
Forschungszentrum Karlsruhe
Technik und Umwelt

FZKA 6280

lntroduction to the Use
of the UNIX-Version of the
KArlsruhe PROgram System
KAPROS

D. Woll
Institut für Neutronenphysik und Reaktortechnik
Projekt Nukleare Sicherheitsforschung

Juli 1999

Forschungszentrum Karlsruhe

Technik und Umwelt

Wissenschaftliche Berichte

FZKA 6280

lntroduction to the Use of the UNIX-Version of the
KArlsruhe PROgram System KAPROS

D. Woll

Institut für Neutronenphysik und Reaktortechnik
Projekt Nukleare Sicherheitsforschung

Forschungszentrum Karlsruhe GmbH, Karlsruhe
1999

Als Manuskript gedruckt
Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH
Postfach 3640, 76021 Karlsruhe

Mitglied der Hermann von Helmholtz-Gemeinschaft
Deutscher Forschungszentren (HGF)

ISSN 0947-8620

Introduction to the Use of the UNIX-Version of the
KArlsruhe PROgram System KAPROS

Abstract

At the Forschungszentrum Karlsruhe the Karlsruhe PROgram System KAPROS is used for
nuclear calculations since 1976. This programsystem was adapted continuously to the
changing computer environment. The present report gives a brief introduction to the use of the
actual KAPROS-version KSSKUX adapted to UNIX.

Einführung in die Benutzung der UNIX-Version des
KArlsruher PROgramm-Systems KAPROS

Zusammenfassung

Im Forschungszentrum Karlsruhe wird seit 1976 das Karlsruher PROgramm-System
KAPROS für nukleare Berechnungen eingesetzt. Dieses Programmsystem wurde laufend der
sich ändernden Rechnerumgebung angepaßt. Der vorliegende Bericht gibt eine kurze
Einführung in die Benutzung der an UNIX augepaßten KAPROS-Version KSSKUX.

Contents

1 Introduction

2 History of the KAPROS-Development

3 Introduction to the UNIX-Version of KAPROS

4 Survey of the Existing Modules and the Associated Libraries
4.1 Modules .
4.2 Libraries

5 Preparing Inputfora KAPROS-Job

6 Running a KAPROS-J ob

7 Preparing Modules
7.1 KAPROS-Subroutines for Datatransfer
7.2 KAPROS-Subroutines for Calling Modules
7.3 Error Handling
7.4 Initialization of a KAPROS-Module
7.5 Compiling and Linking of KAPROS-Modules.

8 U sing Archives

9 Examples for KAPROS-Jobs
9.1 Simple KAPROS-Job using *GO-commands
9.2 KAPROS-Job Including a User-Module .
9.3 KAPROS-Job Using an Archive

Acknowledgements

References

Survey of available KAPROS-Modules
Determination of Atomic Number Densities for Material Garnpositions
Calculation and Manipulation of Multigroup Cross-Sections
Cell Calculations and/ or heterogeneity correction
Neutron Diffusion Codes
Neutron Transport-Codes
Iterative Determination of Buckling and Fuel Enrichment

and Evaluation of Neutron Flux Distributions
Evaluations, i.e. Reaction Rates and/ or Combinations of them .
Reactor Kinetics Parameter, based on Perturbation Theory .
Burnup and Depletion Calculations
Plot-Modules
Auxiliary Modules for Manipulating Datablocks

1

1

2

2
2
3

3

4

5
5
6
7
7
7

9

10
10
11
13

14

15

17
17
17
18
18
18

19
19
19
20
20
21

1 Introd uction

The goal of this report is to provide abrief introduction to the UNIX-version of the
KArlsruhe PROgram System KAPROS so that the user becomes quickly acquainted
with KAPROS and can appreciate the specific features and the possible advantages of
KAPROS compared to other systems. It is not intended to give a detailed description
of KAPROS. For this purpese several reports of the MYS-version running until 1998
on IBM computers exist, which are essentially valid for the UNIX-version too. There
exists also a comprehensive computer internal documentation accessible e.g. by the
UNIX script "ksinfo" including more detailed information also of aspects not covered in
this report.

2 History of the KAPROS-Development

Since 1965 at KfK program systems were used, that manage sequencing of programs and
organize the flow of data between the programs in datablocks.
KAPROS was developed since 1973 as a successor of the first NUclear program SYStem
NUSYS at KfK for an IBM/370-168 computer with its relatively small storage capacity
usual at that time (a KAPROS-job was able to use about 300 kbyte storage) [1a, 1b, 1c].
Mostparts of KAPROS were written in FORTRAN except for some Assembler routines
that interacted closely with the operating system OS-MVT (Multiprogramming with a
Variable number of Tasks). The storage available for a KAPROS-job was managed by
KAPROS itself. To make optimal use of the precious storage capacity, datablocks could
be divided into parts for storing them in the main storage. The management of this
datablock-parts in extensive and complicated tables turned out to be a considerable dis­
advantage. For saving storage KAPROS has been designed in an overlay-structure.
In 1982 a computer SIEMENS Fujitsu 7890 running under the operating system OS-MVS
(Multiple Virtual Storage) was installed. Making better use of the new capabilities of this
computer generation a new version of KAPROS was developed [2]. The overlay-structure
was no Ionger necessary because a storage of 1 Mbyte now could be used.
For use on a CYBER 205 computer, it was necessary to develop a revised version of
KAPROS, KSSK, using special CYBER-FORTRAN-features instead of IBM-Assembler­
routines [3]. Taking advantage of the available large storage, subdividing of datablocks
was no Ionger necessary. In KSSK the possibility of storing data on disk was not pro­
vided. In order to facilitate the portability of KAPROS, the importance increased to
avoid subroutines written in Assembler as far as possible. Therefore on the basis of
KSSK the KAPROS-version KSSKBU [4] was developed for IBM 3090 again using exter­
nal storage. Management of the storage region available for KSSKBU was clone by the
operating system, therefore only few Assembler-routines were still necessary further on.
Later KSSKBU was extended to KAPROS3 [5]. Because of addressing restrictions this
version could utilize only about 8 Mbyte of the available storage. In order to make use of
the whole available storage volume of more than 64 Mbyte upgraded versions had been
developed using the extended area XA of the MVS-sytem [4], [6).
In order to enable burnup-calculations with KARBUS [7] on workstations running un­
der UNIX the current version KSSKUX was developed [8) on the basis of KSSKBU­
XA-version and KAPROS3 using the programming language C instead of Assembler for
interacting with the operating system.

1

3 Introduction to the UNIX-Version of KAPROS

KAPROS enables the user to call calculation programs, the so called modules, in
freely chosen order and organizes the flow of data between the modules in the so called
lifeline. Furthermore KAPROS allows the user to write own modules in the program­
ming language FORTRAN which may be used to combine existing modules or to carry
out calculations not yet included in the existing modules. They can be added in an easy
way to the already existing package of modules. Archives allow to store calculated data
so that they can be used subsequently in other jobs.
The UNIX-version of KAPROS consists of two main parts,

• the so called system "kernel" and
interacting with but independent of the kernel,

• the modules and the associated application libraries (cross-sections etc.),
where executables, e.g. UNIX-scripts, can be processed in the same way as modules.

The kernel is of a rather general nature and can be used for any task, that requires a
flexible sequence of program calls and an associated organisation of the flow of data.
For storing data the so called lifeline is used. It consists of two parts,

(1) the internallifeline in the workspace of KAPROS extended by external files if
necessary, working with transfer of data between modules and lifeline,

(2) and the so called pointer-lifeline, to which the modules can have access by
pointers without actual datatransfer.

Data are stored in so called datablocks, labeled by the datablockname and an index.
UNIX-scripts make it easy to run KAPROS and to compile and link modules.
Scripts may also be useful for postprocessing of results.

The KAPROS information system "ksinfo" enables the user to get an extensive
documentation about the KAPROS-kernel and modules in a simple way.

4 Survey of the Existing Modules and the Associated Libraries

4.1 Modules

For nuclear calculations modules are available in the KAPROS-library KSLIB for
the following tasks (the Iist in the annex shows them more detailed):

• Determination of atomic number densities for material compositions,
• Calculation and manipulation of multigroup cross-sections,
• Cell calculations and/ or heterogeneity correction,
• Neutron Diffusion calculations,
• Neutron Transport calculations,
• Iterative determination of buckling or fuel enrichment,
• Evaluations, i.e reaction rates and combinations of them,
= Reactor kinetics parameters, based on perturbation theory,
• Burnup and depletion calculations,
• Plot-modules,

and independent from the nuclear calculations:
• Auxiliary modules for manipulating datablocks.

2

4.2 Libraries

4.2.1 Material-Dependent Microscopic Group Cross-Section Libraries

Libraries with material-dependent microscopic group cross-sections (mainly for neutron
induced nuclear reactions) are available at the Forschungszentrum for following groups:
Number of Energy Groups Identifications

11 SIMMER
26 SIMMER, KFKINR, KFKINR2
69 WIMSLIB
75 GR75LIB
208 GR208
275 GR275
334 GR334
100 neutron/23 photon NEUTPHOT

These files are mainly used by the module GRUCAL. In order to get information about
the included materials and cross-section types the user may use "ksinfo".

4.2.2 Burnup libraries

For burnup calculations with the module BURNUP following files are available containing
data for:

light elements
heavy isotopes
fission products

These files are based on the latest versions of the libraries used by the stand-alone code
KORIGEN (for details see corresponding input descriptions).

5 Preparing Inputfora KAPROS-Job

Input for a simple KAPROS-job consists of two parts,

(1) the input-datablocks with KAPROS-commands to transfer them to the lifeline
and

(2) the KAPROS-commands to call the modules.

In the following text words written in capital letters are key words.
Parameters enclosed in (] may be omitted.
$USER means the identification of the user.
Text written in italics is of minor interest.

lnput-datablocks are stored in the lifeline by the KAPROS-command

*KSIOX DBN=dbn,IND=ind,TYP=CARD,PMN=pmn

where
dbn is the name of the datablock

(up to 16 characters, right-handed blanks may be omitted),
ind is the index of the datablock (in simple cases usually 1) and
pmn is the name of a check-module.

3

The input data following the *KSIOX-command have to be written freeformatted,
characterstrings have to be enclosed in apostrophes. The structure of the input-datablocks
is described in the input-descriptions of the modules (in general stored in the computer
and available e.g. by "ksinfo").
The input-data of a datablock have to be terminated by

$$

Modules are called by

*GO SM=module[,MPARM=mparm]

where
module is the name of the module, see the Iist in the annex.
mparm are up to 20 parameters transferred to the module.

They may contain the index of the input datablock,
a character-string up to 80 characters or
parameters for controlling the run of the KAPROS-job.

A KAPROS-job may contain a sequence of *GO-commands.
Instead of such a sequence of *GO-commands the user may also establish an own module
containing a sequence of KSEXEC-calls (see chapter 7.2).
Annotations may be included in the input after *$ followed by at least one blank.

6 Running a KAPROS-Job

To run a KAPROS-job the user may call the script ksuxgo:

ksuxgo input [additional parameters]
where input is the name of the input file prepared by the user containing datablocks and
KAPROS-commands for calling modules.
The meaning of the additional parameters for special applications can be obtained by call
of ksuxgo without arguments.
Additional fi.les, for example archives, are usually expected by KAPROS under the
name KSUX.$USER.FTnt connected by a symbolic link with the real file.
nt means the unit-number for using the file (two digits with leading zeros).

The user can observe the KAPROS-run on screen, where all important messages
will be shown.
KAPROS will create the standard-outputfile KSUX.$USER.FT07 containing the results
of the calculations and the protocol-file KSUX.$USER.FT42 containing special messages,
which may be useful especially for the interpretation of erroneous KAPROS-runs.

For using KAPROS it is necessary to extend the file .profile in following way:
• storing the directory containing filesbelanging to KAPROS in the variable KAPROB-PATH

(currently at the Forschungszentrum KAPROS_PATH=/fzk/inr/rs_aix41/KAPROS}
• including EXPORT=$KAPROB-PATH
e extending the sytem-variable $PATH by $PATH=$PATH:$KAPROS_PATH/bin

4

7 Preparing Modules

7.1 KAPROS-Subroutines for Datatransfer

Modules usually have tobe written as a FüRTRAN-subroutine (see 9.2), the main­
program will be included when linking the module. If one wants to develop own modules
one has to consider two aspects:

(1) Input/output of data in datablocks of the lifeline and
(2) calling other modules.

The meaning of the variables appearing in the following calls of subroutines is explained
at the end of this section.

Communication with the lifeline is possible in two ways:
(1) with datatransfer by call of the KAPROS-subroutines

CALL KSGET (DBN,IND,NF,K,N,IQ)
CALL KSPUT (DBN,IND,NF,K,N,IQ)
CALL KSCH (DBN,IND,NF,K,N,IQ)

KSGET will transfer data from the datablock DBN into the data array NF in the module
(NF may also be a variable when N=1),
KSPUT will store the content of the variable or array NF into the datablock DBN,
KSCH will change already existing data in the datablock DBN, it works like KSPUT.
(2) in pointer-technique by call of the KAPROS-subroutines

CALL KSGETP (DBN,IND,N,A,IP,IQ)
CALL KSPUTP (DBN,IND,N,A,IP,IQ)

KSGETP will return a pointer IP, i.e. a number pointing to the first value of the
datablock referred to a reference array A specified in the module. A(IP) contains the
first value of the datablock. If necessary the datablock will be moved from the internal
or external lifeline to the pointer-lifeline.
KSPUTP will return a pointer to free space for storing data in the pointer-lifeline referred
to a reference array. A(IP) is the first address that can be used for storing data.
By means of KSPUTP it is possible, to allocate workspace used by the module for
storing calculated data.
The pointer of pointer-datablocks can be released by

CALL KSCHP (DBN,IND,IQ)
At the same time the datablock will be moved from the pointer-lifeline to the internal or
external lifeline.
Datablocks can be deleted by

CALL KSDLT (DBN,IND,IQ)

5

The arguments of the subroutines mentioned above have the following meaning:
DBN Name of the datablock (16 capital characters)
IND Index of the datablock
NF Array provided by the module,

from which (KSPUT) or into which (KSGET) data are to be transferred
K Position within the datablock DBN from which data aretobe transferred
N Number of words tobe transferred or tobe allocated
A Reference array
IP Pointer to the data relative to the reference array A

A(IP) contains the first value of the datablock
IQ Errorcode, 0 if no error has been detected (see also chapter 7.3 error handling)

7.2 KAPROS-Subroutines for Calling Modules

Modules can be called (even recursive) by use of the KAPROS-subroutine KSEXEC,
for example in the simplest manner by:

CALL KSEXEC (MODUL,NDB, 0 ,DBNCl,DBNl,.,DBNCndb,DBNndb,IQ)

with
MODUL
NDB
DBNCi
DBNi
IQ

Name of the modulein capitalletters (character*8 word)
Number of datablocks to be transferred to the called module
Name of the datablock in the called module (i=l,NDB)
Name of the datablock in the calling module
Errorcode, 0 if no error has been detected
(see also chapter 7.3 error handling)

In this case the indices of all transferred datablocks are supposed to be 1.

It is also possible to attach indices or to displace the indices of the datablocks between the
calling and the called module. This allows e.g. to use a sequence of datablocks with the
same name but different indices or to use a datablock, stored with an index different from
1, by a called module using index 1:

CALL KSEXEC (MODUL,NDB,NIND,DBNCl,DBNl,·,DBNCndb,DBNndb,
INDDl,.,INDDnind,IQ)

with
NIND Number of datablocks with index-handling, NIND :::; NDB,

for the first NIND datablocks DBNq.
The indices of the remaining (NDB- NIND) datablocks are supposed to be 1.

INDDj Arrays for index-handling of datablocks (j=1,NIND)
INDDj(1) first index oj DBNCi
INDDi(2) last index of DBNCi
INDDj (3) Index-displacement from INDCj to INDj

This means that the index INDCj for a sequence of datablocks with the same name DBNCj
for INDDj(1):::; INDCj:::; INDDj(2) in the called modulewill correspond to
INDj = INDCj + INDDj (3) in the calling module for the first declared NIND datablocks.
For example NINDB datablocks with the same name and the indices 1 to NINDB can be
transferred to the called module by INDD=(1,NINDB,O).

6

A datablock stored e.g. during an iteration using the number of the iteration NITER
as index can be used in a called module with index 1 by means of INDD=(1,1,NITER-1).

A datablock-table will show the attachment of datablocks and corresponding indices for
each call of a module in the output.

7.3 Error Handling

If an error occurs during a call of a KAPROS-subroutine (for example during a call of
KSGET for a datablock that does not exist), it is possible to reset the errorcode IQ by
call of KSCC and, if reasonable, to continue (for example by reading another datablock):

CALL KSCC (l,IQ)
If the errorcode will not be deleted, KAPROS will stop execution at the next call of a
KAPROS-subroutine (except a call of KSCC).
On the other hand if the module has detected an error, for example an input error, it is
possible to define an errorcode IQ by the module:

CALL KSCC (-l,IQ)
For (90 :::; IQ :::; 99) KAPROS will stop execution at the next call of a KAPROS­
subroutine.

7.4 Initialization of a KAPROS-Module

In preceding versions of KAPROS it was necessary to initialize the start of the module
by call of KSINIT. Currently KSINIT may be used to transfer the numbers of the I/ 0
units and parameters for the task-time management from the kerne} to the module:

CALL KSINIT (TC,DTC,NTIN,NTMESS,NTOUT)

with
TC,DTC
NTIN
NTMESS
NTOUT

Time parameters depending on the system environment
Number of the input unit
Number of the protocol unit
Number of the output unit

7.5 Compiling and Linking of KAPROS-Modules

In order to compile and link modules provided by users there exist two different ways:
(1) Compiling and linking during the KAPROS-job
(2) Storing load-modules in a user-library

KAPROS-modules of general interest should be included in the KAPROS-library KSLIB.

7

7.5.1 Compiling and lLinking during the KAPROS-Job

Short control-mpdul~eymay be compiled and linked during execution of the KAPROS-job,
the Ioad-module will be stored in the working directory.
The sourcecode of the module has to be included after the KAPROS-command

*COMPILE
it has to be terminated by

$$
It is possible to include the sourcecode an an external file by use of the UNIT-parameter
in the *COMPILE-command

*COMPILE UNIT=nt

where nt is the unit-number containing the sourcecode connected by symbolic link with the
jile KSUX.$USER.FTnt.

Several successive *COMPILE-commands can be concatenated. The sourcecode included
by the preceding *COMPILE-commands will be compiled and linked by

*LINK
MODNAM
$$

where MODNAM (in this case no key-word) is the name of the modulein capital charac­
ters, attributed to the module for calling it by a subsequent *GO-command or by another
module.

7.5.2 Storing the Load-Module in a User-Library

For modules frequently used it is recommended to store the Ioadmodules in the user­
library $USER/KSLIB (established previously by the user), using the script

ksuxcl MODNAM [additional parameters]

where MODNAM is the name of the module. It is expected, that a file MODNAM.f exists
in the working directory.
The meaning of the additional parameters for special applications can be obtained by call
of ksuxcl without arguments.

The sourcecode of each module has to start with the subroutine ksskbu:
(When using *COMPILE this subroutinewill be generated automatically.)

subroutine ksskbu (mparm)
integer mparm(*)
call MODNAM (mparm)
return
end

MPARM allows to transfer parameters defined in the *GO-command {see section 5).

8

8 U sing Archives

Archives provide a convenient way for long-term storage of results .g. for restart or
postprocessing purposes.
By means of the parameter

TYP=ARCI (Into the lifeline) and
TYP=ARCO (Out of the lifeline) in the *KSIOX-command

it is possible to read datablocks from an archive into the lifeline or to store datablocks
from the lifeline into an archive at the end of the KAPROS-job.
By means of the parameter

SPEC=spec
the user may characterize the origin and content of the archive-datablock in the specifi­
cation spec (up to 100 characters). It is possible to store several datablocks with the same
name and index, distinguished by date and time of creation and by the specification.
When using TYP=ARCO for an archive including several datablocks with the same name
and index but without specification, the newest datablock will be chosen.

During execution of the KAPROS-job data can be exchanged between lifeline and
archive too by call of the KAPROS-subroutines KSARCI and KSARCO

CALL KSARCI (DBN,IND,NT,SPEC,IQ)
CALL KSARCO (DBN,IND,NT,SPEC,IQ)

with
DBN
IND
NT

Name of the datablock (16 capital characters)
Index of the datablock
unit-number of the archive
connected by symbolic link with the file KSUX.$USER.FTnt

> 0 direct access archive
< 0 sequential archive

SPEC Specification of the archive-datablock (up to 100 characters)
IQ Errorcode, 0 if no error has has been detected

KSARCI will transfer archive-datablocks from the archive into the lifeline,
KSARCO from the lifeline into the archive.
Applying KSARCO during jobs running for a long time may be advisable for storing
datablocks in an archive for later use in successive KAPROS-jobs.
Within a sequence of *GO-commands datablocks can be stored in an archive by using the
module ARCO.
The file KSUX.ARCIO contains information about the datablocks transferred during the
KAPROS-job.
Standard versions of sequential archives usually used may be generated in a simple way
by the module ARCHIV using the following KAPROS-command

*GO SM=ARCHIV ,MPARM=nt, 'SEQ', 'GEN'
where nt is the unit-number of the file including the archive connected by a symbolic link
with the file KSUX.$USER.FTnt.

9

9 Examr ~s tt KAPROS-Jobs

9.1 Simple \ T' JS-Job using *GO-commands

The following llst shows an example for a simple KAPROS-job performing a
zero-dimensional (fundamental mode) diffusion calculation determining keff and
neutron group fluxes for one mixture.
When calling GRUCAL the real file-names are expected instead of connecting the neces­
sary libraries to files of the type KSUX.$USER.FTnt by symbolic link as usually used in
KAPROS.

*KSIDX DBN=GRUCAL,TYP=CARD,IND=1,PMN=PRGRUC
*$ file definitions for GRUCAL
'CDNTRDL '
'/fzk/inr/rs_aix41/KAPRDS/data/CDNTRDL '
'GRUBA
'/fzk/inr/rs_aix41/KAPRDS/data/KFKINR '
'STEUER
'/fzk/inr/rs_aix41/KAPROS/data/F26 '
*$ input for GRUCAL
'GRUCAL
'KFKINR
'MISCH
1
7
'C
'CR
'FE
'MD
'NI
'U 238

300. 1.360-5
300. 1.200-3
300. 3.955-3
300. 9.970-6
300. 9.845-4
300. 3.994-2

'U 235 300. 1.625-4
'GRUCEND '
$$
*KSIDX DBN=INPUT DIFFO,IND=1,TYP=CARD,PMN=PRDUM
0 26 1 1 0. 1
$$
*GD SM=GRUCAL
*GD SM=DIFFOU

10

9.2 KAPROS-Job Including a User-Module

Instead of calling GRUCAL and DIFFOU by *GO-commands a user-module can be
used calling GRUCAL and DIFFOU by means of the KAPROS-routine KSEXEC. It is
assumed, that the jobwill be started from the working directory JOB of the user inr067.

*CDMPILE
subroutine ksskbu
call calcO
return
end
subroutine calcO
call ksinit (tc,dtc,ntin,ntmess,ntout)
call ksexec ('GRUCAL ',2,0,

* 'GRUCAL ','GRUCAL
* 'SIGMN ', 'SIGMN
* iq)
if (iq.ne.O) go to 99
call ksexec ('DIFFOU ',3,0,

* 'INPUT DIFFO ','INPUT DIFFO
* 'SIGMN ','SIGMN
* 'FLUXO ','FLUXO
* iq)
if (iq.ne.O) go to 99

This subroutine
may be omitted
when using
*CDMPILE

call ksget ('FLUXO ',1,xkeff,3,1,iq)
if (iq.ne.O) go to 99
write (*,'(/'' CALCO: keff='',1pe10.4/)') xkeff
write (ntout,'(/'' CALCO: keff='' ,1pe10.4/)') xkeff
go to 90

99 write (*,'(''Error in CALCO'')')
99 write (ntmess,'(''Error in CALCO'')')
90 return

end
$$
*LINK CALCO
$$
*KSIOX DBN=GRUCAL,TYP=CARD,IND=i,PMN=PRGRUC
. . . same as in the preceding example
$$
*KSIDX DBN=INPUT DIFFO,IND=i,TYP=CARD,PMN=PRDUM
. . . same as in the preceding example
$$
*GD SM=CALCO

11

This job will produce the following output on screen:

KSUXKERN: LIFELINE-SIZE = 8192000 bytes
KSUXKERN: Separator 0
KSUXKERN: SHARED MEMORY ATTACHED FROM 30000000 TO 307d0000

VERSION KSUX-1.7

PROTOKOLL-UNIT KSSKUN=42
INPUT-UNIT
OUTPUT-UNIT

MODIN = 8
MODOUT= 7

K A P R 0 S - R U N

*CDMPILE
*LINK CALCO

Level 1: Call of Module: PRGRUC in Library: /fzk/inr/rs_aix41/KAPROS/KSLIB
Level 1: Module: PRGRUC ended

Call of Module: PRDUM skipped

*GD SM=CALCO
Level 1: Call of Module: CALCO in Library: /fzk/inr/home/inr067/JOB
Level 2: Call of Module: GRUCAL in Library: /fzk/inr/rs_aix41/KAPROS/KSLIB
Level 2: Module: GRUCAL ended
Level 2: Call of Module: DIFFOU in Library: /fzk/inr/rs_aix41/KAPROS/KSLIB
Level 2: Module: DIFFOU ended

CALCO: keff=3.9328E-01

Level 1: Module: CALCO ended

The results of this job contained in the file KSUX.inr067.FT07 (reduced) are as follows:

***** REAL PROBLEM *****

FLUX OF COMPOSITION 1 (NORMALIZED: SUM OF FLUX = 1)
1.321328E-03 7.384848E-03 1.461104E-02 2.438733E-02 5.575961E-02

1.979004E-01 2.294791E-01 1.899359E-01 1.590762E-01
8.698145E-02 2.599444E-02 5.730472E-03 9.900557E-04 3.554254E-04

8.237824E-05 9.162600E-06 8.934241E-07 3.477950E-08
8.956729E-10 5.088124E-11 4.580754E-12 5.894109E-12 1.785415E-12

3.023754E-13 3 .456881E-14 2.675159E-15

K-EFF = 3.932832E-01

12

9.3 KAPROS-Job Using an Archive

An archive file (for example ARCOl) can be generated in the working directory using
e.g. the following UNIX-script (the unit of the archive, in this example 30, can be chosen
freely):

touch ARCOl
In-s ARCOl KSUX.$USER.FT30
ksuxgo archiv .gener

where the file archiv.gener (freely chosen file name) contains

*KSIOX DBN=INPUT ARCHIV,TYP=CARD,PMN=PRDUM
30 ' SEQ ' ' GEN'
0
'ARCHIVE FOR BURNUP-CALCULATIONS '
5
'USED FOR FZKA 6280'
*GD SM=ARCHIV

It is supposed, that the datablocks GRUCAL and INPUT DIFFO ofthe first example have
been written into the archive ARCOl on unit 30 by means of the *KSIOX-commands:

*KSIOX DBN=GRUCAL,TYP=ARCO,UNIT=30,FORM=SEQ,SPEC=JOB1
*KSIOX DBN=INPUT DIFFO,TYP=ARCO,UNIT=30,FORM=SEQ,SPEC=JOB1

With the following inputfile for KAPROS the datablock SIGMN will be stored in the
archive by the module ARCO immediately after its generation by the module GRUCAL,
the datablock FLUXO will be stored in the archive at the end of the KAPROS-job by the
KAPROS-kernel:

*KSIOX DBN=GRUCAL,TYP=ARCI,UNIT=30,FORM=SEQ,SPEC=JOB1
*KSIOX DBN=INPUT DIFFO,TYP=ARCI,UNIT=30,FORM=SEQ,SPEC=JOB1
*KSIOX DBN=FLUXO,TYP=ARCO,IND=1,UNIT=30,FORM=SEQ,SPEC=JOB2
*GO SM=GRUCAL
*GD SM=ARCO,MPARM=30,'SEQ','SIGMN' ,1
*GO SM=DIFFO
*GO SM=ARCHIV,MPARM=30,'SEQ' ,'LIST'

In this example MPARM transfers input parameter to the modules ARCO and ARCHIV,
the first component contains the unit-number of the archive.

13

The following list of contents of the archive, contained in the outputfile KSUX.$USER.FT07,
will be produced by the call of the module ARCHIV. The datablock FLUXO is not yet
included, it will be stored to the archive at the end of the job after execution of the module
ARCHIV:

PRINTDUT OF CONTENTS OF SEQUENTIAL ARCHIVE
USER inr067
IDENTIFICATION: ARCHIVE FOR BURNUP-CALCULATIONS
COMMENT : USED FOR FZKA 6280

==
NR. DBN INDEX NREC NWORD SPECIFICATIDN

1 GRUCAL
2 INPUT DIFFO
3 SIGMN

Acknowledgements

1 1
1 1
1 1

89 inr067 -99.02.22-10:38:29-JDB1
6 inr067 -99.02.22-10:38:29-JDBi

818 inr067 -99.02.22-11:04:04-

The author wishes to thank several colleagues for their support and in particular
Dr. E. Kiefhaber for his incessant efforts in preparing an acceptable edition of this
"Introduction to the Use of the UNIX-Version of KAPROS".
Special thanks are due to Dr. G. Buckel for his help to improve this English report and
to Mr. D. Thiem for his helpful comments and the following discussions, which caused a
improved insight of the author to some details of KAPROS.

14

References

[1a] G. Buckel, W. Höbel:
Das Ka:~lsruher Programmsystem KAPROS
Teil I: Ubersicht und Vereinbarungen
KFK 2253 (1976)

[1b] H. Bachmann, S. Kleinheins:
Das Karlsruher Programmsystem KAPROS
Teil Ia: Kurzes KAPROS-Benutzerhandbuch
KFK 2317 (1976)

[1c] H. Bachmann, S. Kleinheins:
Das Karlsruher Programmsystem KAPROS
Teil II: Dokumentation des Systemkerns
KFK 2254 (1976)

[2] N. Mo ritz:
Die FORTRAN-77 Version des Karlsruher Programmsystems KAPROS
KFK 3860 (1985)

[3] W. Höbel et al.:
KAPROS-SUBSYSTEM-KERN KSSK
private communication (1987)

[4] C.H.M. Broeders:
Development of the KAPROS-Versions KSSKBU and KSSKXA
private communication (1993)

[5] J. Braun, D. Woll:
Einführung in Arbeitsweise und Benutzung von KAPROS3
private communication (1991)

[6] J. Braun:
Development of an XA-Version of KAPROS3
private communication (1993)

15

[7) C.H.M. Broeders:
Entwicklungsarbeiten für die neutronenphysikalische Auslegung
von Fortschrittlichen Druckwasserreaktoren (FDWR)
mit kompakten Dreiecksgittern in hexagonalen Brennelementen
KfK 5072 (1992)

[8) C.H.M. Broeders:
Development of the KAPROS-Version KSSKUX
private communication (1995)

16

Survey of available KAPROS-Modules1

Determination of Atomic Number Densities for Material Compositions

Module
GRUMIX

MIMI
NDCALC
NDWIMS
SIMI

TCAL

Purpose
Modifying the material names, densities and
temperatures of material compositions in MISCH-structure
and preparing input for GRUCAL
Biending mixtures

I
Determining number densities and cell geometry data
e.g. for GRUCEL, included in GRUCAL

Replacing materialsnot yet included
on a GRUBA-file by other ones
Calculation of atomic number densities

Calculation and Manipulation of Multigroup Cross-Sections

Module
CHIGOR

COLLUP
COLRAB

ENERGY

GRUCAL

ONEHOM
REMGOR
RESABK

SIGMNC

SIGMUT

TRANS X

Purpose
Iterative improvement of isotope-averaged
neutron fission spectra
Group collapsing SIGMN-datablocks including upscattering
Collapsing group cross-sections without upscattering
using real, adjoint and bilinear flux weighting
Energy group boundary information of
group constant libraries
Calculation of microscopic and macroscopic
group cross-sections in SIGMN-structure;
Heterogeneity correction for a homogenized reactor zone

(GRUCAH);
Heterogeneity correction for lattices of reactor cells

(GRUCEL)
Determination of cell-averaged effective group constants
Sigma-removal correction for upscattering
lmproved calculation of group constants
in the resonance energy range
Collapsing group cross-sections without upscattering
using conventional real flux weighting
Creating and Modification
of datablocks in SIGMN-structure
Provision of self-shielded group-constants
from SIGMN-datablocks for computer codes
like DIAMANT or codes using the Los Alamos cross-section format
like DANTSYS (including e.g. ONEDANT and TWODANT)

1 Affected by the adaptation of the modules from MVS to UNIX it might be possible, that not all listed modules are
operational, but the some important modules are running.

17

Cell Calculations and/ or heterogeneity correction

Module

KAPER4
RATES

WEKCPM

Purpose

Calculation of unit-cells of fast reactors
Superposition of a fine structure of reaction rates
calculated by KAPER4
by a global neutron fl.ux distribution
Onedimensional collision probability code based on WIMS
using the interface files prepared by WEFILE

Neutron Diffusion Codes

Module

CHECK1

DIFFOU

DIF1D
DIXCON
DIXY2

D3DG
D3DR
D3EG
D3ER

Purpose

Checks adequacy of input mesh sizes with respect to
diffusion length and mean free path
composition- and group-wise (1- and 2-dimensional)
Solution of the zero-dimensional multigroup-diffusion equation
(fundamental mode with buckling)
1-dim. multigroup diffusion code
Aceeierating multigroup DIXY-calculations
Solution of the multigroup diffusion equation
in xy- or rz- or r-theta-geometry,
evaluation of neutron fl.ux distributions,
integral and/or local reaction rates and/or densities,
application of first order or "exact" perturbation
theory and gamma-sources at the spot.

Branches of a FORTRAN Program for the
Solution of the Stationary Three-Dimensional
Multigroup Neutron Diffusion Equations
in Rectangular, Cylindrical and Triangular Geometry

Neutron Transport-Codes

Module
HEXNOD
ONETRA

Purpose

Nodal diffusion and transport code in (hex,z)-geometry
Onedimensional Sn-code

It is recommended to use the more sophisticated
neutron transport code ONEDANT2

2 A list of the most important stand-alone codes for fission- and fusion-application is available at the Forschungszentrum.

18

Iterative Determination of Buckling and Fuel Enrichment
and Evaluation of Neutron Flux Distributions

Module
BUCITU

IBUCKO

IBUCK1

YITO

YIT1

Purpose
Buckling calculation by iterations of
0-dimensional diffusion neutron flux calculations
allowing neutron-upscattering
Buckling calculation by iterations of
0-dimensional diffusion neutron flux calculations
Buckling calculation by iterations of
1-dimensional diffusion neutron flux calculations
Adaption of fuel enrichment to a given criticality value
by 0-dimensional diffusion neutron flux calculations
Adaption of fuel enrichment to a given criticality value
by 1-dimensional diffusion neutron flux calculations

Evaluations, i.e. Reaction Rates and/ or Combinations of them

Module
AUDI3

AUTOBU
BILANZ

DXEVA2
RATKOM
RA Tl

Purpose
Evaluation of 3-dimensional neutron flux distributions and
application of first order or "exact" perturbation theory
Determination of pin powers in specified fuel elements
Calculation of zone- and energy dependent
macroscopic reaction rates and balances
Evaluation of 2-dimensional neutron flux distributions
Combining of reaction rates (calculated by RAT1)
Calculation of 1-dimensional reaction rates

Reactor Kinetics Parameter, based on Perturbation Theory

Module
AUDI3

BETA1
DIXDYN
DXPRT2

LAMBDA
LIFET1

PERT1

DSIGDT
DOPPLl

Purpose
Application of first order or "exact" perturbation theory
in 3 dimensions (diffusion theory)
Calculation of 1-dimensional beta-eff values
Calculation of reactor dynamics parameters
Application of first order or "exact" perturbation theory
in 2 dimensions (diffusion theory)
Calculation of the effective decay constant for delayed neutrons
Calculation of the neutron generation time
by 1-dimensional neutron flux calculations
Perturbation calculations in 1-dimensional
neutron flux calculations (diffusion theory)
Calculation of cross section temperature derivatives
Calculation of Doppler Coeffi.cients

19

Burnup and Depletion Calculations

Module

ARCOSI
HXSLIB
BURNUP

BURNOD

DXBURN
EVAHEX

HEXABU

KARBUS

KORINT
SIG2EV
MIXMAN

Purpose

Advanced Reactor COre Simulator [7]
Creation of ARCOSI libraries
Numerical solution of the burnup equation,
Group collapsing with upscattering
0-dimensional burnup calculations with DIFFOU and BURNUP

Burnup calculations using DIXY and BURNUP
Determination of significant nuclear parameters
of a reactor and characteristic quantities for its
burnup behavior from HEXABU-results
Burnup calculations with output of macroscopic
cross-sections in SIGMN-structure for burnt-up compositions
(mainly for fast reactor applications)
Procedure for whole core burnup calculations
including KORIGEN [7]3
Preparation of input data for KORIGEN
Creation of burnup dependent KORIGEN libraries
Simulation of fuel management during
burnup calculations

Plot-Modules4

Module
PLFLUX

PLOTKS
PLOTlV

PL03D
QUAPLO

TRIPLO

Purpose

Presentation of energy dependent spectra
stored in FL UXO structur
PLOTEASY plotting module for KAPROS
Presentation of results given in multidimensional
data arrays depending from energy and space as
twodimensional data depending from energy or space
Presentation of 3-dimensional perspective plots
Presentation of reactor cross-sectional views
and contour lines in reetangular geometry
Presentation of reactor cross-sectional views
and contour lines in triangular geometry

3 Several other burnup related modules are described in some detail in Ref.[7] andin online documentations.
4 For the presentation of results new plot software, e.g. TECPLOT©, will be applied, therefore no effort was devoted to

adapting the corresponding MYS-modules to UNIX. But in principle they are running but need to be tested.

20

Auxiliary Modules for Manipulating Datablocks

Module
ARCHIV

ARCO
DELDB
KOPDB

PRINDB

RENDB
UTKS

Purpose
Generatingof archives, listing of contents of archives,
selecting or printing of datablocks of archives
Archiving a KAPROS-datablocks during execution ot the job
Deleting of KAPROS-datablocks
Combining several KAPROS-datablocks of the same structure
into a single one
Printing of KAPROS-datablocks
with data-depending format
Changingname and/or index of KAPROS-datablocks
Transferring of data between KAPROS-lifeline
and external storage devices

21

