (A.27) 

V X (1 X B) = 1v. B- BV. 1 + (B. V)1- (1. V)B (A.28) 

V X (V X 1) = V(V. 1) - V2 1 (A.29) 

Let A = A1/J + Ax, where V x 1x = 0 and V · A1/J = 0, then: 

1x = V X , 11/1 = -V x 1$ 
V2x = V · Ax = V · 1 , V21$ = V x 11/1 = V x 1 (A.30) 
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A.3 The Spherical Harmonics 

The associated Legendre polynomials Q":(~-t) can be computed by: 

(A.31) 

for (-1 < p, < 1), n = 0, 1, 2, · · · ... , and -n ~ m ~ n [Korn and Korn, 1968]. F' is the 

hypergeometric series defined by 

F(a,ß,{,f-t) = 1 a·ß a(a+1)ß(ß+1) 2 

+r.-:y~-t+ 1·2·r{r+1) 1-L + ... 

a(a + 1) .. · (a + n)ß(ß + 1) .. · (ß + n) n+l 
+ 1 2 I , 1' / . • \ I ' J-t +'" 

j_ • .... • ~n -t- J'ITI' -t- l) · .. t'Y + n) 
(A.32) 

[e.g. Bronstein and Semendjajew, 1975]. The non-normalized Q":(~-t) defined by equation 

A.31 satisfy the following recurrence relations [Korn and Korn, 1968]: 

Combining A.33 and A.34 yields: 

( 1 _ ~-t2 ) dQ~~I-t) = _ n(n2~:; 1) Q:+l (~-t) 

(n+1)(n+m)Qm () 
+ (2n + 1) n-l 1-t 

(A.33) 

(A.34) 

(A.35) 

The norm ynm of Q":(~-t) is obtained from the orthogonality relation: 

(A.36) 
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ym= 
n 

1 (n+m)! 
2n + 1 (n- m)! 

(A.37) 

Hereafter and throughout the text of this document P~(J.t) refers to the normalized as­

sociated Legendre polynomial: 

pm( ') = Q~(J.t) 
n ,{t ym 

n 
(A.38) 

Equation A.35 becomes for the normalized associated Legendre Polynomials P~(J.t) using 

equation A.37 and A.38: 

um(tt\ 
.L.Ln r--J 

where 

(A.39) 

(A.40) 

The spherical harmonics of degree n and order m P~(J.t)etm.>. are solutions of the differ­

ential equation: 

(A.41) 

They obey the orthogonality relation (using A.36): 

+12n 

:1f I I P~(J.t)etm.>. P7(J.t)e-tk.>.dAdJ.t = okol (A.42) 
-1 0 

Any steady and differentiahte field on a sphere can be developped in an infinite series of 

spherical harmonics: 

oo n 

X(>., J.t) = L L x: P~(J.t)etm.>. (A.43) 
n=Om=-n 
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where the complex coefficients X;:" are given by: 

+121!" 

X;:"= 4~ j j X(A, JL)Pr:!(JL)e-zm>.d).dJL 
-1 0 

Some properties of spherical harmonics are derived below: 

r
ßX(>., p.) l k 

- a>. t 

00 n [ +1211" ] ]_" ) imXm { { pm(II)Pk(,,)ezm>.e-zk>.rJ).d,, 
L-t ~ " - - n 1 J - n r - l r ~~ · r 

47T -o - . n- m--n _ 1 0 

ikX1k 

1 +121!" 

4
7T j j ikX (>., J--L)Pf(J--L)e-zk>.d).df-L 

-1 0 

(A.44) 

(A.45) 
' I 

Integration by parts (i.e.: J f'(x)g(x)dx = f(x)g(x) - J f(x)g'(x)dx), with f(JL) 

X(>., JL) and g(JL) = P;::(JL) yields using A.39 

[
ßX(>., JL)l m 

ßjL n 

+121!" 

(A.44) _l_jjßX(>., JL) pm(JL)e-zm>.d>.dJL 
47T ßjL n 

-1 0 

21!" 

(A~9) + 2~ J [X(>., JL)Pr:!(JL)]~~~i e-zm>.d). 
0 

(A.46) 
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B Module Overview 

B.l Naming Conventions 

In order to obtain a quick overview on the specific task or a certain component a single 

subroutüw uf i,he mudel belongs to, the first two letters of a subroutine name are attempted 

to satisfy the following conventions: 

eh... a chemical module 

di... a diagnostic module 

dy... a dynamical module 

rd... a radiation module 

pl... a plotprogram, interface to the commercial graphic software 

The following sections provide an overview of the most importent modules of the 

model. 

B.2 Internal Modules 

Module CHEMIE Main entry to compute chemistry (see section 3) 

Module CHTRAC computes the transport of idealized tracers (see section 3.3) 

Module DFLUXX computes the flux through the boundary on the merdional plane 

between the actual gridpoint and the adjacent westard gridpoint according to the algo­

rithm described in section 3.2. 
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Table B.l: Parameter List of module dfluxx 

Name Type Description 

wert real*8 3-D array on the model grid of the quantity 

to be transported (Input) 

flux rea1*8 3-D array on the model grid of the flux of 

the quantity through the boundary between 

the two gridpoints (Output) I 
ddt real*8 Timestep used for the actual iteration 

(Input) 

Module DFLUXY computes the flux through the boundary on the height-longitude 

plane between the actual gridpoint and the adjacent southward gridpoint according to 

the algorithm described in section 3.2. 

Table B.2: Parameter List of module dfluxy 

Name Type Description 

wert real*8 3-D array on the model grid of the quantity 

to be transported (Input) 

flux real*8 3-D array on the model grid of the flux of 

the quantity through the boundary between 

the two gridpoints (Output) 

ddt real*8 Timestep used for the actual iteration 

(Input) 

Module DFLUXZ computes the flux through the boundary on the horzontal plane 

between the actual gridpoint and the adjacent downward gridpoint according to the al­

gorithm described in section 3.2. 
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Table B.3: Parameter List of rnodule dfluxz 

Name Type Description 

wert reah8 3-D array on the rnodel grid of the quantity 

to be transported (Input) 

flux reah8 3-D array on the rnodel grid of the flux of 

the quantity through the boundary between 

t.he two gridpoints (Output) 

ddt real*8 Tirnestep 1 p the actual iteration usea ror 

(Input) 

Module DIFEDD computes the eddy diffusion due to breaking gravity waves 

Table B.4: Parameter List of module difedd 

Name Type Description 

wert real*8 3-D array on the model grid of the quantity 

to be diffused (Input) 

diff real*8 3-D array on the model grid of the effekts 

of eddy diffusion of wert (Output) 

wabove real*8 Upper boundary of wert (Input) 

Module DIFMOL computes molecular diffusion 

Table B.5: Parameter List of module difmol 

Name Type Description 

wert real*8 3-D array on the model grid of the quantity 

to be diffused (Input) 

diff real*8 3-D array on the model grid of the effekts 

of diffusion of wert (Output) 

wabove real*8 Upper boundary of wert (Input) 

Module DY2HNM computes the nonlinear terms of equations 2.51-2.54 due to the 

function H";(J-t) defined by equation A.39. 

Module DY2PNM computes the nonlinear terms of equations 2.51-2.54 due to the 

normalized associated Legendre polynomials P";(J-t) defined by equation A.38. 
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Module DYEXPL initegrates the divergence- and thermodynamic equation 2.14 and 

2.15 using the explicit leapfrog scheme (numerics not documented). Can be used alterni­

tatively to module dyimpl 

Module DYGRAV Main entry to compute the gravity wave parameterization de­

scribed in section 4.3. 

Module DYH2G computes the transformation of the prognostic variables to gridpoints 

in equations 2.46 and 2.47 due to the function Hr;:(f.L) defined by equation A.39. 

Module DYHv:IPL integrates the divergence- and thermodynamic equation as de­

scribed in section 2.4.3. 

Module DYLOWB establishes the lower boundary condition for temperature and 

geoptential. 

Module DYNMIK is the main entry for integration of the primitive equations. 

Module DYS2G computes the transformation of the prognostic variables to gridpoints 

in equations 2.43-2.47 due to the normalized associated Legendre polynomiais Pr;,:(M) 

defined by equation A.38. 

Module DYVBEW integrates the contiunuity equation 2.48. 

Module DYVORT integrates the vorticity equation 2.52. 

Module DYWFLX computes the vertical flux divergences (equation 2.29). 

Module GRAVTY computes the gravity wave parameterization (section 4.3). 

Module STRATO Main entry of the entire model. 
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Module RADIA Main entry to cornpute the net heating rate. 

Module RADSS Entry to cornpute the net heating rate as described in section 4.2. 

Module RDOOOl cornputes the heating rate due to UV absrorption as described in 

section 4.2. 

Module RD0002 cornputes the IR cooling by the Newtonian cooling algorithrn as 

described in section 4.2. 

B.3 General Purpose and Diagnostic Modules 

Module ALEGR8 cornputes the full triangle of function values of the associated Leg­

endre polynomials P":(J.t), 0 :::; n :::; Nmax, and -n :::; m :::; n based on the recurrence 

relation A.33 starting with 

(B.l) 

where the notation n!! denotes the product of all odd integers less than or equal to n 

[Press et al., 1988). 

Table B.6: Parameter List of module alegr8 

Name Type Description 

nmax integer Maximum degree of the associated Legendre 

Polynomials (Input) 

nvalue integer Number of independent Variables (Input) 

xeval real*8 Array of independent Variables of length 

nvalue (Input) 

yeval real*8 Array of normalized associated Legendre 

polynomials with the structure 

real*8 yeval(nvalue, O:nmax, O:nmax) 

(Output) 

continued on next page 
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Table B. 6, continued from previous page 

Name Type Description 

ynorm real*B Array of the log of the norm of the associ-

ated Legendre polynomials with the struc-

ture 

real*B ynorm(nvalue, O:nmax, O:nmax) 

(Output) 

Module DICURL computes the curl, the streamfunction, and the rotational compo­

nent of a vectorfield on one horizontal model layer by means of the spectral transform 

technics. 

Table B. 7: Parameter List of module dicurl 

Name Type Description 

xinp reah8 zonal component of the vectorfield times 

cos <p on the grid of one horizontal model 
1 /T '\ 1ayer ~mpmJ 

xinp reah8 meridional component of the vectorfield 

times cos <p on the grid of one horizontal 

modellayer (Input) 

curl complex*16 Curl of the input vectorfield m terms of 

spherical harmonics of one model layer 

(Output) 

xsol real*8 zonal component of the rotational compo-

nent of the vectorfield times cos <p on the 

grid of one horizontal modellayer (Output) 

ysol reah8 meridional component of the rotational 

component of the vectorfield times cos <p 

on the grid of one horizontal model layer 

(Output) 

strm complex*16 Stream funcion of the input vectorfield in 

terms of spherical harmonics of one model 

layer (Output) 

continued on next page 
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Table B. 7, continued from previous page 

Name Type Description 

furi complex*16 Workspace in terms of Fourier coefficients 

of one modellayer (Output) 

Module DIDICK computes the thiclmess in geometric meters between the actual 

modellayer and the layer below. 

Table B.8: Parameter List of module didick 

Name Type Description 

gitter real*8 thickness in geometric meters between the 

actual model gridpoint and the gridpoint 

below (Output) 

Module DIDIVG computes the divergence, the scalar potential, and the divergent 

component of a vectorfield on one horizontal modellayer by means of the spectral trans­

form technics. 

Table B.9: Parameter List of module didi vg 

Name Type Description 

xinp real*8 zonal component of the vectorfield times 

cos rp on the grid of one horizontal model 

layer (Input) 

xinp real*8 meridional component of the vectorfield 

times cos rp on the grid of one horizontal 

modellayer (Input) 

divg complex*16 Horizontal divergence of the input vector-

field in terms of spherical harmonics of one 

modellayer (Output) 

xdiv real*8 zonal component of the divergent compo-

nent of the vectorfield times cos rp on the 

grid of one horizontal modellayer (Output) 

continued on next page 
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Table B.9, continued from previous page 

Name Type Description 

ydiv reah8 meridional component of the divergent com-

ponent of the vectorfield times cos rp on the 

grid of one horizontal modellayer (Output) 

potf complex*16 Scalar potential of the input vectorfield in 

terms of spherical harmonics of one model 

layer ( Oui,put) 

furi complex*16 Workspace in terms of Fourier coeffi.cients 

of one modellayer (Output) 

Module DIERTL computes ErtePs potentiai vorticity on a 3-D modei grid 

Table B.lO: Parameter List of module diertl 

Name Type Description 

ertel reah8 Ertel's potential vorticity on model grid 

Module DISTAG computes the geopotantial from the hydrostatic equation (2.3) 

Table B.ll: Parameter List of module distag 

Name Type Description 

spharm reah8 3-D Geopotential on the model structure of 

spherical harmonics (Output) 

furier reah8 3-D Geopotential on the model structure 

Fourier coefficients (Output) 

gitter reah8 3-D Geopotential on the model grid 

(Output) 

Module DTSEC computes the difference between two dates in seconds where the dates 

are given in year, day of the year, and seconds of the day 
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Table B.l2: Parameter List of module dtsec 

Name Type Description 

dat1 integer Array of length 3 containing the first date 

(year, day of the year, seconds of the day) 

(Input) 

dat2 integer Array of length 3 containing the second date 

(year, day of the year, seconds of the day) 

(Input) 

delta real*8 Difference between dat2 and dat 1 in sec-

onds (Output) 

rviodule MATADJ computes the adjunct of a matrix 

Table B.13: Parameter List of module matadj 

J Name J Type I Description 

atrix real*8 Input 

Matrix structured real*8 atrix(norder, 

norder) (Input) 

adjrix real*8 Matrix containing the log of values of 

the adjunct matrix structured real*8 

adjrix(norder, norder) (Output) 

adjsgn real*8 Matrix containing the sign of values of 

the adjunct matrix structured real*8 

adj sgn (norder, norder) (Output) 

wrkrix real*8 Workspace structured real*8 

wrkrix(norder-1, norder-1) (Output) 

norder integer Dimension of matrices (Input) 

knr integer Identification of caller (Input) 

Module MATDET computes the determinant of a matrix 
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Table B.14: Parameter List of module matdet 

Name Type Description 

atrix real*8 Input 

Matrix structured real*8 atrix(norder, 

norder) (Input) 

norder integer Dimension of matrices (Input) 

detl real*B log of determinant of atrix (OuLpuL) 

dets real*8 sign of determinant of atrix (Output) 

knr integer Identification of caller (Input) 

Module MATINV computes the inverse of a matrix 

Table B.15: Parameter List of module matinv 

Name Type Description 

atrix real*8 Input 

matrix structured reaH8 at:tix (norder, 

norder) (Input) 

invrix real*8 Matrix containing the inverse of 

atrix structured real*8 adjrix(norder, 

norder) (Output) 

vrkrix, real*8 Workspaces structured real*8 

wrkrix ... rix (norder, norder) (Output) 

norder integer Dimension of matrices (Input) 

knr integer Identification of caller (Input) 

Module MATPRD computes the product of two matrices 

Table B.l6: Parameter List of module matprd 

Name Type Description 

amat real*8 First factor of matrix product structured 

real*8 amat(ndi, nd2) (Input) 

continued on next page 
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Table B.16, continued from previous page 

Name Type Description 

bmat real*8 Second factor of matrix product structured 

real*8 bmat (nd2, nd3) (Input) 

rmat reah8 Matrix containing 

the product amat·bmat structured reah8 

rmat (nd1, nd3) (Output) 

nd1, nd2, nd3 integer Dimension of matrices (Input) 

B.4 I/0 Modules 

Module BUFIN reads one record from a sequantial unformatted dataset 

Table B.l7: Parameter List of module bufin 

Name Type Description 

arr real*B Array of length ndim to which the data is 

read (Output) 

ndim integer Number of 8 byte words tobe read (Input) 

nunit integer FORTRAN unit number of the dataset to 

be read (Input) 

npos integer unused 

ndump integer unused 

knr integer Key to identify the call of buf in 

Module BUFOUT writes one record to a sequantial unformatted dataset 

Table B.18: Parameter List of modulehufout 

Name Type Description 

arr reah8 Array of length ndim of which the data is 

written (Output) 

continued on next page 
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Table B.18, continued from previous page 

Name Type Description 

ndim integer Number of 8 byte words tobe read (Input) 

nunit integer FORTRAN unit number of the dataset to 

be read (Input) 

npos integer unused 

ndump integer unused 

knr integer Key to identify the call of buf out 

Module CLSBUF closes a dataset for sequential I/0 

Table B.l9: Parameter List of module clsbuf 

Name Type Description 

nunit integer FORTRAN unit number of the dataset to 

be closed (Input) 

Module CLSDIR closes a dataset for direct access I/0 

Table B.20: Parameter List of module clsdir 

Name Type Description 

nunit integer FORTRAN unit number of the dataset to 

be closed (Input) 

Module READST reads one record from an unformatted direct access dataset 

Table B.21: Parameter List of module readst 

Name Type Description 

arr real*8 Array of length ndim to which the data 

record is read (Output) 

ndim integer Number of 8 byte words tobe read (Input) 

continued on next page 
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Table B.21, continued from previous page 

Name Type Description 

nunit integer FORTRAN unit number of the dataset to 

be read (Input) 

npos integer Number of record in the dataset identified 

by nunit 

ncon integer unused 

I knr integer Key to identify the call of readst 

Module WRITST writes one record to an unformatted direct access dataset 

Table B.22: Parameter List of module wri tst 

Name Type Description 

arr real*8 Array of length ndim of which the data is 

written (Output) 

ndim integer Number of 8 byte words to be read (Input) 
~"""--"""~" 

nunit integer FORTRAN unit number of the dataset to 

be read (Input) 

npos integer Number of record in the dataset identified 

by nunit 

ncon integer unused 

knr integer Key to identify the call of wri t st 
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