
Forschungszentrum Karlsruhe
Technik und Umwelt

FZKA 5649

Data Ad pter

G. Xie, M. Rafat
Institut für Neutronenphysik und Reaktortechnik
Projekt Nukleare Sicherheitsforschung

November 1995

Forschungszentrum Karlsruhe
Technik und Umwelt

Wissenschaftliche Berkhte

FZKA 5649

s s a r

Gang Xie*, Mamad Rafat**
Institut für Neutronenphysik und Reaktortechnik

Projekt Nukleare Sicherheitsforschung

*Institut of Nuclear Energy Technology

Tsinghua University, Peking (China)

**Fa. D.T.I. Dr. Trippe Ingenieurgesellschaft m.b.H., Karlsruhe

Forschungszentrum Karlsruhe GmbH, Karlsruhe

1995

This work has been performed with support of the European Commission,

DGXI-A-1, und er contract No. 94-PR-006

Als Manuskript gedruckt
Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH
Postfach 3640, 76021 Karlsruhe

ISSN 0947-8620

Abstract:

lntegrated data management is an essential aspect of many automatical informa

tionsystemssuch as RODOS, a real-time on-line decision support system for nucle

ar emergency management.

ln particular, the application software must provide access management to diffe

rent commercial database systems.

This report presents the tools necessary for adapting embedded SQL-applications

to both HP-ALLBASE/SQL and CA-Ingres/SQL databases.

The design of the database adapter and the concept of RODOS embedded SOL

syntax are discussed by considering some of the most important features of SOL

functions and the identification of significant differences between SOL

implementations.

Finally fully part of the software developed and the administrator's and installa

tion guides are described.

Anpassungssoftware für RODOS Datenbanken

Integriertes Datenmangement ist ein wesentliches Merkmal automatischer Infor

mationssysteme wie z.B. RODOS, einem Echtzeit On-line Entscheidungshilfesy

stem für den externen Notfallschutz nach kerntechnischen Unfällen. Insbesonde

re die Anwendungssoftware muß den Zugriff zu verschiedenen kommerziellen

Datenbanksystemen ermöglichen.

Der vorliegende Bericht beschreibt die notwendigen Hilfsmittel zur Anpassung

der SOL-Anwendungen an die Datenbanken HP-ALLBASE/SQL und CA

Ingres/SOL.

Das Design der Anpassungsprogramme und das Konzept der RODOS SOL-Syntax

werden beschrieben unter Berücksichtigung der wichtigsten Eigenschaften der

SOL-Funktionen und die wichtigsten Unterschiede zwischen SOL

Implementierungen werden identifiziert. Abschließend werden Teile der ent

wickelten Software sowie die Verwaltungs- und Installationsanleitungen aus

führlich beschrieben.

Chapter 1 The Design and Development of Database Adapter 3

1.1 Adapteüverview 3

1.2 The Concept of RODOS-Database Adapter 3

1.3 About the Software Developed 5

1.4 About This Document 5

Chapter 2 The Scope Definition 6

2.1 Introduction 6

2.2 Embedded SQL Rules (for C) 7

2.3 Names 9

2.4 Data Types 11

2.4.1 Expressions 16

2.5 Search Conditions 21

2.6 Transaction Management 28

2.7 Data Definition 28

2.8 Dynamic Operations 30

2.9 Other Statements 31

2.10 The RE/SQL Embedded Programming Features 33

2.10.1 Rost Variable Declaration 33

2.10.1.1 VariableUsage 33

2.10.1.2 Declaring Rost Variables 33

2.10.1.3 Declaring Variable for Data Types 39

2.10.1.4 Executing A Dynamic Non-Query 51

2.10.1.5 Executing A Dynarnic Non-Query 52

2.11 Conclusions 64

2.12 References 66

Chapter 3 The Syntax for the RODOS Embedded SQL 71

3.1 Introduction 71

3.2 Allocate SQLDA_DATABUFF 74

3.3 Allocate SQLDA_SQLFMTARR 77
'l lt, Begin Declare Section 78

3.5 Begin Work 79

3.6 Close 80

3.7 CommitWork 81

3.8 Connect 82

3.9 Convert after query 84

3.10 Convert before query 86

3.11 CREATE INDEX 88

3.12 Create Table 89

3.13 Create View 91

3.14 Declare Cursor 93

3.15 Declare SQLDA 94

3.16 Delete 95

3.17 Delete where current 96

3.18 Describe 97

3.19 Disconnect 98

3.20 Drop Index 98

3.21 Drop Table 99

3.22 Drop View 99

- 1 -

3.23 End Declare Section 100

3.24 Executer 101

3.25 Execute Immediate 101

3.26 Fetch 104

3.27 Free SQLDA_SQLFMT ARR 108

3.28 Include 108

3.29 Insert 110

3.30 Lock Table 114

3.31 Open 116

3.32 Prepare 117

3.33 Update where current 119

3.34 Select 122

3.35 SET READLOCK 131

3.36 Sqlexplain 132

3.37 Unlock Table 133

3.38 Update 134

Chapter 4 The Administrator's guide 139

4.1 Overview 139

4.2 The W orking Mechanism of the Translator 139

4.3 The Format for the Syntax File and the Syntax Array 142

4.4 The Rules to Build the Syntax Context 147

4.5 The Run-time RE/SQL related C function Library 154

4.6 The Run-time RE/SQL Related C Functions 154

4.7 The RE/SQL Run-time Error Processing 155

Chapter 5 Installation Guide 156

5.1 Copying RE/SQL Files 156

5.1.1 Managing RE/SQL Files 157

5.2 U sing the Translator 158

5.2.1 Invoking the Translator 158

5.2.2 Errors Detected by Translator 159

5.3 The Procedure to Use This Software 160

- 2-

Adapter Overview

Chapter 1 The Design and Development ofDatabase Adapter

1.1 Adapter Overview

There have been some differences among the different SQL implementations. These differences cause
difficulties for the application developers to rnalce their applications transportable between different SQL
irnplernentations.

We have to face two kinds of problerns. The first case is that you want to rnake your SQL application
available for rnore than one SQL product. You have to develop a special version of the application for each
of the considered SQL products. It will be very hard to rnaintenance such kind of application. In this case,
the problern is how to help the application developers to work in such a way that they need to develop only
one original version of the application which could be easily installed to work with any one of the current
SQL irnplernentations.

The second case is that you have to access to rnore than one database, which are created frorn different SQL
products, in one SQL application. This case is likely rnore useful but rnore cornplicated. One of the
irnportant aspects isthat the users rnust use an unique SQL syntax which could be dynarnically translated to
any one of the current SQL irnplernentations. This problern has been solved partially in the first case.
Another irnportant aspect is that a global interface rnanagernent rnust be designed to access the different
databases.

The work related to first case has been done, during which a RODOS Ernbedded SQL (RE/SQL) syntax and
a syntax translator have been developed. This report addresses the concepts developed to solve the problern
rnentioned in first case and how to use and adrninistrate the software developed.

i.2 The Concept of RODOS-Database Adapter

The concept to solve the problern rnentioned as first case is to develop a quasi standard SQL syntax.
Because the quasi standard syntax could be different frorn the current SQL irnplernentations in rnany syntax
details, though these differences rnight be non-essential, we have to develop a translator, which could
translate such a syntax to the syntax of any specified SQL irnplernentations. The users would use this quasi
standard SQL in a sirnilar way as any one of the SQLs they used before. The only different is that the users
have to use the syntax translator before they use the preprocessor of a SQL product. The Figure-1 ean help
to understand this concept. In this rnethod, the rnajor difficulty rnay arise frorn dynamic operations which
include sorne ernbedded features beyond the SQL syntax, e.g. status checking, error handling, and using
SQL cornrnunications Area and SQL Descriptions Area (SQLCA, SQLDA). Based on the investigation in
ALLBARE/SQL and INGRES/SQL, the rnost irnportant differences between thern have been identified
frorn these areas. Besides there exist differences in variables defined in SQLCA and SQLDA, the way these
variables are used is also not the sarne. In order to solve these problerns, sorne rnacros have been defined
and sorne assistant functions have been developed, which would standardize the use of those parts of SQL
features.

- 3 -

The Concept of RODOS-Database Adapter

Application Using the
RODOS Embedded SQL
Syntax and Function Set

• Database Libraery .. Database Adapter of SQL Product F

+
Application Converted
to Syntax of SQL

Product and
Embedded Dynamic
Operation Functions

,, ~ SQL Product Preprocessor

C Compiler and Linker

Application Executable

DB Server

Figure-1 The Description Chart for the concept of RE/SQL

- 4 -

About the Software Developed

On the other band, the translator must be able to work dynamically to translate the syntax that the users used
in dynamic operations. The Database Adapter would be embedded the dynamic operation into the user's
applications during the preprocessing phase.

The most important feature for the concept developed in this method is that the original SQL programming
style (embedded SQL) would be maintained effectively, i.e. the users will still use a generic SQL syntax
other than some kind of substitute. Particularly, the original SQL users do not have to learn too much about
new concept and syntax. And the existing SQL applications could be easily re-written with this RODOS
SQL because of the similarity of their syntax. The ftexibility of the SQL syntax would be as more as
possible remained.

The RE/SQL syntax translator could be developed with very good extendable feature. All kinds of syntaxes
could be managed in a extendable file with certain pre-defined rules. In such a way, the translator could
easily be extended to produce the syntax coming from any other additional RE/SQL products. On the other
band, the user could define new RE/SQL Statements which can be interpreted into C and implementation's
SQL Statements.

The efforts to standardize the use of dynamic operations would benefit the users. It is expected that the
complexity of the dynamic operations would be reduced by supplying a set of macro definitions which will
be used to deal with status checking, error handling, and data processing within SQLCA and SQLDA.

The outcome generated from the database adapter will be still in the form of source code, which should be
ready to be the input for the preprocessor of SQL products, so that in most of the cases the intermediate
results can be checked before compiling, linking, and executing the objects. On the other band, the syntax
checking would be enhanced because of the syntax checking function of the translator.

1.3 Albout the Software Developed

Based on the concepts described above, a RODOS embedded SQL syntax has been developed, and a related
syntax translator (sesql) has been programed. is a C application which follows C standard on
UNIX system. Principally, sesql could be run on any UNIX systems, though it has been developed on
HP-UX environment.

1.4 Albout This Document

This Document is divided into four parts. The first and second part decribe the definition and development
of the RODOS embedded SQL syntax (RE/SQL). The third part, which serves as a administrator's guide,
will include more information about the software itself such as the structure of the program, and how to
maintenance the program, etc.The fourth pati, which serves as a installation guide, will introduce the
packing of the software and provide the procedures to use the software developed.

- 5 -

lntroduction

Chapter 2 The Scope Definition

2.1 lntroduction

Because of the differences among ALLBARE/SQL, INGRES/SQL and ANSIISQL, it is impossible for the
RE/SQL to include all of the functions and features which have been implemented in them. Therefore, at the
first, it is necessary to define the scope of the functions and features as a goal to be achieved in this task.
While doing this work, many analyses must be carried out, such as demand analysis, syntax analysis,
feasibility analysis, etc. The objective is to remain as more as possible the functions and features of the
current SQL implementations, and to make the product from this task practical. Here, the functions denote
the SQL operations which are related to practical SQL statements. The features signify some concepts and
conventions beyond the SQL operations. The RE/SQL is consisted of the functions and features. The so
called scope definition means which functions and features should be included in RE/SQL. The work will
be done on the basis of the following considerations:

• The user's demands are considered as main aspect to define the scope. The functions and features which
will be included in RE/SQL must satisfy the basic requirements of the users to develop their SQL
applications.

o Based on the comparison analysis about current SQL implementations, which are ALLBARE/SQL and
INGRES/SQL in present time, some critical differences may be identified in the aspects of concept, function
and features. In these cases, some functions and features have to be excluded or simplified. These
exclusions and simplifications will also be mentioned over through the report.

• For some cases, in which the differences may be eliminated by means of developing a translator and/or a
function set, the original functions and features of current implementations should be remained as more as
possible.

• Though the syntax analysis has been done, the syntax details will not be discussed while defining the
scope. The syntax developing will be included in the next step -- Develop The Syntax For The RODOS
Embedded SQL (RE/SQL).

• The contents included in the following will be classified into three main categories, which are the basic
SQL element, the SQL statement and the embedded SQL programming features. Each of them is divided
into some sub-categories. The basic SQL element includes embedded SQL rules, names, data types,
expressions, and search conditions. The SQL statement includes connection management, transaction
management, data manipulation, data definition, cursor operations, dynamic operations, and some other
Statements. The embedded SQL programming features includes host variable declarations, runtime status
checking and SQLCA, dynamic operation and SQLDA.

- 6 -

Embedded SQL Rules (for C)

2.2 Embedded SQL Rules (for C)

Statement Prefix

When you are writing an Embedded SQL application, use EXEC SQL (exec sql) as the prefix to each SQL
statement. The entire prefix, EXEC SQL, must appear on one line together, though the SQL statement can
be continued over more than one line. For example,

exec sql select * from table

into :hostvariable

where column 1 > 500;

the following statement is not legal:

exec

sql select * from table

where column 1 > 500;

Statement Line Continuation

There are no line continuation rules for Embedded SQL statements m C. Statements extend to the
terminator. Blank lines can be included.

Statement Terminator

When you are writing an Embedded SQL application, the use of a statement terminator is determined by the
rules of the host language. For C, use a semicolon (;) at the end of the SQL command.

Comment Delimiters

To delimit comments in embedded SQL, use the following delimiters:

• The "--" (left side only) delimiter indicates that the rest of the line is a comment. You cannot continue a
comment delimited by "--" over to another line. For example,

-- this is a comment

This kind of comment can be inserted in any line of an SQL statement, except the last line, by prefixing the
comment character with at least one space followed by two hyphens followed by one space, for example,

exec sql select * from table -- you can write comment here

where columnl > 500;

- 7 -

Embedded SQL Rules (for C)

• Camment delimiters that are specific ta the hast language. Far C, yau can use "I* " and " *I" (left and
right delimiters, respectively). When yau use "I* ... *I" ta delimit a camment, the camment can cantinue
aver mare than one line andlar may appear within or between embedded SQL commands. For example,

I* this is a comment *I

I* everything from here ...

... to here is a comment*l

exec sql select * from table

I* comment on above line *I

inta :hostvariable

I* comment on above line *I

where columnl > 500;

Label

For C, Embedded SQL statements can have labellike C Statements. The labe! must begin with an alphabetic
character or an underscore, must be the firstward on the line (optionally preceded by white space), and must
be terminated with a colon (:). For example,

close_cursor: ECEC SQL CLOSE cursarl;

The Iabel can appear anywhere a C Iabel can appear. Hawever, althaugh the translator accepted the
follawing, the compiler does not because Iabels arenot allowed before declarations:

include_sqlca: EXEC SQL INCLUDE SQLCA;

As a general rule, use Iabels only with executable Statements.

String Delimiters

Use single quotes to delimit Embedded SQL string literals. To embed a single quate in a string literal, you
must double it. For example:

Names

EXEC SQL INSERT INTO comments

VALUES ('single" quote followed by double" quote');

Within Embedded SQL statements the double quote and backslash need not be escaped, because they have
no special meaning.

To continue a string literal to additional lines, use the backslash (\) character. Any leading spaces on the
next line are considered part of the string. This follows the C convention.

Use C conventions within the declaration section. You must use double quotes to delimit most C strings. For
example:

char *dbname = "personnel";

Notes:

No more new Iimit on the rules described in this section.

2.3 Names

Basic Names

The following are classified as basic names:

Co!umn names

Constraint names

Corre!ation names

Cursor names

Group names

Index names

Tabie names

View names

The rules for basic names:

• A basic name can be up to 20 bytes in length.

• A name can be made up of any combination of letters (A to Z), decimal digits (0 to 9), $, #, or underscore
(_). However, the first character can be only an alphabetic character.

- 9 -

Names

• Lowercase letters (a to z) are automatically changed to the corresponding uppercase letters (A to Z) unless
enclosed in double quotation marks.

• Table name cannot begin with "ii" or "sq.". These names are reserved for use by INGRES.

Correlation Names

The correlation name specifies a synonym for the immediately preceding table or view. The correlation
name can be used instead of the actual table or view name anywhere within the SELECT statement. The
correlation name must conform to the syntax rules for a basic name. All correlation names within one
SELECT statement must be unique. They cannot be the same as any table name or view name in the FROM
clause that does not also have a correlation name associated with it.

If more than one table or view are specified in FROM clause and no correlation names are corresponding to
them, the table names or view names are used as correlation names for defaults.

Correlation names are useful when you join a table to itself, example:

select a.empname from emp a, emp b

where a.mgrname = b.empname and a.salary > b.salary;

Host Variable Names

Host variables are used to pass information between an application program and RE/SQL. They are
ordinary application program variables that happen to be used in SQL commands.

A host variable name must be preceded by a colon (:) when used in an SQL command. When used
elsewhere in an application program no colon should be used.

Host variable names must conform to rules for basic names; however, they are allowed to be up to 30 bytes
in length. In addition, Host variable names must conform to the rules of the language in which the
application program is written (here is C).

Database Names

Database names must always be enclosed in single quotation marks when specified in SQL commands.
Generally, this name is used only in CONNECT command.

Notes:

1. '@' will no Iongerbe accepted by RE/SQL in its names, though it can be accepted by both of ALLBARE/
SQL and INGRES/SQL.

- 10 -

TABELLE 1

Data Types

2. Compound identifiers, which consists of an owner name combined with one or more basic names with
periods (.) between them, and which is supported by ALLBARE/SQL, is not meaningful in the RE/SQL
because the concept of 'owner' is eliminated.

2.4 Data Types

There are three classed of data types: character, numeric, and date/time. Character strings can be fixed
length or variable-length. Numeric strings can be exact or approximate numeric. Date/time string can be
date, time, datetime, and interval. Table 1 lists all of these data types.

Char

Varchar

Integer

Smallint

RE/SOL Data Types

varchar(l) - varchar(2000) character A string of I to 2000 characters

numeric integer 4 byte integer -2147483648 to +2147483647

smallint 2 byte integer -32768 to +32767

float 4 byte floating -l.Oe-38 to +1.0e+38

(7 digit precision)

double 8 byte ftoating -l.Oe-38 to +1.0e+38

(16 digit precision)

date/time date variable for dif- variable for different implemen1

datetime ferent implemen- (see following)
tations

interval

strings can contain up to 2000 printing or non-printing characters, but without the
null character (' \0') . Char strings are stored blank-padded to the declared
length. (If the column is nullable, char columns require an additional byte of
storage.) For example, if you enter "ABC" into a char(5) column, five bytes will be
store as "ABC "

strings are variable-length strings, which can also contain up to 2000 printing or
non-printing characters, but without the null character (1

\ 0 1
) • Varchar strings are

stored with a length specifier. The physical storage of specifiers may vary in
different SQL implementations. Though varchar columns occupy their declared
length, (If the column is nullable, char columns require an additional byte of
storage), they can be dealt with by the SQL in a efficient way.

number occupies 4 bytes. An integer value is whole number in the range -
2,147,483,648 to +2,147,483,467, inclusive.

number occupies 2 bytes. An integer value is whole number in the range -32768 to
+32767, inclusive.

- 11

Float

Double

Date

Datetime

Interval

Date Operations

Data Types

point number occupies 4 bytes, which ts single precision value with 7 digit
precision.

point number occupies 8 bytes, which is double precision value with 16 digit
precision.

is string of the form {YYYY-MM-DD}, where YYYY represents the calendar
year, MM is the month, and DD is the day of the month. DATE is in the range from
1582-01-01 to 2382-12-31. Note that the string of DATEare delimited by curly
braces.

is string of the form {YYYY-MM-DD HH:MI:SS}, where YYYY represents
calendar MM is the month, DD is the day of the month, HH is hour, MI is the
minute, and SS is the second. The range is from 1582-01-01 00:00:00 to 2382-12-
31 23:59:59.

is string of the form {DDDDDDD HH:MI:SS}, where DDDDDDD is a number of
days, HH is a number of hours, MI is a number of minutes, and SS is a number of
seconds. The range of INTERVAL is from 0 00:00:00 to 3652436 23:59:59.

The date type is different from one SQL implementation to another. To solve this problem, the new formats
of DATE, DATETIME, and INTERVAL data type havc been defined, shown above, which aredifferent
from any one of the current SQL implementations. The constants of these date types appeared in a
embedded SQL statement will be translated by the pre-processor to the format corresponding to a specified
SQL product. To enable the pre-processor easily identifying these constants, curly braces instead of single
quotations are used as delimiters. On the other hand, to deal with host variables which are assigned with
date constants or will be processed within the user application programs, a set of conversion functions,
shown in Table 2, will be developed and must be used by the user in their application programs. There are
two group of conversion functions, one group is applied to input host variables before they may appear in
VALUE clause in INSERT statement, SET clause in UPDATE statement, and search condition in SELECT
statement (include subqueries). Another group is used to output host variables after executing of the SQL
Statements such as INTO clause in SELECT or FETCH statement if some date columns are involved. These
conversion functions must be explicitly invoked by the developers of application programs.

• 12 •

rABELLE 2

Data Types

Date Data Type Gonversion Functions

to_date(d 1 ,d2) YYYY-MM-DD

to_datetime(d 1 ,d2) YYYY-MM-DD HH:MI:SS

to_interval(dl ,d2)

Output Functions:

form_date(d 1 ,d2)

DDDDDDD HH:MI:SS

A: YYYY-MM-DD

G: dd-mmm-yyyy

from_datetime(dl,d2) A: YYYY-MM-DD HH:MI:SS.FFF

G: dd-mmm-yyyy HH:MI:SS

from_interval(dl,d2) A: DDDDDDD HH:MI:SS.FFF

G: DDDDDDD day HH hrs MImins SS
secs

A: YYYY-MM-DD c

G: dd mmm yyyyd

A: YYYY-MM-DD HH:MI:SS.FF~

G: dd-mmm-yyyy HH:MI:SS

A: DDDDDDD HH:MI:SS.FFF

G: DDDDDDD day HH hrs MI mins SS
secs

YYYY-MM-DD

YYYY-MM-DD HH:MI:SS

DDDDDDD HH:MI:SS

a. A represents ALLBAREISQL, G represents INGRES/SQL.

b. When d 1 is string constant, it must be enclosed in double quotations.

c. YYYY is year, MM is month, DD is day.

d. dd is day, mmm is month in Ihree-Ietter abbreviations, yyyy is year.

c. HH is hour, MI is minute, SS is sccond, FFF is thousandths of a sccond.

The following is an example about usage of input function:

I* first, use to_date function to assign

date constant to host variable*/

to _date(" 1993-08-16" ,date _variable);

I* and then, use the host variable as an inputvariable */

EXEC SQL INSERT INTO test_table (date_column)

- 13 -

Data Types

VALDES (:date_variable);

The following is an example about usage of output function:

I* first, use the host variable as an outputvariable *I

EXEC SQL SELECT date_column

INTO :date_ variable

FROM test_table

I* same time, use date constant in search condition *I

WHERE date_column={ 1993-08-16};

I* and then, use from_date function to convert internal format

of date data type to the format defined in REISQL *I

from_date(date_ variable, user_ variable);

m 14 m

TABELLE 3

Data Types

A variety of arithmetic operations could be applied to the columns which has date data type. The. following
Table 3 shows the valid operations and the data type of the result.

Arithmetic Operations On Date Data Types
~ ~

--~~------~~~~--~~~~~~~~~--~~~

DATE + INTERVAL DATE

INTERVAL DATE DATE

DATE DATE INTERVAL

INTERVAL INTERVAL INTERVAL

DATETIME INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

DATETIME DATETIME INTERVAL

INTERVAL INTERVAL INTERVAL

+

+

+

+

Data Type Conversions

RE/SQL converts the type of a value in the following situations:

• You include values of different types in the same expression.

• You perform a data comparison between values of different type.

• You move data from a host variable to a column or vice versa.

The so-called different type of data includes only the following combinations:

• CHAR and VARCHAR.

- 15 -

Data Types

• DOUBLE, FLOAT, INTEGER, and SMALLINT.

•DATE

When you use numeric data of different types in an expression or comparison operation, the data type of the
lesser type is converted to that of the greater type, and the result is expressed in the greater type. Numeric
types have the following precedence:

DOUBLE

FLOAT

INTEGER

SMALLINT

When you compare a CHAR and a VARCHAR string, the shorter string will be padded with ASCII blank to
the length of the Ionger string. The two strings are equal if the characters in the shorter string match those in
the Ionger string and if the excess characters in the Ionger string are all blank.

Notes:

1. The data type which have been removed from ALLBARE/SQL are DECIMAL, BINARY, VARBINARY,
LONGBINARY, LONG BINARY, and TIME. The maximum character length decreased from 3999 to 2000
which is maximum character length of INGRES/SQL.

2. The data type which have been removed from INGRES/SQL are l\101\1EY, Ti1.BLE_F..EY,
OBJECT_KEY.

3. Date data type is one of the biggest problern area, in which many differences have been identified
between ALLBARE/SQL and INGRES/SQL. In RE/SQL, the format of the date type have been re-defined,
and a group of date conversion functions would be developed with the rules to use these functions.

4. The differences in data types may affect many important statements of SQL, especially, CREATE
TABLE and HOST VARIABLE DECLARATION.

2.4.1 Expressions

An expression specifies a value tobe obtained in one of the following ways:

• From a column of a table.

• From a host variable in an application program.

• From a constant.

m 16 m

Data Types

. By evaluating an aggregate function .

. By a combination of these methods with arithmetic manipulations (*, /, +, -).

Expressionsare used for several purposes as follows:

• To identify columns. In the SELECT command, expressions are used in the select list to identify columns
to retrieved.

• To identify rows. In the search condition of some commands, expressions help rlefine the set of rows to he
operated.

0 To define a new column value.

The following rules can be applied to an expression:

0 Arithmetic operators can be used between numeric values.

• Elements in an expression are evaluated in the following order:

(l) Aggregate functions and expressions in parentheses are evaluated first.

(2) Unary pluses and minuses are evaluated next.

(3) The * and I operations are petformed next.

(4) The + and- operations are then performed.

• You can enclose expressions in parentheses to control the order of their evaluation.

• When two elements have the same data type, the result is ofthat data type.

• Type conversion, truncation, underftow, or overflow can occur when some expressions are evaluated.

Constants

lntegerValue

FloatValue

String

is a signed or unsigned whole number compatible with INTEGER or SMALLINT
data types, for example:

-16746, 155, 5

.2E-4

is a signed or unsigned floating point number compatible with DOUBLE or
FLOAT data types, for example:

is a character string compatible with CHAR, VARCHAR data types. String
constants are delimited by single quotation marks, for example:

• 17 -

Data Types

'DON"T JUMP!'

However, two single quotation marks in a row are interpreted as a single quotation mark, not as string
delirniters.

DateValue

{ 1993-08-04}

{ 1993-08-4 15:30:00}

{ 12 12:21:10}

NuiiValue

is a character string compatible with DATE, DATETIME or INTERVAL data
types. Date constants are delimited by curly braces, for example:

is a special value that indicates the absence of a value. Any column in a table,
regardless of its data type, can contain null values unless you specify NOT NULL
for the column when you create the table. NULL is used as placeholder for a value
that is missing or unknown. These properties of null values affect operations on
rows containing the following values:

• Null values always sort highest in a sequence of values.

• Two null values arenot equal to each other except in a GROUP BY or SELECT DISTINCT Operation, or
in a unique index.

• An expression containing a null value evaluates to null; for example, five minus null evaluates to null.

Because of these properties, RE/SQL ignores columns or rows containing null values in the situations listed
here:

• Evaluating comparisons.

• Joining tables, if the join is on a column containing null values.

• Executing aggregate functions.

In several SQL predicates, described in the "Search Condition" section, you can explicitly test for null
values. In an application program, you can use indicator variables to handle input and output null values.

Specia/Value RE/SQL supports several special key ward constants. When you use any of these in
a statement, RE/SQL assigns the value denoted by the constant to the appropriate variable, or column.

- 18 -

rABELLE 4

f'ABELLE 5

Data Types

These constants and their meanings are listed in the Table 4. When you use these key words, you must

RE/SOL Special Constants

{now I NOW}

{ today I TODAY}

{null I NULL}

{ user I USER}

The current date and time.

The current date.

The null value. See NullValues below.

The current user.

a. These key words are reserved
by RE/SQL.

include them in braces.

Aggregate Functions

Aggregate functions specify a value computed using data described in an argument. The argument, enclosed
in parentheses, is an expression. The value of the expression is computed using each row that satisfies a
SELECT command. Aggregate functions can be specified in the select list and the HAVING clause.

The general syntax of an aggregate function reference takes the form:

function_name([DISTINCT I ALL] colurnnName)

The key words, DISTINCT and ALL are optional. DISTINCT tells SQL to eliminate duplicate values from
the argument before perforrning the function. The key word ALL indicates the default condition, in which
duplicate values are not eliminate. (lt makes no sense to use DISTINCT in conjunction with the functions
MIN and MAX.)

Theseaggregate functions are described in the Table 5.

AVG

MAX

MIN

SUM

Aggregate Function Description

FLOAT, INTERVAL

The Same As the Argu
ment

The Same As the Argu
ment

INTEGER, FLOAT,
INTERVAL

computes the arithmetic mean of the values in the argu
ment; null values are ignored.

finds the largest of the values in the argument; null values
are ignored.

finds the smallest of the values in the argument; null val
ues are ignored.

finds the total of all values in the argument; null values
are ignored.

- 19 -

TABELLE 5

Data Types

Aggregate Function Description

COUNT (*)a

COUNT Column
Name

INTEGER

INTEGER

counts all rows in all columns, including rows containing
null values.

counts all rows in a specific column; rows containing null
values are not counted.

a. You cannot specify the COUNT(*) aggregate function with ALL and DIS
TINCT option.

The GROUP BY clause allows aggregate functions to be performed on subsets of the rows in the table. The
subsets are defined by the GROUP BY clause. If the GROUP BY clause is omitted, the entire query result
tableis treated as one group. If a SELECT Iist or HAVING clause contains an aggregate function, then any
other column references in the SELECT Iist or HAVING clause which do not appear in the aggregate
function must be specified as an operand in a GROUP BY clause associated with the SELECT list or
HAVING clause. For example,

select dept, avg(emp_age)

from employee

group by dept;

The following restrictions apply to the use of aggregate functions:

o You cannot nest aggregate functions.

• You can only use aggregate functions, or expressions that include aggregate functions, such as

sum(employee.salary)/25

in the context of a SELECT Iist or HAVING clause.

o If an aggregate function is computed over an empty, ungrouped table, COUNTreturns 1; AVG, SUM,
MAX, and MIN return NULL.

• If an aggregate function is computed over an empty group or an empty grouped table, all aggregates return
no row at all.

Notes:

1. For the expression, some operations which are supported by INGRES are no Ionger supported in RE/
SQL, such as arithmetic operations ** (exponentiation), string operations.

2. For the constants, some new rules have been developed to solve the problern of date constants, new
delimiters { } have been defined for translator which can translate the date format defined here to
corresponding format in specified implementation. NOW and TODAY will be replaced with current
functions in ALLBARE/SQL.

• 20 •

Search Conditions

3. The aggregate functions are basically the same as those of current implementations.

4. All of the other functions in both ALLBARE/SQL and INGRES/SQL are no Ionger supported by RE/
SQL.

2.5 Search Conditions

A search condition specifies criteria for choosing rows to select, update, or delete. Syntactically, a search
condition is a single predicate or several predicates connected by the logical operators AND or OR. A
predicate is a comparison of expressions that evaluates to a value of TRUE or FALSE. If a predicate
evaluates to TRUE for a row, the row qualifies for select, update, or delete operation. If the predicate
evaluates to FALSE for row, the row is not operated on. The syntax of search condition is as follows:

[NOT] { Predicate I (searchCondition)}

[{ AND I OR} [NOT] { predicate I (SearchCondition)}]

[...]

Parameters

NOT reverses the value of the predicate that follows it.

AND evaluates predicates it joins to TRUE if they are both TRUE.

OR evaluates predicates it joins to TRUE if either or both are TRUE.

Predicate is one of the predicates described later in this section.

(SearchCondition) is one of the predicates described later in this section, enclosed in parentheses.

Description

• Predicates in search condition are evaluated as follows:

• Predicates in parentheses are evaluated first.

• NOT is applied to each predicate.

• AND is applied next, left to right.

• OR is applied last, left to right.

• When a predicate contains an expression that is null, the value of the predicate is unknown. Logical
operations on such a predicate and the results are listed in the Table 6, where a question mark (?) represents
the unknown value:

- 21

TABELLE 6

Search Conditions

Logical Operations On Predicates

T T F ? T T T T T F

F F F F F T F ? F T

? ? F ? ? T ? ? ? ?

When the search condition for a row evaluates to unknown, the row does not satisfy the search condition
and the row is not operated on.

• You can compare only compatible data types.

• A SubQuery expression cannot appear on the left-hand side of a predicate.

BETWEEN Predicate

A BETWEEN predicate determines whether a value is equal to or greater than a second value and equal to
or less than a third value. The predicate evaluates to TRUE if a value falls within the specified range. If the
NOToption is used, the predicate evaluates to TRUE if a value does not fall within the specified range.

Note that the second value must be less than or equal to the third value. The syntax of the BETWEEN
predicate is as follows:

Expression! [NOT] BETWEEN Expression2 AND Expression3

Parameters

Expression 1, 2, 3

NOT,AND

Description

specify values used to identify columns, screen rows, or define new column values.
The syntax for expression is defined in the "Expressions" section. Both numeric
and non-numeric expressions are allowed in BETWEEN predicates.

are logical operators. NOT reverses the value of the predicate that follows it. AND
evaluates predicates it joins to TRUE if they are both TRUE.

• Expression2 and Expression3 constitute a range of possible values for which Expression2 is the lowest
possible value and Expression3 is the highest possible value. In the BETWEEN predicate, the low value
must come before the high value. Also in the BETWEENyredicate, subqueries are not allowed.

• Camparisans are conducted as described under "Comparison Predicates" later in this section.

e 22 •

Search Conditions

Camparisan Predicate

A comparison predicate compares two expressions using a comparison operator. The predicate evaluates to
TRUB if the first expression is related to the second expression as specified in the comparison operator.

Expression { = I <> I > I >= I < I <=} {Expression I SubQuery}

Parameters

Expression

SubQuery

=

<>

>

>=

<

<=

Description

specify a value used to identify columr1s, screen rows, or define new column
values. The syntax for expression is defined in the "Expressions" section. Both
numeric and non-numeric expressions are allowed in comparison predicates.

is a QueryExpression whose result is used in evaluating another query. The syntax
of QueryExpression is presented in the description of the SELECT command.

is equal to. A comparison predicate using = is also known as an EQUAL predicate.

is not equal to.

is greater than.

is greater than or equal to.

is less than.

is less than or equal to.

• If either expression is null or if both expressions are null, the predicate eva!uates to FALSE.

• Refer to the "Data Types" section for type conversion when you compare values of different types.

• A subquery mustreturn a single value (one column of one row). If the subquery returns more than one
value, an error is given. If the subquery returns no rows, the predicate evaluates to unknown.

EXISTS Predicate

An EXISTS predicate tests for the existence of a row satisfying the search condition of a subquery. The
predicate evaluates to TRUB if at least one row satisfies the search condition of the subquery.

[NOT] EXISTS SubQuery

Parameters

- 23 -

SubQuery

Description

Search Conditions

A subquery is a nested query. The syntax of subqueries 1s presented m the
description of the SELECT command.

• Unlik:e other places in which subqueries occur, the EXISTS predicate allows the subquery to specify more
than one column in its select Iist.

IN Predicate

An IN predicate compares an expression with a list of specified values or a Iist of values derived from a
subquery. The predicate evaluates to TRUE if the expression is equal to one of the values in the Iist. If the
NOT option is used, the predicate evaluates to TRUE if the experssion is not equal to any of the values in
the Iist.

Expression [NOT] IN { SubQuery I (ValueList)}

Parameters

Expression

NOT

SubQuery

ValueList

specify a value used to be obtained. The syntax for expression is defined in the
"Expressions" section. Both numeric and non- numeric expressions are allowed in
quantified predicates.The expression may not include SubQueries.

reverses the value of the predicate that follows it.

A subquery is a nested query. The syntax of subqueries is presented in the
description of the SELECT command.

defines a list of values tobe compared against the expression's value. The va!ues in
a ValueList can be the constants which are described in "Constants" section and
host variables. The syntax for the host variables is as follows:

:HostVariable [:Indicator]

Description

• You can use a Iist of host variables as the ValueList. If the null indicator for a host variable is less than zero
(indicating a NULL value in the corresponding host variable), the value in the host variable is not
considered a part of the ValueList.

• Refer to the "Data Types" section for type conversion when you compare values of different types.

LIKE Predicate

• 24 •

Search Conditions

A LIKE predicate determines whether an expression contains a given pattem. The predicate evaluates to
TRUB if an expression contains the pattern. If the NOToption is used, the predicate evaluates to TRUB if
the expression does not contain the pattern.

ColurnnName [NOT] LIKE 'Pattern' [BSCAPB 'BscapeChar']

Parameters

ColurnnName specify a column.

NOT reverses the value of the predicate that follows it.

Pattern describes what you are searching for in the expression. The pattern can
consist of characters only (including digits). Uppercase and lowercase are significant.

You can also use the predicate to test for the existence of a partial match, by using the following symbols in
the pattern:

represents any single character.

% represents any string of zero or more characters.

The _ and % symbols can be used multiple times andin any combination in a pattern. You cannot use these
symbols literally within a pattern unless the BSCAPB clause appears, and the escape character pre.cedes
them. Not that they should be ASCII and not your local representations.

BscapeChar describes an optional escape character which can be used to include the
symbols _ and % in the pattem.

The escape character must be a single character. When it appears in the pattem, it must be followed by the
escaped character, or _ or %. Bach such pair represents a single Iitera] occurrence of the second character in
the pattern. When the escape character is defined following the word BSCAPB, it must be delimited by
single quotes. All other characters are interpreted as described before.

Description

• If an escape character is not specified, then the _ or % in the pattern continues to act as a wildcard. No
default escape character is available. If an escape character is specified, then the wildcard or escape
character which follows and escape character is treated as a literal. If the character following an escape
character is not a wildcard or the escape character, an error results and the command in which it is contained
does not process or return any rows.

• You cannot specify Pattern and BscapeChar with host variables (because this feature is not supported by
INGRBS/SQL).

Quantified Predicate

A quantified predicate compare an expression with a Iist of values derived from a subquery. the predicate
evaluates to TRUB if the expression is related to the values Iist as specified by the comparison operator and
the quantifier.

- 25 -

Search Conditions

Expression{= I<> I> I>= I< I <=}{ALL I ANY I SOME} SubQuery

Parameters

Expression

=

<>

>

>=

<

<=

ALL, ANY, SOME

specify a value used to identify columns, screen rows, or define new column
values. The syntax for expression is defined in the "Expressions" section. Both
numeric and non-numerk expressions are allowed in comparison predicates.

is equal to.

is not equal to.

is greater than.

is greater than or equal to.

is less than.

is less than or equal to.

are quantifiers which indicate how many of the values from the SubQuery must
relate to the expression as indicated by the comparison operator in order for the
predicate to be true. Each quantifier is explained below:

All the predicate is TURE if ALL the values retumed by SubQuery relate to the expression as indicated
by the comparison operator.

ANY the predicate is TRUB if ANY of the values retumed by the SubQuery relate to the expression as
indicated by the comparison operator.

SOME a synonym for ANY.

SubQuery

Description

is a QueryExpression whose result is used in evaluating another query. The syntax
of QueryExpression is presented in the description of the SELECT command.

• Refer to the "Data Types" section for type conversion when you compare values of different types.

• The ValueList is no langer supported by RE/SQL (because it is not supported by INGRES/SQL)

NULL Predicate

A NULL predicate determines whether a primary has the value NULL. The predicate evaluates to TRUE if
the primary is NULL. lf the NOToption is used, the predicate evaluates to TRUB if the primary is not
NULL.

- 26 -

Search Conditions

{ ColumnName I Constant I AggregateFun I (Exp.)} IS [NOT] NULL

Parameters

ColumnName

Constant

AggregateFun
sertion,

(Exp.)

NOT

Description

is the name of a column from which a value is to be taken.

is a specific value; constants are defined in the "Constants" section.

is a computed value; aggregate functions are defined in the "Aggregate Functions"

is one or more of the above four primaries, enclosed in parentheses.

reverses the value of the predicate that follows it.

• The primary may be of any data type.

• Because you cannot test for NULL by using the comparison operator "=", you must use this predicate to
find out whether an expression is NULL

Notes:

1. The predicates are basically the same as those of curreni implemeniaiions.

2.6 The RE/SQL Statements

Although a brief syntax analysis has been done, the syntax details will not be discussed in this section. The
detailed syntax developing will be performed in the next step -- Develop The Syntax For The RODOS
Embedded SQL (RE/SQL). In this section, only the functionality will be defined.

2.6, 1 Connection Management

Establish A Connection

CONNECT

Terminate A Connection

DISCONNECT

Notes:

1. INGRES/SQL can support multi-session, but ALLBARE/SQL cannot. Therefore, the related session
management options and statements will be removed from RE/SQL.

2. When you terminate a connection, the strategy to commit (or rollback) the current transaction may differ
in different SQL implementations.

a 27 a

Transaction Management

3. Both of the logical and physical structures may be different among the current implementations.
Therefore, the options related to these structures may be considered to use a WITH clause.

2.6 Transaction Management

Initiate A Transaction

BEGINWORK

Terminate A Transaction

COMMIT [WORK]

Set A Rollback Stop

SAVEPOINT

Abort A Transaction

ROLLBACK [WORK]

Notes:

1. Some issues, such as concurrency control, locking, etc., are concerned with transaction management in
some SQL implementations. A big difference has been identified in this area. A more detailed analysis is
necessary.

2. Though both of ALLBARE/SQL and INGRES/SQL have supported the SAVEPOINT statement, the
syntax they used are quite different. In ALLBARE/SQL, the SAVEPOINT statement must use a host
variable as the parameter. And the INGRES/SQL does not allow using a host variable as parameter. Despite
it is not easy, the pre-processor would solve this problem, see Syntax Development for details.

2.7 Data Definition

Define A Table

CREATE TABLE

Remave A Table

DROPTABLE

Define A Index

CREATE INDEX

- 28 -

Data Definition

Remove A Index

DROPINDEX

Define A View

CREATEVIEW

Remove A View

DROPVIEW

Notes:

1. Both of the logical and physical stmctures may be different among the current implementations.
Therefore, some related options and Statements will be removed from RE/SQL. And some others may be
considered to use a WITH clause.

2. The differences of data types have been existed between ALLBARE/SQL and INGRES/SQL. Some data
types will no Ionger be supported by RE/SQL. And some others may translated by pre-processor.

3. When user create a table, the storage structure of the table will be detennined. This may effect the data
retrievallater on. A more detailed analysis is needed for this issue.

2.6.4 Data Manipulation

Input Data

[BULK] INSERT

Remove Data

DELETE

Retrieve Data

[BULK] SELECT

Modify Data

UPDATE

Notes:

1. Data manipulation is the most compatible part in the current implementations. No important differences
have been identified.

• 29 •

Dynamic Operations

2. BULK option in INSERT and SELECT Statements were original supported only by ALLBARE/SQL.
Because of existing similar functions in INGRES/SQL, this function, which is very useful, will be remained
by means of pre-processor. See Syntax Development for details.

3. Though cursor operations and dynamic operationsarealso some kind of data manipulations, they will be
discussed in the following separate sections.

2.6.5 Cursor Operations

Issue A Cursor

DECLARE CURSOR

Active A Cursor

OPEN

Retrieve Data With A Cursor

[BULK] FETCH

Modify Data With A Cursor

UPDATE WHERE CURRENT

Remove Data With A Cursor

DELETE WHERE CURRENT

Terminate A Cursor

CLOSE

Notes:

1. Cursor Operation is another most compatible part m the current implementations. No important
differences have been identified.

2. BULK option in FETCH statements were original supported only by ALLBARE/SQL. Because of
existing similar functions in INGRES, this function, which is very useful, will be remained by means of pre
processor.

2.8 Dynamic Operations

Declare SQLDA Elements (newly defined in RE/SQL)

- 30 -

Other Statements

DECLARESQLDA

Dynamically Allocate A Format Array Or Data Buffer (newly defined in RE/SQL)

ALLOCATE { SQLDA_SQLFMTARR I SQLDA_DATABUFF}

Free A Dynamically Allocated Format Array Or Data Buffer (newly defined in RE/SQL)

FREE { SQLDA_SQLFMTARR I SQLDA_DATABUFF}

One Time Execute

EXECUTE IMMEDIATE

More Time Execute

PREPARE

and

EXECUTE

Deal With Dynamic Query

DESCRIBE

and

FETCH (Dynamic Version)

Not es:

1. No important differences have been identified, though INGRES/SQL has more optional functions in the
dynamic operation statements.

2. To deal with dynamic queries, the SQL Descriptor Area (SQLDA) has to be used. The structures of
SQLDA for INGRES/SQL and ALLBARE/SQL have been defined in similar way but different in details.
To solve this problem, we will define a set of macras (in C language) to standardize data accessing to
SQLDA. See next section for details.

2.9 Other Statements

Include An External File

INCLUDE

- 31 -

Other Statements

Begin A Host Variable Declare Section

BEGIN DECLARE SECTION

Terminate A Host Variable Declare Section

END DECLARE SECTION

Get Message From SQL

INQUIRE_SQL

Error Handling

WHENEVER

Define A New Authorization Group

CREATE GROUP

Add Or Drop User TofFrom A Group

ALTERGROUP

Grant Authority

GRANT

Revoke Authority

REVOKE

Set Lock Mode

SET LOCKMODE

Notes:

1. Some of the Statements in this section, such as statements to control authority, concern with concepts used
to control data accessing in current implementations, which are the most difficult area to make these
functions available in RE/SQL. A more detailed analysis is needed.

2. Locking managements are also quite different in ALLBARE/SQL and INGRES/SQL. In ALLBARE/
SQL, the most of the locking could be controlled when you issue some statements. There is only one special
statement for locking, that is LOCK TABLE. In INGRES/SQL, the most of the locking could be controlled
by a special statement, SET LOCKMODE. To unify these locking control would be difficult, and needs a
more detailed analysis.

3. These two features mentioned above are critical to enable RE/SQL supporting multiple user working
environment.

- 32 -

The RE/SQL Embedded Programming Features

2.10 The REISQL Embedded Programming Features

2.10.1 Host Variable Declaration

2.10.1.1 Variable Usage

Host variables are variables used to pass the following information between an application program and RE/
SQL:

• data values

• null value indicators

• string truncation indicators

• bulk processing rows to process

• dynamic commands

• messages from the RE/SQL

• database names

It is worth to mention that the host variables can not be used as table name, view name, index name, and
column name.

2.1 0.1.2 Declaring Host Variables

All host variables used in a C program must be declared in declaration parts of the program where variables
having the scope of a file, a function, or a block and be declared. Host variables may be declared wherever
you can declare variables in C program.

At run time, the scope of a host variable is the same as that of any other C variable declared in the same
declaration part. At preprocessing time, however, all host variable declarations are treated as global
declarations. Therefore host variables having the same name in different declaration parts must also have
the same C type description in each variable declaration.

Host Variable Declaration Section

Q 33 Q

The RE/SQL Embedded Programming Features

Host variables must be declared in what is k:nown as a declare section. A declare section consists of the SQL
command BEGIN DECLARE SECTION, one or morevariable declarations, and the SQL command END
DECLARE SECTION, as shown in the following sections.

More than one declare section may appear in a given declaration part. However, a host variable name may
appear only once in a given declaration part. Bach host variable is declared by using a C type declaration.
The declaration contains the same components as any C variable declaration. The data name, which must
conform to the rules in "Host Variable Name" in section 2.2, must be the same as the host variable name in
the corresponding SQL statement. The data type must satisfy SQL data type and C requirements, which will
be described in the following sections.

Indicator Variable

A special type of host variable called an indicator variable, is used in SELECT, FETCH, UPDATE,
UPDATE WHERE CURRENT, and INSERT commands to identify null values and in SELECT and
FETCH commands to identify truncated output strings. Indicator variable is a two byte integer variable. The
declarations of indicator variable are described within the following two sections.

An indictor variable must appear in an SQL command immediately after the host variable whose data it
describes. The host variable and its associated indicator variable are not separated by a comma. In SELECT
and FETCH commands, an indicator variable is an output host variable containing one of the following
indicators, which describe data SQL returned:

0 value is not null

-1 value is null

>0 string value is truncated; number indicates data length before truncation.

In the INSERT, UPDATE, and UPDATE WHERE CURRENT commands, an indicator variable is an input
host variable. The value you put in the indicator variable tells SQL when to inset a null value in a column:

>=0 value is not null

<0 value is null

Be sure to use an indicator variable in the SELECT and FETCH commands whenever column accessed may
contain null values. A runtime error results if SQL retrieves a null value and the program contains no
indicator variable.

Simple Host Variable

The so-called "simple host variables" is C variables which appeared as non-structured variables. Simple
host variables can be used for input or for output. The input variables provide data for SQL, and the output

m 34 •

The REISQL Embedded Programming Features

variables receive data from SQL. Be sure ta declare the hast variables befare using them. The declaratian
sectian far simple hast variables is shawn as fallawing:

EXEC SQL BEGIN DECLARE SECTION;

shart smallint_ variable_name;

data type data_name;

shart indicatar_ variable_name;

EXEC SQL END DECLARE SECTION;

The variables, which include indicatar variables, can be declared in any arder. Hawever, when yau use these
variables, yau must carefully put them in right pasitians which must exactly carrespand ta the SQL abjects
both the arder and the data type. The campatible C data type which can be used ta declare hast variables is
described in the fallawing sectians.

The fallawing is an example abaut the usage af simple host variables:

EXEC SQL BEGIN DECLARE SECTION;

shart input_ varible_name;

char autput_ variale_name[30];

short indicatar_ variable_name;

char canditan_ variable_name[1 00];

EXEC SQL END DECLARE SECTION;

I* example of inputvariable */

- 35 -

The RE/SQL Embedded Programming Features

EXEC SQL INSERT INTO test_table (smallint_column_name)

VALDES (:input_variable_name);

I* example of outputvariable and indicator variable *I

EXEC SQL SELECT char_column_name

INTO :output_ variable_name :indicator_ variable_name

FROM test_table

I* condition_ variable_name is an inputvariable *I

WHERE char_column_name"":condition_ variable_name;

Stmcture Host Variable

Stmcture host variables are BULK processing variables which can be used with the BULK option of the
SELECT, INSERT, and FETCH commands. Bu'LK table processing is the programming technique you use
to SELECT, FETCH, or INSERT multiple rows at a time. Referring to concemed section for the detailed
descriptions about BULK processing. In BULK processing, rows are retrieved into or inserted from host
variables declared as an array of records. The following is a generic form of the declaration section:

EXEC SQL BEGIN DECLARE SECTION;

struct StructName {

data type ColumnNamel;

data type ColumnName2;

sqlind Coi2IndVar;

data type ColumnNameN;

sqlind ColNindVar;

• 36 -

The REJSQL Embedded Programming Features

} ArrayName[n];

short Startlndex;

short NumberOfRows;

EXEC SQL END DECLARE SECTION;

When you declare a structure array, note that the order of the select list items for SELECT or FETCH
statements, or colurnn name Iist for INSERT statement, must match the order of the corresponding host
variable elements in the structure of the anay. Any column that may contain a null value must have an
indicator variable immediately following the declaration for the colurnn in array.

When you refer a structure array, note that you must refer the array as a whole. Referring to any single
record in array or any single element in the stmcture is not allowed in the SQL statement. However, you can
refer the records or structure elements anywhere in you host program except in any SQL statement.

Two additional host variables may be specified in conjunction with the structure array:

• A Startindex variable: a short integer variable that specifies an array subscript. The subscript identifies
where in the array SQL should store the first row in a group of rows retrieved. In the case of an INSERT
operation, the subscript identifies where in the array the first row to be inserted is stored. If not specified, the
assumed subscript is zero.

• A NumberOfRows variable: a short integer variable that indicates to SQL how many rows to transfer into
or take from the array, starting at the array record designated by Startindex. If not specified, the default
number of rows is the number of records in the anay from the Startindex to end of the array for an INSERT
operation. Fora retrieval operation, the default number of rows is the smaller of two values; 1) the number
of records in the array from the Startindex to the end of the array, or 2) the number of rows in the query
result. NumberOfRows can be specified only if you specify the Startindex variable.

The following provides a example of using structure variables:

EXEC SQL BEGIN DECLARE SECTION;

struct StructName {

sqlind ColurnnNamel;

char ColurnnName2[10];

sqlind Col2IndVar;

- 37 •

The RE/SOL Embedded Programming Features

double ColumnName3;

sqlind Col3IndVar;

} ArrayName[lO];

short Startlndex;

short NumberOfRows;

char SearchCondition[lO];

EXEC SQL END DECLARE SECTION;

EXEC SQL BULK INSERT INTO example_table

(ColumnNamel,ColumnName2,ColumnName3)

VALDES (:ArrayName, :Startlndex, :NumberOfRows);

EXEC SQL BULK SELECT ColumnNamel, ColumnName2, ColumnName3

INTO :ArrayName, :Stattlndex, :NumberOfRows

FROM example_talbe

WHERE ColumnNmae2 = :SerachCondition;

- 38 -

TABELLE 7

The RE/SOL Embedded Programming Features

2.10.1.3 Declaring Variable for Data Types

Table 7 summarizes C data declarations for host variables of each RE/SQL data type. Only the type
descriptions shown in Table 7 are supported by the RE/SQL translator. Note in particular that the translator
does not support user-defined data types.

Data Type Declarations

CHAR(n) char dataname[n+ 1];

VARCHAR(n) char dataname[n+l];

SMALLINT short dataname;

INTERGER long dataname;

FLAOT ftoat dataname;

DOUBLE double dataname;

DATE char dataname[26];

DATETIME char dataname[26];

INTERVAL char dataname[26];

For C strings (character arrays), C has the convention of using an ASCII 0 ('\0'), the null character, to mark
the end of the string. Therefore, char host variables declared in C, for CHAR, VARCHAR, DATE,
DATETIME, and INTERVAL, must have a size one greater than their column definition, to allow for the
null character at the end of the string.

When SQL assigns CHAR data to char array host variable, the totallength of the SQL CHAR field is stored
in the host variable including any trailing blanks on the right of the data string. An ASCII 0 is then added
after the last byte of the string.

For the string of VARCHAR, DATE, DATETIME, and INTERVAL, no trailing blanks are added at the end
of string. An ASCII 0 is placed after the last character of the C string based on the specified length of the
string.

Because the C string is terminated by ASCII 0, the string could be declared Ionger than what it needs.
Though it is not obviously meaningful to do this, no negative affection would be generated. This feature is
helpful to solve the problern which is caused by the difference existed between the current SQL
implementations in their length of date data type.

- 39 -

TABELLE 8

The REISQL Embedded Programming Features

Variable Compatibility

Under the following conditions, SQL performs data type conversion when executing SQL commands
containing hast variables:

• when the data types of values transferred between your program and database do not match

• when data of one type is moved to a host variable of a different type

• when values of different types appear in the same expression

Data types for which type conversion can be performed are called compatible data types. Table 8
summarizes data type-hast variable compatibility. It also points out which data type combinations are
incompatible and which data type combinations are equivalent, i.e. require no type conversion. E describes
an equivalent situation, C a compatible situation, and I an incompatible situation.

C Data Type Equivalency and Compatibility

-~-~----~---~- -~- - ~ ~- ----~~--- ~-------~-- --- --~ ~~-- -- - ----

CHAR c I I I I

VARCHAR c I I I I

SMALLINT I E c c c

INTEGER I c E c c

FLOAT I c c E c

DOUBLE I c c c E

String Data Conversion

When SQL stores the characters in a C string into a CHAR column, the final ASCII 0 is removed and the
any remaining position to the right are padded with spaces. When SQL stores the characters in a C string to
VARCHAR column, it only stores the string up to but not including the ASCII 0. The length of the string is
stored in a header in the front of each VARCHAR data type.

String Data Truncation

- 40 -

The REISQL Embedded Programming Features

If the target hast variable used in a SELECT or FETCH operations is too small to hold an entire string, the
string is truncated. You can use an indicator variable to determine the actuallength of the string in bytes
before truncation. SQL puts the actual length of the string n bytes into indicator variable if there is an
indicator variable is associated. If a column is too small to hold a string in an INSERT or an UPDATE
operation, the string is truncated and stored, but SQL gives no error or waming indication.

Numeric Data Conversion

When you use numeric data of different types in an expression or comparison operation, data of the lesser
type is converted into data of thc grcater type, and the results is expressed in the greater type. SQL numeric
types have the following precedence, from highest to lowest:

1. DOUBLE

2.FLOAT

3. INTEGER

4. SMALLINT

Notes:

1. In ALLBARE/SQL, the host variable must be used in a SAVEPOINT statement to refer to a rollback
stop. But in INGRES/SQL, it is not allowed to use the host variable in a SAVEPOINT statement. This is a
difficult case. To keep SAVEPOINT statement in RE/SQL, an effort must be made to develop some new
rules to invoke SAVEPOINT statement, which can be dealt with by the RE/SQL translator. However, the
host variables can no Ionger be directly used in this case by the users. For more details, see SAVEPOINT
statement in Develop The Syntax For The RE/SQL.

2. Originally, the BULK processing has been supported only by ALLBARE/SQL. However, there has been
some other features in INGRES/SQL which can be used to realize similar function of the BULK processing.
It is expected that based on the syntax for BULK statements the equivalent statements could be generated
by RE/SQL translator. For more details, refer to BULK statements in Develop The Syntax For The RE/
SQL.

3. There is a big difference between the ways you declare structure hast variables for BULK processing in
ALLBARE/SQL and INGRES/SQL if some indicator variables must be used in the structure. In
ALLBARE/SQL, the indicator variables must be declared immediately following the associated structure
elements. And in the INGRES/SQL, the indicator variables must be declared as a separated array. This is a
very complicated case if we use RE/SQL translator, this might be possible, to automatically make proper
changes in the user's application program. Another conservative option is leave this work clone be the users
themselves, i.e. users write related program segments with both ALLBARE/SQL and INGRES/SQL rules
with the compiler conditional statements #if, #eise, and #endif.

4. It is more flexible for INGRES/SQL to use structure variables. For example, in INGRES/SQL, the user
can refer to single array record or single structure element, and user defined data type is supported. These
features are no Ionger supported by RE/SQL

- 41 -

The REISQL Embedded Programming Features

2.7.2 Runtime Status Checking and the SQLCA

When an SQL command is executed, SQL retums information describing how the command executed. This
information signals one or more of the following status condition:

• The command was successfully executed.

• The command could not be executed because an error condition occurred, hut the current transaction will
continue.

• No rows qualified for a data manipulation operation.

• A specific number of rows were placed into output host variables.

• A specific number of rows qualified for an INSERT, UPDATE, or DELETE operation.

• The command was executed, but a warning condition resulted.

• The command could not be executed because the number of variables in a SELECT or FETCH statement
is unequal to the number of columns in the table being operated on. This applies to dynamic precessing only.

• The. command could not be executed because an error condition necessitated rolling back the current
transaction.

This information is sent to SQL Communications Area (SQLCA) by the SQL after an SQL statement was
executed. Based on this information, a program can COMMIT WORK, ROLLBACK WORK, continue,
terminate, display a message, or perform error handling. You can use SQLCA in different way:

• You can use the WHENEVER command to perform implicit status checking. This means that SQL checks
the variables defined in SQLCA for you, then takes an action based on information you provide in the
\VHENEVER command.

• You can write C code that explicitly examines one or more of the seven SQLCA elements, the proceeds on
the basis of their values. This kind of status checking is called explicit status checking. However, SQLCA
has been defined with some differences in the current SQL implementations so that the SQLCA elements
can no Ionger be used directly by the users. The RE/SQL will provide a group of functions to help user
accessing to SQLCA. More information about SQLCA will described in the following sections.

• You can use a combination of both implicit and explicit status checking.

In conjunction with status checking of any kind, you can use the INQUIRE_SQL command which retrieve
message from the SQL message catalog that describes an error or waring condition.

The SQL Communication Area (SQLCA)

Every SQL C application program must have the SQL Communication Area (SQLCA) declared in the
global declaration part. You can use the INCLUDE command to declare the SQLCA:

• 42 m

TABELLE 9

The REISQL Embedded Programming Features

EXEC SQL INCLUDE SQLCA;

When the translator (from SQL product) parses this command, it insert necessary type definition used in
SQLCA into the modified source file. The structures defined for SQLCA may differ from one SQL
implementation to another, though these differences are non-essential. The SQLCA structures defined in
ALLBARE/SQL and INGRES/SQL are provided in the appendix, a comparison table is also given. Some of
the elements in SQLCA C structure are used by SQL itself, here we discuss only elements used by the users.
The element names in the structure may be different so that these element names can no Ionger be referred
directly by the users in their application programs. To solve this problem, we use macras instead of element
names in the user's application programs. The macras are pre-defined for each current SQL implementation
and will be automatically inserted into the program by the RE/SQL translator during the preprocessing
phase for a specified SQL implementation. The Table 9 shows the macro definitions for the ALLBARE/
SQL and for the INGRES/SQL. With using these variables, users can perform explicit status checking and
error handling, which will be described in the following sections.

Macro Definitions For SQLCA8

#define SQLCA_SQLCODE sqlca.sqlcode sqlca.sqlcode

#define SQLCA_SQLERRD2 sqlca.sqlerrd[2] sqlca.sqlerrd[2]

#define SQLCA_SQLWARNO sqlca.sqlwarn[O] sqlca.sqlwarnO

#define SQLCA_SQLWARNl sqlca.sql warn[I] sqlca.sqlwarn 1

#define SQLCA_SQLWARN2 sqlca.sqlwarn[2] sqlca.sqlwarn2

#define SQLCA_SQLWARN3 sqlca.sqlwarn[3] sqlca.sqlwarn3

#define SQLCA_SQLWARN6 sqlca.sql warn[6] sqlca.sqlwarn6

a. Only the interested variables are listed in this table.

SQLCA_SQLCODE is a integer variable indicating the SQL retum code. Its value falls into one of three
categories:

= 0 The statement executed successfully (though there may have waming messages see
SQLCA_SQLWARNO).

< 0 An error occurred. The value of SQLCA_SQLCODE is the negative value of the error number. A
negative value sets the SQLERROR condition of the WHENEVER statement.

100 When no rows qualify for one of the following commands, but no error condition exists:
SELECT, FETCH, INSERT, UPDATE, DELETE, UPDATE WHILE CURRENT,
DELETE WHILE CURRENT. This value sets NOT POUND condition of the
WHENEVER command ..

SQLCA_SQLERRD2 can contain one of the following values:

- 43 -

The RE/SQL Embedded Programming Features

= 0 This value does not make sense because it represents different meaning in different SQL
implementations.

> 0 The number of rows processed in the following data manipulation commands: SELECT,
FETCH, INSERT, UPDATE, DELETE, UPDATE WHILE CURRENT, UPDATE
WHILE CURRENT.

SQLCA_SQLWARNO If set to "W", at least one other SQLCA_SQLWARN* contains a "W". When "W"
is set, the SQLWARNING condition of the WHENEVER statement is set.

SQLCA_SQLWARNl Set to "W" on truncation of a character string assignment from the database into a
host variable. If an indicator variable is associated with the host variable, the
indicator variable is set to the originallength of the character string.

SQLCA_SQLWARN2 Set to "W" on elimination of nulls from aggregates.

SQLCA_SQLWARN3 Set to "W" when mismatching number of result columns and result host variables
in FETCH or SELECT statement (includes dynamic operations).

SQLCA_SQLWARN6 Set to "W" when the error returned in SQLCA_SQLCODE caused the abnormal
termination of an open transaction (transaction rolled back).

Explicit Status Checking Techniques

Explicit status checking is useful when you want to test for specific SQLCA values before passing control to
one of several locations in your program. Error and warning conditions detected by status checking can be
conveyed to the program user in various ways:

• INQUIRE_SQL can be used one or more times after an SQL command is processed to retrieve warning
and error messages from the SQL message catalog. (The SQL message catalog contains messages for every
negative SQLCA_SQLCODE and for every condition that sets SQLCA_SQLWARNO).

• Your own messages can be displayed when a certain condition occurs.

• You can choose not to display a message; for example, if a condition exists that is irrelevant to the program
user or when an error is handled internally by the program.

A typical form of using explicit status checking is shown in the following example:

if (SQLCA_SQLCODE == 0) /* no error, but may have warning */

if (SQLCA_SQLWARNO == 'W') /* warning occurs *I

I* you may display warning message with using INQUIRE_SQL */

• 44 •

The RE/SQL Embedded Programming Features

EXEC SQL INQUIRE_SQL :SQLMessage;

printf("%s\n",SQLMessage);

I* you rnay deal with warning according to SQLCA_SQLWARN? *I

if (SQLCA_SQLWARNl == 'W') I* string truncation occurs *I

I* deal with this warning *I

I* deal with other warning which rnay occurs *I

else if (SQLCA_SQLCODE == 100) I* no row qualified *I

printf("No rows qualified for this operation!\n");

else if (SQLCA_SQLCODE < 0) I* error condition occurs *I

I* you rnay display error rnessage with using INQUIRE_SQL *I

EXEC SQL INQUIRE_SQL :SQLMessage;

printf("o/os\n" ,SQLMessage);

I* you rnay take other actions to respond error condition *I

- 45 -

The RE/SQL Embedded Programming Features

This example just provides an idea to perform status checking. Based on the description about SQLCA
elements, you can use them in any way you want.

Implicit Error Handling Techniques

Implicit error handling is useful when control to handle warnings and errors can be passed to one predefined
point in a WHENEVER command. The WHENEVER command has two components: a condition and an
action. The comm11nd formilt is:

EXEC SQL WHENEVER Condition Action;

There are three possible WHENEVER conditions:

•SQLERROR

If WHENEVER SQLERROR is in effect, SQL checks for a negative SQLCA_SQLCODE after

• SQLWARNING

If WHENEVER SQLWARNING is in effcct, SQL chccks for a "W" in SQLCA_SQLWARNO after
processing an SQL command.

<> NOTPOUND

If WHENEVER NOT POUND is in effect, SQL checks for a 100 in SQLCA_SQLCODE after processing
an SELECT or FETCH command.

A WHENEVER command for each of these conditions can be in effect at the same time.

There three possible WHENEVER actions:

•STOP

If WHENEVER Condition STOP is in effect, SQL ro11s back the current transaction and terminates the
database session and the program when the condition exists.

•CONTINUE

If WHENEVER Condition CONTINUE is in effect, program execution continues when the Condition
exists. Any earlier WHENEVER command for the same condition is cance11ed.

• GOTO UneLabel

If WHENEVER Condition GOTO UneLabel is in effect, the code routine located at that alpha-numeric line
Iabel is executed when the Condition exists. The line label must appear in the function where the GOTO is
executes. GOTO and GO TO forms of this action have exactly the same effect.

Any action may be specified for any condition.

D 46 -

The RE/SQL Embedded Programming Features

Notes:

1. Although the structures defined in the current SQL implementations are different, the structure elements
have similar meanings. By means of inserting a set of pre-defined macro definitions for a specified SQL
product, which will be used by the users in their application programs, the RE/SQL translator can easily
solve this problem.

2. The approaches to runtime status checking in current implementations are also similar. The major
differences come from message retrieval command. INQUIRE_SQL is command from INGRES, besides
relrieving euor or wa1uing message, it has many other options which can be used for runtime status
checking. These options will no Iongerbe supported by RE/SQL because there are no equivalent functions
in ALLBARE/SQL. The similar command in ALLBARE/SQL is SQLEXPLAIN, which can be used only
to retrieve error and/or warning message. However, SQLEXPLAIN could be used to obtain more than one
error and/or warning messages at the same time, but the INQUIRE_SQL could obtain only one message at
once.

3. The approaches to implicit error handling, which uses WHENEVER command, are the same in the
current SQL implementations.

2.7.3 Dynamic Operationsand the SQK.DA

Dynarnic operations support dynamic programming which is the ability to specify a variety of critical
program elements, such as queries, SQL statements, and SQL object names, at run time. In applications
where table names and column names arenot known until run time, or where complete queries must be built
based on the application's run-time environment, the "hard-coded" SQL statement is not sufficient. For
example, an application might include an expert mode in which the run-time user can type in select queries
and browse the results at the terminal. To support applications such as these, SQL provides dynamic
operations.

Dynamic operations provide the ability to specify table and column names and build queries at run time.
Using dynamic operations, you can:

• execute a statement that is stored in a buffer (EXECUTE IMMEDIATE).

• encode a statement stored in a buffer and execute it multiple times (PREPARE and EXECUTE).

• obtain information about a table at run time (PREPARE and DESCRIBE).

The SQL Descriptor Area (SQLDA) is an integral part of dynamic programming. The SQLDA is a host
language structure used by dynamic operation as a storage space for information. When used with the
DESCRIBE statement, this information includes the name, data type, and length of the result columns.

All of the current SQL implementations can complete the preprocessing of dynamic commands at run time.
Any SQL command except the following, which are designed only for programmatic use, can preprocessed
at run time:

- 47 -

The RE/SQL Embedded Programming Features

ALLOCATESQLDA_SQLFMTARR

ALLOCATESQLDA_DATABUFF

BEGIN DECLARE SECTION

BEGINWORK

BULKoperations

CLOSE

COMMITWORK

CONNECT

DECLARE CURSOR

DECLARESQLDA

DELETE WHERE CURRENT

DESCRIBE

DISCONNECT

END DECLARE SECTION

EXECUTE

EXECUTE IMMEDIATE

FETCH

FREESQLDA_SQLFMTARR

FREESQLDA_DATABUFF

INCLUDE

INQUIRE_SQL

LOCKTAHLE

UNLOCK TABLE

OPEN

PREPARE

m 48 m

The REISQL Embedded Programming Features

ROLLBACK WORK

SAVEPOINT

SET READLOCK

UPDATE WHERE CURRENT

WHENEVER

The SQL product translator might create permanently stored sections associated with dynamic commands,
which can improve performance of execution of these dynamic operations. For the program developers and
the users, this processing can be considered as being transparent, though it may be done in a different way in
the different SQL products.

The dynamic operations have four commands that are exclusively for use in a dynamic program:
EXECUTE IMMEDIATE, PREPARE, EXECUTE, and DESCRIBE. In addition, all commands that support
cursors (DECLARE, OPEN, FETCH, UPDATE, DELETE, CLOSE) have dynamic versions to support
dynamically executed queries. These dynamic commands are quite compatible in the current SQL
implementations.

Notice that the RE/SQL translator must be able to work dynamically to translate the syntax that are used in
dynamic operation, if any, to the syntax of a specified SQL implementation. That means the translator itself,
appeared as a C function now, would be embedded into the user's applications during the preprocessing
phase if any dynamic operation were used in the user's applications. There are two cases to be considered
(this work will be done automatically by the RE/SQL translator, i.e. the users of RE/SQL do not need to
consider these problems):

• While executing a dynamic command, a Iitera! string is used as command string. In this case, RE/SQL
translator will deal with the Iiteral string according the RE/SQL syntax, and replace the literal string with a
translated string in which the syntax will be compatible with a specified SQL implementation.

• While executing a dynamic command, a host variable is used to provide command string. In this case, the
RE/SQL translator will embedded a C function version of translator in the user's application program, and
meanwhile a C statement to invoke this function before any dynamic statement can be executed, which
makes the command syntax in the host variable compatible with a specified SQL implementation. The
following example can explain this case:

Before RE/SQL preprocessing, you may write a dynamic operation statement like:

EXEC SQL PREPARE ThisCommand FROM :DynamicCommand;

and then the translator will replace this statement with the following statements:

dynamic _translator(DynamicCommand,DynamicCommandB uffer);

EXEC SQL PREPARE ThisCommand FROM :DynamicCommandBuffer;

- 49 -

The RE/SQL Embedded Programming Features

The dynamic preprocessing function, dynamic_translator(), will be append to your program. The original
RE/SQL command will still be stored in DynamicCommand, the modified command string will be copied to
a command buffer which is managed by RE/SQL translator.

Dynamic operations in SQL are of two major types, Dynamic Non-Queries which are dynamic operations
that do not retrieve rows from the database, and Dynamic Queries which are dynamic operations that do
retrieve rows. Note that dynamic queries may have a query result whose format is known to you at
programming time, or they may have a query result whose format is unknown.

If thc program does not know whether or not the statement is a query, the program can PREPARE and
DESCRIBE the statement. The results returned by the DESCRIBE statement will indicate whether or not
the statement was a query. The SQLDA_SQLD is set to o if the dynamic command is not a query and to a
positive integer if its is a query. The SQLDA data structure is used in any program that may host a dynamic
query.

In the following example, if the command is not a query, you branch to function NonQuery() in which you
can execute a dynamic non-query. If is a query, you branch to function Query(), where you can execute a
dynamic query.

EXEC SQL PREPARE ThisCommand FROM :DynamicCommand;

EXEC SQL DESCRIBE ThisCommand INTO SQLDA;

if (SQLDA_SQLD == 0)

NonQuery();

else if (SQLDA_SQLD > 0)

Query();

It is sometimes necessary to define dynamic data structures that can accommodate either non-queries or
queries at run time, which is done through SQLDA and associated data structure and buffer that are used
explicitly by the program developers in their application programs. Based on the survey of ALLBARE/SQL
and INGRES/SQL, some differences have been identified in this area. An effort has been made to solve this
problem, see following for more details.

a 50 m

The RE/SQL Embedded Programming Features

2.10.1.4 Executing A Dynamic Non-Query

You can use either EXECUTE IMMEDIATE command or the combination of PREPARE and EXECUTE to
execute a dynamic non-query statement. EXECUTE IMMEDIATE is most useful if the program executes
the statement only once within a transaction. If the program executes the statement many times within a
transaction, for example, within a program loop, use the PREPARE and EXECUTE combination:
PREPARE the statement once, then EXECUTE as many times as necessary.

Using EXECUTE IMMEDIATE

If you know in advance that a dynamic command will not be a query, you can dynamically preprocess and
execute the command in one step using the EXECUTE IMMEDIATE command, its syntax is:

EXEC SQL EXECUTE IMMEDIATE { statement_string I host_ variable}

For example, the following command DROP a table:

EXEC SQL EXECUTE IMMEDIATE 'DROP TABLE test_table';

Another example does the same work:

strcpy(Command_ Variable,"DROP TABLE test_table");

EXEC SQL EXECUTE IMMEDIATE :Command_ Variable;

Using Combination Of PREPARE And EXECUTE

The PREPARE and EXECUTE commands can also be used to execute dynamic non-queries. These two
commands, working together, allow your program to create and storc a tcmporary section for a dynamic
statement and to execute it as many time as possible. However, a prepared statement is discarded when the
transaction in which it was prepared is rolled back or committed. Also, if you prepare a statement with the
same name as an existing statement, the new statement supersedes the old statement. Their syntax are:

EXEC SQL PREPARE Command_Name

FROM { statement_string I host_ variable}

and

EXEC SQL EXECUTE Command_Name

The following is an example to use these two command:

EXEC SQL PREPARE Command_Name FROM :Dynamic_Command;

for (i=O;i<loop;==i)

- 51 -

The RE/SOL Embedded Programming Features

EXEC SQL EXECUTE Command_Name;

2.10.1.5 Executing A Dynamic Non-Query

Executing dynamic queries requires setting up a buffer to receive the query result and then extracting the
items you want from the buffer. Forthose operations, you use three special data structures:

"SQL Descriptor Area (SQLDA) is a record used to pass information on the location and contents of the
I

other two dynamic data structures, the format array and the data buffer. You set some fields in the SQLDA
and pass them to SQL; and SQL passes values back to you in other fields.

e SQL Format Array is an array of records with one record for each select list item (column). The
attributes of a column in the query result are described in a format array record. When you do not know the
format of a query result at programming time, you use format array information to identify where in the data
buffer to find each column value and how to interpret it. Such information is sent to format array each time
you execute the DESCRIBE command.

• SQL Data Buffer is a memory space allocated for holding rows for a query result. SQL puts rows into the
data buffer each time you execute the FETCH command.

The details about these data structures will be discussed in the next section. This section only addresses a
general procedure to handle dynamic query with cursor operations. Though some specific details differ
depending on the query type, in general you handle all types of dynamic query as follows:

• You declare data type for SQLDA, format array and data buffer at C declaration section of the program
using following syntax (see next section for more details):

EXEC SQL INCLUDE SQLDA;

EXEC SQL DECLARE SQLDA;

• You specify PREPARE command with following syntax to dynamically preprocessing your query:

EXEC SQL PREPARE MyQuery FROM :DynamicCommand;

• You dynamically allocate space for format array with following RE/SQL command:

EXEC SQL ALLOCATE SQLDA_SQLFMTARR;

• The DESCRIBE command makes format array available to your program information about each column
in a query result:

EXEC SQL DESCRIBE MyQuery INTO SQLDA;

• You dynamically allocate space for data buffer with following RE/SQL command:

EXEC SQL ALLOCATE SQLDA_DATABUFF;

- 52 -

The RE/SQL Embedded Programming Features

• The DECLARE CURSOR command maps the temporary section to a cursor so that the other cursor
manipulation commands can be used:

EXEC SQL DECLARE DynamicCursor CURSOR FOR MyQuery;

• The OPEN command attaches SQL buffer space for holding qualifying rows and defines the active set:

EXEC SQL OPEN DynamicCursor;

• The FETCH command evaluates all predicates in the query and transfers rows from the SQL database into
SQLDA data buffer:

EXEC SQL FETCH DynamicCursor USING DESCRIPTOR SQLDA;

The USING DESCRIPOR clause indicates to SQL that row should be formatted in accord with a format
array identified in the SQLDA and returned to a data buffer identified in the SQLDA. You can then obtain
desired data from data buffer according to information stored in format atTay. The SQLDA, the format aiTay,
and the data buffer are discussed later in next section.

The FETCH command retrieve one row with once execution. (Though the dynamic version of FETCH
command in ALLBARE/SQL can retrieve multiple rows in one FETCH, we can only retrieve one row in its
version in RE/SQL because INGRES/SQL does not support this feature.) You can repeatedly execute the
FETCH command until SQL set SQLCA_SQLCODE to 100.

• You free data buffer with following RE/SQL command:

EXEC SQL FREE SQLDA_DATABUFF;

• You free format array with following RE/SQL command:

EXEC SQL FREE SQLDA_SQLFMTARR;

• The CLOSE command closes the cursor:

EXEC SQL CLOSE DynamicCursor;

The COMMIT WORK and ROLLBACK WORK commands also close any open cursors.

Dynamic Query Result Data Structures

Declaring The SQL Descriptor Area (SQLDA)

Every SQL C application program, which uses dynamic operations, must have the SQL Descriptor Area
(SQLCA) declared in the global declaration part. You can use the INCLUDE command to declare the
SQLDA:

EXEC SQL INCLUDE SQLDA;

When the translator (from SQL product) parses this command, it insert necessary type definition used in
SQLDA into the modified source file. The structures defined for SQLCA may differ from one SQL

- 53 -

TABELLE 10

The RE/SQL Embedded Programming Features

implementation to another, though these differences are non-essential. The SQLDA structures defined in
ALLBARE/SQL and INGRES/SQL are provided in the appendix, a comparison tableis also given. Some of
the elements in SQLDA C structure are used by SQL itself, here we discuss only elements used by the users.
The element names in the structure may be different so that these element names can no Ionger be referred
directly by the users in their application programs. To solve this problem, we use macros instead of element
names in the user's application programs. The macros are pre-defined for each current SQL implementation
and will be automatically inserted into the program by the RE/SQL translator during the preprocessing
phase for a specified SQL implementation. The Table 10 shows the macro definitions for the ALLBARE/
SQL and for the INGRES/SQL. With using these variables, users can obtain query result information when
you are executiug a dynamic query.

Macro Definitions For SQLDA8

#define SQLDA_SQLN sqlda.sqln sqlda->sqln

#define SQLDA_SQLD sqlda.sqld sqlda->sqld

#define SQLDA_SQLFMTARR sqlda.sqlfmtarr sqlda->sqlvar

SQLDA_SQLN

SQLDA_SQLD

a. Only the interested variables are listed in this table.

is 2-byte integer indicating the number of allocated format array rccords (onc
record per select list item). This value must be set by the program before describing
a statement. The value must be greater than or equal to zero.

is 2-byte integer indicating the number of columns in query result. When
describing a dynamic SQL statement, if the value in SQLDA_SQLD is zero, then
the described statement is not a query.

SQLDA_SQLFMTARR is an SQLDA_SQLN-size array which is declared as record structure to store
columns retrieved by FETCH command. The elements in SQLDA_SQLFMTARR
will be discussed in the following section.

Setting Up the Format Array SQLDA_SQLFMTARR

SQLDA_SQLFMTARR is an array of record for storing columns retrieved by FETCH command when the
users do not know the column format information. Based on information in SQLDA_SQLFMTARR
retumed from SQL query by DESCRIBE command, the user can analyze column types and find the location
of specified data in Data Buffer. SQLDA_SQLFMTARR must be declared in the program declaration
section and allocated before you DESCRIBE the SQL statement. The declarations and uses of
SQLDA_SQLFMTARR are different in current SQL implementations. Much efforts have been made to
standardize the programming techniques for dynamic queries by means of the following methods:

• define a RE/SQL-specific command, which are DECLARE SQLDA. When this command is preprocessed
by RE/SQL translator, it will be translated to a group of proper declaration Statements in C language, and
automatically embedded in the user's source code.

- 54 -

The RE/SQL Embedded Programming Features

• define two RE/SQL-specific commands, which are ALLOCATE { SQLFMTARR I DATABUFF} and
FREE { SQLFMTARR I DATABUFF}, to dynamically allocate and free space of SQLDA_SQLFMTARR
and SQLDA_DATABUFF.

• provide a set of C functions, see following section, to manipulate (test and/or obtain) the data store in
SQLDA_DATABUFF. On the other hand, a group of C macras are defined to eliminate differences of the
structure elements. The elements of structure of SQLDA_SQLFMTARR is no Ionger transparent to the
users, i.e. the users have to use these functions and macras to retrieve data from SQLDA_SQLFMTARR
and SQLDA_DATABUFF.

SQLDA_SQLFMTARR must be declared and allocated in size of which it can store all columns (in one
row) retumed by the FETCH command. The data type for SQLDA_SQLFMTARR is declared at the same
time when you declare SQLDA in a INCLUDE command. And then you can allocate space for
SQLDA_SQLFMTARR dynamically. The declaration must occur just after you declare SQLDA with a
INCLUDE command:

EXEC SQL INCLUDE SQLDA;

EXEC SQL DECLARE SQLDA;

These commands must appear at C global variable declaration section, normally on the top of the file which
include SQL statements. No nurober of record is needed here. These two commands will be translated to the
following statements by the RE/SQL translator during the preprocessing phase:

For ALLBARE/SQL:

EXEC SQL INCLUDE SQLDA;

sqlformat_type *sqlfmts;

char *DataBuffer;

For INGRES/SQL:

EXEC SQL INCLUDE SQLDA;

IISQLDA *sqlda;

Then, you allocate space for SQLDA_SQLFMTARR before you use DESCRIBE statement, and free the
allocated space after you FETCH data into SQLDA_DATABUFF and obtain data from
SQLDA_DATABUFF. The following statements have been developed to support you to do this work:

- 55 -

The REISQL Embedded Programming Features

EXEC SQL ALLOCATE SQLDA_SQLFMTARR NumberOtRecord;

. l*you DESCRIBE, FETCH and obtain data *I

EXEC SQL FREE SQLDA_SQLFMTARR;

These two commands will be translated to the following Statements by the REISQL translator during the
preprocessing phase:

For ALLRARR/SQT .:

sqlfmts = (sqlformat_type *) calloc(l, Number0fRecord *

sizeof(sqlformat_type));

if (sqlfmts == (sqlformat_type *)0)

I* print error message and exit */

sqlda.sqln = NumberOtRecord;

sqlda.sqlfmtarr = sqlfmts;

. I* You DESCRIBE, FETCH and obtain data */

free(sqlfmts);

For INGRESISQL:

sqlda = (IISQLDA *)calloc(l, IISQDA_HEAD_SIZE +

(NumberOtRecord * IISQLDA_ VAR_SIZE));

if (sqlda == (IISQLDA *)0)

I* print error message and exit *I

sqlda->sqln = NumberOtRecord;

. I* You DESCRIBE, FETCH and obtain data *I

free(sqlda);

m 56 m

The RE/SQL Embedded Programming Features

One of the main difference of SQLDA declarations between ALLBAREISQL and INGRESISQL is that the
SQLDA is declared as a variable of structure in ALLBAREISQL and is declared as apointer of structure in
INGRESISQL. This may cause difference when you use SQLDA, respectively using "o" or "->" to refer to
elements of the structureo See the next section for more informationo

Setting Up the SQLDA_DATABUFF

Because the SQLDA_SQLFMTARR can contain only the information about each colurnn, you must
allocate a space for SQLDA_DATABUFF to actually store the row retrieved by FETCHo This work should
be done after you DESCRIBE the query and before you FETCH data, because the SQLDA_DATABUFF
must be allocated based on the information of SQLDA_SQLFMTARR. The data type of the DateBuffer has
been declared tagether in DECLARE SQLDA statement. The following statements have been developed to
support you to do this work:

EXEC SQL ALLOCATE SQLDA_DATABUFF;

0 l*you FETCH and obtain data *I

EXEC SQL FREE SQLDA_DATABUFF;

These two commands will be translated to the following Statements by the REISQL translator during the
preprocessing phase:

For ALLBAREISQL:

I* here DataBuffer is allocated for its maximum value

to simplify the calculation of buffer size *I

DataBuffer = (char *) calloc(l, 2500);

I* set some data field of SQLDA *I

sqldaosqlbuften = 2500;

sqldaosqlrowbuf = (int) DataBuffer;

sqldaosqlnrow = 1;

0 I* You FETCH and obtain data *I

free(DataB uffer);

For INGRESISQL:

for (SQL_ii = 0; SQL_ii < sqldaosqld; SQL_ii++)

I* allocate space for colurnn data according information

- 57 -

The REISQL Embedded Programming Features

in the SQLDA_SQLFMTARR *I

switch (abs(sqida->sqlvar[SQL_ii] .sqltype))

case IISQ_INT_TYPE:

if (sqida->sqivar[SQL_ii].sqllen == 4)

sqlda->sqlvar[SQL_ii].sqidata = (char *)calloc(l, 4);

eise

sqida->sqivar[SQL_ii].sqldata = (char *)calloc(l, 2);

break;

case IISQ_FLT_TYPE:

if (sqida->sqivar[SQL_ii].sqllen == 4)

sqlda->sqivar[SQL_ii].sqldata = (char *)calloc(l, 4);

eise

sqida->sqivar[SQL_ii] .sqldata = (char *)calloc(l, 8);

break;

case IISQ_CHA_TYPE:

sqida->sqivar[SQL_ii] .sqidata =

(char *)calloc(l, sqida->sqlvar[SQL_ii] .sqllen+ 1);

break;

case IISQ_ VCH_TYPE:

sqida->sqivar[SQL_ii] .sqidata =

(char *)calloc(l, sqlda->sqivar[SQL_ii].sqllen+2);

break;

- 58 -

The REJSQL Embedded Programming Features

case IISQ_DTE_TYPE:

sqlda->sqlvar[SQL_ii].sqldata =

(char *)calloc(l, IISQ_DTE_LEN);

sqlda->sqlvar[SQL_ii].sqllen = 25;

break;

I* allocate variable space for null indicator *I

if (slqda->sqlvar[SQL_ii].sqltype > 0)

sqlda->sqlvar[SQL_ii].sqlind = (short *)0;

eise

sqlda->sqlvar[SQL_ii] .sqlind =

(short *)calloc(l ,sizeof(short));

. I* FETCH and obtain data *I

for (SQL_ii = 0; SQL_ii < sqlda->sqld; SQL_ii++)

free(sqlda->sqlvar[SQL_ii l.sqldata);

if (sqlda->sqlvar[SQL_ii]. sqltype < 0)

free(sqlda->sqlvar[SQL_ii] .sqlind);

There are big differences for SQLDA_DATABUFF between ALLBAREISQL and INGRESISQL. In
ALLBAREISQL, the SQLDA_DATABUFF is declared and allocated as a whole character variable of array,
and the location information are stored in SQLDA_SQLFMTARR. In INGRESISQL, the
SQLDA_DATABUFF is declared and allocated as separated pointers for each record in the structure of
SQLDA_SQLFMTARR. This may cause differences when you use SQLDA_DATABUFF. See the next
section for more information.

- 59 -

TABELLE 11

TABELLE 12

The REISQL Embedded Programming Features

Using the SQLDA_SQLFMTARR and SQLDA_DATABUFF

The SQLDA_SQLFMTARR is defined and used in different ways for different SQL implementations.
These differences include:

• the elements defined in the data format structure arenot the sarne for their names.

• the data type is coded in different way.

• the data of colurnns are stored in different way so that they must be accessed in different way.

To solve these problems, we have defined some group of C macros. In the user's application program, the
SQLDA_SQLFMTARR is used as a structure array, which is declared in size of NumberOfRecord that is
stored in SQLDA_SQLN. After you FETCH a row from the database to SQLDA_DATABUFF, the number
of columns returned is set to SQLDA_SQLD. You rnay refer the array record as following format:

SQLDA_SQLFMTARR[i].XXXXX

where i has the valid range from 0 to SQLDA_SQLD - 1. XXXXX denotes structure elements in
SQLDA_SQLFMTARR. They are C macros defined for the reason mentioned above. Table 11 lists the
definitions for all of the valid macras which you can use in your application pro gram.

Macro Definitions For SQLDA_SQLFMTARR Elemenlsa

#define SQLTYPE sqltype sqltype

#define SQLLEN sqlvallen sqllen

#define SQLNAME sqlname sqlname

a. Only the interested variables are listed in this
table.

SQLTYPEspecifies the data type with a coded integer. Because the codes
used in different implementations are not the same, we use another group of
macras to identify the code in SQLTYPE. Table 12 gives out definitwns for
these macros. Same codes must be used with the data length SQLLEN. For

Macro Definitions For SQLDA Data Type Codes

#define SESQL_INTEGER_ TYPE 0 30

#define SESQL_FLOAT _TYPE 4 31

#define SESQL_ CHAR_ TYPE 2 20

- 60 -

l'ABELLE 12

rABELLE 13

The REISQL Embedded Programming Features

Macro Definitions For SQLDA Data Type Codes

#define SESQL_ VARCHAR_TYPE 3 21

#define SESQL_DATE_TYPE 10 3

#define SESQL_DATETIME_TYPE 12 3

#define SESQL_INTERVAL_TYPE 13 3

SQLLEN specifies the length of the data stored in data buffer. Generally, it is the practical
length of the data. But there are two exceptions for different SQL implementations: 1) while dealing with
the DATE, DATETIME, and INTERVAL data type, ALLBARE/SQL returns practical data length to
SQLLEN, but INGRES/SQL returns 25 as data length because INGRES/SQL adds ASCII blank to the end
of string if it is as long as 25 characters; 2) while dealing with VARCHAR data type, ALLBARE/SQL the
length returned to SQLLEN includes 4 byte prefix containing actual length of VARCHAR data, but
INGRES/SQL specifies a value which does not include the prefix.

SQLNAME specifies the name of the column with a char string. The string is terminated with
'\0'.

Note that the practical data returned by FETCH command in DATABUFF can no Iongerbe referred as
elements of structure, which is sqlda.sqlfmtarr[i].sqlvof (short type) that is byte offset of value from
beginning of DataBuffer in ALLBARE/SQL and is sqlda->sqlvar[i].sqldata (char pointer type) that is
address of column value in INGRES/SQL, because of their incompatible data type. To solve this prob lern, a
group of macros have been defined to return the address of column data and address of null indicator in
specified SQLDA_SQLFMTARR record. These macros have been defined for ALLBARE/SQL and
INGRES/SQL respectively in Table 13:

Macro Definitions For SQLDA_DATABUFF ADDRESSES

#define SQLDA_DAT_AD(i) &DataBuff[sqlda.sqlfmtarr[i] .sqlvof] sqlda->sqlvar[i

#define SQLDA_IND_AD(i) &DateBuff[sqlda.sqlfmtarr[i] .sqlnof] sqlda->sqlvar[i

#define SQLDA_IFNULL(i) sqlda.sqlfmtarr[i].sqlindlen sqlda->sqlvar[i

- 61 -

The REISQL Embedded Programming Features

SQLDA_IND_AD(i) returns null indicator address as a (short *) type pointer for a nullable column
specified with i. Its use depends on the value returned by SQLDA_IFNULL(i)
which indicates if the column is nullable. See following for details.

SQLDA_IFNULL(i) returns an integer value. When SQLDA_IFNULL(i) is equal to zero, the column is
NOT nullable. In this case, there is NO a short variable in data buffer pointed by
SQLDA_IND_AD(i). When SQLDA_IFNULL(i) is NOT equal to zero, the
column is nullable. In this case, there is a short variable in data buffer pointed by
SQLDA_IND_AD(i). You can obtain this short value by referring the value of this
address, *SQLDA_IND_AD(i). Refer to "Declare Hast Variable" for description
for indicator variable.

SQLDA_DAT_AD(i) returns data buffer address as a (char *)type pointer for the column specified with
i. The data in the data buffer must be interpreted with the data type and the data
length information which arestoredas SQLDA_SQLFMTARR[i].SQLTYPE and
SQLDA_SQLFMTARR[i].SQLLEN. Based on the data type, you must perform
data conversion for the data type other than (char *) before you assign the data in
the data buffer to a proper C variable. Generally, we use following program
segment to deal with the data in data buffer:

short short_ value;

lang lang_ value;

float float_ value;

double double_ value;

char date_time[26];

char char_str[MAX_ CHAR_ COLUMN_SIZE];

I* MAX_CHAR_COLUMN_SIZE must be declared in size ofthat is one

character lang than column size */

struct VARCHAR_TYPE {

PREFIX_TYPE varchar_length;

char varchar_string[MAX_ VARCHAR_ COLUMN_SIZE];

} varchar_str;

~ 62 ~

The REJSQL Embedded Programming Features

/* PREFIX_TYPE is a macro defined for ALLBARE/SQL

as long integer, for INGRES/SQL as short integer */.

I* after you FETCH data into data buffer */

/* the following statements are in a loop for variable i *I

switch (abs(SQLDA_SQLFMTARR[i].SQLTYPE))

case SESQL_INTEGER_ TYPE:

if (SQLDA_SQLFMTARR[i].SQLLEN =:= 2)

short_value = *(short *)SQLDA_DAT_AD(i);

eise

long_vaiue = *(long *)SQLDA_DAT_AD(i);

break;

case SESQL_FLOAT_TYPE:

if (SQLDA_SQLFMTARR[i].SQLLEN == 4)

ftoat_ value = *(ftoat *)SQLDA_DAT_AD(i);

eise

double_value =*(double *)SQLDA_DAT_AD(i);

break;

case SESQL_CHAR_TYPE:

memcpy(char_str,SQLDA_DAT_AD(i),SQLDA_SQLFMTARR[i].SQLLEN);

char_str[SQLDA_SQLFMTARR[i] .SQLLEN] = '\0';

break;

case SESQL_ VARCHAR_TYPE:

memcpy(varchar_str,SQLDA_DAT_AD(i),

SQLDA_SQLFMTARR[i].SQLLEN + PREFIX_LENGTH);

- 63 -

Conclusions

I* PREFIX_LENGTH is a macro defined for ALLBARE/SQL as 0

for INGRES/SQL as 2 *I

break;

case SESQL_DATE_TYPE:

case SESQL_DATETIME_TYPE:

case SESQL_INTERVAL_TYPE:

memcpy(date_time,SQLDA_DAT_AD(i),SQLDA_SQLFMTARR[i].SQLLEN);

char_str[SQLDA_SQLFMTARR[i] .SQLLEN] = '\0';

break;

Notes:

1. An extremely effort has been made to standardize the use of dynamic SQL operations so that it could be
thought of much easier to use them in a user's application program. The functionality has been remained as
more as possible. No important function has been removed.

2. To do this work, some newly defined RE/SQL statements have been developed, they are DECLARE
SQLDA, ALLOCATE, and FREE. And a procedure to use the dynamic operations has been profiled.

3. On the other hand some group of macros have been defined to access data buffer which is used by
dynarnic queries. You can find these macras in appendix.

2.11 Conclusions

The most parts of the important SQL functions and features, which have been implemented in ALLBARE/
SQL and INGRES/SQL, have been reviewed on an one by one basis in this report. This report is prepared in
the form of a reference manual. As a completed documentation of this work, all necessary information are
included except the following sub-titles:

• An One-by-one Command Description

• Transaction Management

e Cursor Operations

• 64 •

Conclusions

• BULK Operations

• Concurrence Controls

The completion of these sub-tides depends on the further work and will be reported during carrying out the
following working steps.

Based on the detailed survey for the cunent SQL implementations, many significant differences have been
identified, some of them have been well solved in this report:

• the DATEtriME data types are defined in different way in cunent SQL implementations, which include
their declarations and data formats. This problern is solved by re-defining the data type and providing a
group of data conversion functions. See section "2.3 DATA TYPES" for details.

G the SQL Communication Area (SQLCA) is declared and used in different way in current SQL
implementations, which may inftuence status checking and error handling technical. This problern has been
solved by providing a group of pre-defined C macros. See section "4.2 RUNTIME STATUS CHECKING
AND THE SQLCA" for details.

• the SQL Descriptor Area (SQLDA) is declared and used in different ways in the current SQL
implementations, which may affect dynamic SQL operations. Dynamic SQL operations are thought of one
of the most important functions. An extremely effort has been made to standardize the use of dynamic SQL
operations so that it could be thought of much easier to use them in a user's application program. The
functionality has been remained as more as possible. No important function has been removed. To do this
work, some newly defined RE/SQL statements have been developed, they are DECLARE SQLDA,
ALLOCATE, and FREE. And a procedure to use the dynamic operations has been profiled. On the other
band some group of macros have been defined to access data buffer which is used by dynamic queries. See
section "4.3 DYNAMIC OPERATIONS AND THE SQLDA" for details.

Some small changes made in this report are not mentioned here. Some significant differences identified are
expected to solve in the following working steps:

• the differences among the command syntaxes will be eliminated by developing RE/SQL syntax
accompanying the RE/SQL translator. The syntax for each command listed in section 3 will be developed
on an one-by-one basis in the following step. See Syntax Development for details.

• BULK option in INSERT and SELECT statements were original supported only by ALLBARE/SQL.
Because of existing similar functions in INGRES/SQL, this function, which is very useful, will be remained
by means of pre-processor. See Syntax Development for details.

• Some Statements to control authority, concern with concepts used to control data accessing in cunent SQL
implementations, which are the most difficult area to make these functions available in RE/SQL. Locking
managements are also quite different in ALLBARE/SQL and INGRES/SQL. In ALLBARE/SQL, the most
of the locking could be controlled when you issue some statements. There is only one special statement for
locking, that is LOCK TABLE. In INGRES/SQL, the most of the locking could be controlled by a special
statement, SET LOCKMODE. To unify these locking control would be difficult, and needs a more detailed
analysis. These two features mentioned above are critical to enable RE/SQL supporting multiple user
working environment.

- 65 -

REFERENCES

• Though both of ALLBARE/SQL and INGRES/SQL have supported the SAVEPOINT statement, the
syntax they used are quite different. In ALLBARE/SQL, the SAVEPOINT statement must use a host
variable as the parameter. And the INGRES/SQL does not allow using a host variable as parameter. Despite
it is not easy, the pre-processor would solve this problem, see Syntax Development for details.

Some functions and features are thought of very difficult or even impossible to be included in the RE/SQL,
which can be considered as the limitations of RE/SQL:

• Because of some data types are not supported by both of ALLBARE/SQL and INGRES/SQL, the data
type which have been removed from ALLBARE/SQL are DECIMAL, BINARY, VARBINARY,
LONGBINARY, LONG BINARY, and TIME, the data type which have been removed from INGRES/SQL
are MOMEY, TABLE_KEY, OBJECT_KEY. The maximum character length decreased from 3999 to 2000
which is maximum character length of INGRES/SQL.

• Almost all of the assistant functions except aggregate functions in both ALLBARE/SQL and INGRES/
SQL are no Ionger supported by RE/SQL.

• NGRES/SQL can support multi-session in one application program, but ALLBARE/SQL cannot.
Therefore, the related session management options and statements will be removed from RE/SQL.

It is worth to emphasize that RE/SQL is an off-line tool which preprocesses user's application programs in
source code level betöre they use translator from SQL products. That means that you can not make an
application program with RE/SQL to access databases created from different SQL products simultaneously,
i.e. you have to make an individual version of application executable for each SQL product before you can
access different type databases. Contrastively, INGRES/OpenSQL can on-line connect to multiple sessions
through INGRES Gateways, which are databases installed in the network, and which are even created by
different SQL products. This feature is high beyond those of RE/SQL, and is high beyond our objectives.

2.12 REFERENCES

[1] ALLBASE/SQL Reference Manual, HEWLET PACKARD, Customer OrderNumber 36217-90004
January. 1991

[2] ALLBASE/SQL C Application Programming Guide, HEWLETT PACKARD, Customer Order
Number 36217-90014 January 1991.

[3] ALLBASE/SQL Database Administration Guide, HEWLETT PACKARD, Customer OrderNumber
36217-90005 January 1995

[4] INGRES/SQL Reference Manual, Computer Associates, Customer Order Number 64-9(9)-47101.
December 1991

[5] INGRES/Embedded SQL Companion Guide for C (Unix) ,Computer Associates, Customer Order
Number 64-99-17503. December 1991

m 66 m

REFERENCES

[6] INGRESIOpenSQL Reference Manual (Unix) , Computer Associates, Customer Order Number 64-
9(9)-47107. December 1991

[7] AMERICAN NATIONAL STANDARD FOR INFORMATION SYSTEMS - DATABASE
LANGUAGE- SQL, ANSI X3.135, 1992.

[8] STANDARD SQL RELATION AL DATA BASE LANGUAGE GUIDE AND REFERENCE
MANUAL, Computer Technology Research Corp, by Boris Musteata and Robert Lesser, Patchogue,
New York 11772 U.S.A., 1988.

[9] SQL, The Structured Query Language, by Carolyn J. Burschand Hack L. Hursch, Blue Ridge Summit,
1988.

APPENDIXES

1. The Iist of the file 'allbase.macros.h' which is the include file for ALLBAREISQL:

I* definitions for SQLCA *I

#define SQLCA_SQLCODE sqlca.sqlcode

#define SQLCA_SQLERRD2 sqlca.sqlerrd[2]

#define SQLCA_SQLWARNO sqlca.sqlwam[O]

#define SQLCA_SQLWARNl sqlca.sqlwam[l]

#define SQLCA_SQLWARN2 sqlca.sqlwam[2]

#define SQLCA_SQLWARN3 sqlca. sqlwarn[3]

#define SQLCA_SQLWARN6 sqlca.sqlwarn[6]

I* definitions for SQLDA *I

#define SQLDA_SQLN sqlda.sqln

#define SQLDA_SQLD sqlda.sqld

#define SQLDA_SQLFMTARR sqlda.sqlfmtarr

I* definitions for format array *I

#define SQLTYPE sqltype

#define SQLLEN sqlvallen

#define SQLNAME sqlname

- 67 -

REFERENCES

I* definitions for data type *I

#define SESQL_INTEGER_ TYPE 0

#define SESQL_FLOAT_TYPE 4

#define SESQL_CHAR_TYPE 2

#define SESQL_ VARCHAR_TYPE 3

#define SESQL_DATE_TYPE 10

#define SESQL_DATETIME_TYPE 12

#define SESQL_INTERVAL_TYPE 13

I* definitions for data buffer address *I

#define SQLDA_DAT_AD(i) &DataBuff[sqlda.sqlfmtarr[i].sqlvof]

#define SQLDA_IND_AD(i) &DateBuff[sqlda.sqlfmtarr[i].sqlnof]

#define SQLDA_IFNULL(i) sqlda.sqlfmtarr[i].sqlindlen

I* definitions for other *I

#define PREFIX_ TYPE long

#define PREFIX_LENGTH 0

short SQL_ii;

2. The Iist of the file 'ingres.macros.h' which is the include file for INGRESISQL:

I* definitions for SQLCA *I

#define SQLCA_SQLCODE sqlca.sqlcode

• 68 •

REFERENCES

#define SQLCA_SQLERRD2 sqlca.sqlerrd[2]

#define SQLCA_SQLWARNO sqlca.sqlwarnO

#define SQLCA_SQLWARNl sqlca.sqlwarnl

#define SQLCA_SQLWARN2 sqlca.sqlwarn2

#define SQLCA_SQLWARN3 sqlca.sqlwarn3

#define SQLCA_SQLWARN6 sqlca.sqlwarn4

/* definitions for SQLDA *I

#define SQLDA_SQLN

#define SQLDA_SQLD

sqlda.sqln

sqlda.sqld

#define SQLDA_SQLFMTARR sqlda.sqlvar

I* definitions for format array */

#define SQLTYPE

#define SQLLEN

#define SQLNAME

sqltype

sqllen

sqlname

/* definitions for data type */

#define SESQL_INTEGER_ TYPE

#define SESQL_FLOAT_ TYPE

#define SESQL_CHAR_TYPE

#define SESQL_ VARCHAR_TYPE

#define SESQL_DATE_TYPE

#define SESQL_DATETIME_TYPE

#define SESQL_INTERVAL_ TYPE

30

31

20

21

3

3

3

e 69 e

REFERENCES

I* definitions for data buffer address */

#define SQLDA_DAT_AD(i) sqlda->sqlvar[i].sqldata

#define SQLDA_IND_AD(i) sqlda->sqlvar[i].sqlind

#define SQLDA_IFNULL(i) sqlda->sqltype

/* definitions for other */

#define PREFIX_TYPE short

#define PREFIX_LENGTH 2

shoti SQL_ii;

• 70 -

lntroduction

Chapter 3 The Syntax for the RODOS Embedded SQL

3.1 lntroduction

The syntax for the RE/SQL may differ from the syntax for any one of the current SQL implementations.
The statements which will be included have been mentioned in The Scope Definition Of The Functions And
Features For The RE/SQL.

The statements will be described on an one-by-one basis with RE/SQL syntax. Because the syntax of the
RE/SQL will be preprocessed by RE/SQL translator, which will be coded in the following step, and will be
translated to the syntax of a specified current SQL implementation. The equivalent syntaxes of the current
SQL implementations, which are ALLBARE/SQL and INGRES/SQL at this moment, will be provided
following each RE/SQL statement. Actually, the syntax of the RE/SQL is the input of RE/SQL translator,
and the syntaxes for ALLBARE/SQL and INGRES/SQL are the output of the RE/SQL translator, which
may be only a part of their original syntaxes.

The following information, if any, will be provided to each of the RE/SQL statement:

0 RE/SQL Syntax (S)

• ALLBARE/SQL Syntax (A)

• INGRES/SQL Syntax (I)

• Parameter Explanations for RE/SQL

• Descriptions for RE/SQL Statement

• Notes to Declare Changesand Limits

This report uses the following conventions to describe statement syntax specifications:

UPPERCASE In a syntax statement, commands and keywords are shown in uppercase characters.
the characters must be entered in the order shown; however, you can enter the characters in either upper or
lowercase.

italics

punctuation

In a syntax statement, a word in italics represents a parameter or argument that you
must replace with the actual value.

In a syntax statement, punctuation characters (other than brackets, braces, vertical
bars, and horizontal ellipses) must be entered exactly as shown.

- 71 -

lntroduction

In a syntax statement, braces enclose required elements. When several elements are
stacked within braces, you must select one.

In a syntax statement, square brackets enclose option elements.

In a syntax statement, vertical bar is used between items in a list to indicate that
you should choose one of the items.

In a syntax statement, horizontal ellipse indicates some items would be used
repeatedly.

USING OPTION CLAUSE SUPPORTED BY SESQL/SQL

• Sometimes, you can find that the difference between some SQL Statements which supported by current
SQL products could not be overcome by syntax translator, because the part of the statement might be
complete different thing. For those case, you can use OPTION clause supported by RE/SQL.

• There are two kinds of option clause, which are OPTION and &OPTION. They cause different actions
during the syntax translating.

If you use OPTION, the translator will just append the corresponding part of the clause to the main part of
the statement which has been translated by the translator. The context of the clause will not be processed,
i.e. you have to write those contexts in the syntax of destination SQL product instead of RE/SQL syntax.
Example 1 shows how to use OPTION clause.

If you use &OPTION, the translator will append the corresponding patt of the clause to the main part of
the statement before translating. And then the statement will be translated to the syntax of the destination
SQL product as a whole, i.e. you have to write those clause in the RE/SQL syntax. Example 2 shows how to
use &OPTION clause.

• Rules to use OPTION clause:

- If necessary, you can use OPTION clause in any one of the RE/SQL statements described m this
document.

- OPTION clause, if any, must be the last clause of the statement.

- OPTION clause is constructed by one or more elements, which separated by comma:

[&]OPTION element-1, element-2, ... , element-n;

Basically, one element corresponds one SQL product.

- The syntax for element is as following:

'@' = <<context of clause>>

m 72 •

lntroduction

here, @ is a single character, so called product identifier, to specify the object product, to which the context
of the clause will be assigned. In this moment, the valid product identifier is 'A' , for ALLBARE/SQL, and
' I ' , for INGRES/SQL. Following product identifier, you must place an equal-sign. And then, you can
place the context of the clause forthat product, which is delimited by double< sign and double> sign. You
can not use double < sign and double > sign in the context of the clause.

Example 1: (about using CREATE TABLE command)

• In the following, we will use CREATE TABLE statement as an example. In ALLBARE/SQL, the database
object can be stored optionally in different DbeFiles, in this case the user should specify a TN clause in
CREATE TABLE statement, e.g.

EXEC SQL CREATE TABLE TestTable (...) IN TestDbeFileName;

In INGRES/SQL, the concept of DbeFiles is not supported. But, similarly, you can use the concept of
LocationNames to store the database object in different places by using WITH clause,

EXEC SQL CREATE TABLE TestTable (...)

WITH location=TestLocationName;

lt is worth mentioning that the concept of DbeFiies and LocationNames are not the same (physical
storage) and the procedures to create them are also completely different. On the other hand, in INGRES/
SQL, the WITH clause can supporttoset many other optional parameters.

e For this case, you can use OPTION clause developed in RE/SQL to overcome this difficulty. OPTION
clause can be used to assign a clause of context for a specified SQL product. For above example, the
following RE/SQL statement can be correctly translated to object SQL product syntax,

EXEC SQL CREATE TABLE TestTable (...) OPTION

'A' =<<IN TestDbeFileName>>,

'I' = <<WITH location=TestLocationName>>;

In this case, you must follow different procedures to create TestDbeFileName as a DBEFILE and
TestLocationName as a LOCATION in advance. The translator can translate this statement to its form in
specified SQL product, which just like those Statements mentioned above.

Example 2: (about using system catalog)

• In some cases, the application needs to retrieve all table names, which belongs to a specified user, in a
database. This information is certainly available in all SQL products, but they are defined and used in
different ways. For example, in ALLBARE/SQL, this query should be made as following:

EXEC SQL BULK SELECT name FROM system.table INTO :table_name

WHERE owner='RODOS';

In INGRES/SQL, this query should be made as following:

- 73 -

Allocate SQLDA_DATABUFF

EXEC SQL BLUK SELECT table_name FROM iitables INTO :table_name

WHERE table_owner='rodos';

• You can find in these two examples that different table names and column name are specified. By using
OPTION clause, you can combine the two Statements into one, which can be understood by the RE/SQL
translator:

EXEC SQL BULK SELECT &OPTION

'A' = <<name FROM system.table INTO :table_name

WHERE owner='RODOS'>>,

'I' = <<table_name FROM iitables INTO :table_name

WHERE table_owner='rodos'>>;

• In order to use other similar information, you need to refer to related manuals of the SQL products.

• Another example to use OPTION clause can be found in the section for CONNECT statement.

• To use OPTION clause, you have to know each of the current SQL syntaxes very well.

3.2 Allocate SQLDA_DATABUFF

The ALLOCATE SQLDA_DATABUFF statement is used to allocate memory space for data buffer in
SQLDA, which is used to hold the data retrieved by FETCH command.

Syntax es

S: EXEC SQL ALLOCATE SQLDA_DATABUFF;

A: DataBuffer = (char *) calloc(l, 2500);

sqlda.sqlbuflen = 2500;

sqlda.sqlrowbuf = (int) DataBuffer;

sqlda.sqlnrow = 1;

I: for (SQL_ii = 0; SQL_ii < sqlda.sqld; SQL_ii++)

- 74 -

Allocate SQLDA_DATABUFF

switch (abs(sqlda->sqlvar[SQL_ii] .sqltype))

case IISQ_INT_TYPE:

if (sqlda->sqlvar[SQL_ii].sqllen == 4)

sqlda->sqlvar[SQL_ii].sqldata = (char *)calloc(l, 4);

eise

sqlda->sqlvar[SQL_ii].sqldata = (char *)calloc(l, 2);

break;

case IISQ_FLT_TYPE:

if (sqlda->sqlvar[SQL_ii].sqllen == 4)

sqlda->sqlvar[SQL_ii].sqldata = (char *)calloc(l, 4);

else

sqlda->sqlvar[SQL_ii].sqldata = (char *)calloc(l, 8);

break;

case IISQ_CHA_TYPE:

sqlda->sqlvar[SQL_ii].sqldata =

(char *)calloc(l, sqlda->sqlvar[SQL_ii] .sqllen+ 1);

break;

case IISQ_ VCH_TYPE:

sqlda->sqlvar[SQL_ii] .sqldata =

(char *)calloc(1, sqlda->sqlvar[SQL_ii] .sqllen+2);

break;

case IISQ_DTE_TYPE:

sqlda->sqlvar[SQL_ii].sqldata =

- 75 •

Allocate SQLDA_DATABUFF

(char *)calloc(l, IISQ_DTE_LEN);

sqlda->sqlvar[SQL_ii].sqllen = 25;

break;

if (sqlda->sqlvar[SQL_ii].sqltype > 0)

sqlda->sqlvar[SQL_ii).sqlind = (short *)0;

else

sqlda->sqlvar[SQL_ii] .sqlind =

(short *)calloc(l ,sizeof(short));

Parameters

None.

Descriptions

e If your application program wants to deal with dynamic queries, you must use this statement to allocate
necessary space for SQLDA data buffer to hold the data retrieved by FETCH command. To interpret the
data holding in data buffer, you must use information stored in format array.

• This statement must be placed at just after you DESCRIBE the query but before you FETCH the data.

• After you use the data buffer, you must free the space allocated by this statement with FREE
SQLDA_DATABUFF statement.

Notes

• DECLARE SQLDA statement is a newly defined statement in RE/SQL, which is to standardize the
variable declarations and allocations for dealing with dynarnic queries.

• The dynamic memory allocation technical is used. For ALLBARE/SQL, the data buffer is allocated in its
maximum size to simplify the calculation of buffer size. For INGRES/SQL, the data buffer is allocated
according to information in format array.

• See "Dynamic Operations" for more information.

- 76 -

Allocate SQLDA_SQLFMTARR

3.3 Allocate SQLDA_SQLFMTARR

The ALLCOCATE SQLDA_SQLFMTARR statement is used to allocate memory space of format array,
which is used to accept format information of a dynamic query.

Syntax es

S: EXEC SQL ALLOCATE SQLDA_SQLFMTARR NumberOfRecode;

A: {

sqlfmts = (sqlformat_type *) calloc(l, NumberOfRecode *

sizeof(sqlformat_type));

if (sqlfmts == (sqlformat_type *)0)

printf("\nruntime error: memory allocation error in\n");

printf(" ALLOCATE SQLDA_SQLFMTARR statement. \n");

exit(O);

sqlda.sqln = NumberOfRecode;

sqlda.sqlfmtarr = sqlfmts;

I: {

sqlda = (IISQLDA *)calloc(l, IISQDA_HEAD_SIZE +

(NumberOfRecode * IISQLDA_ VAR_SIZE));

if (sqlda == (IISQLDA *)0)

printf("\nruntime error: memory allocation error in\n");

printf(" ALLOCATE SQLDA_SQLFMTARR statement. \n");

m 77 m

Begin Declare Section

exit(O);

sqlda->sqln = NumberOJRecode;

Parameters

NumberOfRecode specifies the number of the records for format array. When you dynamically
execute a query, the column information will be stored in format array in which one column will take a
record.

Descriptions

• If your application program wants to deal with dynamic queries, you must use this statement to allocate
memory space to hold column information.

• This statement can be embedded in anywhere a C statement can be placed. Mostly, you use this statement
just before you execute DESCRIBE command.

• The format array must be allocated in size of which it can store all columns (in one row) returned by the
FETCH command.

• After you use the format array, you must free the space allocated by this statement with FREE
SQLDA_SQLFMTARR statement.

Notes

• ALLOCATE SQLDA_SQLFMTARR statement is a newly defined statement in RE/SQL, which is to
standardize the variable declarations and allocations for dealing with dynamic queries.

• See "Dynamic Operations" for more information.

3.4 Begin Declare Secti<:m

The BEGIN DECLARE SECTION statement indicates the beginning of the host variable declaration
section in an application program.

Syntaxes

~ 78 ~

Begin Work

S: EXEC SQL BEGIN DECLARE SECTION;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

None.

Descriptions

• All host variables which are used in an application program must be declared in declaration section(s).

• A single application program can have multiple declaration sections.

• This command is used in conjunction with END DECLARE SECTION command, which marks the end of
declaration section.

Notes

None.

3.5 Begin Work

Begins a transaction.

Syntaxes

S: EXEC SQL BEGIN WORK;

A: if (read_lock_mode == NOLOCK)

EXEC SQL BEGIN WORK RU;

eise if (read_lock_mode == SHARED)

EXEC SQL BEGIN WORK RR;

I: /* EXEC SQ BEGIN WORK; *I

Parameters

None.

Descriptions

- 79 -

Close

• The BEGIN WORK command starts a transaction. Because you can have only one active transaction at a
time, you can issue this command only after the following command: CONNECT, COMMIT WORK,
ROLLBACK WORK, and SET READLOCK.

• When you issue BEGIN WORK command, a read lock mode is set at the same time, which can be Share
Lock (default) or Null Lock. When the first read operation is petformed in this transaction, a read lock will
be granted by SQL based on the read lock mode. The read lock mode can be set with SET READLOCK
command, which can be issued only before any BEGIN WORK command.

• To end a transaction, you must issue a COMMIT WORK, or ROLLBACK WORK, or DISCONNECT
commands Otherwise, alllocks obtained during the transaction will be hold until you terminate the program
execution.

Notes

• For INGRES/SQL, there is no equivalent command of BEGIN WORK, because INGRES/SQL will
automatically issue a BEGIN WORK command after CONNECT, COMMIT WORK, and ROLLBACK
WORK, which are the places you mostly issue this command. Therefore, RE/SQL translator provides only a
C comment statement at where the BEGIN WORK command you issued appears.

• For ALLBARE/SQL, this command can be optionally used toset isolation Ievel (readlock). There are four
isolation levels, they are RR, CS, RC, and RU. Only RR (Share lock) and RU (Null lock) can find
corresponding readlocks in INGRES/SQL which can be set by SET LOCKMODE command. To eliminate
the differences existed, RE/SQL translator automatically declare and use a global C variable, which is
read_lock_mode, to record the states of the readlocks. This variable can be set by SET READLOCK
command which is defined and used only in RE/SQL. And based on this variable, RE/SQL will provide
parameters to BEGIN WORK command. See "Concurrence Control though Lacks" for details about the
topic of locking.

3.6 Close

The CLOSE command is used in an application program to close an open cursor.

Syntaxes

S: EXEC SQL CLOSE CursorName;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

CursorName designates the open cursor to be closed.

- 80 -

CommitWork

Descriptions

• CLOSE has no effect if the cursor is not in the open state.

• When you close a cursor, it leaves the open state, its active set becomes undefined, and it can no Ionger be
used in DELETE, FETCH, or UPDATE command. To use the cursor again you must issue an OPEN
command to reopen it.

Not es

None.

3.7 Commit Work

Terminates the current transaction.

Syntax es

S: EXEC SQL COMMIT WORK;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

None.

Descriptions

• The COMMIT WORK command has no effect if you do not have a transaction in progress.

• Once committed, the transaction cannot be aborted, and all changes it made become visible to all users
through any statement that manipulates that data.

• The COMMIT WORK command releases alllocks held by the transaction, and closes all cursors opened
in current transaction.

• Short transactions (frequent COMMIT WORK commands) are recommended to improve concurrence.

Notes

• In both INGRES/SQL and ALLBARE/SQL, the COMMIT WORK command is full compatible.
Therefore, the RE/SQL translator will not process this command except syntax checking.

• In ALLBARE/SQL, there is an option parameter in this command, which is RELEASE. This function is
included in DISCONNECT command.

• 81 •

Connect

3.8 Connect

Establishes a connection between a application and a database.

Syntaxes

S: EXEC SQL CONNECT TO { 'DatabaseName' I : HastVariable};

A: exactly the same as S syntax

I: EXEC SQL CONNECT {'DatabaseName' I :HostVariable};

Parameters

Da tabaseName identifies the database (or DBEnvironment for ALLBARE/SQL) to he used. Any
path name you specify, unless absolute, is assumed relative to your current working directory.

HastVariable identifies a character string host variable containing the name of a database.

Descriptions

• Database is a physical and/or logical data storage on disks, which is created by database administrator. See
related reference mannals for information about creating a database. (the term of "database" is equivalent to
"DBEvironment" in ALLBARE/SQL).

• The database is supposed that it can be accessed by multiple users. This feature could be affected by the
way you create the database, see notes.

• A database session is the period between establishing and terminating a connection to a database by
CONNECT command. You must be in a database session to execute any of the SQL commands except the
CONNECT command. The CONNECT command must be executed at least and only once during the
execution of the application program.

• The database could be connected by more than one SQL application programs at the same time. In this
case, the data concurrence control must be considered by the users while developing their applications. See
"Concurrence Control through Lacks" for details.

Notes

• For the CONNECT statement in RE/SQL, the database name is no Ionger allowed to contain path, because
INGRES/SQL does not support path in the database name. In this case, you have to use OPTION clause to
soive this problem. For example, in a RE/SQL application, if the object SQL product is ALLBARE/SQL,
the database environment name should be "/disk2 /rodos /rodb/DBl /ResyDBE", if the object SQL

m 82 "

Connect

product is INGRES/SQL, the database name should be "ResyDBE", in this case you can use following
Statement:

EXEC SQL CONNECT TO OPTION

'~=<<'/disk2/rodos/rodb/DBl/ResyDBE'>>,

'I'=<<'ResyDBE'>>;

or:

I* Allbase_name and Ingres_name are SQL host variables*/

strcpy(Allbase_name, "/disk2/rodos/rodb/DB 1/Resy DBE");

strcpy(Ingres_name, "ResyDBE");

EXEC SQL CONNECT TO OPTION 'A'=<<:Allbase_name>>,

'I'=<<:Ingres_name>>;

• INGRES/SQL can support multi-session, that means that more than one sessions can be opened with in
one application program. ALLBARE/SQL does not support this feature. Therefore, the related session
management options have been removed from RE/SQL.

• For ALLBARE/SQL, you must create you database environment with multi-user configuration, i.e. you
must use the following command to create your database environment:

START DBE 'DBEnvironmentName' MULTI NEW;

See related references manual for details about creation of database.

• You can not use CONNECT command in dynamic operations.

Examples

• The following command connect the program to a database:

CONNECT TO 'TestDB';

Before you can execute your program, you must make the database available for multi-user mode.

• For ALLBARE/SQL, if you want to enable your database to be used in multiple user mode, you must
create you database environment with multiuser configuration by means of ISQL:

START DBE 'TestDB' MULTI NEW;

• For INGRES/SQL, you can use following INGRES operating command to create database:

CREATEDB TestDB;

m 83 a

Convert after query

• The following command connect the program to a database, if the connecting is failure, you can get an
non-zero SQLCA_SQLCODE:

CONNECT TO 'TestDB';

if (SQLCA_SQLCODE != 0)

I* error handlingprogram *I

3.9 Convert after query

Convert date value in a host variable, after a query is executed, to RE/SQL format.

Syntaxes

S: EXEC SQL CONVERT AFTER QUERY FROM :HostVariable

TO C_ Variable WITH {DATE I DATETIME I INTERVAL};

A: if (SESQL_tanslate_date(HostVariable, C_ Variable,

FROM_{DATE I DATETIME I INTERVAL}, 'A') != 0)

SQLCA_SQLCODE = -2222;

1: if (SESQL_tanslate_date(HostVariable, C_ Variable,

FROM_{DATE I DATETIME I INTERVAL}, 'I')!= 0)

SQLCA_SQLCODE = -2222;

Parameters

HastVariable identifies a character string SQL host variable containing the date value string
obtained from a query.

C_ Variable identifies a character string C variable to hold the result of the date value string in
the format of RE/SQL.

DATE identifies the value in the RostVariableis obtained from a DATE data type column.

DATETIME identifies the value in the RostVariableis obtained from a DATETIME data type
column.

m 84 •

Convert after query

INTERVAL
column.

identifies the value in the RostVariable is obtained from a INTERVAL data type

Descriptions

• To unify the format for DATE data type, you need to use this statement to convert the date string, which is
obtained from a query, from corresponding SQL product format to REISQL format.

• In this statement, RostVariable is source string, which contains string to be converted. C_ Variable is
destination string, which holds result of conversion for later processing in your application.

• The conversion preformed by this statement is based on the syntax for date format which is included in
syntax. file. See "The Software Development for the RODOS Embedded SQL".

• When you use this statement, you must pay some attention to error handling. When error occurs in this
statement, a special error code -2222 will be generated and assigned to SQLCA_SQLCODE. In this case,
instead of using SQLEXPLAIN to retrieve error message, you can find a error message in a C string
variable DynrunicPreprocessMessage which is declared in RE/SQL header file.

• See also "The Reference Manual for the RODOS Embedded SQL" about date conversion.

Example

I* first, use the host variable as an outputvariable *I

EXEC SQL SELECT date_column

INTO :date_ variable

FROM TestTable

I* same time, use date constant in search condition *I

WRERE date_colurnn={ 1993-08-16};

I* and then, use CONVERT AFTER QUERY statement to convert internal format of date data type to
the format defined in REISQL *I

EXEC SQL CONVERT AFTER QUERY

FROM :date_ variable TO user_ variable WITR DATE;

if (SQLCA_SQLCODE == -2222)

printf("data conversion error\n");

- 85 -

Converl: before query

exit(O);

Notes

• CONVERT AFTER QUERY is a newly defined statement in RE/SQL, which enables the application
developers to use a unified DATE data format.

• This statement will be translated to some C statement, from which a convert function will be called.
Therefore, when you are using this statement in your applications, you have to link your application to a
pre-developed C function library which file name is dynamic. o.

3.10 Convert before query

Convert date value in a C string or a C string variable, before a query is executed, to the format of
corresponding SQL product.

Syntaxcs

S: EXEC SQL CONVERT BEFORE QUERY FROM { C_ Variable I "String"}

TO :HostVariable WITH {DATE I DATETIME I INTERVAL};

A: if (SESQL_tanslate_date({ C_ Variable I "String"},

HostVariable, TO_{DATE I DATETIME I INTERVAL}, 'A') != 0)

SQLCA_SQLCODE = -2222;

I: if (SESQL_tanslate_date({ C_ Variable I "String"},

HostVariable, TO_{DATE I DATETIME I INTERVAL}, 'I')!= 0)

SQLCA_SQLCODE = -2222;

Parameters

C_Variable

String

HastVariable

identifies a character string C variable containing the date value string in the format
ofRE/SQL.

identifies a constant date value string in the format of RE/SQL.

identifies a character string SQL host variable to hold the result of the date value
string in the format of corresponding SQL product.

- 86 -

DATE

DATETIME

INTERVAL

Descriptions

Convert before query

identifies the value in the HastVariableis obtained from a DATE data type column.

identifies the value in the HastVariable is obtained from a DATETIME data type
column.

identifies the value in the HastVariable is obtained from a INTERVAL data type
column.

• To unify the format for DATE data type, you need to use this statement to convert the date string, which
will be used in a query, from RE/SQL format to corresponding SQL product format.

• In this statement, C_ Variable or String is source string, which contains string to be converted.
HastVariable is destination string, which holds result of conversion for use in following query.

• The conversion preformed by this statement is based on the syntax for date format which is included in
syntax. file. See "The Software Development for the RODOS Embedded SQL".

• When you use this statement, you must pay some attention to error handling. When error occurs in this
statement, a special error code -2222 will be generated and assigned to SQLCA_SQLCODE. In this case,
instead of using SQLEXPLAIN to retrieve error message, you can find a error message in a C string
variable Dyna:micPreprocessMessage which is declared in RE/SQL header file.

• See also "The Reference Manual for the RODOS Embedded SQL" about date conversion.

Example

I* first, use CONVERT BEFORE QUERY statement to assign

date constant to host variable*/

EXEC SQL CONVERT BEFORE QUERY

FROM "1993-08-16" TO :date_variable WITH DATE;

if (SQLCA_SQLCODE == -2222)

printf("data conversion error\n");

exit(O);

I* and then, use the host variable as an inputvariable */

EXEC SQL INSERT INTO TestTable (date_column)

- 87 -

CREATE

V ALUES (:date_ variable);

Notes

• CONVERT BEFORE QUERY is a newly defined statement in RE/SQL, which enables the application
developers to use a unified DATE data format.

• This statement will be translated to some C statement, from which a convert function will be called.
Therefore, when you are using this statement in your applications, you have to link your application to a
pre-developed C function library which file name is dynamic o o.

3.11 CREATE INDEX

The CREATE INDEX command creates an index on one or more columns of an existing base table.

Syntaxes

S: EXEC SQL CREATE [UNIQUE] INDEX IndexName

ON TableName ({ ColumnName [, ...]});

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

UNIQUE

IndexName

TableName

ColumnName

Descriptions

prohibits duplicates in the index. If UNIQUE is specified, each possible
combination of index key column values can occur in only one row of the table. If
UNIQUE is omitted, duplicate values are allowed. Because all null values are
equivalent, a unique index allows only one row with a null value in an indexed
column. When you create a unique index, all existing rows must have unique
values in the indexed column(s).

is the name of the index to be created. A table cannot have two indexes with the
same name.

designates the table for which an index is to be created.

is the name of a column to be used as an index key. You can specify up to 16
columns in order from major index key to minor index key.

• If the table does not contain any rows, the CREATE INDEX command simply enters the definition of the
index in the system catalog. If the table has rows, the CREATE INDEX command enters the definition in
the system catalog and builds an index on the existing data.

- 88 -

Create Table

If the UNIQUE option is specified and the table already contains rows having duplicate values in the index
key columns, the CREATE INDEX command is rejected.

If you attempt an INSERT or UPDATE which violates the uniqueness constraint of an index created on the
table, then the INSERT or UPDATE will fail.

• The index created is maintained automatically by ALLBARE/SQL until the index is deleted by a DROP
INDEX command or until the table it is associated with is dropped.

• Indexes cannot be created for views.

• Index entries are sorted in ascending order. Null compare higher than other values for sorting.

Notes

• In different SQL implementations, the basic elements of this command are compatible, but many options
do not.

e A WITH clause is not included in RE/SQL, which is supported by INGRES/SQL.

• A CLUSTERING and ASC I DESC options are not included in RE/SQL, which are supported by
ALLBARE/SQL.

3.12 Create Table

The CREATE TABLE command defines a table.

Syntaxes

S: EXEC SQL CREATE TABLE TableName

({ ColumnDefinition} [, ...]);

A: EXEC SQL CREATE PUBLIC TABLE TableName

({ ColumnDefinition} [, ...]);

I: exactly the same as S syntax

Parameters

TableName is the name of the table to be created.

Col wnnDefini tion defines an individual column in a table. Each table must have at least one column.
The syntax for a CREATE TABLE column definition is presented below:

- 89 -

TABELLE 14

Create Table

ColumnName ColumnDataType [WITH NULL I NOT NULL]

Col umnName is the name tobe assigned to one of the columns in the new table. No two columns
in the table can be given the same name.

Col wnnDa taTypeindicates what type of data the column can contain. Some data types require that
you include a length. The following table shows what data type you can specify here:,

RE/SQL Data Type Translationa

character CHAR(1 - 2000) CHAR(1 - 2000) CHAR(1 - 2000)

VARCHAR(1 - 2000) VARCHAR(1 - 2000) VARCHAR(1 - 2000)

numeric INTEGER INTEGER INTEGER

SMALLINT SMALLINT SMALLINT

REAL REAL REAL

DOUBLE DOUBLE PRECISION FLOAT8

date/time DATE DATE DATE

DATETIME DATETIME DATE

INTERVAL INTERVAL DATE

a. See also Table 1 in "Data Types" section for more information.

The table also lists the corresponding data type for ALLBARE/SQL and INGRES/SQL, according to which
the RE/SQL translator will translate the data type you specify here to the corresponding data type for the
specified SQL product.

WITH NULL means the column accepts null values. If no value is supplied by the user, a null
value will be inserted. If neither WITH NULL nor NOT NULL is specified, WITH NULL is used as default.
This syntax is compatible with INGRES/SQL. For ALLBARE/SQL, this key word will be translated to
DEFAULT l\JULL by RE/SQL translator.

NOT NULL means the column cannot contain null values. If NOT NULL is specified, any
comrnand that attempts to place a null value in the column will be rejected.

Descriptions

• A table can have maximum of 255 columns; a table row can be a maximum of 2000 bytes wide.

• A VARCHAR column requires two bytes in addition to its declared length, to store the length of the string.
Nullalbe columns require one additional byte to store the null indicator.

Notes

- 90 -

Create View

• This command is one of the most incompatible command, many features in this command have to be
removed.

• For INGRES/SQL, a WITH clause is removed.

• For ALLBARE/SQL, Locking control, unique constraint, default value specification, and storage structure
control are removed.

• For ALLBARE/SQL, PUBLIC Jocking strategy is used to make the table accessible by multi users, which
is the default case for INGRES/SQL.

• For most of the cases, if necessary, the parameters removed will be provided with default value. Piease
reference to related manuals for more information.

3.13 Create View

The CREATE VIEW command creates an view of a table, another view, or a combination of tables and
views. CREATE VIEW expands an asterisk (*) in a select Iist into a Iist of column names. an entry is
created in the system catalog view containing the view definition

Syntaxes

S: EXEC SQL CREATE VIEW VieHName ({ ColumnName} [, ...])

AS SubSelect;

A: exactly the same as S synta

1: exactly the same as S syntax

Parameters

ViewName

ColumnName

is the name of the view to be created.

specifies the names to be assigned to the columns of the new view. The names are
specified in an order corresponding to the columns of the query result produced by
the subquery.

You must specify the column names if any column of the query result is defined by
a computed expression, aggregate function, or constant in the select Iist of the
query result was obtained by joining to tables that have a column of the same name
or if the expansion of an * in the select list results in duplicate column names.

If you do not specify column names, the columns of the view are assigned the same
names as the columns from which they are derived. The * is expanded into the
appropriate list of column names provided no duplicates are found.

6 91

SubSelect

Descriptions

Create View

is a SELECT statement from which the view is derived. The query may refer to
tables or views or a combination of tables and views. The SELECT statement used
in this command may not include any UNION or UNION ALL operations.

• You use a view in any SQL manipulation statement as the same as you use a table. However, if you want
use DELETE, INSERT, or UPDATE command on a view, the view must be updatable. A view is updatable
only if the subselect from which it is derived matches the following updatablility criteria:

-No DISTINCT, GROUP BY, or HAVING clause is specified in the subselect, and no aggregate function
appears in the select list.

- The FROM clause specifies exactly one table, which must be an updatable table.

- To use INSERT and UPDATE commands through views, the select list in the view definition must not
contain any arithmetic expressions. It must contain only colurnn names.

- For DELETE WHERE CURRENT and UPDATE WHERE CURRENT commands operating on cursors
defined with views, the views definition must not contain subqueries.

- For non-cursor UPDATE, DELETE, and INSERT commands, the view definition must not contain any
subqueries which contain in either FROM clause a table reference to the same table as the outermost FROM
clause.

• You cannot define a index on a view.

• You cannot use host variables in the CREATE VIEW command.

• You cannot use an ORDER BY clause when defining a view.

• The index created is maintained automatically by ALLBARE/SQL until the index is deleted by a DROP
INDEX command or until the table it is associated with is dropped.

• Indexes cannot be created for views.

• Index entries are sorted in ascending order. Null compare higher than other values for sorting.

Notes

• In different SQL implementations, the basic elements of this command are compatible, but many options
do not.

• In INGRES/SQL, the subquery may include UNION operation, but may not in ALLBARE/SQL.

• A WITH CHECK OPTION is not included in RE/SQL, which are supported by INGRES/SQL.

- 92 -

Declare Cursor

• In INGRES/SQL, you can use hast variables in some places. In ALLBARE/SQL, you cannot use hast
variables in any places.

3.14 Declare Cursor

The DECLARE CURSOR command associates a cursor with a specified SELECT command. A cursor is a
pointer you use in an application program to indicate the row in the set of rows retrieved with the SELECT
command on which you want to operate.

Syntaxe

S: EXEC SQL DECLARE CursorName CURSOR FOR

{SelectCommand I CommandName}

[FOR UPDATE OF { ColumnName} [, ...]];

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

CursorName

SelectConunand

ConunandName

FOR UPDATE OF

Descriptions

is the name to be assigned to the newly declared cursor. Two cursors in an
application program cannot have the same name. The cursor name must conform to
the SQL syntax rules for a basic name.

is a SELECT command which deterrnines the rows and columns to be processed by
means of the cursor. The rows defined by the query expression when you open the
cursor are called the active set of the cursor.

is specified when declaring a cursor for use with a SELECT command dynamically
preprocessed earlier with a PREPARE command.

specifies the column or columns which may be updated using this cursor. The order
of the column names is not important. The column(s) tobe updated need not appear
in the select list of the SELECT command. Do not use the DISTINCT option or an
ORDER BY or GROUP BY clause in the SELECT command if you use a FOR
UPDATE clause.

• A cursor must be declared before you refer to it in the other cursor command.

- 93 -

Declare SQLDA

• The active set is defined when you issue the OPEN command. You can operate on the rows in the active
set with the FETCH, UPDATE WHERE CURRENT, and DELETE WHERE CURRENT commands.

• Use the FETCH command to position the cursor on the row you want to update or delete.

• Use the DELETE WHERE CURRENT command to delete a row in the active set.

• Use the UPDATE command with the CURRENT OF option to update columns; you can update the
columns identified in the FOR UPDATE OF clause of the DECLARE CURSOR command. The restrictions
that govern updating via a cursor are described below.

• Use the CLOSE command when you are finished operating on the active set.

• A cursor is said to be updatable when you can use it in DELETE WHERE CURRENT OF CURSOR or
UPDATE WHERE CURRENT OF CURSOR commands to modify the base table. A cursor is updatable
only if the query from which it is derived matches the following updatablility criteria:

-No ORDER BY, UNION, or UNION ALLoperation is specified.

- No DISTINCT, GROUP BY, or HAVING clause is specified in the outermost SELECT clause, and no
aggregate appears in its select Iist.

- The FROM clause specifies exactly one table, whether directly or through a view. If it specifies a table, the
table must be an updatable table. If it specifies a view, the view definition must satisfy the cursor
updatablility rules stated here.

- For the UPDATE WHERE CURRENT command, the select list in the cursor definition must not contain
any arithmetic expressions. It must contain only column names.

- For DELETE WHERE CURRENT and UPDATE WHERE CURRENT commands, the SelectCommand
parameter must not contain any subqueries or reference any view whose view definition contains a
subquery.

Notes

None.

3.15 Declare SQLDA

The DECLARE SQLDA statement is used to declare some variables for SQLDA in an application program.
It can be thought of a supplement of the INCLUDE SQLDA statement.

Syntaxes

S: EXEC SQL DECLARE SQLDA;

A: sqlformat_type *sqlfmts;

- 94 -

Delete

char *DataBuffer;

I: IISQLDA *sqlda;

Parameters

None.

Descriptions

• If your application program wants to deal with dynamic queries, you must use this statement to declare
some necessary variables.

• This statement must be placed at just following statement of INCLUDE SQLDA.

Notes

• DECLARE SQLDA statement is a newly defined statement in RE/SQL, which is to standardize the
variable declarations for dealing with dynamic queries.

• See "Dynamic Operations" for more

3.16 Delete

The DELETE command deletes a row or rows from table.

Syntaxes

S: EXEC SQL DELETE FROM TableName [WHERE SearchCondition];

A: exactly the same as S syntax

1: exactly the same as S syntax

Parameters

TableName designates a table from which any rows satisfying the search condition are to be
deleted.

WHERE SearchCondi tionp specifies which rows are to be deleted. If not
rows satisfy the search condition, the table is not
changed. If the WHERE clause is omitted, all rows are
deleted.

Descriptions

- 95 -

Delete where current

• If all rows of a table are deleted, the table is empty but continues to exist unless you issue a DROP TABLE
command.

• If an error is detected during a DELETE command, the command will have no effect and no rows will
have been deleted.

• The search condition is effectively executed for each row of the table or view before any row is deleted. If
the search condition contains a subquery, each subquery in the search condition is effectively executed for
each row of the table and the results used in the application of the search condition to the given row. If any
executed subquery contains an outer reference to a column of the table, the reference is to the Vflllle ofthat
column in the given row.

Notes

• This command is basically compatible in ALLBARE/SQL and INGRES/SQL, but some differences still
exist. ALLBARE/SQL can delete rows through a view, which function is not supported by INGRES/SQL.
The correlation name can be used in INGRES/SQL but not in ALLBARE/SQL. These functions are
removed from RE/SQL.

3.17 Delete where current

The DELETE WHERE CURRENT command deletes the current row of an active set. The current row is
the row pointed to by a cursor after the FETCH command is issue.

Syntaxes

S: EXEC SQL DELETE FROM TableName WHERE CURRENT OF CursorName;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

TableName

CursorName

Descriptions

designates a table from which any rows satisfying the search condition are to be
deleted.

specifies the name of a cursor. The cursor must be open and positioned on a row of
the table. The DELETE WHERE CURRENT command deletes this row, leaving
the cursor with no current row. (The cursor is said to be positioned between the
preceding and following rows of the active set). You cannot use the cursor for
further updates or deletions until you reposition it using a FETCH command, or
until you close and reopen the cursor.

• Although the SELECT command associated with the cursor may specify only some of the columns in a
table, the DELETE WHERE CURRENT command deletes an entire row.

- 96 -

Describe

• The DELETER WHERE CURRENT command can be used on an active set associated with a cursor
defined using the FüR UPDATE clause.

• If the cursor is not currently pointing at a row when the DELETE is executed, then SQL generates an error
indicating the need to issue a FETCH statement to position the cursor on a row.

Notes

• This command is basically compatible in ALLBARE/SQL and INGRES/SQL, but some differences still
exist. ALLBARE/SQL can delete rows through a view, which function is not supported by INGRES/SQL.
In INGRES/SQL, some options in DECLARE CURSOR statement may affect the execution of this
command, which are not supported by ALLBARE/SQL. Reference to DECLARE CURSOR command.

3.18 Describe

The DESCRIBE command is used in an application to get information about the result of a dynamic
command such as a command preprocessed with the PREPARE command.

Syntaxes

S: EXEC SQL DESCRIBE CommandName INTO SQLDA;

A: exactly thc same as S syntax

I: exactly the same as S syntax

Parameters

CommandName

Descriptions

identifies a dynamically preprocessed command to be executed in an application
program. The command name corresponds to one specified in a previous
PREPARE command.

• If the command name refers to a SELECT command, the DESCRIBE command returns the number of
columns in the query result, along with each colurnn's name, length, and data type. On the basis of this
information, the program can parse colurnn values in the query result from a data buffer declared in the
program. The program reads the query result by associating the CommandName with a cursor and using the
cursor manipulation commands (OPEN, FETCH, DELETE WHERE CURRENT, and CLOSE).

• If the command name does not refer to a SELECT command, DESCRIBE sets the SQLD field of the
SQLDA data structure to zero.

Notes

• See "Dynamic Operations" for more information.

- 97 -

Disconnect

3.19 Disconnect

Terminates access to a database.

Syntaxes

S: EXEC SQL DISCONNECT;

A: EXEC SQL COMMIT WORK RELEASE;

I: exactly the same as S syntax

Parameters

None.

Descriptions

• Before terminating data access to the database, the current transaction is committed.

• Any locks still hold are released. Any cursors still open are closed.

Notes

• The related session management options have been removed from RE/SQL, because it does not support
multiple session feature.

• When you terminate a connection, the strategy to commit (or rollback) the current transaction may differ
in different SQL implementations. Therefore an option parameter is added to RE/SQL, which asks users
explicitly to issue the strategy of ending the current transaction.

• You can not use DISCONNECT command in dynamic operations.

3.20 Drop Index

The DROP INDEX command deletes the specified index.

Syntaxes

S: EXEC SQL DROP INDEX IndexName;

A: exactly the same as S syntax

I: exactly the same as S syntax

- 98 -

Parameters

IndexName

Descriptions

None.

Notes

Drop Table

is the name of the index to be deleted.

• A FROM clause in ALLBARE/SQL is not included in RE/SQL syntax.

Drop

The DROP TABLE command deletes the specified table.

Syntaxes

S: EXEC SQL DROP TABLE TableName;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

TableName

Descriptions

is the name of the table tobe deleted.

• Any indexes, views, permits, and integrities defined on that table are automatically dropped also.

Notes

None.

Drop View

The DROP VIEW command deletes the specified view.

Syntaxes

S: EXEC SQL DROP INDEX ViewName;

A: exactly the same as S syntax

- 99 -

End Declare Section

I: exactly the same as S syntax

Parameters

ViewName is the name of the view to be deleted.

Descriptions

• This command does not affect the base tables on witch the views were defined.

• You cannot use this command on system views.

Notes

None.

3.23 End Declare Section

The END DECLARE SECTION statement indicates the end of the host variable declaration section in an
application program.

Syntax es

S: EXEC SQL END DECLARE SECTION;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

None.

Descriptions

• This command is used in conjunction with BEGIN DECLARE SECTION command, which marks the end
of declaration section.

Notes

None.

a 100 "

Executer

3.24 Executer

The EXECUTE command executes a command that has been prepared for execution by the PREPARE
command.

Syntaxes

S: EXEC SQL EXECUTE CommandName;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

Corrunand.Name

Descriptions

identifies a dynamically preprocessed command to be executed in an application
program. The command name corresponds to one specified in a previous
PREPARE command.

• It is recommended that you use this command when you need to executc a dynamic statement more than
once in your program.

Notes

• See "Dynamic Operations" for more information.

3.25 Execute Immediate

The EXECUTE IMMEDIATE command dynamically prepares and executes a non-query SQL command.

Syntaxes

S: EXEC SQL EXECUTE IMMEDIATE { :HostVariable I 'String'};

A: {

if (dynamic _translator(DynamicCommandBuffer,

{HostVariable I "String"})

EXEC SQL EXECUTE IMMEDIATE :DynamicCommandBuffer;

eise

SQLCA_SQLCODE = -1111;

• 101 •

Execute Immediate

I: {

if (dynamic _translator(DynamicCommandBuffer,

{HostVariable I "String"})

EXEC SQL EXECUTE IMMEDIATE :DynamicCommandBuffer;

eise

SQLCA_SQLCODE = -1111;

Parameters

HastVariable identifies a host variable containing the SQL command to be executed.

String identifies a SQL command string.

Descriptions

• If you know in advance that the command to be dynamically preprocessed is not a SELECT command,
you can prepare it and execute it in one step with this command.

• It is recommended that you use this command only when you need to execute a dynamic statement just
once in your program. To execute a dynamic statement more than once, it is better to use PREPRE and
EXECUTE commands.

• When you use this statement, you must pay some attention to error handling. When enor occurs in this
statement, a special enor code -1111 will be generated and assigned to SQLCA_SQLCODE. In this case,
instead of using SQLEXPLAIN to retrieve error message, you can find a enor message in a C string
variable DynamicPreprocessMessage which is declared in RE/SQL header file.

• You can not use the EXECUTE IMMEDIATE command for any of the following commands:

ALLOCATESQLDA_SQLFMTARR

ALLOCATESQLDA_DATABUFF

BEGIN DECLARE SECTION

BEGINWORK

BULKoperations

- 102 -

Execute Immediate

CLOSE

COMMITWORK

CONNECT

DECLARE CURSOR

DECLARESQLDA

DELETE WHERE CURRENT

DESCRIBE

DISCONNECT

END DECLARE SECTION

EXECUTE

EXECUTE IMMEDIATE

FETCH

FREESQLDA_SQLFMTARR

FREESQLDA_DATABUFF

INCLUDE

SQLEXPLAIN

LOCKTABLE

UNLOCK TABLE

OPEN

PREPARE

ROLLBACK WORK

SAVEPOINT

SELECT

SET READLOCK

UPDATE WHERE CURRENT

- 103 -

Fetch

WHENEVER

Notes

• A dynamic translator has been developed, which is a C function and its source code will be automatically
embedded in application program by RE/SQL translator. In this way, the statements which are written in
RE/SQL syntax can be dynamically translated to specified SQL syntax before they can be executed.

• See "Dynarnic Operations" for more information.

3.26 Fetch

The FETCH command advances the position of an opened cursor to the next row of the active set and
copies selected columns into the specified host variables. The row to which the cursor points is called the
current row. The following two forms of the FTECH command are described individually:

• The form used to fetch one or multiple rows into host variables.

• The form used to fetch rows while using dynamic operations.

1. FETCH row(s) into host variables

Syntaxes

S: EXEC SQL [BULK] FETCH CursorName INTO VariableList;

A: exactly the same as S syntax

1: exactly the same as S syntax for without BULK option,

with BULK option:

I* transfer data between Bufferand (Buffer_s, Buffer_i) */

for (SQL_ii = 0; SQL_ii < NumberOfRows; SQL_ii++)

EXEC SQL FETCH CursorName

INTO :Buffer _s[Startlndex+SQL_ii]

:Buffer _i[Startlndex+SQL_ii];

if (SQLCA_SQLCODE == 100)

- 104 -

Fetch

NumberOfRows = SQL_ii;

I* transfer data between (Buffer_s, Buffer_i) and Buffer *I

Parameters

BULK is specified in an application program to retrieve multiple rows with a single
execution of the FETCH command. After a BULK FETCH command, the current
row is the last row fetched.

CursorName identifies a cursor. The cursor's active set, determined when the cursorwas opened,
and the cursor's current position in the active set determine the data tobe returned
by each successive FETCH command.

INTO The INTO clause defines where to place rows fetched.

VariableList identifies one or more host variables for holding columns of the row(s) returned in
application program. The syntaxes for host variables may vary depending on if you
use BULK option.

The syntax for missing BULKoption is as follows:

{ :HostVariable[:Indicator]} [, ...]

Hastvariable identifies the host variable corresponding to one column in the row. The number of
the host variables must be the same as the number of the items in SelectList. If the
SelectList is a "*", the number ofthe host variables must be the same as the number
of the columns in specified table. And the order of the host variables must match
the order of their corresponding items in the SelectList.

Indicator names an indicator variable, an output host variable whose value (see following)
depends on whether the host variable contains a null value:

• 0 meaning the column's value is not null.

• -1 meaning the column's value is null.

• >0 meaning the column's value is truncated.

The syntax for having BULKoption is as follows:

• 105 •

Fetch

{: Buffer, : Startlndex, :NumberOJRows}

Buffer is a host array of structure containing rows that are the result from the SELECT
command. This array contains elements for each column to be returned and
indicator variables for columns that can contain null values. Whenever a column
can contain nulls, an indicator variable must be included in the array definition
imrnediately after the definitionofthat column. This indicator variable is an integer
that can have the following values:

>= 0 the vilri::~ble's v::~lne is not null.

< 0 the variable's value is null. (generally, you use -1).

Startindex is a host variable whose value specifies the array subscript denoting where the first
row tobe inserted is stored. You must specify this variable.

NumberOfRows is a host variable whose value specifies the number of rows to retrieve. You must
specify this variable, the value of this variable is the smaller of two values; 1) the
nurober of records in the array from the Startindex to the end of the array, or 2) thc
nurober of rows in the query result.

Descriptions

• There must be a one-to-one correspondence between variables specified in the INTO clause of FETCH and
expressions in the SELECT clause of the DECLARE CURSOR statement. IF the nurober of variables or
structure elements for Bulk operation does not match the nurober of expressions, the warning will be
generated.

• The variables listed in the INTO clause, or the structure elements if using BULK variable, must be type
compatible with the values being retrieved. If a result expression is Nullalbe, then the host variable that will
receive that value must have an associated null indicator.

e If the statement does not fetch a row -- a condition that occurs after all rows in the set have been processed
-- the SQLCA_SQLCODE is set to 100 (condition NOT POUND) and no values are assigned to the
variable.

Notes

• The BULK SELECT is not supported by INGRES/SQL, but can be simulated with a group of C and SQL
statements. Reference to "Bulk Operations" section for more information about using the BULK operations.

2. FETCH rows for dynamic operation

Syntaxes

S: EXEC SQL FETCH CrusorName USING DESCRIPTOR SQLDA;

A: exactly the same as S syntax

1: exactly the same as S syntax

m 106 m

Parameters

CursorName

Fetch

identifies a cursor. The cursor's active set, determined when the cursorwas opened,
and the cursor's current position in the active set deterrnine the data tobe returned
by each successive FETCH command.

USING DESCRIPTOR The USING DESCRIPTOR clause defines where to place rows selected in accord
with a dynamically preprocessed SELECT command and described by a
DESCRIBE command. You cannot use the BULKoption if you employ the USING
DESCRIPTOR clause.

Descriptions

• If the statement does not fetch a row -- a condition that occurs after all rows in the set have been processed
-- the SQLCA_SQLCODE is set to 100 (condition NOT POUND) and no values are assigned to the
variable.

• The cursor identified by cursor name must be an open cursor.

FREESQLDA_DATABUFF

The FREE SQLDA_DATABUFF statement is used to release memory space for data buffer in SQLDA,
which is allocated by ALLOCATE SQLDA_DATABUFF.

Syntaxes

S: EXEC SQL FREE SQLDA_DATABUFF;

A: free(DataBuffer);

I: for (SQL_ii = 0; SQL_ii < sqlda->sqld; SQL_ii++)

free(sqlda->sql var[SQL_ii] .sqldata);

if (sqlda->sqlvar[SQL_ii]. sqltype < 0)

free(sqlda->sqlvar[SQL_ii].sqlind);

Parameters

None.

Descriptions

.. After you use the data buffer, you must free the space by this statement.

- 107 -

Free SQLDA_SQLFMTARR

Notes

• FREE SQLDA_DATABUFF statement is a newly defined statement in RE/SQL, which is to standardize
the variable declarations and allocations for dealing with dynamic queries.

• See "Dynamic Operations" for more information.

3.27 Free SQLDA_SQLFMTARR

The FREE SQLDA_SQLFMTARR statement is used to release memory space for format array, which is
allocated by ALLOCATE SQLDA_SQLFMTARR.

Syntaxes

S: EXEC SQL FREE SQLDA_SQLFMTARR;

A: free(sqlfmts);

I: free(sqlda);

Parameters

None.

Descriptions

• After you use the format array, you must free the space by this statement.

Notes

• FREE SQLDA_SQLFMTARR statement is a newly defined statement in RE/SQL, which is to standardize
the variable declarations and allocations for dealing with dynamic queries.

• See "Dynamic Operations" for more information.

3.28 lnclude

The INCLUDE statement is used to declare SQLCA and/or SQLDA in an application program.

Syntaxes

S: EXEC SQL INCLUDE {SQLCA I SQLDA};

A: exactly the same as S syntax

I: exactly the same as S syntax

m 108 m

lnclude

Parameters

SQLCA

SQLDA

Descriptions

is an area for SQL output messages conceming the status of each of SQL
command.

is an area for use m conjunction with dynamic preprocessing of SELECT
commands.

• You must always include the SQLCA in your SQL application program by using INCLUDE statement.

• If your application program wants to deal with dynamic queries, you must include the SQLDA by using
INCLUDE statement.

Notes

None.

INCLUDESQL_HEADER

The INCLUDE SQL_HEADER statement is used to include necessary macro definitions and variable
declarations in an application program, which is used by RE/SQL translator.

Syntax es

S: EXEC SQL INCLUDE SQL_HEADER;

A: #include "albase.macros.h"

EXEC SQL BEGIN DECLARE SECTION;

short save_point_O;

short save_point_l;

short save_point_2;

short save_point_3;

short save_point_ 4;

short save_point_5;

short save_point_6;

short save_point_7;

- 109 -

Insert

short save_point_8;

short save_point_9;

char DynamicCommandBuffer[2500];

EXEC SQL END DECLARE SECTION;

I: #include "ingres.macros.h"

EXEC SQL BEGIN DECLARE SECTION;

char DynamicCommandBuffer[2500];

EXEC SQL END DECLARE SECTION;

Parameters

None.

Descriptions

o You must always include the SQL_HEADER in your SQL application program. This statement must be
placed at where is only following the statements of including your system include files in your application
pro gram.

Notes

• INCLUDE SQL_HEADER is a newly defined statement in RE/SQL.

0 "allbase.macros.h" is an including file for ALLBARE/SQL. "ingres.macros.h" is an including file for
INGRES/SQL.

Insert

The INSERT command adds a row or rows to a table. The following three forms of the INSERT command
are described individually:

• The form used to add a single row by specifying a value for each concerned column.

0 The form used to add multiple rows by using BULK facility.

• The form used to add rows defined by a SELECT command. This form copies rows from one or more
tables into a table.

1. INSERT single row

- 110 -

Insert

Syntax es

S: EXEC SQL INSERT INTO TableName [(ColumnName [, ...])]

VALDES (ColumnValue [, ...]);

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

TableName

Col wimName

VALDES

ColumnValue

Descriptions

designates a table to which a row is tobe added.

specifies a column for which values are supplied.

The VALDES clause specifies the values corresponding to the columns in the
colurnn name Iist. If no colurnn name Iist exists, the clause specifies the values
corresponding to the colurnns in CREATE TABLE command.

provides colunm values when you insert a row. Colurnn value must be a constant
which is defined in "Expression" scction.

e If you omit the column name Iist, there must be a one-by-one correspondence between the constants in the
VALDES clause and the columns in the table which are specified when you create the table. That is, the
VALDES Iist must have a value of appropriate data type for each column and the values must be listed in an
order corresponding to the order of the columns in the table.

If you omit any of the table's columns from the colum_n name Iist, the INSERT command places the
default value of the respective column definitions in the omitted colurnns. For colurnns with no default
value, the null value is placed in the omitted columns. If the table definition specifies NOT NULL for any of
the ornitted columns, the INSERT cornrnand fails.

e If an error is detected during a INSERT command, the cornmand will have no effect and no row will have
been insetted.

Notes

e In INGRES/SQL, a expression can be used to specify a colurnn value. That means that you can combine
constants with +, -, *, /, operations. In ALLBARE/SQL, the expression can not.be used to specify a column
value. So, this feature is removed from RE/SQL.

e When you specify a colurnn value, some constants defined by RE/SQL, which are included in { } , will be
preprocessed by RE/SQL translator. These constants include DATE, DATETIME, INTERVAL, and some
special constants, such as { now}, { today}, { user}, and {null}. If you use host variables to represent date
constants, you must explicitly invoke a C conversion function before you invoke this cornrnand. See "Data
Type" for details.

m 111

Insert

2. INSERT multiple rows with BULK facility

Syntax es

S: EXEC SQL BULK INSERT INTO TableName

[(ColumnName [, ...])]

VALDES (:Buffer, :Startlndex, :NumberOJRows);

A: exactly the same as S syntax

1:

/* transfer data between Butfer and (Buffer_s, buffer_i) */

for (SQL_ii = 0; SQL_ii < NumberOJRows; SQL_ii++)

EXEC SQL REPEATED INSERT INTO TableName

[(ColumnName [, ...])]

VALUES(:Buffer _s[Startlndex+SQL_ii]

:Buffer _i[Startlndex+SQL_ii]);

Parameters

TableName

ColwnnName

VALUES

Buffer

designates a table to which a row is to be added.

specifies a column for which values are supplied.

The VALDES clause specifies the values corresponding to the columns in the
column name Iist. If no column name Iist exists, the clause specifies the values
corresponding to the columns in CREATE TABLE command.

is a host array of structure containing rows that are the input for the INSERT
command. This array contains elements for each column to be inserted and
indicator variables for columns that can contain null values. Whenever a column
can contain nulls, an indicator variable must be included in the array definition

- 112 -

Startindex

NumberOfRows

Descriptions

immediately after the definition ofthat column. This indicator variable is an integer
that can have the following values:

>= 0 the variable's value is not null.

< 0 the variable's value is null. (generally, you use -1).

is a host variable whose value specifies the array subscript denoting where the first
row to be inserted is stored. No default value is provided, you must specify this
variable.

is a host variable whose value specifies the number of rows to insert. No default
value is provided, you must specify this variable.

• If you omit the column name Iist, there must be a one-by-one con·espondence between the constants in the
data structure and the columns in the table which are specified when you create the table. That is, the data
structure must have a value of appropriate data type for each column and the values must be listed in an
order corresponding to the order of the columns in the table.

'" If you omit any of the tabie's columns from the colunm name list, the INSERT command places the
default value of the respective column definitions in the omitted columns. For columns with no default
value, the null value is placed in the omitted columns. If the table definition specifies NOT NULL for any of
the omitted columns, the INSERT command fails.

• If an error is detected during a INSERT command, the command will have no effect and no row will have
been inserted.

• For CHAR and VARCHAR data, if a string literal is shorter than the target column, it is padded with
blanks; if it is Ionger than the target column, the string is truncated.

Notes

• The host variable structure can contain only constants. Some constants, such as DATE, DATETIME, and
INTERVAL must be explicitly converted before it is assigned to host variable by using date function
provided by RE/SQL See "Data Type" for details.

" The BULK INSERT is not supported by INGRES/SQL, but can be simulated with a group of C and SQL
statements. Reference to "Bulk Operations" section for more information about using the BULK operations.

3. INSERT rows defined by a SELECT command

Syntaxes

S: EXEC SQL INSERT INTO TableName [(ColumnName [, ...])]

SubQuery;

A: exactly the same as S syntax

• 113 •

LockTabte

I: exactly the same as S syntax

Parameters

TableName

ColumnName

SubQuery

Descriptions

designates a table to which a row is to be added.

specifies a colurnn for which values are supplied.

defines the rows to be inserted based on one or more tables in the database. The
name of the target table cannot appear within the FROM clause or in a FROM
clause of any subquery. The que1y cannot contain an INTO clause or a UNION
operation.

The data types of each column in the select list must be compatible with the data
types of corresponding columns in the target table. The first elect Iist item defines
the first colurnn in the target table, the second select Iist item defines the second
column in the target table, and for forth. The number of select Iist items must equal
the number of columns in the target table.

Any column in the target table can contain null values only if it was not defined
with the NOT NULL attribute. Therefore ensure either that select Iist items are not
null for any NOT NULL target column, or that the NOT NULL target columns
have default values defined for them.

.. If you omit any of the table's columns from the colurnn name Iist, the INSERT command places the
default value of the respective column definitions in the omitted colurnns. For colurnns with no default
value, the null value is placed in the omitted columns. If the table definition specifies NOT NULL for any of
the omitted columns, the INSERT command fails.

• If an error is detected during a INSERT command, the command will have no effect and no row will have
been inserted.

Notes

• Only those constants with { } which may appear in subquery is needed to be preprocessed by translator.

3.30 lockTable

The LOCK TABLE command provides a means of explicitly acquiring a lock on a table to override the
automatic locking provided by SQL.

Syntax es

S: EXEC SQL LOCK TABLE TableName IN {SHARED i EXCLUSIVE} MODE;

lock Table

A: exactly the same as S syntax

I: EXEC SQL SET LOCKMODE ON TableName WHERE LEVEL= TABLE,

Parameters

TableName

SHARED

EXCLUSIVE

Descriptions

READLOCK = {SHARED I EXCLUSIVE};

specifies the table to be locked.

allows other transactions to read but not change the table during the time you hold
the lock.

prevents other transactions from reading or changing the table during the time you
hold the lock.

0 Of the two lock types described here, the highest level is exclusive (X), and the lowest level is shared (S).
When you request a lock on an object which is already locked with a highcr scvcrity lock, the request is
ignored.

• This command can be used to avoid the overhead of acquiring many small locks when scanning a table.
For example, if you know that you are accessing all the rows of a table, you can lock the entire table at once
instead of letting SQL automatically lock each individual page or row as it is needed.

• LOCK TABLE can be useful in avoiding deadlocks by locking tables in a predetermined order.

• You must issue a UNLOCK TABLE command explicitly to release the locks held after you terminate the
transaction. Otherwise, the locks can be released automatically but the lockmodewill still in the mode you
specified in LOCK TABLE command.

• This command can be used only in one place, where is immediately after CONNECT TO, COMMIT
WORK, ROLLBACK WORK, and BEGIN WORK (if you use this command to begin a transaction)
command. You can not use this command in any on going transaction.

* This command must be used in pairs with UNLOCK TABLE command. If you issued a LOCK TABLE
command before the transaction has begun, you must issue a UNLOCK TABLE command, immediately
after the transaction ends (committed or rolled back).

Notes

• A SHARE UPDATE lock option is removed from ALLBARE/SQL. A NOLOCK lock option is removed
from INGRES/SQL.

• The real time of granting the lock for specified table is different. For ALLBARE/SQL, the lock is granted
at the same time while you issue LOCK TABLE command. For INGRES/SQL, the lock is not granted while
you issue LOCK TABLE command. The lock will be granted only when you issue the first command which

- 115 -

Open

has reading and/or writing operations. That is to say, this command dose not grant locks but only sets a lock
mode. So, we recommend that you should issue a statement with reading or writing operation immediately
after you issue LOCK TABLE command, because it is possible that you would fail to grant the lock on this
table if any other user grants a lock on this table in advance

• Reference to UNLOCK TABLE command and "Concurrence Control through Lacks".

3.31 Open

The OPEN command is used in an application program to open an open cursor, that is, make the cursor and
its associated active set available to manipulate.

Syntaxes

S: EXEC SQL OPEN CursorName;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

CursorName designates the open cursor to be opened. The cursor name must first be defined
with a DECLARE CURSOR command.

Descriptions

• OPEN command executes the SELECT command specified when the cursor was declared, which
determines the cursor's active set, and positions the cursor immediately before the first row returned. No
rows are actually available to your application program until a FETCH command is executed.

• Updates are not permitted on cursors that involve joining two or more tables or cursors that involve sort
operations.

• More than one cursor can be opened at one time during a session.

• Allopencursors are automatically closed when a transaction terminates.

Notes

• A READONLY option is removed from INGRES/SQL syntax.

• A KEEP CURSOR option is removed from ALLBARE/SQL syntax.

- 116 -

Prepare

3.32 Prepare

The PREPARE command dynamically preprocesses an SQL command for later execution.

Syntax es

S: EXEC SQL PREPARE CommandName FROM {:HostVariable I 'String' };

A: {

if (dynamic_translator(DynamicCommandBuffer,

{HostVariable I "String"})

EXEC SQL PREPARE CommandName FROM :DynamicCommandBuffer;

eise

SQLCA_SQLCODE = -1111;

1: {

if (dynamic_translator(DynamicCommandBuffer,

{ HastVariable I "String "})

EXEC SQL PREPARE CommandName FROM :DynamicCommandBuffer;

eise

SQLCA_SQLCODE = -1111;

Parameters

CommandName

HastVariable

String

Descriptions

identifies a dynamically preprocessed command to be executed in an application
program. The command name corresponds to one specified in a previous
PREPARE command.

identifies a host variable containing the SQL command to be executed.

identifies a SQL command string.

- 117 -

Prepare

• A command to be dynamically preprocessed in an application program must be terminated with a
semicolon.

• You cannot prepare a command which contains host variables.

• In an application program, a dynamically preprocessed command is automatically deleted from the system
at the end of the transaction in which it was prepared. lt cannot be executed in any other transaction.

• When you use this statement, you must pay some attention to error handling. When error occurs in this
statement, a special error code -1111 will be generated and assigned to SQLCA~SQLCODE. In this case,
instead of using SQLEXPLAIN to retrieve error message, you can find a error message in a C string
variable DynamicPreprocessMessage which is declared in RE/SQL header file.

• You can not use the PREPARE command for any of the following commands:

ALLOCATESQLDA_SQLFMTARR

ALLOCATESQLDA_DATABUFF

BEGIN DECLARE SECTION

BEGINWORK

BULK operations

CLOSE

COMMITWORK

CONNECT

DECLARE CURSOR

DECLARESQLDA

DELETE WHERE CURRENT

DESCRIBE

DISCONNECT

END DECLARE SECTION

EXECUTE

EXECUTE IMMEDIATE

FETCH

FREESQLDA_SQLFMTARR

- 118 -

Update where current

FREESQLDA_DATABUFF

INCLUDE

SQLEXPLAIN

LOCKTABLE

UNLOCK TABLE

OPEN

PREPARE

ROLLBACK WORK

SAVEPOINT

SET READLOCK

3.33 Update where current

WHENEVER

o You use the DESCRIBE command to determine whether the prepared command is a SELECT command.
If the command is SELECT command, other information provided by the DESCRIBE command helps you
determine how much storage to dynamically allocate for the query result; then you reference the command
name in a DECLARE CURSOR command and use the cursor to execute the dynamically preprocessed
command. If the command being preprocessed is not a SELECT command, you reference the command
name in an EXECUTE command later in the current transaction to execute the dynamically preprocessed
command.

Notes

• A dynamic translator has been developed, which is a C function and its source code will be automatically
embedded in application program by RE/SQL translator. In this way, the statements which are written in
RE/SQL syntax can be dynamically translated to specified SQL syntax before they can be prepared.

• See "Dynamic Operations" for more information.

ROLLBACK WORK

Abortspartor all of the current transaction.

Syntaxes

S: EXEC SQL ROLLBACK WORK [TO :SavePointMarker];

A: EXEC SQL ROLLBACK WORK [TO :SavePointMarker (host variable)];

- 119 -

Update where current

I: EXEC SQL ROLLBACK WORK [To SavePointMacro (literal string)];

Parameters

TO The TO clause is used to roll back to a savepoint without ending the current
transaction. If the TO clause is ornitted, ROLLBACK WORK ends the current
transaction and undoes any changes that have been made in the transaction.

SavePointMarker is a save point marker, which is defined by RE/SQL, to specify a savepoint that you
issued in a SAVEPOINT command. SeeSAVEPOINT command for details about
the save point marker.

Descriptions

• When you omit the TO clause, all changes you have made to the database since the most recent BEGIN
WORK command are undone. In an application program, all open cursors are automatically closed, and all
locks held by the transaction are released. Any savepoint defined in the transaction are lost and become
invalid. The transaction is ended.

• The TO clause may not be used if any cursor were opened in this transaction. Issuing a ROLLBACK
WORK to a savepoint in this case results in an error, and no rollback is done.

• When you specify the TO clause, all changes you have made to the database since the designated
savepoint are undone. And the save point marker used must be appear in a SAVEPOINT statement before.
In an application program, all open cursors are automatically closed, alllocks obtained since the savepoint
was set are released (for ALLBARE/SQL), or no locks are released (for INGRES/SQL). Any savepoint
defined more recently than the designated savepoint are lost and become invalid. The designated savepoint
is still valid and can be specified in a future ROLLBACK WORK command. The transaction is not ended.

Notes

• In both INGRES/SQL and ALLBARE/SQL, the ROLLBACK WORK command is full compatible, if you
do not specify the TO clause. The savepoint is implemented in different ways in ALLBARE/SQL and
INGRES/SQL. The problern concerned could be solved by RE/SQL translator, which provides a group pre
defined macro to the users. SeeSAVEPOINT command for details.

• In ALLBARE/SQL, there is an option parameter in this command, which is RELEASE. This function is
included in DISCONNECT command.

SAVEPOINT

Declares a savepoint marker within the current transaction.

Syntax es

S: EXEC SQL SAVEPOINT :SavePointMarker;

A: EXEC SQL SAVEPOINT :SavePointMarker (host variable of short);

- 120 -

TABELLE 15

Update where current

I: EXEC SQL SAVEPOINT SavePointMarker (macro of literal string);

Parameters

SavePointMarker is a save point marker, which is defined by RE/SQL in different forms, to specify a
savepoint that you issued in a SAVEPOINT command.

There is a big conflict between ALLBARE/SQL and INGRES/SQL. In
ALLBARE/SQL, a savepoint must be issued with a integer host variable. In
INGRES/SQL, a savepoint must be specified by a Iiterat string instead of a host
variable. To solve this problern in RE/SQL, some pre-defined save point markers,
shown in Table 2, have to be used.

Pre-defined Savepoint Markers

SAVE_POINT_O

SAVE_POINT_l

SAVE_POINT_9

:SAVE_POINT_O SAVE_POINT_O

:SAVE_POINT_l SAVE_POINT-1

:SAVE_POINT_9 SAVE_POINT_9

a. corresponding host variables are declared in
INCLUDE SQL_HEADER statement.

b. the markers are considered as Iitera! strings.

You must use one or some of these macros to specify savepoint(s) instead of any other kind identifier, such
as host variable, number, literal string. There is no special order requirement when use these macros.

The number of the markers pre-defined is 10, which is default number used by RE/SQL. If this number of
savepoints are not cnough for you application program, you have to add some more marker definitions by
yourself in the file of 'syntax.file' about INCLUDE SQL_HEADER statement.

Descriptions

• Specify the savepoint marker in the TO clause of a ROLLBACK WORK command to roll back to a
specified savepoint.

• Do not assign any value to the save point markers, it makes no sense.

• You must use a semi-colon prefixing the markers, though they arenot considered as host variables here.
The RE/SQL translator will make a proper processing.

Notes

D 121

Select

None.

Example

BEGINWORK;

command-1;

SAVEPOINT SAVE_POINT_l;

command-2;

command-3;

ROLLBACK WORK TO SAVE_POINT_l;

/* work of command-2 and command-3 is undone. */

command-4;

COMMIT WORK;

/* work of command-1 and command-2 is committed; *I

/* transaction ends. */

3.34 Select

The SELECT command retrieves data frorn one or more tables. The retrieved data is presented in the form
of a table, called the result table or query result. A SELECT command is a syntactically complete SQL
statement containing one or more SELECT statements bur having a single query result, it can be used either
as an individual command or as a subquery in another SELECT statement or other statements:

• When you use SELECT command as an individual comrnand, the following cases are possible:

• A simple use without BULK option, which can retrieve only one row as query result.

• A full use with BULK option, which can obtain multiple rows as query result.

• A full use within dynamic operations.

• When you use SELECT command with other statement, the following cases are possible:

• A SELECT command can be used as part of other statements, such as INSERT and DECLARE CURSOR.

• A SELECT command can be used as a subquery within a search conditions in some statements, which
have a WHERE or HAVING clause, such as DELETE, UPDATE and SELECT itself.

e 122 e

Select

Syntax es

S: EXEC SQL [BULK] SELECT [ALL I DISTINCT] SelectList

INTO VariableList

FROM TabteList

[WHERE SearchConditionl]

[GROUP BY ColumnName [, ...]]

[HAVING SearchCondition2]

[UNION [ALL] FullSelect]

[ORDER BY Column!D [ASC I DESC] [, ...]];

A: exactly the same as S syntax

I: exactly the same as S syntax for without BULK option,

with BULK option:

/* transfer data between Bufferand (Buffer_s, Buffer_i) *I

SQL_ii = Startlndex;

EXEC SQL REPEATED SELECT [ALL I DISTINCT] SelectList

INTO :Buffer _s[SQL_ii]:Buffer _i[SQL_ii]

FROM TabteList

[WHERE SearchConditionl]

[GROUP BY ColumnName [, ...]]

[HAVING SearchCondition2]

[UNION [ALL] FullSelect]

[ORDER BY Column!D [ASC I DESC] [, ...]];

EXEC SQL BEGIN;

SQL_ii++;

Select

if ((SQL_ii- Startlndex) == NumberOjRows)

EXEC SQL ENDSELECT;

EXEC SQL END;

I* transfer data between (Buffer_s, Buffer_i) and Buffer */

NumberOJRows = SQL_ii- Startlndex;

Parameters

BULK

ALL

DISTINCT

SelectList

is specified in an application program to retrieve multiple rows with a single
execution of the SELECT Statement.

Do not use this option with any other statements. Do not use this option in dynamic
query. When you use this option, the hast variable in INTO clause must be
compatible, see syntax for INTO clause later in this section. See "Bulk Operations"
for details.

prevents elirnination of duplicate rows from the result. The ALL option is assumed
as default option.

ensures that each row in the query result is unique. All null values are considered
equal. You cannot specify this option if the select list contains an aggregate
function with DISTINCT in the argument.

teils how the columns of the result table aretobe derived. The syntax of SelectList
is presented below:

{ * I Table. * I CorrelationName. * I Expression

I [Talbe.]ColumnName I CorrelationName.ColumnName} [, ...]

*

Table. *

includes, as columns of the result table, all columns of all tables specified in the
FROM clause.

includes all columns of the specified table in the result.

Correl a ti onName. *includes all columns of the specified table in the result. The correlation
name is a synonym for the table as defined in the FROM clause.

- 124 -

Select

Expression produces a single column in the result table; the result column values are computed
by evaluating the specified expression for each row of the result table.

The expression can be of any complexity. For example, it can simply designate a
single column of one of the tables specified in the FROM clause, or it can involve
aggregate functions, multiple columns, and so on. When you specify one or more
aggregate functions in a select list, the only other entity you can specify is the
name(s) of the column(s) you group by.

Tabl e. Col umnNameincludes a particnlar columns from the named table.

Correla tion. includes a specified columns from the table whose correlation

Col umnName name is defined in the FROM clause.

INTO The INTO clause defines hast variables for holding row(s) returned in application
program. Do not use this clause for SELECT statements associated with a cursor or
dynamically preprocessed SELECT statements, subqueries, or any but first
SELECT block in a SELECT statement.

VariableList identifies one or morehast variables for holding columns of the row(s) returned in
application pro gram. The syntaxes for hast variables may vary depending on if you
use BULK option.

The syntax for missing BULKoption is as follows:

{ :HostVariable[:Jndicator] } [, ...]

RostVariable identifies the hast variable corresponding to one column in the row. The number of
the hast variables must be the same as the number of the items in SelectList. If the
SelectList is a "*", the number ofthe hast variables must be the same as the number
of the columns in specified table. And the order of the hast variables must match
the order of their corresponding items in the SelectList.

Indicator names an indicator variable, an output hast variable whose value (see following)
depends on whether the hast variable contains a null value:

• 0 meaning the column's value is not null.

• -1 meaning the column's value is null.

• >0 meaning the column's value is truncated.

The syntax for having BULKoption is as follows:

{ :Buffer, :Startlndex, :NumberOfRows}

Buffer is a hast array of structure containing rows that are the result from the SELECT
command. This array contains elements for each column to be returned and
indicator variables for columns that can contain null values. Whenever a column

- 125 •

FROM

Select

can contain nulls, an indicator variable must be included in the array definition
immediately after the definition ofthat column. This indicator variable is an integer
that can have the following values:

>= 0 the variable's value is not null.

< 0 the variable's value is null. (generally, you use -1).

Startindex is a host variable whose value specifies the array subscript denoting where the first
row tobe inserted is stored. You must specify this variable.

NumberOfRows is a host variable whose value specifies the number of rows to retrieve. You must
specify this variable, the value of this variable is the smaller of two values; 1) the
number of records in the array from the Startindex to the end of the array, or 2) the
number of rows in the query result.

The FROM clause identifies the tables referenced anywhere m the SELECT
statement.

TableList provides the table names and optionally the correlation names. The syntax for
TableList is as following:

[, ...]}

{ [OwnerName.]TableName [CorrelationName]

Tabl eName identifies a table to be referenced. The tables can be listed in any
order. CorrelationName specifies a synonym for the immediately preceding
table. The correlation name can be used instead of the actual table name anywhere
within the SELECT statement. The correlation name must conform to the syntax
rules for basic name. All correlation names within one SELECT statement must be
unique. They can not be the same as any table name in the FROM clause that does
not also have a correlation name associated with it.

OwnerName must be used when you are not the owner of the table. In this case,
CorrelationName must also be used to refer to this table in other part of the
statement, because OwnerName is not allowed to use in other part of the
statement.

Correlation names are useful when you join a table to itself. You name the table
twice in the FROM clause, and assign it two different correlation names.

WHERE SearchCondi tionl The WHERE clause determines the set of rows tobe retrieved. Rows for
which SearchCondi tionl is false or unknown are excluded from processing.
IF the WHERE clause is omitted, no rows are excluded. Aggregate functions
cannot be used in the WHERE clause.

Rows that do not satisfy SearchCondi tionl are eliminated before groups are
formed and aggregate functions are evaluated.

a 126 °

Select

When you are joining tables, the WHBRE clause also specifies the condition(s)
under which rows should be joined. If you ornit a join condition, SQL joins each
row in each table in the FROM clause with each row in all other tables in the
FROM clause.

SearchCondi ti onl may contain subqueries. Bach subquery is effectively
executed for each row of the outer query and the results used in the application of
SearchCondition 1 to the given row. If any executed subquery contains an outer
reference to a column of a table in the FROM clause, then the reference is to the
value ofthat column in the given row.

Refer to the "Search Conditions" section for additional information on search
conditions.

GROUP BY ColwnnNameThe GROUP BY clause identifies the columns tobe used for grouping when
aggregate functions are specified in the select Iist and you want to apply the
function to groups of rows.

When you use the GROUP BY clause, the select list can contain only aggregate
functions and columns referenced in the GROUP BY clause. If the select list
contains an * or a TableName.* construct, then the GROUP BY clause must
contain all columns that the * includes. Specify the grouping column names in
order from major to minor.

Null values are considered equivalent in grouping columns. If all other columns are
equal, all nulls in a column are placed in a single group.

If the GROUP BY clause is omitted, the entire query result table is treated as one
group.

HAVING SearchCondi tion2 The HAVING clause specifies a testtobe applied to each group. Any
group for which the result of the test is false or unknown is excluded from the
query result. This test, referred to as SearchCondi tion2, can be a predicate
containing either and aggregate function or a column named n the GROUP BY
clause. If the query contains no GROUP BY clause, any HAVING predicate that
does not contain an aggregate function must contain a column named in the select
Iist.

Bach subquery in SearchCondi ti on2 is effectively checked for each group
created by the GROUP BY clause, and the result is used in the application of
SearchCondi tion2 to the given group. If any executed subquery contains an
outer reference to a column, then the reference is to the values ofthat column in the
given group. Only grouping columns can be used as outer references in a subquery
in SearchCondi tion2.

UNION [ALL] FullSelect unites two SBLBCT results into a combined SBLBCT result. The
FullSelect is referenced as the second SBLBCT, in which it can include all
clauses from SBLBCT to HAVING except that it can not include INTO clause.

- 127 -

ORDER BY

ColumniD

ASC I DESC

Descriptions

Select

The union of two sets is the set of all elements that belang to either or both of the
original sets. Because a table is a set of rows, the union of two tables is possible.
The resulting table consists of all rows appearing in either or both of the original
tables.

ALL indicates that duplicates are not removed from the result table when UNION
is specified. If UNION is specified with ALL, duplicates are removed.

The ORDER BY clause sorts the result table rows in order by specified columns
Specify the sort key columns in oroer from miljor sort key to minor sort key.

The Col umniD must correspond to a column in the select Iist. You can identify a
column to be sorted by giving its name or by giving its ordinal number, with the
first column in the select list being column number 1. You must use a column
number when referring to columns in the query result that are derived from column
expressions. You must also use a column number to refer to columns if the
expression contains more than one subqueries.

For each column you can specify whether the sort order is to be ascending or
descending. If neither ASC nor DESC is specified, ascending order is used.

• When you do not specify BULK option, the SELECT command is a siruplest version of SELECT
command to retrieve for single row. In this case, it can retrieve only one row from the database. The search
condition in WHERE and GROUP BY and HAVING clause must be specified in such a way that only one
can be qualified as the result of SELECT command. If the SELECT statement does try to retrieve more than
one row, an error occurs and the result variables in INTO clause hold information from the first row. The
UNION and ORDER BY clause cannot be included in this simple case. In the INTO clause, you must use
compatible syntax for holding single row.

• When you specify the BULK option, the SELECT command is full select statement. Multiple rows can
retrieved as a single execution of the SELECT statement. In the INTO clause, you must use compatible
syntax for BULK operation.

• The BULKoption and INTO clause cannot be used in dynamic queries and cursor operations.

• The clauses must be specified in the order given in the syntax diagram.

• A result column in select list can be derived in any of the following ways:

- A result column can be computed, using an arithmetic expression, form values in a specified column of a
table listed in the FROM clause.

- Values in result columns of a single table can be combined in an arithmetic expression to produce the
result column values.

- Values in several columns of a single table or view can be combined in an arithmetic expression to produce
the result column values.

- 128 -

Select

- Values in result colurnns of various different tables can be combined in an arithmetic expression to
produce the result colurnn values.

-Aggregate function (AVG, MAX, MIN, SUM, and COUNT) can be used to compute result colurnn values
over groups of rows. Aggregate functions can be used alone or in an expression. If you specify more than
one aggregate function containing the DISTINCT option, all these aggregate functions must operate on the
same colurnn. If the GROUP BY clause is not specified, the function is applied over all rows that satisfy the
query. If the GROUP BY clause is specified, the function is applied once for each group defined by GROUP
BY clause. When you use GROUP BY clause, the select list can contain only aggregate functions and
columns referenced in the GROUP BY clause. The select Iist cannot contain a construct containing an
asterisk (*). Do not use the DISTINCT option in the argument of a function if that option precedes the select
Iist.

- A result column containing a fixed value can be created by specifying a constant or an expression
involving only constants.

• In addition to specifying how the result columns are derived, the select Iist also controls their relative
position from left to right in the result row. The first result colurnn specified by the select list becomes the
leftmost colurnn in the result row.

• When you use SELECT command with DECLARE CURSOR command, the following clauses cannot be
included: INTO, GROUP BY, HAVING, ORDER BY, and UNION. If you specify a FüR UPDATE clause
in DECLARE CURSOR command, only one table can be referred in FROM clause.

• Result columns in the select list are numbered from left to right. The leftmost colurnn is number 1. Result
columns can be referred to by column number in the ORDER BY clause; that is especially useful if you
want to refer to a column defined by an arithmetic expression.

• To join tables, list the tables in the FROM clause, and specify a join condition in the WHERE clause. To
join a table with itself, define correlation names for the table in the FROM clause; use the correlation names
in the select Iist and the WHERE clause to qualify colurnns named more than once in the select list and the
WHERE clause.

• When you use the SELECT command as a subquery, it may not contain any UNION or UNION ALL
operations, and the following rules are provided:

- Subqueries are used to retrieve data that is then used in evaluating a search condition.

- A subquery may be used only in the following types of predicates:

- EXISTS predicate.

- Quantified predicate.

- IN predicate.

- Camparisan predicate.

- 129 •

Select

- A subquery may be used in the WHERE or HAVING clause of SELECT statementsandin WHERE clause
of UPDATE, INSERT, and DELETE statements.

- A subquery may also be nested in the WHERE or HAVING clause of another subquery.

• When you use the GROUP BY clause, one answer is returned per group, in accord with select list:

- The WHERE clause eliminates rows before groups are forme.

- The GROUP BY clause groups the resulting rows.

- The HAVING clause eliminates groups.

- The select list aggregate functions are computed for each group.

e When you include a UNIONoperator in a SELECT command, some rules are provided. For the following,
assume that Tl is the result of the subquery on the left of the UNION operator, and T2 is the result of the
subquery on the right of the UNION operator:

- Tl and T2 must have the same nurober of columns. (They may be derived from tables with varying
numbers of columns.)

- The union is derived by first inserting each row of Tl and each row of T2 into a result table and then
eliminating any redundant rows unless ALL is specified.

- The ORDER BY clause can specify the ordinal nurober or the column name of a column in the leftmost
query in a UNION.

- You can use INTO clause only in the SELECT command on left side of UNION.

• If an error is detected during a SELECT command, the command will have no effect and no row will have
been returned.

Notes

• SELECT command is one of the most compatible command.

• When you specify a value in search condition, some constants defined by RE/SQL, which are included in
{ }, will be preprocessed by RE/SQL translator. These constants include DATE, DATETIME, INTERVAL,
and some special constants, such as { now}, { today}, { user}, and {null}. If you use host variables to
represent date constants, you must explicitly invoke a C conversion function before you invoke this
comrnand. See "Data Type" for details.

• The BULK SELECT is not supported by INGRES/SQL, but can be simulated with a group of C and SQL
statements. Reference to "Bulk Operations" section for more information about using the BULK operations.

- 130 -

SET READLOCK

3.35 SET READLOCK

Sets default lock mode for reading data from database.

Syntaxes

S: EXEC SQL SET READLOCK {NOLOCK I SHARED};

A: read_lock_mode = {NOLOCK I SHARED};

I: EXEC SQL SET LOCKMODE WHERE READLOCK = {NO LOCK I SHARED};

Parameters

NO LOCK

SHARED

Descriptions

means that the transaction reads data without obtaining any lock. I provides the
greatest degree of concurrence. lt is also called Read Uncommitted which does not
wait for locks on user data tobe released.

Because no locks are obtained, data read with NO LOCK may be modified by other
transactions. Use this readlock in applications in which the reading of uncommitted
data is not of concern.

means that the transaction must grant a Share Lock to before reading data. It is also
called Repeatahle Read which guarantees that data pages selected or updated by the
transaction are changed by other transactions until the current transaction ends with
a COMMIT WORK or ROLLBACK WORK command.

Use this readlock when you need to read the same data more than once in the
current transaction with the assurance that the data has not changed.

• No default readlock parameter is provided. If you omit the readlock parameter, an error message will be
generated by RE/SQL translator. ·

• When you issue a statement that reads data from the database, such as a select statement, a readlock must
be acquired before the data can be read. SQL grants readlock only when you issue a query statement instead
of when you issue SET READLOCK command itself.

• This command can be used bnly in one place, where is after CONNECT TO, COMMIT WORK, and
ROLLBACK WORK commands, and before BEGIN WORK command.

• You can not use this command in any on going transaction. Once you set the readlock in a certain mode,
this mode will keep effective until you next time set to another mode.

Notes

m 131 •

Sqlexplain

• For ALLBARE/SQL, the readlock can be controlled by setting isolation level. There are four isolation
levels, they are RR (Repeatable Read, i.e. Share Lock), CS (Cursor Stability), RC (Read Committed), and
RU (Read Uncommitted, i.e. Null Lock). Theseisolation levels can be set. when you issue a BEGIN WORK
command. Only RR and RU can find corresponding readlocks in INGRES/SQL which can be set by SET
LOCKMODE command.

• To eliminate the differences existed, RE/SQL translator automatically declare and use a global C variable,
which is read_lock_mode, to record the states of the readlocks. Basedon this variable, we developed
this RE/SQL statement, which can be used toset read_lock_mode variable. And based on this variable,
RE/SQL will provide a proper parameter (RR or RU) when you issue BEGIN WORK command in
ALLBARE/SQL application program, or will issue a SET LOCKMODE command in INGRES/SQL
application command.

• The Cursor Stability (CS) and the Read Committed (RC) readlock are removed from ALLBARE/SQL. A
Exclusive readlock is removed from INGRES/SQL.

• See "Concurrence Control through Lacks" for details.

3.36 Sqlexplain

The SQLEXPLAIN command places a message describing the meaning of a return code into a host
variable. The text of messages comes from the SQL message catalog.

Syntaxes

S: EXEC SQL SQLEXPLAIN :HostVariable;

A: EXEC SQL SQLEXPLAIN :HostVariable;

1: {

EXEC SQL SQLEXPLAIN (:HostVariable = ERRORTEXT);

SQLCA_SQLCODE = 0;

Parameters

HastVariable identifies a host variable used to hold an SQL error message.

Descriptions

• The host variable is a character string which should be sufficient to store the error message retrieved,
otherwise the message will be truncated. If no message retrieved, a blank message is returned.

- 132 -

Unlock Table

• If more than one error occurs, SQLEXPLAIN can be used to obtain more than one message. You execute
SQLEXPLAIN repeatedly until the SQLCA_SQLCODE becomes zero. (this is true only for ALLBARE/
SQL.)

• The message describes the meaning of a return code. SQL puts a return code into the SQLCA after each
SQL command in a program is executed. The SQLCA is an area for information on errors, wamings,
truncation, null values, and other conditions related to the execution of an SQL command.

Notes

• SQLEXPLAIN command can be used to retrieve many other messages in INGRES/SQL, these functions
are not included in RE/SQL.

Examples

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

char msg[256];

EXEC SQL END DECLARE SECTION;

!* execution of a SQL command */

while (SQLCA_SQLCODE != 0)

EXEC SQL SQLEXPALIN :msg;

printf("message: %s\n", msg);

3.37 Unlock Table

The UNLOCK TABLE command provides a means of explicitly releasing a lock granted by LOCK TABLE
command.

Syntaxes

S: EXEC SQL UNLOCK TABLE TableName;

A: /* EXEC SQL UNOCK TABLE TableName; *I

1: {

EXEC SQL SET LOCKMODE WHERE LEVEL= PAGE;

- 133 -

Update

if (read_lock_mode == NO LOCK)

EXEC SQL SET LOCKMODE WHERE READLOCK = NOLOCK;

else if (read_lock_mode == SHARED)

EXEC SQL SET LOCKMODE WHERE READLOCK = SHARED;

Parameters

TableName specifies the table to be unlocked.

Descriptions

• You must issue a UNLOCK TABLE command explicitly to release the locks held after you terminate the
transaction. Otherwise, the locks can be released automatically but the lock mode will still in the mode you
specified in LOCK TABLE command.

• This command must be used in pairs with UNLOCK TABLE command. If you issued a LOCK TABLE
command before the transaction has begun, you must issue a UNLOCK TABLE command, immediately
after the transaction ends (committed or rolled back).

Notes

• The way to release the lock for specified table is different. For ALLBARE/SQL, the locks granted will be
automatically released when the transaction ends. No UNLCOK TABLE is necessary. For INGRES/SQL, a
UNLOCK TABLE command is necessary, because the lockmodewill not change, though the locks can be
released, when the transaction ends. Once the lock mode is set, it will keep in that mode until you explicitly
issue a UNLOCK TABLE command. • Reference to LOCK TABLE command and "Concurrence Control
through Locks".

3.38 Update

The UPDATE command updates the values of one or more colurnns in all rows of a table or in rows that
satisfy a search condition.

Syntaxes

S: EXEC SQL UPDATE TableName

SET { ColumnName =Expression} [, ...]

- 134 -

Update

[WHERE SearchCondition];

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

TableName

SET

ColumnName

Expression

designates a table in which any rows satisfying the search condition are to be
updated.

is a clause in which you specify the columns and values to be updated.

designates a column to be updated. You can update several columns of the same
table with a single UPDATE command.

is any expression that does not contain an aggregate function. The expression is
evaluated for each row qualifying for the update operation. The data type of the
expression must be compatible with the column's data type. Host variables or
constants can also be specified as an expression. See "Expression" section for
details.

WHERE SearchCondi tion specifies which rows are to be updated. If not rows satisfy the search
condition, the table is not changed. All rows for which the search condition is true
are updated as specified in the SET clause. The search condition cannot contain an
aggregate function. If the WHERE clause is omitted, all rows are updated.

Descriptions

• If the WHERE clause is present, then the search condition is evaluated for each row of the table before
updating any row. Bach subquery in the search condition is effectively executed for each row of the table,
and the results used in the application of the search condition to the given row. If any executed subquery
contains an outer reference to a column of the table, the reference is to the value ofthat column in the given
row.

• If an error is detected during a multi-row UPDATE operation, the command will have no effect and no
rows will have been updated.

Notes

• This command is basically compatible in ALLBARE/SQL and INGRES/SQL, but some differences still
exist. ALLBARE/SQL can update rows through a view, which function is not supported by INGRES/SQL.
The correlation name can be used in INGRES/SQL but not in ALLBARE/SQL. These functions are
removed from RE/SQL.

• A FROM clause in INGRES/SQL is not included in RE/SQL syntax.

UPDATE WHERE CURRENT

• 135 •

Update

The UPDATE WHERE CURRENT command updates the values of one or more columns in current row
associated with a cursor. The current row is the row pointed to by a cursor after the FETCH command is
lSSUe.

Syntax es

S: EXEC SQL UPDATE TableName

SET { ColumnName =Expression} [, ...]

WHERE CURRENT OF CursorName;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

TableName

SET

ColumnName

Expression

CursorName

Descriptions

designates a table in which any rows satisfying the search condition me to be
updated.

is a clause in which you specify the columns and values tobe updated.

designates a column to be updat<:;d. You can update several columns of the same
table with a single UPDATE command.

is any expression that does not contain an aggregate function. The expression is
evaluated for each row qualifying for the update operation. The data type of the
expression must be compatible with the column's data type. Host variables or
constants can also be specified as an expression. See "Expression" section for
details.

Designates an opened cursor. The current row of the cursor is updated as specified
by the SET clause. The column(s) named in the SET clause must also be named in
the FüR UPDATE clause of the DELCARE CURSOR command defining the
cursor. After the update, the row updated remains the current row.

• If an error is detected during a multi-row UPDATE operation, the command will have no effect and no
rows will have been updated.

Notes

• This command is basically compatible in ALLBARE/SQL and INGRES/SQL, but some differences still
exist. ALLBARE/SQL can update rows through a view, which function is not supported by INGRES/SQL.

• When you specify a expression, some constants defined by RE/SQL, which are included in { } , will be
preprocessed by RE/SQL translator. These constants include DATE, DATETIME, INTERVAL, and some
special constants, such as { now}, { today}, { user}, and {null}. If you use host variables to represent date

- 136 -

Update

constants, you must explicitly invoke a C conversion function before you invoke this comrnand. See "Date
Type" for details.

WHENEVER

The WHENEVER is a command used in an application program to specify an action to be taken depending
on the outcome of subsequent SQL commands.

Syntax es

S: EXEC SQL WHENEVER Condition Action;

A: exactly the same as S syntax

I: exactly the same as S syntax

Parameters

Condi t i on can be one of the following three key words:

• SQLERROR refers to a test for the condition SQLCA_SQLCODE < 0.

• SQLWARNING refers to a test for the condition SQLCA_SQLWARNO = 'W'.

• NOT POUND refers to a test for the condition SQLCA_SQLCODE = 100.

Action can be one of the following three key words:

• STOP causes a ROLLBACK WORK comrnand and terminates the application program,
whenever a SQL command produces the specified condition.

• CONTINUE means no special action is taken automatically when a SQL command produces the
specified condition. Sequential execution will continue.

• GO TO Label causes a jump to the specified Label whenever the condition is found tobe true
after executing a SQL command. The Label must conform to the SQL syntax
rules for a basic name as weil as the requirements of the hast language. GOTO is
the same as the GO TO.

Descriptions

• SQLCA_SQLCODE and SQLCA_SQLWARNO are fields in the SQLCA, a data structure SQL uses to
retum status information about SQL comrnands.

• A WHENEVER statement affects all SQL command that come after it in the source program listing, up to
the next WHENEVER statement for the same condition.

• You can write code of your own to check the SQLCA for error or warning conditions, whether or not you
use the WHENEVER statement.

- 137 -

Update

Notes

• In SQLEXPLAIN, some additional conditions and action is supported, such as SQLMESSAGE and
DBEVENT conditions and CALL action, these functions are not included in REISQL.

Examples

EXEC SQL INCLUDE SQLCA;.

EXEC SQL WHENEVER SQLERROR STOP;

EXEC SQL WHENEVER NOT POUND GO TO 9000;

EXEC SQL CONNECT TO 'database';

I* Execution of the program terminates if the CONNECT TO

command cannot be executed successfully *I

SELECT * FROM TestTable;

I* If no rows are qualified, control is passed to the

statement labeled 9000 *I

9000: printf("message: no rows are qualified\n");

- 138 -

Overview

Chapter 4 The Administrator's guide

4.1 Overview

The readers of this chapter will be the users who responsible to maintenance this software. The RE/SQL
syntax translator has been developed with a very good extendable feature. All kinds of syntaxes could be
managed in a extendable file, namely syntax. file, with certain pre-defined rules. In such a way, the
translator could easily be extended to produce the syntax coming from any other additional RE/SQL
products. On the other hand, the user could define new RE/SQL statements which can be interpreted into C
and implementation's SQL statements.

This chapter will explain the working mechanism of the translator by providing a logical fiow chart of the
program. And then, the format of the syntax file will be defined. An currently used syntax file, which
includes syntaxes for ALLBARE/SQL and INGRES/SQL, is given in Appendix A.

4.2 The Working Mechanism of the Translator

Figure-2 is the logical fiow chart of the program which refiects the working mechanism of the translator.
The following will explain this figure based on the numbers on it.

i_. After the program is started, at the first, the parameters which are specified by the user in command line
will be processed. Three parameters must be obtained in this step, which are source (input) file name,
destination product identifier, and destination (output) file name.

j All syntaxes have been defined and included in a syntaxfilethat name is syntax. file, which includes
all statements for all currently available SQL products. Based on the destination product identifier obtained
in (., only the syntax for the specified product will be loaded into a pre-defined structure array which will be
dynamically allocated in the memory. See next section for detailed information about syntax file .

.., Basedon the names obtained in(., the source code file and the output file are opened in this step.

- 139 -

The Working Mechanism of the Translator

Beginning from this step, the program enters a loop to deal with the statements in source code file one by
one. After a statement is read into a statement buffer, a conditional branch is applied based on if it is a SQL
statement, i.e. if it is prefixed by EXEC SQL. If it is not a SQL statement, branching to f, in which this
statement will be echoed directly to output file. If it is a SQL statement, a preprocessing work is done on the
statement before branching to for later convenience, e.g. the EXEC SQL prefix including any possible
preceding label is eliminated, all embedded comments, if any, are removed, and all additional blanks are
also removed. A "clean" SQL statement is provided in this step for later use.

IEf In above Jour steps, errors may occur. Mostly, those errors arefatal errors which will cause immediately
terminating of the program. The fatal error handling is not included in the Figure-2. The possible errors
could be command line error in CD, syntax file not found error and syntax file internal error in @, source
codefilenot found error in@, delimiters for comments or strings unpaired error in®.

@ In this step, the text in statement buffer is written to output file without any processing.

® The program extracts a certain number of characters from the beginning of the statement as the key ward
with which it could locate the syntax for this statement in the syntax array. If the extracted key ward could
not match any statements in syntax array, a error message will be generated in (/). Otherwise, the translator
function will be invoked in®.

(/) An error message is generated and printed on the screen. All errors printed are counted to provide an
error summary before terminating the program.

@ An translator function is invoked. Based on the corresponding syntax found in syntax array, the
statement in the buffer is translated into its destination product syntax. If any error is detected during
translating, which is mostly RE/SQL syntax error, the program will branch to (/), Otherwise, the translator
will generate statement in specified syntax and write it to output file in®. This is the most important step.
For more information about syntax translation, see next section.

® In this step, the statement generated by the translator function is ,written to output file. And then, the
program tests if this statement is the last statement in the input file. If no end of file detected, the program
willloop to ®. Otherwise, the program goes to terminate in @.

@ Before the program terminates, all files opened are closed, all memories allocated are released, a
summary of the execution of the program is reported.

- 140 -

The Working Mechanism of the Translator

Command Line Parameter Processing (D

Load the Specified Syntax from the (;;\
Syntax File into a Structure Array 0

Open Source File and Output File (D

Read a Statement from the Source File ~-----,

Search this Statement in the Syntax Array @

Translate this Statement into Object Syntax @

Yes

Write Translated Statement to Output File @

No

• 141 •

The Format for the Syntax File and the Syntax Array

4.3 The Format for the Syntax File and the Syntax Array

The RE/SQL syntax translator has been developed with a very good extendable feature. All kinds of
syntaxes could be managed in a extendable file, namely syntax. file, with certain pre-defined rules. In
such a way, the translator could easily be extended to produce the syntax coming for any other additional
RE/SQL products. On the other hand, the user could define new RE/SQL statements which can be
interpreted into C and implementation's SQL statements.

It is worth to highlight the overall structure of the syntax file and its storage in memory, because the
translator program has been developed based on this file. On the other band, the administrator of the
program must know all aspects of the syntax file and related rules to maintenance this program and/or
extend the translator to support any additional SQL products.

After surveying the currently available SQL implementations, some syntax features have been noted as
following:

• The syntaxes for some statements are exactly the same. In this case, no translating is needed.

• Some of the statements have similar structures, but some insignificant differences could be identified, e.g.
some statements have same function, same number of parameters, but different statement key words have
been used. In this case, a one word by one word syntax translating is needed.

• Some statements existed in a SQL implementation is absent in another SQL implementation. But the
functions for those absent statements in a SQL implementation could be simulated by a combination of
some SQL Statements and/or C Statements in another SQL implementation. In this case, a more strong
syntax translating is needed, in which the parameters must be extracted from the source statements and then
the new syntax could be re-built based on the syntax provided in syntax file.

• The formats for date data type used in different SQL producis arenot the same. The format conversion for
date data type should be considered not only during the syntax translation phase but also while inserting and
retrieving data into/from the database.

• The key words used to define the data types in different SQL products are not the same, which appear
mostly in the CREATE TABLE command. A special processing should be applied to this command.

• Bulk processing, which allow user to retrieve multiple rows in one SELECT command, are implemented
with significant differences. A special processing for bulk operation commands and related host variable
declarations should be considered.

• If any dynamic operations are used in the user's applications, the syntax in those dynamic operation
command must be dynamically translated to destination SQL product syntax.

All aspects listed above reftect the major considerations while developing the translator program and related
formats and rules of syntax file.

~ 142 -

The Format for the Syntax File and the Syntax Array

The Overall Stmcture of the Syntax File

The syntax file, namely syntax. file, is an UNIXtext file, which can be referred in Appendix A. The
syntaxes defined in this file are some text lines terminated with <retum> keys. The whole file is divided into
five parts which include syntax translating information for different purposes, in which each part terminates
by identifying a line preceding with '@@'. Figure-3 shows the file stmcture.

@@ I* end of syntaxes for all statements *I

@@ I* end of syntaxes for data type definitions *I

@@ I* end of syntaxes for null indications *I

@

@@ I* end of syntaxes for constant specifications *I

®:

@@ I* end of syntaxes for date conversions *I

Figure-3 The Overall Stmcture of the Syntax File

The following descriptions address to Figure-3:

~ This part contains the syntax definitions for all REISQL Statements. Piease reference to "The development
of the Syntax for the RODOS Embedded SQL (REISQL)".

i This part contains the key word translating syntaxes for the REISQL DATA TYPE definition in CREATE
TABLE command.

• This part contains the key word translating syntaxes for the REISQL NULL INDICATION in CREATE
TABLE command.

@ This part contains the key word translating syntaxes for the REISQL CONSTANT which are mostly used
in DATA MANUPULATION commands.

@ This part contains the date conversion formats which are used by DATE CONVERSION and DATA
MANUPULATION commands.

m 143 a

The Format for the Syntax File and the Syntax Array

The following general rules can be applied to the syntax file:

• Each part terminates when the identifier '@@' is encountered. The identifier must be the first two
characters of the line. The comments following '@@' identifier will not be processed by the pro gram. They
are only the comments.

• Each part of the syntax consists of a number of 'syntax units'. The so-called syntax unit is constructed by
a couple of lines to define a RE/SQL statement for its implementations for all destination SQL products.
The format to define a syntax unit will be described later in this section.

• Each syntax unit begins with a '@' character, and it is considered, at the same time, as the end of last unit.
Any blank line will be omitted while reading these syntax units into memory. Generally, we use a blank line
between every two units to make the file easier to read by the users.

• The maximum number of syntax units, in whole six parts, is now set to 80 in the program by a macro
named MAX_SYNTAX_NUMBER. In current syntax file, about 59 syntax units have been used.

The Format of the Syntax Unit

Every pari of the syntax file is composed of a number of syntax units which are basic units of the syntax file.
All syntax units in the syntax file use a unique general format and follow similar rules to build the syntax
contexts. The date conversion format is an exception, which will be described separately. This section
mainly defines the format of the syntax unit. The rules to build the syntax contexts will be described in later
section. Figure-4 shows the format of the syntax unit.

@ CommandKeyWord@ [ParameterDefinitions] [Operators]

Productldentijier I: SyntaxContext 1

Productldentijier 2: SyntaxContext 2

Productldentijier N: SyntaxContext N

Figure-4 The Format of the Syntax Unit

A syntax unit consists of a couple of syntax lines, which depends on the number of SQL products that can
be processed by the translator. If the user includes N products in the syntax file, each syntax unit consists of
N+ 1 syntax lines. The current syntax file includes two SQL products, which are ALLBARE/SQL and
INGRES/SQL.

- 144 -

The Format for the Syntax File and the Syntax Array

The so-called syntax line is a logicalline which will be treated as a single character string by the translator.
However, the syntax line could take more than one text lines in the syntax file, because the <return> key is
not used as terminator of the syntax context. A syntax context terminates when another product identifier or
another command key ward is encountered.

The first line of the syntax unit includes the information about source RE/SQL statement. As an exception,
this line can not include any <return> key, i.e. it must be finished in one text line. The following N lines
contains the informations for each of the destination SQL products. Those lines are syntax lines which can
take as many text lines as you need.

The following descriptions address to Figure-4:

@CommandKeyWord@ is used by the translator program to locate the syntax unit for the statementtobe
processed. The command key ward, which must be in lower case and is delimited between two '@'

characters, should specify an unigue statement in RE/SOL command set. If the command key words for two
or more syntax units are partially the same, i.e. one complete key ward is the first few characters of another
key ward, the syntax unit with Ionger command key ward should be defined before the one with shorter
command key ward in the syntax file. For example, command EXECUTE is partially the same as command
EXECUTE IMMEDIATE. In this case, the syntax unit for EXECUTE IMMEDIATE command should be
defined before defining EXECUTE command.

ParameterDefinitions are optionally used by the translator program to extract the parameters in the source
statement, which are certain parts of the source statement. The detailed format will be defined in the later
section.

Operators are optionally used to indicate that the translator program performs some special
process during translating the statement. See Jater section for detailed information.

Productidentifier:is a single Ietter which identifies the destination SQL product. For each
translatable SQL product, which is ALLBARE/SQL or INGRES/SQL in this moment, a single Ietter must
be selected as an identifier. Generally, you can use the first Ietter of the product name. Here we use A as the
identifier of ALLBARE/SQL, I as the identifier of INGRES/SQL. The Ietter used must be in upper case and
immediately followed with a colon character. The product identifier and the followed colon should take the
first two character of the line. The product identifier has the same meaning as it was defined in the section
2.2.1.

SyntaxContext contains the syntax of the destination SQL product. At least one blank should be
inserted between the product identifier and the syntax context. The appearance of the statement generated
by translator is possibly as it is formatted in syntax context. You can include <return> key and the preceding
blanks in the continuous lines. The rules to build the syntax context will be discussed in the later section.

In the following, a very simple example is provided to give you abrief view of the syntax unit:

• 145 -

The Format for the Syntax File and the Syntax Array

@disconnect@

A: EXEC SQL COMMIT WORK RELEASE;

I: EXEC SQL %s;

The Format of the Syntax Array

In order to enable the translator working in an efficient way, it is necessary to reside all syntax units of the
syntax file in the memory. Obviously, during an execution of the translator, only the syntax context for one
of those SQL products is needed to Ioad into the memory, which is specified when the user invokes the
translator program. Therefore, a C structure array is defined for this purpose as following:

struct SYNTAX

char *se_stx;

short id_len;

char *ob_stx;

} syntax[MAX_SYNTAX_NUMBER];

Here, one member of the array is used to store one syntax unit. The structure element * s e_s tx and
* ob_s tx are two character pointer, which point two character buffers, to store the syntax context for RE/
SQL syntax (source syntax) and the syntax context for one of the SQL products syntax (object syntax).
Because the length of the syntax context may vary from some characters to some hundred characters, the
character buffers used here will be dynamically allocated by the translator based on the real length of the
syntax contexts. id_len is a integer variable to specify the length of the command key word in RE/SQL
syntax, which is used by the translator while searching the key word in the array (fixed length comparison of
the string is used).

All syntax units in the syntax file are stored in the syntax array continuously in the same order as they are in
the syntax file. These syntax units are still divided into six parts, which can be addressed by a couple of
integer variables:

short n_stx, n_type, n_null, n_const, n_date;

and the following is the map of the syntax array:

syntax[O] /* here is the first syntax unit of 1st part */

m 146 •

The Rules to Build the Syntax Context

. I* here is the last syntax unit of 1st part *I

syntax[n_stx] I* here is the first syntax unit of 2nd part *I

. I* here is the last syntax unit of 3rd part *I

syntax[n_type] I* here is the first syntax unit of 3rd part *I

. I* here is the last syntax unit of 4th part *I

syntax[n_null] I* here is the first syntax unit of 4th part *I

. I* here is the last syntax unit of 5th part *I

syntax[n_const] I* here is the first syntax unit of 5th part *I

. I* here is the last syntax unit of 6th part *I

syntax[n_date]

4.4 The Rules to Build the Syntax Context

A couple of rules have been developed to build the syntax context. In section 3.1, the overa11 working
mechanism of the translator has been explained. To illustrate the detailed translating process, s simplified
logical chart is provided in Figure-5:

The Input Statement
---Jiioo

The Translating
~

The Output Statement
in REISQL syntax Process Function in Object Product Syntax

CD A~ CD 0
The Corresponding

G) Syntax U nit Located
in the Syntax Array

Figure-S The Simplified Logical Chart for Translating Process

0 147 °

The Rules to Build the Syntax Context

~ All of the statements which are embedded in the source code file in RE/SQL syntax will be translated one
by one. This chart shows only the process to translate a single statement. When each of the embedded
statement is read to a character buffer by the program, it is made up to become a "clean string" of the
statement, in which the EXEC SQL prefix including any possible Iabel is eliminated, all embedded
comments and additional blanks are picked out.

i The translating process function is a C function which does really translating work. Before it is invoked, a
corresponding syntax unit in the syntax array is located based on the key word matching.

-, A syntax unit includes two parts. One part contains information about source statement, e.g. the command
key work which is used to locate that syntax unit, and optionally, some parameter definitions which can be
used to extract a certain part of the source statement that will be embedded in the object statement, and some
operators which indicates some special processing may be applied. Another part contains a format to build
object statement which is composed of strings, and parameters obtained from source statement.

A statement in a specified object syntax will be generated by the translating process function based on both
the source statement and the corresponding syntax unit.

In the following, all of the rules used to build syntax context will be described based on some real cases:

Case 1: Using %s operator. This case is the siruplest case which includes two sub-cases.
One is that the object syntax is exactly the same as the source syntax. Another one is that the object syntax
is completely different with the source syntax. In both cases, none parameter is involved. For the first case,
an operator "%s" is defined to completely copy the input statement to the place where it appears in the
object syntax context. For the second case, you can write any string as you want. The following example
just includes the both cases:

@disconnect@

A: EXEC SQL COMMIT WORK RELEASE;

I: EXEC SQL %s;

In this example, the RE/SQL Statement DISCONNECT is defined without any
clause and parameter. For ALLBARE/SQL, we find an equivalent statement COMMIT WORK RELEASE
which is completely different. For INGRES/SQL, this statement is exactly defined as DISCONNECT.

This operator can not be applied to data type conversion syntax, constant
conversion syntax, and date data type syntax (®®®®in Figure-3);

- 148 -

The Rules to Build the Syntax Context

Case 2: Using %n Qperator to deal with parameter. In this case, some parts of the source
statement should appear in the object statement, which are possibly clauses or elements of the statement. We
can define those parts of the source statement as "parameters" in the ParameterDefinitions field of
the syntax unit. And then, these parameters can be used in the product syntax context at a proper place. A
parameter can be defined as the following format:

{KeyWord %0 KeyWord}, {KeyWord %1 KeyWord}, ...

You can define more than one parameters in one syntax unit. The parameter
definitions should be finished in the first line of the syntax unit (no continuous lines are allowed). The
separator of every two parameter definitions could be a comma or a blank. In each parameter. a operator
"%n" is used to represent the parameter, in which n should start from number of zero. The KeyWords are
used to extract a certain part of the source statement. in which those key words are elements that must
appear in the source statement. In the case of that a key word used in a parameter definition could not find a
matehing word in the source statement, an error will generated by RE/SQL translator. Besides the statement
elements could be used as key words. two special key words are defined. which are FF and EE. FF denotes
that the parameter starts from the place just following the command key word in the source statement which
is defined in @CommandKeyWord@ field. EE denotes that the parameter would end when the statement
terminates with a ";".On the other band, the parameters defined in the parameter definition field do not have
to be used in every product syntax context. The following example includes these cases:

@connect to@ {FF %0 EE};

A: EXEC SQL %s;

I: EXEC SQL CONNECT %0;

In this example, the RE/SQL statement CONNECT is defined with a parameter
which indicates the database to be connected. For ALLBARE/SQL, this statement is exactly defined so that
we need only to copy the source statement to object statement. For INGRES/SQL, we find that the syntax is
basically the same but without TO in the command key word. In this case, we need to define a parameter,
which indicates the database identifier. Based on the syntax defined in this syntax unit, a RE/SQL statement:

CONNECT TO 'databasel';

can be translated to its ALLBARE/SQL syntax:

CONNECT TO 'database 1 ';

or its INGRES/SQL syntax:

- 149 -

The Rules to Build the Syntax Context

CONNECT 'database 1 ';

The parameter definitions may be different in some special cases, which are
parameter in BULKoperation statement and DATEformat conversion. See following for details.

Case 3: Usin~: n Qperator. For some special cases, some processing should be applied
to the source statement or parameters. n operator, which could be optionally specified in the Operators

field of the syntax unit, could inform the translator program to do those special processing. Four n (n= 1,
2, 3, 4) operators are currently defined. Each of them has special meaning and can be used only in certain
places. In the Operators field, you can use only one of these operators.

1 - Expression Processing Operator. For most of the data manipulation
statements, the syntax used by different SQL products are basically the same. So, in most cases, you would
use %s operator to copy the source statement to object statement. On the other hand, most of these
statements could use expressions in their clauses to specify some conditions. Some constants defined in RE/
SQL, such as date (data type) value and special value, may be different from any one of the current SQL
products. (see Reference Manual for RODOS Embedded SQL- EXPRESSION section). In this case, before
the source statement is copied to the object statement, the constants in the statement must be converted to its
object syntax. 1 operator is used to inform the translator program to do this thing. It should be used when
the source statement includes any possible expression, which are known as SELECT, DELETE, UPDATE,
INSERT, and statements including sub-SELECT, such as CREATE VIEW, DECLARE CURSOR, and all
BULKoperation statements. The syntax used to convert the constants can be found in syntax file (@@ in
Figure-3). The following is an example:

@select@ 1;

A: EXEC SQL %s;

I: EXEC SQL %s;

Based on the syntax defined in this syntax unit and constant converting syntax in
syntax file, a RE/SQL statement:

SELECT * FROM TestTable

WHERE date= { today} or date= { 1994-01-01 } ;

can be translated to its ALLBARE/SQL syntax:

SELECT * FROM TestTable

WHERE date=CURRENT _DATE or date=' 1994-01-01';

or its INGRES/SQL syntax:

SELECT * FROM TestTable

WHERE date='today' or date='Ol-jan-1994';

- 150 -

The Rules to Build the Syntax Context

2 - Data Tvue Definition Processin!,! Ouerator. This operator is used only for
CREATE TABLE statement, because the key words, which are used to define date type in this statement, are
different in current SQL implementations. The syntax used to convert the constants can be found in syntax
file (®®in Figure-3). The following is an example:

@create table@ {FF %0 EE} 2;

A: EXEC SQL CREATE PUBLIC TABLE %0;

I: EXEC SQL %s;

Based on the syntax defined in this syntax unit and constant converting syntax in
syntax file, a RE/SQL statement:

exec sql create table TestTable

(pchar char(1 000),

pvarchar varchar(lOO), pdouble double,

preal real with null,

psmallint smallint, pinteger integer,

pdate date, pdatetime datetime, pinterval interval

);

can be translated to its ALLBARE/SQL syntax:

EXEC SQL CREATE PUBLIC TABLE TestTable

(pchar CHAR(lOOO),

pvarchar VARCHAR(lOO),

pdouble DOUBLE PRECISION,

preal REAL DEFAULT NULL,

psmallint SMALLINT,

pinteger INTEGER,

pdate DATE,

pdatetime DATETIME,

m 151 m

The Rules to Build the Syntax Context

pinterval INTERVAL);

or its INGRES/SQL syntax:

EXEC SQL CREATE TABLE TestTable

(pchar CHAR(l 000),

pvarchar VARCHAR(lOO),

pdouble FLOATS,

preal REAL WITH NULL,

psmallint SMALLINT,

pinteger INTEGER,

pdate DATE,

pdatetime DATE,

pinterval DATE);

3n - Parameter Processing Operator. Sometimes, before a parameter, which is
defined in ParameterDefinitions field, is used to build object statement, some processing should be
applied to it. The number n specify which parameter should be processed. The following three cases will be
automatically identified and processed based on some conditions:.

(1) The first character of the pararneter is a colon. Sometime, the parameter
may be a host variable preceded with a colon ":", and when this host variable appear in the object syntax
context the colon ":" should be elirninated. The following is an example:

@savepoint@ {FF %0 EE} $3$0;

A: EXEC SQL %s;

I: EXEC SQL SAVEPOINT %0;

In this example, the parameter is preceded with ":", which is identical to
ALLBARE/SQL syntax. But, for INGRES/SQL, the host variable is not allowed to be used here, it should
be a integer variable (see SAVEPOINT statement in "The Development of the Syntax for the RODOS
Embedded SQL").

(2) The first character of the parameter is a single quotation. Sometime, the
parameter may be a string within two single quotation " ' ", and when this string appear in the object
syntax context the single quotation should be change to a double quotation " " ". The following is an
example:

- 152 -

The Rules to Build the Syntax Context

@execute immediate@ {FF %0 EE} $3$0;

A: {

if (SESQL_dynamic_preprocessor(DynamicCommandBuffer, %0, 'A') == 0)

EXEC SQL EXECUTE IMMEDIATE :DynamicCommandBuffer;

eise

sqlca.sqlcode = -1111;

I: {

if (SESQL_dynamic_preprocessor(DynamicCommandBuffer, %0, 'I') == 0)

EXEC SQL EXECUTE IMMEDIATE :DynamicCommandBuffer;

eise

sqlca.sqlcode = -1111;

In this example, it is actually that a SQL string is converted to a C string.

(3) The parameter Iooks like TO :hostyariable. This is a special case for
ROLLBACK statement. Because the TO clause of this statement is optional, the TO with the followed host
variable as a whole is defined as a parameter:

@rollback work@ {FF %0 EE} $3$0;

A: EXEC SQL %s;

I: EXEC SQL ROLLBACK %0;

In this example, the parameter, which is optional, is preceded with "TO :", which is
identical to ALLBARE/SQL syntax. But, for INGRES/SQL, the host variable is not allowed to be used
here, it should be a integer variable (see ROLLBACKstatement in "The Development of the Syntax for the
RODOS Embedded SQL").

4n • Conyerting to Uppercase Operator. This operator is used in a similar way
as the way you use 3n operator, it indicates that the parameter should be converted to its uppercase. For
example:

@set readlock@ {FF %0 EE} $4$0;

A: read_lock_mode = %0;

- 153 -

The Run-time RE/SQL related C function Library

I: EXEC SQL SET LOCKMODE ON SESSION WHERE READLOCK = %0;

In this example, the parameter %0 appear in ALLBARE/SQL syntax as a C macro
which is defined in uppercase (which are NOLOCK and SHARE. See SET READLOCK statement in "The
Development of the Syntax for the RODOS Embedded SQL").

~Productidentifier$- BULK variable Declaration Processing Operator.
This operator is used specially by BEGIN DECLARE SECTION statement. Because the BULK variable
declarations are different in the current SQL implementations, some processing should be applied to the
BULK variable declarations. See BULK OPERATIONS section in "The Reference Manual for the RODOS
Embedded SQL" for the detailed description. Here, Productidentifier has the same meaning as it
was defined earlier in this guide, which indicates that if the object syntax is specified as
Productidentifier, then the structure variable (BULK variable) declaration following this BEGIN
DECLARE SECTION statementwill be processed based on the tules developed in BULK OPERATIONS
section in "The Reference Manual for the ROD OS Embedded SQL". For example, the syntax unit of
BEGIN DECLARE SECTION is defined as follows:

@begin declare section@ I;

A: EXEC SQL %s;

I: EXEC SQL %s;

that means, if you specify INGRES/SQL (with -i option in command line) as object
syntax, allBULKvariable declarations following the BEGIN DECLARE SECTION will be processed.

4.5 The Run-time RE/SQL related C function Library

For some SQL statement, the statement is not completed in the application source code until the application
is executed. In this case, the translating works should be done during the tun-time of the user's applications.
For RE/SQL, two cases are related to this problem. One is dynamic operations. Another is DATE format
conversions. For these cases, some C functions should be developed in advance to build a RE/SQL related
run-time C function library. The file containing thesetun-time C functions, which name is dynamic. c and
dynamic. o, is provided in the packing of this software. When you embed any dynamic operation
statement or date format conversion statement in your application, the file dynamic. o should be linked to
the executable of your pro gram.

4.6 The Run-time RE/SQL Related C Functions

Currently, only two functions (including some subroutines called by them) are included in the library. They
are described as follows:

(1) Dynarnic Translating Function. The function is defined as follows:

- 154 -

The REISQL Run-time Error Processing

short SESQL_dynamic_preprocessor(Object,

Source, Productidentifier)

char *Object, *Source, Productldentifier;

where, the parameter Source could be a command string delimited by two double
quotations or a host variable containing a command. Based on the syntaxes provided in the first part of the
syntax file, in which includes all statements that could be dynamically translated, the statement contained in
Soure e will be translated to the syntax specified by Productiden t i f i er and stored into Obj ec t. At
this moment, the possible values of Productidentifier are 'A' and 'I'. This function could be
invoked in the sy11tax context of a syntax unit. Currently, it is invoked by the syntax units for EXECUTE
IMMEDIATE and PREPARE statements (see Appendix A for this two statements).

When the function finishes the translating work, a integer value will be returned.
The value 0 indicates success and value 1 denotes that an error occurs. The error processing will be
described later in this section.

(2) Dynamic Date Format Converting Function.

The function is defined as follows:

short SESQL_translate_date(Source, Object, Operator)

char *Object, *Source, Operator;

where, the parameter Source could be a date (include datetime and interval)
string delimited by two double quotations or a host variable containing a date string. Based on the syntaxes
provided in the last part of the syntax file, in which includes all date formats, the date data type contained in
Source will be converted based on the specified Operator and stored into Obj ect.

When the function finishes the translating work, a integer value will be returned.
The value 0 indicates success and value 1 denotes that an error occurs. The error processing will be
described later in this section.

4.7 The REISQL Run-time Error Processing

As mentioned above, errors may occur during run-time translating. In this case, a error message will be
generated and stored into a C character variable, namely DynamicPreprocessMessage which is
declared in RE/SQL include file (ingres.macros.h and allbase.macros.h).

When you invoke these run-time function in you syntax file, a condition branch, which is based on the
retum values of the function, should be used to process possible errors. In order to keep agreement of
general SQL error processing, a special negative number should be set to RE/SQL communication area
variable sqlca. sqlcode. See syntax units for EXECUTE IMMEDIATE, PREPARE, and CONVERT
DATE Statements for examples.

- 155 -

Copying REISQL Files

chapter s Installation Guide

5. '1 Copying REISQL Files

This section will Iist the files included in this software. Thesefiles can be divided into two parts, which will
be listed separately in the following.

The first part includes the files needed to execute the RE/SQL Syntax Transtator (called as translator in the
following):

sesql

syntax.file

dynamic .o

the executable of the translator, see section 4.2 for using it

the syntax file includes user defined syntaxes by means of which the syntax will be
translated, see section 3.3 & Appendix A

the object file which includes assistant function set, see section 3.5 for description

allbase .macros .h the including file defined for ALLBARE/SQL product, see Appendix B for listing

ingres .macros. h the including file defined for INGRES/SQL product, see Appendix C for listing

example.input the example(s) for each RE/SQL statement, see Appendix D

The second part includes the files needed to build the RE/SQL Syntax Translator:

sesql.c the source code file, which includes main program

syntax.c the source code file, which includes syntax translating functions

dynamic.c the source code file, which includes assistant function set

bulk.c the source code file, which includes functions related to bulk operations

sesql.m the make file to build the executable of the translator

To instaU this software on an HP workstation, you need to copy only the files in the first part into your
working directory. To instaU this software on other kind of workstation, you need to copy the files, except
sesql and dynamic. o, in the both parts into your working directory, and then type the following UNIX
command to rebuild the executable:

- 156 -

Copying RE/SQL Files

make -f sesql.m

After the installation, you can test if the program works by typing the following command:

sesql example.input -i -o ingres.output

or

sesql example.input -a -o allbase.output

If the program works, an output file (ingres.output in Appendix E or allbase.output in Appendix F) will be
produced, and some messages will be displayed on the screen.

5.1.1 Managing RE/SQL Files

When you are using RE/SQL, you need always to take care a couple of files which are supplied by RE/SQL.

- SESQL -- Transtator Executable File. It is necessary for you to know where the translator executable is
located after installing RODOS/SQL software. You need to add a search path in operating system
environment or you always use file name with full path to invoke the translator.

- syntax. file --Syntax File. It is a data file which will be used (read) either by translator during
processing the source code or by your application during its run-time. This file is supposed to stay at current
directory from which you invoked the translator or you execute your application. See also section 4.1, 3.3,
and Appendix A.

- dynamic. o (. c) -- Runstime C Function Library. This is a C function library file which is necessary
tobe linked to your application. See also section 3.5.

- allbase. macros • h -- Header File for ALLBARE/SQL. This is a header file defined for use when
object SQL product is ALLBARE/SQL. This file will be automatically included when you use RE/SQL
statement INCLUDE SQL_HEADER. When you compile your application code (after preprocessing it with
ALLBARE/SQL preprocessor), this file should be found by C compiler in suitable place, which is current
directory as default.

- ingres .macros .h -- Header.Filefor INGRES/SQL. This is a header file defined for use when object
SQL product is INGRES/SQL. This file will be automatically included when you use RE/SQL statement
INCLUDE SQL_HEADER. Whenyou compile your application code (after preprocessing it with INGRES/
SQL preprocessor), this file should be found by C compiler in suitable place, which is current directory as
default.

When you include any header files in a SQL DECLARE SECTION, those files will be processed by
translator. You need consider this case only ifthe object SQL products is INGRES/SQL.

- 157 -

Using the Translator

The original header file will be remained and a substitute header file will be generated by translator. In this
case, the translator will locate and read original header files based on file names supplied in include
statement, for example:

EXEC SQL BEGIN DECLARE SECTION;

#include " . ./include/header_file_name.h";

EXEC SQL END DECLARE SECTION;

First, the translator will process file 11
•• I inc l ude I hf i l e . h 11 and generate a substitute file 11

•• I
includelhfile. h. s II in same directory.

And then, the file name in include statementwill be modified to:

#include " . ./include/hfile.h.s";

Finally, the C compiler will use generated header files instead of original header files.

The translator has capability to deal with chain including files. For example, if you have a include statement
in 11

• • I includelhfile. h 11
,

#include 11 hfilel.h 11

then a substitute file 11 hfilel.h.s 11 is generated in the same directory, and the corresponding include
statement is modified:

#include 11 hfilel.h.s 11

and so on.

5.2 Using the Translator

5.2.1 lnvoking the Translator

The translator, whose executable is sesql, can be invoked by the users as an UNIX command line. If
sesql is located in current directory or you have add a search path for it, you can invoke it just using its
name. Otherwise, you have to use a full name with path to invoke it.

The syntax of the command is as following:

sesql InputFileName -Productidentifier -o OutputFileName

Parameters

Inpu tFi 1 eName identifies the name of input file containing the source code to be translated. You
must specify a full name of input file, no any default is assigned for this parametcr.

- 158 -

Using the Transh:~tor

-Productidentifieris single Ietter which identifies the destination SQL product. For each
translatable SQL product, which is ALLBARE/SQL or INGRES/SQL at this moment, a single Ietter must
be selected as an identifier. Generally, you can use the first Ietter of the product name. Here we use A as the
identifier of ALLBARE/SQL, I as the identifier of INGRES/SQL. The Ietter used is not case sensitive. You
must specify this parameter, no default is assigned for this parameter.

-o OutputFileNamespecifies the name of output file containing the source code for destination SQL
product. If you omit this parameter, adefault name Inpu tFi 1 eName. sql will be provided.

If the translator executes successfully, the following messages will be printed on the screen:

RE/SQL translator input file: XXX.XXX

RE/SQL granulator output file: XXX.XXX

XXX RE/SQL statements have been translated.

RE/SQL translating has successfully finished.

5.2.2 Errors Detected by Translator

The translator has error detecting capability. Three kinds of errors could be detected by the translator which
are described as following:

Command Line Error

If you include any errors in sesql command, the command would not be executed, and a message will be
displayed as following:

an error message ...

Usage: sesql { input_file_name}

{AI I I ... }

[-0 output_file _name]

where: A - to ALLBARE/SQL

I- to INGRES/SQL

default output file name is input_file_name.sql

Fatal Embedded SQL Statement Error

The so-called fatal error is the error which is so serious that the translator could not continuously process the
source code. Generally, the fatal errors are related to various delimiters used by embedded SQL Statements, .
which must be appear in pare such as string delimiter, comment deiirniter, command terminator, etc. Once
such an error occurs, the translator will terminate and an error message will be printed as following:

0 159 -

The Procedure to Use This Sottware

Fatal error: an error message ... (at line XXX).

Non-fatal Embedded SQL Statement Error

The so-called non-fatal error is the error which is not so serious that the translator could continuously
process the source code after an error message is printed. Though the error checking capacity of the
translator is not complete, the most of the obvious errors could be detected. Once such an error occurs, the
translator will count the number of the errors and an error message will be printed as following:

error: an error message ... (at line XXX).

If the translator finds any error, which including fataland non-fatal errors, the following messages will be
printed on the screen:

RE/SQL translator input file: XXXXXX

RE/SQL granulator output file: XXX.XXX .

. error message

XXX RE/SQL statements have been translated.

RE/SQL translating has finished with XXX errors.

5.3 The Procedure to Use This Software

Based on the concept described in section 1.2, the users could use this software in the way of their
convenience. However, this section will provide a proposed procedure for the generat use of this software.
The procedure will be described step by step in the following:

Step 1:

Step 2:

You embed SQL statements with RE/SQL syntax in your application program
which is your original source code file, e.g. its name is sql-ex. s . c. Multiple
source code files are allowed. Here, we assume that all C functions including main
function and functions with SQL statements are stayed in sql-ex. s. c file.

You invoke sesql, which is the translator, to translate the RE/SQL syntax in
original source code file into the syntax of the specified SQL product. The output
file coming from this step is the source code for the specified SQL product, and is
ready to be preprocessed by the preprocessor supplied with the product. For
ALLBARE/SQL product, you can invoke sesql as following:

sesql sql-ex.s.c -a -o sql-ex.a.sc

For INGRES/SQL product, you can invoke sesql as following:

sesql sql-ex.s.c -i -o sql-ex.i.sc

- 160 -

The Procedure to Use This Software

Step 3: In this step, you begin to follow the procedure to use a specified SQL product. For
ALLBARE/SQL product, you can use the preprocessor as following:

psqls EXAMPLEDBE -i sql-ex.a.sc -p sql-ex.a.c -d -r

where sql-ex. a. sc is the input file for the preprocessor, sql-ex. a. c is the
output file from the preprocessor, EXAMPLEDBE is an example database
environment.

For INGRES/SQL product, you can use the preprocessor as following:

esqlc -fsql-ex.i.c sql-ex.i.sc

Step 4:

cc -c sql-ex.a.c

where sql-ex. i. sc is the input file, sql-ex. i. c is the output file.

In this step, you begin to follow the procedure to use compile and link your
application. For ALLBARE/SQL product, you can do it as following:

cc sql-ex.a.o [dynamic.o] -lsql-lcl-lportnls -o sql-ex.r

cc -c sql-ex.i.c

where sql-ex. a. r is the executable for use with ALLBARE/SQL database
environment.

For INGRES/SQL product, you can do it as following:

cc sql-ex.i.o [dynamic.o] $II_SYSTEM/ingres/lib/libingres.a \

-1m -lc -o sql-ex.i.r

Note:

where sql-ex. i. r is the executable for use with INGRES/SQL database.

It is worth mentioning that the users must maintenance only the original source
code file, which is sql-ex . s . c in this procedure. It is possible that some errors
could occur in step 2, 3 and 4.

The translator has an error checking capability by which the most obvious errors could be detected.
However, error checking of the translator might not be sufficient so that some errors might be remained
even if the step 2 had been passed successfully. By the way, all errors in the embedded SQL statements
would be found in the step 3 by the preprocessor of the SQL product. It is also possible to find some C
syntax errors, if any, in the step 4, because the step 2 and 3 check only for those embedded SQL statements
in your application program. Wherever the errors occur, you must find and correct the errors in original
source code file, and re-start the procedure from the step 2. The output file from the step 1 is a readable
source code file too. Sometimes, you need to locate the errors in this file if any errors occur in the step 2.

- 161

	Blank Page

