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Abstract 

Future generations of pressurized water reactors (e. g. the 

European Pressurized Water Reactor EPR) will have to realize safety 

concepts 1 which go significantly beyond the present standard. With 

respect to a severe core melt down accident 1 precautions need to be 

taken to ensure Coolability of the corium melt and the integrity of 

the containment under all circumstances. In detail a reference concept 

relies on (a) accumulation of the melt below the pressure vessel 1 (b) 

dry spreading and stabilization of the melt on a horizontal spreading 

area of sufficient extent 1 (c) passively initiated flooding of the 

spreaded melt from above using water, (d) removing the decay heat 

means of natural circulation within the pool and to the outside by 

immersed coolers connected to external heat exchangers. 

The spreading of the corium melt on the spreading area 

represents one of the crucial questions as it determines the outcome 

of the scenario: If the melt spreads far enough 1 the thickness of the 

melt layer will be sufficiently small to ensure its coolability. On 

the other hand 1 if solidification within the melt restricts spreading 1 

we are left with a large thickness of the melt layer. Thus 1 complete 

decay heat removal through the upper melt surface will not be possible 

leading eventually to a heat up of the mel t and subsequently to 

erosion of the basemat material. Solidification may occur since the 

melt is strongly cooled from above by radiation and from below by some 

conduction within the basemat material. 

From the above concept we conclude that spreading in presence 

of major solidified portions is the most critical configuration 1 

leading eventually to a stop of the spreading flow. This problern is 

the focus of several investigations at the Forschungszentrum Karlsruhe 



(FzK). In the framework of the large-scale KATS experiments the 

spreading of both metallic and oxidic components of a Thermite melt in 

ceramic-coated channnels is investigated. In parallel, physical models 

are being developed to describe the flow, heat transport and 

solidification processes during the spreading. Hereby additional 

small-scale experiments using low-melting waxes and alloys are 

performed to identify the basic physical phenomena. The present paper 

focuses on the development of models for the spreading flow. A 

dimensional analysis in conjunction with a scenario discussion is 

given. 



Zusammenfassung 

Ähnlichkeitsanalyse und Diskussion möglicher Szenarien 

zur Ausbreitung einer Corium Schmelze 

Zukünftige Druckwasserreaktoren wie der EPR werden bezüglich 

der Sicherheitskonzepte wesentlich weiter gehen als der derzeitige 

Standard. So müssen im Falle eines schweren Kernschmelzunfalls 

Maßnahmen getroffen werden, welche die Kühlbarkeit der Schmelze und 

die Integrität des Containments unter allen Umständen sicherstellen. 

Im einzelnen ist vorgesehen, (a) die Schmelze unter dem Druckbehälter 

aufzufangen, (b) die Schmelze danach auf einer ausreichenden Fläche 

trocken auszubreiten, (c) die ausgebreitete Schmelze passiv initiiert 

mit Wasser zu fluten und (d) die Nachzerfallswärme durch Zirkulation 

an sekundäre Wärmetauscher abzuführen. 

Die Ausbreitung der Schmelze spielt hierbei eine 

Schlüsselrolle, da dieser Ablauf die Kühlbarkeit festlegt: Breitet 

sich die Schmelze vollständig aus, so wird die Schichthöhe genügend 

klein, um die Kühlbarkeit zu garantieren. Andererseits kann eine durch 

Erstarrung bedingte, unvollständige 

Schichtdicken führen. Dann ist die 

Ausbreitung 

vollständige 

ZU großen 

Abfuhr der 

Nachzerfallswärme über die Oberfläche nicht sichergestellt und eine 

Aufheizung der Schmelze wird möglich. Dies bedingt die Gefahr einer 

Erosion der Bodenplatte. Erstarrung während der Ausbreitung kann 

auftreten, weil durch Strahlung eine effektive Kühlung der Schmelze 

von oben zu erwarten ist. 

Aus dem oben Gesagten kann gefolgert werden, daß die 

Ausbreitung in Anwesenheit größerer erstarrender Anteile die 



kritischste Konfiguration darstellt, welche unter Umständen die 

Ausbreitung gänzlich verhindern kann. Das Problem der 

Schmelzausbreitung wird derzeit an verschiedenen Stellen im 

Forschungszentrum Karlsruhe (FzK) untersucht. Mit den großskaligen 

KATS-Experimente wird die Ausbreitung beider Komponenten einer 

Thermitschmelze in Keramikkanälen betrachtet. Parallel hierzu werden 

physikalische 

Wärmetransport 

Modelle 

und 

entwickelt, welche 

die Erstarrung 

die Strömung, den 

in einer solchen 

Ausbreitungsströmung beschreiben. Hierzu werden auch kleinskalige 

Experimente durchgeführt, welche in Wachs und Woodsmetall die 

grundlegenden Phänomene studieren. Der hier vorliegende Bericht 

beschäftigt sich mit der Modellentwicklung für Ausbreitungsströmungen, 

indem auf der Basis von Ähnlichkeitsüberlegungen die möglichen 

Szenarien diskutiert werden. 
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Nomenclature 

Bi 

Ca 

c 
p 

Fr 

g 

H 
0 

H(t) 

H (X, r) 

'H (") 

L 
0 

p 

p 

Pe 

Pr 

q 

q 

Q 

Re 

t 

T II ' IC 
0' 0 

T 
(() 

T 

T 
s 

T 

u 
0 

Biot number, 

capillary number, 

specific heat of melt, 

Froude number, 

gravitational acceleration, 

vertical extend of spreading layer, 

melt height in pool, 

solution for the liquid/gas interface, 

shape function, 

horizontal extend of spreading layer, 

pressure in melt, 

dimensionless pressure in rnelt, 

Peclet nurnber, 

Prandtl number, 

strength of volume source, 

internal heat sources in rnelt, 

dimensionless heat sources, 

Reynolds number, 

time, 

initial ternperature, kinernatic viscosity 

and thermal conductivity of rnelt, 

arnbient temperature, 

ternperature in melt, 

solidification temperature, 

average interface ternperature, 

inflow velocity (at the gate), 



u, w 

u, w 

X, Z 

X, Z 

p 

a 

a 

T 

8 

8 

velocity components in melt, 

dimensionless velocities, 

spatial coordinates, 

dirnensionless coordinates, 

aspect ratio, 

exponent of time-law of volurne, 

emrnisivity of interface, 

local dynamic viscosity of melt, 

heat conductivity of melt, 

similarity variable, 

density of rnelt, 

surface tension, 

Stefan-Boltzmann constant, 

dirnensionless time, 

dimensionless melt temperature, 

dirnensionless solidification temperature. 



l.Introduction 

To ensure the coolability of malten core debris as a 

consequence of a severe accident in a future European Pressurized 

Water Reactor (EPR), a core catcher design has been developed which 

relies on dry spreading of the core melt as the basis for a further 

cooling of the solidified layer. The spreading area is given as a 

solid concrete plate covered by ceramic tiles, preventing as rnuch as 

possible an interaction of melt and structure material. The design 

concept is aimed at controlling the melt spreading in two steps. 

Firstly, after a large-area failure of the reactor pressure vessel the 

core debris are collected in a storage compartment below the pressure 

vessel (cf. I in figure 1). Due to internal heat sources the melt will 

be heated up and a homogeneaus melt pool is expected to form. 

Secondly, the interaction of the hot melt with a properly designed 

gate leads to a gate failure at a defined temperature (II), thus 

initiating the release of the melt into the spreading compartment.As 

illustrated in figure 1, the gate is positioned between the rnelt 

storage compartment and the melt spreading area. It is pointed out 

here, that the controlled interaction of the melt with the gate 

material and the "defined" opening of the gate at a certain 

ternperature level are of crucial importance and particular 

investigations on this problern are to be performed which are not the 

subject of this paper. During the first period there might be likewise 

interactions of the hot melt with the structure material of the 

storage compartment. These interactions can be minimized by covering 

the concrete adequately with refractory material. Once the gate 

opened,thirdly, a spreading of the melt occurs. Here three different 

regimes of melt spreading may be distiguished, depending on the 
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initial conditions in the melt (cf. III in figure 1): the 

inertialjgravitational regime, the viscousjgravitational regime and 

the crust controlled regime. These various types of spreading will be 

discussed below. 

There are two other possibilities, which may change the above 

discussed scenario: a) If the reactor pressure ves.sel fails by a small 

break and at high temperatures, a hot melt jet will be ejected 

interacting with the structure material of the basemat structures 

(IV). This may lead to erosion and possibly to a failure of the 

structure if no sufficient protection by means of refractory ceramic 

material is provided. b) A small size leakage in conjunction with 

temperatures close to the solidus temperature may lead to a build-up 

of a debris pile consisting of solidified melt contacting the 

structure (V), preventing at least for some time the formation of a 

homogeneaus melt pool as intended (I). This problem, however, might 

exist only for a certain period since internal heat sources will heat 

up the debris pile leading to a configuration similar to the case 

IIIc, the crust controlled regime. 
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Figure 1: Passihle canfiguratians. 
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2.Dimensional Analysis 

In the remainder of this paper we shall focus on the spreading 

of the melt on the horizontal plane (spreading area), as illustrated 

by III in figure 1. We shall neglect any interactions of the melt with 

the basemat material. Here three different regimes are possible, 

namely inertial/gravitational, viscousjgravitational or crust 

controlled spreading. To infer conditions for the various regimes it 

is helpful to first write down the basic equations and subsequently 

apply an appropriate scaling. From the dimensionless form further 

conclusions can be drawn with regard to the most important effects. 

The basic equations for the plane problern (x,z) are for rnass 

conservation 

u + w 0, (1) 
X Z 

for conservation of momentum, whereas a locally Newtonian liquid is 

considered if we assume ~ ~(x,z), 

p [ U t + UU X + WU Z J -p + ~[u + u J + 2~xux + ~z[uz+ wx]' X XX ZZ 
(2) 

and finally conservation of heat 

(4) 

These equations are generally valid in the liquid domain, 

limited by the solid basemat at z = 0 from below, the symmetry line at 

x = 0 from the left and by the meltjgas interface at z = h(x,t) from 

above. On these boundaries the appropriate boundary conditions have to 

be formulated if a solution of the problern is sought. We continue, 

however, here by building up a scaling of the conservation equations. 

From geometry (cf. figure 1) it is immediately obvious that the 
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vertical length scale H (gate height) is largely different from the 
0 

horizontal length scale, which might be named L . Thus, at least for 
0 

large times, we do have the small parameter E = H /L « 1 
0 0 

From that observation, we immediately infer the scales 

X = X z = 
z 

L ' H ' 
0 0 

u = 
u w w 
u EU 

0 0 

t p 
r = p = 

2' 
L ju J.LU L /H 

0 0 0 0 0 

(T - T ) 
<Xl 

e 
(T -

0 
T ) 

<Xl 

involved. 

(5) 

Besides the separate scales for x,z we have defined a 

transport time scale, a viscous pressure scale and a standard 

temperature scale with 0 ~ 8 ~ 1. Implementing the above scales in the 

conservation equations (1,2,3,4) we get the dimensionless versions 

U +W =0, 
X Z 

-P + U + 
X ZZ 

J.Lz 2 
U +O(E), z 

J.L 

0 = -P 
z 

2 
- -- + 0(€ ) ' 

Fr 

2 
8 +Q+O(E). zz 

(la) 

(2a) 

(Ja) 

(4a) 

Herein we have the dimensionless parameters Reyno1ds number, 

Froude number, Pec1et number and the dimensionless internal heat 

source. The definitions are 
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Re = 

Fr 

Pe 

Q 

u H 
0 0 

2 
u 

0 

g H 
0 

u H 
0 0 

.A (T -T ) 
0 CX> 

(6) 

From the dimensionless set of conservation equations we can 

now draw conclusions with respect to the importance of various 

effects. We continue discussing the momentum equations (2a) and (Ja). 

Vertically a pressure term and a gravitational term arise (cf. 

equation (Ja)). Horizontally an inertia term, a pressure term and two 

viscous terms are present. All of these effects might be important, 

depending on the actual magnitude of the parameters. Thus, a number of 

regimes arise which will now be discussed in detail. 
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2.1 Inertial/gravitational regime 

Clearly, if 

ERe » 1 (7) 

holds, the liquid motion is dominated by inertia effects (cf. equation 

(2a)). From the balance of inertia forces and pressure forces in (2a), 

while viscous forces are neglected, it follows 

p 
X 

0( ERe). (8) 

To maintain the balance between pressure forces and gravi tational 

forces in equation (Ja) we have to have 

P = 0( !Re), 
z 

€Re 
Fr= O(!Re). 

(9) 

(10) 

Formally, from P - 0( ERe) it can be concluded that the (viscous) 

pressure scale ( cf. equation (5)) is not adequate for this 

inertial/gravitational regime. This is not surprising, as the scaling 

has been chosen for the viscous forces to be important. Nevertheless 

the conclusions (8,9,10) can be drawn and remain valid. 

To sununarize, the dri ving of the flow is provided by the 

gravitationally caused pressure distribution. Frorn equation (10) an 

estirnation for the outflow speed can be inferred, narnely 

u - r;; 
0 0 

One should be careful in interpreting equation (11). 

(11) 

H is the 
0 

constant gate height and u is the outflow velocity, provided equation 
0 

(7) holds. Thus, equation (11) gives the outflow velocity if there is 

no forcing by some other mechanisrn. In contrast, if the outflow is 

frorn a filled pool with liquid height H(t) (cf. figure 1, I), 
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Bernoulli's equation might be applied to express the outflow velocity 

u (t). This gives the forced outflow velocity 
0 

u (t) - I 2gH(t)·. 
0 

(12) 

In the inertialjgravitational regime the flow field will have 

a character as sketched in figure 2. We will have uniform velocity u 
0 

across rnos t of the spreading layer of height H . 
0 

In a very thin 

kinematic boundary layer at the solid wall (basernat) the velocity will 

drop from the bulk value u to zero, regarding the no slip condition. 
0 

Only in this thin boundary layer are viscous forces important. The 

thickness of this kinematic boundary layer can be estimated following 

e.g. Schlichting (1982) as 

5 -1/2 

H 
0 

- (Re) 

th 

/ 

Figure 2: Situation in the inertial/gravitational regime. 
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Given this flow situation, the heat transport is now the 

focus. Since in equation (4a) the Pec1et nurober occurs, we have to 

have 

EPe - ERe Pr » 1 (14) 

to obtain a situation such that heat transport is mainly by 

convection. Formally, we then have an analogous form in equations (2a) 

and (4a), i.e. transport of horizontal momentum and heat is analogous. 

In equation (14) the Prandt1 nurober as ratio of kinematic and thermal 

diffusion coefficients depends only on the liquid. For oxidic melts, 

waxes or water Pr ~ 1 holds and therefore equation (14) is valid. A 

typical temperature profile for such a case is sketched in figure 2. 

Most of the spreading melt layer will be at temperature T and only 
0 

very thin thermal boundary layers at the liquid/solid interface and at 

the liquid/gas interface develop. Thus, only within those thin layers 

does conduction play a role, governing the heat fluxes downward into 

the horizontal plane and the radiative losses towards the ambient gas. 

Due to different heat fluxes, the upper and the lower thermal boundary 

layers are not equal in thickness. However, the order of magnitude of 

both layer thicknesses is comparable and can be estimated from 

Sch1ichting (1982) to be 

0 
th 

H 
0 

-1/2 

(Pe) (15) 

The thickness of the thermal boundary layers is already a good 

estimate for the thickness of possibly-forming crusts. 

If we consider a metallic melt, featuring Prandt1 numbers of 

Pr ~ 10-
2
+ 10-

1
, we have to be careful with respect to the validity of 

equation (14). Since ERe » 1 is ensured within the 

inertialjgravitational regime, the product of ERe and Pr might yet be 

-15-



finite. Thus, we would have to preserve both convective and conductive 

transport of heat in equation (4a). That typically leads to thermal 

boundary layers, and therefore crusts, which are not thin. 

The inertial/gravitational regime probably allows for a 

similarity solution of the pure hydrodynamic problem, i.e. of 

equations (1a,2a,3a) in the limit €Re » 1 (cf. Hou1t(1972)). 

z=O 

z=-H 0 

z 

x=O 

Figure 2a: Sketch of the problem. 

X 

Within the inertial/gravitational regime often so-called 

semi-infinite models can be applied. An example will be given here: We 

shall calculate the heat losses and the start of solidification for 

the case of a spreading high Prandt1 nurober melt, cooled from above by 

radiation. As equation (7) always holds within the 

inertial/gravitational regime, large Pr numbers lead to 

€ Pe = € Pr Re » 1. (16) 

The semi-infinite model, thus, is based on an extremely thin thermal 

boundary layer, whereas the flow in the spreading layer is considered 

to be "at infinity". Within this frame, the outer flow at some 
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distance from the liquid/gas interface can be considered as uniform in 

temperature and uniform and parallel in velocity. The flow vector is 

v - (u ,0) and temperature is T . Locally, the meltjgas interface is 
0 0 

likewise parallel to the x-axis. Therefore, we have to solve 

mathematically the following problem: Equation (4a) reduces to the 

parabolic equation 

8 
X 

1 
=- 8 

EPe zz' 
(17) 

which governs the heat transport. Hereby, the thermal boundary 

conditions (firstly in dimensional formulation) 

x=O: T = T 
0' 

ar (18) 

z=O: 
- - -2 2 -

-.\- = h (T-T) =! o (T+T )(T+T) (T-T ). 
aJ CX) a:> (X) az 

apply. These boundary conditions ensure a constant inlet temperature 

T across the layer and give approximately the radiative heat losses 
0 

at the meltjgas interface towards the ambient gas. Herein ! denotes 

the emmisivity, ; the Stefan-Bo1tzmann constant and T is the average 

interface temperature, which might be estimated from the outlet and 

the solidification temperatures as T = (T +T ) /2. 
0 s 

We non-dimensionalize the above boundary conditions using the 

scales in equation (5) to obtain 

X=O: 8 = 1, 

88 
(19) 

Z=O: - -Bi e. 
az 

Herein the dimensionless parameter Bi additionally appears. The 

definition is 

Bi (20) 
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The Biot number quantifies the radiative heat transfer. The 

above dimensionless system of boundary conditions and differential 

equation has the solution (cf. Cars1aw & Jaeger 1959) 

+ (21) 

and therefrom the temperature at the melt/gas interface is given by 

(22) 

We shall expect solidification in principle as soon as 

temperature falls below the solidification temperature T . To form a 
s 

crust of considerable thickness, however, a range of extent c at the 

melt/gas interface needs to be below solidification temperature. Given 

the required crust thickness c, in dimensionless form C - cjH , 
0 

the 

condition is 

8(X=L,Z=-C) ~ 8 
(T -T ) 

s <Xl 
(23) 

s 
(T -T ) 

0 <X> 

The value of L, therefore, will depend on the parameters Bi, 

Pe and 8 . Moreover, a dependence on the required crust thickness C 
s 

follows. Finally, after solving the above problern it is important to 

ensure that the temperature disturbance due to cooling the 

melt/ambient interface has not penetrated towards the bottom of the 

melt. Therefore, S(X=L,Z=-1) should still be close to unity. In other 

words, it needs tobe ensured that the semi-infinite approach holds. 

We now apply the above semi-infinite model to a situation 

related to the KATS experiments. Provided a constant flow rate in time 

is present at the gate, the formation of a solid crust on top of the 

spreading oxidic part of the thermite melt is estimated. Table I gives 
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the properties, initial data and geornetric data: 

heat conductivity Al 0 ). 1.7 Wj(mK) 
2 3 

specific heat Al 0 c 1.65 10
3 

Wsj(kgK) 
2 3 p 

density Al 0 2.8 10
3 3 

p kg/m 
2 3 

viscosity Al 0 4.1 10- 2 2 

f..Lo Nsjm 
2 3 

solidification ternperature T 2054 oc 
s 

initial ternperature T 2150 oc 
0 

initial velocity u 2. 73 mjs 
0 

gate height H 0.05 m 
0 

-ernrnisivity € 0.8 1 

Stefan-Bo1tzmann - 5.7 10- 8 
Wj(m

2
K4

) constant 0 

Table 1: Properties in the KATS experirnents (oxidic rnelt). 

Therefrorn the dirnensionless groups, relevant to the oxidic 

rnelt in the KATS experiments, can be calculated. We get 

Re 9322' 

Pe 3 70950' 

Bi 20.49, 

8 0.9549, 
s 

(Pr = Pe/Re = 39.8). 
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8[1] 

0.8 

0.6 
0 100 

5.0 

zoo X[1] 

10.0 x[m] 

Figure 2b: Temperature profiles along the spreading direction in 
various depths. 

Using this set of parameters, we solve for the temperature 

field and the results are plotted in figures 2b, 2c and 2d. Figure 2b 

shows temperature profiles as function of X for varied values of Z. We 

recognize at the outlet (X= 0) all temperatures at 8 = 1. The 

temperature at the melt/gas interface very soon falls below the 

solidification temperature (dashed line). To evaluate the formation of 

a crust, we have to focus on the temperature profiles in some depth 

beneath the melt/gas interface. The profile 2 mm (1 mm) below the 

melt/gas interface shows temperature falling below solidification 

temperature at a distance of L ~ 8. 7 m 
2 

(L ~ 3 .1 m). 
1 

That means, a 

crust of 2 mm tobe formed needs a channel length of 8.7 m ! In other 

words, a considerable effect of a crust onto the spreading seems 
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unlikely even for a channel length of a few ten rneters. 

z[mm] Z[l] 

5.0 0.1 

o.a 1.0 e [1J 

Figure 2c: Ternperature profiles across the rnelt layer for various 
distances frorn the gate. 

The check for consistency of the rnodel is conducted in figure 

2c. Herewe plot ternperature profiles of the rnelt as function of depth 

Z. We recognize pronounced thermal boundary layers at the melt/gas 

interface. Even in a distance of x = 16m the thermal disturbance has 

only penetrated into 10 % of the melt layer, while the rest of the 
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melt, adjacent to the wall, is not affected by the radiative cooling. 

Thus, the semi-infinite approach obviously holds. 

The build up of the crust, thus, can be swnmarized using 

figure 2d. Here the portion of the rnelt, which is below solidification 

ternperature, is hatched. Therefrorn a solid layer of a thickness of 

about 1/4 of the liquid height h , i.e. 12.5 mm, is obtained after a 
0 

spreading length of 200 m. 

100 

2000 

2oo l[m] 
4000 1[1] 

~~~~r7//~/7~~~~~~~~~~~~~~~~~~~~~~~~ 

liquid mell 

~[mrn] Z[l 

Figure 2d: Solidified portion of the layer. 
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2.2 Viscousjgravitational regime 

A second limiting cases results if 

eRe « 1 (24) 

holds. From equation (2a) a balance between viscous forces and 

pressure forces is obvious, whereas inertial forces are neglected. 

Equation (Ja) again shows a vertical pressure gradient, governed by 

gravitational forces, driving the flow. Therefrom 

eRe 
Fr 0(1) (25) 

is readily inferred for this viscousjgravitational regime. Equation 

(25) allows likewise for art order of magr1itude estiinatiort of tl-te 

outflow velocity, namely 

u 
0 L II 

0 

(26) 

If the outflow velocity is forced by some other means, e.g. if a 

filled pool is present with liquid height H(t), equation (12) can be 

used to express u (t) and in conjunction with equation (26) 
0 

H3 112 

La (t) - _o { _g_ } ' 

II 2H(t) 

an estimation of the spreading length, follows. 

(27) 

By carefully inspecting equation (2a) we realize that besides 

the usual dissipative viscous term due to the local viscosity J.L, a 

second term due to J.L = J.L(X,Z) is present. The dimensionless parameter 

J.L /J.L characterizes this effect, whereas J.L is the vertical derivative z z 

of the local viscosity in the frame of the dimensionless variable Z 

(cf. equation (5)). The dependancy J.L(X,Z) has been allowed to include 

effects of solidification. During solidification the temperature field 

will strongly influence viscosity at solidification temperature 
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leading even to an infinite viscosity. The attemp here is to treat 

solidified regions to some extent by applying a higher viscosity 1 or 

mathematically 1 to formulate some function JJ - f (8 (X ,Z)). This 1 of 

course 1 provides only an approximative way of describing 

solidification 1 whereas e.g. the release of latent heat at the 

solidification front must be treated explicitly in a more rigorous 

model. 

Figure 3: Situation in the viscous/gravitational regime. 

In the viscous/gravitational regime the flow field will occur 

as sketched in figure 3. The kinematic boundary layer will extend 

across most of the spreading layer such that 

6 
H 

0 

= 0(1) (28) 

holds. From the assumption (24) it is not yet clear what effects are 

relevant within the heat transport equation. A purely conductive heat 

transport across the layer results if 
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EPe = <Re Pr « 1 (29) 

is valid. That is the case for all liquids with srnall Prandt1 nurnbers 

Pr~ 1, e.g. for liquid rnetals. A typical ternperature profile for such 

a situation is likewise given in figure 3. Relatively thick thermal 

boundary layers at both sides are characteristic for such a situation. 

Again both thermal boundary layers are different in thickness due to 

different heat fluxes at the bottorn and at the interface. Analogous to 

the flow field we have an order of magnitude estirnation for their 

thickness 

6 
th 

H 
0 

0(1) . (30) 

Thus, in this case relatively thick solid crusts, comparable to 6 in 
th 

thickness, rnay build up. 

A different situation, however, occurs if large Prandtl nurnber 

fluids as oxidic rnelts, oils or waxes are considered. In these cases 

equation (29) may be violated and the cornplete heat transport equation 

(4a), including convective transport, needs tobe used as the basis. 

Typically the thermal boundary layers in such a case would be rather 

thin. 

With respect to the viscousjgravitational regirne there is 

litte theoretical work in the literature. Huppert (1982) considered 

the pure hydrodynarnic problern (T,Jl. = constant). Thus, he solves the 

following set of equations 

U +W =0, 
X Z 

0 

0 = -P 
z 

< Re ---Fr 

(31) 

-25-



and applies the boundary conditions 

Z = 0: V= 0, W = 0, 

z H: w VH + H ' X T 

(32) 

= 0 + 2 V O(E ) ' z 

3 

t:.P = 0 + 
f 

O(Ca). 

These boundary conditions, thus, ensure wi thin the current 

approximation no-slip at the solid/liquid interface and a tangential 

flow at the liquid/gas interface with vanishing shear stress. 

Moreover, 
3 

due to E jCa « 1 , the pressure jump across the liquid/gas 

interface is negligible if the capillary number Ca - ~u ja is not too 
0 

small. The capillary number measures the ratio of gravitational and 

capillary forces. Integrating the vertical momentum equation in (31) 

we obtain firstly the pressure field 

P(X,Z,r) 
E Re 
Fr 

(H-Z). (33) 

Using the horizontal momentum equation in (31) in conjunction with the 

boundary conditions (32) and the pressure (33), the velocity field is 

readily inferred to be 

V(X,Z,r) 
E Re Z

2 

Fr H/ 2 - HZ). (34) 

By integrating the continuity equation in (31) and using equations 

(34) and the tangential flow condition in (32) we finally arrive at 

the evolution equation for H(X,r), i.e. 

H - !:_ t Re {H3H}= 0. (35) 
r 3 Fr x 

X 

This partial differential equation (35) and volume condition within 
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the spreading layer, i. e. 

A ( f) La 

J H(X, r) dX- V(r) -
q 0 Q 

(36) r 
Q 

H L u 
0 0 0 0 

are the complete formulation of the problem. The flow boundary 

conditions arealready fullfilled. A(r) herein denotes the position of 

the contact line. Following Huppert (1982) this set of equations (35, 

36) allow for a similarity solution. 

transformations 

X 

(30+1)/5 
c r 

0 

H(17,r) li(,.,) c 
1 

(20'-1)/5 
r 

Using the similarity 

(37) 

we obtain an ordinary differential equation for the shape function 

H(17), namely 

2a-1 H-
5 = 0, (38) 

and the volume condition reduces to 

1. (39) 

The constants within the similarity transformations (37) are given by 

(40) 

The solution to the ordinary differential equation (38) and the 

integral condition (39) for general dependancies V - r
0 

need to be 

obtained by numerical integration (e.g. using Gears's method). In 

particular for constant volume, i.e. a = 0, there exists an analytical 
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solution to the problern, narnely 

H(YJ)- [1~f'3[1- YJzf'3 (41) 

Figure 3a presents two results, obtained frorn equations (38), 

(39), narnely for constant volurne (a:=O) and for a constant inflow 

(a:-1) across the left boundary at X- 0. Shown in both cases are the 

initial conLuur.s with ldentical vohuue.s, obLalned fur r - 1. The 

second contours in both cases are obtained for r - 3 and show 

additionally strearnlines and profiles of U(Z), We recognize for the 

constant volurne case a flow frorn the centre region of the liquid layer 

towards the propagating front. The velocity profile U(Z), hereby, 

extends across the cornplete liquid layer and does not exhibit any 

boundary layer character. If we concentrate on the constant inflow 

case, the progression of the front is clearly faster, while again the 

profile U(Z) extends across the whole layer. It should be pointed 

out here that the solution for the front profile and flow field in the 

immediate vincinity of the contact line X= A(r) is incorrect due to 

several sirnplifying assurnptions. 
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Figure 3a: Contours and streamlines for the the viscousjgravitational 
solution. 
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2.3 Crust controlled regime 

There is very little work in the literature on a situation, 

where a crust has already formed leading to a stop of the spreading 

flow. The problern in a simple geometric configuration is sketched in 

figure 4. Given the initial solid contour h (x,t), internal heat 
0 

sources q(x ,z, t) due to production of decay heat will heat up the 

crust, forming a liquid zone in the centre region described by 

h (x,t). The dominant heat sink will be by radiation from the 
i 

gas/solid interface into the ambient, whereas heat fluxes into the 

basemat or the adjacent layer material (hatched in fig. 4) will be of 

minor importance. Within the liquid zone natural convection will 

contribute substantially to the heat transport. Given sufficiently 

strong heat sources, the liquid zone will grow in time until either 

the crust opens at position l or the crust starts sliding at position 

2 (cf. fig. 4). This would lead to a new start of the spreading flow. 

We should remark here, that the scaling as introduced in chapter 2 of 

this paper is not adequate for this problem. In particular the 

separate spatial scales are not present. Again, this problern is hardly 

understood and fundamental investigations are needed. 
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Figure 4: Situation in the crust controlled regime. 
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3.Swnmary 

We have developed a scenario for melt propagation on a core 

melt retention device designed for a pressurized water reactor (e.g. 

EPR). In particular we have addressed aspects associated with the 

melt-through of the reactor pressure vessel and the subsequent events, 

leading to a coolable layer of solidified melt on the floor of the 

spreading compartment. The most critical questions of this sequence 

have been identified. These are: 

10 The interaction of a hot, high pressure melt jet with the 

structure or with the refractory material. This problern is not 

sufficiently understood, and must be investigated furtheron. 

2.) The interaction of the melt with the gate, and the postulated 

"defined" opening is a crucial question. A design for the gate is 

being developed by the venders. The adequate functioning of this 

component under simulated accident conditions 

thoroughly investigated. 

has to be 

3.) The question of melt spreading for given initial conditions and 

geometry another important issue. This problern is being 

investigated by several research groups, e.g. by CEA in Grenoble, 

by CEA in Cadarache, by Siemens in Erlangen and by the 

Forschungszentrum Karlsruhe. This problern has also been addressed 

in this article. 
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4.) The rernelting of debris piles and the onset of rnelt efflux 

therefrorn is a not well understood ingredient of the outlined rnelt 

spreading scenario. The physics behind this problern has to be 

investigated in rnore detail. We have started at the 

Forschungszentrum Karlsruhe to look into this problern both 

numerically (finite difference rnethod) and experirnentally (rnodel 

rnelts insmall scale). 

We shall continue focusing on the spreading of melts. The 

dimensional analysis in this paper demonstrates that once the 

parameters outflow speed u , outflow height H 
0 0 

and the properties of 

the mel t are known, via the dirnens ionless groups Reynolds nurober, 

Froude nurober and Prandtl nurnber, the type of the spreading flow is 

readily deterrnined. 

The inertialjgravitational regirne is not really a problern as 

it ensures undisturbed spreading, developing only thin kinernatic 

boundary layers. For rnos t rnel ts thin thermal boundary layers, and 

therefore thin crusts, will develop. 

Analyzing the viscousjgravitational regime, firstly viscous 

effects develop thick kinernatic boundary layers, dissipating the 

kinetic energy of the spreading flow. Secondly, if viscosity is 

considered to strongly depend on ternperature, a term due to 1-'(x,z) 

arises in the horizontal rnomenturn equation, providing additional 

dissipation of considerable strength. Thirdly, for rnost melts the 

thermal boundary layers will likewise be thick and thus, the 

dissipation due to 1-' (x, z) is present in large portians of the flow 

field. The viscousjgravitational regime, even in the presence of 

strongly increasing viscosity due to solidification, is the most 
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critical case as it eventually stops the spreading flow. With respect 

to this problem, models from several places should be available 

shortly, in particular for modelling solidified regions. 

The distinction between the various spreading regimes can be 

seen as a time dependent evolution. If ini tially due to large ( u H ) 
0 0 

and small 11 ( large T ) the spreading flow is inertia dominated, a 
0 0 

development towards a viscosity dominated situation will follow. This 

change of spreading regime, as time progresses, is due to a decrease 

of (u H ) , an increase of 11 as consequence of heat lasses and a 
0 0 0 

decrease of E = H /L . 
0 0 

All of these changes will shift the 

dimensionless groups towards the viscous/gravitational regime. A 

further decrease of temperature with time finally will lead to 

solidification and thus, the crust controlled regime is entered. 
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