
Forschungszentrum Karlsruhe
Technik und Umwelt

FZKA 5669

lntegrated Data Management
for RODOS

K. Abramowicz, A. Koschel, M. Rafat,
R. Wendelgass
Institut für Neutronenphysik und Reaktortechnik
Projekt Nukleare Sicherheitsforschung

Dezember 1995

Forschungszentrum Karlsruhe
Technik und Umwelt

Wissenschaftliche Berichte

FZKA 5669

lntegrated Data Management for RODOS

Karol Abramowicz*, Arne Koschel*, Mamad Rafat**, RalfWendelgass*

Institut für Neutronenphysik und Reaktortechnik
Projekt Nukleare Sicherheitsforschung

* Forschungszentrum Informatik (FZI), Karlsruhe

**Fa. D.T.I. Dr. Trippe Ingenieurgesellschaft m.b.H., Karlsruhe

Forschungszentrum Karlsruhe GmbH, Karlsruhe

1995

This work has been performed with support of the European Commission,

DGXI-A-1, under contract No. 94-PR-006

Als Manuskript gedruckt
Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH
Postfach 3640, 76021 Karlsruhe

ISSN 0947-8620

Abstract:

The report presents the results of a feasibility study on an integrated data organisa

tion and management in RODOS, the real-time on-line decision support system for

off-site nuclear emergency management. The conceptual design of the functional

components of the integrated data management are described taking account of

the software components and the operation environment of the RODOS system.

ln particular, the scheme architecture of a database integration manager for acces

sing and updating a multi-database system is discussed in detail under a variety of

database management aspects. Furthermore, the structural design of both a simple

knowledge database and a real-time database are described. Finally, some short

comments on the benefits and disadvantages of the proposed concept of data inte

gration in RODOS are given.

Integrierte Datenverwaltung in RODOS

Kurzfassung:

Die vorliegende Studie dokumentiert die Ergebnisse eine Machbarkeltsanalyse zur

integrierten Datenorganisation und Datenverwaltung in RODOS (real-time on-line

decision support), dem Entscheidungshilfesystem für den Notfallschutz nach kern

technischen Unfällen. Ausgehend von der Architektur der Betriebskomponenten

und der Betriebsumgebung des RODOS Systems wird der Entwurf eines integrierten

Datenbankkonzepts beschrieben.

Insbesondere werden die Schema - Architektur eines integrierten Datenbankmana

gers zum Zugriff auf ein Multi-Datenbanksystem ausführlich diskutiert und die un

terschiedlichen Aspekte der Datenverwaltungsmodellierung hinsichtlich der RODOS

Zielsetzung im Detail erläutert. Weiterhin werden einige Ansätze zur Aufbaustruk

tur einer einfachen Wissensdatenbank und einer Echtzeitdatenbank vorgestellt. Ab

schließend werden die Vor- und Nachteile des vorgeschlagenen Konzepts zur globa

len Datenintegration in RODOS kurz aufgeführt.

Chapter 1

Chapter 2

Chapter 3

Introduction .. 5

1.1 RODOS- objective ... 5

1.2 The FZI ... 5

1.3 Structure of the study .. 6

RODOS - project definition .. 7

2.1

2.2
2.2.1
2.2.2

2.3

2.4
2.4.1
2.4.2

2.5
2.5.1
2.5.2
2.5.3

2.5.4

2.6

2.7

2.8
2.9

Objective ofRODOS, FZI contribution ... 7

System architecture ... 9
Supra-regional system architecture ... 9
Local system architecture .. 1 0

Functional components of ROD OS .. 11

Application scenario ... 13
Phase 1 (normal operation) ... 13
Phase 2 (emergency Operation) .. 14

Implementation requirements ... 14
General requirements .. 14
Budget ... 14
Hardware ... 15
2.5.3.1 Local systems 15
2.5.3.2 Central systems ... 15
Software .. 15
2.5.4.1 Operatingsystemsand graphic interface .. 15

Network, communication .. 15

Database management systems ... 16

Prograrnming languages (compilers) .. 16

Development requirements ... 16

2.10 Validation scenario .. 16
2.1 0.1 Hardware ... 16
2.1 0.2 System software environment ... 17
2.1 0.3 Requirements to be met by the prolotype ... 17

2.11 All phases .. 17
2.11.1 Normal operation ... 17
2.11.2 Emergency operation .. 17

Data management .. 1s

3.1 Schema architecture .. 19
3.1.1
3.1.2

3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

3.3

3.4

Multidatabase systems: a survey of architectures .. 19
Selection of an architecture ... 22

Schema integration and modification ... 24
Organizational tasks and requirements ... 24
Definition of mapping and integration components ... 25
Global data dictionary .. 27
Schema modification ... 28
Redundancy .. 29

DBMS integration ... 30

Database language (DDL/DML) .. 31

1

Chapter 4

Chapter 5

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8

3.5
3.5.1
3.5.2
3.5.3
3.5.4

3.6

3.7

3.8
3.8.1
3.8.2
3.8.3

3.9

Interface ... 31
Additional parameters for database operations ... 32
Data definition .. 33
Queries .. 34
lnserting, updating, deleting .. 34
Transactions .. 35
lntegrity conditions ... 36
Events, triggers .. 37

Transactions .. 38
Transaction concept .. 38
Distributed transactions ... 38
Treatment of deadlocks ... 39
Management of Iecks .. 39

Events .. 40

Parallelization and distribution ... 40

Other DBMS-typical functions ... 41
Data protection and data integrity .. 41
User management ... 42
Fail-safeness ... 42

Interna! RO-D IM components .. 42

Knowledge management .. 45

4.1

4.2
4.2.1
4.2.2
4.2.3

4.3

4.4

4.5
4.5.1
4.5.2

4.5.3

4.6

4.7

lntroduction ... 45

Structure of the knowledge base ... 46
General structure of a rule-based system ... 46
Rule base of RODOS .. 47
Other possibilities of improvement .. 51

Communication with the user , .. 52

Implementation of the logical schema , 54

Implementation using INGRES ... , .. 55
lmplementation of rules using INGRES ... 55
lmplementation of torward chaining .. : 57
4.5.2.1 Basic methods and data structures ... 57
4.5.2.2 Algorithmic implementation 60
Problems of implementation of the logical schema

in INGRES ... 62

Alternatives ... 63

Summary ... 63

Real-time data management ... 65

5.1 lntroduction ... 65

5.2 Data characteristics ... 65

5.3 Treatment of Iimit values .. 66

5.4 Typical queries .. 67

5.5 Locking ... 67

5.6 Data compression .. 68

2

Chapter 6

Chapter 7

Chapter 8

Chapter 9

5.7 Filing ... 68

5.8 Aspects of implementation ... 68

5.9 Requirements made on the database system used .. 69

GUI generation ... 7o

6.1

6.2

6.3
6.3.1
6.3.2
6.3.3

6.4

Introduction ... 70

Graphie I/0 elements .. 71

Controllanguage ... 72

User interface .. 72
EvenVtrigger mechanisms ... 72
Database system link .. 73

Usersupport for query generation and other tools ... 73

Feasibility analysis ... 75

7.1
7.1.1
7.1.2
7.1.3
7.1.4

7.2
7.2.i
7.2.2

7.2.3

7.3

7.4
7.4.1
7.4.2

Doubts ... 75

Unknown factors .. 75
General technology ... 76
Database technology ... 77
Conclusions ... 78

Use of tools ... 78
Functionaiity of the toois .. 79
Short description of some tools ... 80
7.2.2.1 JAM6 ... 80
7.2.2.2 Openlnterface .. 81
7.2.2.3 Uniface-Six .. 81
7.2.2.4 UniSQL .. 82
7.2.2.5 Other products ... 82
Economic aspects ... 83

Ideas for increasing the performance .. 83

Future activities ... 84

FZI working programme .. 84
working programme (proposal) .. 85

Summary .. as

8.1 Project definition ... 86

8.2 Special features ... 86

8.3 Doubts ... 87

8.4 Future activities ... 87

References ... 88

3

Figures

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

upra-regional system architecture ... 1 0

Local system architecture: heterogeneaus platforms, heteroge
neous DBMS1 .. 11

Overall architecture of ROD OS .. 12

FZI contributions to RODOS .. 12

Various schema architectures .. 20

5--level schema architecture ... 22

Schema architecture of RO-DIM .. 24

Functions for integration ... 26

RO-D IM process architecture ... 40

Rough RO-D IM system architecture .. 44

Rule hierarchy ... 49

Structure of the knowledge base ... 50

Data structure for managing the applicability of rules 51

Rough architecture of measured-data management 69

General structure of an application ... 71

4

Chapter 1 Introduction

1.1 RODOS - objective

The RODOS project is carried out by FZK (Karlsruhe Research Centre) in cooperation with the
D.T.I. engineering bureau as the subcontractor. The objective of the project is to design and
implement a distributed information system, which supports decision-making authorities after the
release of radioactivity due to an accident. In the future, RODOS shall be applied in Western and
Bastern European countries, fulfilling three main tasks:

• supply of data on the current and future radiological situation to decision-making authorities;

• support in the decision on protective measures and countermeasures \Vithin the ra.."'lge of com-
petence;

" area-overlapping coordination of locally or regionally initiated measures.

The RODOS system will be installed at a number of places in Europe. They will be interlinked by
an efficient and reliable network. When implementing this system, commercial relational data
base management systems will be employed for both persistent storage and efficient supply of
data. Some major components of the RODOS system have already been made available, i.e. het
erogeneaus databases and several application programmes based on various technologies. These
components will have to be integrated in the future system.

The present study, which has been prepared in cooperation with the D.T.I. Dr. Trippeengineering
bureau and the Database Systems Division of the Research Centre for Computer Science is aimed
at demonstrating the feasibility of integrated data management. This study represents the starting
point for the implementation of RODOS integrated data management, which shall be completed
by the end of 1995.

1.2 The FZI

The Database Systems Division of FZI (Research Centre for Computer Science) is specialized in
the development of database technologies for engineering applications. Main activities focus on
the implementation and support of relational and object-oriented database systems as well as on

5

Structure of the study

the making of profits on the basis of existing database systems. Up to date, three database systems
have been developed by the above Division. Their latest product (OBST) has met with worldwide
attention.

1.3 Structure of the study

The present study is structured as follows:

• The RODOS project is defined in chapter 2. To use the system throughout Europe, an appro
priate hardware architecture is required. This architecture represents the basis of most design
decisions. In RODOS operation, two system modes are distinguished: normal operation (no
time-critical response) and emergency operation (time-critical response). In the latter mode,
partial functionality is affered only in order to reduce the response time.

" Data management plays the key role in the RODOS system. Mechanisms supporting the inte
gration of heterogeneaus data (heterogeneous computers, heterogeneaus database manage
ment systems, distributed data) have to be made available. When accessing the data, the users
and application programmes will not need any information as to where the data desired are
stored physically and by which database system they are managed. The architecture and the
functionality of the integrated data management component are described in the following
chapter.

" The knowledge applied for making a decision and describing the dependences of simple facts
and conclusion pattems also has tobe managed in RODOS. In chapter 4, several knowledge
description formalisms and derivation methods are discussed. Particular attention is paid to the
suitability of relational database systems for knowledge management.

• Real-time data represent another special group of data tobe managed in RODOS. They des
cribe the current environmental situation and are used as a basis of decisions on the taking of
protective measures. After insertion, the measured data are modified in exceptional cases only.
As measured data are collected at a large number of measuring points, a large data volume is
expected. Management of measured data is discussed in chapter 5.

• Communication of the users with data management takes place via a graphic interface. A sur
vey of the methods for the generation of graphic user interfaces is given in chapter 6.

" One of the major results of the present study is the feasibility analysis of integrated data mana
gerneut in RODOS. This analysis, which is presented in chapter 7, describes the software tools
that can be applied in software development. Database integration tools, expert system shells
as weil as generators of user interfaces allow to reduce the prototype software implementation
expenditure and contribute to facilitating the maintenance of RODOS.

" The study is concluded with a summary of the results achieved and the references.

6

Chapter 2 RODOS - project definition

2.1 Objective of RODOS, FZI contribution

The RODOS system shall serve as an integrated information system in the area affected by an
accident-induced release of radioactivity. As the consequences of such accidents can hardly be
localized, supra-regional application of the system is planned. The information on RODOS is
taken from [DTI94] and talks with the project partners FZI and DTI.

In addition to the purely technical requirements, RODOS will have to meet a nurober of complex
coordination and organization tasks. Some of the organizational measures to be specified, such as
the existence of a central person or group of persons to contact for RODOS data management,
will also infiuence the FZI work and decisions.

In general, the tasks of RODOS can be divided into two phases. The first phase represents
normal operation, which means that no time-critical accident has to be dealt with. In this phase,
environmental data of all kind are collected, analyzed and evaluated regularly. Hence, the system
is mainly used as a pure information system. The second phase represents _emergency
operation_. A time-critical (acute) accident has tobe handled. In this phase, RODOS will be used
as a so-called emergency system. Current situation data (facts) are acquired automatically by
measuring devices and manually by e.g. monitaring teams, the police and the fire brigade. Then,
the data shall be represented. In addition, the system shall be applied for decision support on the
basis of the current facts. Knowledge evaluation tools shall provide the authorities responsible for
emergency response with recommendations as to how to proceed in the respective situation. The
facts for instance may include data on the spreading of a radioactive cloud, data on the courses of
roads and their current usage, etc. On the basis of rules, e.g. emergency plans shall then be pro
posed for groups of persons. All these functions shall be carried out by the system in the second
phase with update intervals of ten minutes. Such time requirements are also referred to as soft
real-time requirements. Furthermore, the system has to meet reliability and fail-safeness require
ments. These aspects shall be explained in further detail below. Having the tasks described above,
the system can be allocated to the dass of so-called accident management systems or emergency
systems [BrToRo94, MetA194, DSS93].

As many more or less standardized data management tools already exist (DBMS products), the
most important task now consists in developing an integration environmentfor the RODOS sys
tem. In the future, any tools, e.g. tools for knowledge evaluation, and any data sources in the form

7

Objective of RODOS, FZI contribution

of relational databases shall be integrated in this environment. At the moment, however, no pre
cise Statements can be made with regard to the type and scope of tools and data.

To increase fail-safeness and access efficiency of the entire system, it is reasonable to establish
more than one system centre in Europe. Sub-systems in the form of local Workstations or local
workstation clusters shall be linked with these centres. Constant data harmonization of the sys
tems shall take place in order to ensure that all authorities involved are provided with the same
data and data structure information (schema information). Failures of parts of the entire system
and, hence, possibly incomplete information, are put up with. The entire systemshall enable the
responsible authorities to make the _best possible_ decisions irrespective of their location and the
site of the possible accident. After an accident in the area of Karlsruhe, for example, it shall be
possible to coordinate the measures to be taken from Bonn.

Development of RODOS up to its final use is intended tobe accomplished in a series of proto
types. However, partial results shall be made use of. In spite of the prototype character of the sys
tem, robustness and suitability for re"use are of crucial importance. Within the framework of the
RODOS tasks outlined above, the activities of the FZI Division shall focus on some partial com
ponents. Above all, fundamental architecture and feasibility results shall be supplied. The follow
ing tasks shall be covered by FZI:

• RODOS database integration manager (RO-DIM): design and implementation of a compo
nent, by means of which a programming interface (API) is made available to RODOS applica
tions for the use of heterogeneaus relational database management systems (RDBMS). _In the
upward direction_, this component is to provide the applications with a system-independent
view of the data in the form of the API mentioned above. _In the downward direction_, it shall
allow the integration of any relational database systems with partially redundant data. Conse
quently, the rather dynamic use of the data by applications and the rather static definition of
integration of all database systems involved have to be distinguished.

• Userinterface manager (UIM): development of a user interface for integrated data manage
ment. This component is to allow cornfortable development of simple database applications. It
shall contain graphic elements for data definition, data manipulation in the form of updates
and (graphic) data evaluation.

• Database design for knowledge management: RODOS allows to manage not only facts, but
also relations among facts. For this purpose, a description formalism mapped to a database
schema is selected. It is demonstrated, how new knowledge can be inserted using the data
manipulation language of the database system and how this knowledge can be accessed in the
conclusion.

• The decision process as such takes place within a conclusion component (ESY). This compo
nent is implemented as a tool taking the knowledge required from the database. Actually,
several conclusion components with various functions (e.g. for tests or the emergency) can be
implemented. lmplementation of the conclusion component does not belong to the tasks of
FZI.

o Design of a database for standardized management of real-time data and in particular time
related measured results: measured data collected around the clock locally, regionally and
europeanwide represent an important basis of decisions in the RODOS system. These data,

8

System architecture

such as e.g. current radioactivity values, have to be made available to all RODOS participants.
In the extreme case, high access and update rates in a short period of time have to be expected.

These fi.ve tasks have been subject of a number of talks of DTI (Dr. Rafat) and the DBS group (Dr.
Abramowicz, Dipl.-Inf. Koschel). The technical and organizational requirements specifi.ed by
DTI as a result of these discussions served as a basis of decisions in the present study. The part
ners involved were well aware of the fact that some of the procedures specified would be far from
optimum from the technical point of view and represent compromises instead. Within the frame
work of these specifi.cations, a fi.rst rough architecture and feasibility analysis will be performed
by FZI for the tasks mentioned above.

2.2 System architecture

2.2.1 Supra-regional system architecture

As outlined above, RODOS shall be conceived as a distributed information system for emergency
responsein Europe. It is planned to establish three main centres (coordination centres) with sev
eral sub-centres (local servers) each. The hardware of the coordination centres is to consist of
high-performance computers. In the final RODOS version, all sub-systems involved shall be
linked via dedicated lines in order to achieve high data transfer rates. The tasks of the main cen
tres will be the integration and management of the data as well as the description of all connected
data sources.

9

FIGURE 1

System architecture

upra-regional system architecture

local WS
local WS Cluster

Sub-centres

2.2.2 local system architecture

The sub-centres mentioned above consist of local workstations or clusters of workstations. Vari
ous Unixderivatesare applied as operating systems. Accordingly, the hardware used is rather het
erogeneous. Bach sub-centre is equipped with a relational database management system (e.g.
Oracle, lngres) at least. lt will be the main task of the locally responsible system managers to
describe access to _their_ data correctly and to harmonize updates with the main centres.

10

FIGURE 2

2.3

Functional components of RODOS

Local system architecture: heterogeneaus platforms, heterogeneaus DBMS

• oracle

Q ingres

local WS

-- -

® HP-UX

~ SUN-OS

local WS Cluster

Functiona! components of RODOS

local WS Cluster

The entire RODOS system shall be developed as an open information system. It is planned to cre
ate an integration environment, in which existing systems can be integrated via defined communi
cation protocols. The major components of the systemwill be the graphic interface (X-Windows,
OSF-Motif), a distributed data maintenance system (relational databases), a comrnunication inter
face and a so-called integrating operation processing system. The latter is a kind of special mini
operating system for RODOS. Communication among the RODOS components shall be accom
plished by means of the so-called RODOS message server. This server is connected with clients
in the form of external programmes and other RODOS-internat components, such as the inte
grated data management. In an external application, data management services are not used
directly, but indirectly via the general RODOS message server. Furthermore, these applications
are completely autonomous, i.e. there is no information known about them. They cannot be allo
cated to a process or cost model and the current state of the system is represented by the data in
the databases only. Allocation of the tools to a framework, which can manage such information, is
not practicable at all! (Such a model may be used e.g. in a scheduling component for improving
the processing sequence of queries or generating alternative access plans. Suggestions above all
refer to the fields of query processing in parallel and distributed DB management systems and
machine availability planning [BeGr92, Kram92]).

As outlined above, the FZI activities will focus among others on components for distributed data
maintenance. The interfaces of distributed data maintenance will communicate with the above
message server in the upward direction and serve for the integration of all databases involved in
the downward direction.

11

FIGURE 3

FIGURE 4

Functional components of RODOS

Overall architecture of RODOS

Input

OSY I operation processing

and services

FZI contributions to RODOS

Integrated data management

real-time data Knowlege bases

12

Applications

Other

services

GUI for

DBuse

-·-·- Various relational DBMS

. ___ . Various databases

Application scenario

2.4 Application scenario

As stated above, the work with RODOS can be divided into two phases, normal operation and
emergency operation. Both phases differ considerably which is reflected by the overall architec
ture of the system. In a report on the experience gained with the FRIEND accident management
system in [BrToRo94], some of the differences are listed. They shall be explained in detail in the
following chapters.

2.4.1 Phase 1 (normal operation)

The general requirements made on the RODOS system have very much in common with those of
traditional distributed information systems. Examples are the World-Wide-Web system, Special
versions, such as environmental data directories [Sch_u93, HeSc93], geo-inforrnation systems,
etc. In these systems, data are acquired at various points (in databases) and evaluated using vari
ous programmes (in our case, RODOS applications). The respective research activities in the field
of databases are classified under the terms of multidatabase systems and federate database sys
tems, the origin of which lies in distributed database systems. These terrns shall be explained in
detail in chapter 3.

In such systems, data sources may represent e.g. programmes using measuring devices with auto
matic acquisition or direct user inputs. Data of interest to RODOS are geographical inforrnation,
such as maps, environmental information on the extent of pollution, meteorological data, etc. In
particular, RODOS shall allow long-terrn access to data of past accidents (e.g. Chernobyl data). If
necessary, cooperation mechanisms will have to be provided for this purpose. They will ask the
local database administrator to start a tape with old data again.

Consequently, processing of very complex data files may be required in this phase. At that
moment, however, the response times of the system are uncritical. Furthermore, the reading oper
ations are expected to exceed by far the writing operations in the data stored. By using automatic
devices, minimum requirements may be imposed as far as the response times of the data mainte
nance component are concerned. Programmes, which supply data of the measuring devices to the
data maintenance component, may not be able to buffer them for any period desired.

In this phase, the system will be used above all by users, who want to evaluate certain situations
on the basis of the data stored. Other users are persans in charge of emergency response. If
required, the data may also be processed and made available for a future general survey.

13

lmplementation requirements

2.4.2 Phase 2 (emergency operation)

In the second phase of system operation, the tasks to be performed by the system vary consider
ably. In this phase, an _accident_ shall be managed. A radins of about 50 km around the accident
site is covered. (As a consequence, appropriate place and time data have tobe supplied.) In inter
vals of ten rninutes, the emergency response staff taking the decisions shall be provided with cur
rent information on the entire situation, with the reservation that this information may be
incomplete due to system failures or _slow _ communication links. A possible loss of information
is accepted! It is assumed that the tools working with this information supply _reasonable_ results
even in case of incomplete answering of the queries.

During the second phase, a !arge set of update information (real-time data) is supplied by the con
nected measuring stations and has to be processed. At the same time, complex queries to geo
graphical data (for example, for emergency plans), but also to knowledge-based data for decision
support have to be expected. This phase represents the highly critical part of RODOS use, as only
vague Statements exist with regard to the actual data transfer and transaction volume at that time.

High fail-safeness of the system is of crucial importance. Aspects of data integrity have to be
taken into account, as the system will have to be made available to authorized users only. During
that time, the system will be used above all by the emergency response staff taking the decisions
and the staff operation centres. Offices for the information of citizens or staff outside the area of
competence will not be authorized for on-line use. These aspects shall be dealt with in further
detail below.

2.5 lmplementation requirements

As many partners with various systems will participate in the europeanwide use of RODOS, their
needs have to be taken into consideration. In this connection, particular attention will have to be
paid to system-technological and financial requirements.

2.5.1 General requirements

2.5.2 Budget

The budget of RODOS is lirnited. This means that a reasonable amount of software tools shall be
purchased only. The concrete budget depends on the type and scope of tools. As the system is to
be distributed throughout Europe, it is of crucial importance that no royalties will have to be paid
for the running of commerical tools. Moreover, the tools will have to be independent of the Unix
platform applied.

14

Network, communication

2.5.3 Hardware

2.5.3.1 Local systems

_ Well-equipped_ computers that may be compared with the _large_ HP9000 or Sun-SparcSta
tion-20 systems at least will be used as local workstations. Bach computerwill have at least 80
MByte RAM and 2 GByte disk storage capacity. It is planned to link the systemsvia dedicated
lines and, thus, ensure a high data transfer rate. Installation of parallel ISDN lines is considered.
They allow a data transfer rate of 4 Mbit/sec. at least.

2.5.3.2 Centrat systems

High-performance systems shall be applied. Minimum hardware requirements have not yet been
specified.

2.5.4 Software

2.5.4.1 Operating systems and graphic interface

As basic operating systems of RODOS, any Unix derivates shall be applied, if possible. Conse
quently, particular attention has to be paid to the portability when developing the components or
purchasing the software tools. At least, HP-UX, Sun-OS/Solaris and IBM/AIX are planned tobe
used. X-Windows and OSF-Motif will serve as graphic interfaces of the system.

2.6 Network, communication

For basic communication within the entire RODOS system, Berkley sockets on the basis of TCP/
IP will be available. The addresses of all systems participating in RODOS will be known. This
means that links among them will be established from point to point. As availability of SUN-NFS
cannot be ensured for all Unix derivates, it shall not be applied. Higher services, such as DCE or
CORBA, are considered to be too slow or immature.

15

Database management systems

2.7 Database management systems

At the moment, it is planned to use relational database management systems for distributed data
maintenance in RODOS. Later extension to object-relational systems is desired. Relational
DBMS will be _large_ relational systems exclusively. They are largely heterogeneous. Examples
are AllBase, Ingres, Oracle and Sybase, but no dBase-compatible or similar systems.

2.8 Programming languages (compilers)

Any Unix-C or C++ as weil as Partran 77 compilers shall be applied for system development.

2.9 Development requirements

Software development requirements have not yet been specified. This shall be done by DTI and
DBS after the complete selection of the development tools. The following aspects will have tobe
considered:

• type and scope of documentation (system use and development documentation)

• interface descriptions.

2.10 Validation scenario

The first FZI prototype shall be tested in a system environment consisting of FZK and FZI com
puters. In order to make statements with regard to the performance of the prototype, validation
requirements have to be specified. These will have to include factors, such as the general system
environment, expected amount of data, RODOS applications to be used, etc.

2.10.1 Hardware

Computer hardware of the validation environment shall consist of a HP-9000/8xx workstation at
FZK and a Sun-10/40 workstation at FZI. A direct Internet link via sockets shall be used for com
munication.

16

All phases

2.10.2 System software environment

HP-UX and Sun-OS or Solarisshall be applied as operating systems. The graphic interface is X
Windows and OSF-Motif. The system versions, DB management systems applied, tools, etc. still
have to be specified.

2.10.3 Requirements tobe met by the prototype

Development of the first FZI prototype will have to meet certain minimum requirements with
regard to the technical and organizational environment. These requirements will sometimes repre
sent limitations compared to the boundary conditions described above.

2.11 All phases

It is assumed that the hardware and software system technology applied for the prototype is func
tioning. This especially applies to the failure of network links, computers or periphery, operating
system software, etc. Nevertheless, it shall be possible to re-start a computer system after termi
nation. This must not take place automatically, but can be clone manually by a system or database
administrator. It is assumed that a competent person will always be available, also in an emer
gency.

2.11.1 Normal operation

It is necessary to make detailed specifications!

2.11.2 Emergency operation

It is necessary to make detailed specifications!

17

Chapter 3 l)ata naanagenaent

One of the FZI tasks defined in the previous chapter, namely, the component for integrated data
management (RODOS database integration manager (RO-DIM)), shall be dealt with in the
present chapter. It shall allow integration of all supra-regionally distributed database systems (DB
systems) involved in the entire RODOS system. Distribution of these systems is given by organi
zation and therefore has to be maintained. Furthermore, the use of distributed systems generally
promises an increased availability of the autonomous parts of the system at least. The individual
partners participating in the entire RODOS system shall keep their own data and be able to use the
data of all other partners. Thus, the complexity of the entire RODOS system can possibly be man
aged.

As far as the applications existing in RODOS are concemed, RO-DIM in principle shall enable
any number of them to access simultaneously distributed data in distributed heterogeneaus DB
systems with local transparency being ensured. For this purpose, a uniform view of all distributed
data or parts of them shall be offered to the applications _in the upward direction_. This view
shall be an integrating total view, i.e. independent of the physical data distribution. Such inte
grated data management and the resulting tasks are dealt with in Iiterature under the topic of mul
tidatabase systems. These systems represent an integration Ievel for the database systems
involved. Consequently, they do not contain any user data, such as e.g. measured values, but
access information about the systems involved. _In the downward direction_, RO-DIM shall
allow the integration of all distributed databases. In chapter 3.1, the term of multidatabase sys
tems shall be explained in further detail and architectural approaches shall be presented. An intel
ligible introduction to the fundamentals of such systems is given in [TaVa91, BeGr92], where
distributed database systems are described in general. They can be integrated by means of multi
database systems. Consequently, a distributed multidatabase system shall be investigated here.
Another aspect is the heterogeneity of the database management systems applied (Ingres, Oracle,
...). Harmonization of the different data structures and data accesses is required. In our case, the
data structures are identical, purely relational systems. However, the access forms vary due to the
varying dialects of the access language (SQL).

In comparison with traditional, non-distributed database systems, distributed multidatabase sys
tems bring about some additional problems, which may be attributed above all to the following
factors:

18

Schema architecture

• When integrating databases, various forms of redundancies may occur. Two of them are data
redundancy and schema redundancy. (The database schema is understood to be the description
of the logical data structure of this database. On the lowest level, this may be a description of
an individual relation (table) within a database.)

" Let us assume that geographical data on Karlsruhe are stored both in a database in Karlsruhe
and a database in Paris. In case of data redundancy, the same data are stored several times in
both databases, e.g. two identical street names. This may be useful for increasing fail-safeness
and access efficiency of the entire system (intended redundancy) or simply result from the
organization of already existing systems. Here, the tasks consist in the treatment of data redun
dancy during queries and updates in the databases.

• Furthermore, possibly varying schemas, i.e. schema redundancy, may exist in both databases
for the description of data structure. Generally, such redundancy is not desired. Both descripti
ons therefore have to be integrated.

• By europeanwide distribution of the database systems in particular, transfer delays or com
plete (partial) failures of systems may occur. This has to be taken into account when queries
and updates are made.

• Due to the distribution of the database systems, it is impossible to inform all systems at once
about updates in other systems. This aspect shall be covered in detail in the chapter dealing
with distributed transactions.

These major problems shall be discüssed iü the following chapters. Furthermore, it has to be
taken into consideration that the two soft real-time requirements mentioned in chapter 2 have to
be met, as the system is to serve as an emergency system.

3.1 Schema architecture

3.1.1 Multidatabase systems: a survey of architectures

According to [ACM90, TaVa91], the term multidatabase systems applies to systems allowing
common access and updates in several database systems. The DB systems involved may be dis
tributed within local or wide networks and based on heterogeneaus DB management systems.

However, heterogeneity is not limited to the systems as such, but may also occur in the form of
schema redundancy as is indicated in the introduction. In our case, the data structure is repre
sented in various ways, i.e. variable schema information is used for data of the same semantics.
(In general, a situation can always be modelled in various ways [Kent89].) Furthermore, redun
dant data may be encountered in the distributed DB systems. Another aspect is the local auton
omy of the individual _data suppliers_. Under certain circumstances, the local database
administrators may want to keep control of _their_ data.

19

FIGURE 5

Schema architecture

The motivation for the use of multidatabase systems results from the fact that all database systems
involved shall be commonly used somehow. This means that they have to interoperate. Interoper
ability is ensured by several architectural approaches for the integration of the participating par
tial schemas. These architectures shall now be characterized briefly [Fahl94]. None of them is
optimum for all cases. Hence, the best suited approach has tobe selected in each individual case.
All approaches use a standardized (canonic) data model for data representation _in the upward
direction_.

From the architectural approaches represented in the following figure, the integration of the sche
mas of all database systems involved, their representation in a standardized data model with a
standardized access language, their integration in one or several federate schemas and the applica
tion's view of the integrated data are evident _from the bottom to the top_.

Various schema architectures

A B C A B C A B C A B C

tttt
\\ II

(1)

tttt
\I I I

(2)

(1) Globalschema (central management)
(2) Multiple integrated schema (group management)
(3) Federate schema (local management))
(4) Multidatabases (no management))

(3) (4)

[EJ Federate schema (integration)

rvl Component schema
~ (canonic form)
[!J Local (partial) schema

In the first approach, a single so-called global schema is used for the integration of all partial
schemas involved. This global schema is made available to all system users in an identical form
and managed centrally by a _global_ database administration. Access to the partial schemas
always takes place via the global schema.

Above all, two aspects of this approach are criticized. Firstly, local autonomy of administration of
the databases involved is given up, as their integration is managed centrally at least. The stronger
the data of the systems involved are coupled, the smaller is their autonomy. When using global
integrity conditions referring to several partial systems, runtime problems may arise. Secondly,

20

Schema architecture

alt partial systems or all their used parts at least have tobe integrated by this approach. The result
ing total schema may quickly become unhandy. This approach can only be applied, if most of the
partial systems have to be integrated once only and few subsequent schema updates are expected.

The advantages are as follows: once the integration has been performed, a common data view - a
large multiDES so to speak - is made available to all participants. Integration is managed cen
trally. Thus, management overhead is reduced. Global integrity conditions are feasible with this
approach exclusively. Here, runtime considerations have to decide, whether their use is practica
ble.

In the second approach, several integrated schemas are studied. They are also managed centrally.
Individual user groups share one or several integrated schemas. Consequently, the basic advan
tage consists in the fact that those partial schemas, which are used jointly (in the respective
group), have to be integrated in these schemas only. As a result, not all partial schemas of the
entire system have to be integrated. However, strong integration is given up both in this and in the
following approaches. In particular, it is no Ionger possible to use global integrity conditions, as
variable integrated schemas allow variable views of the same data.

In the third approach, the so-called jederate schemas (federate DBMS or shortly FDBMS) are
investigated. This termwas first mentioned by McLeod in 1985. Its difference from the previous
approach is of organizational rather than of technical nature. In this approach, responsibility for
the management of the integrating, i.e. federate, schemas is left to the individual user groups.
Data for common use are made available by each partial systeminan (exported) partial schema.
Several partial schemas are integrated by a single federate schema. This explains the advantages
and drawbacks of the second approach. An advantage is the large local autonomy of the groups
involved.

The last approach studied is based on the so-called multidatabase system languages. In this case,
there are no integrating schemas. Instead, each system user _knows_ that he is working with sev
eral partial database systems (no integration Ievel). The language used for data access contains
components, which explicitly allow access to a certain DB system. Possible common data use
always has to be indicated explicitly. In these systems, integrity conditions can only exist or be
managed locally, as there is no global management. Of course, autonomy of the partial systems is
the largest of all architectures described. Since there is no integration Ievel, the probably best
runtime behaviour of all approaches has to be expected. However, expenditure for the user of the
entire system, in this case the DB application developer, is by far the highest.

21

FIGURE 6

Schema architecture

5--level schema architecture

~
~

~
~

To sum up, all approaches can be represented by the so-called 5-level schema architecture. From
the bottom to the top, this architecture consists of the partial database system with a local and a
partial schema in canonic fonn. The partial schemas are made available as export schemas and
integrated by means of federate schemas. For the latter, external views can be defined and
accessed by the applications.

3.1.2 Selection of an architecture

As outlined in the introduction to this chapter, a multidatabase system that is able to integrate het
erogeneaus relational database systems in wide networks is required for the use of RODOS.
Major requirements made on the functionality of this distributed heterogeneaus multidatabase
system include a uniform transparent data view for all users and system functionality even under
time-critical conditions. In addition, the principle option of managing global integrity conditions
is desired.

Within the framework of RODOS planning, several organizational boundary conditions have
been specified. Here, they shall only be covered briefty. They will be summed up in chapter 3.2.1.
The major boundary condition is the existence of a central coordination system in the form of a
global database administration (gDBA). Furthermore, the partial DB systems participating in

22

Schema architecture

RODOS were specified to belang to the entire system either completely or partially. Relatively
few schema updates are expected, once a partial DB system has been integrated.

It is obvious from the approaches of schema architecture above that the functionality required is
ensured by the _global schema_ and _several integrating schemas_ approaches under the given
boundary conditions. When insisting on the completely standardized, locally transparent view for
the applications as well as on the principle option of managing global integrity conditions, the
approach of the global schema only is left. In spite of the criticism stated, its use seems tobe prac~
ticable, as there will be a centre for the integration of partial DB systems and no local autonomy
of the systems is required. As few schema updates are expected, they can be managed centrally
with an acceptable expenditure and transrnitted to the partners with a certain delay. (In the mean
time, the partners have to perfonn their schema updates on local copies of their databases, if
applicable.)

To reduce the complexity of the global schema for the users of the entire system at least, the glo
bal schema is extended by the extemal views indicated in the 5-level schema architecture. (Thus,
it is attempted to combine the advantages of a global schema and several integrating schemas and
reduce their drawbacks.) The extemal views define that part of the global schema that is of inter
est to the respective user group. They are also managed centrally, as a result of which schema
updates in particular can be carried out globally and simply transmitted to the partial DB systems
by copying the relevant parts. Smaller updates can also be accomplished on the integration Ievel
of the global schema without the views of the user groups having to cha..'lge. Complexity of global
schema management for the gDB administration is maintained.

The question as to whether the functionality mentioned can be combined with the time-critical
conditions cannot be settled within the framework of the present study. The respective main stor
age and (soft) real-time DB systems in distributed and, hence, possibly parallel environments are
still subject of research. It may be doubted, whether sufficient scaling of RO-DIM can be
achieved within the entire RODOS system. These and other questions will be answered by the
RO-DIM prototype development. Other aspects in this connectionshall be dealt with in chapter
3.8.

23

FIGURE 7

3.2

Schema integration and modification

Schema architecture of RO-DIM

View

Integration Ievel

Exported Schemas
(1: 1 to local DBs)

Access paths,

Users,

Mappings,

Statistics, ...

Schema integration and modification

In this chapter, the technical and organizational possibilities of implementing the RO-DIM
schema architecture selected in the previous chapter shall be described. The organizational
boundary conditions obtained from the meetings of the project partners shall be presented at first.
Then, integration functions, the global data dictionary and schema updates shall be covered.

3.2.1 Organizational tasks and requirements

RODOS system architecture in the coordination centres and on a locallevel results in a multitude
of tasks above all of organizational nature. In the previous chapter, organizational requirements
made in the course of the discussions of the present study and influencing the selection of the RO
DIM schema architecture were pointed out. Now, they shall be summarized briefly:

" A global description shall be made available for the standardization of all data sources and
sinks involved, i.e. alllocal partial schemas have to be integrated in the above-mentioned glo
bal schema.

" A very small group of persons, maybe one person only, will be responsible for global schema
management as the global database adrninistration (gDBA). Management of the global
schema shall be performed centrally by this gDBA.

• The global schema is generated initially once. After this, updates are expected in large inter
vals (weeks or longer) only. They shall be carried out centrally by the gDBA.

• Integration of the local partial schemas in the global schema will be accomplished using gene
ral mechanisms for the description of mappings. Via these mappings, the global schema data

24

Schema integration and modification

are accessed by the users. From there, access to the local schemas takes place. This means that
the mappings have to be unambiguous in all directions. A number of these integration map
pings shall be predefined. Not yet existing mappings will have tobe extended by the gDBA, if
applicable.

• To reduce the organizational expenditure (less persans involved), such mappings are allowed
between local partial schemas and the global schema only. It may therefore be concluded that
local RODOS databases are made available either completely or not at all. The description of
local data structures shall no Ionger include additional (complicated) view mechanisms to
keep the local integration expenditure as small as possible. It is deliberately accepted that this
may Iead to multiple local data maintenance, as the data involved in RODOS are no Ionger
managed autonomously. Multiple data maintenance can be accomplished locally, for example
by using functions of automatic data copying. A mechanism used for this purpose is the so
called database trigger.

• Data access in a global schema by applications is defined by extemal views. Data are to be
accessed via these views only! The corresponding integration expenditure is accepted. Map
pings from the global schema to the extemal view are possible.

• Extemal views of the applications are managed as constituents of the global schema. In parti
cular, these views are defined by the gDBA. This shall enable global user management and
prevent _uncontrolled growth of the schema_. In the first step, user management shall be
accomplished by a single access control to the system.

• Locai schema updates are transmitted via the gDBA to the other systems involved with a cer
tain delay. In order to be able to make use of local updates immediately, e.g. during pro
gramme development, the respective data have to be maintained twice. Thus, correct
integration in the global schema is ensured in spite of updates of the local schema. At least
access to these data is not impaired in an eroergency.

3.2.2 Definition of mapping and integration components

For the integration of roultidatabase systems, integration functions have to be roade available.
Using these functions, mapping between the exported local scheroas referred to in chapter 3.1 and
the entire global schema is carried out. Furthermore, these functions shall be defined in mappings
between the global schema and the extemal views.

In general, these functions are roappings, by means of which any nurober n of source relations and
their attributes are roapped to any number of target relations. Without limiting the functionality, a
single target relation roay be indicated only. In principle, any nurober of roappings may exist.
(The latter version is probably easier to iroplement.) In RO-DIM, these functions are needed for
the integration of partial scheroas in the global schema and mapping froro the global scheroa to
extemal views.

25

FIGURE 8

Schema integration and modification

Functions for integration

---- B

View

Integration Ievel

Exported Schemas
(1: to local DBs)

Unambiguous view functions

Integration function

To enable the use of these functions by RO-DIM both in reading, i.e. _from the bottom to the
top_, and writing, i.e. _from the top to the bottom_, they have to be unambiguous in both direc
tions. Examples of such functions are given below. Unambiguity in both directions is also
referred to as bijectivity. Instead of a bijective function, pairs of functions representing a bijective
mapping may be used (one _reading_ and one _ writing_ function each). The use of these func
tions shall now be explained by way of examples:

• In various partial DB systems, measured values may be represented in various units, e.g. a
temperature in degree Celsius in Germany and degree Fahrenheit in England. By means of an
integration function, this temperature could be represented uniforrnly in a global schema and,
hence, be made comparable. In the general form, these functions can carry out conversions of
value intervals.

• Integration of several attributes of various relations in a common target relation.

• Aggregation of values, e.g. in the form of summations. (Under certain circumstances, no
unambiguity may be achieved in both directions such that the results of these functions can
only be used in reading.)

• Renaming of a 1: 1 mapping of a relation and its attributes in the global schema.

• Integration of redundant schema information, for instance in the form of severallocal relations
describing identical situations. This is the schema redundancy referred to in the introduction.

" Filtration of data items, which exist several times, in reading accesses at least. This is an
aspect of the data redundancy mentioned in the introduction.

There are various possibilities of defining and implementing these functions. Three of them shall
now be presented briefiy. The best founded approach would consist in the direct use of mathemat
ical models [BLN86]. This approach has the advantage that statements with regard to the func
tions modelled can be proved mathematically (e.g. statements on the bijectivity of a function).
However, mathematical models often are rather unhandy for practical use and therefore can be

26

Schema integration and modification

applied with certain limitations only. It also may be doubted, whether integration functions can be
implemented efficiently on this basis.

Languages possessing a formal semantics and, hence, using e.g. calculi as a basis, go a step fur
ther. Examples are TROLL [HSJHK94] or F-Logic [FrLa93]. Statements on functions described
by this language still can be proved (in most cases). They allow a more vivid description of facts,
as they already possess accordingly powerful language constructs. The drawback of these
approaches, however, consists in the fact that conversion into an efficient code sometimes
requires a high expenditure and often has been achieved on the prototype scale only.

The third possibility is based on the direct use of _current_ programming languages, such as C/
C++. Integration functions are coded directly as C/C++ programmes. By means of this solution,
the probably most efficient results are obtained in terms of runtime, however, (practicable) proof
of mathematical correctness of these functions is dropped.

A combination of the second and third approach, i.e. mapping of languages with formal semantics
to efficient implementations e.g. in C/C++ is of particular interest. In the first prototype, mecha
nisms can be provided for C/C++ integration functions. They can be stored and made use of effi
ciently in a translated form. In a second step, mappings of a language with formal semantics to
these functions could be made available. In the first prototype, the possibility of implementing
such an approach could be investigated. As DTI and FZI shall design and make available a num
ber of standardized integration functions, a lfu1guage with formal sema..1tics cer-..ainly would be a..-·1
adequate means of description. Mapping to e.g. CIC++ can be carried out _manually _ in the first
prototype. If both the data and the integration functions operating on them are considered, they
can be regarded as objects. An object-oriented database management system, such as the OBST
system developed by FZI [FZI93a], would be well suited for their management.

To support the designer of such integration functions, a toolkit, which is based on the integration
language, may be considered. An integration editor may be developed, by means of which a sur
vey of the relations existing in the system is given and the relations can be linked by _clicking_.
Standard integration functions may be installed automatically. Other proposals in this connection
shall be sketched in chapter 3.3.3 on redundancy.

3.2.3 Global data dictionary

For the management of global schema information or the RO-DIM structure and process informa
tion, a suitable management system shall be applied. It shall have the form of a global data dictio
nary (gDD), the contents of which are made available to all participants. The information to be
managed results from the RO-DIM components, such as schema integration, distributed transac
tion management, access optimization, etc. Examples of such information are given below:

• Access paths: the _paths_ to the individual computers in the local and wide networks as well
as to the databases of the entire RODOS system. Mechanisms are required for confiict-free
naming tests. (Up to now, the name of a database has been specified to be unambiguous throu-

27

Schema integration and modification

ghout the system. This allows the database to change to another computer.) Relation names
have to be locally unambiguous and integrated unambiguously in the global schema. For this
purpose, integration functions are provided. Path descriptions with alternative communication
paths (deliberately redundant data maintenance) are planned for database servers.

• Schemas: here, the structures of global schema declarations and describing additional informa
tion, the local schemas of the individual partial databases and extemal views of the global
schema are contained.

.. Integration functions: it may be reasonable to combine the description of the integration
functions with the description of the schemas and file it in the data dictionary as well. Thus,
the schema structures and their integration functions can be combined to objects and, hence,
represent object-oriented views of relational data. An example of this view is the use of an
extended entity relationship data model in [HoK_o93].

.. Cost parameters: parameters of scheduling, optimization and efficiency of computers and
communication paths.

As the information mentioned probably will seldom be updated, but often accessed by reading,
high-efficiency management is useful. For this purpose, use of an own DBMS, such as the OBST
system [FZ193a] mentioned above, of the local DBMS existing in each local duster or of an effi
cient file structure may be taken into consideration. Application of an X.500 directory for this task
is described in [BCLM94]. CORBA mechanisms [OMG93], i.e. objects stored in a distributed
m:m.ner, may also be considered. It may be doubted, however, whether sufficient gDD access effi
ciency can be achieved by CORBA. First Statements made by the manufacturers with regard to
the runtime [lona93] are positive.

3.2.4 Schema modification

A problern of multidatabase system management consists in the (automatic) transmission of
updates of the global schema or partial schemas of the databases involved, i.e. so-called schema
evolution. The most flexible solution would be the automatic transmission of local schema
updates to the global schema and all partners involved. This solution has the advantage of the
partners being largely autonomous. However, implementation expenditure is very high. An exam
ple of such a system is Mariposa in [SADL094]. The drawback of this solution consists in the
fact that it is not certain, whether a schema information in the global schema actually describes a
valid access to a local partial schema. Moreover, this solution takes much time. It is necessary to
check constantly, whether schema updates are carried out or not. Furthermore, such updates may
be contradictory and, hence, impossible to implement.

As a central administration of the global schema is planned for RODOS according to chapter
3.2.1, such a flexible solution will not be needed. lt is planned to make all schema updates via the
gDBA, i.e. the respective local DB administration informs the gDBA of its wishes for updates,
e.g. by e-mail. There, they are integrated in the global schema. At times, which still have to be
specified, new versions of the global schema will be distributed to the local systems. Possible
schema conflicts will be settled by agreement. As far as runtime is concemed, simple tests are

28

Schema integration and modification

required only. The entire process is practicable organizationally. Once it has been integrated, rela
tively few updates of a schema are expected, as outlined in chapter 3.1. If local schema updates
are required, copies of the data affected have to be used until updating of the global schema will
be completed.

It is a problern of schema updates that it is not necessarily known, which applications are affected.
The respective information may be managed in the global data dictionary. Thus, messages on
these updates at least can be sent to the partners in charge. It should be checked, however,
whether the expenditure is worth-while judging from the few updates expected. As the extemal
views of the global sehema shall be managed centrally, it is easier to adapt these views and inform
the user group affected by it only. Many of these adaptations can be achieved by updates of the
respective integration functions without changing the extemal views.

3.2.5 Redundancy

The problern of data and schema redundancy was explained in the introduction to this chapter.
Schen1a redundancy refers to a variable description of the sa...Tie information. It plays a role \vhen
integrating the partial schemas in the global schema. These redundancies are handled by the gen
eral RO-DIM schema architecture with the integration functions described in chapter 3.3. Data
redundancy is understood to be the fact of the same data being stored various times at various
places. This difficulty is encountered above all in queries and updates in distributed data files.
Redundancies can only be handled after they have been recognized.

For the description of data redundancies, the so-called dependence graphs can be applied. Here,
information isstoredas to which databases or relations contain data, which also (i.e. redundantly)
exist in other systems. When processing operations on the basis of these data, it is checked which
other data are also affected and proceeded accordingly. Automatie use of dependence graphs rep
resents the most complex solution for the handling of redundancies. However, an enormous
implementation expenditure is required and significant Iosses in runtime may occur. An analog
problern with comparable solution approaches is met in parallel database systems. The PANDA
parallel DB management system developed for this purpose by FZI is presented in [Kram92]. As
complete treatment of all aspects of data redundancy is very complex and difficult to implement,
some partial solutions may be considered for the first prototype.

Filtering functions are taken over by the integration flmctions of chapter 3.3.

Partial results may be obtained for queries. Thus, the two most important cases, namely, transfer
delays and complete system failures, can be handled satisfactorily. By the selection of certain
databases, acceptable Iimitation of the set of results to the data desired is possible. See also
description of the RO-DIM language in chapter 3.5.

29

DBMS integration

• The mutual data dependences are described by a dependence graph. By means of a tool,
manual management of this graph is ensured, i.e. it serves as an editor of data dependence des
criptions. In a second step (maybe not in the first prototype already), a check functionality can
be developed on the basis of the descriptions. It is used to indicate conflicts, which may then
be corrected. Consequently, inconsistent data, which may be handled by the RODOS applica
tions, are accepted sometimes (see also chapter 3.5).

The following amendments are considered, but probably not for the first prototype already:

two tools for the recognition of data and schema redundancies on the basis of data values and
schema descriptions (names of databases, relations and attributes). For this purpose, storage of
additional information in the global data dictionary, i.e. a type of common thesaurus may be
required. The prerequisite is uniform naming based on a single (natural) language at least. This
may give rise to proposals regarding the handling of redundancies e.g. by appropriate integration
functions.

• Use of the dependence graph in query processing. See e.g. [RaSc94]. Suitable are local trig
gers signaHing global conflicts. Cerreetion may then take place semi-automatically. (Automa
tically, as long as this can be donein a conflict-free manner.)

3.3 DBMS integration

Actual access to the heterogeneaus relational database systems represents the lowest Ievel of RO
DIM architecture. On this Ievel, the concrete DB management systems (Oracle, Ingres, ...) are
mapped to a canonic data model (s. chapter 3.1.1) or a standard interface is made available in the
form of access functions. Even if the special properties of concrete DBMS mostly are not made
use of by such a standardization Ievel, as a result of which performance Iosses may occur, the use
of such a level is reasonable. Without it, special mappings would have to exist for each DBMS on
the integration Ievel. This solution is difficult to implement and difficult to use by the gDBA. As a
consequence, this last approach should not be applied in our case.

This leaves us with the first approach based on a driver for each DBMS. Here, it seems tobe use
ful to apply already existing solutions, e.g. class or function libraries, which support the access to
various DBMS and possibly have already been equipped with communication components for the
access of the local and wide networks planned for RODOS. As it is not clear with which DB man
agerneut systems RODOS will work and how already selected systems will further develop, com
merciallibraries should be applied. Here, it can be assumed that the adaptation to new DBMS
versions will be performed by their manufacturer.

If the driver component has to be developed, a set of access functions required has to be defined
in a first step, such as Dynamic-SQL [MeSi93], ODBC by Microsoft [Miso93] or others. These
access functions have to orient themselves according to the langnage to be developed for RO
DIM (cf. chapter 3.5), i.e. at least contain functions for data definition and manipulation, lockings
and transaction management. Furthermore, active components (e.g. triggers) and mechanisms for
the termination of transactions are desired. The latter will be used for asynchronaus termination

30

Database language (DDL/DML)

of transactions. Performance can only be described in further detail after having reached an agree
ment on the total scope of the RO-DIM language or the RO-DIM prototype.

Implementation of the driver components can be defined e.g. as C-function library, a partial set of
Dynamic-SQL or by object-oriented views of relations. Approaches are e.g. C++ class libraries
describing relations as classes with access methods (see [Heue92, HoK_o93]). Another approach
would consist in the generation of shell scripts containing SQL instructions. Most commercial
relational DBMS offer a text-based interface, which may be used for this purpose. Files or Sema
phors for synchronization can be applied to determine the status of an instruction in execution.

3.4 Database language (DDLJDML)

For application development, RO-DIM shall make available an interface in the form of an own
data definition and data manipulation language (DDL and DML). Data manipulation is under
stood to be the access to data, i.e. mostly query, update and delete operations. In addition, instruc
tions for the control of such operations are included. The data definition language above all
contains instructions for the generation of data descriptions. These are instructions for the genera
tion of relations.

The language tobe designed shall support the functionality of a partial scope of ANSI-SQL 92,
Levell-2, also called SQL-2, which has not yet been specified. For the description of SQL-2, see
also [MeSi93]. Furthermore, the syntax of the language shall be in line with SQL. This, however,
is no requirement. An object-oriented representation would also be acceptable.

In the following chapters, a survey of the functionality to be covered by the language shall be
given as it is known up to now. Here, description will follow SQL syntax. As concrete require
ments have not yet been made, it is often rather vague. Especially the use of software tools (s.
chapter 7) can and will inftuence the amount of language means or underlying functionality that
can be made available with a reasonable expenditure.

3.4.1 Interface

As indicated in the previous chapter, data exchange between RO-DIM and RODOS applications
shall take place via the general RODOS message server, which is working asynchronously. To
allow an adequate integration of RO-DIM in the entire RODOS concept, DTI arranged for the
data exchange between RO-DIM and the message server being asynchronaus as well. Thus, it is
ensured that each component of the RODOS system can work as independently as possible.
Embedding of the language into the applications e.g. by pre-compiler mechanisms is not desired
at all. A set of DB operations, which is limited by system capacity exclusively, shall be processed

31

Database language (DDLJDML)

in parallel (in transactions, see chapter 3.5.6). It is planned to use a simple communication proto
col that may be amended by further protocols, if necessary.

In principle, a message to RO-DIM will consist of a DB operation, e.g. a chain of characters con
taining an SQL order, and a reference to a communication and a data buffer. The communication
protocol is based on polling, i.e. a DB operation is Started by the application. In the communica
tion buffer the status of _in execution_ is set by RO-DIM. The operation is executed and after its
completion the status _completed successfully or not successfully _ is signalled. Consequently,
the application has to check (polling), whether the operation has aiready been completed.

In addition to this simple process, an application may also possess functions, which may directly
respond to messages of the RO-D IM using adequate operating system mechanisms. Further com
munication protocols may be added, if necessary. Within the framewerk of the RODOS message
server, similar functions shall be implemented at the moment. It is reasonable to transfer them to
RO-DIM later on.

3.4.2 Additional parameters for database operations

When starting a DB operation ÜDB· a set of options can be defined. These options influence both
the effect of and the amount of data processed by the DB operation. Up to now, the following
fields have been specified:

" Selection of the data sources: it is indicated, whether ÜDB shall be carried out on the basis of
a precisely specified set of databases. If no such set is given, all databases of the system are
taken into account. In case of queries, for example, the answer is searched for in the entire
system. For queries, this difference is of particular importance, as the sets of (partial) results
may vary accordingly.

• Schema use: it shall be specified, whether processing shall take place directly on the basis of
local database schemas in the system. This option mainly aims at increasing the performance.
If it is not used, the global schema is applied. Responsibility for the use of this option will
have tobe borne by the respective developer, as e.g. (global) integrity conditions (cf. chapter
3.5.7) may be by-passed. It should be checked, whether such an option is actually needed or
exclusive accesses via the global schema are sufficient instead. For the first prototype at least,
accesses via the global schema exclusively were specified (see also chapter 3.2.1).

" Termination criteria: when processing DB operations, delays may occur for various reasons.
As a first criterion, maximum processing time shall be indicated. In addition; proceeding after
this time shall be stated. The ÜDB is either terminated immediately or a message is written
into the communication buffer and the ÜDB is continued. This message can be evaluated by
the application and the ÜDB can be terminated explicitly, if applicable. The latter is accom
plished by terminating the respective transaction. In case of a termination of queries for rea
sons of time, it can be indicated, whether the supply of partial results is desired. In this case,
the data that have been collected in the communication buffer up to termination are supplied as
the result and the respective status is signalled to the application. (This termination behaviour

32

Database language (DDUDML)

is supported by many relational DBMS. If this is not the case, it has tobe simulated by global
termination of the ÜDB• even if it is further processed by the local system.) This case is in
analogy with the treatment of partial results in the selection of data sources. Other termination
criteria or termination actions are conceivable, in particular the priorities mentioned below.

" Priorities: in order to rapidly execute extremely _important_ ÜDB• they shall be given priori
ties in a first step. These and other measures shall be evaluated by a scheduling component
(see chapter 3.8). Other measures, such as the type of tool, the type of user, etc., are subject of
discussion.

Specification of the parameters mentioned may take place in various forms. Amendment of the
RO-D IM language is suitable. A set of keyword/parameter pairs may also be used. They may be
transmitted in the communication buffer. Another possibility is a special area, e.g. a communica
tion relation, in global RO-DIM data management.

3.4.3 Data definition

RO-DIM shall contain the basic options for the definition of data structures in the underlying
databases. This applies to the creation and deletion of new relations or their attributes. The
attributes are based on conventional SQL data types, such as Char, Number, etc. There may be
limitations in the national set characters and the date/time data types. This corresponds to the fol
lowing SQL commands:

CREATE TABLE relation

COLUMNS (attr. 1 data type 1, ... , · attr. n data type n)

as well as DROP TABLE and ALTER TABLE or ALTER COLUMN.

These Operations shall work on local databases only, in the first prototype at least. Therefore,
exactly one local database has to be indicated. The schemas created there will then be taken over
completely by the global schema. If necessary, they have to be provided manually with other inte
gration functions.

Database creation as such takes place locally. They will be available upon integration in the glo
bal schema only. In a local database, relations have to bear unambiguous names.

Operations aimed at increasing the performance, such as the creation of indexes, clusters, etc., do
not have tobe part of the RO-D IM language. Suchoperations can be carried out on the respective
local systems for the time being. In another prototype, global operations of this type could be pro
vided, for instance for the generation of global index structures.

33

Database language (DDLJDML)

3.4.4 Queries

The possibilities of database queries still have to be specified in detail. In a first step, it is pro
posed to orient according to a restricted form of the SQL-SELECT instruction. This restricted
form has two major advantages. On the one hand, it can be implemented with an acceptable
expenditure for the first prototype at least. On the other hand, processing expenditure of such a
query can be estimated more easily than that of advanced forms. This estimation can be evaluated
later on in the RO-DIM scheduling component for performance increase and query priorization
(see chapter 3.8). A drawback of this simple form of queries, however, consists in the fact that
complex queries have to be made in several steps under certain circumstances. It is planned to ori
ent according to the general form of SELECT:

SELECT attribute 1 1 •• • 1 attribute n

FROM re1ation 1r .. . 1 relation n

WHERE search condition.

In this case, the search condition shall only contain the usual comparison predicates, i.e. =, <>,_,
etc. as weil as the logical operations AND, OR, NOT. LIKE, IS NULL, ORDER BY and function
references are added. The latter shall be used for standard operations, such as the formation of
partial character chains, as long as they are based on individual attributes only. In contrast to this,
set compa..risons, such as >=l~·.u.l\.lY, "A,._LL, EXISTS, TI'~ aJld sub-queries shall not be applied, nor
shall GROUP BY and HAVING. The operation DISTINCT (for duplicate elirnination) will be
available, but only for the elimination of identical result tuples (lines of the result).

Queries referring to several relations shall be possible in the form of so-called simple joins. This
form expresses explicitly that several relations shall be worked with. In addition, the implicit
form is generated by summarizing relations of various local database systems in a global schema
using integration functions (see chapter 3.3). A query referring to a relation of the global schema
may consequently affect implicitly several relations of the.local databases.

3.4.5 lnserting, updating, deleting

These Operations directly orient themselves according to the respective SQL instructions in
[MeSi93]. Hence,

INSERT INTO relation

VALUES (value 1 1 • •• 1 value n)

inserts a tuple into a relation.

UPDATErelation

SETattr. 1 = expression 1 1 •• • 1 attr. n expression n

34

Database language (DDUDML)

WHERE<search condition in analogy to chapter 3.5.4>

updates attributes in tuples of a relation, to which the WHERE condition applies.

DELETE

FRONrelation

WHERE<search condition in analogy to chapter 3.5.4>

deletes all tuples of this relation, to which the WHERE condition applies.

It must be noted that the search condition (at first) may operate explicitly on one relation exclu
sively. A search condition may be carried out implicitly over several relations using the integra
tion functions for the global schema. For this purpose, the integration functions have to work
_satisfactorily _.

3.4.6 Transactions

To ensure that simultaneous, concurrent database accesses by several users (or processes in gen
eral) do not affect each other, the transaction concept has been deveioped. A transaction consists
of a series of DB operations that belong together and classically comply with the so-called ACID
properties. ACID is explained as follows:

.. Atomicity: either all DB operations or none of them are carried out within the transaction. The
transaction acts like an atornic DB operation.

.. Consistency: by the transaction, the database is transferred from a consistent state to a consi
stent state.

• Isolation: concurrent transactions, i.e. transactions operating on the same data, do not affect
and, hence, are isolated from each other.

• Durability: all data updates by a (successful) transaction arepermanent (durable), even in case
of hardware or software failures.

At the moment, two principle transaction modes are planned for RODOS. In the first form, the
transactions, as presented above, correspond to series of DB operations that belong together. Such
transactions are started explicitly by a BEGIN TRANSACTION command and terrninated explic
itly by COMMIT or ROLLBACK TRANSACTION. In a transaction, no other transaction may be
started- at the moment. Using COMMIT, all data updates of the transaction become permanent,
provided that no failures occur. By ROLLBACK the transaction is terminated and the databases
are transferred back to the state prior to the start of the transaction. In a transaction, instructions
for data definition may not be rnixed with instructions for data manipulation. As an alternative,
each DB operation may implicitly represent a transaction. Thus, old existing programme pack
ages in particular are enabled to make a simple DB access. In such cases, the application itself is
responsible for maintaining data consistency. As the old applications at least have been developed
without any transaction mechanisms, this will be practicable in many cases.

35

Database language (DDLJDML)

Performance may be further increased by the transactions partially dispensing with the isolation
property. Here, several cases are distinguished. Only one is considered for RO-DIM for the time
being. It is known as the dirty-read phenomenon [Date90]. It is assumed that a transaction Tl per
forms a data update and a transaction T2 uses the updated data before these values have been
declared valid by Tl using COMMIT. Thus, T2 can be carried out more rapidly. Fora certain rea
son, however, Tl stops by a ROLLBACK such that T2 works with invalid data. This may not be
desired in practice, but is of interest to RODOS above all in the emergency phase. In this phase,
many data insertion operations will occur especially in the field of measured values. For the han
dling ofthese real-time transactions, approaches have been developed e.g. in [AbGa92]. The tools
that are supposed to decide on the basis of these data, however, must be able to work with par
tially incomplete or incorrect data. In this case, permits for dirty reads are reasonable and may
Iead to a considerable increase in system performance. In SQL-92, two other cases are distin
guished. They aredealt with e.g. in [MeSi93].

3.4.7 lntegrity conditions

Within RO-DIM it shall be possible to specify so-called integrity conditions. In general, they
serve to ensure certain data properties particularly in case of data dependences. In principle this
can be donein two ways. It can either be ensured by an application that the data used by it fulfil
certain properties or this may be done directly by the DBMS. As the data, which aretobe man
aged by RO-DIM, can generally be used by various applications, the system itself shall be able to
manage (global) integrity conditions and their observation. A detailed discussion of this subject
would exceed the scope of this chapter such that a few examples only shall be given.

In SQL-92, three basic possibilities of indicating integrity conditions are available. The first is the
CHECK instruction giving the conditions for attribute values in relations. Its syntax is simple:

CHECK (search condition)

In this case, the search condition shall correspond to a query condition according to chapter 3.5.4.
Attribute values are checked for the observance of value ranges and the being contained in static
value lists or value lists of other relations. While CHECK is planned for conditions in a relation,
the ASSERTION instruction allows to specify conditions for attributes that are contained identi
cally in several relations.

The third major form of integrity conditions concems the so-called referential integrity. In this
connection, the terms of primary key and foreign key are important. A primary key of a relation is
a combination of attributes, whose value combination in the relation is unambiguous at any time.
This means that there are never two tuples having the same primary key in a relation. If several
attribute combinations, which have the properties of a primary key, exist, they are referred to as
candidate keys. It shall be possible to specify one or several of these primary or candidate keys
for a relation.

36

Database language (DDUDML)

To indicate direct dependences (references) among relations, so-called foreign keys are
employed. A foreign key of a relation Rl consists of values corresponding directly to values of a
relation R2. This shall be illustrated by an example:

Referenced relation: CUSTOMERReferencing relation: ORDER

Primary keyForeign key custorner narne

Customer name: KlKl, article 1

Kl, article 2

It remains to be stated what is to be done, if the integrity conditions are violated. The easiest way
is to reject a DB operation leading to a violation or to terminate the entire transaction. In the first
RO-DIM prototype at least, this should be sufficient.

In principle, integrity conditions are very useful, but they have two major drawbacks. Firstly, a
high expenditure is required for the implementation of their check. Secondly, their use may lead
to a significant reduction of system performance, as they have to be checked after each DB opera
tion in the case of doubt. (Attempts have been made to improve this behaviour.)

Therefore, it should be considered to switch off the integrity conditions in the emergency phase at
least. Generally, it has to be verified, whether and to which extent integrity conditions are to be
implemented - in the first prototype at least. At the moment, they are made available within the
local database systems only. Hence, global integrity conditions do not exist. However, mecha
nisms, which possibly exist in the software tools to be applied, may also be used.

3.4.8 Events, triggers

To make available the integrity conditions mentioned in chapter 3.5.7, another way of indicating a
general form of events is possible. In accordance with the future versions of SQL, the use of the
so-called triggers is considered. Their syntax and semantics have not yet been standardized, how
ever, comprehensive proposals have already been made. A trigger refers to a data manipulation,
which is carried out in a relation of the form:

TRIGGERtrigger name time event

ONrelation

WHENsearch condition [actions)

Bach time of an event of the form INSERT, UPDATE or DELETE occurring in a relation, the trig
ger _fires_. The time is used to indicate, whether the trigger is to be called prior to or after the
event. By the search condition (see chapter 3.5.4), the trigger can additionally be limited to tuples
fulfilling this condition.

37

Transactions

The actions to be performed during the _firing_ of the trigger are restricted to the instructions
DELETE and UPDATE. For RODOS, an extension in the form of messages to applications or ref
erences to procedures stored in the DBMS may be considered.

In analogy to the integrity conditions, the use of triggers may Iead to considerable runtime losses.
Consequently, limited use only is reasonable. Switching off of the triggers in the emergency phase
at least should be considered. As far as the implementation expenditure is concerned, it also has to
be assessed, whether and to which extent triggers are to be realized - in the first prototype at least.
At the moment, use of the possibilities provided within the local database systems only is
planned.

A general problern of global integrity conditions and triggers is the autonomy of the local data
base systems involved. It is always possible to perform local updates that are not noticed globally.
In our case, this problern is covered by the organizational requirements (see chapter 3.2.1).

3.5 Transactions

3.5.1 Transaction concept

In database management systems supporting multi-user operation, accesses of the users have to
be synchronized such that the data are always in a consistent state and the users do not disturb
each other. For this purpose, the transaction concept is applied.

To observe the consistency of the common data and prevent the quality of the decisions taken
with RODOS from being endangered, it is absolutely necessary to permit database operations
within the framewerk of transactions exclusively. In RODOS, however, old application pro
grammes are used. They are prepared for manipulations of files only and do not support any trans
actions. These programmes can still be used in the future. In RODOS, a new transaction will be
started automatically for each database operation. Integrated data management of RODOS has to
meet the requirement of nesting transactions.

3.5.2 Distributed transactions

As already mentioned, RODOS belongs to the class of distributed information systems. The indi
vidual databases are managed at several places using heterogeneaus data management systems. In
certain situations, if for example a rescue operation is initiated simultaneously at several places,
distributed transactions are required, by means of which several databases are partially accessed
in writing. During these transactions, in which heterogeneaus data management systems may be

38

Transactions

involved, RODOS has to ensure that the transactions will be completed properly in all participat
ing databases.

When implementing distributed transactions, the standard _two-phase cornmit_ (2PC) procedure
is applied. This procedure was described in a number of database manuals, e.g. in [Date91]. It can
be implemented, if one of the data management systems provides an adequate support (or to be
precise, the prepare to cornmit operation). Most cornmercial relational data management systems
already contain this operation. As the 2PC procedure is employed widely on the one hand and can
be implemented easily on the other, this procedure is selected for the realization of distributed
transactions in RODOS.

3.5.3 Treatment of deadlocks

A deadlock is generated, if two (or several) transactions block each other by locking the same
tuples. In a complex distributed architecture like RODOS, the recognition of deadlocks represents
a non-trivial and time-consuming problem. For the first prototype we would like to suggest the
time Iimit procedure. A time Iimit is set for each transaction or operation. If this operation (trans
action) is not completed within the time limit specified, occurrence of a deadlock may be sus
pected. In such a situation, the operation is tenninated (rollback in transactions) and an error
message is sent.

This method also allows the processing of soft real-time queries in RODOS.

3.5.4 Management of locks

By setting locks, concurrent transactions are prevented from inftuencing each other. Locks can
either be set implicitly by the database management system or RO-DIM or explicitly by the appli
cation prograrnme itself.

In addition to the traditionallocks used in database systems, it is useful to introduce new types of
locks into RO-DIM:

• _Dirty read_ lock - it allows the reading of data that may be modified simultaneously by other
prograrnmes. No guarantee is assumed for data consistency.

• Insertion lock - it is only used for the insertion of new data (no modifications of existing data).
All reading accesses are allowed.

• _Administration lock_ - this lock may always be requested by an administration programme;
it causes the terrnination of all transactions, which originally locked the tuples affected.

39

FIGURE 9

Events

3.6 Events

As already mentioned, a notification mechanism is required in RODOS. In case one of the pre
defined events occurs, the respective action is initiated.

Possible actions include among others the starting of a certain prograrnrne on any computer in the
network by means of the remote-procedure-call mechanism, notification and/or reactivation of a
prograrnrne by a signalas weil as the sending of an e-mail to the users.

The RODOS notification mechanism has two advantages, by means of which system performance
is increased. Firstly, the data consumers are notified immediately after the occurrence of an event
without losing time. Moreover, the data consumers can wait in a suspendedl manner without
making queries to the database system in the meantime.

3.7 Parallelization and distribution

The requirements of high system performance and observance of time lirnits can only be met by a
multiple process architecture. In Fig. 9, the process architecture implemented on each workstation
is represented.

RO-DIM process architecture

Tools

Communication processes

As before, the application prograrnrnes (tools) arestartedas separate processes. Tostart commu
nication with RO-DIM, they send a message to the scheduler. The scheduler generates a new
cornrnunication process. The task of the communication process consists in the processing of the
database operations called by the tool. Bach communication process is responsible for cornrnuni
cation with one application prograrnrne and one database system precisely. If a query has to be
processed by several database systems, a clone is created by the cornrnunication process (using
the UNIX cornrnand fork). This architecture allows to use the waiting times for communication

40

Other DBMS-typical functions

with other computers or 110 communication for other processes. Communication processes are
terminated upon the completion of a transaction.

1 without using the CPU

The number of active communication processes is controlled by the scheduler. If this number is
too high, performance may be decreased. Thus, a tool may have to wait until a communication
process is allotted to it. Scaling of this architecture is possible. If a computer possesses several
processors, the number of processes that are active at the same time is accordingly high.

The priorities of the communication processes are also controlled by the scheduler. The priorities
are given to transactions (including sub-transactions) or DB operations for tools using no transac
tions. The algorithm for the giving of priorities may be specified by the DBA. It is controlled by
the following parameters:

" User recognition - deciding authorities are privileged, the priorities may be allotted both to
individual users and user groups;

• Name of the application programme- statistics programmes can work with lower priorities;

• Priority desired by the programme;

• Other parameters are feasible.

The strategy can distinguish between normal and emergency operation. In an emergency, some
programmes may be excluded.

To increase the reliability of this architecture, an additional daemon process is planned. This pro
cess is activated cyclically and checks, whether the scheduler still exists. If this is not the case, a
new scheduler is generated.

3.8 Other DBMS-typical functions

3.8.1 Data protection and data integrity

In particular the distribution of the systems involved in RODOS results in a general problern of
data integrity in data networks. It has to be specified to what an extent data protection is required,
which methods have to be used for e.g. data coding and which RODOS component is responsible
for which field. Coding could be achieved e.g. by a database management system, the communi
cation component of the operating system or by hardware measures. Except for a simple user
management, no special protection measures are planned for the first RO-DIM prototype.

41

Interna! RO-DIM components

3.8.2 User management

Due to the requirements of the decision process in RODOS, several user categories have to be
introduced in RO-DIM:

" Deciding authorities
In an emergency, deciding authorities shall be served especially quickly. They mainly perform
reading operations.

" Global database adrninistrator
The global database administrator has all rights - in particular the global schema can be chan
ged by him.

" Local database adrninistrator
The local database administrator can perform all adrninistration processes on the local compu
ter. When logging in on a foreign computer, the local database adrninistrator is treated like a
normal user.

• _Normal_ users
This group of users is entitled to perform all allowed operations in the normal case. In an
emergency, these users are served with a lower priority. High-expenditure operations are not
allowed in the latter case.

Foreach database in RODOS, a list of users (user groups) with their rights (reading, inserting,
modifying, deleting, schema modifications) is available.

3.8.3 Fail-safeness

In the first prototype at least it is assumed that the hardware and system software components
work reliably. Time-out mechanisms only are planned for failures of partial systems due to net
work overload. Furthermore, explicit re-start of a local node shall be possible. All transactions are
set back in these cases.

3.9 Interna! RO-DIM components

To sum up the previous chapters, a first survey of the planned RO-D IM structure shall be given. A
rough sketch of the architecture is shown.

In the figure, the most important functions of RO-DIM are indicated according to the previous
chapters. These are:

42

Interna! RO-DIM components

• Message-oriented interface for communication and data transfer from and to the applications.

• Interpretation ofthe RO-DIM language (DML/DDL).

.. Query optimization on the basis of the performance parameters.

• Global runtime control with distributed transaction management, query scheduling, integrity
control, scheduling, etc.

.. Communication with other instances of the global schema.

• Specific or generic drivers for alllocal relational DBMS with query processing, data buffering
and communication.

In addition, user management and control as weil as general components are applied:

• Timer mechanisms, e.g. for the termination in case of deadlock recognition.

• Meta data and buffers for asynchronaus message distribution.

• Data management for automatic re-start after system failures.

• Failure control of partial services (e.g. a daemon per workstation or user). Notifications to
applications in case of failures and termination of the respective DB operations .

.. Establishing of communication among the nodes via WAN mechanisms .

•

43

Interna! RO-DIM components

FIGURE 10 Rough R0-DIM system architecture

Integration Ievel

44

Chapter 4 Knowledge management

TABLE 1

4.1 lntroduction

In the present chapter, the structure and implementation of a knowledge base for RODOS shall be
described. Distributed data are accessed by the system. Bach authority has its own knowledge
base such that it can make its decisions locally. The knowledge base may differ from authority to
authority. It probably will be implemented in INGRES.

In Tab. 1, some examples of possible events and responses derived by means of the knowledge
base are presented.

By analysis of this event-response relationship, the following findings are obtained:

Possible events and responses

Crocodile in Iake

Waterline exceeds Iimit

Fire in a factory

Fire in nuclear plant

Explosion of a nuclear power plant in
Russia

Prohibit access to Iake

Construct a dam

Warn neighbourhood

Evacuate people

Warn the population

" This relationship is based on very simple _if, then_ rules. The rules do not contain any negati
ons, i.e., they are neither _if, then not_ rules, nor _if not, then_ rules.

• No evidences occur in the rules. If such an event happens, it must not be thought about how
dangerous it is, but all precautionary measures that can be taken have to be taken.

• The current values only count. This isaform ofunmonotonous conclusion. In'case new values
occur, the old conclusions may be forgotten. There are, however, some cases where also pre-

45

Structure of the knowledge base

vious values have tobe considered:

" this, for instance, applies to the response in case of the water Ievel of rivers being too high.
Here, it is of interest, whether this Ievel is increasing or decreasing. Having an increasing
Ievel, auxiliary dams have to be built. With a decreasing water Ievel, this is not required. For
this purpose, the water Ievel of an hour ago must be known. Therefore, temporary aspects have
to be introduced into the database. If this is not done, the water Ievels of upstream river sec
tians could be evaluated instead. However, this would be very complicated. It is therefore
assumed that the information required is supplied as a differential, e.g. in the form of
increasing water Ievel.

• If a measure taken in a sirnilar case is known, it usually can also be applied in this case.

4.2 Structure of the knowledge base

The above observations suggest to implement knowledge management as a rule-based system in
Horn logicl. An _IF - THEN_ structure is realized most rapidly and easily by Horn clauses.
Using variables, rules can be selected suchthat they fit in sirnilar cases.

4.2.1 General structure of a rule-based system

The general structure of a rule-based system consists of rules and facts. A fact has the form:

It describes a general context. In this context, it is stated that all Xi fulfil the predicate p. Instead of
the general variables, also instances of them rnight have been applied, which would have softened
the statement. The variables assume the values of a countable basic set. This is the so-called Her
brand universe, which represents the set of all basic instances. The Herbrand universe is gener
ated from a finite set of symbols. This assumption has to be made, as (_ + 1) sets or infinite sets of
symbols cannot be represented by the computer. The set of facts represents the _basic
knowledge_ of a rule-based system. The task now consists in deriving from this set of facts addi
tional facts that have not been listed explicitly in the system. This is done by means of rules hav
ing the following form:

They represent a 'modus ponens': if A1, A2, ... , An are fulfilled, B can be derived. All variables
existing in these formulas can be considered quantified by all-quantors.

1 Rules of the Horn logic are a special type of general rules; they do not contain any negations,
i.e. it is attempted to derive _positive_ knowledge only.

46

Structure of the knowledge base

The set of all statements derived can then be extended by B. The set of all facts that can be
derived can be referred to as the significance of the system. The significance of the Horn logic
above all may be attributed to the fact that fulfillability can be decided upon for a set of Horn for
mulas in polynornial time. In contrast to this, fulfillability of logical formulas can be decided upon
in exponential time only. This fact may be made use of to deterrnine inconsistencies in the rule
base.

For the mechanism of derivation, two procedures have been developed:

1. Starting from a given objective, the attempt is made to verify, whether it can be derived. If, for instance,
B is given as the objective, it is tried to find out in the next step, whether Aj can be derived. This mech
anism is referred to as reverse chaining. This procedure is used above all for plan preparation and con
struction when a given objective exists and the path of how to reach this objective is looked for.

2. A110ther procedure, which is referred to as forward chaining, uses the set of all given facts as the start
ing-point. Here, the following algorithm is applied:

F:= set of all given facts

REPEAT

F I:= {B: B ••• ! A~ is in the rule base
u

and Ai is in F};

F' := F+F';

UNTIL F' F

It must be noted that all F generated in the course of the algorithm are finite and that all derivable
facts are actually derived, as the set of all derivable facts and the basic set are countable. The
algorithm, however, does not need to terminate.

Forward chaining is of particular interest, if the initial facts are known, while the objective is
unknown and shall be deterrnined.

4.2.2 Rule base of RODOS

Each problern has a special structure. The structure of the rule base has to be selected accordingly.
Given the conceptions of the first chapter, forward chaining only may be applied in this case.

The forward chaining algorithm is given in 4.2.1. In this form, however, the algorithm cannot be
used. This is due to the fact that there are numerous rules and given facts. Furthermore, most of
these rules and facts have nothing to do with a given case. Verification, whether a rule can be
applied to a given fact, takes time. In our case, this cost factor is enhanced by the facts existing in

47

Structure of the knowledge base

the knowledge base not in a local, but a regionally distributed manner. Access via the network
takes extra time. Consequently, the algorithm is unsuitable from the time expenditure point of
view already.

The major task therefore consists in structurizing the rule base. Rules, the so-called meta rules,
have to be installed into the knowledge database. Thus, the number of rules accessed in the course
of derivation is limited automatically. This Iimitation may be fixed or even further limited by the
user in an interactive manner.

Moreover, the existing facts have to be structurized. There must be a given set of facts, indicating
whether or what kind of catastrophe has happened (e.g., alarm(x)). Usually, the case of occur
rence of a catastrophe is an exceptional case and it would not make sense to start the entire deriva
tion process without any reason. In the normal state, the derivation process may either rest or
restriet to this set of facts only.

The next important aspect is the acceleration of the derivation process. Non-determinism of this
process implies the selection of correct rules and the determination of the facts to which they are
applied. If the strategy presented in the basic algorithm is used (wide-range search), exponentially
much time may be spent until the right measure is found. Therefore, a selection rule indicating
which rules are to be applied has to exist. This rule has to ensure that the derivation process
always terminates, even if certain rules are excluded from the derivation process. Moreover, the
derivation process shall supply the response most rapidly in those cases where it is needed rnost
rapidly.

For this purpose, the strategy of the strongest pre-condition is suitable. According to this strategy,
the rule with the strongest pre-condition shall always be selected first. For example, the rule B<
A, C, D has a stronger pre-condition than B<-A, D. Consequently, the first rule is selected. How
ever, the premises of both rules may have different predicates with those of one rule being more
known than those of the other. In any case, a Iist of priorities of rules has to be managed. This Iist
may have been specified or vary depending on the type of partial problem. The same applies to
the facts used. Here, a Iist of priorities may also be reasonable.

Measures of the highest priority shall be derived first. As such measures have to be output most
rapidly by the system, the behaviour desired in the previous chapter is generated. Furthermore,
this rule is helpful, as it always has a certain meaning, if a rule of high priority can be applied. In
the decision process for the handling of catastrophes, a fact derived by such a rule hardly stays
alone and will not be used any longer. In most cases, it will have a certain effect. Therefore, no
time was lost. As decision processes of the authorities have a hierarchical structure, the rules can
mostly be arranged such that a rule that cannot be applied will also be considered not applicable
in the course of the further derivation process.

If no measures have been found, it shall be tried to derive measures from similar cases.

The set of all rules may consequently be arranged into a hierarchical schema. The following dia
gram is obtained:

48

FIGURE 11

Structure of the knowledge base

Rule hierarchy

0 0

The ellipses represent disjunct sets of facts (observations). The bold ellipse is a set of facts cur
rently needed for the actual prob lern. The rectangles represent synonymous disjunct sets (clus
ters) of rules with the bold rectangles denoting the rules needed. To apply rules of higher clusters,
a certain nurober of rules from the clusters below must have fired. With increased priority it can
then be tried to make rules of the top duster fire.

The clusters are used to deterrnine meta rules for the resolution of conflicts. They make use of
states of the derivation process. Astate can be defined as follows:

Definition: let K be the set of all clusters. Then, a state
is the function
f: K Nat.

A state may also be considered the nurober of rules that may be applied in the individual clusters.
The meaning of the states shall be explained in chapter 4.3.

Finally, it must be noted that the set of all measures can be integrated weil in a hierarchical
schema. Certain measures automatically result in other measures. When evacuating the popula
tion for instance, a warning has to be given first. As the rule selection mechanism suggested is

49

FIGURE 12

Structure of the knowledge base

always aimed at deriving the strongest measure first, the derivation mechanism can be stopped at
this point. Derivation of less strong measures, which may take a Iot of time, may be done without.
The hierarchy may be used directly to obtain the remaining implicit measures. There are excep
tions, however, if e.g. several catastrophes occur simultaneously and various measures, which do
not result in each other, have to be taken at the same time.

The resultant structure of the knowledge database is represented in Fig. 12.

Structure of the knowledge base

Input of expert knowledge

User view: rules in the naturallanguage,
meta rules for the resolution of conflict

Transformation

Logical representation: rules in Horn logic, meta rules

Transformation

r--------- ------------,
I
I
I
I
I .,

Technical representation: as relational DB under INGRES

Limits
Conflict resolution

Limits the set of rules

Measured datJ Derived

~
I
I

facts .,._.....,""""* Output of
.,_......,==l="_,countermeasl

~----------------------~

50

FIGURE 13

Structure of the knowledge base

4.2.3 Other possibilities of improvement

Testing, whether a rule may be applied, takes a lot of time. However, it is often possible to
exclude others together with a single rule. For this purpose, data are stored as to which rules
depend on individual events. If it is known that a certain event does not apply, all rules depending
on this event may be excluded. If a certain event applies, however, rules depending on this event
become applicable. The following set of rules is given by means of example:

This set of rules is based on the data structure shown in Fig. 13.

Data structure for managing the applicability of rules

(1, 2, 3)

(1)

(3)
r--,.,.E ---.)

This diagram has the following meaning: each node exactly corresponds to a literal of the rules.
At each node, the depending rules are given in brackets. If rule 1 shall be applied and it is found
that A does not exist, rule 2 can be excluded at the same time.

This data structure can be further extended to ensure the derivability of rules from newly derived
facts. If it is known that fact A does not let the premise of the rule apply, while all other prerequi
sites remain applicable, it may be concluded that rule 1 is applicable, if A is derived in a certain
step.

If a fact A only prevents the rule 1 from firing, the entry (1(A), ...) is made under node A. Foreach
fact derived, the rules blocked can be found under the respective node. From A it can be noticed
that rule 1 is blocked.

51

Communication with the user

This procedure may be transferred analogously to predicate-logical formulas. As the rule base
exists in the Skolem form, predicate-logical formulas may be replaced by statement-logical for
mulas, which result from the basic instances of the former, according to the theorem of G_odel,
Herbrand and Skolem.

Another case is what happens, if a prerequisite is not fulfilled within a premise. This, however,
would exceed the scope of the present chapter. The procedure is described in detail in the RETE
algorithm [Brown85].

At this point, the benefit for the knowledge base only shall be of importance. As in catastrophe
handling a test as to whether a rule can be applied may take a Iot of time due to the distribution of
the facts, the number of these tests must be limited. This may be achieved by means of the present
algorithm.

Furthermore, the finding of the most general description operator may take an exponential period
oftime when testing the rules (example: p(x1, ... , Xn)=p(f(xo. xo) , f(Xn-1· Xn-1)). As only liter
als will occur in the facts of the databases, however, finding of a description operator may be
reduced to a simple pattern adaptation, which is easier to programme.

4.3 Communication with the user

In this chapter, the user view of the system shall be presented. Interna! implementation by a rela
tional model shall be hidden from the user. In contrast to this, the rule structure of RODOS
knowledge management, which is internally imitated by INGRES, shall be directly visible to him.
The user interface of an expert system generally consists of three components:

• dialog interface

• knowledge acquisition component

• explanation component.

The dialog interface is used to input facts. In the course of this process, the system may ask ques
tions to test the applicability of certain rules. Hence, a solution is reached by the systern interac
tively with the user. Such a case is encountered e.g. in medicine. RODOS is supposed to reach the
solution alone, as it may be assumed that all facts required exist in the databases. It is evident
from the previous chapters that the problern of RODOS is not to have suitable, but to find the cor
rect facts from the vast amount available. Nevertheless, a dialog interface is useful, if catastro
phes are tobe simulated by the user (e.g., for an exercise). As it may be difficult for the user to
input suitable facts, the system has to support this process by requests for further particulars.

By means of the knowledge acquisition component, new knowledge (rules, meta rules) is input
or existing knowledge is read by the user. The knowledge acquisition component reproduces
knowledge such that it is understood by the user and hides the actual form of representation in the
expert system. Here, an easily understandable rule representation may be applied as the user view.

52

Communication with the user

Using the explanation component, the conclusions made by the system are explained. The user
has the opportunity to ask detailed and specific questions, _ Why. was this and not that done? _. To
answer these questions, the rules applied can be used mostly. In any case, RODOS should be
equipped with a sufficient explanation component such that the measures taken can be justified.

A representation, by means of which the existing rules are indicated to the user as simply as pos
sible, is best suited for the knowledge acquisition component. Here, fixed language schemas
should already be given in a graphic interface. The rules are then input into these schemas. The
syntax of the schema is obvious from the Annex. An exemplary session of a rule input shall also
be presented in the Annex. Existing knowledge may also be used for modification of the user
interl'ace or verification of the input rules. In addition, rules input in the user view can be simpli
fied. During the input of rules, the following steps have to be carried out by the user:

• The user has the opportunity to specify a certain topic, for which the rules are to be input. Bach
rule contains the component _AREA_ indicating the field of application of this rule.

• It is input by the user when the rule is tobe applied (its applicability is tobe tested). Maybe
this rule shall be tested always or in certain situations only. This information is given by the
component _OCCASION_.

• It is input by the user on which Ievel of the decision hierarchy the rule is to be located. There
are several deciding authorities, who pass on their decisions upwards in the hierarchy. Finally,
the concrete measure will be taken. This information is available in _CLUSTERS_.

• The user specifies a logical schema (logical expression) for the prernise of a ruie. RODOS may
make available a selection of schemas for certain areas of knowledge.

• Now, the conditions tobe checked are inserted into the rules. At first, the name of the condi
tion is entered. This name is taken from a list of names known for this area and duster. No
negation may be entered.

" For each predicate name, certain language constructs resulting from the component
EXPLETIVES are made available. It is also checked, whether the input constants apply to
this construct, e.g. is _Karlsruhe_ known as a place?

• For numerical variables requiring a comparison with the variables of another predicate, a
direct langnage reference is made to this value. For example, _higher than value in_.

• Finally, the user shall be enabled to see his rule in the total concept as to when it is applied,
which priority it has, which expenditure is required for the taking of measures, etc. Thus, the
user shall be enabled to assess, whether this rule makes sense.

A similar procedure is applied for the input of meta rules, i.e. rules deterrnining the selection of
facts and rules. Here, the following steps are perl'ormed:

• After selecting an area, a state of the derivation process has to be deterrnined. A state gene
rally represents the set of derived facts available for the derivation process. As this would
allow too many possibilities, however, Iet the state be defined according to chapter 4.2. It is
input, how many rules can be applied to this or that group of rules.

• Then, the priorities of the individual rules can be entered.

53

lmplementation of the logical schema

Here, the dialog mode is mainly used for exercising purposes. Using RODOS, the user can train
measures in simulated accidents. Questions and answers again are input by means of a simple
schema, which is presented in the Annex together with an exemplary session. If a catastrophe is to
be simulated and the inputs are not sufficent to output measures, the system has to ask questions
in a skilful manner such that by answering them the user can _attain_ any case as rapidly as possi
ble. For this purpose, the data structure presented in 4.2.3 may be applied. Then, the number of
facts required for the rules to apply can be determined. By suitable questions, this set has tobe
divided such that the facts required are made available and useless facts are excluded. To simplify
this mechanism, reference cases stored in the knowledge base can be accessed.

To specify the dialog mode, compulsory selection of the area has to take place at first. Then, the
following steps are carried out:

• For the exercise mode, a set of exercise data has to be made available.

• Then, the state, reason and rule of a message text output are input.

.. The message text is mostly used for the input of a new fact.

The statements supplied by the explanation component are as simple as possible. An exemplary
explanation is given in the Annex. It should also be possible to output partial solutions or let the
system evaluate solutions prepared by the human user. The system shall indicate which darnage is
generated by realizing a certain solution or by the taking of no measures. Reference cases may
serve as examples. Of course, detailed arguments have to be given for a measure taken. They are
obtained from the rules used.

4.4 lmplementation of the logical schema

In this chapter, generation of the logical schema in Horn logic from the user inputs shall be
explained.

The most important step consists in the transformation of the input rules into Horn clauses. For
this purpose, the premise input is first converted into the disjunctive normal forml. Now, the
rule of the form

p _ K1 OR K2 OR . . . OR Kn,

1 A formula is of the disjunctive normal form, if it has the form OR (AND ... AND ... AND) OR
(AND ...)OR() ...

where Ki denotes the conjunctions, is transformed into n rules of the Horn clause form

p Kl

54

lmplementation using INGRES

Another problern is the determination of the priorities. As the user, who inputs the rule, hardly
knows the priorities of all remaining rules for determining the priority of the rule directly, priori
ties of newly input rules have to be determined automatically. For this purpose, already existing
meta rules can be applied. The exact order of the process shall be subject of further studies. Trans
mission of priorities of facts used in a new rule to this rule is conceivable. A rule with a conjunc
tion of facts in its premise contains as priority the minimum of priorities of the facts. Priority of a
fact may also equal the maximum of priorities of the rules, in the heads of which it exists.

4.5 lmplementation using INGRES

The knowledge base is eventually managed using the relational database system INGRES under
C. It shall therefore be studied, how the rule-based system presented under 4.2 can be mapped to
a relational database concept like INGRES.

In general, logically based systems are an extension of the relational concept. The facts describe
relations, whereas the possibility of defining rules represents the extension as such. Moreover,
common relational database operations, such as Cartesian product, union, projection, selection,
intersection and combination may be described by rules such that everything that may be done by
means of relation algebra can also be expressed by logical mles.

Mapping of the derivation mechanism to INGRES is of crucial importance. The missing deriva
tion mechanism of logic programmes has to be imitated as largely as possible. The main task will
consist in deriving the facts by rules using adequate SQL constructs. Other processes, such as the
selection of rules, have to be programmed manually under C. The constructs presented in the fol
lowing chapters are therefore rather general and can be further modified depending on the con
crete structure of the database.

It must be noted that the distribution of the database system does not affect the logical design of
knowledge management, as this distribution of the system is hidden from applications and users.
This means that each database operation could be run in the same form on a non-distributed sys
tem. Therefore, only the criteria influencing the performance of the derivation mechansim have to
be taken into account. Implementations, which are exceptionally quick on a non-distributed sys
tem and below the average speed on a distributed system, have to be excluded.

4.5.1 lmplementation of rules using INGRES

It is started from the fact that the rule base does not contain any recursions (in the latest version of
INGRES, recursions shall also be admitted in relationssuchthat this limitation may be dropped).
At the bottom of the hierarchy relations are found, which describe given facts. The relations at the
top describe the measures to be taken.

55

lmplementation using INGRES

Starting-point is a group of rules for a new relation p:

p(x) - Pl(Xl)t · · •t Pn(Xn)

Let all other relations be base relations except for p. They are generated in INGRES using
CREATE TABLE. As the creation of databases is not the task of knowledge management, it
shall not be covered in further detail.

Access to these databases is made using _RETRIEVE_. As no new data are created, views can be
used. Each view describes a new relation. The general schema of a view for the above rules is as
follows:

CREATE VIEW p{x)

AS SELECT Pl·Xt ... , Pn·X FROM Pl, ... , Pn

WHERE [specify identities]

UNION

UNION

SELECT q1.x, ... , qrn.X FROM qlt ... , qrn

WHERE [specify identities]

Comparison of variables under (identities) is represented by the AND conditions in the rules. The
rule

trans(x, z) _ p(x, y), q(y, u), o(u, z)

has the query:

CREATE VIEW trans(X 1 z)

AS

SELECT x, z FROM p, q, o

WHERE p.y=q.y

AND q.u=o.u

It is a drawback that the intermediate relations generated may become very large, as the Cartesian
product is formed over the individual predicates. In this case, a join has to be made do with. The
procedure is similar to that of a logical programme. All relation pairs, which fulfil the join condi
tions, are formed. Nevertheless, both versions have their advantages and drawbacks. A system
like INGRES can put indices on the attributes of the join conditions in order to be able to form all
possible pairs very quickly. In cantrast to this, a logical programme has the following advantage,

56

lmplementation using INGRES

provided that it has been written skilfully enough: if a rule g(x)<-h(x, y), p(x) occurs and y has
been instanced suchthat h(x, y) is false for all values of x, p(x) does not even have tobe consid
ered for the rule to be dropped. INGRES, however, will first try to form all relation pairs again
under which the condition is fulfilled. If p would have been evaluated prior to h, the logic system
would not have been quicker than INGRES.

As views can use views again, provided that no recursions occur, the rules can be extended by this
schema. Finally, e.g. a view of the form _measures(x)_ can be defined such that a measure desired
can be output using SELECT * FROM measures.

This would represent a reverse chaining, as the view _measures()_ addresses the next views
below etc. Neither could the derivation process be controlled any longer, as INGRES takes over
the addressing of the individual relations. A possibility to escape this dilemma would be the defi
nition of sub-views, such as _measures during smog(), measures during floods_ etc., which could
be addressed by the offleials for the reduction of the number of rules and facts used. Inflexibility
of reverse chaining is clearly noticeable. Combinations of various catastrophes cannot be taken
into account.

4.5.2 lmp!ementation of torward chaining

In the present chapter, the individual mechanisms for the implementation of forward chaining
shall be explained.

4.5.2.1 Basic methods and data structures

To get away from the concept of reverse programming, the addressing of views by views must be
prohibited. Views shall only address base relations. Views directly accessing the master data can
remain unchanged. However, all data generated by a query of the form SELECT * FROM VIEW
have to be stored in a new relation. Then, this relation is addressed by the views of the following
higher Ievel. This shall be illustrated by the following example:

ozone alarm(place) _ ozone value(place, x), ozone critical
(place, crit), crit<x

measure(_driving ban_ 1 place) _ ozone alarm(place) 1

heavy traffic(place)

measure(_production ban_ 1 place) _ ozone alarm(place) 1

much industry(place)

57

lmplementation using INGRES

The relations _ozone value_, _ozone critical_, _heavy traffic_ and _much industry _ are contained
in the extemal databases. Furthermore, it should be noted that in accordance with the statements
made with regard to the hierarchy of measures the rule

measure(_driving ban+production ban_, place) _

ozone alarm(place), heavy traffic(place)

much industry(place)

should have been introduced, as the derivation process shall be terminated after the first measure
derived. For further details, see next chapter.

The following views and relations have tobe created:

CREATE ozone alarm(place= CHAR(20))

creates a new relation ozone alarm.

CREATE VIEW ozone alarm(place)

AS SELECT place

FROM ozone value, ozone critical

WHERE ozone value.place=ozone critical.place

AND ozone critical.crit < ozone value.x

realizes the first rule.

RETRIEVE INTO ozone alarm(ozone alarm.place)

fills the relation ozone alarm with all places, where ozone alarm is given.

CREATE VIEW measure(what, place)

AS SELECT _driving ban_, place

FROM ozone alarm, heavy traffic

WHERE ozone alarm.place=heavy traffic.place

UNION

AS SELECT _production ban_, place

FROM ozone alarm, much industry

WHERE ozone alarm.place=much industry.place

realizes the last two rules with the newly created relation being applied.

Thus, forward chaining can be implemented. To render this mechanism efficient, the rules have to
be grouped such that certain rules only are applied depending on the situation. Furthermore, the

58

lmplementation using INGRES

rules have to be sorted in accordance with the strength of their pre-condition. The following rela
tions are needed:

1. CREATE TABLE basic values (priority: integer, relnarne:
CHAR(20), data: CHAR(20), type: CHAR(10))

creates a relation _basic values_, where the priority, with which relations from external databases
have to be addressed in order to ascertain the occurrence of a catastrophe and its approximate
nature, is specified. For our example, an entry may be as follows:

(34, _ozone value_, _big city(x), y_, _ozone_) or (35, _ozone
value_, _srnall city(x), y_, _ozone_)

This means that in 34th place the ozone value of all big cities shall be investigated using the rules
of the class _ozone_. If a catastrophe has occurred, there should be a table of the facts to be
checked in the analog form.

Another relation manages the rules:

2. CREATE TABLE rule (nr: integer, viewname: CHAR(20), area:
CHAR(10), event: CHAR(10), cluster: integer)

An entry may be:

(1, _ozone alarrn_, _air_, _derivable_, 3)

In addition, the priorities of the rules have to be stored. This may be done by a second relation, as
the contents of this relation may vary contrary to the previous one.

3. CREATE TABLE priority (nr: integer, identification: integer,
first prior: integer, sec prior: integer)

It shall also be stored in a table which rules depend on which rules.

4. CREATE TABLE rule dependences (viewnarne1, viewname2: CHAR(10))

For example, the rule A<-B, C depends on the rule A<-B, C, D. This rule pair is then stored in the
table. For further details see next chapter.

For the hierarchy of measures, a table

CREATE TABLE rneasures (successor Id, predecessor Id: CHAR(10))

can be defined. The measures as such can be listed in another table, which is referred to by * Id.
The table of the measures as such is object-oriented, i.e. the predecessor measures leave their pro
cedures to the successor measures.

As catastrophe management is a non-monotonous rule mechanism, it must be possible to delete
information, if facts are changing. For this purpose, the DELETE instruction is used. Example:

DELETE ozone alarm

59

lmplementation using INGRES

WHERE

ozone alarrn.place IN

SELECT place

FROM LOCATION

WHERE state=_Hessen_

4.5.2.2 Algorithmic implementation

Implementation as a concrete programme covers several fields. As the presentation of the com
plete programme text would exceed the scope of this report, some indications as to the general
procedure shall be given.

Recognition of catastrophes: first of all, the catastrophe has to be recognized. How this is done,
was indicated in the previous chapter. But even after a catastrophe has occurred and evaluation
has been started, the distributed regional databases still have to be controlled, as basic boundary
conditions may change. It is best to apply a separate process, by means of which the correspond
ing messages are sent to the remaining knowledge management system. If other catastrophes are
recognized, it would be reasonable to manage a process for each individual catastrophe. It may
also be helpful to allocate computing time to the individual processes according to their signifi
cance. The basic pattem of such a process may be as follows:

WHILE TRUE DO BEGIN

FOR priority:=max DOWNTO 1 do begin

address predicate at the respective position in the
table;

IF catastrophe condition fulfilled THEN BEGIN

create process of appropriate priority for rneasure
derivation;

create process for controlling the variations of the distributed
data;

END

ELSE BEGIN

IF EXISTS processes for this catastrophe THEN BEGIN delete all
these processes;

END;

END;

60

lmplementation using INGRES

END;

END;

Of course, there are also other possibilities of handling the individual priorities. However, they
shall not be explained in detail.

The derivation mechanism: the basic structure is forward chaining. However, it is extended by the
features mentioned above. In total, the following schema is obtained:

initialize data structure A with applicable rules;

REPEAT

priority:=max;

IF rule R with priority applicable THEN BEGIN

apply rule. ;

extend set of all derived facts by rule head of R;

enter the resultant newly applicable rules into A;

delete all rules depending on R from A;

END

ELSE BEGIN

delete the resultant inapplicable rules from A;

END;

IF rule head of R a measure THEN

output measure;

END;

priority:=next applicable rule of A;

UNTIL A empty;

WHILE TRUE DO;

Here, a number of explanations is required. In chapter 4.2, the mechanism of concluding the
applicability or inapplicability of other rules from the applicability or inapplicability of one rule
was presented. In our case, A represents such a data structure. After each test, it is modified
accordingly. Furthermore, a table was presented, in which the dependences of rules are stored.
Deletion of all rules depending on an already applied one is aimed at avoiding the derivation of
resulting measures with dependent rules, once a certain measure has been derived. When using
this algorithm, it is not necessary to introduce the rule _measure(_driving ban+production ban_,

61

lmplementation using INGRES

place)<-... _ mentioned in the example, as the rules relating to the driving and production banshall
not be dependent on each other. The dependences can be defined by the user in any way.

By _output measure_, the mechanism managing the measure hierarchy is initiated and the bunch
of measures is output.

If rules are no Ionger applicable, derivation is terminated. However, the process shall not stop to
exist, but turn to a waiting position. Later on, a signal may come from the processes managing the
initial data of the distributed databases, indicating that modifications have occurred. In this case,
modified measure proposals have to be output. Hence, it should be possible to access already pre
pared data sets again. The response to the signal indicating the modification is realized as an inter
rupt. The response procedure can have the following format:

• delete all corresponding facts;

., delete all rules that are no Ionger applicable;

.. re-start the derivation process at the applicable rule of highest priority.

4.5.3 Problems of implementation of the logical schema
in INGRES

From the logical schema, the corresponding relations can be formed directly and stored in
INGRES.

The views are generated directly from the description of the Horn clauses. Several problems arise
when they are implemented.

Rules having the same head often vary in priority. Up to now, all these rules were integrated in
one view using the UNION operator. Therefore, the rule base has tobe rewritten as follows:

A rule

has tobe rewritten as

Pl - R1; · · · ; Pn - Rn

where Pi denotes the new predicate symbols. For each of the n rules, an own view has to be intro
duced. In addition, a rule

P - Pl, · · ·' Pn

has to be implemented in order to be able to use the symbol p in other rules.

A majorproblern consists in the access of the priorities of the individual premises while testing a
rule. The only solution is to convert a formula of the form

62

Alternatives

P _ Pl, · · ·, Pn

into a set of formulas

P - qn-1' Pn·

All these rules have to be provided with a mark indicating that they all originate from the same
Horn formula. In this case, Iet us assume that the priorities of Pi are sorted in descending order. If
the priorities are distributed differently, sorting must be changed accordingly. The priority of the
initial rule is allocated to the rule priorities as the first value. The priorities of the individual pre
mises areentered as sub-priority. It is only taken into account, if two rules have the same mark
ing.

The drawback consists in the fact that once the priorities of the premises have changed, the entire
mechanism has to be started again.

Technical generation of the views may also cause certain problems. Here, it is possible to gener
ate SQL files, which are then translated and integrated dynamically.

4.6 Alternatives

As an alternative, RODOS may use an expert system shell instead of INGRES. The advantages,
however, still have to be examined in detail.

When doing without the implementation of rules with views, the derivation will be programmed
directly. Views have the drawback that the order of testing of premises cannot be controlled.

Application of a deductive database is very promising. As this field is relatively new, only limited
experience has been gained so far and few products are available only. Hence, the number of
implementation possibilities is rather limited.

4.7 Summary

The version proposed in the present chapter has a number of advantages, in particular as far as the
representation of information required for the implementation of decisions of the authorities is
concerned. Here, they shall be summed up briefly:

• User friendliness

63

Summary

As explained in the previous chapter, a rule-based system provides a number of possibilities for a
user-friendly interface. The view of the user comprises rules, intemal representation may be hid
den. These rules can easily be extended and adapted by RODOS. As the rule base is divided into
individual topics, relevant positions can be found rapidly. By the natural-language interface,
implementation of legal provisions into logical rules is facilitated.

• Consistency

The rule base is directly oriented according to the hierarchical decision procedure of authorities.
Consequently, the decision procedure is mapped 1:1. The user interface of RODOS also supports
the user when preparing adequate inputs and prevents the input of nonsense. Newest data are
accessed only. If modifications occur, already derived facts can be deleted.

.. Efficiency

Rules and facts can be divided such that a derivation process can access a part of the rules and
facts available only. Furthermore, dependences among rules can be defined and experience gained
from the applicability tests of rules can be taken into account in order to exclude the applicability
of certain rules right from the start. Using INGRES, indices can be put on the stored data. Thus,
the finding of existing rules is accelerated. Knowledge management can be divided into several
parts, which may be run in parallel on various computers. This again accelerates the process.

64

Chapter 5 Real-time data management

5.1 lntroduction

Measured data represent one of the major bases of the decisions to be made in the RODOS sys
tem. Measured data, which are a special type of real-time data, are collected all around the clock.
They describe the actual state of the environment using parameters, such as e.g. temperature,
wind speed and direction or radioactivity. The measured data are expected to have several hun
dred Gbytes. They are modified in exceptional cases only, once they have been input by the mea
surement process control programmes. As all other data stored in RODOS, the measured data
have to be made available rapidly to the user in an emergency. Contrary to the other data, mea
sured data are also modified and input in an emergency.

The present chapter deals with the problern of real-time data management. The objective is to
design a database and the auxiliary programmes required to make use of the special circum
stances (particularly access pattems) and, hence, to ensure functionality and sufficient perfor
mance.

The real-time database is implemented on the basis of a relational database system (probably
INGRES).

5.2 Data characteristics

Data characteristics is of prelirninary nature, as stocks of measured data do not yet exist and few
information only is available on the planned accesses to these data. In the course of the project,
the characteristics will be further refined. This may result in new requirements to be complied
with by the measured-data management.

The measured data consist of the following components:

a Time of measurement
When entering the results measured, the data generator (= a programme controlling the measu
rement process) has to indicate, whether local time or CET applies. Thus, the database system

65

Treatment of Iimit values

is enabled to answer queries in both formats. Several data generators sharing a common data
base may also be located in different time zones. Depending on the situation (in an emergency
probably more frequently) and the type of parameter measured, the measured results are
entered at variable intervals. Forthis reason, the database has to support various time resoluti
ons.
Recommendation: it is recommended to store all measured results using the sametime zone.

• Place of measurement
There are several possibilities: the respective database may only collect local data- the place
consequently is deterrnined by the names of the database (unambiguously for data generators
and consumers). Or the database may directly take up the place. Here, the place may be indica
ted by names (e.g. temperaturein Karlsruhe) or by geographical coordinates. The latter require
less storage capacity than the complete names and allow more rapid processing of area-related
queries.
Recommendation: it is useful to introduce a uniform notation for the indication of places.

• Name of the parameter measured
If various parameters aretobe stored in a database (a relation), the parameter name is needed.
Alternatively, an extra relation can be created for each parameter.

• Actual parameter value
For simplicity, all values shall be stored in the same units (either in degree Celsius or Fahren
heit).

• Measurement accuracy

• lf necessary and if certain parameters are to be measured by various measuring devices, mea
surement accuracy shall also be entered.

• Additional infor.mation
If required, additional information may also be entered in the database: source of the results
measured, confidence factors of uncertain measurement techniques, etc.

When dividing the measured-data base into relations, it is useful to keep the relations as specific
as possible. Example: the database with the air temperature in Germany may be divided into rela
tions indicating the places of measurement: Karlsruhe, Mannheim, Freiburg, etc. Thus, many of
the queries expected can be answered more rapidly. Moreover, less storage capacity is needed
compared to a relation storing the place of measurement in each tuple. A special relation may also
be splitted into time-dependent parts. Example: air temperature in Karlsruhe in July 1994. This
type of division may be helpful when filing data (cf. chapter 5.7).

The measured-data management component has to take over the transformation of queries. As the
applications cannot be modified, division of the relations must be hidden from them. This also
allows dynarnic modification of the division.

5.3 Treatment of Iimit values

It must be possible to specify limit values for the parameters. When exceeding these values, apre
defined action shall be carried out by the database system. Examples of possible responses are:

66

Typical queries

• Starting of any programme both on the local workstation and on any other computer of the
network.

• Notification- notification of a user, application by e-mail or UNIX signal mechanism.Termi
nation of certain transactions (e.g., statistics applications). The transactions are selected on the
basis of the locks kept.

• Measured-data management must comply with these requirements.

5.4 Typical queries

Optimum database design can only be achieved, if the queries are known in advance. Some que
ries that are very probable in the RODOS system from the FZI point of view shall be listed below.

• Find the latest values of parameter X and place Y;

" Find the value of parameter X for place Y at the time Z;

• Find the values of parameter X for all measuring points in Europe at the time Z;

• Find the latest values of parameter X for all measuring points in Europe;

• Find the places, where parameter X has the highest value at the moment;

• Find the places, where parameter X has exceeded the Iimit value;

• Development of parameter X at place Y in the time interval from A toB.

The real queries will only be available when testing the prototype. They allow the use of indices
and other measures aimed at increasing the performance.

5.5 Locking

The users of the measured-data base can be divided into four groups:

3. Measuring programmes introducing the latest measured results and modifying no existing measured
data.

4. Administration tools modifying the existing measured results. Theseprogrammes have precedence over
all other programmes.

5. Decision programmes allowing _dirty read_. These programmes can work simultaneously with the pro
grammes of group 1.

6. Decision programmes that cannot be active together with other writing programmes.

7. To implement this division, new lock logs shall be defined in the database system.

67

Data compression

5.6 Data compression

Due to the high amount of data, they have tobe compressed after a certain period (e.g. one month
after entry). Compression can be carried out in several phases (after a day, week, month, etc.).
After each phase, storage requirements shall be reduced. Compression of measured data can be
divided into two groups: compression without or with deterioration of data quality.

" Compression without deterioration of data quality
Parameter A has the value q from time x. to time y. In the database, several data records exist
for this time period. They only differ in the time of measurement. These records can be con
verted into a single compressed record.

" Compression with deterioration of data quality
From time x to time y, the value of parameter A ranges from p to q with the critical value not
being exceeded. The intervals between the results measured can be increased. Altematively, a
tolerance range can be specified for a measured value. In the database, the mean value as weil
as the time period, during which deviation from the mean value is in the tolerance range, can
be stored.

A special problern is the modification of already compressed data. In some cases, the data have to
be decompressed prior to modification.

5.7 Filing

Despite of compression, the volume of the measured data will exceed the capacity of the second
ary memory after a certain time. On the other band, most of the queries are addressed to the latest
measured data, while old data are used less often. In this situation it is necessary and possible to
file data, i.e. to transfer them to extemal tertiary storage (WORM, magnetic tapes, etc.). The sys
tem is supposed to file data on its own. Data transfer to extemal storage takes place when the sec
ondary memory is filled to a certain degree or when the data reach a predefined age. Measured
data management also takes over the logical management of the library of storage media.

If required, the filed data have to be made available to the user. The accesses remain completely
transparent. Due to the much Ionger access time only, the user may presume that filed data are
accessed.

5.8 Aspects of implementation

The measured-value database shall be implemented on the basis of a commercial, relational data
base system. As already mentioned, the decision as to which product will be applied has not yet
been taken. Entire architecture of measured-data management is illustrated in Fig. 14. Due to the
schema transformations, all operations (both reading and writing operations) are converted into

68

FIGURE 14

Requirements made on the database system used

the actual physical schema. The system is also equipped with other components, which are imple
mentedas separate programmes (processes):

• tool for the control of lirnit values - notification;

• tool for data compression;

.. tool for data filing.

Rough architecture of measured-data management

Insertion operation Queries

Compression

on-line

Control of limit values

5.9 Requirements made on the database system used

Measured-data management does not make great demands on the database system applied.
Besides the usual functionality, it would be very helpful, if extendable locking and an active com
ponent were offered by the system. If these features are not available, they can be implemented as
additional software components.

69

Chapter 6 GUI generation

6.1 lntroduction

In the present chapter, functionality of the tools for the generation of graphic user interfaces shall
be described by means of the Tclffk example. The decision as to which system will be used for
the implementation of RODOS will only be taken, when the other tools (in particular for database
integration) will have been selected.

Tclffk is an efficient system for the rapid generation of user interfaces. It consists of a script lan
guage as weil as of a toolkit system. Using the script system, textual description of a graphic user
interface can be carried out, whereas the toolkit system is used to generate this user interface
directly by hand. Tclffk has the advantage of being available at FZI already. It has been tested
and sufficient (positive) experience has been gained. Thus, development time of the user inter
faces can be reduced considerably. In addition, Tclffk is cost-free. However, it cannot be directly
operated graphically. Hence, it requires the generation of some additional tools in order to be
comfortable for the user.

In general, the application programme, database access and user interface are separated such that
all components can be generated and modified separately. Bach component uses the services pro
vided by the other components via special interfaces. The application programme is available in
the C code. In the main loop, user activities are waited for. Once an activity has been performed,
queries are addressed to the user interface via a parser. The general structure is obvious from Fig.
15.

70

FIGURE 15

Graphie VO elements

General structure of an application

Tcllibrary
r-----------.,

Application
r---

Tcl
command

Parser

Service
~rograro.ms

---------,

Initialization

___________ ...J
L------------...l

6.2 Graphie 1/0 elements

A number of graphic elements used for the generation of comlex applications is made available
by Tclffk. The technical term of such a graphic element is widget. It is made up of the words
window and _object_ and means that a graphic element is a window located in a certain hierar
chy and having a certain functionality. The elements of the hierarchy also are widgets with the top
widget usually being the window containing the application. As a rule, a widget is a predecessor
of another widget, provided that the latter is included graphically in the former. All widgets can
communicate with each other: if the size of a widget is varied, messages are sent to its predeces
sor, as a result of which its size is also varied.

Widgets are distinguished in accordance with their location in the hierarchy and their functional
ity. The following main groups exist:

• Container widgets: they serve to take up other widgets. Their main purpose is the graphic and
logical structurization of the application.

• Scroll widget: they serve to scroll the contents of the widgets allocated to them.

• Input/output widgets: they serve to input or output texts or graphics.

• Action widgets: they serve to trigger certain actions. The best-known examples are buttans or
menus.

71

Controllanguage

• Selection widgets: they serve to store settings.

After pressing a certain button, all widgets supply the values requested by the application or the
X-window system, e.g. a text string input in a field or a function reference.

6.3 Control language

6.3.1 User interface

All widgets can be processed from the application by means of appropriate commands. Values
can be called or entered into the user interface. Navigation through the user interface (opening of
sub-menus, etc.), however, takes place autonomously. The application programme has nothing to
do with the representation of the user interface.

Generally, the controllanguage makes available both a script language and a toolkit system. The
script can be carried out by an interpreter or compiled first and transferred to a DLL. A script has
the general advantage that minor modifications can be performed more rapidly and precisely by a
trained user. The tooikit system is suited above all for the untrained user. Another aspect consists
in the fact that even compiled user interfaces do not have to be re-compiled in case of modifica
tions. They can access resource files, where textually important parameters (colours, size, etc.) of
the application are described. These values can be modified manually.

6.3.2 Eventltrigger mechanisms

With each action executed by the user (e.g. select menu entry) a certain event is generated. Gen
eration of the event is carried out by the X-server. The X-server is a programme under X-win
dows, which controls the activities of the user (keyboard, mouse click, etc.). When initializing a
user interface, a link to the X-server is established suchthat the events are sent to the user inter
face. The event then has to be processed. For this purpose, it has to be checked, whether a user
specific response is planned for this event. A table of the form _event/response_ has to exist
(invisibly) in the user interface. As the entry for a user-specific response, the name of a certain
function or procedure to be executed is mainly used. The table is created by entering the name of
the function to be executed for each menu entry in the script. Other forms are also feasible, e.g.
separate storage in a file. They have the advantage of the access of functions being independent of
the user interface. If a new function is to be addressed from a certain point of the menu, the user
interface does not need to be re-compiled.

72

User support for query generation and other tools

6.3.3 Database systemlink

Linking of a database system in Tel takes place dynamically via a DLL (dynamically linked
library). Thus, compilation of the database-specific function can be performed independently of
the remaining application. While linking the database, the data structures stored in the database as
well as the functions triggering the actions are made available. Similar to the user interfaces, a
toolkit system and a script language are provided, by means of which the database can be gener
ated.

6.4 User support for query generation and other tools

B y means of the methods presented, tools for query generation and schema evaluation can be
generated.

Using a query, data of the database are requested. The query may be very complex. A typical
example: find all hospitals with more than 100 beds within a radius of 50 km of Karlsruhe. To cre
ate a user-friendly interface for the generation of the query, the user should be guided through the
variety of options of preparing queries in a menu-controlled manner.

Starting from a descriptive, SQL-type query language, the following problems may arise for the
user:

• A SQL query may refer to interlaced structures. This interlacing should be represented graphi
cally such that the user keeps track. A suitable representation may be e.g. a tree, whose nodes
indicate the type of link of the queries below. It should also be marked by colours which query
is currently processed by the user. This may be achieved by a canvas widget, which supplies
the necessary graphics options.

• It is of crucial importance that the user keeps track of the multitude of relations and attributes
available. To select a certain relation, as it is done in the _SELECT FROM_ part of each
query, first a topic, then a logically associated group of relations and then an individual rela
tion shall be determined by the user. For this purpose, popup menus are used. They store a sel
ection that has already been made such that e.g. the topic does not have to be input again and
again. Pulldown menus can also be applied. In this case, sub-menus can be defined.

• Simultaneous explanation of the effect of the SQL instruction that has just been given (e.g.
_group by _) should be as good as possible. As an example, the result of this instruction should
be displayed in a special window. In our case, this would be the grouped data. A suitable
means is the text widget.

• As shown above, the query can largely be generated in a menu-controlled manner, as also the
commands can be input in this way. If nevertheless textual inputs of the user are needed, text
input widgets can be used for entering the text. With the end of the input a certain action may
be associated. It may be used for testing the input consistency.

73

User support for query generation and other tools

• A clear structure of the user interface also is important. For this purpose, numerous container
widgets can be used. They serve to specify the Iayout of the user interface.

The same tools may be employed for schema evaluation. Schema evaluation is described in

chapter 3.

Furthennore, a number of tools, which may also use a graphic user interface created with Tel,
have to be realized for DB administration.

One of the most important tools is the data browser. It gives a complete survey of the database: it
shows all data used, their access paths, the perfonnance parameters of the computers involved in
the data network, etc. Realization of an appropriate user interface requires numerous elements:
besides popup and pulldown menus for the execution of user commands, graphics for the repre
sentation of state information, scrolllists, from which the elements are selected, elements for set
ting of parameters, etc. are needed.

74

Chapter 7 Feasibility analysis

7.1 Denabts

At this point, FZI feels compelled to express some doubts concerning RODOS and integrated
data management. These doubts can be divided into several categories. At first, a nurober of
unknown factors exist, such as the scope of the data to be managed in RODOS, the access behav
iour, etc. This information largely consists of quantities (that can be calculated). They have tobe
specified more precisely in order to be able to decide later on, whether requirements based on
them are met or not. However, some of the corresponding questions will probably be answered
upon the completion and acceptance of the first prototype only, e.g. in the form of performance
measurements. Up to date, statements as to the functional scope planned or the runtime perfor
mance of RO-D IM have only been made within the framework of the present study. It is therefore
nearly impossible to make Statements regarding the actual use ofRODOS. This especially applies
to RO-DIM performance in an emergency. Other doubts refer to general technical and special
database-technical aspects as weil as to the organization.

7.1.1 Unknown factors

It became obvious during previous discussions that it is impossible to obtain precise information
on all the servicestobe rendered by integrated data management of RODOS. An exact and com
plete specification of the requirements in the form of a system specification of course can hardly
be made at the moment. As outlined in chapter 2, precise specifications have been made neither
for the validation scenario of the first prototype nor for the emergency. Most important unknown
factors are given below (unless otherwise provided, they shall apply to the first prototype and the
entire project both for normal and emergency operation):

• Data structures and scope
At the moment, precise Statements as to the data to be managed in RODOS are unknown to
FZI. They have only been divided into the categories mentioned in the previous chapters,
namely, knowledge data, measured values (real-time data), etc. Further classification e.g. in
the form of concrete schema descriptions are not known, nor is the scope of the data to be
managed in RODOS at the various places.

75

Doubts

• DB Operations, data transfer and transaction volume
It is not known which DB operations will have to be carried out at which times. Up to now,
only basic lirnitations are planned. The scope of DB operations expected is unknown. Their
number depends on the transaction volume expected per node. Neither is this known, nor the
scope of the data that have to be transferred by DB operations.

• RODOS applications
It is not known which and how many applications are to be applied in RODOS and which
capacity (CPU performance, primary and secondary storage capacity, network transfer rate,
etc.) will be required. Many of these data items shall be obtained from the emergency opera
tion plans. They have to be deterrnined in the course of time in order to be able to assess reali
stically the applicability of the entire system.

• Scheduler
Few parameters only are known for the RO-DIM scheduling component. They shall originate
from various fields. For the RODOS applications, e.g. their type and scope, their importance in
an emergency, the dependences among them and on the data used by them, etc. should be
known. Other factors, such as the type, scope and importance of DB operations, machine
capacities and Ioads, network capacity and Ioad, etc. may be added. In a second prototype at
least, these parameters shall be covered in further detail.

., Secondary memory
The actual secondary storage capacity of the applications and RO-DIM can hardly be estima
ted in advance. During local schema modifications at least (s. chapter 3), extremely high
secondary storage capacity may be needed due to double data storage. Deliberate multiple data
storage may also be necessary to ensure that the entire system is functioning as reliably as pos
sible.

7.1.2 General technology

Given the complexity of the entire RODOS system and its extremely high functionality and per
formance, which are required in an emergency at least, it is not sure, whether the planned hard
ware and (system) software are sufficient. This aspect (unfortunately) cannot be clarified in
advance, as the actual requirements to be met by the RODOS system are still very vague. As an
ideal conception, some critical factors shall be listed below:

• Hardware performance
The hardware applied may not be efficient enough. At least it is not sure, whether sufficient
performance reserves will be available by scaling in the form of additional (autonomous)
workstation systems or workstation clusters. This question may probably only be answered
satisfactorily by means of simulations and more precise performance requirements.

• Network
Capacity and behaviour of the network represent an unknown and sometimes critical quantity
in particular in systems using widely distributed networks. The currently specified data trans
fer rate of 4 Mbitper second (s. chapter 2.5.2) may be too small for the !arge amounts of data
to be transferred. The network may also be a weak point of the entire system, if it is not availa
ble in a sufficiently redundant manner.

76

Doubts

• Framework
The entire RODOS system should have a better control of the tools used such that they can be
excluded according to their importance, if applicable. Forthis purpose, further descriptions of
the tools, their users, their importance in the case of use, the data handled by them, etc. are
needed. Emergency operation plans may serve as a first basis.

7.1.3 Database technology

In analogy to the previous chapter, major problems arising in the field of database technology
shall be outlined:

" Integration and distribution
A level for the integration of heterogeneaus and distributed database systems requires an addi
tional management expenditure in the form of computing power and storage capacity. Hence,
it contradicts the requirement of a soft integrated real-time data or system management (real
time transactions). Both the integration of database systems as well as their real-time require
ments are still subject of research such that a complete range of reliable results does not yet
exist. To achieve acceptable solutions, comprornises will have to be made between the functio
nal and the performance requirements to be met by the RODOS integrated data management.

• Database management systems
he local relational DB management systems planned to be used in RODOS are no real-time
DB management systems. A system that integrates these systems in the form of a multiple
database system depends on the basic components. Hence, it can meet _soft_ real-time requi
rements (at the most).

• Relational database systems
In various studies it was pointed out that relational database systems do not exhibit an extre
mely good performance in geographical data processing, CAD/CAM, CASE, knowledge pro
cessing, etc., which shall be employed in RODOS in a similar form. In general, they are not
ideally suited for the management of complex structured data. Relational systems have to
reflect complex data structures in the form of various relations. Subsequent combination to
initial data takes much time. Therefore, a system that can manage variably structured in addi
tion to relational data would be very useful. Examples are the so-called object-relational data
base systems.

• Time behaviour
As indicated above, the requirements made on the RO-DIM time behaviour, in particular with
regard to the ten-minutes actualization intervals in an emergency, cannot be assessed without
further information. This includes the above-mentioned knowledge on the data structure, the
queries expected, the data and transaction volume, etc. (Even with this information, first simu
lations using the first prototype will be required). In analogy to the scaling of the entire
RODOS system, it is not sure, whether scaling over e.g. three workstation clusters can be
transferred to higher numbers.

• Organization
Organizational aspects are not covered by FZI. Nevertheless, it must be pointed out that the

77

Use oftools

administration of the RODOS integrated data management will represent a very demanding
organizational task already (see also chapter 3.2.1).

7.1.4 Conclusions

RODOS integrated data management is a technical challenge. In spite of the doubts expressed
above, continuation of the project would be reasonable. However, the partners involved must be
ready to make compromises. The major difficulty of this project consists in the unknown factors.
As long as they are not quantified, no measures can be fixed for a service being fulfilled or not.
They can only be given to the extent specified in the present study. Therefore, it must be objective
of the first prototype to get to know the actual system requirements in more detail.

The general technical doubts seem tobe more or less solvable by an increased resource expendi
ture, if all other methods fail. This, however, does not apply to the conception of the entire system
as a framework. This aspect should be covered in more detail in the next prototypes at least. The
dependence and priority descriptions may represent a first step in this direction. Information on
short-comings may be supplied by the first prototype. Moreover, scaling of the entire system will
have to be checked.

The doubts expressed in the database field cannot be dispelled completely. Provided that adequate
tools are available, integration and access to the partial database systems seem to be soivabie
from our point of view. In the prototype, the respective basic mechanisms can be applied. This is
an important argument speaking in favour of the construction of the first prototype. It is not sure,
however, whether the integration requirements can be combined with the time performance
requirements, as the latter are rather vague. There are many possibilities to increase system per
formance. With the first prototype being available, performance measurements and Ioad simula
tions can be carried out, on the basis of which conclusions can be drawn with regard to
performance Iimits and short-comings. Then, it can be decided on special measures to be taken
for increasing the performance.

7.2 Use of tools

Development of RODOS integrated data management practically represents the new develop
ment of the basic components of a heterogeneaus distributed multidatabase system. Even if
mainly functional system requirements have been specified up to date, maximum performance
and, hence, soft real-time requirements remain. Adequate software tools are required to find a sat
isfactory solution for all partners within a period of 1.5 person-years. It must be noted that the use
of tools for the first prototype does not necessarily mean that they are also used in the entire
project. In the first prototype, the actually required functionality of integrated data management in
RODOS should be determined. If necessary, this functionality can be post-implemented for
RODOS use with special attention being paid to performance aspects. Type and scope of the tools
used will inftuence the performance of integrated data management considerably.

78

Use of tools

In this chapter, the tools shall be presented briefiy in accordance with the descriptions and specifi
cations of the manufacturers. When the boundary conditions (in particular financial) for the type
and scope of the use of tools will have been specified in further detail, their performance proper
ties will have to be investigated for selection.

As already mentioned in previous chapters, the use of software tools is reasonable for the realiza
tion of the following tasks: integration of heterogeneous database management systems (RO
DIM), development of graphic user interfaces and knowledge management.

7.2.1 Functionality of the tools

Generally, two groups of software tools can be distinguished. The first group includes pure devel
opment tools, such as compilers, development environments, etc. They have already been pre
sented briefiy in chapter 2 such that the present chapter shall be restricted to the tools of the
second group. This group is made up of tools providing a certain additional functionality e.g. in
the form of function libraries. Their functionality needed may be divided into various fields
according to the previous chapters. These are:

.. General services and communication
This includes above all function libraries offering standard interfaces for basic operating
system services, such as file and storage management, timer functions, etc. Mechanisms for
communication in networks e.g. in the form of libraries for the use of socket links and user
authorization are added. Commercial and freely available libraries exist for the services men
tioned.

• DBS link
This includes services allowing a standardized access to heterogeneous relational DBMS
(drivers). Examples of an access interface arepartial sets of Dynamic SQL or in general a
common SQL dialect, class libraries offering an object-oriented view of relational data, etc.
(see chapter 3). Some tools in the form of class and function libraries have already been made
commercially available. A standardized partial set of Dynamic SQL may also be applied.

• DBS integration
This function comprises the central RO-DIM Ievel. It makes available transactions via distri
buted database systems, two-phase commit, global schema management and integration. In
this field, known products hardly exist. Two commercial products cover some parts of the total
functionality required.

• GUI development and DBS link
These are tools for the development of the simple graphic RODOS applications mentioned in
the previous chapter. For the development of graphic interfaces, a multitude of commercial
products exist, ranging from simple interface generators to complex development environ
ments. A compromise solution in the form of a freely available package, such as the TclJTk
presented in the previous chapter, would be suitable. Another tool is the DBS link of a genera
ted interface. It is the link between the graphic interface and integrated data management

79

Use of tools

below (RO-DIM) and the prerequisite for the development of RODOS applications. This
aspect is covered by some of the commercial products only. It is not contained in Tcl/Tk.

" Expert system shell
For the development of knowledge-based RODOS applications, an expert system shell shall
be employed (chapter 5). In such a shell, the rule sets required for RODOS can be managed
such that data in the form of facts only have to occur in the actual RODOS databases. Com
mercial and freely available tools exist for this purpose.

7.2.2 Short description of some tools

In this chapter, some commercial tools that seem to be suitable for use in this project shall be
described briefly. As a basis, talks with the manufacturers and Ieaflets have been used. Therefore,
further evaluation is required prior to the decision on their use. The tools presented here are only
a part of the products studied by FZI. As a detailed market analysis is not the objective of this
study, some systems of particular interest only are listed.

While the results achieved using tools of the above-mentioned first group are mostly free of
deployment royalties, this often is not the case for the tools of the second group. However, pack
age licences can be obtained.

7.2.2.1

The JAM6 tool of the Jyacc company is a development environment for client/server database
applications. A major constituent is the user-friendly and intuitively operable interface generation
and its link with the database interface. Via drag-and-drop, the latter allows to integrate database
objects from the system's visual object repository in its own applications. Integration of distrib
uted databases cannot be performed directly. The interface to the database link is defined in the
form of a SQL generator. A standard SQL dialect is made available by a C library for the support
ingDBMS.

Evaluation:
DBS link acceptable, DBS integration not, GUI environment good

Prices:
it is an advantage of JAM6 that applications created with it are free of deployment royalties. At
the moment, only the prices for commercial use are known. They amount to about TDM 15.- for a
minimum of five users. In this case, user means developer only, as no fees have to be paid for the
ready applications. Discounts for non-commercial use in the scientific field may be possible.

Systems:
the system is portable with regard to both the existing database interfaces (more than 20) and the
supporting operating systems (many Unixderivatesand others).

80

Use oftools

7.2.2.2 Openinterface

Openinterface of Nexeus/Neuron Data can be compared with Jam6. lt supports the developer in
the form of extensive libraries with interfaces to databases and integrates user interfaces devel
oped by the user. The entire system is conceived in a very open manner to allow interference.

Evaluation:
DBS link above average, DBS integration not, GUI environment good

Prices:
under certain circumstances, no deployment royalties or lump sums are charged for non-commer
cial, scientific applications. The commercial prices of one-person development Iicences amount
to about TDM 30.-. Good terms are offered for non-commercial, scientific applications, in partic
ular discounts of 40 - 50% for the delivery of a higher number of systems.

Systems:
he major operating systems (SunOS/Solaris, HP-Ux, IBM-Aix, SGI-Iris and PC systems) as weil
as large DBMS are supported.

7.2.2.3 Uniface-Six

Uniface-Six is a product of the Uniface company in the Netherlands. It represents an integrated
environment for the realization of technology-independent database applications. Functionality of
this product is based on three major concepts: model-based development, ANSIISPARC 3-level
schema architecture and extended client/server architecture. Thus, new applications accessing
heterogeneaus data can be implemented rapidly and efficiently. The tools support the generation
of graphic user interfaces. The client/server architecture is based on the 2 PC log.

Evaluation:
DBS link good, DBS integration partly, GUI environment above average

Prices:
Uniface-Sixis licenced. Besides development licences, deployment licences are needed. The first
offer submitted amounts to TDM 138.- for 100 computers including all drivers. The prices can be
negotiated.

Systems:
the system offers database drivers for 17 common database systems on several operating systems.

81

Use of tools

7.2.2.4 UniSOL

The UniSQL/M product of the UniSQL company represents a modern high-performance system
for accessing distributed database systems. It was generated in 1992 by transferring research
results to industrial practice. The system already realizes parts of a multidatabase system accord
ing to the 5-level schema architecture presented in chapter 3. Integration of partial database sys
tems is achieved by an object-oriented view. In addition, the system can manage its own object
structures. It therefore belongs to the class of promising object-relational systems. On its basis,
the most complete version - of RO-DIM at least- may be implemented. Products e.g. in the form
of a graphic · interface generation, which can be connected easily with data management, are
added.

Evaluation:
DBS link good, DBS integration far above average, GUI environment above average

Prices:
for non-commercial use at university andin research, prices in the order of $ 15,000.- to 20,000.
have been fixed for 100 users in Europe. The prices can be negotiated.

Systems:
all common Unix systems, such as SunOS/Solaris, HP-Ux, IBM-Aix, SGI-Iris, OSF/1 and PC
systems as \Vindows-client a..1d NT server. The relational DBMS Oracle, Sybase, Ingres and Rdb,
the object-oriented Versant systems as well as UniSQL/X contained in the scope of services are
supported directly. A generic driver generator for relational DBMS is added.

7.2.2.5 Other products

Orbix of IONA represents an efficient CORBA implementation and, hence, supports communica
tion and distributed objects. It may be employed for the implementation of the global data dictio
nary. Similar libraries of other manufacturers also exist.

Db.h++ of Rogue Wave is a C++ class library, by means of which heterogeneaus relational
DBMS with an object-oriented view can be integrated. Approaches are affered for distributed
transactions, provided that these are supported by the basic systems. Of all class libraries of this
type, this product seems to be very complex.

Finally it must be pointed out that none of the software tools analyzed meets .all requirements
made in the RODOS project. A large part of the functionality required has tobe implemented sep
arately. Strongly integrating systems, such as UniSQL and Uniface, are expected to provide the
most complex solutions, but hardly offer complex opportunities of interference e.g. for increasing
the performance. In cantrast to this, far smaller solutions are expected from RO-DIM _assembly_
of the first prototype using components that have partly been purchased and partly been devel
oped on our own. Of course, further interference in alllevels of the entire system may be possible.
As the first prototype shall allow above all the recognition of the actual functionality required and
short-comings, use of the complex integration tools is recommended.

82

ldeas for increasing the performance

7.2.3 Economic aspects

When implementing a complex information system, two alternatives are available: use of com
mon software tools or own implementation of the complete functionality.

Due to the special requirements of the RODOS project, it is nearly impossible to find tools, which
provide the total functionality required. In any case, part of the functionality and the adaptation to
the particular situation have to be supplied by FZI. The advantage of this solution is the costs. The
purchasing price for all tools required by FZI amounts to about TDM 150.- europeanwide. The
corresponding offers have already been submitted to FZI. This price includes both the respective
development licences as well as deployment licences for 100 computers in Europe. Software
maintenance costs (including hot line and software updates) amount to about 15% of the purchase
price. A maintenance contract is of crucial importance for an information system with various
hardware and software platforms and frequent software updates (among others new versions of
operating and database rrranagement systems) being expected. The total costs of this solution are
far smaller compared to the implementation and maintenance by FZI (not possible) or a software
hause over the entire service life.

The altemative consists in the own implementation of the entire system. The advantage of this
solution is that the users are independent of (one or several) institutions affering software and that
the programmes can be modified in any way with modifications in the source code also being pos
sible. The drawback consists in the high maintenance and support costs (and the above-mentioned
limitations).

Consequently, the use of software tools to the largest possible extent is recommended by FZI.

7.3 ldeas for increasing the performance

Performance of the RODOS system as a distributed emergency system can be increased at many
points. Some ideas shall be outlined below:

• Introduction of the process concept
Specification of the decision process, i.e. the sequence in which application programmes and
in particular data generators and consumers are started, allows to reduce the nurober of data
base accesses (no more _empty accesses_), aceeierate decision-finding (just in time_ queries)
and increase the decision quality (always the latest data).

• Global query optimization
One of the most efficient methods of increasing the performance is global query optimization.
For this, statistical data on the data stocks (number of tuples per relation, probable nurober of
scores per query) as well as the actual technical parameters of the hardware (actual transfer

83

Future activities

rate in the network, size of the shared memory, etc.) are needed. For global query optimization
algorithms known from parallel database systems can be applied.

" Last balancing in Workstation clusters
Automatie last balancing in workstation clusters prevents short-comings taking into account
the actualload by application programmes.

" Storage of queries as stored procedures
Additional increases in performance can be achieved by the storage of frequent queries as
stored procedures in the database systems, provided that this concept is supported by the data
base systems.

This list does not claim to be complete. It will be extended as soon as first experience will have
been gained from the prototype.

7.4 Future activities

FZI suggests to divide the development of the first prototype into several working steps. Accord
ing to the working programme, 2 members of the FZI scientific staff will be involved in the
project. Adherence to the schedule can only be ensured by the extensive use of software tools.

7.4.1 FZI working programme

" 1 October 1994 start of project
selection (evaluation and test installation)
of the tools for database integration,
GUI generation and of an expert system shell;
consideration of additional requirements of
system specification in cooperation with D.T.I.
detailed planning of project - detailed estimation of expenditure;

" 15 January 1995 1st milestone

" 30 April 1995 2nd milestone
demonstration of the knowledge management component,
the measured data management component and the GUI

" 31 August 1995 3rd milestone
demonstration of the database integration component

• 31 August 1995 start oftest phase
evaluation of the prototype

• 30 September 1995 end of project

• after
30 September 1995 planning of the second prototype

84

Future activities

•

7.4.2 working programme (proposal)

• 30 November 1994 preparation of system specification
(Which and how many computers with which
capacities are expected?
Which DBMS shall be applied?
Contents, type, place of the databases used
(database schemas with descriptions,
amount of data, test data);
RODOS applications involved;
type and scope of DB operations and DB options,
if necessary, transfer and transaction volumes;
time specifications;
detailed descriptions and specification ofmeasured data and knowledge management)

• 30 March 1995 technical aspects, such as access paths, computer names,
network specifications, etc.;
integration functions;
development of the evaluation scena...-io

" until 30 September 1995 project management, consulting

85

Chapter 8 Summary

8.1 Project definition

The RODOS project is aimed at designing and implementing an integrated information system
for use following the release of radioactivity. This system is applied supra-regionally for the coor
dination of protective measures in a network of heterogeneaus computers (heterogeneous com
puters, software tools and database management systems).

The present study includes a feasibility analysis of integrated data management, which may be
implemented in spite of the extremely high complexity of the entire system.

8.2 Special features

• Due to its planned field of application, RODOS will have to meet a number of novel require
ments:

• Integration of heterogeneaus data
The RODOS integrated information system manages a number of data stocks. As most of
these data already exist, the data schemas can no Ionger be modified. Other data are especially
designed and implemented. The integration and transparency principle applies to all data.
Both the users and the application programmes address the data by using a common data
schema. There are no differences when accessing local or removed data.

• Support in an emergency
The emergency, i.e. a situation where measures for the protection of the population have to be
initiated and coordinated, has to be handled in a special way. The queries of deciding authori
ties are processed with priority, non-critical operations are rejected.

• Soft real-time requirement
In an emergency, the deciding authorities shall be provided with information on the current
situation every ten minutes. This soft real-time requirement shall be met by RODOS, even if
the information desired is located on several distant computers.

• Measured-data management
Measured data describe the current parameters of the environment. They serve as arguments in

86

Doubts

decisions. Measured data are characterized by high amounts and special access pattems. This
type of data shall be managed in accordance with the requirements.

• Knowledge management
To initiate decisions for the implementation of protective measures in a europeanwide consi
stent manner, global management of the facts only is insufficient. In addition, common proce
dure regulations, i.e. the knowledge as to when a measure is initiated, are needed. This
knowledge also shall be managed in the common data stocks.

8.3 Doubts

Several general, technical and organizational doubts were discussed in chapter 7 .1. Due to the
vague specification of important technical parameters, such as the size of the data stocks or data
transfer volume in an emergency, some of them cannot be dispelled. In this situation, they can
only be verified by tests of the RODOS prototype. The first prototype, which will be installed on
a Workstation with a processor, may exhibit an insufficient perfonnance. In case of short-comings,
the problems may be solved by increasing the hardware capacities.

8.4 Future activities

The present study has shown that the functionality required for the RODOS system can be imple
mented. To realize the first prototype in the planned time, software tools have to be applied. The
advantage of the use of tools does not only consist in a reduction of the prototype implementation
time, but also in a decrease of the maintenance costs and a simple portability of the RODOS sys
tem to new hardware and software platforms.

The future activities were presented in chapter 7 .4. To achieve the best possible results, the
requirements to be met by the system have to be specified very precisely. At the same time, tool
evaluation and selection can be started. Implementation takes place upon the completion of this
phase only. The supply and testing of the first prototype represent an important step towards the
realization of the system.

87

Chapter 9 References

Proceedings

[BTW93]

[CoiS94]

[lvU93]

Herausgeber: W. Stucky, A. überweis: "Datenbanksysteme in B_uro, Technik
und Wissenschaft", Braunschweig, Deutschland, 1993, Tagungsband

Herausgeber: M. Brodie, M. Jarke, M. Papazoglou: "Proc. of the 2nd lnt. Conf.
on Cooperative Information Systems", Toronto, Canada, 1994, Tagungsband

Herausgeber: R. Denzer, W. Geiger, R. Güttler: "1. Workshop Integration von
Umweltdaten", Dagstuhl, Deutschland, 1993, Tagungsband

Articles, Bocks

[AbGa92]

[ACM90]

[BCLM94]

[BeGr92)

[BLN86]

[BrToRo94]

[Date90]

[DSS93]

[DTI94]

[Fahl94]

R.K. Abbott, H. Garcia-Molina: "Scheduling Real-Time Transactions", in ACM
Transactions on Database Systems, Vol. 17(2}, 1992, pp. 513

ACM Computing Surveys 22: "Speciallssue on Heterogeneaus Databases", Vol.
22(3}, ACM Press, 1990

M. Bauer, N. Coburn, P.A. Larson, P. Martin: "Managing Globalinformation in the
CORDS Multidatabase System", in [CoiS94], pp. 23

D. Bell, J. Grimson: "Distributed Database Systems", Addison-Wesley, 1992

C. Batini, M. Lengereni, S.B. Navathe: ,,A Comparative Analysis of
Methodologies for Database Schema Integration", ACM Computing Surveys,
Vol. 18(4}, 1986, pp. 323

B. Bruegge, K. O'Toole, D. Rothenberger: "Design Considerations for an
Accident Management System", in [CoiS94], pp. 90

C.J. Date: "An lntroduction to Database Systems", Vol. I, Addisön-Wesley, 1990

Herausgeber: F. Redmill, T. Anderson: "Directions in Safety-critical Systems",
Bristol, UK, 1993

Dr. Trippe lng. Büro (M. Rafat): "RODOS", DTI, Karlsruhe, 1994

G. Fahl: "Object Views of Relational Data in Multidatabase Systems", Licentiate
Thesis, Universit at Link oping, Schweden, 1994

88

[FrLa93]

[FZI93a]

[HeSc93]

[Heue92]

[HoK_o93]

[HSJHK94]

[lona93]

[Kent89]

[Kram92]

[MeSi93

[MetAI94]

[Miso93]

[OMG92]

[Oust94]

[PRR91]

[RaSc94]

[SADL094]

[Sch_u93]

[TaVa91]

J. Frohn, G. Lausen: "Integration heterogener relationaler Datenbankschemata
mittels eines objektorientierten Datenmodells", in [BTW93], pp. 285

Herausgeber: E. Casais, C. Lewerentz: "Getting Started with OBST - System
Documentation", FZI Karlsruhe, Deutschland, 1993

I. Henning, F. Schmidt: "Integration von Daten und Methoden im
Umweltinformationssys. des Landes Baden-Württemberg", in [lvU93], pp. 75

A. Heuer: "Objektorientierte Datenbanken", Addison-Wesley Deutschland, 1992

U. Hohenstein, C. Körner: "Object-Oriented Access to Relational Database
Systems", in [BTW93], pp. 246

T. Hartmann, G. Saake, R. Jungclaus, P. Harte!, J. Kusch: "Revised Version of
the Modelling Language TROLL Version 2.0", TU Braunschweig, Deutschland,
1994

IONA: "The Orbix Architecture", IONA Technologies Ud., 1993

W. Kent: "The many forms of a single fact", in proc. IEEE Compcon 89, San
Francisco, USA, 1989, pp. 27

R. Kramer: "Steuerung der Anfragebearbeitung in parallelen Datenbanksy
stemen", Dissertation, FZI Karlsruhe, Deutschland, 1992

J. Melton, A.R. Simen: "Understanding the new SOL: a complete guide", Morgan
Kaufmann Publishers, 1993

P.E. Mantey et al.: "REINAS: Real-Time Environmentallnformation Network and
Analysis System", University of California, USA, 1994

Microsoft: "Open Database Connectivity", Microsoft Press, 1993

Object Management Group: "Object Management Architecture Guide", Object
Management Group, 1992

John K. Ousterhout: "Tel and the Tk Toolkit", Addison-Wesley, 1994

W. Perrizo, J. Rajkumar, P. Ram: "HYDRO: A Heterogeneaus Distributed
Database System", in ACM SIGMOD, North Dakota, USA, 1991, pp. 32

E. Radeke, M. Scholl: "Federation and Stepwise Reduction of Database
Systems", in proc. Applications of Databases, Link_oping, Schweden, 1994, pp.
381

M. Stonebraker, P.M. Aoki, R. Devine, W. Litwin, M. Olson: "Mariposa: A New
Architecture for Distributed Data", proc. IEEE Conference on Data Engineering,
1994, pp.54

T. Schütz: "Der Umwelt-Datenkatalog Niedersachsen", in [lvU93], pp. 20

M. Tamer Özsu, P. Valduriez: "Principles of Distributed Database Systems",
Prentice-Hall, 1991

89

	Blank Page

