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Abstract 

The isothermal spreading of a volume of liquid which increases with time as qta , a :2: 0 was 

described in terms of similarity solutions by Huppert. Sakimoto and Zuber derived a similarity 

solution for the axisymmetric release of a fixed volume of fluid ( a = 0) with time dependent 

viscosity of the form v=r tß , 0 ~ ß < 1 . This result is extended to flows with a ~ 0 and 

0 ~ ß < 3a + 1 in one-dimensional and axisymmetric geometries. 

Ausbreitung mit variabler Viskosität 

Zusammenfassung 

Die isotherme Ausbreitung eines Volumenstromes, qta , a ~ 0 , in Form von dünnen Schichten 

kann mit Hilfe selbstähnlicher Lösungen beschrieben werden (Huppert). Für die axialsymmetrische 

Ausbreitung eines konstanten Volumens ( a = 0) mit einer variablen Viskosität von der Form 

v=ytß, 0 ~ ß < 1 existieren ebenfalls selbstähnliche Lösungen (Sakimoto, Zuber). Dieses Ergebnis 

wird auf den Fall einer eindimensionalen und einer axialsymmetrischen Ausbreitung für alle a ~ 0 , 

0 ~ ß < 3a + 1 erweitert. 
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1. Introduction 

The lubrication approximation for the isothermal spreading under gravity Ieads to a nonlinear 

degenerate parabolic equation [1]. A number of solutions of this equation has been found [6], [7], 

[11]. One of the most important differences between the solution of this nonlinear parabolic 

equation and the solution of the linear diffusion equation is the existence of solutions which are zero 

outside a closed and bounded set. Furthermore, the interfaces propagate with finite speed. 

The isothermal spreading of a volume of liquid which increases with time as q ta, q > 0 , a :::: 0 

was described in terms of similarity solutions in [5]. In many applications the cooling process will 

lead to variable flow properties such as viscosity and, consequently, to a coupled system of the 

temperature and flow equations. It is impossible to satisfactorily treat this problern analytically. 

Bercovici [15] developed a model for an axisymmetric gravity current which accounts for thermo

viscous effects, i. e., the spatial variation of the viscosity. The numerical results showed significant 

deviations from the similarity profiles of the constant viscosity case. Sakimoto and Zuber [14] 

derived a similarity solution for the axisymmetric release of a fixed volume of fluid (a=O) with 

time dependent viscosity of the form v = r tß, 0 ::;; ß < 1 . In this paper this result is transferred to 

flows with a :::: 0 , 0 ::;; ß < 3a + 1 in one-dimensional and axisymmetric geometries. 
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2. Theory 

A number of important physical processes are govemed by a nonlinear diffusion equation [ 1] 

(1) 

(2) 

where h0 ( x) is a bounded continuous non-negative function and h0 E L1 
( 9l 1

) n L 2 
( 9l1) • This 

equation arises in the study of the following physical problems: 

1. Thin saturated regions in porous media, n = 1 [2]. 

2. Flow ofhomogeneous fluids through porous media, n;::: 1 [3]. 

3. Flow ofthin liquid films spreading under gravity, n = 3 [4], [5]. 

Recently, the spreading under gravity has received much attention in the field of nuclear safety re

search. 

One of the most important differences between the solutions of Eq. (1) and the solutions of the 

linear diffusion equation (Eq. (1) with n = 0) is the existence of solutions which have compact 

support (i. e., h = 0 outside a closed and bounded set in llt1
). Furthermore, the interface propagates 

with finite speed except possibly at t=O. This can be seen from the similarity solution of Eq. (1) 

obtained by Zel'dovich and Kompameets [6]. 

(t+l{n:2[c 
h{x,t)= 

0 

with the initial data of 

n 2 ]Yn -~ 2(n+2) 
---x2(t+lfn+2 for x 2(t+l) n+2< c 
2(n+2) n 

-~ 2(n+2) 
for x 2 (t+ 1) n+2 > c 

n 

h0 {x) = [ 
n ]Yn C x 2 

2(n+2) 
~ 2 2(n+2)c 
J. or x :s; ---'------'--

n 

0 ~ 2 2(n+2)c 
J.Or X > , 

n 

(3) 

where C is a constant related to the initial integral of h. The support of the solution (3) is bounded 

by two monotonic cont inuous curves 
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[
2(n+2) ]!0 1 

xj(t) = ± n C (t+J;n+2. (4) 

These curves are called interface curves. From the general results obtained in [7] for the speed ofthe 

interfaces xj (t) the following relation holds 

where 

1 n 
(f>=-h. 

n 

A solution of (1) with initial data (in the limes of distributions with compact supportD'( iR1
)) 

where o(x) denotes the Dirac distribution, is given by 

0 

with 

for jxj:::; ~2(nn+ 2) C tn~2 

for jxj > ~2(nn+ 2) C tn~2 

(5) 

(6) 

(7) 

(8) 

(9) 

The right hand side of Eq. (1), :x(hn ~:), is not defined at the free boundary where h=O so that 

Eq. (3) is not a solution of (1) and (2) in the classical sense. The solution given by Eq. (3) may only 

be regarded as a weak solution of equations (1) and (2) [7], [8]. Forthis reason, caution must be 

exercised in interpreting any results near the leading edge of a spreading viscous liquid. The 

existence and uniqueness ofweak solutions of (1), (2) was proven in [9]. It was also shown that if 
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the initial distribution ho has a compact support, then the solution has a compact support for all 

times for which the solution exists. 

In [I 0] it was proven that the solution of Eq. (1) with the initial data given by Eq. (2) behaves 

asymptotically as t---+oo like the similarity solution (8) with initial data (7), i. e. 

tn+2 sup I hho(x/)-h(xA I ~ q A> Q 
__ 1 t~~ 

[ x[ ~Atn+2 

In [7], [11 ], [12] a proof of the existence of a different type of so-called waiting-time solutions of 

Eq. (1) was given. These solutions are characterized by having a fixed support over a non-zerotime 

interval. A solution ofEq. (1) with this property is 

[ 
n ~]Yn for x ~ 0, t < t0 2(n +2) t 0 -t 

h{x,t) = (10) 
0 for x < 0, t < t 0 • 

Although the interface does not move for t < t0, motion takes place behind the interface. The 

solution (10) is a classical solution, i. e. the right hand side of Eq. (1) exists even at the free 

boundary x = 0. This solution becomes unbounded at the waiting time t0. No information is 

provided by the solution (10) about the solution after the front starts to move, i. e. for t;::::: t0 . In (8] 

similarity solutions were found with a waiting-time property which arevalid when the front starts to 

move. Using the singular-perturbation theory for 0 < n << 1 [13], an approximate solution was 

constructed which contains informationsuch as an appropriate waiting-time and a determination of 

the ways in which the interface can begin to move. 

3. Spreading with variable viscosity 

3.1 One-dimensional spreading 

Using the lubrication theory for low Reynolds-number-flow for which the volume of the fluid 

increases with time as 

x, 
Jdxh{x,t)=qta, a~O,q>O, (11) 

-x, 
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the following equation holds [5]: 

0 h - .!:_ g _!_(h 3 0 h) = 0 
ot s v&: ox ' 

D'(~1) 
rah(x,t) t~O > ho(x) = qb'(x), a:?:.O, q>O, 

(12) 

(13) 

where v is the kinematic viscosity and g the gravity constant. Equations (12) and (13) have been 

solved for time dependent viscosity for a = 0 in an axisymmetric geometry in [14]. Assuming the 

viscosity to be a function of time of the form 

ß vo 
v = r t , r = P' ß:?:. o 

to 

a solution of (12) with initial data given by (13) for every a :?: 0 will be constructed. 

Consider similarity solutions expressed in terms of the similarity variable 11: 

for xj5, x 5, x; 

h(x,t)=ryf c(t) 
0 for x; < x < xj, 

( )
Ys 1 3y --(3a-ß+l) 

77= - xt 5 ) 
gq3 

From the global continuity equation (11) follows 

(3 2 J Ys 1 q r -(2a+ß-1) 
C(t)= -- t 5 

g 

and 

3 

"f ~ ( 21dy'f'{y)r'. 

Insertion ofthe form (15) into the basic equation (12) gives 

5 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 



('F
3 'F')' + 3a-ß+l y'F' _ 2a+ß-1 P'= 0 . 5 5 

(20) 

with 

y =ME [0, 1], P'{l) = 0. 
'llj 

(21) 

The following relation J:10lds for a = 0, i. e. for a spreading of a volume q of a liquid with variable 

viscosity 

1-ß 
(1JY3 1JY')' + 5 (yr)' = o, y E [o, 1], ß<l. (22) 

The solution of equation (22) with the initial data given in eq. (21) is ofthe form 

(23) 

The constant 1Jj can be easjly evaluated from (19) 

(24) 

The solution ofthe original equation (11), (12), (13) can be written as 

h(x, t) = (25~ 

0 for X+ <X< X-, 
f f 

where 

(26) 
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describes the positions of the interfaces as a function of time. The speed of the interfaces can be 

calculated from ( 5) or directly from (26): 

For every a > 0 the solution of equation (22) has to fulfil the condition 
8 

h(x, t) 
8x 

x=O 

(27) 

'* 0. This 

reflects the fact that the fluid is continuously introduced at x = 0 . In accordance with other 

properties of solutions of Eq. (1 ), the approximate solution of (20) may be obtained in terms of the 

following expansion: 

(28) 

Insertion of (28) into equation (20) gives 

[
3 ]Ys 3a+4ß-4 

c1 = 5 (3a-ß+l) , c2 = 24(Sa-ß+l) , O~ß<3a+l. (29) 

From the relation (19) the following expression is obtained for the constant 77 f : 

(30) 

Then, h(x, t) is determined by the following equation with a > 0, 0 ~ ß < 3a + 1: 

for xj~x~xj 

h{x,t) = (31) 

0 for xj <x<xj, 

where the position of the interfaces is given by 

± _ + gq 5(3a-ß+l) 
( 

3JYs 1 

X f - -17 f 3y t . (32) 

In this case the speed of the interfaces can be calculated from 
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. ± _ (gq3 )Ys 3a-ß+1 j,(3a-ß-4} 
x J - ±ry J 3r s t . 

3.2 Axisymmetric spreading 

The radial spreading of an axisyrnmetric flow is govemed by the following equation: 

0 h 1 g 1 0 ( 3 0 h) - - ß 
0 t - 3 vr 0 r rh 0 r - O, V- y t ' jk.O 

with the initial data of 

D' (1Ji1) 
rah(r,t) t~O > Qo(r), a~O, Q>O. 

The volume of the fluid is assumed to increase with time as 

rl 

27c Jrdrh{r,t) = Qta. 
0 

(33) 

(34) 

(35) 

(36) 

The solution procedure is similar to that described in section 3 .1. The similarity solution is of the 

form 

h{r,tJ ~ sf>crtJ {~~J (37) 

for r > r1 , 

( 
3 

)

Ys 1 r --(3a-ß+1) 
J:= -- rt 8 
':> gQ3 J 

(38) 

[ 

1 ]-% 
.; f = ~r=rf = 2tr fdy y'P{y} (39) 

and 

(40) 

'P has to fulfil the equation 
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3a+1-ß a+ß-1 
(y~3~')' + 8 y2 ~·- 4 y ~= 0 (41) 

with 

For a spreading of a constant fluid volume, i. e. for a = 0, the following analytical solution was 

derived in [14]: 

(42) 

(43) 

Using the expansion given by equation (28), an approximate solution of (41) is obtained for a > 0 

ofthe form 

(44) 

with 

[
3 ]Ys 1 3 a+ß-1 

b1 = 
8

(3a-ß+1) , b2 = 
6 3 

a-ß+
1

, 05,ß<3a+1. (45) 

The evolution ofthe interface r1 is given by 

(46) 

where 

(47) 
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4. Discussion 

The theory presented here is anticipated to be valid only if the viscous forces are much !arger than 

the inertial forces, i. e. the ratio of viscous to inertial forces must be Fv » 1. Using the arguments 
Fi 

established in [5], the following expression holds: 

F 
( 

2 3)Ys 3 1( ) g V --ß -- 4a-3ß-7 
V ~ 112 0 t 5 t 5 -F ~ ''f --4- o 
i q 

for one-dimensional spreading ( 48) 

and 

for axisymmetric spreading. (49) 

The transition time at which both forces are comparable is given by 

4a-3ß-7 -3ß 
t4a-3ß-7 4a-3ß-7:t=O 0 } for one-dimensional spreading (50) 

and 

1 

( 
1 Q J-a-ß-3 __ ß 

ttr(aß) ~ 8 -- t 0 a-ß-3 , a-ß-3:t=O 
;! gvo 

for radial spreading. (51) 

tt,.(a,ß) is a monotonically decreasing function of ß. Depending on the sign of 4a- 3ß -7 in case 

of one-dimensional spreading and the sign of a-ß-3 for axisymmetric spreading, the ratio Fv is 
Fi 

eiiher a monotonically increasing or a monotonically decreasing function of time. Let 

4a - 3 ß - 7 < 0 and a - ß - 3 < 0 , then the spreading will be dominated by viscous forces for all 

t » ttr. If the opposite relations hold, i. e. 4a- 3ß- 7 > 0 and a-ß- 3 > 0, then Fv » 1 for all 
Fi 

t « ttr. For 4a- 3ß -7 = 0 and a-ß- 3 = 0, conditions under which the spreading is dominated 

by viscous forces for all times are obtained from ( 48) and ( 49) 
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1 

( '7i~ rp - for one-dimensional spreading 
r;}o T tr 

to<< (52) 1 

(~tr - for axisymmetric spreading, Ttr 

where 

1 

( 1 q' r for one-dimensional spreading 
rJ~~ g2 V~ 

Ttr~ (53) 1 

( 1 Q r 
~~~ gvo 

for axisymmetric spreading 

is the transition time for the spreading with constant fluid viscosity v 0 and the flow rates given by 

a = .!:_(3ß + 7) and a = ß + 3, ß "* 0 for one-dimensional spreading and axisymmetric spreading [5], 
4 

respectively. It can easily be seen from (50) and (51) that ifthe parameter t 0 in Eq. (14) is chosen to 

be 

to = T tr = 

1 

(
_1 LJ-4a-7 
11 10 9 2 v3 
'IOJ 0 

1 

( 
1 Q J-a-3 

~~~ gvo 

for one-dimensional spreading 

(54) 

for axisymmetric spreading 

which is the transition time for spreading with constant viscosity and the flow rates determined by 

a , then the transition time is 

for one-dimensional spreading 

(55) 

for axisymmetric spreading, 

provided that 4a -7 "* 0 and a- 3 "* 0. "tr is given by the formula (54). In case of 4a -7 = 0 and 

a - 3 = 0 , it results 
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1 

( 

10 J 3ß 'lloJ --1 t 
10 T tr 0 

17J 
for one-dimensional spreading 

(56) 

for axisymmetric spreading. 

:Cu- is obtained from eq. (54) by setting a = 
3ß + 

7 for one-dimensional spreading and a = ß + 3 for 
4 

axisymmetric spreading. 

Consider the one-dimensional spreading of a constant flux, i. e. for a = 1. Setting t0 = -. tr in Eq. (14 ), 

where r tr is given by Eq. (54) and shifting the time t---+ t + t', t • = m:vc ttr( a; ~ = t~r( a; g = '<tr, one 
ße[q3a+4 

ends up with the Cauchy problern (12), (13) with initial data h0 (x)=h(x,t+(l~o =h(x,t*), where 

h is given by (31). The shape of h(x* ,t + t*), x* = x- xj(t*) ~ 0 for various values of ß and t = 2( 

as well as t = 1 o( with ( = 1s is depicted in the following figures (Fig. 1 and Fig. 2). The 

evolution of the interface xj ( t + t ·) - xj ( t * ), t E [ 0, 1 OOt *] is shown in Fig. 3. 

0 . 0 0 8 r-------.---,----.-----,---.-------,--.-------, BETA 

x 0. 006 
J: 

J.004 

0.002 

oo. 0 
6.0. 5 
+ 1. 0 
01.5 
4'3.0 

0 . 00 0 L_______L__+--'----------'----<~-+-L__-b--L----e'Y-__J 
0.00 0.04 0.08 0.12 0.16 

X, M 

F:ig. 1: Shape of h(x*, t + t*), x* = x- xj(t*) 2 0 fort= 2t" (t* = '<tr = ls). 
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X 

0. 030 ,------.---,--.----~---.---, BETA 
CJO.O 
60.5 
+1.0 
<!>1.5 
+3.0 

0.010 

0.20 0.40 0.60 
X, M 

Fig. 2: Shape of h( x ·, t + ( ), x • = x- xj ( t ·) c. o for t = 1 o( ( ( = ls) . 

4. 000 ~ 

~ 
I 
I 

~ 
' ;:::: 3. 000 f-

x t 

2.000 

Fig. 3: 

l :~~~ 
60.5 
+1.0 
<!> 1. 5 
+3.0 

Evolution ofthe interface xj(t + t*)- xj(t*), ( = ls. 
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5. Conclusions 

The lubrication approximation for the spreading under gravity leads to a nonlinear degenerate 

parabolic equaion. This equation admits solutions which have important properties, namely, they 

are zero outside a closed and bounded set and the interfaces propagate with finite speed. 

In this paper a similarity solution for the spreading of a volume of liquid which increases with time 

as qta, q > 0, a;:::; 0 and a time dependent viscosity of the form v = ytß, 0 ~ ß < 3a + 1 was 

derived. The solutions are expected to be valid only if the viscous forces are much larger than the 

inertial forces. For flows for which 4a- 3ß- 7 < 0 (in case of one-dimensional spreading) and 

a-ß- 3 < 0 (for axisymmetric spreading) the viscous forces are dominant for all t >> ttr. In the 

opposite case, i. e. for 4a - 3ß- 7 > 0 and for a - ß- 3 > 0 the viscous forces are dominant for all 

t « ttr. ttr is the transition time at which the inertial and viscous forces are equal. For 

4a- 3ß -7 = 0 and a-ß- 3 = 0, conditions under which the spreading is dominated by viscous 

forces for all times are also given. Huppert's solutions for the constant viscosity are the formallimes 

ofthe solutions with time dependent viscosity as ß tends to zero. 
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