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Abstract 

The QUENCH Commissioning Tests were performed in the QUENCH test facility at 

the Forschungszentrum Karlsruhe in the period October 9- 16, 1997. The QUENCH 

test facility was built to investigate the hydrogen source term that results from the 

water injection into the uneavered core of a Light-Water Reactor (LWR). The test 

bundle is made up of 21 fuel rod simulators each with a length of approximately 2.5 

m. Twenty fuel rod Simulators are heated over a length of 1024 mm, the one un­

heated fuel rod simulator is located in the center of the test bundle. The rod cladding 

is identical tothat used in LWRs: Zircaloy-4, 10.75 mm outside diameter, 0.725 mm 

wall thickness. Heating is carried out electrically using 6 mm diameter tungsten 

heating elements, which are installed in the center of the rods and which are sur­

rounded by annular Zr02 pellets. The test bundle is instrumented with thermocouples 

attached to the cladding at different eievatians between -250 mm and 1350 mm and 

at four different orientations. Superheated stearn tagether with argon as a carrier gas 

enters the test bundle at the bottarn end and leaves the test section at the top to­

gether with the hydrogen that is produced in the zirconium-stearn reaction. The hy­

drogen is analyzed by two different instruments: a rnass spectrorneter and a "Caldos 

7 G" hydrogen detection systern. 

The cornrnissioning tests consisted of (a) calibration tests, i.e several test phases at 

steady-state ternperatures conducted with 3 g/s argon or 3 g/s argon + 3 g/s steam, 

(b) a pre-oxidation phase (argon + stearn), (c) a transient phase (argon + stearn), and 

(d) a quench phase. 

The pre-oxidation resulted in a rnaxirnum oxide layer thickness of 500 J..Lrn at the 900 

mm elevation. The transient testphasewas perforrned with a heatup rate of 1 Kls to 

a rnaxirnurn rod cladding ternperature of 1700 K. At this ternperature Ievei flooding of 

the bundle frorn the bottarn by water was initiated. The water injection rate was 2.8 

crn/s. The quench water was injected for 270 s providing a total quench water volurne 

of 22.5 I (which is four tirnes the void volurne of the test section). During the quench­

ing process the electrical power for the bundle heating as weil as the stearn supply 

were cornpletely shut off. The quench ternperature evaluated is between 638 and 

1128 K, and the quench rate is between 0.5 crn/s (rod 21, 470/1250 rnrn) and 2.7 

crn/s (rod 19, 350/1150 rnm). The rnaxirnum cooldown rates on the basis of the ther­

rnocouple responses during quenching were deterrnined to be 160 - 420 Kls. During 



all phases of the commissioning tests a total of 105 g (corresponding to 1.2 Nm3
) hy­

drogen was produced, most of it during the pre-oxidation and the quench phase. A 

part ofthe generatedhydrogen was absorbed by the Zircaloy cladding and shroud. 

The post-test appearance of the test bundle shows significant oxidation of the bundle 

and of the shroud inner surface between the 400 and 1300 mm elevations. The clad­

ding is lost between 730 and 1020 mm (top of heated zone) due to embrittlement. 

Exactly in this region white oxide at the shroud internal surface is deposited. All rod 

cladding thermocouples in the hot region are destroyed. 

This report presents the results of QUENCH Commissioning Tests and those of the 

pre-test calculations performed primarily with the SCADAP/RELAP5 computer code. 



Ergebnisse der QUENCH-Inbetriebnahme-Versuche 

Zusammenfassung 

Die QUENCH-Inbetriebnahme-Tests wurden in der neljen QUENCH-Versuchsanlage 

des Forschungszentrums Karlsruhe vom 9. - 16. Oktober 1997 durchgeführt. Die 

QUENCH-Versuchsanlage wurde gebaut, um den Wasserstoffquellterm, der sich bei 

einer Einspeisung von Notkühlwasser in einen trockenen Reaktorkern eines Leicht­

wasserreaktors (LWR) ergibt, zu ermitteln. Das QUENCH-Testbündel besteht aus 21 

Brennstabsimulatoren mit einer Gesamtlänge von ca. 2,50 m. 20 Brennstabsimulato­

ren sind auf einer Länge von 1 024 mm beheizt. Der einzige unbeheizte Stab befindet 

sich in der Mitte des Versuchsbündels. Die Stabhüllen sind identisch mit LWR­

Hüllrohren: Zircaloy-4, 10,75 mm Außendurchmesser und 0,725 mm Wanddicke. Die 

Heizung der Stäbe erfolgt elektrisch mit Hilfe eines 6 mm-Wolfram-Heizers, der sich 

in der Mitte der Brennstabsimulatoren befindet und von Zr02-Ringtabletten umgeben 

ist. Das Testbündel ist mit Thermoelementen instrumentiert. Sie sind an den Stab­

hüllen in den Ebenen von - 250 mm bis 1350 mm und in vier Umfangslagen befestigt. 

Überhitzter Dampf tritt zusammen mit Argon als Trägergas am unteren Ende in die 

Teststrecke ein und verläßt diese zusammen mit dem Wasserstoff, der sich durch die 

Zirkonium-Dampf-Reaktion gebildet hat am oberen Ende. Der Wasserstoff wird mit 

Hilfe von zwei Messgeräten analysiert: einem Massenspektrometer und einem Cal­

dos-Analysegerät. 

Die Inbetriebnahmeversuche bestanden aus: (a) Kalibrierversuchen, d. h. mehreren 

Phasen stationärer Temperaturen mit 3 g/s Argon bzw. 3 g/s Argon + 3 g/s Dampf, 

(b) einer Voroxidationsphase (3 g/s Argon + 3 g/s Dampf), (c) einer transienten 

Phase (Aufheizphase) und (d) einer Abschreck- bzw. Quench-Phase. 

Die Voroxidation ergab eine maximale Oxidschichtdicke von 500 J.tm in der 900 mm­

Ebene. Die transiente Phase wurde mit einer Aufheizrate von 1 Kls bis zu einer 

maximalen Stab-Hüllrohrtemperatur von 1700 K durchgeführt. Bei dieser Temperatur 

wurde das Fluten des Versuchsbündels von unten mit Wasser ausgelöst. Die 

Wassereinspeiserate betrug 2,8 cm/s. Das Quenchwasser wurde 270 s lang in die 

Teststrecke eingespeist. Damit betrug die Gesamtmenge des eingespeisten Wassers 

22,5 I. (Dieser Wert entspricht dem vierfachen Leervolumen der Teststrecke). 



Während des Abschreckvorgangs waren sowohl die elektrische Leistung als auch die 

Dampfzufubr abgeschaltet. Die ermittelten Quench-Temperaturen lagen zwischen 

638 Kund 1128 K und die Abschreckgeschwindigkeiten zwischen 0,5 cm/s (Stab 21, 

470/1250 mm) und 2,7 cm/s (Stab 19, 350/1150 mm). Die maximalen Abkühlraten 

während des Abschreckens wurden auf der Grundlage der gemessenen Tempera­

turen zu 160 bis 420 Kls bestimmt. Die Wasserstoffgesamtmenge, die während aller 

Testphasen erzeugt wurde, ergab 105 g, entsprechend 1,2 Nm3
. Der Hauptanteil da-

' 
von wurde in der Voroxidations- und in der Quenchphase gebildet. Ein Teil des er-

zeugten Wasserstoffs wurde von den Zirkaloy-Hüllen und der -Shroud absorbiert. 

Nach dem Experiment läßt das Versuchsbündel und die innere Oberfläche des 

Shroud eine deutliche Oxidationszone zwischen 400 und 1300 mm Höhe erkennen. 

Zwischen 730 und 1020 mm Höhe (oberes Ende der Heizzone) sind die Stabhüllen 

durch die Oxidation so versprödet, dass sie weggebrochen sind. Genau in diesem 

Bereich hat sich eine weiße Oxidschicht auf der inneren Oberfläche des Shroud ab­

gelagert. Alle Hüllrohr-Thermoelemente der heißen Zone sind zerstört. 

Dieser Bericht beschreibt die Ergebnisse der QUENCH-Inbetriebnahmeversuche und 

die der Vorausrechnungen, die vor allem mit dem SCADAP/RELAP5-Rechenpro­

gramm durchgeführt wurden. 
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1. lntroduction 

One of the still open problems on early phase core degradation is the hydrogen gen­

eration during quenching. The most important accident management measure to 

terminate a severe accident transient in a Light-Water Reactor (LWR) is the injection 

of water to cool the uneavered degraded core. Analysis of the TMI-2 [1] accident and 

the results of integral out-of-pile (CORA) [2] and in-pile experiments (LOFT [3], 

PHEBUS, PBF) have shown that before the water succeeds in cooling the fuel pins 

there will be an enhanced oxidation of the Zircaloy cladding that in turn causes a 

sharp increase in temperature, hydrogen production and fission product release. 

Quenching is considered a worst-case accident scenario regarding hydrogen release 

to the Containment. The increased hydrogen production worries those concerned with 

reactor safety. For in- and ex-vessel hydrogen management measures one has to 

prove that the hydrogen release rates and total amounts do not exceed safety-critical 

values for the considered power plant. ln most of the code systems, describing se­

vere fuel damage, the quench phenomena are either not considered or only modeled 

in a simplified empirical manner. 

Although nobody suggests not quenching the core, it is important that the hydrogen 

generation rates is known so that accident mitigation measures can be designed ap­

propriately: 

• Passive autocatalytic recombiners werk slowly and their surface area has to be 

sized. 

• The concentration of hydrogen in the containment may be combustible for only a 

short time before detonation Iimits are reached. This Iimits the period during which 

igniters can be used. 

No models are yet available to predict correctly the quenching processes in the 

CORA and LOFT LP-FP-2 tests. No experiments have been conducted that are suit­

able for calibrating the models. Since the increased hydrogen production during 

quenching cannot be determined on the basis of the available Zircaloy/steam oxida­

tion correlations, new experiments are therefore necessary. An extensive experi­

mental database is needed as a basis for model development and improvement. 
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ln the earlier CORA program only a small number of quench tests could be per­

formed. These experiments showed that quenching of the hat bundles by water re­

sulted in a renewed temperature escalation at the top of the bundle and additional 

hydrogen generation, although the electric power supply was already shut off at that 

time. 

The comparison of the quantitative data an hydrogen production measured between 

the CORA-16 BWR-related test (without quenching) and CORA-17 (with quenching) 

shows a remarkable hydrogen peak during the flooding phase of CORA-17. Similar 

behavior in the hydrogenresponsewas observed in PWR-related tests, although it is 

assumed that in the BWR tests, additional energy and hydrogen production was 

caused by a steam reaction with the remnant B4C absorber (B4C oxidation in steam 

is more exotherrnie and produces more hydrogen pergram material than does Zir­

caloy) [4]. 

The Forschungszentrum Karlsruhe has started a QUENCH program on the determi­

nation of the hydrogen source term to investigate the generation of new metallic sur­

faces by cracking and fragmentation of the oxygen-embrittled cladding tubes as a 

result of the thermal shock du ring flooding and their influence on enhanced oxidation 

and hydrogen generation. 

The main objectives of the QUENCH program are: 

• The provision of an extensive experimental database of the development of de­

tailed mechanistic quench models. 

• The examination of the physico-chemical behavior of overheated fuel elements 

(core) under different flooding conditions. 

• Ta provide an improved understanding of the effects of water addition at different 

stages of a degraded core. 

• The determination of cladding failure criteria, cracking of oxide layers, exposure of 

new metallic surfaces to steam which results in renewed temperature escalation 

and hydrogen production, and 

• The determination of the hydrogen source term. 
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The expe-rimental part of QUENCH program consists of small-scale experiments with 

short Zircaloy fuel rod segments and large-scale experiments with bundle simulators 

under nearly adiabatic conditions. 

The parameters of the test program are: Quench medium, i.e. water or steam, 

quench water temperature, water injection rate, cladding oxide layer thickness, and 

the starting temperature for quenching. Although the principal objective of the com­

missioning tests was to put the QUENCH facility into operation and check the various 

components, the testing during the different phases at different power Ieveis resulted 

in an abundance of data. So, this report describes the test facility and test bundle, 

and the main results of the QUENCH commissioning tests. ln addition, one section is 

dedicated to the calculational results of the computations performed with the 

SCADAP/RELAP5 computer code. 

2. Description of the Test Facility 

The QUENCH test facility consists of the following groups: 

- the test section with the fuel element simulator 

- the water and steam supply system 

- the argon gas supply system 

- the hydrogen measurement devices 

- the electric power supply for the test bundle heating 

- the process control system 

- the data acquisition system. 

A simplified flow diagram of the QUENCH test facility is given in Fig. 1. The main 

component of the facility is the test section with the test bundle (cross section, .El.9.: 
~). The superheated steam from the steam generator and superheater tagether with 

argon as the carrier gas enters the test bundle at the bottom end. The steam that is 

not consumed, the argon, and the hydrogen produced in the zirconium-steam reac­

tion flow from the upper bundle outlet via a water-cooled off-gas pipe to the con­

denser (Figs·. 1 and 3). Here the steam is separated from the volatile gases argen 
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and hydrogen. During quenching the quench water enters the test section at the 

bottom via a separate line. 

The design characteristics of the test bundle are given in Table 1. The test bundle is 

made up of 21 fuel rod simulators, each with a length of approximately 2.5 m. Twenty 

fuel rod simulators are heated over a length of 1024 mm, the one unheated fuel rod 

simulator is located in the center of the test bundle. The unheated fuel rod simulator 

(Fig. 8) is built with Zr02 pellets (bore size 2.5 mm ID) and cladding but without a 

tungsten heater and electrodes. Two thermocouples are inserted in its center, one 

thermocouple from the bottom and one from the top. 

Heating is carried out electrically using 6 mm diameter tungsten heating elements, 

which are installed in the center of the rods and which are surrounded by annular 

Zr02 pellets (Fig. 7). The total heating power available is 70 kW distributed among 

the two groups of heated rods with 35 kW each, an outer ring with twelve rods and an 

inner ring with eight rods. ln the axial direction the tungsten heater is located in the 

middle and connected to electrodes made of molybdenum and copper at each end of 

the heater. The molybdenum and copper electrodes are joined by high­

frequency/high-temperature brazing performed under vacuum. For electrical insula­

tion the surfaces of both types of electrodes are plasma-coated with 0.2 mm Zr02. To 

protect the copper electrodes and the 0-ring-sealed wall penetrations against exces­

sive heat lower and upper bundle head are water-cooled (lower and upper cooling 

chamber). There are sliding contacts at the top and bottarn of the copper electrodes 

which are used to make contact to the cables connected to the electric power supply 

(DC). 

The test bundle is surrounded by a 2.38 mm thick shroud made of Zircaloy with a 35 

mm thick Zr02 fiber insulation and an annular cooling jacket whose walls are made of 

stainless steel (Fig. 2). The 7 mm annulus of the cooling jacket is cooled by argon. 

Above the heated zone, i.e. above the 1024 mm elevation, both test bundle and 

shroud are uninsulated. This region of the cooling jacket is cooled by water (Figs. 3 

and 9). 8oth the Iack of Zr02 insulation above the heated region and the water cool­

ing force the axial temperature maximum downward. 

Four corner positions of the bundle are occupied by three instrumentation rods, i.e. 

solid zircaloy rods with a diameter of 6 mm, and one instrumentation tube (6 0 x 0.9 
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mm) for gas injection purposes (Fig. 2). The positioning of the four corner rods avoids 

an atypicallarge flow channel at the outer positions and, in addition, Ieads to a rather 

uniform radial temperature profile. One instrumentation rod is pulled out after pre­

oxidation to determine the axial oxide thickness profile. This profile is then compared 

to that of another rod which was exposed for the complete experiment. 

The fuel rod simulators are held in their positions by four grid spacers, three of Zir­

caloy, and one of lnconel at the bottom. The rod cladding is identical tothat used in 

LWRs with respect to material and dimensions (Zircaloy-4, 10.75 mm outside di­

ameter, 0.725 mm wall thickness). The rods are filled with helium to approx. 2.2 bar, 

i.e. to a pressure slightly above the system pressure. The gas filling of all rods is re­

alized by a channel-like connection system inside the lower insulation plate which is 

sealed to the system by 0-shaped rings. This sealing plate is, in addition, the lower 

boundary for the lower cooling chamber. The upper boundary of the cooling chamber 

is a sealing plate of stainless steel. The bundle design at the top is similar. Also here 

an insulation plate made of plastic (PEEK) forms the top of the upper cooling cham­

ber, and a sealing plate of Ab03 is the lower boundary of the cooling chamber (see 

Fig. 7). ln the region below the upper Alz03 plate the copper electrode is connected 

firmly to the cladding. This is done by hammering the cladding onto the electrode with 

a sleeve of boron nitride put between electrode and cladding for electrical insulation. 

The fixed point between cladding and electrode is in the region below the upper 

AI203 plate (hammered zone). The fixing of the fuel rod simulators is located directly 

above the upper edge of the upper insulation plate and is realized by a groove and a 

locking ring. So, during operation the fuel rod simulators are allowed to expand up­

wards and downwards. Space for expansion of the test rods is provided in the re­

gions of the lower insulation plate. Relative movement between cladding and internal 

heater/electrode, however, can only take place in the region of the lower insulation 

plate. 

3. Test Bundle Instrumentation 

The test bundle is instrumented with thermocouples attached to the cladding at dif­

ferent eievatians between - 250 mm and 1350 mm and at four different orientations 

(Figs. 9, 10, and 11 ). The eievatians of the shroud thermocouples are from - 250 

mm to 1250 mm. ln the lower bundle region, i.e. up to the 350 mm elevation NiCr/Ni 
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thermocouples (1 mm outside diameter) are used for temperature measurement of 

rod cladding and shroud. The thermocouples of the hot zone are high-temperature 

thermocouples with W-5 Re/W-26 Re wires, Hf02 insulation, and a duplex sheath of 

tantalum (internai)/Zircaloy (2.1 mm outside diameter, Fig. 12). The Ieads of the 

thermocouples from - 250 mm to 650 mm leave the test section at the bottarn 

whereas the TCs above 650 mm penetrate the test section at the top. The wall of the 

inner tube of the cooling jacket is instrumented between - 250 mm and 1150 mm 

with 22 NiCr/Ni thermocouples. Five NiCr/Ni thermocouples are fixed at the outer 

surface of the outer tube of the cooling jacket. A Iist of all instruments is given in Ta­

ble 2. The thermocouple attachment technique is illustrated in Figs. 13 and 14. The 

TC tip is held in place by a clamp of Zr. As this clamp is prone to oxidation and em­

brittlement in a steam environment an Ir-Rh wire of 0.25 mm diameter is used for 

support. This wire was tested tagether with other materials and was best with respect 

to melting point and handling performance [5]. As indicated in Fig. 13 the wire is used 

for the experiments with pre-oxidation only. ln a test without pre-oxidation the wire 

material would react with the cladding because there would be no protection of the 

cladding by a Zr02Iayer. 

4. Hydrogen Measurement Devices 

The hydrogen is analyzed by two different instruments: (1) a mass spectrometer lo­

cated at the off-gas pipe behind the test section, (2) a "Caldos 7 G" hydrogen detec­

tion system (Fig. 4) located behind the condenser, in a bypass to the off-gas line, i.e. 

before the argon and hydrogen exit to the outside they pass the Caldos hydrogen 

detection system in a bypass line (Fig. 1 ). Due to these different locations the mass 

spectrometer responds almost immediately whereas the delay time of the Caldos 

system is of the order of 1 00 s. The principle of measurement of the Caldos system is 

based on the different heat conductivities of different gases. The Caldos device used 

is calibrated for the hydrogen-argen gas mixture. To avoid any maisture in the ana­

lyzed gas a gas cooler, which is controlled at 296 K, and a drier (molecular sieve, 

zeolite) are connected in series before the gas analyzer (Fig. 5). The response of the 

gas analyzer is documented to be 2 s, i.e. the time when 90 % of the final value is 

reached. 
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The mass spectrometer (MS) "BALZERS GAM 300" used is a completely computer­

controlled quadrupole MS with an 8 mm rod system which allows measurement of 

impurity concentrations in inert gases to better than 1 ppm. The sensitivity for hydro­

gen, however, is reduced due to the low molecular mass of H2. Nevertheless, it is 

better than 1 00 ppm. The gas specimen for the MS measurement is taken at the end 

of the off-gas pipe in front of the throttle and the condenser (Figure 6). The sampling 

tube which is inserted in the off-gas pipe and has several holes at different elevations 

should guarantee a representative sampling gas composition. The penetration of this 

tube through the cooling jacket of the off-gas pipe caused partial condensation of 

steam at this position. Therefore, no quantitative steam concentration measurements 

could be performed during the commissioning tests. To avoid steam condensation 

the temperature of the gas at the MS inlet is controlled by a heat exchanger to be 

between 110 oc and 150 oc (the upper operating temperature of the MS inlet valves). 

Therefore, the MS can analyse the steam production rate. Additionally, it is used to 

control the atmosphere in the facility, e.g., to detect air ingress through a leak which 

is of interest from the safety point of view. 

The temperature and pressure of the analysed gas are measured near the inlet valve 

of the MS. The MS is calibrated for hydrogen with well-defined argon/hydrogen mix­

tures and for steam with mixtures of argon and steam supplied by the steam gen­

erator of the QUENCH facility. Contrary to the original plan to feed the MS off-gas 

back into the facility, it is released to the atmosphere because the amount of hydro­

gen taken out of the system is negligible. 

For the Caldos device as weil as for the MS the hydrogen mass flow rate is calcu­

lated by referring the measured H2 concentration to the known argon mass flow rate 

according to equation (1 ): 

CH2 . 
--·mAr 
CAr 

(1) 

with M representing the molecular masses, C the concentrations and m the mass 

flow rates of the corresponding gases. 
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With an argon-hydrogen (two-component) mixture that does exist at the location of 

the Caldos analyzer equation (1) can be written as follows 

CH2 . __ ..;;;,.__ . m Ar 

1-C 
H2 

(2) 

5. Data Acquisition and Process Control 

A powerful PC-based control and data acquisition system is used in the QUENCH 

experimental facility. Data acquisition, data storage, online visualization as weil as 

process control, control engineering and system protection are accomplished by 

three computer systems that are linked in a network. 

The data acquisition system allows the acquisition of about 200 measurement chan­

nels at a maximum frequency of 25 Hz per channel. The experimental data are pro­

vided with some information as far as the date and time of data acquisition are con­

cerned and stored as raw data in the binary format. After the experiment, conversion 

into an ASCII format with a simultaneaus recalculation into SI units takes place. 

During the data acquisition of the commissioning tests, 146 channels were used by 

measurement signals. ln the individual test phases, the data were recorded at vari­

ous frequencies. 

For process control, a system flow chart with the current measurement values se­

lected is displayed on the computer screen. Furthermore, the operating mode of the 

active components (pumps, steam generator, superheater, DC power system, 

valves) is indicated. The parameter settings of the control curcuits and devices can 

be modified online. Blocking systems and Iimit switches ensure safeplant operation. 

Pre-defined operating test phases, e.g. heatup or quenching phases, can be pre­

programmed. 

Online visualization allows to observe and document the current values of selected 

measurement positions in the form of tables or graphics. Eight diagrams with six 

curves each can be displayed as graphics. This means that altogether 48 measure­

ment channels can be displayed online and selected anew during the course of the 

experiment. 
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6. Test Conduct 

The commissioning tests consisted of 

1. calibration tests, i.e. several test phases conducted with 3 g/s argon (188_02, 

phases A, 8, C, and IBS 05, phase A) or 3 g/s argon + 3 g/s steam (188_03, 

phases A, 8, C, and 188 05, phase A) as the coolant to verify thermodynamic 

computations, e.g. heat Iosses etc., 

2. a pre-oxidation phase (argon + steam, 188_04), 

3. a transient phase (argon + steam, 188_05, phase 8), 

4. a quench phase (188_05, phase C). 

The electric power Ieveis at the various test phases can be deduced from Ref. [6]. 

Table 3 describes the test conditions during the various test phases. As the thermo­

couples were exposed to the numerous test phases of the commissioning tests, most 

of them have failed. There was only one thermocouple in the hot region of the bundle 

(TCRC 13, 950 mm elevation) that survived the entire test due to its protection by 

pellets and cladding in the center of the central rod. So, with this thermocouple it is 

possible to provide an overview of the entire commissioning tests (Fig. 15). ln gen­

eral, erroneous TC signals have been eliminated from the data. Due to the extreme 

exposure of the thermocouples, their temperature readings should be treated with 

caution. 

The steady-state temperatures reached during the calibration phases were between 

940 K (188_03, phase A) and 1280 K (188_02, phase C). The temperatures and 

times during the pre-oxidation were: at 1450 K for 4000 s. The time period during 

which the test bundle was above 1000 K was 8000 s. The pre-oxidation resulted in a 

maximum oxide layer thickness of 500 J.tm at the 900 mm elevation. The axial distri­

bution of the oxide layer thickness can be taken from Figs. 17 and 41 , respectively. 
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The transient test phase was performed with a gas inlet temperature of 620 K1 and a 

heatup rate of 1 K/s to a maximum rod cladding temperature of 1700 K and a maxi­

mum shroud temperature of 1600 K at the 850/950 mm bundle elevation. At this 

temperature flooding of the bundle from the bottom by water was initiated. To initiate 

the quenching phase the steam (3 g/s) and argon flow (3 g/s) through the test section 

were turned off and the electric power was reduced to a decay heat Ievei. The 

quench water then entered the test section at the bottom. During quenching in the 

commissioning tests no argon was supplied as the carrier gas. 

The water injection rate amounted to 2.8 cm/s and was evaluated on the basis of 300 

1/h quench water (F 104) and the coolant channel cross-section of 30 cm2
. The 

quench water was injected for 270 s providing a total quench water volume of 22.5 I 

(which is four times the void volume of the test section). During the quenching proc­

ess the electrical power for the bundle heating as weil as the steam supply were 

completely shut off after 40- 50s. 

7. Test Results 

Figure 16 is an example of the so-called calibration data. Rod, shroud, and cooling 

jacket temperatures at 950 mm are plotted vs. time for IBS_03, test phase C. ln F!ft 

ure 17 the axial temperature profile during the pre-oxidation (at 13000 s) is compared 

to the axial distribution of the Zr02 layer thickness. Both distributions show the maxi­

mum to lie at around 900 mm. The heatup of the test rods during the transient is il­

lustrated in Figure 18 for the 900 mm elevation. The termination of the transient at 

the maximum temperature of 1700 K is the onset temperature for the subsequent 

quench phase. The following frgures present results of this final test phase. ln Fig. 19 

the power history is provided. The turn-off of the steam supply is illustrated in Fig. 20. 

The quench waterflow (F 104) is given in Fig. 21. 

The temperature readings during quenching are provided in Figures 22 through 26. 

They were taken from the thermocouples that had survived the previous test phases. 

1 Probably during the bundle assembling the thermocouple T 511 that measured the fluid 

temperature at the bundle inlet was displaced and measured therefore the temperature of the 

adjacent structure. 
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The temperature data were plotted according to the rod position in the bundle, i.e. 

temperatures of the centrat rod, of rod type 2 (rods 2, 4, 6, 8), of type 3 (rods 5, 7), 

and of rod type 5 (rods 10, 12, 15, 16, 18, 19, 21). Toward the end of the flooding 

phase when alt rod cladding temperatures are at the lowest Ievel the thermocouple 

signals of the upper eievatians exhibit a renewed temperature peak (Figs. 23, 24 and 

26). This peak indicates that the two-phase flow is not uniform, particularly in the 

upper regions (voiding effect). The shroud temperatures of the upper regions do not 

show this behavior. 

The temperature data were evaluated to obtain the onset of cooling, quench tem­

peratures, and cooldown rates (Table 4). ln Fig. 27 the procedure of determining 

quench temperatures, cooldown rates, quench rates is illustrated by an example. ln 

addition, the water injection and flooding rate are defined in this figure. Quench rates 

could be evaluated with help of the temperatures measured by thermocouples at the 

lower region and at the very top of the test section, i. e. with the help of the thermo­

couples that had survived the test series. The evaluation of the quench rates is of 

great interest because these values are a measure of how fast the test rods are 

flooded with water. They are defined as the velocities of the quench water Ievei rising 

along the individual rods. So, the distance between a pair of thermocouples on the 

sametestrod is related to the times of the onset of quenching. 

The quench temperatures evaluated are between 638 and 1128 K, the maximum 

cooldown rates on the basis of the thermocouple responses were determined to be 

160 - 420 Kls. The quench rates obtained are provided in Figs. 23, 25, 26. They 

range from 0.5 cm/s (rod 21, 470/1250 mm) to 2.7 cm/s (rod 19, 350/1150 mm). 

The maximum amount of hydrogen during the quench phase was recorded by the 

"Caldos 7 G" device (Q 901) with 22-23 vol% H2 as can be seen in Fig. 28. As the 

argon was turned off with the start of the quench phase there was no carrier gas flow 

at this time2
. So, this value is not reliable with respect to its time dependence. 

2 From the next experiment on argen will be injected at the upper bundle head, i.e. above the 

test section during the quench process. 
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8. H2 Mass Spectrometer Measurements 

The main öbjective of the mass spectrometric measurements (and beyend it of the 

QUENCH program itself) is the analysis of the hydrogen produced and released 

during the interaction between the Zircaloy cladding material and steam. The hydro­

gen absorbed by the remaining Zircaloy metal was determined in post-test analyses 

with the LAVA-MS installation (see section on "posttest appearance"). 

The following data were recorded by the MS data acquisition system (PC) with a fre­

quency of about 0.5 Hz: concentrations of H2, Ar, H20, N2, 02, as weil as He and 

temperature and pressure at the MS inlet. ln the commissioning tests the MS could 

also be used as an indicator for the first cladding tube failure. The latter was done by 

the analysis of the helium concentration in the off-gas3
. 

The data of the MS data acquisition system and the data from the main data acquisi­

tion system are synchronised by two radio-controlled clocks. For the evaluation of the 

MS data the following data were extracted from the main test data flies: T 401, P 401, 

F 401 (temperature, pressure, and flow rate at the argen inlet), T 205, P 205, F 205 

(steam flow rate), TCRC 13 (TC central rod, center, 950 mm) and T 601 (TC near the 

MS sampling position). For the quench phase the data from TCRC 9 (TC central rod, 

center, 570 mm), TCR 9 (TC central rod, cladding, 570 mm) and F 104 (flow rate 

quench water) were additionally taken into consideration. 

Due to the different sampling rates of the main and the MS data acquisition systems 

the two data sets were interpolated with f = 1 Hz. 

Table 5 summarises the results of the mass spectroscopic hydrogen measurements. 

Altogether, 105 g (corresponding to 1.2 Nm3
) hydrogen were released du ring the 

commissioning tests, most of it during the pre-oxidation and the quench phase. 

Assuming a complete reaction (equation 2) and neglecting the formation of the a­

Zr(O) phase, 105 g H2 corresponds to the formation of 3.2 kg Zr02. 

(2) 

3 The fuel rod simulators were filled with helium at a Iew overpressure which was released 

into the test rig after the first cladding tube failed. 
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This corresponds to a Zr02 layer of 1 mm thickness if it is assumed that a homoge­

neaus oxide layer has formed on 21 Zry cladding tube surfaces, 2 corner rods, 2 Zry 

instrumentation tubes, and the Zry shroud inner surface over a length of 500 mm. 

Figures 29, 30, and 31 show the hydrogen production rate and the integral hydrogen 

release versus time as weil as some relevant data of the facility for better under­

standing of the mass spectrometer data. 

ln Figure 33 the hydrogen production rate and the center line temperature of the 

centrat unheated rod in the hot zone (elevation 950 mm) are shown in one diagram. 

There is an excellent agreement between the fine structure of the two curves. The 

large peak in the hydrogen release at about 9800 s results from the accelerated oxi­

dation kinetics at high temperatures (here: T>1200 oc). 

Figure 32 shows the hydrogen production and relevant data during the quench proc­

ess. Due to a failure of a valve the constant argon feed into the facility was inter­

rupted at the beginning of the quench phase. Therefore, there was a time-dependent 

argon flow rate during this phase. Since the argon flow rate is measured at the lower 

head of the facility (F 401) and the MS sampling position is at the end of the off-gas 

pipe, using equation 1 may cause problems. On the other hand, the entire gas flow 

rate (argon, steam, hydrogen) is very high during quenching, therefore, the delay 

time should be negligible. 

Regarding the other species measured by the MS the following results were ob­

tained: the oxygen concentration in the facility was about 0.002 vol % (20 vppm) 

during the tests IBS_03- 05 with one exception. During test 188_04 an oxygen (ni­

tragen) peak up to 2 (9) vol %was observed at 3200 s after the start of the data ac­

quisition system. This is an indication of a small air ingress into the test section at 

that time. 

After starting the test IBS_04 a high helium concentration was measured due to the 

failure of at least one cladding tube during heatup. Depending on the He pressure in 

the fuel rod simulators between 3 and 30 g/h helium were released from the test rods 

during this phase. 
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With respect to the hydrogen measurements the following lessons have been 

learned: 

- ln general, the MS measurements worked excellently with respect to the analysis 

of the hydrogen release, the detection of fuel rod simulator failure and control of 

the composition of the atmosphere in the facility relating to leak tightness. 

- The original plan to take the gas sample for MS measurements before the con­

denser and to feed it back into the facility after the condenser did not work, due to 

the Iack of a pressure gradient between these two points. Therefore, the off-gas of 

the MS was released into the atmosphere. Since the extracted gas quantities are 

very small compared to the off-gas flow rate in the facility other measurements 

should not be influenced. For the next tests it is planned to condense the steam in 

the off-gas of the MS and to measure the flow rate of the non-condensable gases 

in order to guarantee reproducible test conditions. lf necessary, a gas pump will 

have tobe installed to transport the MS off-gas back into the facility. 

- The quantitative analysis of steam in the off-gas pipe of the facility was not possi­

ble during the commissioning tests owing to a partial steam condensation at the 

penetration of the gas sampling tube through the cooling jacket (Figure 34). This 

penetration has to be reconstructed to avoid the close proximity of the sampling 

gas and the cooling water. A final solution has not been defined, up to now. 

- ln the next tests a constant argon carrier gas flow rate up to the end of the quench 

phase has tobe guaranteed. 

- Prior to the next experiment, delay time measurements (between hydrogen pro­

duction in the bundle and the measurement by MS or CALDOS) should be per­

formed. 

- The measuring gas flow rate to the MS will be regulated by a control valve. 

9. Post-Test Appearance 

After the experiment the test bundle was taken out of the facility and a window was 

cut into the shroud as illustrated in Fig. 35. So a view into the bundle was enabled: 

the test bundle shows significant oxidation of the rod cladding and at the shroud inner 

surface between 400 and 1300 mm elevation (Figs. 36 and 37). The cladding is lost 

between 730 and 1020 mm (top of heated zone). Exactly in this region white oxide at 
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the shroud internal suriace is deposited. The outer surface of the shroud showed a 

deformation at the 900 mm elevation (Fig. 38). The maximum diameterwas meas­

ured tobe 90 mm compared to the pre-test dimension of 84.76 mm. The same region 

of the shroud seen prior to the test is shown in Fig. 39. All cladding thermocouples in 

the hot region are destroyed. A great part of the missing cladding material was found 

as debris in the off-gas pipe (Fig. 40). 

There was only a limited post-test examination of the bundle, because of the untyp­

ical treatment due to the various heat-up and cool-down phases. Besides the calibra­

tion rod that was removed from the bundle during the experiment, i.e. after the pre­

oxidation phase to determine the oxide layer thickness (for results see Figs. 41 and 

42) rod 13 was taken out of the bundle after the experiment. The cladding tube of this 

latter rod has been used to determine the axial distribution of the oxide layer thick­

ness after the quench phase. ln addition, the dissolved hydrogen content has been 

analysed in cladding tube segments taken at various axial elevations. The results of 

both measurements are summarised in Figure 43. Relatively large amounts of hy­

drogen (up to an atomic ratio H/Zr 0.2! ) were absorbed by the remaining Zircaloy 

metal phase above and below the hot zone of the bundle. The extrapolation of the 

data obtained from one cladding tube to the whole bundle gives a value of about 10 g 

hydrogen dissolved in Zircaloy-4 cladding and shroud material, which corresponds to 

10 % of the total hydrogen release du ring the entire set of commissioning tests. 

10. Calculational Support 

10.1 Pre-Test Calculations 

Within FZK institutional R&D activities calculations, mainly with SCDAP/RELAP5, 

(S/R5) have been made to support the construction and the operation of the 

QUENCH facility and to interpret results of the commissioning tests. Results con­

cerning the design studies are reported in [7]. For the investigations reported here 

S/R5 mod 3.1 release F, made available for the planning of the QUENCH facility, has 

been used. The improved model for heat transfer in the transition boiling region [8] is 

included in the FZK version of the programme. 

The modelling of the QUENCH facility in S/R5 is shown in Figure 44. The unheated 

pin, the two rows of pins tobe heated independently, and the inner and outer cooling 
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jacket are modelled as SCDAP components. ln this way two-dimensional heat con­

duction within the structures and radiation between adjacent structures are taken 

into account. The bundle flow is represented by one channel. ln the radial direction 

the whole facility including the containment is modelled, because the ambient room 

temperature is the only reliable boundary condition to calculate the radial heat Iosses 

out of the bundle adequately. The containment is modelled as a heat structure, thus 

taking into account only radial heat conduction. The modelling of the off-gas pipe 

has been included during our current work by AEAT Winfrith and has been revised, 

updated, and extended to the whole length of 3 m by FZK. lt is used for the final cal­

culations. ln particular, the orifices at the position of the mass spectrometer and at 

the end of the off-gas pipe are modelled. The whole modelling has been updated 

continually according to the state of the planning and construction of the facility. So, 

an additional insulation of the outer cooling jacket has been taken into account by 

part of the calculations, but not for the final ones. 

For the fluid in the bundle an inlet temperature of 873 K was assumed. lf not stated 

otherwise, a fluid composition of 3 g/s steam and 3 g/s argon has been assumed as 

a standard fluid composition. The reference pressure is 1.2 bar. The argon and the 

water cooling are counter-current flows with mass flow rates of 6 g/s and 100 g/s, 

respectively, and with an inlet temperature of 300 K. The initial structure tempera­

tures have been assumed to be 300 K. 

To fix the bundle fluid composition and mass flow rates for the experiments, a pa­

rameter study was made for the pre-oxidation phase. Apower pulse was applied at 

the beginning of the test to reach higher temperatures as quickly as possible to avoid 

low temperature oxidation which may Iead to breakaway effects. Then a power pla­

teau followed to achieve the required pre-oxididation of the rods. Afterwards a power 

transient was applied to simulate the high rod temperatures before quenching. Be­

sides the electrical power input and the power released due to oxidation, Figure 45 

shows inner shroud wall temperatures, clad surface temperatures for the inner 

heated pin row and corresponding oxide layer thicknesses for the various axial ele­

vations according to Figure 43. For the steam mass flow a minimum value of 0.3 g/s 

steam has been used as a lower boundary for the calculations. For the argon mass 

flow a value of 0.5 g/s was judged to be a minimum requirement for hydrogen pro­

duction measurement. 
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For the standardfluid composition of 3 g/s steam and 3 g/s argon the maximum sur­

face temperatures and hence the maximum oxide layer thicknesses are near the up­

per end of the heated zone (upper part of Figure 46). The radial temperature profile 

of the bundle is rather flat leading to nearly the same axial oxide layer proflies for alt 

pins andthe shroud. For low steam flows the calculated maximum ofthe temperature 

and hence, of the oxide layer shifts to the centre of the heated part of the bundle 

(lower part of Figure 46). ln the upper part of the bundle steam starvation is calcu-
, 

lated to occur. Figure 46 also shows that at the bundle inlet the fluid heats up the 

rather cold pins and shroud. ln the upper unheated zone the fluid temperature is 

higher than that of the pins and the shroud. This is due to radiation heat transfer to 

the cooling jacket. This seems possible because there is no insulation material in that 

region. The figure also shows the effective heat removal in the upper unheated zone 

of the bundle: the temperature in the bundle decreases substantially due to radiation 

and convection to the water flow whereas the water temperature remains nearly con­

stant. 

For all gas compositions temperature changes sensibly with power increase because 

of the positive feedback of local power input on temperature: local input of electrical 

power increases with the third power of local temperature when the electrical current 

is kept constant. The oxidation rate depends on an exponential function of the in­

verse temperature and hence also increases with temperature. So, a slight power 

increase may Iead to a temperature escalation. Because of the low heat capacity of 

argon compared to steam, this effect becomes even more pronounced for small 

steam flows. As a consequence, oxidation rates are very small for all cases with 

small steam flow rates (Figure 47). 

Furthermore, to avoid a temperature escalation, the electrical power has to be re­

duced during the pre-oxidation phase to such an extent that in larger regions of the 

bundle the pin temperatures decrease (Figure 47). Physically, a restructuring of the 

clad material to a-Zr(O) and a reduction of the oxide layer thickness result from the 

power decrease. However, this effect is neither typical for a reactor, nor can it be 

modelled in the code. ln summary, the results show that it is not possible to design 

an axial oxide layer thickness profile by varying fluid flows and composition. There­

fore the standard fluid composition of 3 g/s steam and 3 g/s argon are taken as final 

values for the projected tests in the QUENCH facility. 
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To get a more reliable basis for the planning of the experiments, calculations with 

ICARE were also done for the standard fluid composition. Time-dependent results 

with ICARE are given in Figure 48. ln the axial direction the same nodalization of the 

facility was used as in SIRS, in the radial direction the nodalization includes the com­

ponents up to the inner cooling jacket. lts surface temperature is prescribed as a 

boundary condition, using values from SIRS calculations, because modelling of a 

counter-current flow is actually not possible in ICARE. The shroud, the shroud insu­

lation, and the inner cooling jacket are modelled as cylindrical structures, whereas in 

SIRS only a slab geometry can be considered. The temperature proflles, obtained 

with the two codes (Figure 49), are judged to be in sufficiently good agreement so 

that this activity is considered to be finished at the moment. The. deviations of the 

oxide layer proflies show the streng sensitivity of oxidation with temperature. 

For all commissioning tests pre-test calculations have been done after code error 

corrections which became apparent at lower temperatures. This work gave indica­

tions for the electrical power and the duration of the various test phases. Figure 50 

shows results for 3 gls of pure argon flow, where in the bundle steady state condi­

tions could be reached at temperatures of 900, 11 00, and 1300 K, respectively. The 

results suggest that a steady state can be reached after about one hour for each 

temperature Ievei. Figure 51 shows axial temperature proflies of the bundle at the 

end of each power step. The cooling of the off-gas pipe is very efficient (Figure 52). 

So, steam condensation in the off-gas pipe is certainly a problern during the heat-up 

phase. Therefore it is proposed to preheat the test section and the off-gas pipe with 

10 gls of pure argon flow for ·one hour before using steam to avoid substantial con­

densation at least upstream of the measuring oriflce in the off-gas pipe. Axial tem­

perature proflies in the bundle and in the off-gas pipe at the end of the three power 

steps are shown in Figures 53 and 54 for the standardfluid composition. A compari­

son with the results for a pure argon flow (Figures 51 and 52) shows the enhanced 

heat transfer capabilities of steam. 

Calculations for the quench phase showed a wide band of results depending on the 

assumptions about oxide layer shattering (Figures 55 and 56). ln the flrst case no 

shattering is assumed, in the secend case complete shattering at the beginning of 

the quench phase is assumed. However, further calculations for the quench phase 
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have been postponed because of code errors concerning the shattering model. The 

error has been notified to the code developer at INEL. 

10.2 Post-Test Calculations 

The aims of the commissioning tests were not only to test the QUENCH facility and 

ensure its safe operation, but also to assess the quality of the pre-calculations and, if 

necessary, to improve the modelling of the facility and fit uncertain input parameters 

such as material property data of the shroud insulation material. For technical rea­

sons the tests could not be performed in the manneras it had been agreed on the 

basis of the pre-calculations. The inlet temperature in the tests was much lower than 

assumed, and some experimental procedures had to be done to test the various 

components of the facility. Therefore new calculations with 8/R5 had tobe performed 

using the actual experimental conditions. The range of reliable postlest calculations 

is limited to tests 188_02 and 188_03. 8ecause of the untypical test conduct 188_01 

should not be considered for post test calculations. After the conduct of 188_03 the 

pins and the shroud were partially oxidized, and calculations for the subsequent tests 

can only account of this fact when the whole power history of all these tests is given 

at the beginning of the calculation for 188_03. This would be beyend the possibilities 

of the programme. 8esides this the power input in test 188_04 was controlled from 

temperature Ievels, and this test conduct led to large temperature oscillations. 

As a first step post-test calculations have been done for commissioning test 188_02, 

where a pure argon flow was used. With respect to the pre-test calculations only the 

experimental boundary conditions as inlet temperature and power history have been 

updated in the first calculation (Figure 57). The temperature increases in the bundle 

at the beginning of the power pulses are calculated to be somewhat higher than 

measured except in the lower unheated part. Temperature decreases at the end of 

the power pulses are generally underestimated. 

Some more insight is given by the axial temperature proflies (Figure 58). ln the lower 

unheated part of the bundle the axial temperature proflies at the end of each of the 

three power steps are met quite weil, the position of the maximum bundle tempera­

ture is also met, but temperature Ieveis are overestimated in the calculation. The 

relatively low temperatures measured atz= 0.57 m are probably due to the influence 

of the spacer grid at that Ievei. The fluid outlet temperature is only given as a rough 
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estimate, but since the respective thermocouple was situated outside the bundle 

cross section, its reading was influenced by the radial temperature decrease between 

the bundle and the water-cooled upper plenum wall and is hence not representative 

for the bulk values calculated in S/R5. The radial heat Iosses are underestimated in 

the calculations as can be seen from a comparison of measured and calculated tem­

peratures of the shroud and the cooling jackets. A comparison of experimental and 

calculated electrical resistance (Table 6) suggests that the heat input into the heated 

section is slightly overestimated. 

Due to modelling restrictions in S/R5 the structures outside the bundle had to be rep­

resented in Cartesian instead of cylindrical geometry. This approximation is justified 

when the thickness of the component is small in comparison to its inner radius. For 

the first SCDAP component "shroud" which contains the shroud itself, the shroud in­

sulation and the inner cooling jacket this assumption is not justified. So its volume is 

about 40 % larger than for a Cartesian geometry, and for the same temperature dif­

ference the average heat flux is larger by about 40 % than for a Cartesian geometry. 

Since the major part of this domain is filled by the insulation material, both its specific 

heat capacity and the thermal conductivity have been increased by 40 % to compen­

sate for this geometry effect. This treatment is, however, only an approximation be­

cause average values for the whole domain are considered, and for a better repre­

sentation the use of cylindrical co-ordinates to solve the heat conduction equation is 

mandatory. 

ln spite of the relatively low temperature Ievei outside the outer cooling jacket radia­

tion may not be neglected. Therefore the containment is modellad as a SCDAP com­

ponent for further calculations so that radiation between the outer cooling jacket and 

the Containment can be accounted for. lts effect will be demonstrated later. 

Another reason for the deviations between calculated and measured temperatures 

may lie in the difficulty to model adequately the complicated design of the QUENCH 

facility. For example the pins and the shroud must be modelled to have the same 

axial extension to account for the radiation heat transfer between these components, 

but in the QUENCH facility the pins are Ionger than the shroud section. During the 

pre-calculations it was feit that the correct modelling of geometry of the shroud and 

the shroud insulation is predominant. As a consequence of this modelling, the por­

tion of electrical energy released into the heated zone is overestimated. To improve 
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this situation with not too large an effort, some input changes are made. Only molyb­

denum is considered in the unheated part instead of molybdenum and copper, so 

increasing the electrical resistance of the unheated part of the pins. Besides this the 

length of the three upper unheated nodes was modelled to be 0.2 m instead of 

0.15 m. With these two changes the calculated electrical power input into the un­

heated zone is increased and hence the portion of electrical energy release into the 

heated part of the bundle decreased, the total amount of electrical power being given 

from experimental values. · 

Further investigations showed that the thermal conductivity of the insulation material 

should be increased by another 40 % to fit the measured temperatures in IBS_02. 

This may have to do with experimental uncertainties. 

A calculation has been done with all changes mentioned above (Figures 59 and 60). 

The measured temperatures in the bundle are now met much better. The remaining 

difference between measured and calculated pin temperatures at the end of the three 

power steps can be attributed to experimental uncertainties. Separate investigations 

[4] show that at high temperatures the measured temperature might be about 100 K 

above the clad surface temperature due to the method of fixing the thermocoupiss on 

the pins, and measured pin temperatures are now between calculated pin surface 

and fluid temperatures as it should be for such experimental arrangement. 

For the three power steps the calculated electrical resistance is about 1 mQ above 

the experimental values (Table 6). Therefore the electrical power input should be cor­

rect. Temperatures in the cooling jackets arealso met, indicating that the radial heat 

Iosses are reasonably weil modelled. ln particular, a comparison of the outer cooling 

jacket temperatures with those in Figure 57 demonstrates the rote of radiation heat 

transfer between the outer cooling jacket and the containment. While the measured 

temperatures are overestimated in the original modelling, i. e. the deviations increase 

with increasing temperature Ievel, there is no such effect for the improved modelling. 

The still somewhat overestimated temperature rise at the begin of the power pulse 

may be due to the material property data of the pins. In the experiment Zr02 pellets 

with a theoretical density of 90 % were used, in the calculation U02 pellets with a 

theoretical density of 95 % are modelled; an improvement of the S/R5 would be 

rather elaborate, because changes would be necessary at many programme steps. 
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The influence of the wrong modelling can be assessed from a comparison of the 

material property data. Figure 61 shows that for the interesting temperature range the 

specific heat capacity of Zr02 is somewhat higher such explaining the lower meas-

ured temperature increase. The thermal conductivity of Zr02 is lower than that of 

U02 for the whole temperature range. Since the radial temperature profile in the pins 

is rather low this difference may be neglected at the moment. 

ln principle there is an uncertainty leading to a systematic error: the thermocouple to 

measure the fluid temperature at bundle inlet was displaced, probably during the 

bundle assembly and measured the temperature of the adjacent structure. A com­

parison of measured and calculated temperatures near the bundle inlet shows, how­

ever, that for IBS_02 this uncertainty cannot be large. 

Based on the final modelling of IBS_02 calculations for commissioning test IBS_03 

have been made, only adjusting the parameters that were specific for the test con­

duct. The fluid bundle inlet temperature has been assessed to be constant at 600 K 

except for the cool-down phase. Time- and space-dependent results (Figures 62 and 

63) compare quite weil for IBS_02 if one keeps in mind that the thermocouples in the 

bundle measure a temperature between the clad surface and the fluid temperature. 

The difference between calculated and measured electrical resistance is also compa­

rable to the results for IBS_02 (Table 6) indicating that the electrical power input is 

correct. 
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Table 1: Design characteristics of the QUENCH test bundle 

Bundle type PWR 

Bundle size 21 rods 

Number of heated rods 20 

Number of unheated rods 1 

Pitch 14.3 mm 

Rod outside diameter 10.75 mm 

Cladding material Zircaloy-4 

Cladding thickness 0.725 mm 

Rod length heated rods (elevation) 2480 mm (-690 to 1790 mm) 

unheated rods (elevation) 2842 mm (-827 to 2015 mm, incl. 
extension) 

Heater material Tungsten (W) 

Heater length 1024 mm 

Heater diameter 6mm 

Annular pellet heated rods Zr02; 0 9.1516.15 mm; L=11 mm 

unheated rods Zr02; 0 9.1512.5 mm; L=11 mm 

Pelletstack heated rods 0 to 1020 mm 

unheated rods 0 to 1553 mm 

Grid spacer material Zircaloy-4, lnconel 718 

length Zry 42 mm, lnc 38 mm 

location of the lower edge -200 mm lnconel 
50 mm Zircaloy-4 
550 mm Zircaloy-4 
1 050 mm Zircaloy-4 

Shroud material Zircaloy-4 

wall tickness 2.38 mm 

outside diameter 84.76 mm 

length (elevation) 1600 mm (-300 to 1300 mm) 

Shroud insulation material Zr02 fiber 

insulation thickness 35mm 

elevation -300 to 1 000 mm 

Molybdenum-copper electrodes: 

length of upper electrodes 766 mm (576 Mo, 190 mm Cu) 

length of lower electrodes 690 mm (300 Mo, 390 mm Cu) 

diameter of electrodes: 

- prior to coating 8.6mm 

- after coating by Zr02 9.0mm 

Cooling jacket material Stainless steel, 1.4541 

inner tube 0 158.3 I 168.3 mm 

outer tube 0181.7 I 193.7 mm 
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Table 2: List of instrumentation of the QUENCH calibration tests 

Chan- Designation Instrument, location 
nel 

0 TCRC9 TC (W/Re) central rod, center, 570 mm 

1 TCRC13 TC (W/Re) central rod, center, 950 mm 

2 TCR9 TC (W/Re) central rod, cladding, 570 mm 

3 TCR13 TC (W/Re) central rod, cladding, 950 mm 

4 TFS 2/11 TC (W/Re) fuel rod simulator 8 (type 2), 750 mm, 135° 

5 TFS 2/13 TC (W/Re) fuel rod simulator 2 (type 2), 950 mm, 225° 

6 TFS 2/15 TC (W/Re) fuel rod simulator4 (type 2), 1150 mm, 315° 

7 TFS 2/17 TC (W/Re) fuel rod simulator 6 (type 2), 1350 mm, 45° 

8 TFS 3/8 TC (W/Re) fuel rod simulator 5 (type 3), 470 mm, 45° 

9 TFS 3/10 TC (W/Re) fuel rod simulator 7 (type 3), 670 mm, 135° 

10 TFS 3/12 TC (W/Re) fuel rod simulator 9 (type 3), 850 mm, 225° 

11 TFS 3/13 TC (W/Re) fuel rod simulator 3 (type 3), 950 mm, 315° 

12 TFS 3/14 TC (W/Re) fuel rod simulator 5 (type 3), 1050 mm, 45° 

13 TFS 3/16 TC (W/Re) fuel rod simulator 7 (type 3), 1250 mm, 135° 

14 TFS 4/11 TC (W/Re) fuel rod simulator 14 (type 4), 750 mm, 45° 

15 TFS 4/13 TC (W/Re) fuel rod simulator 20 (type 4), 950 mm, 135° 

16 TFS 5/8 TC (W/Re) fuel rod simulator 21 (type 5), 470 mm, 225° 

17 TFS 5/9 TC (W/Re) fuel rod simulator 10 (type 5), 570 mm, 315° 

18 TFS 5/10 TC (W/Re) fuel rod simulator 12 (type 5), 670 mm, 225° 

19 TFS 5/11 TC (W/Re) fuel rod simulator 13 (type 5), 750 mm, 45° 

20 TFS 5/12 TC (W/Re) fuel rod simulator 15 (type 5), 850 mm, 315° 

21 TFS 5/13 TC (W/Re) fuel rod simulator 16 (type 5), 950 mm, 135° 

22 TFS 5/14 TC (W/Re) fuel rod simulator 18 (type 5), 1050 mm, 45° 

23 TFS 5/15 TC (W/Re) fuel rod simulator 19 (type 5), 1150 mm, 225° 

24 TFS 5/16 TC (W/Re) fuel rod simulator 21 (type 5), 1250 mm, 225° 

25 TFS 5/17 TC (W/Re) fuel rod simulator 10 (type 5), 1350 mm, 315° 

26 TSH 9/270 TC (W/Re) shroud outer surface, 570 mm, 270° 

27 TSH 11/270 TC (W/Re) shroud outer surface, 750 mm, 270° 

28 TSH 13/270 TC (W/Re) shroud outer surface, 950 mm, 270° 

29 TSH 14/270 TC (W/Re) shroud outer surface, 1050 mm, 270° 

30 TSH 11/180 TC (W/Re) shroud outer surface, 750 mm, 180° 
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Chan- Designation Instrument, location 
nel 

31 TSH 12/180 TC (W/Re) shroud outer surface, 850 mm, 180° 

32 TSH 13/180 TC (W/Re) shroud outer surface, 950 mm, 180° 

33 TSH 15/180 TC (W/Re) shroud outer surface, 1150 mm, 180° 

34 TSH 16/180 TC (W/Re) shroud outer surface, 1250 mm, 180° 

35 TSH 9/90 TC (W/Re) shroud outer surface, 570 mm, 90° 

36 TSH 11/90 TC (W/Re) shroud outer surface, 750 mm, 90° 

37 TSH 13/90 TC (W/Re) shroud outer surface, 950 mm, 90° 

38 TSH 14/90 TC (W/Re) shroud outer surface, 1050 mm, 90° 

39 TSH 11/0 TC (W/Re) shroud outer surface, 750 mm, oo 
40 TSH 12/0 TC (W/Re) shroud outer surface, 850 mm, oo 
41 TSH 13/0 TC (W/Re) shroud outer surface, 950 mm, oo 
42 TSH 15/0 TC (W/Re) shroud outer surface, 1150 mm, oo 
43 TSH 16/0 TC (W/Re) shroud outer surface, 1250 mm, oo 
44 T 512 Gas temperature bundle outlet 

45 -
46 -

47 Ref. T 01 Reference temperature 1 

48 TFS 2/1 TC (NiCr/Ni) fuel rod simulator 4 (type 2), 250 mm, 315° 

49 TFS 2/2 TC (NiCr/Ni) fuel rod simulator 6 (type 2), 150 mm, 45° 

50 TFS 2/3 TC (NiCr/Ni) fuel rod simulator 8 (type 2), 50 mm, 135° 

51 TFS 2/5 TC (NiCr/Ni) fuel rod simulator 2 (type 2), 150 mm, 225° 

52 TFS 2/6 TC (NiCr/Ni) fuel rod simulator 4 (type 2), 250 mm, 315° 

53 TFS 2/7 TC (NiCr/Ni) fuel rod simulator 6 (type 2), 350 mm, 45° 

54 TFS 5/4/0 TC (NiCr/Ni) fuel rod simulator 15 (type 5), 50 mm, 315° 

55 TFS 5/4/180 TC (NiCr/Ni) fuel rod simulator 21 (type 5), 50 mm, 135° 

56 TFS 5/5 TC (NiCr/Ni) fuel rod simulator 16 (type 5), 150 mm, 225° 

57 TFS 5/6 TC (NiCr/Ni) fuel rod simulator 18 (type 5), 250 mm, 45° 

58 TFS 5/7 TC (NiCr/Ni) fuel rod simulator 19 (type 5), 350 mm, 225° 

59 TSH 4/270 TC (NiCr/Ni) shroud outer surface, 50 mm, 270° 

60 TSH 3/180 TC (NiCr/Ni) shroud outer surface, 50 mm, 180° 

61 TSH 4/180 TC (NiCr/Ni) shroud outer surface, 50 mm. 180° 

62 TSH 7/180 TC (NiCr/Ni) shroud outer surface, 350 mm, 180° 

63 TSH 4/90 TC (NiCr/Ni) shroud outer surface, 50 mm, 90° 

64 TSH 1/0 TC (NiCr/Ni) shroud outer surface, 250 mm, oo 
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Chan- Designation Instrument, location 
nel 

65 TSH 4/0 TC (NiCr/Ni) shroud outer surface, 50 mm, oo 
66 TSH 7/0 TC (NiCr/Ni) shroud outer surface, 350 mm, oo 
67 TCI9/270 TC (NiCr/Ni) cooling jacket inner tube wall, 550 mm, 270° 

68 TCI 10/270 TC (NiCr/Ni) cooling jacket inner tube wall, 650 mm, 270° 

69 TCI 11/270 TC (NiCr/Ni) cooling jacket inner tube wall, 750 mm, 270° 

70 TCI13/270 TC (NiCr/Ni) cooling jacket inner tube wall, 350 mm, 270° 

71 -

72 TCI 1/180 TC (NiCr/Ni) cooling jacket inner tube wall, 250 mm, 180° 

73 TCI4/180 TC (NiCr/Ni) cooling jacket inner tube wall, 50 mm, 180° 

74 TCI 7/180 TC (NiCr/Ni) cooling jacket inner tube wall, 350 mm, 180° 

75 TCI11/180 TC (NiCr/Ni) cooling jacket inner tube wall, 750 mm, 180° 

76 TCI12/180 TC (NiCr/Ni) cooling jacket inner tube wall, 850 mm, 180° 

77 TCI13/180 TC (NiCr/Ni) cooling jacket inner tube wall, 950 mm, 180° 

78 TCI 15/180 TC (NiCr/Ni) cooling jacket inner tube wall, 1150 mm, 180° 

79 -

80 TCI 9/90 TC (NiCr/Ni) cooling jacket inner tube wall, 550 mm, 90° 

81 TCI10/90 TC (NiCr/Ni) cooling jacket inner tube wall, 650 mm, 90° 

82 TCI 11/90 TC (NiCr/Ni) cooling jacket inner tube wall, 750 mm, 90° 

83 TCI13/90 TC (NiCr/Ni) cooling jacket inner tube wall, 850 mm, 90° 

84 -
85 TCI1/0 TC (NiCr/Ni) cooling jacket inner tube wall, 250 mm, oo 
86 TCI4/0 TC (NiCr/Ni) cooling jacket inner tube wall, 50 mm, oo 
87 TCI7/0 TC (NiCr/Ni) cooling jacket inner tube wall, 350 mm, oo 
88 TCI11/0 TC (NiCr/Ni) cooling jacket inner tube wall, 750 mm, oo 
89 TC112/0 TC (NiCr/Ni) cooling jacket inner tube wall, 850 mm, oo 
90 TCI13/0 TC (NiCr/Ni) cooling jacket inner tube wall, 950 mm, oo 
91 TCI15/0 TC (NiCr/Ni) cooling jacket inner tube wall, 1150 mm, oo 
92 -
93 TCO 9/270 TC (NiCr/Ni) cooling jacket outer tube surface, 550 mm, 270° 

94 TCO 4/180 TC (NiCr/Ni) cooling jacket outer tube surface, 50 mm, 180° 

95 -

96 TCO 1/0 TC (NiCr/Ni) cooling jacket outer tube surface, 250 mm, oo 
97 TCO 7/0 TC (NiCr/Ni) cooling jacket outer tube surface, 350 mm, oo 
98 TCO 13/0 TC (NiCr/Ni) cooling jacket outer tube surface, 950 mm, oo 
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Chan- Designation Instrument, location 
nel 

99 T601 Temperature before off-gas flow instrument F 601 

100 T 513 Temperature bundle head top (wall) 

101 T 514 Temperature bundle head, at outlet (wall) 

102 -

103 -

104 T 104 Temperature quench water 

105 T 201 Temperature steam generator heating pipe 

106 T204 Temperature before steam flow instrument location 50 g/s 

107 T205 Temperature before steam flow instrument location 10 g/s 

108 T 301A Temperature behind superheater 

109 T 302 Temperature superheater heating pipe 

110 T303 Temperature before total flow instrument location 

111 T 401 Temperature before gas flow instrument location 

112 T403 Temperature at inlet cooling gas 

113 T404 Temperature at outlet cooling gas 

114 T 501 Temperature at containment 

115 T502 Temperature at containment 

116 T503 Temperature at containment 

117 T504 Temperature at Containment 

118 T 505 Temperature at containment 

119 T506 Temperature at containment 

120 T507 Temperature at containment 

121 T508 Temperature at containment 

122 T509A Temperature bundle head outside (wall) 

123 T 510 Temperature at containment 

124 T 511 Gas temperature at bundle inlet 

125 T901 Temperature before off-gas flow instrument F 901 

126 -
127 Ref. T 02 Reference temperature 2 

128 p 201 Pressure steam generator 

129 p 204 Pressure at steam flow instrument location 50 g/s 

130 p 205 Pressure at steam flow instrument location 1 0 g/s 

131 p 303 Pressure before total flow instrument location 

132 p 401 Pressure before gas flow instrument location 
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Chan- Designation Instrument, location 
nel 

133 p 511 Pressure at bundle inlet 

134 p 512 Pressure at bundle outlet 

135 p 601 Pressure before off-gas flow instrument F 601 

136 p 901 Pressure before off-gas flow instrument F 901 

137 L 201 Liquid Ievei steam generator 

138 L 501 Liquid Ievei quench water 

139 L 701 Liquid Ievei main condenser 

140 Q 901 H2 concentration, off-gas (Caldos) 

141 p 411 Pressure helium supply 

142 -
143 -

144 F 104 Flow rate quench water 

145 F 204 Flow rate steam 50 g/s 

146 F 205 Flow rate steam 1 0 g/s 

147 F 303 Flow rate at bundle inlet (steam +argen), orifice 

148 F 401 Argon gas flow rate 

149 F 403 Flow rate cooling gas 

150 F 601 Flow rate off-gas (orifice) 

151 F 901 Off-gas flow rate before Caldos (H2) 

152 E 201 Electric current steam generator 

153 E 301 Electric current superheater 

154 E 501 Electric current inner ring of fuel rod simulators 

155 E 502 Electric current outer ring of fuel rod simulators 

156 E 503 Electric voltage inner ring of fuel rod simulators 

157 E 504 Electric voltage outer ring of fuel rod simulators 
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Table 3: QUENCH Commissioning Test Overview 

Test Phase Argon Steam lnlet Maximum Time at 
temp.*) temperature temp. 

[g/s] [g/s] [K] [K] [s] 
IBS 01 A 3.6 - 350 950 4000 

B 3.6 - 390 1150 2500 

c 3.6 - 390 1440 3000 

IBS 02 A 3.3 - 325 990 2500 

B 3.3 - 360 1120 2500 

c 3.3 - 360 1280 3000 

IBS 03 A 3.1 3.0 600 940 2000 

B 3.1 3.0 610 1120 2000 

c 3.1 3.0 610 1270 1000 

IBS 04 Heatup (< 0.1 Kls; 0-7000 s) 2.8 4.7 650 s 1100 7000 

Heatup (< 0.15 Kls; 7000-10000 s) 2.8 2.9 610 s 1500 3000 

Plateau 2.8 2.9 610 1500 4000 
. 

IBS 05 A (1500- 2250 s) 3.1 - 325 1200**) 750 

B (4000- 5000 s) 3.1 2.9 500 800**) 1000 

c (7000 - 8500 s) 3.1 2.9 500 1 050**) 1500 

D (10500 -12500 s) 3.1 2.9 530 1270**) 2000 

Transient (1 K/s) 3.1 2.9 620 1750**) -
Quenching - ***) - 350 - -

*) Basedon T 511 that was attached to the wall of the iniet annulus. So, temperatures given tend tobe somewhat too low. 

**) Max. temperatures of IBS_05 extrapolated due to TC failures. 

w 
.....>. 

***) Ar flow turned off accidentally due to a malfunction of a magnetic valve. 



Table 4: Evaluation of cool-down data 

Cladding Elevation Onset of cooling Onset of quenching Max. cooldown 
Thermo- Rod number during quench-
couple Time (s) Temp. (K) Time (s) Temp. (K) ing 

(Kis) 

TFS2/1 - 250 mm (rod 4) - - 19 638 420 

TFS2/2 - 150 mm (rod 6) - - 19 737 420 

TFS2/3 -50 mm (rod 8) - - '19 815 320 

TFS2/5 150 mm (rod 2) 19 1034 35 943 260 

TFS2/6 250 mm (rod 4) 19 1171 42 1040 210 

TFS2/7 350 mm (rod 6) 19 1231 62 977 280 

TFS2/17 1350 mm (rod 6) 46 1341 92 834 420 

TFS3/8 470 mm (rod 5) 18 1220 55,5 971 300 

TFS3/16 1250 mm (rod 7) 43 1483 92 767 320 

TFS5/4/0 50 mm (rod 15) 19 877 33 803 230 

TFS5/4/180 50 mm (rod 21) 19 867 33 803 160 

TFS5/5 150 mm (rod 16) 19 1015 34 946 200 

TFS5/6 250 mm (rod 18) 19 1133 50 896 280 

TFS5/7 350 mm (rod 19) 19 1222 69 881 260 

TFS5/8 470 mm (rod 21) 19 1166 35 1128 300 

TFS5/9 570 mm (rod 1 0) 19 1209 40 1094 280 

TFS5/10 670 mm (rod 12) 19 1338 39 1036 370 

TFS5/15 1150 mm (rod 19) 43 1500 99 900 220 

TFS5/16 1250 mm (rod 21) 43 1416 92 870 310 

TFS5/17 1350 mm (rod 10) 43 1310 82 735 340 

TCR9 570 mm (rod 1) 19 1259 46 1000 350 
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Table 5: Integral hydrogen release during the QUENCH commis­

sioning tests 

Test Type Integral H2-production, g 

ISS 03 Calibration test in steam 13 

ISS 04 Pre-oxidation at 1500 K 35 

IBS 05 a) Repetition of the calibration test in steam 17 

b) Quench scoping test 40 

2:: 105 

Table 6: Experimental and calculated electrical resistance of the 

heated pins in mn. 

exp/run step 1 step 2 step 3 

ISS 02 9.9/10.1 11.2/11.4 12.4/12.7 

i02r01 11.7 13.1 14.4 

i02r06 11.1 12.4 13.5 

ISS 03 11.2/11.4 12.5/12.8 14.1/14/4 

i03r01 12.1 13.6 15.7 

Note: For the experiments the results for the inner and outer heated pin rows are 

given, for the calculations the results for the inner heated pins are given. 
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QUENCHTest Section Instrumention 
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TC Instrumentation of the Test Bundle 
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QUENCHTest Bundle 
TC Instrumentation and Rod Designation (Top View) 

Shroud outer wall: 
Heated rods: 

22 W/Re 
11 NiCr/Ni 

Central rod (No. 1): 

2 W/Re center 
2 W/Re cladding 

Thermocouples at 17 axial elevations: 
From -250 mm to +1350 mm with distances of 100 mm 

18 W/Re 
8 NiCr/Ni 

Wall of inner 
cooling tube: 

22 NiCr/Ni 

Outer surface of 
outer cooling tube: 

5 NiCr/Ni 

Fig. 11 
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·-------------------· ----------------------------------·---··------------·--·-----------------·-····-----------····-···-······· 

QUENCH High-temperature thermocouple 

W/Re thermocouple 0 2.1 mm transition piece 

03.4mm 

compensati~n cable 0 1 mm con;ector 

r--1 F==i= 

disc 

Hot junction 
Iaser welded 

Zircaloy cap 

L 
*) 30 

Laserweid 

Hf02 insulation 

Zircaloy sheath 
0 2.1 mm 

I .------c-1-----.., 
? I Pl 

3000 

wall thickness 0.35 mm 

W26%Re wire ----~ 

W5%Re wire -----......! 

Ta sheath 
0 1.4 mm 
wall thickness 0.23 mm 

~ *) L: high-temperature section length dependent on the TC position in the test bundle 500 mm- 1800 mm IMF 1111 02_97 
N -···--·----------··----·------------·-------------------------·-----·--·---------·--·-------··· 



Forschungszentrum Karlsruhe 
Technik und Umwelt 

TC Fastening Concept for the QUENCH 
Test Rods 

Zr02 pellets 

Zircaloy 
cladding 

Zrclamp­
(0.2 mm) 

With pre-oxidation: Zr clamp + wire 

Without pre-oxidation: Zr clamp 

TC _Fastening.cdr 

Tungsten 
heater 

TC 2.1 mm 
duplex sheath 

Ir 40/Rh 60 wire 
(0.25 mm) 

Fig. 13 
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Zr Clip for Fixing the TC Tip at the Rod 
Cladding 

TC_Ciip.cdr 

Zr strip 
thickness 0.2 mm 
width 3mm 

Zry dadding t1J 10.75 mm 
wall thickness 0.725mm 

W/Re TC tll2.1mm 

I • 3 
l 

IMF 111/02.97 

Fig. 14 
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QUENCH Calibration Test 185_03 (Oct. 10, 1997)- Phase C Argon+ Steam 
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QUENCHTest 185_04 - Pre-oxidation 
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QUENCHTest 185_05 (Oct. 16, 1997) ... Transient Phase 
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QUENCHTest 185_05 (Oct 16, 1997)- Quenching Phase 
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Test IBS 05 - Quenching of the central rod at 570 and 950 mm 
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Test IBS 05- Quenching of rods 15, 16, 18, 19 a d 21 (rod type 
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Temp. 
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Onset of quenching = 495 s and 531 s, respectively 
Difference in elevations = 50 cm 

of s mtT< 

600 Time 
- I njection rate = Quench water flow entering the bottarn of the test section 

determined by quench pump rate 

- Flooding rate = lnjection rate minus water evaporation in the test section; function of elevation 

Que_rate_scheme (07-98).CDR 
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facility (lower diagram) during 185_04 
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Mass spectron1eter sampling position at the off-gas pipe 

off-gas steam +Ar + H2 

to mass spectrometer 
steam +Ar+ H2 

sampling tube penetration 

H20 cooling jacket 

thermal insulation gap 
stagnant gas 

Fig. 34 
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Cut-out of n bservatio 
the Shroud, Schematic 

indow 

Bottom 

QUENCH Commissioning Test Bundle 
Opening between 
240° and 60° (top-viewed) 

Top 

Fig. 35 

HIT 03/98 
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QUENCH Commissioning Tests 
Bundle after opening the shroud 

Fig. 36 
HIT 11/97 
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QUENCH Cotntnissioning Tests 
Posttest view of the bundle 

Fig. 37 
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QUENCH Commissioning Tests 
Bulging of the shroud at 900 mm elevation 

Max. shroud temp.: l 600 K at 850/950 mm 

Max. deformation: 90/84.76 mm 

~~"~"'~'"" 

'0LD@HIT016107 

Fig. 38 
HIT 11/97 
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QUENCH Commissioning Tests 

Shroud at 700 - 900 mm elevation (Pre-test) 

900 mm 

700 mm 

Fig. 39 
HIT 12/97 
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QUENCH Commissioning Tests 

Debris at the front end of the off-gas pipe 
after removal of the test section 

~~ ~""' ~~ ~~-~- -~~~-~~~-~~~~~~~~~ 

Fig. 40 
HIT 11/97 c,:.:::poLD®HIT016107 
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Oxide layer thickness of a removed oxidation calibration rod 
Commissioning tests performed in October 1997 

oxide layer dense 
and adherent to 
the metal substrate 
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oxide layer 
partially detached 
from a~Zr(O) 

part of the oxide 
layer lost 

oxide layer rather 
homogeneaus at 
the circumference 

o+-~~~~~~~--~--~~--~--~--~--~~--~ 
0 100 200 300 400 5oo 600 700 ·soo goo 1000 1100 1200 

Bundle elevation in mm 

II IMF1 SRV I QUENCH I HUEBNER \ALLGEMEIN I OXIDE LAYER THICKNESS SW_CDR 11/97 



IMFI 

axial bundle elevation: 500 mm 
900mm 
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700mm 
1100 mm 

Oxide layer thickness of a removed oxidation 
calibration rod at different bundle elevations 

28.11.97 

Fig. 42 
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Institut fiir Reaktorsicherheit 7197 

Bypass flow channel · Shroudinsulation 

Fuel rods: Center Rod 

Fuel rods: Inner Ring 

Fuel rods: Outer Ring 

Instrumentation Tubes 
W.H. 7197 
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