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Abstract 

ln components made of two bonded dissimilar materials singular stresses occur near 
the free edges in case ofthermal and mechanical loadings. ln this report the stresses 
in a reetangular plate will be studied using the Boundary Collocatio_n Method (BCM) for 
different types of externally applied tractions at the ends. The eigenvalues of the Airy 
stress function, necessary for an eigenfunction expansion of the stresses in the BCM, 
will be considered in detail. The stress intensity factors characterising the strongness of 
the stress singularity will be computed and the influence of the ratio of plate length to 
plate width will be analysed. 

Eine Boundary Collocation Studie der rechteckigen Platte 
aus zwei verschiedenen Materialien 

Zusammenfassung 

ln Bauteilen, die aus zwei verschiedenen Materialien hergestellt werden, können infolge 
thermischer und mechanischer Belastungen singuläre Spannungen nahe der freien 
Oberfläche auftreten. Im vorliegenden Bericht wird der für die Praxis besonders wich­
tige Fall der rechteckigen Platte betrachtet. DerSpannungszustand wird fOr unterschied­
liche mechanische Belastungen an den Plattenenden mithilfe der Boundary Collocation 
Methode (BCM) untersucht. Die für die BCM notwendigen Eigenwerte der Airy'schen 
Spannungsfunktion werden berechnet und der die Stärke der Singularität charakterisier­
ende Spannungsintensitätsfaktor ermittelt. Als spezielle geometrische Einflußgröße wird 
der Einfluß des Verhältnisses von Plattenhöhe zu Plattenbreite studiert. 
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1. lntroduction 

ln components made of two bonded dissimilar materials singular stresses occur near 
the free edges in case ofthermal and mechanical loadings. 
The stress state very close to the free edge can be computed analytically as had been 
shown very early by several authors [1]-[3]. Their analyses allow the shape of the 
stress distribution to be determined with respect to the distance r from the edge and 
the angle <p (see fig.1) to the interface. 
Mizuno et al. [4] introduced a stress intensity factor K which represents the intensity of 
the singular stress part. 
ln all analytical considerations one quantity, the stress intensity factor K, remained un­
determined. For its computation different numerical procedures were applied. 
Yang [5] and Munz and Yang [6] used the FE-method and evaluated - besides the ree­
tangular plate - a large number of components with different angles between the two 
free surfaces and the interface line. Reetangular plates with different height to width 
ratios were analysed by Tilscher et al. [7] and Heinzelmann et al. [8]. 
Blanchard and Ghoniem [9][10] applied a Boundary Collocation procedure for symmet­
rical loadings modelling one half of a reetangular plate. 
A method was described in [11] which is based on the condition that the loadings near 
the opposite free edge, caused by the singular stress term, should be balanced by regu­
lar stress terms. Only very slow convergence could be reached. 
A weight function procedure was developed by Banks-Sills et al. [12] which relies on 
the dislocation method proposed by Hein and Erdogan [3]. 
ln the special case of thermal loading where the stresses occur by mismatch in the 
thermal expansion coefficients a series expansion of the total stress field includes a 
constant stress term which can be determined analytically (see [4],[13]). Regular 
stress terms for complicated structures were presented by Munz et al. [14]. 
ln this report the stresses in a reetangular plate will be studied using the Boundary 
Collocation Method (BCM) for different types of externally applied tractions at the ends. 
The eigenvalues, necessary for an eigenfunction expansion of the stresses in the BCM, 
will be considered in detail. The influence of plate length H to plate width 2L (see fig.1) 
will be of special interest. 
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2. Stress function and stresses 

2.1 General relations 

In this report the stresses in a rectangu lar bi-material plate (fig.1) are investigated for 
the case of tensile tractions at the lower and upper bounds. Different stress distrib­
utionswill be considered. 

material 1 

2H 
material 2 

2L----.. 

Figure 1. Geometry. Reetangular plate made from dissimilar materials. 

The stress state in an edge-bonded plate made of two dissimilar materials is known if 
the Airy stress function <I> is known. The stress function can be obtained by solving the 
equation of compatibility 

AA<I> = 0 (1) 

in each of the materials separately. From a Iist of eigensolutions of the bipotential 
equation (see e.g. [15]) we use for a series expansion 
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00 

<I>= L 2 2: (r/L)"k+1[Ak sin((1- .A.k)cp) +Bk cos((1- .A.k)cp) + 
k=O (2) 

where the coefficients A ... Dk and the eigenvalues ).k are complex, i.e. 

(3) 

and 

(4) 

The stresses result from 

(5) 

(6) 

1 a<I> 1 a2<I> 
'l' =------

rrp r2 oq> r orocp 
(7) 

From the stresses also the displacements u and v can be determined. They are ob­
tained from the relation between strains and displacements 

au e =-
r or 

u av 
e =-+--

rp r r ocp (8) 

OV V 1 OU y=---+--or r r ocp 

and application of Hooke's law. The stresses and displacements have to satisfy the 
following boundary conditions 
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a1cp(r, q> = n/2) = 0 , -r1, rcp(r, n/2) = 0 

a2cp(r, q> = - n/2) = 0 , -r2, rcp(r, - n/2) = 0 

a1cp(r, q> = 0) = a2cp(r,O) , -r1, rcp(r, 0) = -r2, rcp(r,O) 
(9) 

where the subscripts 1 and 2 refer to materials 1 and 2. These eight boundary condi­
tions Iead to a homogeneaus system of linear equations of rank 7 

(1 0) 

from which the eigenvalue ..tk and seven of the eight coefficients can be determined. 
Since the rank is 7, one coefficent can be freely chosen. Let us set A1k= 1 (i.e. 
Afk = 1, A~k = 0). From the disappearing determinant 

det(.K) = 0 ( 11) 

one obtains [4] 

F(..tk) = ..t~(..t~ -1)cl + 2..t~[ sin
2
(n..tk/2)- ..tncxß 

+ [ sin2(n..tk/2) - ,.1~]
2 

ß2 + sin2(n:Ak/2) cos2(n:Ak/2) = 0 

(12) 

The parameters cx and ß are the Dundurs parameters defined by 

(13) 

(14) 

for plane stress 
(15) 

for plane strain 

G is the shear modulus and v is the Poisson ratio. The trivial solution of eq.(12) is 
A = 0. This eigenvalue is responsible for the constant stress term occurring under ther­
mal loading. ln order to simplify the numbering of the eigenvalues we will omit this 
special solution in the following considerations. 
Since the relation F(Ak) is an even function of Ak one obtains for any k two solutions, 
namely Ak and - Ak. ln this investigation we restriet the solutions to those with positive 
real parts. 
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2.2 Determination of eigenvalues 

The solutions of eq.(12) may be real and complex. Therefore, we use the general ex­
pression 

(16) 

with the real part t and the imaginar part p. 

2.2.1 Real eigenvalues 

Equation (12) provides a relation between cx and ß for an arbitrarily prescribed real ei­
genvalue Ak = t*, i.e. p* = 0. With the abbreviations 

A = ..t~(..t~ -1) 

B = ..t~[ sin
2
(n-l.k/2)- ..tn 

(17) 

one obtains 

(18) 

2.2.1.1 Real integer elgenvalues 

ln case of odd integer t* one finds 

(19) 

Fort= 1 (w = 0) the straight lines 

cx = 0 , and ß = cx/2 (20) 

result. ln case of even integer t* we find 

(21) 

Since for even and odd eigenvalues the Iimit t*-+ oo yields ß1 = ß2 = cx, the higher order 
eigenvalues concentrate more and more near the line ß = cx. 
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Figure 2. Eigenvalues. First eigenvalue, represented by w, eq.(22) (third and fourth quadrants 
m i rror-i nverted). 

ß 

Figure 3. Eigenvalues. Range of Dundur's parameters for real eigenvalues t ~ 2 (only first qua­
drant plotted). 
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ß 

Figure 4. Eigenvalues. Range of Dundur's parameters for real eigenvalues 2:::;; t < 2.5. 

ß 
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Figure 5. Eigenvalues. Range of Dundur's parameters for real eigenvalues 2.5:::;; t < 3. 
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ß 

Figure 6. Eigenvalues. Range of Dundur's parameters for real eigenvalues 3 < t < 4. 

ß 

0.30 ............................................. .. 

10.2-10.8 

Figure 7. Eigenvalues. Range of Dundur's parameters for large real eigenvalues 10 < t < 11. 
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0.20 

0.10 
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Figure 8. Eigenvalues. Range of Dundur's parameters in which real eigenvalues occur: a) sec­
ond and third eigenvalues; b) fourth eigenvalue; c) real eigenvalues and positive ro. 

2.2.1.2 Real non-integer elgenvalues 

The first eigenvalue is a real one (p = 0) for all material combinations. lt defines the 
stress exponent w by 

w = 1 - Re(l) = 1 - t (22) 

This eigenvalue Ieads to the singular stress term with t < 1 and w > 0 if ß < cx./2 (see 
fig.2). For ß > cx./2 the singular behaviour disappears since the first eigenvalue is posi­
tive t > 1 (=>w > 0) (see e.g. [6]). There remains a small area in the cx.-ß-diagram (shad­
ed area in fig.2) where no real first eigenvalues occur [16]. ln fig.2 the first and secend 
quadrants are shown. The third and the fourth quadrants contain identical curves with 
the symmetry condition w(- cx,- ß) = w(cx, ß). For special material combinations the 
next following eigenvalues may also be real. The range of combinations of Dundurs 
parameters in which (besides the conjugate complex eigenvalues) also real eigenvalues 
occur is shown in fig.3. ln this and in the following diagrams only the first quadrant is 
plotted. The same data occur in the third quadrant which is mirror-inverted to the first 
(i.e. t(- cx,- ß) = t(cx, ß)). The area in the cx- ß -diagram is bounded by the lines: 
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ß = 3/2rx 

ß = 1/4rx + 1/4 (23) 

ß~rx/2 - 0.0384i'2 

The whole area belongs to the second eigenvalue, the third real.. eigenvalue covers 
nearly the same area (but ß > rx/2). ln fig.3 curves for constant values t (second eigen­
value) are entered and figs.4 and 5 represent the third real eigenvalue. Higher-order 
eigenvalues fill only parts of this area (see figs.6 and 7). The fact that the higher real 
eigenvalues are concentrated near the line ß = rx can also be seen from fig.7 which re­
presents eigenvalues in the range 11 < t < 12. Figure 8 shows the area in the rx- ß­
diagram in which the second and third real eigenvalues, part a), and the fourth and 
higher real eigenvalues, part b), occur. The upper boundaries of the area are identical 
with those of fig.3. The lower line, part b), is approximately given by ß~3/4cx. A more 
accurate description is 

ß = 3/2a 

ß = 1/4rx + 1/4 (24) 

ß~3/4rx- 0.0195a2
'
5 

Finally, fig.3c shows the region where for positive singularity exponents w additional 
real eigenvalues can be found, i.e. the region expressed by 

rx/2 - 0.038i'2 < ß < a/2 (25) 

lt should be noted that for any point in this range two solutions are obtained since the 
lines in fig.3 intersect. As an example, we have for the combination (rx = 0.998, 
ß = 0.47 4) the two eigenvalues t = 1.521 and t = 1.878. This has to be taken into consid­
eration in a numerical analysis. 

2.2.2 Complex eigenvalues 

This allows the complex function F to be written 

F(tk,Pk) = Re(F) +i lm(F) = 0 (26) 

ln order to allow a separation to be made into real and imaginary parts, we have to use 
the relations 

sin(t ± ip) = sin(t) cosh(p) ± i cos(t) sinh(p) 

cos(t ± ip) = cos(t) cosh(p) + i sin(t) sinh(p) 
(27) 

For the evaluation of eq.(26) two zero-routines were used, one being stacked into the 
other. While the outer zero-routine provided a starting value for t, the inner routine de­
termined the related value of p which made up the part lm(F)=O. ln the outer routine 
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p 

2 

c 

-1 0 c 

-2 

Figure 9. Eigenvalues. Real and imaginary parts of the eigenvalues ,t computed with E2/E1 = 10, 
v1 = v2 = 0.3 eigenvalues with negative real part t < 0 ignored. 

the value of t was changed until the real part disappeared, too. The results are repres­
antad in fig.9 for a raalistic material combination. The determination of the eigenvalues 
Ä.k will be demonstrated for the case 

(28) 

p 
D D 

1 D D 0 0 

0 0 
D 

0 
4 t 6 

D 
0 0 

-1 D D 0 0 

D D 

Figure 10. Eigenvalues. Real and imaginary parts of the eigenvalues ,t computed with data-set 
B, eq.(29) (circles), compared with the results of fig.9 (squares). 
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These data are subsequently named "data-set A". We find for the real eigenvalue 
t= 0.8408(=>w = 0.1592). The following eigenvalues appear as complex conjugates, as 
reported by Blanchard and Ghoniem [10]. An additional material combination was tak­
en from the area described by eq.(23). The parameters were chosen as: 

(29) 

named "data-set B". The Dundurs parameters resulting for plane stress are !X= 0.4286 
and ß=0.2357. For the real terms we find !=1.0176 (w=-0.0176), !=1.700 and 
t = 2.1373. The first eigenvalues are plotted in fig.10 tagether with the first eigenvalues 
of fig.9. 

2.3 Stress components and angular functions 

2.3.1 General case 

The coefficients defined by eq.(10) have to be determined by solving the system of line­
ar equations. lf these coefficients are known the stresses can be computed as 

ar,k = (r/L)A*-1 Ak [A(3- Ak) sin((1- Ak)cp) + 8(3- Ak) cos((1- Ak)cp)­

C(1 + Ak) sin((1 + Ak)cp)- 0(1 + Ak) cos((1 + ).k)cp)] 

alf',k = (r/ Ll* - 1 AiAk +1) [A sin((1 - ).k)cp) + 8 cos((1 - ).k)cp) + 

C sin((1 + ).k)cp) + 0 cos((1 + ).k)cp)] 

-rk =- (r/Ll·*-1 ).k [A(1- ).k) sin((1- Ak)cp)- 8(1- ).k) cos((1- ).k)cp) + 

C(1 +Ak)sin((1 +Ak)cp)-0(1 +Ak)cos((1 +Ak)cp)] 

2.3.2 Singular term 

For the singular term A < 1 the solution is real. Therefore, one can write 

with the stress intensity factor K and the angular functions 

{\ A(2 + w) sin(w<p) + 8(2 + w) cos(wcp)- C(2- w) sin((2- w)cp)- D(2- w) cos((2- w)cp) 

~= ~-~~+~ 

(30) 

(31) 

(32) 

(33) 

(34) 
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Flgure 11. Angular functions. Angular functions for the singular stress terms, computed with 
E2/E1 = 10, v1 = v2 = 0.3. 

1\ A sin(wrp) + B cos(wrp) + C sin((2- w)rp) + D cos((2- w)rp) 
(1 = 
~ B+D (35) 

1\ Aw cos(wrp)- Bw sin(wrp) + C(2- w) cos((2- w)rp)- 0(2- w) sin((2- w)rp) 
-r=-

(2- w)(B + D) 
(36) 

Due to this definition the angular function for the circumferential stresses is u"' = 1 for 
cp = 0. The constant stress term is present in case ofthermal loading and has been cal­
culated in [4]-[6]. The angular functions are plotted in fig.11. 

2.3.3 Hlgher order terms 

The higher order terms (l > 1) are complex. To determine the stresses we have to in­
troduce into eqs.(30)-(32): 

• the complex eigenvalues as given by eq.(16), 
• the relations eq.(27) for the complex sine and cosine terms, 
• the complex coefflcients according to eq.(3), 
• and, finally, the substitution 

(r/L)A-1 = (r/L)t- 1 +ip = (r/L/- 1 (r/LiP 
(37) 

= (r/L)t- 1 exp(ip ln(r/L)) = (r/L)t- 1
[ cos(p ln(r/L)) + i sin(p ln(r/L))] 

This Ieads to the stresses 
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Figure 12. Angular functlons. Angular functions for the first non-singular solutions, t = 1.7563: 
8) fC (p = 0.4121), b) f$ (p = 0.4121), C) fC (p =- 0.4121), d) (S (p =- 0.4121). 

2. Stress function and stresses 15 



00 

a, =I Kk(r/L/-
1
{ cos[pk ln(r/L)] fk~r(Cf>) + sin[pk ln(r/L)] fk~r(cp)} (38) 

k=O 

00 

arp = I Kir/L)t-
1 
{ cos[pk ln(r/L)] fk~ rp(Cf>) + sin[pk ln(r/L)] fk~ rp(cp)} (39) 

k=O 

00 

-r:,rp = I Kk(r/L)t-
1 
{ cos[pk ln(r/L)] fk~rrp(Cf>) + sin[pk ln(r/L)] fk~ rrp(cp)} (40) 

k=O 

The same result was obtained earlier by Yang [5] who applied complex stress func­
tions. ln [5] and [17] also the angular functions rc and f• are given in analytical form. 
Figure 12 shows the angular fu nctions for the first zero with t > 1. One can see that the 
angular functions belanging to the sine terms, parts b) and d), are clearly smaller than 
those belanging to the cosine terms, parts a) and c). This is also the case for higher 
order solutions as shown in the Appendix. Differences between the angular functions 
for positive and negative imaginary parts are more significant for the angular functions 
belanging to the sine terms than for those belanging to the cosine terms. With increas­
ing t the angular functions become more and more oscillating (see Appendix, fig38). 
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3. Boundary Collocation 

3.1 Description of the procedure 

The still unknown coefficients Kk of the series representations of stresses are deter­
mined by fitting the resulting stresses to the specified boundary conditions at the boun­
daries, namely constant stresses normal to the upper and lower surfaces and disapper­
ing shear stresses along the whole surface. Since the plate investigated features right 
angles, it is convenient to express the stresses in Cartesian coordinates. From the 
stress components in polar Coordinates the stresses in Cartesian coordinates result as 

2 . 2 2 . 
Gx = GrCOS q> + arp Sln q>- 'Crrp Sln q> COS q> (41) 

. 2 2 2 . 
ay = ar Sln q> + arp cos q> + 'Crrp s1n q> cos q> (42) 

(43) 

Some of the boundary conditions are automatically fulfilled. lt holds for cp = n/2 (x = 0) 

(44) 

These conditions were used for determination of the eigenvalues and for computation of 
the coefficients in the angular functions and will, therefore, not provlde Information 
about Kk. The conditions at the opposite boundary are 

a x = 0 for x = 2L 

1: xy = 0 for x = 2L 
(45) 

ln case of the stresses at the lower and upper boundaries it has to be taken into consid­
eration that the plate of dissimilar materials exhibits two equivalent singularities at 
y = 0, x = 0 and y = 0, x = 2L. Due to symmetry, the sum of the two normal stress com­
ponents has to balance the normal tractions and the sum of the two shear stresses has 
to balance the externally applied shear tractions 'Cxy = 0, i.e. 
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ay(x) + ay(2L- x) = Gappt for y = ± H 
(46) 

't'xy(x)- -rxy(2L- x) = 0 for y = ± H 

where aappt are the externally applied tractions at the upper and lower bounds of the 
plate (see fig.1). For the evaluation of the series expansions of stresses we have to 
truncate theinfinite series after N terms. lf for a selected number of (N+ 1) edge points 
the related stress components are known, we obtain a system of 2(N + 1) equations with 
2(N+ 1) unknowns whose solutions allow all 2(N+ 1) coefficients Kk tobe determined. 
The expenditure in terms of computation can be reduced by selection of a rather large 
number of edge points and by solving subsequently the then overdetermined system of 
equations using the least squares of deviations so that a set of "best" coefficients are 
obtained. The Harwell subroutine V02AD is used here to determine the best fit. The 
number of fitting nodes has been chosen to be 2N and the number of equations conse­
quently is M = 4N. A function S2 is defined by 

(47) 

which represents the square sum of deviations between the eigenfunction solution and 
the prescribed bou ndary tractions. 
The fitting points have been selected to have continuous angles cp, i.e. the n-th point 
has the polar angle 

(48) 

3.2 Results 

3.2.1 Accuracy and Convergence 

First materials with conjugate complex eigenvalues are considered. The material pa­
rameters were chosen as given by data set A, eq.(16). ln the following considerations 
plane stress conditions will be chosen. Figure 13 represents the first coefficient (be­
longing to the singular stresses) as a function of the number of series terms used. As 
this value is proportional to the applied stress (denoted just a below), the coefficient is 
normalised to this stress value. The result converges to Kfa = 0.6875±0.001 for N ~ 100. 
Figure 14 represents the Ieast-squares sum of stresses at the circumference after appli­
cation of the Ieast-squares routine to the special case of the applied stress chosen to be 
O'appt= 1. 
The sum of squares becomes very small for N ~ 100 and S2 is on the order of 
S2 < 1 . 10-8 from which a mean deviation 

b=K <5·10-
5 (49) 

results. 
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0.6875 ±0.001 

0.660 

Figure 13. BCM·procedure. Convergence of the Boundary Collocation Method (BCM) for an 
increased number of terms used in the Airy stress function (data: E2/E1 = 10, 
v1 = v2 = 0.3, H/L = 2.3). 
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Figure 14. BCM-procedure. Sum of squares for a number of M = 4N equations (data as given 
in fig.13). 
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Figure 15. lnfluence of geometry. lnfluence of the specimen height on the ratio Kfa. 

The influence of the height H of the plate on the stress intensity factor K is shown in 
fig.15. lt is obvious that for H/L :2::2 the stress intensity factor is independent of the 
plate height. For the further calculations the value H/L = 2.3 was used which sufficiently 
represents an infinite plate. The next two terms are represented in normalised form in 
the Appendix (fig.37). The specimen height has also an influence on the stress intensity 
factor for the case that the Ioad is not homogeneously distributed along the ends of the 
plate. This will be shown in Section 4 (see e.g. fig.36). We can conclude that for a 
specimen height H/L > 2 the stress intensity factor is nearly independent of the special 
stress distribution but will be affected only by the mean value in accordance with Saint 
Venant's theorem. 

3.2.2 Stress intenslty factors for one single stress exponent ro = 0 (v1 = v2) 

lf the two materials have identical Poisson ratios, v1 = v2, only one stress exponent w 
can be reached by variation of the ratio E2/E1• lntroducing v1 = v2 into eqs.(13) and (14) 
gives, with m1 = m2 = m, 

m-2 
ß= m oc ' (50) 

i.e. all possible combinations in the oc- ß diagram are located on straight lines through 
the origin where w = 0 is reached. The stress intensity factor for the singular stress 
term was computed for different Young's moduli and several values of Poisson ratios 
assuming plane stress conditions. For these calculations N= 100 and H/L=2.3 were 
used. The results are plotted in fig.16 as a function of the singularity exponent w. The 
data points related to the same Poisson ratio are connected by curves. The insert in 
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Figure 16. Stress intensity factor. Ratio K/u as a function of the singularity exponent w for 

several Poisson ratios v1 = v2• Solid line: approximation proposed by Yang [5], eq.(51). 

fig.16 describes the related o:- ß dependencies. The BCM-results are compared with a 
fit-formula proposed by Yang [5] 

2 3 4 5 K/a = 1- 2.89w +11.4w -51.9w +135.7w -135.8w (51) 

This relation is entered in fig.16 as solid curve. Especially in the cases v1 = v2 = 0.3,0.4 
and 0.5 this relation fits the BCM-data very weil. ln order to eliminate the remaining 
small deviations the data points of fig.16 were shifted by 0.0235o:6• The result is plotted 
in fig.17 with one data point - w = 0.074, K/a = 0.79, v1 = v2=0.o5 - from the region 
o:/2 < ß < o:/2- 0.0384o:2·2 excluded. This figure gives rise to an improved fit-relation 

K/a = exp( -2.45w(1.1- w))- 0.0235o:6 (52) 

which is entered in fig.17 as solid line. 

3.2.3 Stress lntenslty factors ln case of two solutions w = 0 

lf the two materials exhibit different Poisson ratios, one has to expect two different ma­
terial combinations with w = 0. This can be readily concluded from fig.18. ln the Dun­
durs plot one obtains straight lines which (in the case v1 =1= v2) intersect the curves 
ß = o:/2 as weil as the ordinate o: = 0. At both intersections the value w = 0 is reached. 
Since in both cases different o: and different ß values occur one has to expect different 
values of K/a at w = 0. 
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Figure 17. Stress intenslty factor. Elimination of the influence of the Dundurs parameter a by 
shifting the single data of fig.16 (with data from a/2 < ß < a/2- 0.0384a2·2 excluded) by 
the amount 0.0235a6. Camparisan of the numerical data (symbols) with the fit-relation, 
eq.(52) (curve). 

BCM computations were performed with the combinations of Poisson ratios: 
(v1 = 0.15, V2 = 0.45), (v1 = 0.2, v2 = 0.4), (v1 = 0.3, v2 = 0.3), and (v1 = 0.4, v2 = 0.2). The re­
sults are shown in fig.19. A comparison with the formula proposed by Yang [5], eq.(51), 
is given in fig.20. Also in this case, we find good agreement for the combinations 
v1 = 0.3, v2 = 0.3 and v1 = 0.4, v2 = 0.2. After shifting the single data by an amount of 
0.0235tX6 the representation in fig.21 is obtained. Also in this case, the single data nearly 
coincide with the solid curve. Having in mind that for w = 0 two different stress intensity 
factors will occur one should not apply the approximate relations for w=O. 
ln case ofthermal loadings Tilscher et al. [18] found that the relation K/ao = f(w) signif­
icantly deviates from a unique function for w~o and for negative w. This effect has also 
to be expected for mechanical loading. BCM-computations were carried out with strong­
ly different Poisson ratios. ln fig.22 results are shown for v1 = 0.01 and v2 = 0.49 and dif­
ferent E2/E1-ratios. The data points show the expected non-unique K/ao = f(w) relation. 
The insert represents the variation of the Dundurs parameters. Figure 23 represents 
the curve in detail for w < 0. ln fig.24 results obtained for v1 = 0.10 and v2 = 0.50 are 
shown. Also in this case the deviations from a unique K/a vs. w relation are evident, 
but less pronounced than in fig.22. Finally, in figs.25 and 26, the normalised stress in­
tensity factors are plotted in Dundurs diagrams. 
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Figure 18. Dundurs parameter. Dundurs plot of material combinations with differently chosen 
Poisson ratios. The symbols at the line ends correspond to the symbols used in 
fig.19. The open circles represent w = 0. 
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Figure 19. Stress intensity factor. Ratio Kja as a function of the singularity exponent w for 
different Poisson ratios. 
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Figure 20. Stress intensity factor. Results of fig.19 (symbols) compared with a fit-relation pro­

posed by Yang [5], eq.(51), (dashed curve). 
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Figure 21. Stress intensity factor relation. Elimination of the influence of the Dundurs parame­

ter a by shifling the single curves of fig.19 by the amount 0.0235a6 . Comparison of the 
numerical data (symbols) with the fit-relation eq.(52) (curve). 
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Figure 22. Stress lntensity factor relation. Stress intensity factor including negative w-values 

(v1 = 0.01, v2 = 0.49). Insert: Variation of the Dundurs parameters. 
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Figure 23. Stress intenslty factor relatlon. Detail of fig.22. 
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Figure 24. Stress intensity factor relatlon. Stress intensity factor including negative ro-values 

(v1 = 0.10, v2 = 0.50). Insert: Variation of the Dundurs parameters. 
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Figure 25. Dundurs diagram for stress intensity factors. Stress intensity factor for w =::;; 0. 
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Figure 26. Dundurs diagram for stress intensity factors. Stress intensity factor for w ~ 0. 
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3.3 lnfluence of the plate length on the stress intensity factor 

3.3.1 Puretension and bendlng 

The two mechanical loadings of highest importance are pure tension with a(x) = a0 and 
pure bending with 

a(x) = a0(1 - xfL) (53) 

The related stress intensity factors are shown in fig.27. 

,. 11111 11111 1111 11111 

--~-------~-,·----

111 

Figure 27. Tension and bendlng. Plate with linear external tractions; stress intensity factor for 
pure bending (lower curve) compared with pure tension (upper curve). ln case of 
bending a0 is the outer fibre stress. Data set A, eq.(28). 

Figure 27 makes obvious that pure tension exhibits significantly higher stress intensity 
factors than bending. 

28 A Boundary Collocatlon study of the edge-bonded plate of dissimilar materials 



3.3.1.1 Symmetrical tractions 

Symmetrical tractions are defined by 

o(x) = o(2L - x) (54) 

ln fig.28 the special stress distribution 

o(x) = o0 sin(nx/2L) (55) 

was chosen. Figure 28 is a comparison of the solutions for sinusoidal with constant 
tractions. 

K/6 0 ( 1 ) 
1111 II II 1111 II II II 

-------~--,-~~----

(2) 

.50 1.00 1.50 2.00 2.50 

H/L 

Flgure 28. Symmetrical loading. Plate with sinusoidal-shaped external tractions (upper curve) 
compared with pure bending stresses (lower curve). Data set A, eq.(28). 

ln fig.29 the stress intensity factors are normalised to the averaged stresses, i.e. ä = oo 
for constant stress and 
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- 2 a=-:;ra0 (56) 

for the sinusoidal distribution. ln this normalisation we see that the two solutions are 
nearly identical for H/L > 1.5, with maximum deviations of about 1%. 
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Figure 29. Symmetricalloading. Results of fig.29 normalised to the average stress 'G. 

3.3.1.2 Antisymmetrical tractions 

Antisymmetrical tractions are defined by 

a(x) = - a(2L - x) (57) 

ln fig.30 the tractions are 

a(x) = a0 cos(nx/2L) (58) 
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Figure 30. Antisymmetrical loadlng. Cosinusoidal-shaped external tractions compared with 
pure bending. Data set A, eq.(28). 

We normalise the outer fibre stress in such a way that the bending moment becomes 
identical for the two types of traction, i.e. for the cosine-shaped tractions 

12 
ao, eff = - 2 ao (59) 

1t 

Then one obtains the curves represented in fig.31. From this representation we con­
clude that for H/L > 1.25 both curves coincide totally. 
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Figure 31. Antisymmetrical loading. Stress intensity factors according to fig.30; stress intensity 
factor normalised to the same effective outer fibre stress (yielding identical bending 
moments). 
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3.3.2 Tractions with disappearing normal forces and bending moments 

lt has to be expected from the theorem of Saint Venant that for large values of H/L the 
effect of any stress distribution applied at the plate ends reduces to the effect caused by 
the normal force and by the bending moment. This result is, in principle, already obvi­
ous from figs.29 and 31. These figures Iead to application of tractions with disappearing 
mean value and disappearing bending moment. This can be done·by selecting a sym­
metrical stress distribution (M = 0) and application of the difference between an arbi­
trary stress (here sinusoidal) and its mean value, i.e. by 

o(x) = a0[ sin( ~ ; ) - ~ J (60) 

(see fig.32) 

--------~--~ ~~---~-

-0.010 

Figure 32. Symmetrical loading. Plate with sinusoidal-shaped external tractions and disappear­
ing resultant according to eq.(60). 

or by application of an arbitrary antisymmetric stress (a = 0) which generates the same 
bending moment as the linear stress distribution, i.e. by 
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a(x) = ao[ cos( ~ ; ) - :; ( 1 - ~ ) J (61) 

(see fig.33) 

-0.010 

figure 33. Antisymmetrical loading. Antisymmetrical tractions; cosinusoidal-shaped external 
stresses with disappearing bending moment according to eq.(61). 

ln the two last examples the theorem of Saint Venant could be checked with very high 
accuracy. The sensitivity is very high since the result is not concluded from the differ­
ence of two numerically obtained results with cumulated error margins. 
ln order to show the influence of the singularity exponent w on the stress intensity fac­
tor, the computations represented in fig.32 were repeated for the same Poisson ratios 
v, = v2 = 0.3 but different ratios E1/E2 which resulted in different w-values. The result is 
plotted in fig.34. We can conclude that for H/L > 3.6 the Iimit case of a strip of infinite 
height is sufficiently fulfilled for all w. The tendency becomes obvious that the stress 
intensity factor disappears earlier with increasing w. 
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Figure 34. Symmetrical loading. lnfluence of the singularity exponent w on the stress intensity 
factor for the same loading as used in fig.32. 

3.3.3 Other non-homogeneous symmetric loadings 

Different tractions at the upper and the lower boundaries of the plate are chosen in 
fig.35 which Iead to the same resulting normal forces. ln fig.36 the stress intensity fac­
tors are compared with the case of homogeneously distributed tractions. Also in this 
case we obtain identical stress intensity factors for H/L > 2. 

Figure 35. Non-symmetry to the interface. Plate with two non-homogeneously distributed ex-
ternally applied tractions. 
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Figure 36. Non·symmetry to the Interface. Stress intensity factors for the stress distributions 

illustrated in fig.35. Solid circles: distribution a1: open circles: distribution a2: squares: 
constant stress (a1 + a2). ln K/a always the mean stress, averaged over 2L, was intro­
duced. Data set A, eq.(28). 
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5. Appendix 

5.1 Higher order stress intensity factors and angular functions 

ln the following figures 

the influence of the plate length H on the two first non-singu lar terms of the Airy 
stress fu nction is demonstrated (fig.37); 

the oscillating behaviour for higher order stress function terms is shown (fig.38). 

The material parameters for figs.37 and 38 are given by data set A, eq.(28). 
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Figure 37. Stress intensity factors for higher order terms. First non-singular solutions. Stress 

intensity factors normalised to the values at H/L = 2. Compared with the singular 
stress intensity factor term, the "scatter" of the data points increases with increasing 
eigenvalue. 
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Figure 38. Higher order angular functlons. Higher order (non-singular) solutions, t = 9.8452: a) 
fc (p = 1.6239), b) f• (p = 1.6239), c) rc (p = -1.6239), d) f• (p =- 1.6239). Dashed lines: 
radial stress, dash-dotted lines: tangential stress, solid lines: shear stress. 
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Flgure 39. Boundary condltlons. Boundaries for the upper part of a reetangular plate made of 
dissimilar materials. 

5.2 Thermal loadings 

The main part of this report dealed with the determination of the normalised stress ln­
tensity factor K/o."p, for mechanical loading. in many cases thermal Ioads are responsi­
ble for the stresses in dissimilar materlals. in case of the reetangular plate the stresses 
due tothermal mismatch are given by (see e.g. [14]) 

00 

th '\'Kth ..tk -1 ( ) + 
Ofj = ~ k r gk ({J Oo, I} (62) 

k=1 

where the superscript th lndicates thermal loadings. The constant stress term oo con­
sists exclusively of the stress component oy (for y see fig.39) 

(

Oy 0) 
(oo,IJ) = 0 0 (63) 

lt should be noted that the eigenvalues ,.tk and the angular functions gk(({J) are Independ­
ent on the special loading and, therefore, valid for mechanical and thermal Ioads. 
lt can be easily shown that the stress intensity factor relation Klh /oo is (apart from a 
minus sign) identical with the corresponding relation Kfo•PP' for mechanical Ioads. The 
boundary value problern is illustrated in fig.39 for mechanical loading. ln case of me­
chanical loading the Airy stress function is <J>m•ch and satisfies the boundary conditions 
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(64) 

where the first relation describes disappearing shear tractions and the second stands 
for disappearing ax tractions. The boundary conditions for l hermal loading are 

82<1>th 
=0 axay on L1 U L2 U L3 

82<1>th 
=0 L1 U L3 (65) al 

on 

82<1>th 
=0 L2 ax2 on 

lf the Airy stress function for thermal loading ls expressed by the sum of two contrib­
utions 

the last equation of (65) can be written 

' 

1 2 
<l>o = 2 x ao 

while the other two relations are also valid for <l>lh. Equation (67) can be rewritten 

_L (- aappl <f>th) = a on L2 ax2 ao app/ 

Camparisan with the third relation of eq.(64) shows that 

with an arbitrary function f(y). From the second relation of eq.(65) it follows 

f(y) = c y 

(66) 

(67) 

(68) 

(69) 

(70) 

lt should be noted that the function f(y) does not influence the stresses. Therefore, we 
can set it arbitrarily as zero, i.e. C = 0. 
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" th 0 0 mech <D = - -- <D on L1 U L2 U L3 Gappl 
(71) 

The stress functions d>fh and - a0/a."p1(!>m•ch fulfill the same differential equation, eq.(1), 
and the same boundary conditions at all boundaries. Consequently, the uniqueness the­
orem ensures that the two stress functions are identical in the whole body. We obtain 

lf we express the Airy stress function in polar coordinates according to fig.1 with 

it follows 

00 

<Dmech = I K :;ech r 1 + Ak g k( ({J) 

k=O 

00 

$'" ~ 'f.}t ,1+,, g,(cp) 

k=O 

00 00 

IR!' r 1+ '• g,(cp) ~ L (- K:;'"" u::pl ) r 1+ 4 g,(cp) 

k=1 k=1 

Since this relation has tobe valid for all (r, ({J) in the body we find 

= 
K;:'ech 

0 appl 

(72) 

(73) 

(74) 

(75) 
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