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On the Gradient Plasticity Approach to Size Effects
Part I1: Applications

Abstract

The size effect in deformation and failure of structures is presently a subject of
increasing interest. It has been observed frequently for a variety of conditions and specimen
types (Part I ‘Reviews’ of this report). Evidently, the assessment of its significance is
important for the validity of the transfer of small-scale model testing results to full-scale
structures and also for the computational modeling of large scale components when the
material parameters of the used constitutive model are obtained from small scale laboratory
type test results. Different explanations have been proposed in the past but only recently non-
classical continuum mechanics theories have provided a means to interpret size effects; for
example, by incorporating higher order spatial strain gradients into classical plasticity
theories. These extensions implicate additional material parameters which relate to internal
length scales of the material. In spite of the increased complexity of such extended material
models, a relatively easy theoretical treatment may be possible in cases of simple loading
configurations and under simplifying assumptions.

In this study deformation theories of plasticity, extended by spatial first and/or second
order strain gradients, are used. On this basis, solutions are obtained for different types of
idealized specimens to determine the extent at which strain gradient models describe size
influences on the deformation behavior. This assessment is accomplished by

(a) fitting simple elastic-plastic 1 and 2" order strain gradient models to available
experimental data of geometrically similar specimens revealing a decrease of the yield
stress with size under non-uniform stresses (pure torsion and pure bending),

(b) performing systematic parameter variations (in particular the size or an internal length) to
determine the relative influence of the non-classical 2™ order strain gradient
generalization; the constitutive part describing homogeneous deformations is given by a
Hollomon type strain hardening power law and the analyses are performed for
geometrically scaled specimens of the same material (tension of tapered rods and three-
point-bending of smooth beams).

The first group of tasks requires only the solution of some algebraic equations and a
least squares fitting. A comforting agreement of the fitted models with the mean yield stresses
of the torsion and bending experiments of two different structural steels is obtained, without
making'a particular effort for a careful physical interpretation of the gradient terms.

The second group of tasks leads to one-dimensional, generally non-linear, 2™ order
differential equations for the strain or curvature distribution supplemented by non-classical
boundary conditions. For small internal length scales relative to the size of the specimen they
represent singularly perturbed boundary value problems. Upon linearization (linear hardening
and small deformations) exact solutions are obtained. For the non-linear problems and
relatively small internal length scales the method of multiple scales is used to obtain
approximate analytical solutions for the singular perturbation problems of boundary layer
type. An extensive evaluation of the results is provided, yielding a direct understanding of the
effects of the strain gradient terms. Close form expressions and graphical representations are
obtained which allow an immediate quantitative estimate of the relative influence of various
parameters, particularly the size of geometrically similar specimens or the internal length. A




comparison with experimental results is not possible since corresponding experimental data
are presently not available.
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Uber den Ansatz der Gradientenplastizitit zur
Beschreibung von GroBeneffekten
Teil II: Anwendungen

Zusammenfassung

Der Grofleneinfluss auf das Deformations- und Versagensverhalten von Strukturen
erfahrt gegenwirtig ein wachsendes Interesse. Unter verschiedenen Bedingungen und fiir
verschiedene Probentypen ist er hiufig beobachtet worden (Teil I. "Uberblicke" dieses
Berichts). Ganz offensichtlich ist eine Uberpriifung seiner Bedeutung wichtig fiir die
Ubertragbarkeit der FErgebnisse von verkleinerten Modellversuchen auf das (1:1)-
Strukturverhalten und auch fiir die rechnerische Modellierung von Grolkomponenten, wenn
die in den Stoffmodellen benutzten Materialparameter auf kleinen, labortypischen
Versuchsergebnisse beruhen. Verschiedene Erkldrungen sind in der Vergangenheit bisher
vorgeschlagen = worden, aber erst seit kurzem  werden  nicht-klassische,
kontinnumsmechanische Theorien eingesetzt, um GroBeneffekte zu interpretieren;
beispielsweise Gradientenkonzepte, die klassische Plastizitétstheorien um héhere rdumliche
Verzerrungsgradienten erweitern. Diese Erweiterungen beinhalten auch zusétzliche
Materialparameter, die im Zusammenhang mit materialtypischen, inneren Léngenskalen
stehen. Trotz der erhohten Komplexitit solcher erweiterter Materialmodelle, kann eine relativ
leichte theoretische Behandlung fiir einfache Belastungsfille und unter vereinfachenden
Annahmen méglich sein.

In dieser Studie werden Deformationstheorien der Plastizitit eingesetzt, die durch
rdumliche Verzerrungsgradienten erster und/oder zweiter Ordnung erginzt sind. Auf dieser
Basis werden Losungen fiir verschiedene idealisierte Proben entwickelt, um zu ermitteln, in
welchem Ausmafl Verzerrungsgradientenmodelle den Grofeneinfluss auf das Deformations-
verhalten beschreiben konnen. Diese Uberpriifung wird erreicht, indem

(a) einfache, elastisch-plastische Modelle, die um Verzerrungsgradienten 1. und 2. Ordnung
erweitert sind, an verfiigbare experimentelle Daten geometrisch #hnlicher Proben
angepasst werden, welche eine Abnahme der FlieBspannung mit der Probengrofe bei
ungleichformiger Spannungsverteilung (reine Torsion und reine Biegung) zeigen;

(b) systematische Parametervariationen (insbesondere die GroBe oder eine innere Linge)
durchgefiihrt werden, um den relativen Einfluss der Ergidnzung durch den nicht-
klassischen Verzerrungsgradienten 2. Ordnung zu bestimmen; der konstitutive Teil, der
homogene Deformationen beschreibt, wird durch einen Potenzansatz (nach Hollomon)
fiir die Dehnungsverfestigung gegeben und die Analysen werden durchgefiihrt fiir
geometrisch skalierte Proben aus demselben Material (Zugbeanspruchung von sich
verjiingenden Rundproben und Drei-Punkt-Biegung glatter Balken).

Die erste Aufgabengruppe erfordert nur die Losung einiger algebraischer Gleichungen
und eine Anpassung mit der Fehlerquadratmethode. Eine ermutigende Ubereinstimmung des
angepassten Modells mit den Mittelwerten der FlieBspannung der Torsions- und
Biegeversuche zweier Baustihle wird erzielt, wenn auch ohne eine besondere Bemiihung um
eine sorgfiltige physikalische Interpretation der Gradiententerme.

Die zweite Aufgabengruppe fiihrt auf eindimensionale, im allgemeinen nicht-lineare
Differentialgleichungen 2. Ordnung fiir die Dehnungs- oder Kriimmungsverteilung, erginzt
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durch nicht-klassische Randbedingungen. Fiir kleine innere Lingen relativ zur GroBe der
Proben stellen sie singuldr gestdrte Randwertprobleme dar. Bei Linearisierung (lineare
Verfestigung und kleine Deformationen) werden exakte Losungen erhalten. Fiir die nicht-
linearen Probleme und relativ kleine innere Lingen wird die Methode der Mehrfachskalen
eingesetzt, um approximative, analytische Losungen fiir die singulidren Stérungsprobleme
vom Grenzschichttyp zu erhalten.

Eine ausfiihrliche Auswertung der Ergebnisse wird durchgefiihrt, die ein direktes
Verstindnis der Einfliisse der Verzerrungsgradienten liefern. Geschlossene Ausdriicke und
graphische Darstellungen werden erhalten, die eine unmittelbare Abschitzung des Einflusses
verschiedener Parameter, insbesondere der Grofle geometrisch dhnlicher Proben oder der
inneren Linge, liefern. Ein Vergleich mit experimentellen Daten ist nicht moglich, da
entsprechende experimentelle Daten gegenwiirtig fehlen.
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1. Introduction

The objective of Part I “Reviews” [1.1] of this report was to provide a limited survey of scaled
experiments of geometrically similar specimens of metallic materials and to examine briefly
several pertinent gradient plasticity theories. The purpose of the present report Part II
“Applications” exemplifies to what extent strain gradient models can describe the size
influence on the deformation behavior.

Strain gradient models in elasticity and plasticity are not just straightforward
modifications of the standard models. The extensions consist of an enrichment of the classical
constitutive equations by gradient terms of the strains or other variables, which increase the
order of the governing differential equations and this implies also the definition of additional
boundary conditions; in some cases even extra balance equations are introduced. Thus, in
general, they lead to three-dimensional boundary value problems of a system of coupled
partial differential equations with a higher order structure than the classical models.

However, depending on the complexity of the gradient model, in cases of simple loading
configurations and under simplifying assumptions, relatively easy theoretical treatments may
be possible. For example, when the equilibrium equations can be trivially satisfied and the
strain distribution is assumed as in classical treatments (e.g. torsion and pure bending), the
gradient theory may not even require the solution of any boundary value problem.

In other cases, the equilibrium equations can be solved independently of the constitutive
relations (e.g. tension of a thin rod with non-uniform cross-section). This ‘uncoupling’ often
allows a direct integration of the constitutive equations, which now take the form of
differential equations for the strain. Thus, a grossly simplified boundary value problem is
obtained.

It is well known that the classical mathematical theories of plasticity can be divided
roughly into two types: deformation theories and flow theories. The deformation theories are
characterized by constitutive equations that relate the instantaneous strain to the stress in a
uniquely determined way or vice versa. Flow theories, however, are characterized by relations
between increments or rates of stress and strain, which are homogeneous of degree one in the
rate terms and thus are independent of the time scale. Although flow theories describe better
plastic deformation phenomena involving loading and unloading, gradient enhanced
generalizations of deformation type plasticity models are used in this report because
deformation plasticity is mathematically more convenient and also sufficient for proportional
loading configurations. Furthermore, the applications of these strain gradient theories to be
treated in this study belong to the two aforementioned simplified problem groups.

The assessment of the size influence on the deformation behavior is accomplished by
fitting the strain gradient model to some available experimental data and also by performing
systematic parameter variations (size or internal length) to determine the relative influence of
the non-classical part of the constitutive equations.

To this end, Part II is organized as follows. In Section 2, size effects for yield initiation
under non-uniform stress distributions are discussed. Two characteristic examples are
considered which do not require the solution of a boundary value problem. The first example,
considered in Section 2.1, pertains to the yield behavior of cylindrical bars in torsion.
Experiments have shown that the apparent yield stress increases with decreasing specimen
diameter [1.2]. The second example, considered in Section 2.2, pertains to the yield behavior
of beams with rectangular cross-section in pure bending. In this case, experiments [1.3] have
shown that the apparent yield stress increases with decreasing specimen depth. A simple strain
gradient dependent strength of materials approach, which does not require the solution of a




boundary value problem, is employed for interpreting the results. The respective gradient
coefficients are assigned a purely phenomenological meaning and are treated as fitted
parameters without being calculated from independent tests.

In Section 3, the tensile behavior of tapered rods is discussed using a linear version of a
2™ order gradient dependent constitutive equation for a uniaxial state of stress. The
assumption of a uniaxial state of stress allows an independent solution of the equilibrium
equation. Thus, the problem reduces to the integration of the gradient enhanced constitutive
equation to obtain the strains. This one-dimensional boundary value problem is considered for
an exponentially tapered rod, as well as for an idealized U-notched rod. Due to the assumed
linearity in the stress-strain relation (without also taking into account the cross-section area
reduction), an exact solution of the resultant 2™ order differential equation is obtained. These
solutions are used to demonstrate the influence of the gradient term on the deformation and
failure behavior.

In Section 4, a conventional deformation plasticity model with a non-linear power law
for the strain hardening is extended by a 2" order strain gradient term but also the cross-
section reduction due to the plastic deformation is allowed for. The tensile behavior of an
exponentially tapered rod is considered again. In this case, an exact solution of the governing
differential equation can not be deduced. However, provided the internal length parameter
associated with the 2™ order strain gradient term is small compared to the dimensions of the
specimen, a singularly perturbed boundary value problem is obtained. Using a singular
perturbation method for ordinary differential equations, an approximate analytical solution is
derived.

Section 5 pertains to the size dependent strength of a beam with a uniform cross-section
subjected to a three-point bending test. A 2" order strain gradient term and a power law for
the strain hardening is adopted again. An ordinary 2™ order differential equation for the
curvature is derived which allows an analogous approximate solution procedure for this one-
dimensional boundary value problem as for the previous tension problem.

Both the tension problem in Section 4 and the bending problem in Section 5 reflect, to a
limited extent, test conditions as investigated in the experimental part of Task 5 in the
REVISA project ([1.4, 1.5]).

The conclusions of the present report Part II are discussed in Section 6 and detailed
calculations concerning various elaborate portions of the work are provided in Appendices
(2)-(10). In addition, Appendix (1) contains a discussion of the non-classical boundary
condition of a 2™ order strain gradient model by comparing the gradient model with a simple
non-local (integral) model.

2. Size Effects in Yielding (Yield Initiation)

In this section a strength of materials approach based on the gradient dependent constitutive
equation

o =ke" —c,(Ve-Ve)™? —c, Ve 2.1)

is used for the interpretation of the size effects observed by Morrison (1939, [1.2]) and
Richards (1958, [1.3]). Morrison carefully performed a series of tension, torsion, bending, and
combined tension-torsion tests on the yield behavior of cylindrical plain carbon steel
specimens of different size. The specimens were geometrically similar with varying diameter.
A scale factor up to 3.55 was used for the tension tests. The results of these tests showed that




the yield stress and the ultimate stress are size invariant for homogeneous states of tensile or
compressive stresses. On the other hand, Morrison’s torsion and bending tests indicated an
increase in the apparent yield stress with decreasing specimen size. A scale factor up to 8.67
and up to 5.2 was used for the torsion tests and the bending tests, respectively. The value of
yield stress increases by about 15,5 % and 8 % respectively, when the size is decreased from
the largest to the smallest (diameter 2.586 mm) specimen.

Richards (1958, [1.3]) performed a series of pure bending tests for geometrically similar
mild steel beam specimens of different size. In these tests a scale factor up to 6.31 was used
and the value of yield stress increases by about 41.7 % as the specimen size is decreased from
the largest to the smallest (depth 4.026 mm) specimen. In our analysis, the results concerning
the smallest specimen are not taken into account because of the doubts that Richards has about
their validity.

For the interpretation of these size effects, Hooke’s law for the elastic region and
Eq.(2.1) for the plastic region are adopted and a simplified strength of materials analysis is
used.

It is noteworthy that also recent dynamic and quasistatic scaled bending tests with
austenitic stainless steel specimens (scale factor 10, minimum diameter 1mm) showed a size
influence on the initial yield stress with a similar trend (Stach (1997,[2.1]), Jordan and
Malmberg (1998, [2.2])). However, also recent tension tests with the same material show a
significant size influence with the same trend as the bending specimens (Malmberg, Aktaa,
Schlossmacher (1999, [2.3]), see Part I). This implies that the macroscopic non-uniformity of
the stress or strain distribution is not responsible for the size effect in this case.

2.1 Torsion Problem

In the elastic region the shear stress 7 is given by the standard elastic relation 7= Gy, where y
denotes the shear strain and G the shear modulus.

Carbon steel may be considered as perfectly plastic for homogeneous deformations
beyond the elastic limit. Therefore, n is zero in Eq.(2.1), where k now denotes the tensile yield
stress O,. For the present shear deformation problem, the effective axial stress o equals to 7/
A and the effective axial strain € is yA, where A is the ratio of the shear yield stress 7, over the
tensile yield stress o, (A = 0.5 for the Tresca yield criterion and A =1/ «/5 = (.577 for the von
Mises yield criterion). By also assuming that the coefficient m is unity, Eq.(2.1) takes the form

T=1,-¢|Vy|-2, V2 , (2.2)

where ¢; = ¢; A% and ¢; = ¢y AZ.

In polar coordinates we have that y = ¢r, where @ denotes the angle of twist per unit
length of the bar and r is the radial coordinate measured from the rod axis. We assume that
yielding first occurs when the stress at the outer surface of the specimen (r = ¢) becomes
equal to the yield stress value Y in shear. Therefore,

Y=Goa=1%-c¢ -0/, (2.3)

since Vy = ¢ and V2y = ¢ / r. On eliminating ¢ from the system of Egs.(2.3), we obtain
the following relation for the dependence of the yield stress Y on the specimen radius «




a2
a2 +(c, 1G)+(c; /G

Y(a) = TO( (2.4)

According to the experimental results of Morrison, Y() must be a decreasing function of a.
This implies that the admissible values of ¢; and ¢, are those which satisfy the inequality
)0 +2¢, < 0. This relation holds true for all positive values of radius ¢, provided that both
c; and ¢, are negative. However, restricting the validity of this inequality to the range of
radii where experimental results are available, positive values are also allowed for only one of
them. Then two internal length scales may be defined as Iy = |¢| / G and

I, = \/]EZ | / G, respectively.

Using the least squares method, Morrison’s torsion experimental results are fitted and
the values of the alternative internal lengths £, = el 1G (=1, 1 A% and £, = \/Icz|/ G =1L/
A) are calculated as shown in Fig.2.1. It is noted that c; (and therefore ¢, )is negative, while c;
(and therefore ¢, ) is positive having a value such that Y(c) is a decreasing function in the

range of « of the fitted data. The ratio A of the shear yield stress 7, to the tensile yield stress
O, is also calculated by the aforementioned fitting and is found to be equal to 0.516. This
value is between 0.577 obtained by the Von Mises yield criterion and 0.5 obtained by the
Tresca yield criterion and it is comparable to the values found in the literature on carbon steel.

Another approach related to an integral yield condition involving an internal length scale
has been used by Malmberg (1995, [2.4]) for the interpretation of Morrison’s torsion results.
This treatment, which corresponds approximately to the enhancement of the classical local
yield condition by stress gradients, gives the right trend to the observed behavior but does not
fit adequately the experimental data. This is partly due to the fact that only one parameter was
available for the fitting procedure.

2.2 Bending Problem

In the elastic region the axial stress o in the beam axis is given by Hooke’s law o = E€, where
E is the Young’s modulus and € = Ky is the axial strain; this corresponds to Bernoulli’s
hypothesis, where k denotes the curvature of the beam and y is the coordinate along the depth
of the beam measured from the neutral axis.

Mild steel behaves as a perfectly plastic material for homogeneous deformations beyond
the elastic limit. Therefore, n is zero in Eq.(2.1) and % is equal to the tensile yield stress .
Furthermore, assuming that the coefficient m is unity, Eq.(2.1) in tension takes the form

G =0,-c |Ve|-c, V2e . (2.5)

We assume that yielding first occurs when the stress at the outer surface of the specimen
(y = £h / 2) becomes equal to the yield stress value Y. Therefore,

Y=FExh/2 = 0, - ¢ 1K, (2.6)

since Ve = Kk and VZ2¢ = 0 for the case of pure bending. On eliminating k from the system
of Egs.(2.6), we obtain the following relation for the dependence of the yield stress Y on the
specimen depth &




Y(h) = 00[ hi2 J . @7
(h12)+(c, | E)

Observing Richards’ results (1958, [1.3]), Y(k) must be a decreasing function, which
implies that the value of ¢; must be negative. Also, Y(h) must be greater than zero. This
indicates that Eq.(2.7) is valid for depth values A/2 greater than an internal characteristic
length I=—¢,/ E.

Using the least squares method, Richards’ bending experimental data are fitted, as
shown in Fig.2.2, and the value of the internal length [ is calculated. With this value of / we
can compute an alternative internal characteristic length £, = —c;/ G = 2.64l, where the value
v = 0.32 for the Poisson ratio was used. It is noted that this internal length is two times larger
than the one obtained for the torsion data. This difference may be attributed to the fact that the
two steels used have different microstructure and composition. Because of the lack of data for
the tension behavior of the material used, the tensile yield stress is also calculated by the
aforementioned fitting and is found to be equal to 225.6 MPa. This value is comparable to the
value 250 MPa found in the literature on mild steel.

3. The Tapered Tensile Rod: Two Linear Problems

3.1 Exact Solution for an Exponentially Tapered Rod

3.1.1 Statement of the Problem

Restricting the problem to a uniaxial state of stress and infinitesimal deformations, the
uniaxial linear stress-strain relation is taken to be

0'=K6—Kl,~2~—2 @3.1)
dx

with the two material constants;
K : constitutive modulus'

l; : internal length scale.

The uniaxial stress, which is in fact the average stress in a cross-section, is given by

P
- 3.2
o A0 (3.2)

P : prescribed longitudinal force
Ag: undeformed cross-section of tapered rod

which simply follows from the static equilibrium in the rod. Here the exponentially tapered
rod as shown in Fig.3.1 is considered.

! In the elastic case K corresponds to Young modulus E




AR =40 07, P =la+(l-0)e ™M

(3.3)

A,: minimum cross-section area
A..: largest cross-section area at infinity
L*: characteristic length of the exponential profile.

In Fig.3.2 various profiles are shown to illustrate the influence of the geometry parameters o
and L*. Introducing dimensionless quantities

g X po b (3.4)

and combining the constitutive relation (3.1) and the equilibrium condition (3.2), the
following 2™ order differential equation for the strain &,

du
E= — 3.5
I (3.5)

u . displacement function,

is obtained

dze_

ﬁzd—gy e=-r(é; (3.6)

the right-hand side

_P
A

o

I
r(& =P €3] (3.7)

does not involve the parameter .

Two boundary conditions are required for the solution of this differential equation. They
are motivated by the following considerations. Ignoring the strain gradient influence by setting
B=0 in Eq.(3.6), we obtain the classical solution for the strain distribution

e=¢g.= ). (3.8)

For the present exponential cross-section variation the strain & is almost uniform at large
values of & Thus, it is reasonable to assume that the non-classical solution, including the
strain gradient effect, behaves similarly for large £ This provides the first boundary condition
B.C.D:




BC.1: lime=e=21L (3.9)

Ereo A. K

At the minimum cross-section (£=0) the classical strain €. has its absolute maximum but its
first order spatial derivative is discontinuous. If the variation of the cross-section would allow
the classical strain gradient to be continuous, then

9 _0 at &0
g

for symmetry reasons and this would also apply to the non-classical strain distribution.
However, for the present cross-section distribution this is not so obvious. For purely
mathematical reasons one could choose either the value of the strain or its first order
derivative or a combination of both of them. The prescription of the strain at £=0 is physically
unreasonable; a combination of € and de/d& is not immediately obvious but such a boundary
condition can be derived if the gradient model is interpreted as an approximation to a certain
non-local (integral) constitutive model (Appendix (1)). We do not follow this motivation but
assume that the gradient model renders a continuous gradient’. Then the second boundary
condition follows from symmetry:

de
B.C. I: _— = (, (3.10
[dé L ’

We consider now geometrically similar specimens scaled up by the geometric scaling
factor A>1. Then the geometrical data are changed as follows

Z(,:A(,AZ,ZN——-AW}?, Z*_zL*)., d = o = constant. (3.11)
According to similarity theory (Malmberg (1995, [2.4])) the strain at homologous points X =

xA will be the same £(X)=¢(x) if the dimensionless characteristic parameters of the governing
differential equation and boundary conditions are the same, i.e.

— P1 P11
ﬂ=ﬁ and —_——= ——
A, K A, K
or B (3.12)
ii—=/1 and f——f—:lz.
l PK

These are the general similarity conditions for this simple gradient problem. They imply that
the ratio of the constitutive internal lengths /;/1; equals the macroscopic geometric scale factor

A; also the ratio of the stresses at the minimum cross-section is required to correspond to the
modulus ratio, i.e.

? This assumption needs motivation from a physically based model which, under certain restriction, gives rise to
the gradient model.




PlAo_
P/A

>q.| |

(4

In principle these conditions can be satisfied if different materials are used for the small and
the large scale specimen. However, if the same material is used, then

and according to Eq.(3.12), similarity in differently sized specimens cannot be achieved. This
implies a size effect when testing of scaled specimens of the same model material is done.
When the gradient effect is not present, then Z,'=l,. =0 and condition (3.12),; is identically
satisfied and (3.12); yields

_I_J =£ or P =PA
A, A,

that is, the stresses at the minimum cross-section (and at any homologous section) are required
to be the same; correspondingly, the scaling of the tensile force P is governed by the ratio of

the cross-sections A./A,= A%,

3.1.2 Qualitative Estimate of the Strain-Gradient Influence

Without solving the above simple boundary value problem a qualitative estimate of the
gradient effect on the maximum strain, as obtained by the classical model, is determined.

The classical strain distribution is given by Eq.(3.8); its absolute maximum is at =0
with a discontinuity of the gradient de./d&. For large values of &

% o and lim %o
d& E—eo d&
2
and L0,
dé

The non-classical solution &, including the 2™ order gradient effect, will also have these
properties for large values of &, especially

d*e
E—-large

At £=0 the non-classical strain distribution &(&) will have a vanishing first derivative (B.C. II)
and it is reasonable to expect that there is no other relative extremum at some finite value of &.
Therefore, the function (&) has a turning point at some finite value of & a saddle point at £&=0
contradicts the symmetry condition at £&=0. Consequently,




in some neighborhood of £=0. Therefore, at £=0 the gradient term in the constitutive equation
(3.1) is additive. Comparing the classical and the non-classical solutions €, and ¢, respectively,
for the same stress level o at £&=0 shows, that the non-classical solution yields a smaller
maximum strain:
The inclusion of a 2™ order strain-gradient in the constitutive model together with the non-
classical boundary condition yields a smoothing-out of strain peaks (discontinuities in the
first order strain gradient) and a reduction in their maxima. This qualitative finding is not
restricted to a classical part of the constitutive equation, which is linear in the strain, it
applies also for the non-linear case e.g., power law strain dependence.
The importance of the non-classical boundary condition may also be illustrated. Naively one
may suggest that to a first approximation the gradient term in the constitutive equation (3.1)
can be approximated by the classical solution &. Then with (3.8)

42
62” >0até=0

and the gradient term in (3.1) is subtractive and the non-classical strain is approximated by

]_[0' d (O'/K)]

8—[_”32 dgz K dg?

This estimate is larger than the classical value
o
=|—] at &0
[2] at &

which is clearly in conflict with the previous result. The essential deficiency of this estimate is
the neglect of the non-classical boundary condition at &=0.

3.1.3 The Exact Solution

The 2™ order differential equation (3.6) is linear and thus allows an exact solution. For
reasons of convenience we introduce the coordinate transformation

& x
== == 3.13) -
. B i R
and the DEQ simplifies to
d’e
—e= —-F() (3.14)
d¢? ¢




with

F({)=r(Bl) = ~—[a+(1 o)e ¥ ] (3.15)

0

and the boundary conditions are

BC.I: limeée=¢.,

Lo

(3.16)

B.C.II: ("8) = 0.
dc ),

In the following we restrict attention to the case fi<1. The cases 21 do not make
physical sense since the internal constitutive length /; is somehow related to the microstructure
of the material and the minimum dimension of the specimen should certainly be larger than /;.
On the other hand for f=1 the particular solution of (3.14) needs special attention.

For <1 the solution of (3.14) + (3.16) is easily obtained (Appendix (2)) and reads

co e*]- ﬁ 3.17
69 = eo{ [0+ = —ﬁ2 ] 1B2ﬁ } (3.17)
where
P 1
800—71—7{—' (318)

is the maximum strain of the classical solution at the minimum cross-section. On the other
hand, the classical solution is

e©) =& =eo[a+1-a)e* ]. (3.19)

The displacement distribution u(&) in the non-classical case is simply

¢
w@=1* | a&)

é
= L* sm{a§+ ﬁz(l- e%) - _ﬁzﬂ (1-e %y} (3.20)

and for the classical case (f=0)
u&)=L* g {aE +(1-a)1-e") }. (3.21)
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3.1.4 Discussion
3.1.4.1 General Observations

It is noted that the non-classical solution, Eq.(3.17), consists of two parts: a part

Eo [Oz+ 1-a e‘é]

1- 8?2

which essentially represents the classical solution Eq.(3.19) for small values of 8 and which is
determined by the variation of the cross-section along the length of the rod and another part

- =
800[1 Bef]

which for small values of f is a fast decaying contribution close to the boundary £=0; in fact,
it represents for f<<1 a boundary layer effect. This is also the region where the first and the
second order derivative of the classical solution &, are largest. Obviously, the 2" order strain
gradient influence is largest where the classical solution shows a large variation, i.e.
inhomogeneity.

This boundary layer effect is demonstrated in Fig.3.3 and 3.4 for different values
0<<0.4 and two different cross-section ratios

o =A,JA.. = 0.0625 & 0.5625
Jo =rfr.. =025 & 0.75

where r, and r.. are the minimum and maximum radii of the cylindrical rod. It is seen that the
2™ order strain gradient effect reduces the maximum strain of the classical solution at the
minimum cross-section which was already qualitatively demonstrated in section (3.1.2). This
reduction can be formulated mathematically in very simple terms. Using the result (3.17) one
gets

&), _1+af (3.22)
£, 1+B

and this is illustrated in Fig.3.5. It is seen that the qualitative influence of the gradient effect is
moderate: e.g., for a very small cross-section ratio ¢t=0.0625 the strain reduction is less than
20% if B is less than 0.2.

We note that a variation in f§ is obtained by either changing the internal length scale [;
that is, by changing the material or by changing the characteristic length L*. The latter can be
done in two very different ways:

e Either by scaling up (or down) all dimensions of the specimen such that the new cross-
sections are

Ao =A, A*, Aw = A A2, @ = o = const.

11




and the characteristic length is
L*=L* A,
where A is the geometrical scaling factor

e or by keeping the cross-sections A, and A.. the same and again o=const. but changing the
characteristic length L* alone. This corresponds to a partial change of the specimen
shape.

Whatever choice is made, the diagram Fig.3.5 will be the same. The first approach will reveal
a size dependence of the specimen response.

3.1.4.2 On the Size-Effect in Deformation and Failure
The size dependence of the above linear model manifests itself in two different aspects:

e Size dependence of the deformation behavior
e Size dependence of failure.

Deformation Behavior

Classical elasticity - linear or non-linear - as well as classical rate-independent plasticity do
not involve an internal length scale. Thus, it may be shown using similitude theory (Malmberg
1995, [2.4])) that geometrical similar structures of different sizes but made from the same
elastic or rate-independent plastic material are subject not only to the same strain but also to
the same stress distribution if the loading is quasistatic and if the stress and displacement
boundary condition are the same or are properly scaled.’ Thus, complete similarity,
geometrical and physical, is obtained whatever shapes of the structure are chosen and no size
dependence can be observed. If such a classical material model is enriched by a 2" order
strain gradient dependence, complete similarity is also obtained if the material parameters are
constant everywhere and if the geometry and the external loading or constraint conditions are
such that no 2" order gradients will occur. In the present context this is the tensile rod with a
uniform cross-section and under quasistatic loading at the ends and with homogeneous
material properties. However, even under these conditions a non-similarity or size dependence
may show up if large deformations are considered and the response becomes unstable together
with a localization of the deformation, for example necking of the rod. Furthermore, in the
dynamic case longitudinal wave propagation induces an inhomogeneous strain field that
triggers the 2" order strain gradient influence and thus may induce non-similarity. These more
complex problems are excluded from the following discussion.

We will demonstrate this size dependence for the above model first by constructing a
dimensionless force-displacement graph of the tapered tensile rod. Clearly, this graph will

3 Gravitational forces are ignored. In the dynamic case also the characteristic velocities, e.g. impact velocities
have to be the same (Malmberg (1995, [2.4])).
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depend on the reference length of the rod. Here the characteristic length L* is chosen. For &=1
Eq.(3.20) gives the displacement u* at x=L* or equivalently the average strain

1
E*= /¥ = g, [1+ 11 '5‘2 (B%e B —eh]. (3.23)

The dimensionless force P is obtained by dividing P by a force like quantity such as A,K;
thus

= P 1
P = A—O'E =Eo. (324)

With (3.23) the dimensionless force-displacement graph is given by the linear relation
B =C(a,p) E* (3.25)

where the stiffness C is defined by

1 -1

-« 5 -
C(a,B)=[1+1_B2 (B%e P —-ety| . (3.26)

If the gradient dependence is not present at all or if the characteristic length L* is very large
compared to the internal length [;, then =0 and Eq.(3.25) reduces to

P=Cya)&* (3.27)
with
Col)=1--a)e'T". (3.28)

On the other hand, if B— 1, one obtains from (3.26) in the limit
3 -1
C,_ (@) = limC(a, B) = [1 ~Q —a)—e“} . (3.29)
B-1 2

These values give an idea of the stiffness variation with a change in 8

C,(@) < C(a,B) < C,_(a) (3.30)
0< ﬁ:{'_* <l.

We consider now geometrical similar specimens of different size but made from the same
material and subject to scaled loading. The small scale specimen is denoted by the subscript m
and the large scale by p. Then

13




* * ~ ~
Op=0n=0a, L,=L,A P,=F,

m 4

and (3.31)
1
ﬂp - .Bm E

where A>1 is the geometric scale factor. If the scale factor A is very large, then 8,—0 and the
lower bound of the stiffness, Eq.(3.30), defines the dimensionless force-displacement graph.
Thus, the relation (3.27) applies to specimens which are very large compared to the internal
length /;. For geometrical similar specimens that are very small, theoretically one gets f—1
and the upper bound in (3.30) applies. The corresponding dimensionless force-displacement
graphs are shown in Fig.3.6(a) for two values of the cross-section ratio @=0.0625 and 0.5625.
It is obvious that the smaller specimens are stiffer than the larger.

It is noted that the upper limit of 8 (—1) is certainly exaggerated. In any case it should
also be assured that the minimum diameter 2r, is not smaller than the internal length ;.
Therefore, the upper limit of 8 should be

2

B < Min [1,[;]. (3.32)

It is instructive to visualize the size dependence of the deformation by using another
dimensionless force-deformation graph. With the dimensionless force P, Eq.(3.24), which
corresponds to the dimensionless stress at the minimum cross-section, the strain ratio (3.22)
yields

5 _1+p
P = E,= 1+ 0f (8o » (3.33)

a linear relation between the dimensionless force P and the local strain at the minimum cross-
section. The corresponding graphs for very small (f—1) and very large (8—0) specimens are
plotted in Fig.3.6(b) for the two cross section ratios &=0.0625 & 0.5625. Note that for very
large specimens

P = (&)
which is independent of the cross-section ration ¢, in fact a trivial result.

A comparison of Figs. 3.6(a) and 3.6(b) demonstrates a fairly obvious fact: The size
influence is more readily detectable in dimensionless force-deformation graphs when local

strains — from regions of intensive strain-nonuniformities — are used as a deformation measure
than approaches which use an average on extended spatial domains.

Failure Behavior

Only two very simple cases are considered which are common in engineering. In addition to
the deformation law an extra failure criterion is introduced e.g.,

14




e acritical local stress o,
e or acritical local strain & .

They are considered to be local fracture criteria characteristic for the material and they are
assumed to be size independent.

Critical stress criterion

The maximum stress in the tensile rod is at the minimum cross-section. Thus, prescribing a
size invariant critical stress o, yields a critical normalized load

Therefore, by inverting Eq.(3.25) we can compute the corresponding average strain E:a at
fracture,

£ =c'ap B,, (3.34)

[

which is a size dependent quantity. From Fig.3.6(a) it is obvious that proportionally scaled-up
tensile specimens have larger average strains at fracture. Trivially this is also true for the
critical strain (€)ys at the minimum cross-section. With (3.22) and (3.24) we obtain

l+off =
oca = . 3.35
€ 1P P (3.35)

Thus, for a size invariant critical stress (i.e. critical normalized load P., ) the associated local

failure strain is determined as shown in Fig.3.6(b). From the graphs of this figure we see that
the scaled-up specimens have larger local failure strains. It is noted that this qualitative trend
is not in agreement with the trends observed experimentally (e.g. Brown et al. (1947, [3.1])).

Critical strain criterion

The maximum strain in the tensile rod is at the minimum cross-section and at the initiation of
fracture we may assume that

(o=¢&.

The associated normalized failure load 1368 is given by

I (3.36)

“ l+of
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This result is sketched in Fig.3.6(b) for a size invariant critical local strain. It is obvious that
smaller specimens (f—1) are characterized by larger normalized fracture loads. This is a
qualitative trend that is in accordance with experimental observations (e.g. [3.1]).

With the notation (3.31) the ratio of the fracture loads for a large and a small specimen
is given by

(B.), 1+of, A 1+B,  A+B, 1+af,
(B, 1+B,A 1+aB, A+op, 1+,

<I. (3.37)

It is evident that this ratio does not only depend on the geometrical scale factor A but also on
the absolute size via B, or f8,. Therefore, keeping A=const. but increasing the size of the small
(m) and the large specimen (p) proportionally will increase this ratio towards “one” such that
this size effect dies out with an increase of the absolute size.

From the knowledge of the normalized failure load P, one may determine the
associated average strains E; for various specimen sizes. Note that although the maximum
local strains are assumed to be the same at fracture, the average strains are not equal. This may
be seen from Fig.3.6(a). In fact, the average strains at failure are larger for the small specimen
than for the large one. This is again a manifestation of the size dependent response of this
model.

3.2 Exact Solution for a U-Notched Rod

3.2.1 Statement of the Problem

The linear 2™ order gradient model is now applied to another uniaxial stress problem which
differs from the previous one by the choice of the cross-section variation Ag(x) along the axis
(Fig.3.7):

( -2
T X
(cos(—z— Z)) , |x| <L

Ap(x) = Agp®, p°= (3.38)

0 L< |x|

A, . minimum cross-section area
2L : length of notched region.

The applied tensile force is P and the uniaxial stress varies in the notched region but is
vanishing for L< | x|. Therefore, approaching the boundaries of the notch, the axial strain will
vanish.

With the dimensionless quantities

X L.
=7, B=7 (3.39)
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the governing differential equation, corresponding to (3.6), is

2d°6 _ h 3.40
P 1 n Y

_r1 Tyl 3.41

r&) A K (008(25)/ (3.41)

The associated boundary conditions are

B.C.I: (8).;-':1: 0

B.C.II (d‘gJ =0
a€ ).,

Here the B.C. 1 follows from the smooth distribution of the cross-section area within the
notch and the symmetry at £&=0.

(3.42)

3.2.2 The Exact Solution

We introduce the coordinate transformation

£= & _x. (3.43)

——£= —-TF() (3.44)
with

F(O) —r<ﬂo—7E(cos< ﬂ:ﬂ (3.45)

The homogeneous solution is
Enom = Cl 81(0 + Cz 82(0 (346)

E](Q = eg, Ez(g) = e'g

A particular solution is obtained by using the method of “variation of parameters” (e.g.
Hildebrand (1962, [3.2])). For this 2" order differential equation we obtain:

17




Epart = 01({) £1(O) + 0a({) &2(8)
with
1
()=~ [eAOFA

(3.47)
(@)= [ (PO .

The choice of the cross-section distribution was such that a closed-form integration of (3.47)
is possible by using integral tables. One obtains (e.g. Dwight (1967, [3.3]))

2, 7T
P11 e Cos (Eﬂg) ’
al(f)——iA—OEE Y Tz +sin(zfg) —np 5
B
nf
} (3.48)
2,
P11 cos (EﬁC) _
az(C)=ZJ‘E‘ﬂ§ p +sin(zBl) +mp | - ol

The complete solution

E(O = Enom+Epart

is then found by accounting for the boundary conditions (3.42)

B 1 2, e 1 02 COSh(f/ﬂ)
qO= 60 ooy {oos’ &)+ (nB)* (1 - oy /3))} (3.49)

where the coordinate £ has been reintroduced and with

Eo=——, (350)

which is the strain at the minimum cross-section of the classical solution. For f—0 the non-
classical solution (3.49) approaches the classical one

€)= Ecp cOS? (12’-@. (3.51)

The displacement u(&) in the region 0<£<1 is obtained from (3.49) by integration with the
boundary condition u(0)=0:
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1 sin(@g) (@B’ psinh(€/p) y. (3.52)
1+(@B)* 2m  21+(#P)*] cosh(l/B) '

1
u(§)=L8m {5§+
for the classical case (=0) we get

uc(&) =L &, {%§+ﬂ’§z@}. (3.53)

3.2.3 Discussion

We will not repeat the extensive discussion performed in Section 3.1.4 but we will mention
only a few corresponding facts.
The maximum strain is found at £&=0:

(nB)* 1
0)=¢,{1- 1 . 3.54
o0 = £ { 2[1+(nﬁ)2]( +cosh(1/ﬁ))} 639

Here the first term is the classical part and the second term is the non-classical contribution
due to the gradient influence. Evidently, the 2"® order strain gradient contribution in the
enriched constitutive equation reduces the maximum value &, of the classical solution. For
small values of fi<<1l this reduction is only quadratic in f and thus rather small, as
demonstrated in Fig.3.8.

Introducing the dimensionless force P

~ P 1
P=—w—=¢,,

A, K
which corresponds to the dimensionless stress at the minimum cross-section, we can invert
Eq.(3.54) to give the relation between P and maximum local strain at the minimum cross-

section:
P =C(p) &0) (3.55)

with

~1

(nB)’ 1
={1- 1 : 3.56
B [ 2[1+(7r[3)2]( +cosh(1/[3)) (3.36)

The stiffness C(p) reflects the size influence if B is varied between =0 (very large specimens)
and B—1 (very small specimens). For fi<<1 the influence of f on the stiffness C is only
quadratic. This is in contrast to the previous example, the exponentially tapered rod, where,
according to Eq.(3.33), the influence is linear. This difference will be analysed more deeply in
section 4.4.

The displacement at £=1 is obtained from (3.52)
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=L &y 1 {1- (”ﬁzzﬁtgha/ﬁ)}

and the corresponding classical solution yields
uc(l)=Lg, 1
C o 9

They determine the average strains in the notch region
E=u(l)L, E=uc(l)/L
and their ratio is

g5 = 1B

c T (ﬂ)zﬂ tgh(1/p) .

For B<<1 this ratio shows a 3" order dependence on f (Fig.3.9) which is even more difficult
to detect than the ratio of local strains obtained from (3.54).

4. The Exponentially Tapered Tensile Rod: A Non-Linear
Problem due to Power Law Hardening and Cross-
Section Reduction

4.1 Statement of the Problem

Assuming a uniaxial state of stress as previously, the uniaxial non-linear stress-strain relation
is taken to be of the following form

12 d28

O'———Kf(g)—K i;}? (41)

where o is the true (Cauchy) stress and € is the logarithmic strain; the derivative is defined
with respect to the Lagrangian coordinate X along the axis of the rod. For the uniaxial case
considered the two conjugated variables o and € are defined as follows

P
A(X)
£=In(1+&) (4.2)
¢ du
T ax
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where:

P :longitudinal force

A(X) :instant cross-section of rod
Er . engineering strain

u : displacement along the rod.

The uniaxial stress o given by (4.2); is the average in a deformed cross-section and it follows
simply from the quasistatic equilibrium in the rod.
For the case of power law hardening the non-linear function f(€) takes the form*

Ae)=€"; 0<n<l 4.3)

Three material constants are involved
n: hardening exponent
K: power law modulus
I;: internal length scale.

The restricted range of the hardening exponent assures that the plastic modulus do/de is a
decreasing function of strain as observed in a tensile test of a uniform specimen. The initial
undeformed geometry of the tapered rod is defined by the cross-section distribution Ag(X)
along the axis of the rod. Here an exponentially tapered rod as shown in Fig.3.1 is considered:

ArX)=A, p2 , p2 =[a +(1—Ot)e"X/L* ]—1

(4.4)

A
o=—2<]

A, : minimum cross-section
A.. :large cross-section at infinity
L* : characteristic length of the exponential cross-section.

The change of the cross-section with the deformation is assumed to be controlled by the
volume conserving plastic deformation, ignoring the elastic part of the deformation. Volume
conservation of a material element yields

du
Ar(X)dX = A I+ — |dX
r(X) X) ( dx)
Reference configuration Instantaneous configuration
such that
Ap(X -
A =225 _ e, @)
I+ep

4 This corresponds to a Hollomon (1949, [4.1]) finite strain deformation law for plasticity where the elastic
strains and a distinct yield point are ignored.
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Introducing dimensionless quantities

X

l;
gz_L_;, ﬁ:—i; (4.6)

and combining the constitutive relation (4.1), the equilibrium condition (4.2), and the
condition of volume conservation (4.5), the following 2" order differential equation for the
logarithmic strain € is obtained

2
B2 %~ e"= — rp(§) e 4.7
where
_ O-R (é) _ _ P _2 ,
#(E)= K 7(E) WG —“A—O'P (3N 4.8)

here or represents the engineering stress. As previously for the linear case and small
deformations, the boundary conditions are

B.C.I Eeo lim € = €.
g
(4.9)
B.C.I £=0 LU
dg

Here €. is the solution of (4.7) at infinity where the gradient influence has vanished.
Corresponding to section (3.1.1), geometrically similar specimens are considered which
are scaled up by the geometrical scaling factor A>1. The geometrical data take the values

Ao =A, A%, Ao =AM , L¥=L* A, @ = = constant. (4.10)

If geometrical and physical similarity is required, then the dimensionless characteristic
parameters of the determining differential equation and the boundary conditions must be the
same, i.e.

B=p or -llL=/l

n=n (4.11)

~ | ™ol
x| >
fl
=2,

or
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These are the similarity conditions for this gradient problem. Compared to (3.12) the equality
of the hardening exponents is added to the list. Again, in principle these conditions can be
satisfied, provided the hardening exponents are the same. Then

- — == \2
l; P K[l
~  and —=—(£—) . (4.12)

However, due to the gradient term similarity cannot be achieved if the material is the same,
i.e. [; =1, among others, in the small and the large-scale specimen.

4.2 Solutions without Gradient Effect

4.2.1 Uniform Cross-Section

For a uniform cross-section, Ag = const., gradient effects are not introduced. Thus, Eq.(4.7)
reduces to a non-linear algebraic equation for € :

Opr

e"= _I—f_ e’ ) 4.13)
where
6, =2 const. (4.14)
R A
R

is the engineering stress. In terms of ok and the engineering strain &, Eq.(4.13) corresponds to
the following stress-strain relation

In(1+ &))"
or=Ké&et=K (——Q (4.15)
1+¢&,
The slope of the graph o vs. & is given by
In(1+ &))"
do, _ o (I Ri) ( & -1) (4.16)
deg (1+€g)* \In(l+é&g)

which yields a maximum value for the engineering stress when
In(1+&g) =n

or
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4.17)
and

n

(OR)max = Kn_ . (4.18)
€

At this instant the increase in load P or stress ox due to hardening is balanced by the
“geometric softening” due to cross-section reduction. Introducing the inverse of the hardening
exponent

1
m=~ (4.19)
n

the associated strain limits are given in Table 4.1.
These critical strains suggest that the following analysis is restricted to strain values less
than the critical ones, i.e.

&<n. (4.20)

The non-linear equation (4.13) allows a simple solution for the logarithmic strain ¢ if the
cross-section reduction is ignored. Then

I/n
_%r
£= ( K) : (4.21)

In the general case, however, an exact solution is not possible. Approximations can be found
as follows. Using the inverse m, Eq.(4.13) reads

n
(0]
s:(—l—{"—) e (4.22)
With
0 m
- — R
€E=me, =m| — 4.23
m o m( K) (4.23)

Eq.(4.22) takes the simple form

E=0e’. (4.24)

We note that for 6 >1 a real solution certainly does not exist. Also, according to (4.20), € is
restricted to
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£<l (4.25)

which implies

o <— =0.3679. (4.26)

o | —

Moreover, Eq.(4.24) implies & < €. For £ <<1 the exponential function can be approximated
by its Taylor series approximation at & =0:
3

ef=1+E+—E2+.. .

[ NS IS

Thus, Eq.(4.24) yields with & < € << 1

-G N2
3 94 (1 0) _2 4.27)

(o} o

mn

provided the radicand is non-negative, i.e

o< ! =(0.4142 (4.28)

V2 +1

which is assured since the more stringent condition (4.26) applies.
With & =1-w, w<<1 an expansion at £ =1 can be used

= 1 1
£ 2 2
=e(l-o+—-w +.)=¢ =1+
e e(l-w 2(0 )=e 2( £°)

which yields
2
1 1
E=—2xt [——_—] -1 (4.29)
ec €0

From (4.27) and (4.29) we easily obtain, observing (4.23), the explicit relation between € or &
and op.

4.2.2 Non-Uniform Cross-Section

If one considers a non-uniform cross-section but ignores the non-classical part of the
constitutive equation, then the above results are also valid with the engineering stress og being
a function of X:
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Opr=0g(X)=

A solution of (4.13), its two approximations given by (4.27) and (4.29), is called a classical
solution &, for the tapered rod problem. A few peculiar properties of the logarithmic strain
distribution €.(&) are found as follows. Derivation of (4.13) with respect to £ yields

o' €
& = (e)g = -
Opr h—§g,
here () d () and
w = —
ere dé an
O-R, /7 ARI

,_ IR
=(nog)=—=- .
Og ' e Ap

For the second derivative we obtain

£
Ec +(Inog) M_—

E_”=(€ )§§=(ln0' )// -
¢ C R n_sc (n_ec)z

7’:‘3:? {noy)(n—e)? +[nozY12n}.

Thus, for the strain &, approaching the critical value n, the two derivatives are unbounded
E—mn, (Ec)e —>eo, (Ec)eg e
However, the curvature of the function €.(&)

e
(e £ 1212

approaches a finite value

. or 1
limk=—7 —
Ec—n Or n

provided of’# 0.
With (4.5) the first derivative of the instantaneous cross-section is

A d (A d?
A4 (AR +(80)5} "4
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where d is the instantaneous diameter of the section. Therefore, a tensile rod with a sharp
circumferential notch having initially a finite-opening angle at the tip will deform such that
the notch angle will decrease and will shrink to zero, i.e. the notch becomes sharper when the
strain reaches the critical value. This is a peculiar property of this simplified uniaxial model.

4.3 Approximate Analytical Solution by the Method of Multiple
Scales

4.3.1 The Governing System of Perturbation Equations

For n=1 and ignoring the cross-section reduction, i.e.

AX)=Ar(X) ,

the problem described in section (4.1) reduces to the linear case for which an exact solution
was derived. However, for the more general case n<l, with or without consideration of the
cross-section deformation, the differential equation for the logarithmic strain is non-linear and
an exact solution appears not to be possible. But assuming that

li
B= F<<1 , 4.30)

then the first term in the differential equation (4.7) is small (provided d*eld€ is bounded) for
B—0 and it represents a “perturbation” in the equation. Ignoring it entirely, the differential
equation (4.7) reduces to a non-linear algebraic equation for the logarithmic strain, which was
discussed in section (4.2). Its solution does not satisfy the boundary condition at the minimum
cross-section. This suggests that the influence of the perturbing term ﬂzdzeldfz is operative
over a boundary layer at £=0, as observed in the exact linear solution. The linear solution
consists of two parts:

e a first part which essentially represents the classical solution and which is determined by
the variation of the cross-section along the length of the bar

e a second part which is controlled by the parameters 3 and which dies out exponentially
with &/ B (boundary layer term).

Thus, there are essentially two types of spatial dependencies involved. According to
perturbation theory (e.g. O’Malley (1991, [4.2])), the above problem is a singular perturbation
problem. For this problem an approximate asymptotic solution for a small parameter 3
appears possible using an analytic approach, e.g. the method of matched asymptotics or the
multiple scale method (e.g. Nayfeh (1973, [4.3]; 1981, [4.4]), Kervorkian & Cole (1981,
[4.5]), Holmes (1995, [4.6])). Compared to a purely numerical approach, analytic
approximations often reveal the essential influence of the small parameter on the exact
solution more satisfying.

The method of multiple scales introduces new spatial coordinates for each dependency,
which are considered to be independent of one another. As a consequence, starting with an
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ordinary differential equation, its transformation leads initially to a partial differential

equation.
It is assumed that the logarithmic strain distribution can be represented in the form
e=€(EP) =€ (&EnP) 4.31)
where

E= X is the “slow” variable
L *

and (4.32)

B
B

is the “fast” variable .

The function u(£) remains to be determined. Observing the linear case Eq.(3.17), the “fast”
variable is

_S.
n=g

Thus u = & In the nonlinear case one may show that this choice is too restrictive. The
introduction of the function u(&) follows a generalized version of the method of multiple
scales by Nayfeh (1973, [4.3]). This method, as applied to the present problem, proceeds in
the following steps.

The derivatives in the ordinary differential equation and in the boundary conditions are

developed in terms of the two-scale representation of the strain distribution £ = £ (&,7;0). This
gives

dé . _ W
—(E = 86 + 877 E‘
(4.33)
2
dzé ’ . ’u/ - #//
g = Eg +2 Egp B + Epy (—E) + €y B
where
du
f=— 4.34
u 2 (4.34)
and
£ = 2?_ E, Qg Ery = —825 etc
5_35’ n" on’ 855_(9&2
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are partial derivatives of the two-scale function £. Then the differential equation (4.7) and the
boundary conditions take the following form

4 7 2 17
ﬁz{% + 28, %+ Enn(%) +8, & 5 }— E"=—r(®) e (4.35)
B.C.1 En— oo lim & =&.
g
(4.36)
. W
B.C.II &En=0 85+£n—ﬁ—=0.

It is assumed that the two-scale function & (£,71;8) admits a uniformly valid expansion in
terms of the small parameter f3, i.e.

EEmB =6 En) + B eEm+ B eEm+ B eEm). 437)

As demonstrated later, the inclusion of the cubic term is necessary if the approximation should
be accurate up to and including the quadratic term.

The partial derivatives in Eq.(4.35) and (4.36) are expressed in terms of the polynomial
presentation (4.37) (Appendix (3)). Further, the power law term £ " and the exponential term

ef are approximated in terms of powers of f. Finally all terms in the differential equation
(4.35) are collected according to powers of 8 which yields (Appendix (3))

ﬂODQ+ﬁlD1+,BzD2+ﬁ3D3=O.

Following the “Fundamental Theorem of Perturbation Theory” (Simmonds & Mann (1986,
[4.7])), for small and positive but otherwise arbitrary values of f the terms D; must vanish
identically. This yields the following system of differential equations:

e _ ry(®)et
(W')? (w')?

0. o
B”: DEQ(0) = &4p

B': DEQ(L) = &4y - Q&) & =Ri(£, )
(4.38)
B?:DEQR) = &gy — Q%(E) € = Ro( €., t, 72)

ﬁ3-DEQ(3)=>§ —92(5)2—13 £ & b
. m =R3(€,€,€, U, 1R)
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(g)n
W
S (4.39)

P HGEHEE

such that

Q% (&)= [ﬁ— 1 )g " 0<n<l. (4.40)

w2 =

The right sides R;, i=1,2,3, are differential operators defined as follows:

R 1 (2 IO Y 0 )
1=="— Wegm+p'e
(w)? " "

0

reef 1,1 2
R2=RR2 — R —(8)
(u)* 2

R 1 © , | ,, 1 0 ) 921(1 )1(1)2
rR=—"T753Q W Egm + W Exte - &% —(1-—n) = | €
(u )2 én nTEE 7 g
4.41)

0

€12 1\3
Ry =Rg; - rR,ez 88+—1-(E)
(u) 6

1 2 21
Rps=—=—5Q U €gyp + W' €x+eg) -
(u )2 én nTEEE

2 (‘)3
&
1 e 1
2 2
- E(l—n)Z"‘g— + -6-(l—n)(2—n) (0)2 .
€

We show in Appendix (3) that the underlined terms in (4.39)-(4.41) represent the contribution
due to the cross-section reduction. A similar procedure, applied to the two boundary
conditions (4.36), gives
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B.C.I (£ n— ) B.C.II (& n=0)
0

ling - ue,=0
,BO' 0 0 , L

: £ —>Ex Ec+ U €;,=0

1 1 2

B £—0 €+ W ey =0 (4.42)
5 2 2 , 3
B €—0 ¢+ Y €,=0

3 3 3
B £—0 (g¢ =0).

Note that the condition B.C.II for 8 is not accurate since 4™ order terms in the development
of € are not included,; it will be seen that this condition is not required.

Several comments concerning the structure of this system of differential equations are in
place:

e The equations of this system are ordinary differential equations in the 7 variable. With
respect to their integration the &-variable is silent. This implies that the integration
constants of these 2" order differential equations will be functions of £ which need to be
determined like u(&). For their determination, additional conditions have to be set up.

e This system appears to be almost completely uncoupled, however, it must be solved in
successive steps since the right side of the kth equation depends on the solution of the

previous differential equations.
0
e The non-linearity is restricted to the very first equation governing the 0™ approximation & .

A solution for this differential equation DEQ(0) and its boundary conditions is obtained if
one sets

0
£,=0, Vn; (4.43)

0 [}
then € "= rg(&) ef (4.44)

0
which implies that € is simply the classical solution without gradient effects

0
€ =€ (& 4.45)
with lim € = €. . (4.46)
E—yoo

The results (4.44) and (4.45) imply that the differential operators R; simplify to
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0
RI(S’#)EO

(e)" 1@)2

0 1 ~ 0 1 0 1
Ry(e,e, U, rr)= R2(€,€, W) =Rra(€,€, 1) -

(w)* 2
4.47)
o1 2 —~ 0o 1 2
Ry(€,€,e,u,rr) = R3(€,€,6,U)=
0
01 2 "2 1\3
=Rp3(€,€,€, 1) — (8/)2(88+l[8) ]
() 6

e From the structure of the differential equations (4.38),+4 a peculiar property becomes
evident: as long as

Q&) >0,

1 2 3
the homogeneous solutions for €, €, € are exponential functions in & which reflects the

result of the linear small strain result, section (3.1.3). With (4.40), i.e.

Q&) = (M})Z (%-1]2", 0<n<l,
E

0
Q2 may vanish if the limiting condition (4.17) is reached, i.e. € = n, and the yet unknown

0
function u’ is non-zero. If €>n , the stress and strain state is in the descending branch of
the engineering stress-strain curve where the geometric softening exceeds the strain

hardening; here possibly £22 <0 provided (u’ )*>0. This would imply that the homogeneous

1 2 3
solutions for the perturbations £, £,€& become oscillatory. In the following, the analysis is

0
restricted to the ascending branch of the stress-strain curve, € < n.

e A corresponding set of equations can be formulated when the cross-section reduction is
entirely ignored. This simplified problem is discussed in section (4.3.3).

4.3.2 Solution of the Perturbation Equations in the Ascending Stress-Strain
Branch (doy/deg>0)

0
As shown above, the 0" approximation £(£) is equivalent to the classical solution

£ (D=¢(8). (4.48)
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As a consequence, the right-hand side R, of the DEQ(1) vanishes identically

0
Ri(e ,w)=0

and the DEQ(1) takes the simple form
1 y o !
Em— 2°(6) € =0

with £2>0. Its general solution is

1
e(€,m)=A1(E) e 4 By(E) O

1 0 1/2
Q&) = Zotlem| .
: Lu’)z[g ) J

The associated boundary condition for n—eo requires

with

A](@EO

and (4.50) reduces to

1
e (£.m)=Bi(§) e ¢

where the functions B(£) and (&) remain to be determined. With
: Q
€ n =-02Be” n

= £ == (QB,)Y € 4 nQ (2B) ¢
Een=Ene = e K !

the right-hand side R;, Eq.(4.47),, is given by

Ro=—— Qi ey + 1 Eyreg) ~ B 501 >1(’]
2=—="", HEg + U Eyt+E - —I-n) 1€ -
(u')> én nTeg ) g

=0y +(o+amn e +|a, -
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(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)




where «,, o, &, a, as well as Q and €2, are functions of &

a,(&) 1
[ = 7 6
o (&) = [i(m i B ))
1 : ,Lt' 1 (“,)2 1
(4.56)
_ 2
a(6)=—-—Q(QB)
u
1 1
0 (&) == Q% 7 (-m) 5 B} .
£
With
() :
« € n 1 5 1 En )
o, (&) =a, - — = —(n(l-n) +1 — B
i Pt () =|W)*2 ’
1 e | 1
__ (;")J,E 3 2?2 4.57)
n
£ _
we get the compact formulation
Ry= oy + (o +08) e + ay 720, (4.58)

The solution of the DEQ(2), Eq.(4.38)3, consists of a homogeneous and a particular solution

EEM =6, (Em)+Epn(En). (4.59)

The homogeneous part is

2
£, =Ax) e N 4 By(E) O, (4.60)

For the particular solution the following formulation is used

= %o) | ey e 0O 4 (g ) 2O 4.61)

S X9

where f and & have to be determined. The details are given in Appendix (4) and the result is
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¢ o=~ g"z +(An+f ) €7 4 h,e 20 (4.62)
with

o) = _(%+ 422)

)=~ % (4.63)

h@ = 1i5

Combining the homogeneous and the particular solution and observing the boundary
condition for n—eo, Eq.(4.42)4, the exponential terms vanish since

lim ne™*" =0, lim n*e ™ =0
e e

except Ax(E) e thus, it is required that
Ax(E)=0 (4.64)

and the solution (4.59) reduces to

2
& (Em=Be™ " —-g%+ fin+hm) e +h,e M, (4.65)

k
It is now required that the various perturbation functions € , k=0,1,2,... are restricted by the
condition (Nayfeh (1973, [4.3]))

k

(e)

Ny < (4.66)
()

for all £ and 7. This condition expresses the fact that the series expansion (4.37) is regular.

Otherwise there may be & 7 - regimes where the higher order perturbation terms become

2 1
larger than the smaller order terms, even for small values of 8. In order that £/¢ be bounded

for all n, the coefficients of ne"g” and nze'm” must vanish (removal of secular terms,
Holmes (1995, [4.6])); this yields

o (g

20  40*
4.67)
_ o
= Y =0.
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2 1
Further, the ratio £/ € gives also the term (@, / £2?2B,) ¢! which must be bounded :

lim —e__ =, (4.68)
f>= Q2B

We come to this condition later. From Eq.(4.67) we have

’7

2
o (§)= 7 (2B, y+—L—(2B,) =0

)
(4.69)

_ 2
()= --70'(QB) =0.

This is a set of differential equations for B; and u where £ is defined by (4.40). Since only
£ B;#0 is of interest, (4.69), gives

Q'=0. (4.70)
Thus
Q==+Jp =const. 20 @.71)

the constant¢ has to be suitably adjusted. Observing (4.39), the function u(&) is then the
integral of

112
1| n 0
W=t _[U _ 1] e 4.72)
P\e

Sifn Yo 17 41w
u:j——-lsn dr=f—n dr 4.73)
(p 0 (p 01-"
0 0

where the conditions

u@0)=0 and u=0 (4.74)

are implied. From (4.69),; one gets
B+il g o0, 4.75)
2u

The general solution, derived in Appendix (5), is

36




Bn(§)=(—'uTc)73

(4.76)

1
and the integration constant ¢ is determined from the boundary condition for £ at &n=0,

Eq.(4.42). This yields

/4

0
1-n
B =p| £~
n—-e(6)
where
0, V4
_ us_| £ 0
D=cop "= 0 (85)0 .
n—=€l,

1
Thus, the first order perturbation function £(&,7) is

/4

0
I-n
EEm =By e =p| L] o
n—e(&)

0
o \n—¢(&)

Since

0
lime = ¢,
g

o N0 L\
n .
0 [ £ ] (&)™ oo

4.77)

(4.78)

(4.79)

1
the function B;(£) is bounded everywhere and € (&) satisfies the boundary condition at
£,n—oo, Eq.(4.42). Further, the condition (4.68), observing (4.56);, (4.72), and (4.76), is

satisfied since

0
lim eg = 0.
Jim gge

1
This completes the determination of € (£,7), except that the constant, which effects u(&)
and thus n=w/p, has to be defined. However, an explicit determination is not yet necessary

since ,/¢ cancels in the exponential term of (4.79) when (4.73) is accounted for:
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Jon = \/—#(5) zlg_j‘[(ﬁ_l] } dr. (4.80)

€
2
As an intermediate result we note the reduced form of the perturbation function € (&,n)

EED = By (E)e Vo _ —0%;9+3‘2;—§f—)e~2ﬁn . (4.81)

For a complete description of the logarithmic strain distribution

§ = g(éj‘) +ﬁé(€,n) +ﬂ2§(§,n)

up to terms quadratic in f the function B,(§) remains to be determined. This is done
analogously to the determination of B(&), i.e. we suppress the secular terms in the

3
perturbation solution & (&,1). Therefore, the general solution of DEQ(3), Eq.(4.38)a, is derived
in Appendix (6):

‘2: (5,77) = B3(§) e_ﬁn + gpart
(4.82)

gpart (évn) = ul(g)n e_ﬁn + Ug(g) C_Zﬁn + Wo(é) 6_3‘/571
with
w(@=-1&12Jo), v=1,/C0), w(O=v;O/Bp)  (483)

and y,, i=1,2,3 given by (A6.12). Requiring

)

—= <oo vén, (4.84)

)

gives u;(£)=0 or

2
71(§)=7 2 ( )2\/——B2

On
1 € n(l—-n)

’”

o
- B/ + ——| ——2+1|— B=0. (4.85)
w2 w)? (g)z | o

This is a linear first order differential equation for B,(£) which takes the following lucid form
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B+ 1P g = (4.86)
2 p
where the right-hand side is a known function given by

0

111 11 €"|nl-n) (/)
S(¢¢)=——=— B/ - ———| ——=+1|— B, (4.87)
2Jou T T2 o W |2y 2|0

Note that this is the inhomogeneous counterpart of the differential equation for B,, Eq.(4.75),
and a similar integration technique as in Appendix (5) can be applied. This is done in
Appendix (7). The solution of (4.86) is, in general terms,

¢
BxE = ijv sdr +Mo ), (4.88)
1% 9 v
where
1/4
. 0
2 n—E& A2
V= ('u,)l/ — 6 = , V) = (u )0 (4.89)
(4
and

2 2
(Bo=By(0) = L — 1 1 1n(1—n)+n{ 2) +f( g) [25) (4.90)
3 0 0

TraEL

is the boundary value of B, at £=0 which is determined from the boundary condition B.C.II,
Eq.(4.42); (see Appendix(7)). Note that the parameter¢ is not contained in (4.90) and

inspection of the other terms on the right-hand side of (4.88) shows that¢ cancels out.

The integration of the integral in (4.88) requires g , which is equivalent to the classical
solution &, to be known explicitly. Only approximate analytical solutions, limited to either
small or large strains have been obtained (section 4.2). Provided a solution was available, it
appears that an integration can be done only numerically.

The approximate perturbation solution for the logarithmic strain takes now the

following form

£=F (EmP =@+ BeEm+ B2EEn) =

-2+ 1) o 1 [ B - DB C 2]y
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with

dr. (4.92)

The parameter ¢ cancels out in (4.91).
It should be pointed out that the derived approximate solution for the logarithmic strain
distribution does not explicitly depend on the distribution of the cross-section area; this is

0
solely contained in the function € =¢, and the obtained solution is applicable to any smooth
cross-section variation in the region O<&<eo satisfying the appropriate properties (E—oo).

Without solving Eq.(4.13) for g, =g and determining the integral in (4.88), an important
result can be obtained from (4.91). This is the maximum strain at the minimum cross-section.
This analysis and its discussion are postponed to Section 4.4.2.

In comparison to the linear problem analyzed in section (3) further insight is obtained by
reducing the non-linear problem to small strains, i.e. ignoring the cross-section reduction. This
allows to obtain explicit solutions, which are derived in the following section.

4.3.3 Solution for Power Law Hardening without Cross-Section Reduction

The restriction to small strains implies that the cross-section reduction due to the volume

conserving plastic deformation is ignored. Then the Cauchy stress and the logarithmic strain

are approximated by the engineering stress and engineering strain, og and &g, respectively. For

reasons of simplicity the subscript (R) of the engineering strain is dropped in the following.
The classical solution, denoted by &, follows from (4.13)

ec=( Eﬁé—g))ll (60 (D™ (4.93)
where
(Sc)0=( 5‘—5—]”" (4.94)
K Jeso

is the strain at the minimum cross-section and
g=a+(1-a)e* (4.95)
is related to the inverse of the cross-section area variation along the axis of the rod. Naturally,

the geometric instability cannot be described by this simplified model.
The differential equation (4.7) reduces to
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e = — (. (4.96)

The boundary conditions are given by (4.9) with

1/n
e.,o=[(01’*()°°) , (cR)m=£=—;a. (4.97)

An analytical solution is not feasible, but again the method of multiple scales can be used to
obtain an asymptotic solution for small values of f. In fact, this small strain case is contained
in the previous analysis and, clearly, advantage is taken from this property by ignoring all
underlined terms, which are due to the exponential term e®. An abridged description is given
in the following,

The system of perturbation equations (4.38) reduces to

0
eEn rz(€)

*. DEQ(0) = ¢ =
p Q(0) = &ny B ()

B':DEQ() = £qy ~ Q&) € =Ri(E, ix)
(4.98)

B%:DEQQ2) = ény — Q7 (E) € = Ral€ € , i)
3 3 3 0 1 2
B’ :DEQQB) = &4y — 27 (&) € =Rps(€,€,€, Ur)

where Q7 is given by (4.39), and the differential operators Ry, Rg2, Rg3 are defined by (4.41).

Also we use the notation uy instead of u.
Evidently, the corresponding boundary conditions are given by (4.42). The o
0

approximation € is now

£(5) = £ = ()0 g(O™. (4.99)

For later purposes the first and second derivative are cited here

0 - == 1 =
€ = (& 8 noge =(Ec)o;8 " (- g)
(4.100)
0 1,1-n =22 Ln
€gg =(&o 1= —8 " (@-g)-g " (@-g)}
where the property of the derivative g, ,
d
g ==7 =(ag), (4.101)

dg
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1
is accounted for. Further, the first order perturbation function & (£,7) is

£ (&) = By(d) e-22n(®n 4.102)

Following the procedure in section (4.3.2), the removal of secular terms of the particular

2
solution of the 2™ order perturbation function € yields now
Qq =+4Jo = const. (4.103)

which implies, observing (4.39),,

1/2

e =+
. (P (gl—n
and (4.104)
: . 172
Ug= +J‘ —3 dr
0 [/ gl-n

Further, as previously with the integration constant c,

C
B\(¢)= TG (4.105)
and explicitly
1/4
€ I-n
B\(&) =D [T] : (4.106)
where
0 1/4
v | € 0
D=cp"= (€€)o s (4.107)
n
0

1
here the boundary condition for € at £n =0, Eq.(4.42), is accounted for. Thus, the general

1
result (4.79) for the first order perturbation function £ (£,1) simplifies to
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0
£ I-n

174 0 . 1/4

1 0 -n

e(€,n)=Bi($) e Vo = (€g)o — (8—(%—] e Vo (4.108)
0

Observing (4.99), (4.100),, and

(£6)o=~(eo <, (4.109)

Eq.(4.108) takes the following explicit form

I-n

1 (£.)3 172 b o
e(&,m) =—(1-a) (——n‘—’—] g(&)an e Vo (4.110)

' 2
The intermediate result for the 2" order perturbation function € (£,7), Eq.(4.81), reads now

é(é,n) = Bz(é)e‘ﬁ” - %fl+%%-)e-zﬁﬂ , 4.111)

where o,(&) and o(E) are given by (4.56),s4. The suppression of the secular term in the

3
particular solution of & (£,n) yields a differential equation for B, formally the same as (4.86):

B, + L5, — 50 4.112)

here the right-hand side (Sg) is slightly different from (4.87) in the second term

0
” n _
Sw(E) = l 1 1 11 ¢ n(l-n) | @, B,. @.113)

2o e’ 2o | (2 | @

Recalling Eq.(4.88), the solution of (4.112) is

LS Vg)o
By(&)= — [vgSgdr+ (B2)o (4.114)
VR o Vg

where the vg is now defined by

1/4
172

1
172 - n ’ (VR)O - (,uR’)O

(4.115)

Vp = (#R’) 1
8 —-n

and with (4.90) (see also Appendix (7), Eq.(A7.12))
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11N 1 [7 2
(Bz)o=Bz(0)=Z(;) _O_n‘lign(l—n):l(gg)o . (4.116)

0
The explicit determination of ug(&) and By(&) requires definite knowledge of € (&) = €.(&). For
the exponential cross-section distribution (4.4) and odd integer values of m=1/n analytical
solutions for ug(&) are obtained as shown in Appendix (8). The result is

—-n

12 1
n ———
;uR(g):(—(;) (&), 2 G(&:p) 4.117)
with
1 1-n
= — — =—=(.1 cee s
p=y (m-1)=—==0,1,2,..

The integral functions G(g(&);p) are listed in Table A8.2; they are valid only for the specific
cross-section variation (4.95).

The determination of the function B,(&), according to the integral representation (4.114),
can be done analytically for arbitrary hardening exponents »n and for the exponentially tapered
rod when the cross-section area varies according to g(&)7". The essential steps of this lengthy
procedure are contained in Appendix (9). The result is for n#1/3 (otherwise see Appendix 9)

Ln 17-21 Ln
B9 =(e)" B [l—g(é) Z J—

17n
1-

(1 g(g)Zn)]+ —(1-0)}.  (@4.118)

With B,(&) given by (4.118) the intermediate result for the 2" order perturbation function

2
€(&mn), Eq.(4.111), is almost completely defined when /¢ and /3¢ are given. With
(4.56)1 84, (4.99), and (4.100), one obtains

0
1 _ I-n
ao(é): o (MR’) 2 gﬁﬁ - _ 8(6) géé -

¢ ¢ n

2-3n

|
=‘(8p(2, ;;g " (g-o) (g—a+na) (4.119)

and
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a2(€)_ _1_ 2_1_ __1__ 5 _ 2_"1—:—’11 2 _lj;_:’_
B 3 XU A © =-(e), 5 gU-a’g . (4120

Finally we note, accounting for (4.117),

172
Jon = Jo H= Rgé) = %( - ’)’1] G(g(&p). (“.121)
c/0

Eq. (4.99), (4.108) or (4.110) and (4.111) together with (4.118) to (4.121) define the
asymptotic perturbation solution

e=E(EP) = EEmP =D+ eEn) + B eEn) @.122)

for the strain distribution in the exponentially tapered tensile rod. It is noted again that the
integration constant ¢ cancels out in all terms. Thus, any finite value, preferably the value

“one”, may be attributed to ¢ .
For the special case n=1 we obtain

2‘ (5) = (8(:)0 g(é) ’ (gr)0= (EI(R_\)
é=0

£ (&) = —(1-00) (e)oe VP

(4.123)
é(é,n) = —9%@ = (&)o(g—0)
Jon =&
B
Thus
£= (e [8(5) - BU-0) e PP + B (g(O)-a)] =
= (o [+ (1-q) e = Bl-a) e P + B*(1-a) e ]. (4.124)

For the linear case (n=1) we can benefit from the luxury of the existence of the exact solution,
Eq.(3.17). It is found that the asymptotic solution (4.124) and the exact solution agree exactly

up to and including terms quadratic in f.
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4.4 Evaluation

4.4.1 Second Order Perturbation Solution for Power Law Hardening
without Cross-Section Reduction

To begin with attention is put to that part of the exponentially tapered rod where the non-
classical 2" order gradient term will have the largest effect, i.e. at the minimum cross-section
where the maximum axial strain is produced and where gradients are largest. At £=0, =0
the perturbation solution (4.122) reads

£0,0) = g 0)+p 113 0,0) + B> é 0,0 =¢,. (4.125)

With (4.99), (4.108) and (4.111) as well as (4.103), (4.106), (4.116), (4.119) and (4.120) we
have

0
) (O) = 8(‘(0) =&
1/2

1 £ I-n 0
€(0,0) = B1(0) = (85)
o 0

n

2,0 , %0
39

2 2
- ?}(l) — l:%n(l—n):'(gg) +(8—°(§§¢) _ (4.126)
" (8)0 0 " 0

& (&) = BA(0) -

@, " Uk
0\ 1-n )
:gb_(ggé) O
n o 12 n (8)" 0

Then the relative strain at the minimum cross-section is defined by the strain ratio £0,0)/ &,
and is given by

172

g, €00 1 0
=—_—l=1+ﬁ 0\ l+n (86) *
€ €co n(e)o 0
) 1 0 0 5 0 \2
+p 5 Eeg (6)0 +—(1-n) €¢ : (4.127)
l4n 0 12 0
n(e 0
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0
Here it should be recalled that the 0™ order approximation & (&) is equal to the classical
solution £.(&), i.e.

0 ~ ~ O'R(f) /n _ P
s(&)-ec@—(-————K ] , 0 @)= 4.128)

Recalling the analysis, it is noted that the result (4.127) is generally valid independent of the
specific cross-section variation along the rod, except obeying the symmetry with respect to
£=0 and uniformity for X—oo,

It is noteworthy that the relative strain is determined, among others, by the 1** and not
only by the 2™ order spatial derivative of the classical solution £.(&) at £=0. If the cross-
section variation Ag(€) is smooth at £=0, i.e.

(AR)e-o =0, (4.129)

then
0
(et )ézo = (8: )O= 0 (4.130)

and the term linear in the parameter 8 drops out in Eq.(4.127). Thus, the relative strain and the
2" order strain gradient contribution is only quadratically depending on the length ratio f:

ECO 800 n(E)O 0

L),
=1+ p? (4.131)
"(8)0

This reflects the quadratic dependence of the constitutive equation (4.1) on the internal length
l;. Thus, a 1 order dependence of the relative strain on f is induced only by the non-
smoothness of the stress-distribution. For the case of a smoothly tapered rod with a neck at

0
£=0, the classical strain distribution £.(&) = (&) has a relative maximum at £=0 such that

0 0
(Egjzo, (Egg) <0.
0 0

Thus, Eq.(4.131) reads

£, _£(00)
E

e

co 8(‘() ng

(4.132)

co
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of the non-classical solution.

The expression (4.132) can be put in a more lucid form, which allows further
interpretation and easy determination of the internal length scale /; using two scaled thought-
experiments with smoothly necked specimens.

With (4.128) one obtains

0 1/n 1/n ’
£¢ = £ lAI;(Hn)/n A;? — ER_ }_AR , (4'133)
K n K n A

where

Ap = Zf;[D(&)]z

(4.134)
Ay =2e Zpp
dé 2
then
0 P ”"1 ~(l4n)/n ,# l+n =(42n)/n ¢ 47 \2
€ = 7(’ ; Ag AR“'_n_AR (A%)
1/ ” r N2
_ (o))" L|AR _1+nf A (4.135)
K nldg n Az )|’
where

AL =%[DD"+(D’)2] .

With (4.129) one gets

oy = (pp*), =2af 2) (2
(AR)O—Z(DD )o 2”(2)0( 2)0, (4.136)

where D/2 is the radius of the circular rod.
The radius R, of curvature of the meridional profile at the minimum section (£=0) is
given by

(4.137)

d*(D/2) (gj)
dx? 2 Jo
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where (4.6) is observed. Thus

x\2
@A), =mn, &2

o

and with (4.128), (4.134) and (4.135)

0 1/n *\2
g | = Cre| AL 4.138)
0 K n DoRo

Finally (4.132) takes the form

€00) g1 (05)"4L)
€. n(Cro!/ K)\ K nD,R,

I-n

(02 n 4 1
=1-(l. 2 Ro _ ; 4.139
(')(K) n® D R ( )

o" "o

here o, is the stress at the minimum cross-section. Eq.(4.139) shows that the relative strain
reduction due to the 2" order strain gradient plasticity, given by

1-n
Eco _-8(0’0) - o-Ra T i _{l_ _ZL__
£, K n*\ D, | R,

I-n 4 l,‘ l_,
= (&) F(D—I = ) (4.140)

0 o

depends non-linearly on the stress level ok, or the classical strain level €., and is proportional
to the length ratios /i/D, and l/R,. D, and R, represent the minimum characteristic dimensions
of the rod. Thus, the result (4.140) demonstrates that the internal length scale /; in relation to
the minimum geometrical length scales determines the gradient effect. Here the ratio I/R, is of
special importance since for very uniform necks, i.e. R,/D, very large, the gradient effect
vanishes.

From Eq.(4.140) the influence of the increasing non-linearity, i.e. n — 0, can be derived under
different assumptions. Decreasing the hardening exponent »n but holding all other parameters
constant, especially the intermediate variable ‘non-classical strain’ €., = const., implies that
the normalized stress oz,/K increases according to

c

%’— =gl ,  €p=cONst.
With this assumption and depending on the strain level &, the relative strain reduction
(4.140), decreases and after passing through a minimum increases beyond bounds when the
hardening exponent approaches very small values.
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On the other hand, if not the strain g, but the nominal stress oy, is held constant, i.e.
Oro,=const., a quantity which really can be controlled, then Eq.(4.140); applies. Fig.4.1 shows
the relative strain reduction versus n; it demonstrates the presence of a maximum for the
relative strain reduction (or minimum for the relative strain) which suggests the interaction of
two opposing effects. An interpretation can be given as follows. Eq.(4.132) can be
transformed to read

€(0,0) —1-p2 lel—n (8655 )0
€co n Co €co
1-n
(o T(Epgg)l
=1- 2 * Ro of . 4.141
el e .

With (4.128) and (4.135) the magnitude of normalized 2" order derivative of the
classical strain for a smooth neck is defined as

=l{ﬁ} . | (4.142)
nAgJo

(Ecgg )0

E

co

This quantity is a relative measure for the non-uniformity of the classical strain distribution
around £ = 0; it depends only on the local geometry and the hardening exponent n but not on
the strain or load level. For decreasing n-value it increases monotonously beyond bounds at n
= 0. This implies that a ‘relative localization’ of the plastic deformation occurs with
decreasing hardening exponent.

The term 1/n in Eq.(4.141) has a similar dependence on n as the normalized 2" order

strain gradient (6655 )0 /€,,|. The strain or stress dependence is solely contained in the term
1-n
8:.;" — Opo | n , O Rro <1;
K K

its dependence on the hardening exponent n is determined whether the strain &, is held
constant or whether the normalized stress oy,/K is fixed. In the first case it decreases
monotonously with decreasing » and it remains between the finite bounds 1 and &.,. In the
second case the term

O | / O %R _ const. <1
K K K

also decreases monotonously with decreasing n within the bounds 1 and 0. This is contrary to
the dependency of the other terms in Eq.(4.141) and explains the existence of an extremum in
the relative strain reduction when the hardening exponent n is changed. Under the constant
strain assumption a minimum for the relative strain reduction is obtained but for the constant
stress case a maximum is found.
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We consider two geometrically similar specimens of different sizes made of the same
material under scaled loading. The large specimen is denoted by the subscript p (prototype)
and the small specimen by m (model). The geometric scale factor is

D), (&),

= = >1
D) (R

and the scaling of the loading implies
(GRo)p = (GRo)m = ORo + (4-143)
Then, taking the ratio of (4.139) for specimen p and m, this yields
1-n
7 1- Okro B 4 (.l_i )2 _
O], ~ \ K ) n?(D,R,),

[£(0,0)],, (% L 4y
K ) n®(D,R,),

(4.144)

We consider the quantities [£(0,0)], and [€(0,0)],, to be measured with the property

m

[8(0,0)]p > [(0,0)], .

Solving (4.142) for (1%, one gets

00,
2
l- 2 — [8(0’0)])n n (DORO )n1 . 4-145
W= ooy, 14 T (@199

- (%o |"
[£0,0)],, A? ( % )

In principle this equation represents a possibility to determine the internal length /; using two
scaled tension experiments of smoothly necked specimens in the range of small strains when
the cross-section reduction due to plastic deformation is still small. If this gradient theory is
truly the appropriate model to describe the observed size effect, then another pair of
differently sized tension specimens of the same material should yield the same internal length
l;. This is a necessary check of the usefulness of the model.

Returning to the exponentially tapered rod with a sharp neck, the classical solution for
the strain distribution is given by (4.93) where (4.95) defines g(&). With (4.99), (4.100) and

g(0)=1 one gets
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35) = Lo q_q (4.146)
0 n

g:ﬁ) = Zoo {l_n(l—oc)2 +(1-0) }
0 n n

and (4.127) takes the following explicit form

€ _ £(0,0) =1_ﬁ(€;;n )1/2 g ,
n n

1-n 2
+ ﬁz[ﬁ’—ll—"—“) [H(l—n)+ " ] (4.147)
n n 12 -«

For the linear case n=1 the relative strain (4.147) simplifies considerably:

co co

fo —1- B1—-0) + BX(1-0). (4.148)

The exact ratio for n=1 is given by (3.22)

e, 1+ap
£ 1+8

co

(4.149)

which is, in contrast to the perturbation solution (4.148), a monotonously decreasing function
of B for all values 8 < 1. The graphs of the approximate and the exact solution for n=1 are
shown in Fig.4.2 for the three values of o = 0.0625, 0.25 and 0.5625. Agreement within less
than 10% overestimation is found up to 8 = 0.275. For larger values of f3 the parabolic
character of the asymptotic solution becomes dominant and strongly erroneous: after passing a
minimum at = 0.5 the relative strain of the asymptotic solution increases with p.

It is evident that for sufficiently small values of f the dominant term in (4.147) and
(4.148) is linear in B. Its negative sign signals a decrease of the maximum strain at £&=0. This
implies an apparent strengthening of a specimen when its size is reduced: for large sizes 8
tends to ‘zero’ and the maximum strain &0,0) approaches &, the classical solution; for a
reduced size, such that B is finite but small, £0,0) becomes less than &,. It is noteworthy that
the relative strain £(0,0)/¢,, of the fully linear problem, Eq.(4.148) or (4.149), does not depend
on the load level or equivalently on the classical strain level g, whereas the consideration of
the power law strain hardening (rn<1) induces a strong dependence on the loading level ox,,
possibly defined by &, Eq.(4.128), and on the power law exponent n, Eq.(4.147).

The influence of increasing non-linearity, i.e. n — 0, on the relative strain &0,0)/&,, can
be made evident as follows. The general perturbation solution (4.127) shows that this ratio
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does not only depend on the classical strain level &, but also on the 1** and 2™ order spatial
derivatives (€cg)o and (€. )g at £=0. Increasing the degree of non-linearity by decreasing n

to small values but simultaneously increasing the load level ok, such that

]
co =(8)0 :(G£O

1/n
o
= const. —Ro 1,
K

yields an increase of the magnitude of the 1% and 2™ order derivative, Eq.(4.133), and
(4.135),. This corresponds to a shift of the plastic deformation distribution towards the center
of the tension rod at £=0. This localization of the deformation, generated by a decreased
hardening exponent n and an increased stress ok, / K such that €,,=const., increases the non-
uniformity of the strain distribution which enhances the strain gradient influence. The
localization as well as the intensified gradient effect are illustrated in Fig.4.3a & b. The
influence of the gradient term is more readily seen in Fig.4.4a & b; obviously it is restricted to
a boundary layer at £=0 for small values of . These graphs are based on the full perturbation
solution Eq.(4.122) together with the integral function G(g(&); p) (Table A8.2).

To illustrate the influence of the various quantities, the relative strain &(0,0)/¢,, is
plotted versus the normalized strain gradient coefficient 8 (8 < 0.15) for the exponents n=1,
1/3, 1/5, 1/9, 1/13 and for fixed values of the classical strain level, i.e. £,=0.01, 0.05, 0.1,
0.15, 0.3 and o = 0.81, 0.64, 0.5625, 0.25, the initial cross section ratio Agy/Ag. (Fig.4.5a &
b). For the variation of £ in the interval 0 < 8 < 0.15 the parabolic character of the curves is
seen for some of the parameters and here the 2™ order approximate perturbation solution is
clearly not sufficiently accurate. Therefore, expanded graphs with [ restricted to smaller
values in the interval 0 < $<0.04 are also shown (Fig.4.6a & b). Fig.4.5 & 4.6 also reveal that
the increase of the parameters €., n and @ reduce the range of B-values where the quadratic
perturbation solution is an acceptable approximation.

From these figures the following trends are obvious: increasing the degree of non-
linearity (decrease of n), with the strain €, and parameters held constant or with an increase of
the strain level ¢, as well as the degree of tapering (decrease of ), the sensitivity ‘S’ of the
strain ratio &0,0)/€, with respect to f3 rises. Mathematically ‘S’ is simply given by the
magnitude of the derivative

d[e(0,0)/¢,,]

Si= B

| (%)
—_ £¢
0 n(g)Hn 0

0
5
0

(&),

1-n

_ 1 (GRO)E

nl/2k K

1-n

SN

m[( £), }2 - nll,z(aé")z" (l"n“), (4.150)

%),

(©),
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where the right-hand sides follow from Eq.(4.127) and (4.147). A more detailed analysis laid
open that for small constant values of &, in Eq.(4.150)4 the sensitivity S first decreases, passes
through a minimum, and then increases beyond bounds for small n-values when the hardening
exponent z is decreased. If, however, n is decreased and the stress level 6z,/K and the tapering
« are held constant, then Eq.(4.150)s applies. Fig.4.7 shows a plot of S versus n (og,/K = 0.3,
0.5, 0.7 and & = 0.0625) revealing a maximum of the sensitivity; this is qualitatively similar to
n-dependence of the relative strain reduction of a tensile specimen with a smooth neck
(Fig.4.1). Also the explanation, relating this to two opposing effects, is similar: the normalized
strain gradient, obtained from Eq.(4.133),

%),

0

@)

is independent of the strain or stress level and increases with decreasing hardening exponent
n. This increase represents a ‘relative localization’ of the plastic deformation. On the other
hand the term

I-n

- 1/2
Oro |2 =[gm/g"_":| , 9ko — const. < 1
K K K

decreases with decreasing n under constant normalized stress Og/K since &, diminishes
towards zero. These opposing effects are responsible for the maximum of the sensitivity.
Since S is the dominant term determining the relative strain, this peculiar behavior is also
seen in the dependence of the relative strain on the hardening exponent for og,/K = const.

The validity of the graphs in Fig.4.5, 4.6 & 4.7 is actually restricted to small stress levels
or strains &, since the geometric non-linearity due to the reduction of the cross-section by the
plastic deformation is not accounted for. Therefore, the graphs for ¢,=0.15 and 0.3, which
correspond to 15% and 30% strain at £&=0 of the classical strain distribution, have a rather
limited validity and require an improved model.

It should be recalled that the normalized strain gradient parameter B=I/L* is inversely
proportional to a characteristic geometric dimension L*, the transition length of the specimen.
For geometrically similar specimens this is a measure for the specimen size. Thus, Fig.4.5 &
4.6 map the size influence on the relative strain: very large specimens correspond to =0 and
thus £(0,0)/¢&., = 1; decreasing the size considerably, a noticeable decrease of the relative strain
is seen. For example, if 0=0.5625>, n=1/96, B=0.004 and ¢.,=0.05 one gets from Fig.4.6b
about £(0,0)/¢,,=0.9883; decreasing the specimen size in all dimensions by a factor of 10 and
constant), one obtains 8= 0.04 and the corresponding relative strain is £(0,0)/€.,=0.898. Thus,
the maximum strain, which is affected by 2" order gradient plasticity, reduces by about

0.9883 - 0.898

=9.1%.
0.9883 100 1%

5 o= 0.64 corresponds to a 20% difference between the maximum and minimum diameter of the specimen.
6 n=1/9 corresponds roughly to the hardening exponent of the ferritic reactor vessel steel A533-B at 93°C (see
Table 5.2).
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The 1% order approximation Sf, based on the sensitivity S, Eq.(4.148), yields a value of
11.37%.

Obviously, larger effects can be obtained by an increase of the stress Og, or the strain
&0, TESPectively and by reducing ¢. From Fig.4.5a & b one estimates that the difference in the
maximum strains may possibly become about 20%.

4.4.2 Second Order Perturbation Solution for Power Law Hardening with
Cross-Section Reduction: The Fully Non-Linear Problem

We recall that the distribution of the classical logarithmic strain €.(&) is the solution of

Eq.(4.13), i.e.

[e. (£)]" =351—((—5—)e50‘5’ ; (4.151)

it corresponds to the 0™ order approximation of the perturbation solution:
p pp p

&(6) = 2@ : (4.152)

However, an explicit analytical representation of €.(&) in terms of ox(&) is not available. The
approximate perturbation solution for the non-classical logarithmic strain distribution is given
by (4.91) which requires the integration of Eq.(4.73) and (4.88) to get the u(&)-function and
the Bz(&)-function. In general this can be done only numerically. It is not the intention in this
report to get involved into this numerical analysis to obtain the actual strain distribution in the
boundary layer. Instead, attention is put to the most important question, i.e. the gradient effect
on the maximum strain at £=0 in relation to the maximum classical strain &,. This
information can be obtained from the results of Section 4.3.2 without the mentioned
integrations as follows.
From (4.91) one gets at £&=0, n=0

0 1 2
£0,0)=£(0)+ B £(0,0)+ B> €(0,0)=¢,. (4.153)
With (4.79) and (4.81) one obtains

£ (0) = £.(0) = £

1/2

1 2 I-n 0
£(0,0) =B;(0) = (sg ) (4.154)
0

=
|
I mo

%0 | 03 (0)

£ (0,0) = Ba(0) -
30

where, observing (4.90), (4.56), (4.57) and (4.72),

55




-2
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4 o 0 0
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| I |
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D | =

and with (4.39), and (4.72) one finds

& n—£&

= 0 —_

2 n (g)" n g"" n
(@2), =| % =3 R4 : (4.156)
0

o
0 /"2 0
E (:Ll' ) b-n n-—-(s)o
Inserting (4.155) and (4.156) into (4.154); yields

£(0,0)= (Ez‘({) (ggg )0 + [n—(g)o]— (g):(gg ): B—n(l-nn

n—1(€), ===

0 1,0
+%(£)0+—6—(8)3} (4.157)

and the relative strain is

SO CHNEYE

[ ] {3 e

5 0 1,0
En(l—n)+%(8)0+-6—(8)zﬂ . (4158)
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The underlined terms in the above equations are due to the allowance for the cross-section
reduction. If they are set equal to zero in Eq.(4.154) to (4.157) and especially (4.158), the
small strain results of Section 4.4.1 are obtained again.

0
It is noted that the expression [n—(a)o] instead of n appears in the denominator.

0
Recalling the analysis in Section 4.2, the logarithmic strain &= (8)0 is approaching the value

n, the point of instability, with increasing engineering stress o, and the derivatives
0 0
(8c§ )0 =(£é) . ((‘%gg )0 =(€€§) (4.159)
0 0

1 2
become unbounded (Section 4.2.2). Therefore, the 1* and 2" order terms £(0,0) and £(0,0),
Eq.(4.154); and (4.157), and thus (4.158) grow beyond limits when instability is approached.
Consequently, this perturbation solution is not valid close to the critical state &, = n.

With Section 4.2.2 one has
0 _ (O-R )0 €co A
(85\]0 ( cé) Ory M- Eq
o } (4.160)
0 712
(855 ]o = (5c§§ )0 ‘(‘—_EE;')—{[(IHGR) ] (”_*g_cz)z + [(lnGR) ]o "} r
where
Ox ’ Ay A
udl I QR 4 =
(GR)O [(nGR)JO {AR)O
> (@.161)
lino,) ], { (AR ] .
o

With (4.161) the derivatives (4.160) are determined by the initial geometry of the rod at £=0,
the strain level g, and especially the difference (n—¢.,). Then this applies also to the relative
strain (4.158). Thus, it follows that the consideration of geometric non-linearity by accounting
for the cross-section reduction intensifies the gradient effect.

For the exponentially tapered tensile rod the above expressions are now put in an

explicit form. The undeformed cross-section Ag() is given by
Ap@©) = A[gET " = AJo+1-a) e*T7, (4.162)

such that
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Ay =A(l-a)el[a+(1-a) e
(4.163)

Ay =-A,(-a)eta-(1-a) eFla+l-0a) ]

and thus

(G;‘) - e,y ] =-a-o)

Or
(4.164)
[(lnoR) ]0 = a(1-0).

0
With (4.152) and results of Section 4.2.2 one gets for the spatial derivatives of &(&)

o - ? (4.165)

(ggg)o=?’;—§2§5—3—{(l—a)a(n—(§10)2+(1—oc)2 n}. ]

Dropping the underlined terms, which are induced by the cross-section reduction, yields the
previous result (4.146). Inserting (4.165) into (4.158) gives finally

1/2

0\ 1-n
i’_zl_ﬁ () 1-a

Eeo ”“(%)__0 "‘(g)o

S n b - GG

O B [

5 n,0 1,/0\2
+En(l—n)+z(8)o+g(£)o : (4.166)

Of course, deleting the underlined terms again gives the relation (4.147) after some
rearrangement. Eq.(4.166) allows to define the sensitivity ‘S’ of the f-dependence of the

relative logarithmic strain analogous to Eq.(4.150);:
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1-n \1/2

_| e 1—a 4.167)

B—0 n—=&g n—=g&,

d[e(0,0)/¢€,,]

S=
dp

It is recalled that the strain level &, should be definitely less than the critical strain, the
hardening exponent n, such that the perturbation solution remains approximately valid.
Therefore, it appears reasonable to consider the case where &, takes only a constant fraction
z<1 of the critical strain, i.e.

Eo=2M.
This coupling of &, and n allows to put (4.167) into the following form

S=2ZN(1-a), (4.168)
where the definitions

(1-n)/2
2 N=—L 1 (4.169)

Z= (1-2)%? ’ T a2 n

are introduced. In the interval O<n<1 the factor N varies in the range 1 <N < oo,
To get an estimate of Z and N and their product ZN for different hardening exponents n,
it is assumed that €., amounts only up to 10% of the critical strain n, i.e.

z=0.1.

With this restriction the results are listed in Table 4.2

The increase of the product-term ZN with decreasing hardening exponent n implies that
the sensitivity S increases, in spite of the limitation of the strain &, to a constant fraction z =
0.1 of the critical strain n; in fact, this is found also for smaller fractions z < 0.1. This trend is
apparently in qualitative agreement with the sensitivity variation when the hardening exponent
n is decreased but the fractional limitation is given up and the strain &, is held constant: the
sensitivity S increases considerably as shown in Fig.4.8, where only the 1* order perturbation
term is included in the £0,0)/€,, versus f representation. Note that for this plot the sufficiently
small constant value 0.13 for the strain €., was chosen such that &, < n for all values of n used
in Fig.4.8.

The evaluation of the n-dependence of the sensitivity S, Eq.(4.167), under the constant
stress condition (i.e. Og,/K = const.) and observing the stress-strain relation Eq.(4.151),
remains to be pursued.

The influence of the strain gradient term can be made evident also in a more seizable
way by representing the results in the form of a stress-strain diagram. Such a representation is
a rather natural choice to demonstrate the influence of the size of geometrically similar
specimens, especially if spatially local measures of the strain are used; this was pointed out for
the fully linear case already in Section 3.1.4.2.
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The stress-strain diagram to be shown is the normalized engineering stress og,/K at £&=0
versus the local engineering strain £z(0,0) at £&=0, which is obtained from the logarithmic
strain £0,0) via

er(0,0) =0 —1,

For the construction of these diagrams we proceed as follows: the strain measure €,,<n, which
is also a measure for the stress level and which is considered here only as an intermediate
variable, is prescribed in discrete steps. With (4.151) the normalized engineering stress Oz, 18
given by

The corresponding non-classical logarithmic strain £0,0) = &, is calculated from (4.166). For
given values of n, o and f3 the parameter representations of og,/K and £g(0,0), with &, as
parameter, are obtained. Elimination of &, yields finally a (ox,/K versus €g(0,0))-graph or vice
versa. Then, for given values of n and « and varying f within a diagram, the size influence is
demonstrated. The calculations were performed for a = 0.0625 & 0.5625 and n = 1/5 & 1/9
and the normalized gradient coefficient f is in the interval 0 < 8 < 0.1. These plots, which
include the cross-section reduction influence and which are based on the 2" order
perturbation solution, are shown in Fig.4.9a-d. It should be noted that the graphs are certainly
not valid beyond the critical value n of the logarithmic strain &0,0). Thus, the corresponding
limits of the engineering strain are indicated in Table 4.3

In Fig 4.9a-d plots covering the whole strain regime are shown but also enlarged details
in small strain regions. Inspection of the figures shows that the successive increase of the
normalized gradient coefficient 8, which is a measure for the increasing gradient parameter /;
or for the decreasing size L’, yields as successive increase of the normalized flow stress og/K,
provided the strains are sufficiently small. Of course, this expected result corresponds to the
common size effect already discussed for the relative strain £0,0)/€,. As discussed before, in
this range of small strains the 2"® order perturbation solution gives reasonable accurate
approximations provided the parameter f is not too large. From Fig 4.9a-d it is qualitatively
seen that the increase in flow stress with decreasing size is rather small. A specific example
will illustrate this. We choose a specimen with a profile as shown in Fig.3.2b, top-right, with
the following parameters

D *
o =0.5625, D" =0.75, L

oo oo

=0.188.

For the large specimen the normalized gradient parameter is assumed to be

l. . D, D
=+ =——2>—==001,
L* Do D,_,o L*
which yields
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L*
D

o0

l~ D
—=p = = =1.2533107;
DO DO
thus, the above choice implies that the internal length scale /; is only about the thousandth part
of the minimum diameter Dy,
The strain hardening exponent is taken to be

n=1/5.

The corresponding engineering stress-strain curves for various parameters [ are shown in
Fig.4.9a. For the large specimen with $=0.01 and an engineering strain of 2% at the minimum
section Fig.4.9a allows to estimate the corresponding normalized engineering stress to be

R _0.4485 .
K
Decreasing the size proportionally by a factor of 10, the -parameter becomes =0.1 and the
corresponding engineering stress at a strain of 2% increases to

IR _ 04561,
K

This is a 1.7% change of the flow stress. For an engineering strain level of 4% the increase in
flow stress by reducing the specimen size is only slightly larger (1.8%). Results for a larger
strain level at the minimum section are difficult to obtain from Fig.4.9a since the 2" order
perturbation solution appears to be not accurate enough.

It is fairly obvious that such small effects on the stress-strain curve are experimentally
not detectable: the natural scatter due to other influence would likely mask this size effect.

The internal length-to-minimum diameter ratio and the non-uniformity of the stress
distribution need a considerable increase to produce an observable effect. Fig.4.9a-d show that
for larger strains, approaching the critical strain limit, an ‘inverse’ size effect is found for all
parameter constellations: the flow stress including the ultimate stress decreases with
increasing fB-values. This effect is related to the erroneous dominance of the quadratic
perturbation term, as already noted for relative strain-versus-f representation even without
consideration of the cross-section reduction (Fig.4.2, 4.5 and 4.6). In fact, Fig.4.10 shows
engineering strain - engineering stress curves which account only for the 1* order perturbation
term: a qualitatively different behavior is obtained which shows no intersection of the curves.
However, for large strains these results are equally erroneous. These results demonstrate that
an approximate perturbation solution for large strains requires more than just the 1* and the
2" order perturbation terms. In the following section some results are presented and discussed
which include contributions of the 3 order perturbation term.
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4.4.3 On the Contribution of the Third Order Perturbation Term (Power
Law Hardening without Cross-Section Reduction)

It is rather noteworthy that, using only the results of Section 4.3.1 and 4.3.2 and Appendix 6,

3 3
it is possible to determine the 3™ order term £(£,1) at =0, n=0, i.e. £(0,0). This allows the

improvement of the maximum strain £0,0) at the minimum cross-section, which is now given
by

£(0,0) = g ©0)+p ¢ 0,0) + B2 ¢ 0,0) + g° ¢ (0,0). (4.170)

3

Thus, the determination of the distinct value £(0,0) does not require the inclusion of the 4t
3

order perturbation term. If, however, the function £(£,n) were of interest, then the analysis

4
must be extended to include the 4™ order term €(£,7) followed by the suppression of secular

terms as previously. For the present, including the cross-section reduction due to the
deformation formally, one gets with Eq.(4.82), (4.83), and (4.85)

g(é,n) = By(Oe VO 1+ 0,(8) e 4y, () e

(4.171)
0o(8) =¥2(8) 1(3p) , wo(8) = 13(5) (89,
where 12(€) and y3(&) is given by (A6.12). Thus
é (0,0) = B3(0) + 0,(0) + w,(0) . 4.172)

Here v,(0) and wo(0) or y2(0) and 93(0) can be determined from the results obtained already.
The term B3(0) can be deduced from the boundary condition (B.C.II)s, Eq.(4.42):

2 3
Ee+ W Ey=0, at&=0,7=0. (4.173)

The n-derivative of (4.171), at £=0, =0 is found to be

(83»1 )gzo ==+ [Bx0) +20,0) + 3w, (0)] , (4.174)
n=0

which yields with (4.173)

11
Vo (u5),

B;3(0) = (ég ) - 20,(0) = 3w,(0) . (4.175)
0

Thus
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3
€(0,0)=

2
- 1 (8:) = U(0) — 2w,(0) ; (4.176)
'\/5 (:uo )0 0

2
here u’(€) is given by (4.72) and £¢(€,n) follows from (4.81). The explicit determination of

the various terms is considerably simplified if the cross-section reduction due to the
deformation is consistently neglected. Under this simplification and after a lengthy
intermediate calculation one obtains finally

3/2
3 3 g 1-a\ (75n-11 14+nl-n
e), =€(00)=¢ £0 1-n)- 1-o(1-n)] -
(£) =£00) m[n](n){"ZSS( )T g el

2
—(I“—) (1-2n)(1-n) + —— (1-n)(2-n) - 12}. 4.177)

(1-a)? (1-a)

Thus, with the previous result Eq.(4.147) and (4.177), including cubic terms of f, the relative
strain at the minimum cross-section reads

1/2

1-n I-n 2
io_sz:l_ﬁ Ee | 1 e . ﬁ2(£9£_11_9‘_) E_;_(l_n)_,_ln :l_
n -

€  Eup n n n

1-n \3/2 _ 3 _ _
_g? € (1 a) {11 75n(l—n)+ l4+n1-n [1-o(1-m)] +

n 288 12 1-«

a (04 1
e = —-n) - 1-n)(2- . 4.
+ (l—a) (1-2n)(1-n) (1—05)2( n)(2—n) + (1—05)2} (4.178)
For linear hardening n=1 Eq.(4.178) yields
%o _1- B1-a) + BA(1-a) -B*(1-0) . (4.179)

co

This agrees with the exact solution Eq.(4.149) up to the cubic term. For vanishing small
hardening n—0 Eq.(4.178) simplifies to

& _£00) ﬂ(e;:*)‘”;_—L ﬁz(go_ll-a)zz _
n 12

& n n n

3/2 3
e (22 [—1—1—+5+1}. (4.180)
n n | |288 12

The B-derivative of these two limiting cases gives
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,0
AeONTew] _ 4 424, - 38%,8 (4.181)
ap
with
((l—a) n=1
_ V2
A= e 1 n—0
n n
r(1--&) n=1
_ PRy
Ar=13(€, Y1-a) 17 050 (4.182)
n n 12
(1-a) n=1
_ 32,9 N3
A= Eao 1-o [£+E—+l} n—0
n n )[288 12

Then a relative minimum of the (£(0,0)/e., versus fB)-curve is obtained, if the condition

dle(0,0)/¢,,] _

5 0 (4.183)

admits a real solution for f. The roots of this quadratic equation are

2
B., =lﬁ+\/l(ﬁ] _lizé-‘f‘-&i 1 [ a4 . (4.184)

1
34, Vol 4, , 34,

For both limiting cases (4.182) the radicand of Eq.(4.184) is found to be negative:
A? —3A;A,<0; (4.185)

thus, a real root does not exist. Therefore, it may be expected that the (£(0,0)/¢,, versus f)-
curve does not admit an extremum (minimum) but is a continuously decreasing function not
only for the limiting values of the hardening exponent but also in the intermediate range
1>n>0. This is confirmed by the numerical results shown in the following.

Fig4.11 shows a comparison of the f-dependence of the exact and the 3" order
perturbation solution for the relative strain assuming linear strain hardening (n=1) and
ignoring cross-section reduction. It is seen that the 3™ order approximation generally
overestimates the effect of the strain reduction

€., —€(0,0)
£

co

due to the gradient term. Comparing this with the corresponding 2™ order approximation,
Fig.4.2 shows a considerable improvement: agreement within less than 10% underestimation
in the relative strain is found up to $=0.5 and more, instead of $=0.275 in Fig.4.2.
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The dependence of the relative strain on the normalized gradient coefficient is shown in
Fig.4.12 for non-linear strain hardening O<n<1 and for the parameters ¢ = 0.5625, 0.7225,
0.81 and g, = 0.01, 0.05, 0.1, 0.3. Depending on the parameters n, ¢, and &, the 3" order
approximation exaggerates the gradient effect for larger B-values. This is noted when the
magnitude of the derivative d(&(0,0)/€.,)/dp starts to increase from an initially almost constant

value.
The size effect is illustrated using the same parameters as used previously for the 2n

order approximation, i.e. @=0.5625, n=1/9, and sc,,=0.057, which is well below the critical
value €.,=1/9=011. From Fig.4.12 this yields the strain ratio £0,0)/€,,=0.7616 if ﬁ=0.18. An

increase of size by a factor of ten (—f3=0.01) gives &0,0)/€.,= 0.966. Thus, the maximum
strain, estimated by a 3" order perturbation approximation, reduces by about

0.966 —0.7616
0966

100 =21.2%

when the size is reduced by a factor of 10 such that the normalized gradient parameter f is
increased from 0.01 to 0.1. This is a sufficient amount of deviation of the rather local axial
strain at the minimum cross-section, which certainly should be measurable by appropriate
means. However, an important condition is here that the other parameters, especially the
measure for the stress level €., are the same in both the small and the large specimen.

The choice of the parameters of the above example, in fact, corresponds to a realistic
specimen geometry, as shown in Fig.3.2b, top right, with

a=0.5625, Do _ Ja =075, L _o.18s;
D, D_/2
then
7979 B= b 0.01 large specimen
o _ £ r
L o !
: 79.79 B= z’; =0.1 small specimen .

If, for example, we interpret the internal length scale /; as the grain size, then the above
numbers define the number of grains along a specimen diameter; provided Dy=3 mm (2 mm)
for the small specimen the grain size would correspond to 37.6 pm (25 um), which are grain
sizes of a realistic magnitude.

Of course, the percentage strain reduction calculated accounts only for the axial strain
gradient in the specimen; the effect of the radial strain variations are not captured by this
simple uniaxial model.

As previously done in Section 4.4.2, stress-strain diagrams (Fig.4.13a & b, 4.14a & b),
relating the local stresses and strains at the minimum cross-sections, have been obtained
including the 3 order perturbation correction; however, the influence of the cross-section
reduction is not contained here.

7 This strain level corresponds to the normalized stress level og,/K=0.7169.
% As seen in Fig.4.5b, the 2" order perturbation solution is not accurate enough for this parameter combination.
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It is evident from these curves that the instability (relative stress maximum) is not
captured; more important, also the 3™ order perturbation approximation fails (backward swing
of the curves) for large values of 8 when the strain is increased beyond a certain limit. Yet for
sufficiently small strains and f-values the increase in strength with decreasing size (increase
of P) is seen which is just another aspect of the size influence. But the influence of the
gradient term on the stress at a given strain is relatively small: for

o =0.5625, n=1/9, &0 = €r(0,0) = 0.05

the normalized stress ox/K is increased by only about 3.77% if f is increased from =0 (very
large specimen) to 3=0.1 (Fig.4.14a). A somewhat larger strengthening effect is obtained even
at a lower strain level if the non-uniformity of strain distribution is increased. For a rather
wasp-waisted specimen (o = 0.0625, NJa = D, /D, =0.25), the same hardening exponent (n =
1/9), and a smaller local strain &, = &g(0,0) = 0.015 the normalized engineering stress is

increased by about 6.5% when the dimensionless gradient parameter [ is again increased from
B =0 (very large specimen) to 8= 0.1 (Fig.4.14b). With

I, I D,
p= r D, L’
one gets
Do __I_Do
I BL’

The ratio D,/l; may be interpreted as the number of grains along the minimum neck diameter,
say D,/l; = 50. Then L"/D, = 0.2 which represents a very steep transition from the minimum
diameter D, to the largest diameter D.., i.e. within a diameter D,’s distance from the minimum
section the diameter increases up to 95.3% of the asymptotic value D... The detection of these
effects in the percentage range requires very careful specimen preparation and testing to
minimize masking influences and pseudo size effects.

S. Three-Point-Bending of a Uniform Beam with Power
Law Hardening

5.1 Statement of the Problem

Within the EU-Project REVISA [1.4, 1.5] U-notched beams with rectangular cross-section
will be tested quasistatically in three-point-bending using specimens of different sizes. In the
following a strength of materials theory for an un-notched beam is formulated accounting for
plasticity by using a power law hardening deformation theory which includes a 2" order strain
gradient linearly. Only small deformations will be considered and shear deformation is
ignored. This problem is considered as a first step towards understanding the response of the
notched beam subjected to hardening. It is shown in the following that, owing to the
simplifications, this problem leads to a singular perturbation problem for the beam curvature,
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which has the same formal structure as the problem for the tapered rod. Thus, the same

solution procedure - multiscale perturbation theory - can be applied. In fact, part of the

previously derived equations can be directly used by proper reinterpretation of the variables.
Accounting for tensile and compressive strain in the bending problem, the uniaxial

stress-strain law reads
o =K |e|"sign(e) - KIi?V2e,  O<n<l. (5.1)

With the longitudinal coordinate x and the thickness coordinate y (see Fig.5.1) the strain is
given by (Bernoulli hypothesis)

&(x,y) = k(x)y (5.2)
where

d?w(x)

k(x) = - : curvature of center line (5.3)

w(x): beam deflection.
The Laplacian of the strain yields

2 2 2
vie= 4 o1 9 8=dky. (5.4)
dx?  dy? dx?

The length of the beam between the simple supports is 2L and the central load is denoted by
2P. Then the bending moment is simply given by

=P(L—x) 0<x<L. (5.5)

The bending moment is balanced by the moment of the normal stresses in the rectangular
cross-section. This yields, together with (5.1),

hi2 hi2 d2k
M) =b f ocydy = 26K f Ky -1 E5 ] ydy=
dx2
—hi2 0
. d2k
= KK -J 1,.2;)6—2] (5.6)
where
3
J=g =2
12
(5.7)
hi2 24n
J,, - 2b J‘ n+1 y _ bh
(2 +n)2n
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The following dimensionless variables and parameters are introduced

K = Lk : dimensionless curvature

&= x/L : dimensionless axial coordinate

q= —J——l- : dimensionless parameter (5.8)

J, [
B =1/L : dimensionless internal length scale.

With
J 1 gD (R @+t
g=———=—— 2Fm2 (5.9)
J, D LJ, L 12
it is noted that for h/L<1 , 0<n<1
1h
—_— 'ma =1 = 1. 5.10
3L g < Gmax = (@n=1 (5.10)
Consequently, the moment-curvature relation (5.6) reads
2
M—"K{K" B2 LE} (5.11)

dé?

Combining this with the equilibrium equation (5.5), the following 2" order differential
equation for the curvature is obtained

A Z—g —K'=-rg(§), 0<st (5.12)

where the right-hand side is

ra(§) = An(1-8)
" (5.13)
A= LI:JP - ( %) 7{% @4n)2!*"
and the lumped parameter S, is introduced
- \/—q— B. (5.14)

The differential equation (5.12) has the same formal structure as for the tapered tensile rod
under small deformations, Eq.(4.96). However, the small parameter 3, involves not only the
ratio /L but also (h/L), which is a constant for geometrically similar beam specimens, as well
as the hardening exponent n.
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For a complete mathematical formulation the differential equation (5.12) requires two
boundary conditions for the curvature. Before approaching this choice, some remarks
concerning the classical solution ¥, are in place. The solution K, is obtained from (5.12) by
ignoring the gradient effect by setting 3,=0:

Ke=(rg )" = ko 1-6)",  0<Esl

(5.15)
LYo P\ L+
K= A" =127 | == | @m)'"27n
h bhK
where K., is the largest curvature at £=0. The first and second derivatives are
dx, 1 In
=—K., —(1- n o,
T Ke n( &)
0<é<1 (5.16)
d?k, 1-n 1=2n
i Keo ~ (1-&) n .

At the center cross-section (£=0) the classical curvature k. has its absolute maximum but its
first order spatial derivative is discontinuous.

The distribution of the second order derivative depends strongly on the power exponent
n. We find

d?k

=1 : y 2‘ vanishes identically, 0<&<1
d’k, . . : . .
1/2<n<1: 22 is a monotonously increasing concave function of & starting from a
finite value at £&=0 and approaching infinity at &=1.
d?k
n=1/2 £is constant (=2K,,
35 (=21,)
d’k,. .. . .
n=1/3 ZE 2“ is a linearly decreasing function (=6x.,(1-§))
d?k, . . . .
O<n<1/3: y, 52" is a monotonuously decreasing concave function of £ starting from

the largest finite value at £&=0 and approaching zero at &=1.

For n<1/3, which is the technologically most interesting regime, the second order derivative of
the curvature has its absolute maximum as one approaches the central position £&=0. Therefore,
the largest effect of the gradient term in the differential equation (5.12) is expected around
£=0. Furthermore, it can be argued that the central force 2P is the limiting case of a uniformly
distributed loading along some small finite beam section of length s around £=0. The
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corresponding moment distribution in this section is parabolic and, for n=1, so is the curvature

. . .. d’x, . . -
according to the classical theory. Then the second derivative p) 520 is proportional to s bat

£=0 which yields even an unbounded value for s—0 and fixed load P. Therefore, the largest
influence of the second order gradient term in (5.12) will be at and around £=0. For small
values of f3, it will be confined to this regime.

Coming back to the choice of the boundary conditions, the prescription of the curvature
at &=0 for the gradient dependent case is physically unreasonable. We follow here a similar
argument as for the tapered rod (Section 3.1.1): it is assumed that

de(x.y) ) g vy
dx x=0

which yields with (5.2) the boundary condition

dx
B.C.II —_— =0. 5.17
( T l A7

The other boundary condition is prescribed at =1 :

B.C.1 (Ke=1=0. (5.18)
This choice reflects the assumption that the gradient influence for small values of f, is
restricted to the central part of the beam and is not sensible at the ends. This assumption and
the vanishing of the bending moment at £&=1 implies condition (5.18).

We consider geometrically similar beam specimens which are scaled up by the
geometrical scaling factor A>1. The geometrical data take the following values.

h=hA, b=bA, L=LA. (5.19)

If geometrical and physical similarities are required, then the dimensionless characteristic
parameters of the differential equation and the boundary conditions must be the same, i.e.

n=n (5.20)
IY"P1_(L\"P1
Rl 2nE \n) whK

q9=q (5.21)

and also
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B =f or 7—= A
i
and B (5.22)
—_—f—,:—_l—_ = —E—l— or ££ = /12.
bh K bhK PK

Here conditions (5.22) are formally the same as (4.11). Again similarity cannot be achieved
strictly if the gradient term is present and if the material is the same in the small and the large-
scale specimen.

However, the situation is, at least theoretically, somewhat relaxed for specimens made
of the same material if geometrically distorted specimens are considered. To obtain the same
dimensionless curvature at homologous positions X/ L =x/L, only the conditions (5.20) have
to be satisfied. We introduce the distorted scale factors

PRI W (i (5.23
LT :

Condition (5.20); is identically satisfied and (5.20), yields

1-n

T 3—n
(i}{—) 2odor A=Az, nel (5.24)

Condition (5.20); implies

5 1+n
1;:[%) 2o (5.25)

If the cross-section areas are required to scale according to /12, ie.,

hb 3
— =AM A=A 5.26
o i Ab (5.26)

as for the non-distorted case, then

2
’l”:I— =12, n#l. (5.27)
h
and
F )‘v/ l+n 5 §—n2
—= | A=A . 5.28
: (A) (5.28)

Assuming A=10, we obtain distorted scale factors Ay and Ay as listed in Table 5.1
For a given ratio & /b of the full scale beam (the “prototype”) we obtain with (5.24) and
(5.27)

71




1
- /‘U—n

(5.29)

| =

d
b

Thus, increasing the length scale factor A reduces the depth-to-width ratio /b of the small-
scale model. However, for the linear case n=1 Eq.(5.9) yields § =¢=1 and then B=p

implies A=1: a scaled down distorted model is not possible for the linear case n=1. The result
(5.29) implies a very large distortion of the cross-section dimensions. For example, with
A=10, n=1/5 and 1/9 one finds A'™ = 6.31 and 7.74, respectively. Formally this is valid for any

non-zero internal length scale [, On the contrary, if /=0 exactly or if B & B <<lI, the
conditions (5.20) are either exactly or only approximately satisfied. In these cases similarity,
i.e. equality of the dimensionless curvatures, can be achieved exactly or approximately
without cross-section distortion but of course with the standard scaling of the applied load

_ w2 =
L M<2 =[—’i) . (5.30)
P distorted

5.2 Solution of the Linear Problem (n=1)

For the linear case n=1 the lumped parameter 3, reduces to

I
Bo=B=- (5.31)
and the differential equation (5.12) reduces to a linear one
d’k
p :15—2—K= —rg1(&) (5.32)
re1(&) = Ai(1-§)
(5.33)

2
A R N ATy
n | bhK

The exact solution, observing the boundary conditions (5.17) and (5.18), is easily obtained

e—¢/8 eé/B
"(5)="‘(‘§)""“’ﬁ[1+e~zw —1+ew] (5.34)
K(&) = Keo(1-8)
(5.35)
Keo = A]

where K.(&) is the classical solution without gradient effect.
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With (5.3) and (5.8) the differential equation for the dimensionless deflection w(&)/L of
the centrally loaded simply supported beam is

d?(w/ L)
—— =-Lk=— 5.36
i K& (5.36)
and the associated boundary conditions are

dw
hadddl = =0, 5.37
[dé LZO 0, W)e=1=0 (5.37)

The solution is

@J’—f@—mﬁz[ : : }(1—é>+

+
1+e-28  1+e2P

L L
e-tIB —e-UB  eE&IB —lif
- 5.38
+Alﬁ[ 1+e-2B 1+e%P jl ©-38)
where w,/L is the classical solution without gradient effect
2 3
we®)_ 411 g2, & (5.39)
L 3 2 6

5.3 Approximate Analytical Solution by the Method of Multiple
Scales for the Non-Linear Case

5.3.1 The Governing System of Perturbation Equations
For small f,-values, 0< f,<<1, an approximate analytical solution is possible using the
method of multiple scales of perturbation theory. Because of the mathematical analogy the

results of section 4.3.3 can be used when the variables are properly reinterpreted:

EDK, &K, PPy, rr—o 1a; (5.40)

of course, the spatial dependence of the right-hand sides of the differential equation are very
different, and differences are in the boundary conditions.
The multi-scale expansion of the dimensionless curvature k' is given by

K= R(EB) =K (&m; By =
=k (&) + B, K (Em) + B; K(Em + B; K(Em) (5.41)

with
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E= % : the “slow” spatial variable

(5.42)
_ Mg ()

n B,

: the “fast” spatial variable .

i
The development of the differential equations and the boundary conditions in terms of & (£,7)
(1=0,1,2,3), up(&) and B, yields

0
0 K" rg (£)
0 DEQ(0 ==
ﬁq Q) = Ky (#B,)z (ﬂ;)z

1 I 0
B} : DEQ(1) = Ky — 2}k = Rpi(K, )

(5.43)
2 2 0 1
B2 : DEQ(2) = Ky — 2 3 K = Rua(K K, Uip)
3 3 01 2
ﬂ;: DEQQ@3) = Knn — Q ZB K =Rp3(K,K, K, “B)
where
PR G44)
P gy |
and Rg;, i=1,2,3 are the differential operators
1 /O 144 0
Rpy = —————(2 pug'Ken + pig" Kn)
(ug’)
1 ! . 1 1LY
Rpy = ————(2 pg'Ken + pg” kn+Kgg) — 2F 5 (1=n) F(K
(ug") K
(5.45)
12
1 /2 /I2 ] 2 KK
Rpy=— . (2 ps'Ken + pp” Kntkee) — Qg (1-n) — +
(ug’) K
1\
Gl
+ Q7 —6—(1—n)(2—n) (0 )2
K
where
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The boundary conditions (5.18) and (5.17) yield

B.C. 1 (=1, n— ) B.C. II (&=0,1n=0)
0
Bt - ps'kn =0
0 0 1
Be: K—0 Ke+ Ug'kn=0
1 | 2
By K—0 Ke + Py Kn =0 (5.46)
2 2 3
B2: K—0 Ke + ug'kn =0
3 3
B3: Kk—0 (ke =0).

q

Note that the boundary condition B.C.I at x=L, Eq.(5.18), is transformed into conditions at
&=1but n—eo in the (&,1) space since n=pp(&)/B, may become large for arbitrary small values
of B,; this argument is different from the reasoning in Section 4.3.

5.3.2 Solution of the Perturbation Equations

Comparison of the perturbation system (5.43) and (5.46) with (4.98) and (4.42) shows that the
differences concern only the right-hand sides of the differential equation DEQ(0) and the

0
associated boundary condition B.C.I. Thus, if k is found, all higher perturbation functions are

fully determined in terms of rg and n. Since the differential equations and boundary conditions
(except the spatial assignment of the B.C.I in the (£,1)-space) for the higher order perturbation
functions are mathematically the same for the two systems, the solution procedure of section
(4.3.3) can be formally transformed to the present problem, the only difference - apart from

the 0™ order approximation - being the notation.
0
As previously, the 0™ order approximation k corresponds to the classical solution k.

k() = k(D) = (ra(D) " = Aln (1 - E)in = K, (1— £V (547)

which satisfies the differential equation DEQ(0) and the two associated boundary conditions.
Thus

0 1 Ion
K¢ =_K(‘0;(1—£) n

(5.48)
1-2n

n

0 1-n
K& = Keo —2—(1—5)
n

and
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Rpi=0. | (5.49)
1
Then the 1* order perturbation function x(&,1), the solution of DEQ(2), is
1
i (E,m)=B(§) e~ (5.50)

1
where the boundary condition B.C.I for k is observed. Following the procedure of Section

2
4.3, the secular terms of the particular solution of the 2™ order perturbation x can be removed
which yields

@, =+Jp =const, (5.51)
and thus
112
, 1 n
My’ =+ = (5.52)
Kl-—n
and
0 1/4
l-n
B(&) = Dy| K&
n
0 14
K l-n 0
Dp= " (xe), (5.53)

0 1
(K§)0= = Keo —
n

2
The intermediate result for the 2°® order perturbation x(&,1), analogous to Eq.(4.111), reads

rzc(i,n) = By(E)eon - %(%Q+£‘fz;pﬁe—zﬁn (5.54)

where
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1-n

() o

1 0
(04 = — =—
5 () GEE=e Keg
1 1
% (8) = ~ & Z(1-n) 5 Bf = (3.55)
K

172 172

0 1-n 0 \? 1 0 1-n
K ( Re ) x(§)

U | "

=2 (1-n)

which are formally the same as (4.56),&4. The removing of the secular term in the particular

3
solution x(&,n) yields, analogous to (4.112), a differential equation for B,()

B{%L‘B—, B,=Ss (5.56)

B

where (compare with (4.113))

0
11 1., 11 «krnl-nla,

Sa(&) = ~——=—B , Bi. (5.57)
2 Jo up 2o uy (;;T ¢
With (4.114) the solution of (5.56) is
1§ vs)
Ba(&) = — vy Sy dr+—L2 B2, (5.58)
VB 0 VB
and with (4.115) and (4.116) we get
/4
A2 1 n A2
Ve =(Up )l/ = “(; o | (Vg)o = ('“B )o
[
(5.59)

2 2
(Bﬁ0=Bﬂ0%=l(l)-—Ly[lnﬂ—nﬂ(zg).
4\ n 3

The function ug(&) can be found explicitly by integrating (5.52) using the initial condition
us(0)=0. For n#1/3 we get

77




2n 1-3n

172 o
M(@{%) Km‘l“z*l {(1 £) —1} (5.60)

and, provided n=1/3,

172
(s(O)ln=113 = —(%J Km_% In(1-¢). (5.61)

The determination of the function B,(€), according to (5.58), can be done analytically for
arbitrary hardening exponents n. This somewhat lengthy analysis is given in Appendix (10).
The result is for n#1/3 (otherwise see Appendix (10))

- 1-3n
l—n — 7 17-21n
— w2-n 4n T |1 2n
By(&) = k2, 3 2($) {12 16(1-3n) [1 “© :”

(5.62)
2(H=1-¢&.

2
For a complete representation of the 2™ order perturbation curvature x(&,7), Eq.(5.54), we
require @,() and (£) defined by (5.55). The first function is already determined,
Eq.(A10.6), and the second is found to be

1+n

2(5) 2n . (5.63)

1
() = ——coKZ‘"

Summarizing we get the following perturbation functions

K = K©) = Koo 2O )
! 3n ] In Jo
K(En) = B(Ee Vo =—x_ 3 ——z(&)m e VOT
)
K(Em) = By(E)eom - ziﬁg_%fpﬁe_%, - > (5.64)

— 12—
'—Kwn

n 17-21n | 22 fon
{@ [12 16(1- 3)[ € De

2-3n +n } J

b 1 2§ 2 e

with
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1-n
K co

N (U e P (5.65)
B, B, 1-3n ' ’

Here n#1/3 is implied; otherwise appropriate changes for B2(€) and up(€) have to be made.
The above functions define the asymptotic solution

k= RIEBY =R (EmBY =K (D) + B,k (Em) + BEREN). (5.66)

For the special case n=1 we get

2
}3(5): Kc(@ = Keo Z(&)i Keo = ("[i) "P— 12

h| Kbh
llc(é‘,n) =~ Keoe VOT (5.67)
2
K(&m=0
and
Jon = ﬂiﬁ . B=+gB=B (5.68)
q

Thus, the approximation yields

K(E) =Kk(6) - ko f e P, : (5.69)

We note that this result satisfies the boundary condition B.C.II, Eq.(5.17), at the center of the
beam exactly; the boundary condition B.C.I, Eq.(5.18), at the end of the beam, is satisfied only
for f—0. This is due to the transformed boundary condition B.C.I, Eq.(5.46), where for x=L
the fast variable 77 was required to take very large values (11—e).

The exact solution (5.34) for the linear case n=1 can be approximated for small values

B<<I such that e/ B <<1; this transforms (5.34) into

K(E) = K(6) - Keof {e-g/ﬂ —e-(2+E)B — e~(2-E)1B +e-(4—€)/ﬂ}_ (5.70)

For £ close to zero the dominant gradient contribution is given by the first term in parentheses.
For £ close to unity the terms in parentheses cancel; thus, the boundary condition B.C.I is
exactly satisfied. In comparison to Eq.(5.69), note the additional exponential terms in (5.70),
which are necessary for an exact satisfaction of the boundary condition at the end of the beam.
However, at the center of the beam £=0 the perturbation solution (5.69) agrees exactly with
the dominant term in (5.70).
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5.4 Evaluation

5.4.1 The Linear Case (n=1)

The non-classical distribution of the dimensionless curvature is given by Eq.(5.34) and is
plotted in Fig.5.2. It consists of the classical part k, and a non-classical part depending on f
which -for small values of 3, e.g. f<0.1 - is a fast decaying contribution close to the center of
the beam &=0 (boundary layer). For greater values of 3 the gradient term influence is found
over the whole length of the beam.

With Eq.(5.2) the bending strain in the beam is proportional to the curvature. Thus, the
maximum tensile strain opposite to the applied central load is

h
€o max = (k)§=0 :,'2'-: EZ (K)é:() .
With &, being the classical strain distribution, its maximum value (at £=0) is

h

Eco max = Keo 5

2L

then the ratio of the maximum strain of the non-classical and the classical solution is given by

€5 max _ (K)O
€ comax Keo

Fig.5.2 shows the rather strong reduction of the maximum strain (~curvature) at the center
&=0. In explicit terms the relative strain is given by

€omax - (K)o _ l—ﬁ 2Slnh(2/ﬁ)

5.71
€ comax Keo 1+2 COSh(Z / ﬁ) ( )
which is plotted in Fig.5.3. For small values 8 (~<0.1) this can be approximated by
E
om0, _1g, (5.72)
£ K

comax o

The upper limit of f=I,/L = 1 is a purely mathematical construct if the internal length scale [;
is somehow related to the microstructure of the material. Then the limit

appears to be more reasonable but is still exaggerated. This gives the upper bound
h
p< 2L°
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If the shear deflection is required to be less than 5% of the bending deflection to be negligible
in steel (Szabo 1958, [5.1], p.125), then A/L<0.227 and this implies

p<0.11 (5.73)

in the linear case.

A change in the parameter B reflects a change in the material (/;) or a change in size (L).
Thus, Fig.5.3 visualizes the size dependence of the bending strain at the beam center since fis
inversely proportional to the size. With the subscript (p) denoting a large specimen
(“prototype”) and (m) denoting a small specimen (“model”) we have

; I; L 1
ﬁ:_lz_'___'ﬂ_.__ — (5.74)
L, L,L, A

and

—omax’p =m0 (5.75)
(gomax)m 1- 'Bm 1 ﬁm
Assuming f3,, to be given by the limit value
Bn=0.11 (5.76)
as described above, Eq.(5.75) yields
£
Coms)y _ | 1236 -0.1236 17! (5.77)

(80 max /’m

Comparing a very large specimen (A—we0) and the smallest specimen satisfying the limit value
(5.76), Eq.(5.77) shows that at the most a difference of 12% in the maximum strain of the
bending specimens is predicted.

The results of Section (5.1) allow also to illustrate the size influence on a dimensionless
force-deformation relation. The maximum bending stress opposite to the applied central load
is, according to the classical theory,

. _PL h
comx T pn37122°

(5.78)

With (5.15) and n=1 we get

L\ P Lo L
1= _12=2_.__£"_ﬂ_—_2—
Keo (h) Kbh n K py Ecomax

and thus Eq.(5.71) yields
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~ O,
P =22 = C(B)E,

(5.79)

B = [l"ﬁ 1+ 2cosh(2/ B)

2sinh(2/ ) ]“

The left-hand side of Eq.(5.79), is a dimensionless stress calculated using the classical theory
-a measure for the loading- and €, max is the maximum local strain according to the non-
classical solution. The stiffness C is size dependent via the parameter 8 and is bounded from
below and above by

[
IA

C(B) £ 1.1216 £ 6.7086

~< 011 <1
’JazL

with 0

I
JAN

where the very large specimen yields the value C,=1 and the reasonable smallest specimen
(B=0.11) yields the stiffness Cp-0.11=1.1216. In this range, to a first approximation,

C(B=1+p ‘ (5.80)

when the exponential term in (5.79) is approximated by “1”. Thus the relative change in
stiffness is proportional to f3:

C(ﬂ)_co -
C A

o

It is fairly obvious that the qualitative trends are very similar to those obtained for the linear
case of the tapered tensile rod (Section (3.1.4)).

5.4.2 The Non-Linear Case (n#1)

The approximate perturbation solution for the gradient enhanced deformation plasticity law is
given by (5.64) to (5.66). Naturally, it consists of the classical solution k. (the Oth order
0

approximation ') and the non-classical part (the 1* and 2" order terms) depending on f3,. The
latter are exponentially decaying contributions close to the center of the beam. For £<<1 the

exponent J_(En, Eq.(5.65), simplifies to

1 ( n )1/2
Jon = — 13 (5.81)
B,

1-
K COn

The decay rate d, defined by
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By | xir

1 172
dz_[ n j , (5.82)

is not only depending on f3, and the hardening exponent n but also on k,,, defined by (5.15),,

I+n
NS ([ P I/n y L+n I ( 4PL)1/n( n)l/n
o=|— — 2+ n 2 [ (p— 1+—‘ 2 5.83
. (h) (Kbh) (4m) 1\ Kbh? 2 683

which is the maximum dimensionless curvature at £&=0 according to the classical solution. It is
a nonlinear measure for the loading P. Thus, by increasing k., the decay rate (d) is reduced.
For example, if n=1/5 and 1/9, then

P2 P
d~(—ﬁ) and (ﬁ) .

This is in contrast to the linear case (n=1), Eq.(5.68), where the decay is not depending on the
loading level but given by

(d)n:] =

It appears necessary to estimate the expected admissible range of the dimensionless shear
force

p__rt (5.84)
Kbh

using realistic material response data K, n and others, for example for the ferritic reactor
pressure vessel steel A533-B and stainless steel 304 at room or low temperatures. Kumar et al.
(1981, [5.2]) used the Ramberg-Osgood stress-strain relationship

£_9, C{j‘_] . oml (5.85)

c

o

for the interpolation of uniaxial tensile test results less than 30% strain. An alternative form of
(5.85)is

1 n
e= -—o+(£) R (5.86)
K
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1
=% y=—<1  g=—C0 (5.87)
£ m (5005) i/m

The corresponding material data are listed in Table 5.2
Ignoring the elastic strain o/E in Eq.(5.86) yields the classical deformation plasticity
model used in this section. Within this model the maximum bending stress at £&=0 is

K. hY P(L
=K| -t = _— —_— =
_— [ - 2) K(Kbh)(h)mn)z

- K( ;;I;) (1+%) . (5.88)

For h/L=0.2 and the A533-B steel this gives

P P
O oo ma= 21.03 K(-ﬁ—vﬁ) =16.32 10° (-ﬁ-}-{) [MPa]

and for the stainless steel we get

c. =2184 K(—P—) =14.67 10° (—P—) [MPa]
' Kbh) Kbh '

comax

If the load P is assumed to be very large such that

p=(- L >1,
(o7 )

then the maximum bending stress is out of the range of validity of the power law hardening
model; a reasonable upper limit is estimated to be 100ksi = 690MPa (see ref. [5.2]). Thus, an
acceptable range for the variable P is

- P 690
P=——<0042 < ——8—

Kbh 16.32103

h
or —L—~O.2 (5.89)

~ 4PL
P=——<10

Kbh

For smaller values h/L<0.2 the variable P is restricted to even smaller values. If, however,

h/L>0.2, then P may take somewhat larger values than given by (5.89);. In any case it is
concluded that

P

P= . 5.90
Kbh <1 (5.90)
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The quantity P and the condition (5.89), may be given a simple interpretation. The bending
moment at £=0 is M,=PL. Assuming that the bending stress distribution in the cross-section is
piecewise constant as in ideal plasticity, then the corresponding bending stress, which
balances M,, is given by

4PL
Op= —. 591
F bh2 ( )
Thus, Eq.(5.89), implies
Of
—<I1. 5.92
X (5.92)

In fact, in the limit n—0 the power law hardening model (without gradient enhancement)
yields

c=1K,

the rigid ideal-plastic stress-strain relation. Therefore, an ideal plastic bending stress
distribution is obtained at the center of the beam if the limit load, defined by

= (5.93)

is reached. Thus, Eq.(5.89), is a rather natural restriction although strictly valid only for n=0.

The normalized curvature distribution along the beam is obtained from equations (5.64)
+ (5.66) and (5.15),. It is shown for the specific values n=0.2, P =P/Kbh=0.035 and h/L=0.2
in Fig.5.4 for several 2™ order strain gradient parameters 8. The boundary layer effect of the
strain gradient term (>0) is clearly seen. Compared to the linear case (n=1, Fig 5.2) and for
0<f<0.05 it is evident that the non-linearity increases the reduction of the relative maximum
curvature at £=0, because it becomes load-dependent. It is also exemplified by Eq.(5.15) &
(5.16) that the power law hardening produces a very different classical curvature distribution
(B=0): The non-linearity shifts the normalized curvature x,/k,, towards the center of the beam.

Now attention is put to the curvature and relative strain at £&=0. With £-0, n—0 we get
in general terms

x(0,0) =lg(0) + ﬁq ilc(0,0) + qu 12((0,0)
where

0
k©0)=«x,

1 Kl=n \2 o
K(0,0)=Bl(0)=( Crlz) ) (K)o

85




&, (O)+ 7 (O) -

iZC(O,O) = By(0) ~- 30

7 1-n 0 Ko 1—n(Kln 0
o o, ke (Kﬁ)%‘*‘( ” )(Kéé)o p (—;—)KC‘J(K&)%

such that

" 172 0
x(0,0) =k, +ﬁq( - ) (K£)o

5 1-n 0 Kkl-n 0
+ B {—"‘n—K"(ch)%+ ;’ (Kéé)o}

and the relative curvature and bending strain is

2 0
€, max _ x(0,0) —1+8 (Kcl,;") (xe)o +
- - q

£ K n K

comax co co

0 2 9
+B2 K" 13 oy Kedo | (Ke)o | (5.94)
12 K K

co co

Recalling the analogous procedure in section (4), this result is generally valid irrespective of
the specific load distribution along the beam, provided it is symmetric with respect to £&=0 and

0 0 0
the boundary conditions (5.17&18) apply. Of course the specific values (k),, (K¢)g, (K&,

0
depend on the load distribution and its magnitude. Especially if (kx¢),=0, which is the case

when the bending moment distribution is smooth around £=0, then the term linear in f; drops
out and (5.94) simplifies to

€ o max - k(0,0)
E

2 1 0
=1+ ] —— (ke (5.95)

comax o co

Thus, the relative strain reduction (1 — € ) is only quadratically affected by the

omax comax
small parameter Bq due to the non-classical 2" order strain gradient extension of the

deformation law. This is a result that is reasonably expected.
With (5.48) the curvature at £&-0 is in explicit terms

a2 o _
K(0,0) =K, —/3("1 ) w+[3 ("' )1—7—1——’1;90 (5.96)

n 12 42

and the relative strain (5.94) reads
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gomax Kl_n 2 1 2 Kl"” 1_ n 17
=1- €0 — + co —. 5.97
£ 'Bq( n ) n | n? 12 697

Using the decay rate parameter (d), Eq.(5.82), this ratio takes the form

g, 1 1)? 17
=1 — 4+ (—) (I-n) — (5.98)
€ o max nd

thus, an increase in the decay rate (d) is connected with a decrease of the relative strain

reduction (1 - &, / €.omax )-

The relative strain is plotted versus = I/L in Fig.5.5. As in Section 4, it is seen that,
depending on the magnitude of the hardening exponent n, the relation (5.97) becomes
erroneous when [ approaches ~0.1 from below because a monotonous decrease of the relative
strain is expected, as found for the linear case (n=1) (Fig.5.3). This is due to the dominance of
the quadratic B-term for large f-values. For example, for n=1/9 the result appears to be
reasonable up to =0.03. Thus, Fig.5.5 shows also that a decrease in the hardening exponent n
will reduce the range of validity of the 2" order perturbation approximation to smaller values
of B. An extension of the range of validity can be obtained by including higher order terms in
B, in the approximation. ‘

For the purpose of comparison the relative strain versus f is also shown without the
quadratic term (Fig.5.6). The results show that for a given loading P/Kbh, geometry h/L, and
P=Il/L a decrease of the hardening exponent n down to 1/9 produces an increase in the relative

strain reduction (1 — €, /€ ). In other words, the importance of the 2°® order strain

comax
gradient influence and thus the size influence on the relative strain increases with a decrease
of the hardening exponent n. However, because of the mathematical similarity of the tension
rod problem (Section 4) and the beam bending problem, a similar behavior, especially for
varying hardening exponents n, is evident. Concerning the classical solution, Eq.(5.15),
(5.16), (5.47) & (5.48), a decrease in the hardening exponent n yields a shift of the relative
curvature k,/k., and its 1** and 2™ order derivative, Kee Keo and K ge/ Ko, TEspectively, towards
the center of the beam. Thus, the ‘relative non-uniformity’ of the curvature distribution at € =

0" is increased. For very small values of n, their maximum at £ = 0* behave according to

1 l-n
(Keddo ! K,y = ==, (Keegdo | Koy =—5—
n n
with
~1l/in ~
Koo = [P] g2l p_APL g lim(1+2)n=el2,
h Kbh? 0" 2

In Section 4.4.1 this increase of the relative non-uniformity with decreasing hardening
exponent was called ‘relative localization’.
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Keeping the geometry, the loading P, and the parameters K and [ constant but
decreasing the hardening exponent n, the maximal deformation measures Ko, (Kceo, (Kegho
decrease and their limit values vanish:

=l e)o = (g =0
In this limit state the beam does not suffer any deformation as long as P <I.

Thus, opposing effects are obviously contained in the general equation (5.94) when the
hardening exponent is decreased. These qualitative findings, already discussed in the context
of the tapered tensile rod, suggest that the relative strain, Eq.(5.97), will show a peculiar
dependence on the hardening exponent n, i.e. some optimal influence when all other
parameters and variables are held constant. These results are confirmed in Fig.5.7 and Fig.5.8.
Fig.5.7 shows the dependence of the maximum bending strain (non-classical solution) on the
hardening exponent. For a certain range of small hardening exponents almost no deformation
is obtained but for larger values of n a strong, almost linear increase in deformation is seen.

Fig.5.8, the relative strain versus n, is of special interest: for a fixed set of parameters,
especially the dimensionless shear load P, there exists a specific value of the hardening
exponent for which the 2" order gradient influence on the relative strain is largest, i.e. at the
minimum of the plots in Fig.5.8. For the chosen parameters the characteristic exponents are
close to actual hardening exponents of structural materials (Table 5.1). Obviously, the

stoutness A/L and the loading level P or P have a strong influence on the relative strain. We
note that the range of stoutness data in Fig.5.8a corresponds to the following range of the load

parameter P

Further, the range of the shear load parameter P in Fig.5.8b is equivalent to

<0.9.

~u

0.5<

The dependence of the relative strain on the load parameter P can be obtained from (5.97)
using (5.83). It is shown in Fig.5.9 for fixed parameters n=0.2, h/L=0.2 but f varying between

0.01 and 0.04 and the load parameter restricted to 0< P <0.04 (0< P <0.8).

For 3=0.01 and h/L=0.2 the internal length [; is 5% of the depth of the beam and the
relative strain reduction is about 7% for the maximal load parameter P =0.04. Decreasing the
size of the beam by a factor of four, the internal length corresponds to 20% of the beam depth
and the strain reduction is almost 20%. In any case it is obvious that the 2°® order gradient
influence to be effectively detectable, the internal length should amount to several hundredth
of half-length of the beam. Of course, some other parameters, e.g. the stoutness A/L, can be
changed to increase its influence.

Analogous to Section 5.4.1, Eq.(5.97) is used to determine the bending strain ratio of
two geometrically similar beam specimens of different size -the model (m) and the prototype
(p)- made of the same material and under scaled loading, i.e. P/bh = const.

With (5.74) we get from (5.97)
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(e

112

Kl-n | kl=n \1-n17

1- _¢_ —+ 21 —¢o | "
_ «/675,,[ n ] n qﬁp( n ] nt 12
B 1 (KL \1=n17
—+ €0 |\__

) n? m( n ) n? 12

17
1-B, A7+ B,an“z(l—n)ﬁ*
_ (5.99)

17
l—Bm+B,2n(1—n)1—2—

omax)p

(Eomax)m l—ﬁﬂm[ Kc:f"

where

ion \2 | 1
B,,,=\/5ﬁm[ < ) ;Z-z d. (5.100)

n na,,

The quantity B,, is determined by the shape and the material properties of the beam and the
loading but especially by the absolute size L,, of the beam model via the parameter S,=li/Ly,.
To obtain a typical value for B,, the following example is considered:

We take h/L=0.2 and n=1/9. This yields g=0.043. The load parameter P is assumed to be
quite large

which gives with (5.83)

Keo=2.183
and thus

B,, =7.9267 B,.
According to Fig.5.5, it is estimated that the perturbation approximation is appropriate up
to 5=0.03 if n=1/9. This B-value defines the minimum size (length) of the beam, which
can be treated with the present perturbation approximation. Thus we assume

B =0.03;
this implies that the internal length amounts to 15% of the beam depth . Consequently

B, =0.2378.

With these data Eq.(5.99) gives
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For A=10 we get
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Increasing A indefinitely yields the upper bound

[(_EM} - 1 =1.200. (5.101)
A—yo0
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(EomaxIm 1- B, + Bgl(l_n)a

For the purpose of comparison we consider the linear case n=1. Then B,=f, and
Eq.(5.75) or (5.99) gives for the very large specimens

Comadp | 1 o (5.102)
(Eomax)m n=1

—00

Eq.(5.101) compared with (5.102) illustrates again the enhancement of the strengthening
effect of gradient plasticity in small specimens when non-linear hardening (n<1) is
involved.

Of course the strain ratio Eq.(5.101) increases with a rise of the load level P . Table 5.3
shows the strong non-linear dependence for a set of discrete load levels. For small values of
B, this non-linearity follows the power law relation

- 1-n
[ € ) max ) - (I'S)Z‘n .
’
A—roo

Ecomax

for n =1/9 the exponent is 4. For values of P approaching 1 the solution Eq.(5.101) becomes
erroneous.

The result (5.96) for the maximum curvature at £=0 allows to demonstrate the size
influence on a dimensionless force-deformation relation. Fig.5.10 zooms in on the relation
between the non-classical local bending strain at =0 and the load parameter P =P/Kbh
(dimensionless shear stress) for #/L=0.2, n=1/5, and with f as a parameter. It is seen that the
bundle of dimensionless stress strain curves fans out and, with increasing B-values (decreasing
size L), smaller specimens suffer less strain under the same scaled loading. We recall that all
curves would collapse into one curve if no size effect were involved (/=0). In principle such
qualitative trends can be tested by scaled experiments since both quantities can be determined
easily. However, it is evident that the theory is very simple. Several effects (e.g. large
deformations, shear deformation, multiaxiality) are ignored and some of them may not only
produce quantitative but also qualitative effects. Therefore, the fitting of the internal length
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parameter /; to a set of experiments may be a delicate task since the result may be sensitive to
the simplifications of the theoretical model.

6. Summarizing Discussion and Conclusions

6.1 Scope of the Section

The enhancement of elastic-plastic and damage models by higher order gradient or non-local
(integral) terms in the stress-strain relations, yield condition, or evolution equations for the
internal variables has been introduced to limit ‘pathological’ strain localization and mesh
dependence occuring in finite element solutions of conventional boundary value problems
which do not involve an internal material length. Thus the above models were developed, in
part, to cope with the non-well-posedness of the classical material models, which arises when
material softening comes into play. Generally, the advanced theories implicate gradient or
non-local terms which, in turn, can be associated with internal length scales that have the
status of material parameters. Although several authors introduced these terms motivated by
computational arguments, we emphasize here the more physical point of view that the internal
length scales are somehow characteristic of the material microstructure. As a consequence of
the gradient generalization, the interaction between the geometric length of a specimen and
the internal length causes a size-dependent response of the theoretical model. Physically, this
is quite plausible since the microstructure may influence the response; for example, when the
sizes of domains with rather non-uniform strain distributions become comparable with typical
length scales of the microstructure.

As mentioned in the Introduction of Part I {1.1] and of Part II, the general objectives of
the theoretical work described in Part I ‘Applications’ are to exemplify the extent strain
gradient plasticity captures the size influence on the deformation behavior. This, of course,
requires the choice of specific gradient plasticity models and therefore any qualitative and
quantitative results will be model-dependent.

Generally, gradient enhanced plasticity models do not allow easy analytical solutions of
the corresponding boundary value problems. Therefore, depending on the model, numerical
procedures have been developed, for example as sketched in Part I, Section 3. However,
instead of the development or adoption of a purely numerical solution procedure and its
realization in a computer program, a direct approach was chosen to be more appropriate at the
present development state: Simple loading configurations are selected and relatively simple
gradient plasticity models are used such as proposed by Aifantis (1984, [6.1]); i.e. extensions
of the usual yield condition of classical plasticity by terms proportional to the norm of the
strain gradient and the Laplacian of the strain, which are amenable to relatively easy
theoretical treatment. At most one-dimensional problems are considered which belong to two
different categories:

1* Group: Algebraic problems

The size dependence of the yield initiation in pure bending and pure torsion is treated
using a conventional elasticity model in the elastic regime and a conventional yield
condition enhanced by a 1% and a 2™ order strain gradient term. No boundary value
problem needs to be solved. Fitting of the strain gradient solutions to available
experimental data is performed.
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2™ Group: One-dimensional boundary value problems

The size dependence is systematically studied for geometrically similar specimens of the
same material and the relative influence of the strain gradient terms is determined.
Ignoring elastic effects, a deformation type plasticity law with power law hardening is
assumed, which is extended by the Laplacian of the strain. Spatially one-dimensional
boundary value problems are considered, i.e. tension of tapered rods and three-point
bending of uniform beams. Exact solutions are obtained for the linear cases and
approximate analytical solutions are developed for the non-linear problems using the
method of multiple scales of singular perturbation theory. Appropriate experimental data
are presently not available for comparison.

In the following we will discuss these two different task groups and extract related
conclusions.

6.2 First Group: Algebraic Problems

The literature survey (Part I, Section 2) on the size effect of the initiation of yielding under
non-uniform stress in geometrically similar specimens of the same material (especially steel
with pronounced lower and upper yield stress) revealed, for various types of specimens, a
quasi-exponential decrease of the yield stress when the size is increased.

Two relatively simple specimen families, i.e.
e torsion of circular rods (Morisson 1939, [1.2])
e pure bending of smooth rectangular beams (Richards 1958, [1.3]),
were selected to assess the interpretative capability of gradient plasticity models. In the
context of small deformation theory the yield condition is taken to be of the form

6=0,-¢(Ve-Ve)'* —¢,V%, (6.1)

where o and ¢ are scalar stress and strain measures, V is the Nabla-operator and V’=V.V the
Laplace-operator, and 0, (=const.) is the tensile yield stress under homogeneous stress
conditions for the case of ideal plasticity (no hardening). In the elastic region Hooke’s law is
assumed to apply. It is important to note that the strain € in the enriched yield condition is the
elastic strain at the instant of yielding which is also linearly related to the stress according to
Hooke’s law. Thus, in a certain sense, the strain gradient terms in the enriched yield condition
can also be interpreted as 1% and 2™ order spatial stress gradients.

Definitely, this model cannot predict any size effect if the macroscopic strain or stress
gradients vanish identically, i.e. for a homogeneous state. Therefore, the interpretation of
geometrically scaled experiments under non-uniform stress states with this model is
reasonable only if homogeneous tensile tests with the same material do not reveal a size effect
on the initiation of yielding.

In fact, for the material (plain carbon steel) used by Morrison for the torsion tests,
several scaled tension and compression tests with a scale factor of only up to 3.55 have been
performed, which showed neither a size dependence of the yield nor of the ultimate stress.

On the other hand, for the mild steel used by Richards (1958, [1.3]) for his scaled
bending tests, no accompanying tensile tests were performed. However, Richards carried out a
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large number of tensile tests for a mild steel not identified to be the same to that used for the
bending tests; these tensile tests demonstrate a definite decrease of the yield stress with
increasing size and a considerable scatter.

However, frequently the opinion is expressed that true size effects in ordinary tensile
tests of ductile engineering materials are so small that they are difficult to detect (see Shearin,
Ruark and Trimble (1948, [6.2])). The literature survey performed on this topic and described
in Part I shows that the yield stress, the 0.2%-proof stress or the stress at 0.5% strain are
frequently found to be not affected by the change in size. However, there are definite
exceptions where a decrease of these quantities is observed when the diameter is increased.
Also, experimental evidence obtained by Plechanova and Ratner (1954, [6.3]) supports the
suggestion that this size dependence may not only be generated by surface hardening induced
by the machining of the specimens; possibly it is an inherent material property related to the
heterogeneity of the microstructure.

The adaption of the gradient plasticity model to Morrison’s torsion tests implied a least
squares fitting of three parameters: the two gradient parameters ¢1/G and ¢,/G (where G is the
elastic shear modulus) and the parameter A, which is the ratio of the yield stress in shear and
tension, i.e. A =17,/ O,.

The size effect formula, Eq.(2.4), may also be written in the form

Y(a)= A : ©6.2)
o, 1-(/a)y+(,/x)

where Y is the yield stress at the surface of the circular torsion rod, « is its radius and where
the two internal length parameters

e - = 63
G G G G

are the coefficients of the radius dependent terms.
The fitting procedure yielded

/G =-1427mm, c¢J/G=0.85 mm? (6.4)
or alternatively
1 =0.38mm, [,=0.476mm
with (6.5)
A=0.516.
The ratio A is between 0.577 (von Mises yield condition) and 0.5 (Tresca yield condition) and
is comparable to values found in the literature on carbon steel.

The fitting shown in Fig.2.1 is remarkably close to the experimental results, which show
a rather small scatter’. It is obvious that the internal length parameters /; and [, are fairly

® Some of the scatter has been eliminated by normalizing the yield stress with respect to the tensile yield stresses
of the various specimens.
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comparable in magnitude but the effect of the corresponding terms in Eq.(6.2) is opposite: the
first order term is dominant not only in magnitude but more important, the proper trend to
capture the experimentally observed size dependence is contained in the 1* order term
because of the sign of ¢;/G. It appears that the inclusion of only the 2™ order gradient term in
the gradient enhanced deformation plasticity model would not suffice to obtain an acceptable
fit.

For comparison, the minimum radius of the smallest torsion specimen is 1.293 mm and
the grain size is less than 0.042mm. Thus, the internal length parameters /; and /; (Eq.(6.5))
are considerably less than the minimum dimension of the torsion specimens and both are
about 10 times larger than the grain size. This is a fairly reasonable result, With some caution
one may interpret qualitatively this result that the ‘joint action of several crystal grains’
determines an internal length scale responsible for the size dependence of the yield initiation.
This is in line with suggestions by Morrison (1939, [1.2] and Part I). Morrison proposed a
simple theory of yield for the case of non-uniform stressing. He suggested for a bending test
that ‘yield cannot occur in an individual crystal surrounded by unyielded material but only in a
number of crystals which occupy a sufficient thickness to permit of the complicated
readjustment (of the crystals) which must take place before movement can occur, it is
unreasonable to expect to find yield before a stress equal to yield stress in uniform tension is
applied to a depth of this magnitude. It seems reasonable to suppose that the depth might be of
the order of a few crystal diameters.’

The adaption of the gradient plasticity model to Richards’ pure bending tests, was also
done by applying a least squares fit. It is important to note that for this loading configuration,
the 2™ order gradient term involving the gradient parameter c; vanishes identically and thus
only the 1* order term remains. The two parameters 0, and c|/E were determined by the fitting
procedure. Eq.(2.7) with the data from Section 2.2 can be written in the form

Y(hy_ 1 , (6.6)
Go 1- _l_
(73)
with
L W} 1 =1.125 mm
E G 2(1+v)

4 ——297mm 6.7)
G
0, =225.6 Mpa .

The internal length parameter / is found to be well below the half-depth (A/2 = 3.19 mm) of
the smallest beam specimen accounted for in the fitting process; this is, of course, a necessary
requirement for a reasonable quasi-hyperbolic fit of the size effect model.

The obtained fit (Fig.2.2) with only two parameters, covering a scale range of 3.84, is
comforting, but it refers to the mean values of the relatively large scatter bands associated
with each specimen size. Also the experimental results are somewhat masked by the observed
non-uniformity of the yield stress along the radius of the circular stock bar that the specimens
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were taken from (Part I, Richards (1958, [1.3])). A comparison of the internal length scale
with the grain size is not possible since these data are not reported.

It is interesting to compare the two corresponding internal length parameters (ci/G),
Eq.(6.4) and Eq.(6.7), associated to the first order strain gradient term. It is noted that the
internal length parameter for the bending case is two times larger than the one obtained for the
torsion data. This difference may possibly be attributed to a difference in composition and
microstructure of the two steels used. Of course, it may also be an indication that the proposed
gradient terms are not capable to catch the two size effects uniformly if the materials were the
same.

The conclusions may be stated as follows:

(2) The two separate fitting processes of a simple gradient plasticity model, including 1* and
2" order strain gradient terms, gave comforting agreement of the fitted models with the
mean values of experimental data in torsion and pure bending experiments. Evidently,
these phenomenological models are useful means to interpret these observed size effects
although a physical interpretation of the gradient term was not used.

(b) The results indicate that it is important to include a 1* order strain gradient term in the
enhanced yield condition and it suffices to use a linear dependence on the strain gradient
only. The 2" order strain term is of no importance for the case of pure bending and of a
minor one in the case of torsion; here it introduces an opposing compensating size effect
compared to the 1% order term.

(c) The 1% order strain gradient parameters obtained in the two different tests with different
materials differ by only a factor of two. Whether this is accidentally so or due to the
difference in material cannot be decided.

(d) For the case of torsion, the 1* order strain gradient coefficient was found to be about 10
time larger than the grain size. Possibly this may be an indication to interpret the
existence of an internal length scale by the ‘collective action of several crystal grains’ in
the yielding process, a suggestion already made by Morrison and others.

(e) The enhancement of the classical ideal plastic yield condition by 1* and 2" order strain
gradient terms may be viewed as being equivalent to an enhancement by 1* and 2™ order
stress gradients.

(O Finally, further comparison between gradient theory and mechanical tests of
geometrically scaled specimen families of the same material is necessary which really
allows assessing the predictive capabilities of the theoretical models. This requires testing
of scaled specimens to identify conventional material parameters and especially the
gradient coefficients (internal length scales) but also independent scaled tests, using the
same material to verify the predictive capabilities of the phenomenological model.

At the present state we do not have recourse to such experimental data, neither from
the open literature nor from the experimental part of the REVISA project. This is partly
due to the delay of the project but also due the complexity of the specimen geometry,
which requires elaborated numerical solution of the non-classical boundary value
problems.
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6.3 Second Group: One-Dimensional Boundary Value Problems

In the 2™ group one-dimensional boundary value problems were solved and parameter
calculations were performed by changing the specimen size or the internal length scale to
assess the influence of the strain gradient term in comparison to the classical part of the
constitutive equation.

In contrast to the first group, elasticity and the existence of a yield condition were
ignored. Instead, a linear or power law hardening deformation type plasticity law was assumed
for the classical part; also for the gradient term, only the 2" order strain gradient (Laplacian)
was used. For a uniaxial state of stress, this model reads'®

2
0=Ke"—Kli2d£)Ef— O<n<l; (6.8)

2

for the case of large strains, o is the applied Cauchy stress, € is the logarithmic strain and X
the material (Lagrangian) coordinate. This form is related to early proposals of Aifantis and
coworkers (1987, [6.5], 1988, [6.6]); the gradient term can also be considered as an
approximation to a certain non-local (integral) formulation (Appendix 1).

The following cases were analyzed:
e tension of tapered rods under different assumptions,
e three-point bending of smooth beams.
Under the assumptions of a uniaxial state of stress the governing equilibrium equation can be
trivially solved independently of the constitutive relation. This ‘uncoupling’ allows a direct
integration of the constitutive equation which takes the form of a 2™ order differential
equation for the strain. The required non-conventional boundary conditions, which typically
have to be introduced for gradient models, are defined. The most important condition is the
assumed vanishing of the strain gradient at the center of the tapered rods and of the beams.
For smooth specimens this follows from the symmetry but not for the non-smooth
exponentially tapered rod. Under simplifying assumptions it is shown in a separate analysis
(Appendix (1)) that a 2" order strain gradient model may be a valid approximation for a non-
local (integral) model far from boundaries or geometric discontinuities, if the internal length /;
is appropriately interpreted. However, in a small region close to the boundary a gradient
approximation should also include a 1* order strain gradient. But more important, the
boundary condition obtained from the non-local model may differ significantly from the
assumed vanishing of the strain gradient at the center of the specimen. Thus, the gradient
model and its non-classical boundary condition generally require a different motivation.

(i) Tension of Tapered Rods: Linear Case

First we considered a linear stress-strain relation without allowing a cross-section area
reduction (small strains). Thus, under the assumption of small strains and linear hardening
two fully linear tapered rod problems are analyzed and discussed:
¢ an exponentially tapered rod under tension,
¢ a U-notched rod under tension.

'K and I; are material constants, with /; determining the gradient influence. An alternative gradient formulation is
obtained by the use of spatial (Eulerian) coordinates (Eringen 1962, [6.4]). We did not follow this assumption.
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Exact solutions were obtained which allow a qualitative insight easily. A comparison of
the classical and the non-classical solution ¢, and ¢, respectively, for the exponentially tapered
rod at the same stress level shows that the inclusion of a 2™ order strain gradient in the
constitutive model together with the non-classical boundary condition yields
e areduction of the maximum strain at the minimum cross-section and
e asmoothing-out of the strain peaks, i.e. the discontinuities of the 1* order strain gradient.

The importance of the non-classical boundary condition to obtain these effects is
emphasized. The qualitative findings are in line with results obtained by Altan and Aifantis
(1992, [6.7]), Ru and Aifantis (1993, [6.8]) and Vardoulakis, Exadaktylos and Aifantis (1996,
[6.9]) by using strain gradient-dependent elasticity theories, i.e. modifications of Hooke’s law,
to account for excessively high strain gradients developed in the neighborhood of a crack-tip
(singular stress and strain field). These modifications dispense with the crack-tip strain
singularity.

With L” being the transition length (a characteristic measure for the size of the
specimen) of the exponentially tapered rod and /; being the internal length, a non-dimensional
gradient parameter =1,/ L" < 1 is defined. With D, being the minimum diameter (at £ = 0)
and D.. the largest diameter (at £ — o) one obtains

. L D D [ D
Btz Ze T i o (6.9)
L D,D.L D, L
where
A D?
o="t="0 6.10
A D (6.10)

For geometrically similar specimens the dimensionless factors & and D.. / L remain constant,
whereas only the ratio [; / D, changes if the size is changed and the material is the same. A
change of shape is obtained by varying at least one of the three quantities D,, D., and L', or
holding the ratio of two dimensions constant (e.g. Ja ) and varying independently the third
one. Since [; is assumed to be related to the microstructure, the ratio /; / D, should be clearly
less than ‘1°.

The exact non-classical solution € depends on the parameter 3 and, of course, on the
geometry of the specimen. For the relative strain &, /.‘,‘m11 at the minimum cross-section one
obtains, Eq.(3.22), for the purely linear case

£, _1+of ©.11)
£ 1+ '

co

which decreases monotonically with increasing B-value (decreasing size) and approaches ‘1’
for very large specimens (8 — 0); the rate of decrease d(e, /€.,)/dp is largest for f — 0. For
example, for a wasp-waisted specimen with & = 0.0625 (D, / D.. = o = 0.25) and a large
value (f = 0.2)12 the relative strain reduction, i.e. (€, — &)/, is about 19% (Fig.3.5). The
non-classical strain distribution is found to consist of two contributions: a part that essentially

n £, = non-classical strain and &,, = classical strain at minimum cross-section.
2Note that with Eq.(6.9) the values v = 0.25 and 8= 0.2 corresponds to (;/ D,) = 0.8(L" / D..) = 0.2(L" / D,);
thus for a small value of I;/ D,, say 0.02, a wasp-waisted neck with L'/D,=0.11is required.
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represents the classical strain distribution and another part which for small values of § and
increasing distance from the strain maximum is a fast decaying contribution; in fact, it
represents for 8 << 1 a boundary layer effect which is entirely due to the gradient term. This is
also the region where the first and the second order derivatives of the classical strain solution
are largest. Thus, the 2™ order strain gradient influence is largest where the classical solution
shows a large variation, i.e. inhomogeneity.

The size dependence of the deformation behavior of the linear model can also be
represented by determining dimensionless load-displacement or dimensionless stress-strain
graphs. For example, the plot of the local dimensionless stress-strain relation at the minimum
cross-section (where the gradient effect is largest), which is a linear relation, yields the largest
stiffness for the smallest specimen (8 — 1). Of course, for very large specimens (8 — 0) the
classical relation is obtained.

With the obtained solutions also a fairly obvious fact is demonstrated: the size influence
is more readily detectable in dimensionless force-deformation graphs when a local strain —
related to a region of intensive strain non-uniformity — is used as a deformation measure than
in approaches which use a strain average on an extended spatial domain.

The combination of the linear 2* order strain gradient deformation model with two
common engineering fracture criteria, i.e.

e acritical local stress, or

e a critical local strain,

which are assumed to be size independent material data, yields a theoretical assertion about
the size dependence of fracture. However, the reader should recognize that the authors do not
expect that the combination of a relatively simple size-dependent deformation law and a size-
independent local failure criterion will yield qualitatively correct trends for the failure stress
and failure strain.

Assuming the validity of the size invariant local critical stress criterion, the combination
with the gradient model yields, of course, a size-independent normalized failure load, whereas
the normalized deformation measures are size-dependent: scaled-up specimens have larger
local and average strains at fracture. It is noted that this qualitative trend is not in agreement
with trends observed experimentally: frequently the normalized fracture load and strain
decrease with an increase in size (e.g. Brown et al. 1947, [3.1], Shearin et. al. 1948, [6.2]).

Provided a size invariant critical local strain criterion holds, then, of course, the local
fracture strain at the minimum cross-section is size invariant. However, the associated
normalized fracture load decreases with an increase in size. This last trend is in qualitative
accordance with experimental observations.

On the other hand from the knowledge of these normalized fracture loads one may
determine the associated average strains for different specimen sizes. Although the maximum
local strains at fracture are assumed to be the same, the average strains are size dependent, i.e.
they are larger for small specimens than for large ones.

With the parameter = I/L" being the governing parameter for the size dependence, it is
obvious that the influence of size will decrease with increasing dimensions. Furthermore, if
two size dependent quantities are compared, for example the normalized fracture loads
obtained from a critical strain criterion, then the ratio of the normalized fracture loads,
Eq.(3.37), is not only depending on the geometrical scale factor A but also on the absolute
size. Therefore, keeping A = const., but increasing the size of the small and the large specimen
proportionally, will lead to an equalization of these normalized fracture loads.

98




(ii) Tension of Tapered Rods: Non-Linear Case

Next we considered a non-linear stress-strain relation (power law hardening) and
allowed for cross-section area reduction during loading. Although the purely linear problem of
the exponentially tapered tension rod provides rather valuable qualitative information, the
consideration of the non-linearities due to power law hardening (n<1) and large strains
(allowance for cross-section reduction due to volume conservation) is an important step
towards a more realistic deformation model. The governing nonlinear differential equation,
Eq.(4.7), is

2
R ]
where } (6.12)
rr(€) = GRIS) )

is proportional to the engineering tension stress ox(&) in the rod.

It is noted that the two non-linear effects imply instability in the classical case (f = 0)
when the local logarithmic strain € becomes equal to the hardening exponent 7. At this instant
the increase in load due to hardening is balanced by the ‘geometric softening’ due to cross-
section reduction. Thus, a hardening before and a softening phase after the load maximum are

to be distinguished in the classical case.
An exact solution for the non-linear gradient enhanced deformation model, Eq.(6.12),

appears not to be possible. However, for small B-values and a bounded 2" order strain
derivative the gradient term represents a perturbation in Eq.(6.12). The exact linear solution
proved that essentially two types of spatial dependencies are involved: a part, which
essentially represents the classical solution, and a second part, which is a boundary layer
contribution controlled by the parameter f. For 8 = O the differential equation (6.12) reduces
to an algebraic problem, its solution being the classical solution & which satisfies the
boundary condition at & — oo but not at £ = 0 (minimum cross-section). Thus, Eq.(6.12)
together with its boundary conditions (4.9) signals a singular perturbation problem. An
approximate asymptotically valid analytical solution was obtained using a generalized version
of the method of multiple scales by Nayfeh (1973, [4.3]). A ‘slow’ and a ‘fast’ variable,

X H(ﬁ)
E= s and 7= R (6.13)

were introduced and a uniformly valid expansion
- 0 I 52 53
ECmP=eEmM+BeEm+B eEm+p en). (6.14)
k
was assumed to be applicable, where the two-scale functions €(&,n), k=0, 1, 2, 3 as well as

(&) remain to be determined. By developing and arranging according to powers of the small
parameter f, the differential equation (6.12) and its boundary conditions transform to a system

k
of ordinary differential equations of 2"* order in the 7-variable for the £(£,n) and associated
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boundary conditions, where the &-variable is silent. The system must be solved in successive
steps since the right-hand side of the k™ equation depends on the solutions of the previous
differential equations. This system of differential equations is characterized by the fact that the

0
nonlinearity is restricted to the 0™ order equation for £(£,n); but fortunately, it allows a
simple solution, namely,

eEm=e,(), 6.15)

the classical solution being independent of the ‘fast’ variable 7. The successive equations for

é(é,n), k =1, 2, 3, are linear differential equations; their solutions involve ‘integration
constants’ which, of course, are functions of £ They are determined partly by the boundary
conditions. Further conditions in the form of differential equations are obtained for the
remaining ‘integration constants’ and for the yet unknown function u(£) by suppressing

‘secular terms’ which make the ratio kgl/ 2 unbounded in the (&7n)-domain; this is an
essential part at the heart of the singular perturbation method. This yields, among others, the
function u(&), which determines the ‘fast’ variable 1 as a functional of the classical strain
distribution:

g o 12
u= [| LDl o, (6.16)

ol @ [e(o)]

the constant ¢ may be chosen as convenient. Since a closed form representation for the

0
classical solution £.(&) = €(£) does not exist, the above integral and others of the general

solution need numerical integration. It is noted that the derived asymptotic solution for the
logarithmic strain distribution, Eq.(4.91), does not explicitly depend on the spatial variation of

the cross-section area. This geometric quantity is solely contained in the function g = € and
the obtained solution is applicable to any smooth cross-section variation in the region 0 < £ <
oo satisfying the properties at £ — oo,

If the perturbation solution of the fully non-linear problem is reduced to the case of
small strains (neglect of the cross-section reduction), an explicit analytical solution for the
classical strain distribution is trivially obtained

n
Or 0
E =] —= =£ 6.17
(K) (6.17)

and the integral in Eq.(6.16) simplifies to

1/2

¢ 1 n
Mr= || ——— | dt; (6.18)
ol @ [e()]™
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Furthermore, for the exponentially tapered rod a closed form solution for odd integer values of
1/n is derived for ug and other integrals such that an analytical representation of the non-
classical strain distribution along the tension rod and especially in the boundary layer close to
£ =0 is obtained.

Although the perturbation solution of the fully non-linear problem requires numerical
integrations, important results can be derived without recourse to numerical methods. These
refer to the maximum strain £0,0) at the minimum cross-section (£ = 0) and its dependence
on the size and shape of the tension rod and the constitutive parameters. Thus, closed form
approximate analytical solutions are obtained which allow direct insight into the essential
response characteristics.

With ¢, being the maximum strain at £ = 0 of the classical solution, one obtains the
maximum &(0,0) of the non-classical strain in normalized form (relative strain ratio), up to
terms quadratic in 3, as follows (Eq.(4.158)):

0o @) ()

co

-1

[ =E @] 5] @0

0 \? 0 - 5 0 1,0
+(6¢)O(n—(=6=)£] En(l—n)+%(6)0+g(s)§ , (6.19)

0
where €. = € is the solution of

(o}
e Z_I_(R_eee ; (6.20)

0 0 0
here (€),, (g;), and (gg ), are the classical solution and its 1™ and 2" order derivative at

the minimum cross-section (£ = 0).
The explicit representation of the relative strain for the exponentially tapered tensile rod with

a sharp neck'? and for the fully non-linear case is

1/2

I-n
200, ol () | _1-a

A 0 N
€0 n—-(e)o ”‘(5)0

The term ‘sharp neck’ is used to indicate the shape of the initial profile of the tapered rod at hand. This in
contrast to the localized neck due to usual geometric softening of initially smooth specimens.
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5 n /0 1o0v2 |
+En(l_n)+z(8)°+g(8)° ; (6.21)

in the purely linear case (n = 1 and deletion of the underlined terms) this simplifies to

£09) __ gi—a) + BA(1-0) . (6.22)

co

The following observations and qualitative conclusions can be made, concerning the

properties of the approximate solution and its limitations and including the trends imposed by
a change of material parameters, the specimen size and shape, and specific assumptions:

(a)

(b)

(c)

For a tension rod with a sharp neck one finds for £ = 0"
0 0
(Ecg)o = ()9 <O, (Ecge)o = (€ )p >0,

since the classical strain €, = g is essentially a function of the inverse of the cross-section
distribution. Thus, the dominant term of the relative strain approximation, Eq.(6.19),
linear in the parameter B, is negative. This implies for sufficiently small S-values a
reduction of the maximum non-classical strain £0,0) compared to the classical value &,.
Provided the tensile load is properly scaled and the specimens are geometrically similar
and of the same material, the size influence is entirely contained in the parameter f: if the
size is decreased, then L” decreases and B increases, which implies a decrease of the
relative strain. Within the present context, this is the most important aspect of the size
effect for the tensile rod.

The singular perturbation solution for the fully non-linear and non-uniform tension
0
problem, Eq.(6.19), is not valid close to instability. Then (g), = &, approaches the

0 0
hardening exponent r and the derivatives (g; ), and (&g ), grow beyond bounds. Thus, a

prerequisite of the perturbation solution for the differential equation Eq.(6.12), i.e.
boundedness of d”&/d£?, is not assured for large strains approaching instability.

The underlined terms in Eq.(6.19) are due to the allowance for cross-section reduction

induced by the assumed volume conservation during plastic deformation. If this is
ignored (small strain assumption), Eq.(6.19) simplifies to
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€005l Ll (k)
0

O\ 1+n
€co n(g 0

+p? ( )1+n {(355 )0(§)O+1i32—(1—n)(g¢ ):} (6.23)
n e

0
and € is simply given by

1/n
2 = ) = ("f)) 6.24)

0
(d) For the case of a smooth neck at £ = 0, the strain £.(§) = (&) has a relative maximum at

£=0
0 0

and Eq.(6.19) simplifies to

01 <s)o}(e>o]

This reflects the quadratic dependence of the gradient enhanced constitutive equation on
the internal length /;. The sign of the quadratic term shows that the strain gradient term
implies a reduction of the strain maximum compared to the classical solution. If only the
specimen size is reduced but the stress level ox(€) is kept constant by proper scaling of
the load, then the parameter [ increases and the maximum strain £(0,0) as well as the
relative strain are shifted to smaller values.

Clearly, the size effect is not restricted to a sharp neck but is, of course, also present
for a smooth neck. However, it is only quadratically depending on the normalized
gradient parameter . Therefore, the smoothness of the neck as defined by Eq.(6.25)"
determines a ‘switch’ from a linear to a quadratic dependence on B. Obviously, the
smooth minimum section of the neck may be a rather ‘local affair’ which needs a
‘magnification’ to be detectable. This shows that the relative strain reduction at the
minimum neck section, i.e. a local value at £ = 0, may be rather sensible to the local
geometric properties.

The relative strain of a smooth neck can be given a lucid interpretation if the cross-
section reduction is ignored. The Eq.(6.26) simplifies to

ess| (6.26)

"“Note: these conditions do not define a ‘degree’ of smoothness
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with
0 1/n
(6)0= Eco = (O-Ig,o )0 . (6.28)

With D, being the minimum neck diameter and R, the radius of curvature of the
meridional profile at the minimum section one obtains (Eq.(4.140))

I-n
ol LSS USRS U U (770 RS GUR SUR 5 (6.29)
£, “" n*\ D, \R, K n\ Do AR,

Thus, this result for a smooth neck demonstrates that the internal length scale ‘I in
relation to the minimum geometrical length scales D, and R, determines the relative
strain reduction, i.e. the gradient effect. The ratio //R, is of special importance since for
very uniform necks, i.e. R,/D, very large, the gradient effect vanishes.

Also, the form of Eq.(6.29) and the assumption that ‘/7 is related to a
microstructural length scale suggest that both ratios //D, and /R, should be clearly less
than ‘1’ such that the model remains reasonable. Thus, the limit of Eq.(6.29) for R, — 0,
which formally gives a singular result, should be excluded. Geometrically this limit
represents a sharp neck and here the non-smooth solution applies.

In addition, Eq.(6.29) proofs the importance of the hardening exponent n for the
relative strain reduction. If the classical strain level &, is controlled by increasing the
loading such that

G I/n
Eo=|—~| =const.,
K

for decreasing values n, then the relative strain reduction may decrease, pass through a
minimum and is very sensitive especially for small values of n, because it increases
beyond bounds for n — 0. If, however, the normalized stress og/K is required to be
constant

Ro _ ~n __
—= =g, =const. <1,

then the strain &, decreases monotonously towards zero with decreasing n but the relative
strain reduction shows a maximum for a finite n-value (Fig.4.1). It is shown that this is
due to two opposing effects, i.e. the above mentioned decrease of €, and the increase of
the ‘relative localization’
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with decreasing hardening exponent.

For a non-smooth tension rod with a sharp neck at & = 0 the relative strain depends also
linearly on the normalized gradient parameter 3 although only a second order strain
gradient is assumed in the constitutive model. Observing the previous statement, this is
due to the non-smooth cross-section distribution around £ = 0 which induces non-
smoothness in the tension stress og(E).

0 0
The derivatives (€¢), and (£g),, given by Eq.(4.160), are determined by the initial

geometry of the tension rod at £ = 0, the strain level &, =(g)0 (or engineering stress level
Oro) and especially by the distance (n — €,) from instability. This applies also to the
relative strain &0,0) / &.

For a prescribed engineering stress level ok, the corresponding classical strain &, =(.g)0
is larger when the cross-section reduction is accounted for, compared to the case without

0 0
this geometric non-linearity. The same trend is valid for the derivatives (€¢), and (€¢),.

Thus, it follows from Eq.(6.19) that the relative strain reduction (€.,—&(0,0))/€, is
increased when the cross-section reduction due to plastic deformation is accounted for.

When all parameters and the tensile loading ox/K are held constant but the hardening
exponent n is decreased (1 2 n — 0), then the classical strain &, decreases. Under the
small strain assumption its derivatives (€.)o and (€, ),decrease in magnitude and in

the limit » — 0 no deformation is obtained. However, the ‘relative localization’ for a
sharp neck, i.e.

1[4
n ARO’

increases with decreasing n. These two opposing effects generate a peculiar n-dependence
of the sensitivity (Fig.4.7)

(€c§ )0
E

co

de(0,0)/¢,,
ap

S =

B0

and of the relative strain reduction (£.,,—&(0,0))/€.,: a maximum at a finite n-value.

For B increasing towards ‘1’ (i.e. very small specimens of a family of geometrically
similar probes) the parabolic character of the asymptotic solution becomes dominant and

strongly erroneous: the exact solution for the relative strain, Eq.(6.11), of the purely linear
case is a monotonously decreasing function of the normalized gradient parameter f3;
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(i)

(k)

however, the perturbation solution, Eq.(6.22), has a relative minimum at § = 0.5 and
underestimates the gradient effect for large f values (small sizes). '

For the non-linear case this minimum is shifted to § values less than 0.5 and thus,
the range of validity of the quadratic perturbation approximation reduces to very small
values of f3 (i.e. large specimen sizes).

The range of validity of the perturbation approximation can be extended by accounting
for higher order terms in . This has been done by including terms cubic in B, but
neglecting the cross section reduction. By comparison with the exact solution for the
linear case, a definite extension of the validity of the perturbation approximation to larger
values of f3 is observed. However, for 3 becoming too large, this 3" order approximation
overestimates the gradient effect and thus becomes also erroneous.

The validity of the perturbation solution can be extended to larger f-values by
including even higher-order powers of S but this becomes yet more laborious. This
extends also the strain range wherein the perturbation approximation is reasonably
applicable. However, close to instability the approximation fails in any case since the
terms of the power series representation are not affected by a series extension and they
become singular.

Aside from demonstrating the size influence via a graph of the relative strain reduction
versus f3, which is a mathematically very convenient way, the results can also be used to
prepare engineering stress-strain diagrams. This representation is a rather natural choice
since it simulates the size influence in a tensile test with a tapered specimen. As pointed
out previously, spatially local measures of the strain should be used instead strain
averages over extended domains. Therefore, the engineering stress Og, and the
corresponding gradient affected engineering strain €g(0,0) at the minimum neck section,
where the main gradient effect is located, were plotted in the same diagram by eliminating

the intermediate variable ¢, = (g)o from the governing equations.

This has been done for the fully non-linear case (Section 4.2.2) using the 2" order
perturbation solution (Fig.4.9) and also for a 3" order approximation (Fig.4.13 & 4.14)
but without the effect of the cross-section reduction (Section 4.3.3). For large strains and
large fB-values (small sizes) the results are, as mentioned before, not sufficiently accurate.
Nevertheless, for sufficiently small strains and B-values, valid approximations are
obtained which show the increase in flow stress with decreasing size (increase of f); this
is just another aspect of the size influence.

An example may illustrate this. For a rather wasp-waisted specimen (o = 0.0625,
Na =D,/ D= 0.25) low hardening exponent (n =1/9, ferritic steel), and a small local
stain &, = €r(0,0) = 1.5% the normalized engineering stress is increased by about 6.5% if
the dimensionless gradient parameter § is increased from 8= 0 (very large specimen) to 3
= 0.1 (Fig.4.14b). With Eq.(6.9) and with D, / [; interpreted as the number of grains along
the minimum diameter, say D, / [; = 50, one gets L/ D, =02 This is a very steep
transition from the minimum diameter D, to the largest diameter D... within a diameter
D,’s distance from the minimum section the diameter has increased up to 95% of the
asymptotic value D.. An experimental detection of a flow stress increase in the
percentage range requires a very homogeneous material, careful specimen preparation and
testing to minimize masking influences and pseudo size effects (e.g., macroscopic
material inhomogeneity, surface hardening due to machining).
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(£) It should be realized that the exponentially tapered tensile rod was treated as a uniaxial
stress problem. Under a multiaxial stress state and using a classical material model, a
sharp neck induces a stress and strain singularity, i.e. locally much larger stress and strain
gradients are generated than in the uniaxial stress model. Thus, the quantitative size
effects of the simple model presented here may possibly underestimate the influence of
the 2™ order strain gradient term generated in a fully three-dimensional state.

(iii) Bending of Smooth Beams

The parametric size effect studies were also performed for the problem of quasistatic
bending of smooth beams (length: 2L) with rectangular cross-section under a single load 2P at
the center and simply supported at the ends. Again the validity of a power law hardening
deformation type plasticity theory was supposed which includes a 2™ order strain gradient.
Only small deformations were considered, shear deformation was ignored and a linear strain
distribution (Bernoulli’s hypotheses) across the depth of the beam was assumed. This problem
yields a 2 order differential equation for the beam curvature. It is especially noteworthy that
it represents a singular perturbation problem of boundary layer type, which has the same
formal structure as the problem for the tapered rod. Thus, the same solution procedure —
multiscale method for singular perturbation boundary value problems — was applicable such
that a very large part of the previously derived equations was transferable to the new problem
by proper reinterpretation of the variables.

The governing dimensionless differential equation, Eq.(5.12) is

2d2K n_ _ ;x___
ﬁqb-é:—z—x =9, 0<T=E<1, (6.30)

where K = Lk is the dimensionless curvature, rp(&) is proportional to the bending moment and
the small lumped parameter f3; is defined by

By=+aB, 6.31)

with the dimensionless gradient parameter

k (6.32)

¥

B=
and the parameter g

I~-n l4n
ﬁ <g= kY242t <1 (6.33)
L L 12

L: half length of beam h
h: depth of beam 7 <L
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In contrast to the tapered tension rod problem, the dimensionless perturbation parameter f;
has a more complex structure: a shape factor #/L and the constitutive parameter n are
involved. Boundary conditions are assumed, Eq.(5.17) & (5.18), with the essential assumption
being the vanishing of the 1* order derivative k; at the center of the beam (& = 0); this is
analogous to the tension rod.

For the linear case n = 1 (implying f3; = f), the governing equation (6.30) admits an
exact solution. With k,, being the maximum dimensionless curvature of the classical solution
at the center of the beam (Eq.5.67), i.e.

LY P .

o=|—1] —12 6.34
Ko (h) Kbh ( )

and x(0) = (k) denoting the maximum value of the non-classical solution, the relative strain

in the tension side at the center of the beam is found to be

€ ) max _ (K)o —1- 2sinh(2/ B) : (6.35)
€ K 1+2cosh(2/ )

comax co

for small B-values this can be approximated by

Lom Ko _y_g (6.36)
€ K

comax co

For the non-linear case 0 < n < 1 and small f3,-values an approximate analytical solution was
developed by applying mathematical analogy with the tapered tension rod problem and
transferring the essentials of the tapered tension rod solution.

With

K, (€)=K () ©637)

being the classical solution and identical with the O™ order perturbation solution, the
dimensionless curvature at the center of the beam (& = 0) of the classical solution is (see
Eq.(5.83))

0 0 L { 4PL 1/n n 1/n
Kc(0)=xw=x(0)=(r<)0=;(Kbh2] (1+-2—) 2. (6.38)

The determination of the maximum (0,0) of the non-classical curvature in normalized form
(Eq.(5.94)) yields

x(0,0) xclon \M2 (lg )
3 =1+ ﬁq [ co ) 4 0 +
n K

co co
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2

0 0
Enoi(k 5
+Bq2 Keo ( & )0 +=>(-n) (Ké )O - € max , (6.39)
. n Keo 12 Keo € comax

which is equivalent to the relative strain at the tension side of the beam at £ = 0. In explicit
terms one obtains

- \V2 -n\1-n 17
€ pmax - k(0,0) —1- ﬁq K" _1_+ﬁ‘]2 Keo 2n - (6.40)
€ comax Keo n n n n 12
Clearly, for the linear case n = 1 it simplifies to
€ ymax - K(O’O) =]- 'B . (641)

E K

comax co

The following observation and qualitative conclusions can be made which reflect, to a
considerable extent, results obtained for the tapered tension rod:

(a) For the case of three-point-bending with a single load 2P at the center of the beam, the
moment distribution is non-smooth at €=0. Thus one finds for & = 0*

0 0
(Ko )o = (K80 <0, (Kegedo = (k£ ) > 0.

Thus, the dominant term, linear in f3,, of the relative strain, Eq.(6.39), is negative which
implies a reduction of the maximum non-classical strain €,m,;x compared to the classical
value &.,max. For geometrical similar specimens of the same material and for scaled
loading,

_ (6.42)

~ | ol

A : geometrical scale factor A > 1

P : load for large scale specimen
P : load for small scale specimen

similarity cannot be achieved but a size effect is present which is entirely contained in the
parameter 8= [/L, which is part of the lumped parameter 8, = /¢ B: if the size decreases,
B increases and the relative curvature or strain decreases.

(b) In contrast to the tapered tension rod similarity of the curvature distribution (but not the
strain distribution) can be achieved theoretically, if specimens with geometrically
distorted cross-sections are considered. Different geometric scale factors for the length L,
the depth £ and the width b are assumed, i.e.
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h=Zed=Tel=2, (6.43)

b~ | ]
o | S

If the cross-section areas are required to scale according to /12, then A;A, = A% and for a
givenratio h /b of the large scale beam, one obtains for the small scale distorted beam

h
= 6.44
> (6.44)

o~ | >

=) 2 . (6.45)

Thus, increasing the length scale factor A > 1 reduces the depth-to-width ratio /b of the
small-scale beam and its loading P has to be smaller than geometrical scaling (P /P = A7)
requires. However, for the linear case n = 1 a distorted small-scale beam obeying the
similarity conditions for the curvature is not possible. Also for the non-linear case the
result Eq.(6.44) implies a large distortion of the cross-section dimensions, which is
difficult to realize.

(c) For the case of a uniform load distribution along the beam the moment distribution
around &= 0 is smooth and has a relative maximum such that

0 0
(Ke)o =0, (Kee)o <0

and Eq.(6.39) simplifies to

0
1-
Eoma _ KO00) _ | g2 K" (Kee)o| (6.46)
£ K n K

comax co

o

It reflects the quadratic dependence of the gradient enriched constitutive equation on the
internal length /;. Again a decrease of size of geometrically similar specimens of the same
material reduces the relative curvature x(0,0)/k., and the relative strain €,max/€:omax-

Clearly, the smoothness of the load distribution determines a dominantly linear or
quadratic dependence on f;: a smooth load (moment) distribution implies only a
quadratic dependence of the relative curvature on the f;-parameter, whereas a non-
smooth load (moment) distribution triggers also a linear dependence on f,. This is
entirely analogous to the results of the tension rod problem. Thus, evidently non-
smoothness in the load or geometry increases the non-uniformity of the strain distribution
and gives rise also to first order contributions to the size effect induced by a second order
gradient plasticity model.

(d) For increasing f,-values (B-values), i.e. decreasing size, the parabolic character of the
asymptotic solution becomes dominant and erroneous: the size effect is underestimated.
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(e)

()

Further, a decrease in the hardening exponent n will reduce the fange of validity of the 2™
order perturbation approximation to smaller values of §.

When the geometry, the single force loading P (P= 4Pl / Kbh* < 1) and the constitutive
parameters K and /; are held constant but only the hardening exponent » is decreased, then
the maximal measures of the classical curvature x,, (Kc£)o and (kcg£)o decrease and their
limit values for n — O vanish. In this limit state the beam is undeformed. However, the
distribution of the relative curvature k./k,, and its 1% and 2™ order derivative Keel Keo and
K¢ Keo are shifted towards the center of the beam. This trend of a ‘relative localization’
of the deformation can be quantified by measures for the ‘relative non-uniformity’ of the
curvature distribution at £=0, i.e.

(ch Do
K

l I(K("fé )olz 1-n (6.47)
n’ | n

co co !

which for n — 0 increase and become unbounded. In the general expression for the
relative curvature Eq.(6.39) an opposing trend is caused by the decrease of the term
Kol ™2 towards zero. These opposing trends create a special n-dependence of the relative
curvature or relative strain when the hardening exponent n is varied but the dimensionless

loads P or P and all other parameters are held constant: a minimum of the relative strain
(maximum of the relative strain reduction) at a small but finite n-value (Fig.5.8); this

effect becomes more pronounced for larger applied loadings P = P / Kbh.

The perturbation solution for the beam curvature consists of the gradient-unaffected

classical solution and 1% and 2™ order contributions due to the gradient plasticity terms.

The two gradient plasticity affected terms are exponentially decaying contributions close
1

to the center of the beam (boundary layer terms), the 1* order contribution B,k (£,n)

being proportional to e=V9n  The ‘“fast’ spatial variable /o7 in the neighborhood of the
center is given by (Eq.(5.81))

Jon =& = %d (6.48)
where
Ll W2 g
d=— =— 6.49
B, ("5") é ©4

is the dimensionless decay rate. Its inverse 1/d = § is a dimensionless measure for the

length of the decay (width of the boundary layer) which is proportional to f,.
It can be shown that the relative strain or curvature is closely related to decay rate d

or decay length measure é (Eq.(5.98)):
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- » 1- " (1-n) 2 (6.50)

n

€omax _ K(0,0) g .\ (5 )2 17

comax co

Thus, an increase of the decay length measure § increases the relative strain reduction
(€comax—Eomax) Ecomax- Fig.5.4 visualizes the obvious trend and qualitatively the same
behavior is found for the tapered tension rod (Fig.3.3, 3.4, 4.4).

(g8) A quantitative estimate of the size effect on the maximum bending strain of two
geometrically similar specimens - (m) denoting the model and (p) the prototype - of
different sizes but under scaled loading has been determined in general terms (Eq.(5.99)).
If a very large specimen is compared with the small-scale specimen such that A =L, /L, =
hy | hy, — o, an upper bound estimate for the size effect on the bending strain ratio is

obtained
{(eoma,{)p] _ 1 651)
ComaIm 3 1-B +B2(1-n)
12
where
kY21 110§
Bm = - €0 _ R —
Jgﬁ( n ) n d,n n
(6.52)
ﬁm = li / Lm

refer to the small scale model and d,, is the decay rate and §,, the decay length of the
small- scale model.
The size independent quantities are

~\/n
K =£(P) (1+%)2=const.

co h
P= 4PL = const. (6.53)
Kbh?
Y (2+n)2Mn
q=| — ——————— = COnst,
L 12

For sufficiently small values of B,, < 1 Eq.(6.51) allows the rough estimate

Comndp | _ e L1 %
—1+B,=1+ =Om (6.54)
A—¥eo n

(8 omax ) m m n

For a typical set of data the upper bound strain ratio is found as follows. A beam depth-to-
length ratio A/L = 0.2, a hardening exponent n = 1/9 (characteristic for a ferritic reactor
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vessel steel), and a fairly large load factor P=4PL/Kbh* = 0.8 < 1 were assumed. For the
normalized gradient coefficient a value of B, = Ii/L,, = 0.03 was used for the small-scale
beam specimen; this represents the maximum value for which the approximate
perturbation solution remains appropriate when n = 1/9. With these data the internal
length /; amounts to 15% of the beam depth A, of the small specimen. This yields

B, =0.2378

and from Eq.(6.51) one obtains

Coman)y | g9
(eomax)m A—o0

i.e., in comparison to the small specimen a 20% higher bending strain in the very large

specimen under scaled loading 13," = 13p = 0.8. Of course, the strain ratio Eq.(6.51) is

strongly dependent on the load level I§ and increases with its rise; e.g., for }"?: 0.7 and
0.9 one obtains for the strain ratio 1.13 and 1.25, respectively. However, for large load

levels P, the estimate becomes erroneous because of the dominance of the quadratic term
of B,,.

(h) The results of the perturbation solution have been used to demonstrate the size influence
on a dimensionless load versus maximum bending strain diagram (Fig.5.10). As
mentioned before for the tapered tension rod, this representation of the size effect is a
rather natural choice since it simulates directly experimental conditions. It is found that a
bundle of dimensionless curves fans out and, with increasing B-values (decreasing size
L), smaller specimens show a higher flow stress at the same strain. However, the size
influence on the stress becomes effective in the percentage range only for B-values of
0.01 and larger.

6.4 Recommendations for Further Theoretical Work

(1) A quantitative estimate of the accuracy of the singular perturbation solution can, of
course, be given if an exact solution is available for the purpose of comparison; this
luxury is restricted to the exception of a fully linear problem. In the non-linear case one
has to include in the power series approximation at least one additional term beyond the
order of the required approximation. For example, if a perturbation approximation up to
2" order (i.e. B -term) is required, this solution requires, in any case, also the 3" order
contribution for the suppression of the secular terms in the 2™ order contribution, but a
complete presentation of the 3 order contribution is not necessary.

This may suffice to determine the 3™ order contribution at distinct positions
(Section 4.4.3) which then allows to estimate the accuracy of the second order
approximation at this position. If an extended comparison is of interest, then the complete
3" order contribution is necessary. This, in fact, requires the inclusion of the 4™ order
contribution to suppress the secular terms in the 3™ order contribution. Thus, the amount
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of algebra to obtain higher order approximations may be discouraging. The objective of
the derivation is, of course, to get a non-numerical solution which contains the parameters
in the problem; thus, attention should be given to computerized symbolic manipulations,
using symbolic languages like ‘Maple’, ‘Mathematica’ or others.

(2) For the fully non-linear case the evaluation of the sensitivity

S =( de(0,0)/¢€,, )
ap B0

for varying hardening exponents n and with the stress level being constant (0g,/K =
const.) remains to be done.

(3) The developed analytical perturbation solution is not valid close to instability and beyond.
However, the influence of a gradient term in the plasticity law and of a change of
specimen size on the ultimate stress and on the response in the softening region,
especially the formation of deformation patterns, are important questions. A first step
towards these questions should be a review of the related literature.

(4) The simple linear non-local (integral) model approximated in Appendix (1) by a gradient
model and associated boundary conditions should be solved analytically and should be
compared with the standard gradient model, to obtain further insight into the importance
of the non-classical boundary condition.

(5) The gradient enhanced plasticity law should include also a first order strain gradient term
which implies that two different internal length scales are operative. Thus, there exists the
possibility of mode transitions in deformation and failure when the size is changed. Also,
the development or application of an appropriate singular perturbation solution appears to
be a challenging task.

(6) The gradient plasticity model used in this report did not include rate dependence
(viscoplasticity) or damage. Especially in the softening regime the damage evolution is
important for the modeling of failure (fracture) and its size dependence. First steps
towards this direction have been done by Aifantis and coworkers.

(7) The develpment of numerical solution procedures and computer programs for gradient
plasticity models are required for more complex geometries than those treated in this
study. Of course, this development depends largely on the physical effects included in the
model and its mathematical structure. Some concepts are presented in Part I.
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Tables

Table 4.1: Limit strains at instability.

m E=n Er (GR)max n"
K e

1 1 1.718 0.368

3 0.333 0.3956 0.497

5 0.2 0.2214 0.593

9 0.11 0.1175 0.701

13 0.077 0.08 0.760

Table 4.2: Influence of hardening exponent n on the sensitivity S ~ ZN under the constraint

z=0.1
n Z N ZN
1 1.1712 1 1.1712
1/3 0.5436 3.6028 1.9586
1/5 0.4663 5.8731 2.7384
1/9 0.4209 10.1685 4.2800
1/13 0.4047 14.3479 5.8061
-0 — 0.3704 — oo — oo
Table 4.3: Critical strain limits
£(0,0)=n €r(0,0)
1/5=0.2 0.2214
1/9=0.1111 0.1175
Table 5.1: Distorted scale factors A;, and A, for A=10.
n= 1/3 1/5 1/9
Ap= 21.54 25.12 27.83
A= 4.64 3.98 3.594
Table 5.2: Ramberg-Osgood Material Parameters
Material o, g, o m E n K
[MPa] [MPa] [MPa]
A533-B (93°C) 414  0.002 1.12 9.71 207 10°  0.103 776.05
(ref. [5.2] pp. 6-14)
SS 304 (R.T.) 207 0.001 1.691 5421 20710° 0.184 671.88
(ref. [5.2] pp. 6-23)
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Table 5.3: Influence of load level P on upper bound strain ratio (€,max/€comax)i—e (B/L = 0.2,
n=1/9, B, =0.03)

= B ( € o max )
P " Scomax A—yeo
04 0.01486 1.0148
0.5 0.03285 1.0359
0.6 0.07524 1.0731
0.7 0.1394 1.1299
0.8 0.2378 1.200
0.9 0.3809 1.2472
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Fig. 2.1 Morrison’s experimental data of the size-dependent yielding in torsion of mild steel
and fitting of a gradient plasticity model.
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Fig. 2.2 Richards’ experimental data of the size-dependent yielding in pure bending of mild
steel and fitting of a gradient plasticity model.
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Fig. 3.1

An exponentially tapered tensile rod.

(a) Large and small scale exponentially tapered tensile specimen (scale factor 1:10)
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(b) Contours of exponentially tapered tensile rods.

Profiles of exponentially tapered tensile rods.
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Fig. 4.7 Magnitude of the sensitivity S of the relative strain versus hardening exponent n for
different normalized stress levels Og,/K; exponentially tapered tension rod with
sharp neck (o = 0.0625).
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Fig. 4.9a Effect of specimen size on the local eng. strain-eng. stress diagram at the minimum
cross-section; exponentially tapered tensile rod with power law strain hardening,
gradient plasticity and cross-section reduction; 2" order perturbation solution.
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gradient plasticity and cross-section reduction; 2" order perturbation solution.
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cross-section; exponentially tapered tensile rod with power law strain hardening,
gradient plasticity and cross-section reduction; 2" order perturbation solution.
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Appendix (1): On the Non-Classical Boundary Condition B.C. II

In the following we compare the linear 2nd order gradient model (3.1) and its associated non-
classical boundary condition (3.10) with a simple non-local (integral) model. To realize this
comparison the non-local model is approximated by a differential constitutive equation and
corresponding boundary conditions.

Several authors (e.g. Mithlhaus & Aifantis [Al.1 ], Zbib [A1.2], Peerlings et al. [A1.3])
have used non-local models of integral type, which involved an average strain or the average
of an other variable (e.g. damage) in some neighborhood of the material point at x in the
interior of the body, to motivate higher order gradients in the constitutive equations (see also
Bazant & Chen [A1.4]). However, these considerations did not include points at or close to
the boundaries or geometric discontinuities. This question will be discussed here to some
extend within an one-dimensional setting.

The uniaxial non-local model is taken to be of the form

y+
v
oc=Ke¢ _—c j E(x+y)dy , (Al1.1l)
B+ —u-

\4
where K and C are material constants and " and u~ define the size on a small material
neighborhood of the material point x.
If the strain distribution is uniform, then (A1.1) reduces to

oc=Keg,

where

\4
K=K-C>0 (A1.2)
is required. Provided the material point is far from any boundary or discontinuity, then
W=u=u, (AL.3)

U being a material constant with the dimension of a length and Eq.(A1.1) takes the following
form

v
o=Ke - & T (ry)dy ; (Al4)
2p

The second term is simply proportional to the average strain in a small one-dimensional
“volume” of size 2u.

The lower and upper integration limit 4~ and ' need further definition close to and at
the left boundary x=0. Since the constitutive equation is non-local, some decision about the
influence of physical constitution beyond the boundary, i.e. in the interval —u <x<0, on the
behavior in the regime 0<x has to be made.

We consider two simple cases treated consecutively
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Case I. The exponentially tapered rod is attached to a rigid solid at x;=0. Thus, there is no
deformation in the regime x<0.

Case II: The tapered rod consists of two deformable parts of the same material symmetrically
arranged. Thus, the strain field is perfectly symmetric with the center of symmetry at

x=0.

CaseI: Non-Symmetric Case

As long as the material point x is not too close to the boundary, the form of the Eq.(A1.4)
does not change. If the averaging integral in (A1.4) encloses the boundary at x=0 such that the
center (x) of the integration regime in (Al.4) has a distance from the boundary less than u,
then the relation (A1.1) applies instead of (A1.4) with

wo=u,
(A1.5)
U =x<u, x20
and
B+ W =p+x; (A1.6)

thus the lower integration limit is at the boundary.

As previously, we assume that for very large values x the strain distribution approaches
the uniform distribution of a rod with constant cross-section. These conditions completely
describe the problem if the stress distribution is given by prescribing the longitudinal force
and the variation of the cross-section. No other conditions, especially at the boundaries, are
necessary. In fact the problem is to solve a very special kind of one-dimensional integral
equation.

Aside from the integral formulation there is a major difference to the gradient model of

1%
section (3.1.1): The non-local model involves the three distinct material parameters K or K, C
and p instead of the two parameters K and ;.

A numerical solution could be obtained by discretizing the range between the
boundaries' such that the discrete values of the strains & (i=1,2,...n) are the unknowns and the
integral is evaluated numerically. This discretized form of (A1l.1) is then to be satisfied at all
nodal points which finally yields a system of linear equations for the discrete &

It is generally known that some types of one-dimensional integral equations can be
transformed exactly into equivalent ordinary differential equations with associated boundary
conditions. It is conjectured that this is not possible (or not easily possible) for the present
case. However, the approximate reduction of the non-local problem to the solution of
differential equations with associated boundary conditions is feasible and will be derived in
the following. This approximate formulation is then compared with the gradient model of
section (3.1.1).

! The right boundary has to be set at some fixed large value x=xg.
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Using the Taylor series approximation of the strain distribution’ around x up to
quadratic terms

1 1
8(x+y) = 6x) + 7, €' () y + = €7 () Y+, (AL1.7)

the integral in (A1.1) is approximated by

u+
S - f e(x+y)dy =
AR L
1 1
=—C Lo (uF + 1) + 00 = [ (W) +e” () = [+ )1}
W T 2 6
1 1
= Ce(x) + C{ W5 W)+ "% (W'Y - u'u +u)1}. (A1.8)

Thus (Al.1) takes the form
1 1
ox) = Ke(x) - C B W'-p) e'(x)~-C 6 [ = ' +(u)*] &”(x). (A1.9)

If the material point x and the dragged along averaging integral are far from the boundary
x=x1=0, then (A1.3) applies and (A1.8) simplifies to

o(x) = Ke(x) - %Cuzs”(x). (A1.10)

We note that the inclusion of a 3rd order term in the Taylor series (A1.7) would have dropped
out in (A1.10). This relation corresponds fully to the higher order gradient model (3.1) if
instead of the length scale u the length scale /; is introduced.

1C
I = /—— <. (A1.11)
P

Close to the boundary x=x;=0 limits of integration are given by (A1.5). Consequently (A1.9)
takes the following form

o(x) = Ke(x) - C; (x) €' (x) - Cp(x)€"(x) , (Al.12)

where

? Continuity and sufficient differentiability of £(x) is presumed.
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1
Ci ()= € (u~(x-x0)
(A1.13)

1
Cn(0)=C S (W = P x=xr) + (x-x1)°).

We note here explicitly that 3rd order derivatives, if they were included in the Taylor
expansion (A1.7), would not drop out in (A1.12).

C (x) is a linear function in the interval x;< x <x;, + Y4 . At x=x;+u=4 it vanishes and
thus agrees with the derived fact that 1st order gradients of the strain are not effective in the

interior. Its largest value is at the boundary x=x;=0,
1
(CDmax = Cy (x) = 5 Cls (Al.14)

which shows that the 1st order gradient term in (A1.12) is given the largest importance at the
boundary.

The function Cjf(x) is a parabola in the interval x;< x <x;, + u. At the boundary x=x;=0
and at x=x; + W = u it takes the same value as the constant coefficient of the 2nd order
gradient term in the interior of the body:

1
Ci (x=x1) = Cyy (e=x+14) = < Cu’. (A1.15)
Its minimum is

(Cidmin = = —CW* (AL.16)

| —

3
4

which is located at the center of the interval. The average value of Cj (x) in the boundary
interval is

Cil. (A1.17)

N
|-

(Cll)average =

Thus, except for a small dip close to the boundary the coefficient of the 2nd order strain
1
gradient is constant everywhere and equal to s Cuz .

In the interior of the body and close to the boundary x=x;=0 the integral model has been
approximated by the two different differential equations of 2nd order, (A1.10) and (Al.12),
which differ mainly in the presence of the 1st order-strain derivative in the equation close to
the boundary. A solution of these DEQ’s require a boundary condition at x=x;=0. From the
theory of ordinary DEQ’s this can involve the strain and/or its 1st derivative but no higher
order derivatives. This condition is found as follows.

At the boundary x=x;=0 the differential equation (A1.12) yields the relation
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1 1
olx1) = Kelx) = - Cpe’ () - - Cu*e” (x) (A1.18)

which still involves the 2nd order derivative. The general integral of (A1.1) may be written in
the form

”+ x+ut
0 = Ke() -—C— | ewryy=Ketw) - —E— f s(z)dz =
prEp BT,
= Ke() - —S— [Faeap’) —Fe—i)] (AL19)
Pt o+ ps

where F(z) is the integral of &(z). The derivative of (A1.19) is

;—f—;_— [+ ) —e(x— ] +

o’'(x)= IV(S’(x) -

++~’
+(u Ho)

e 1z O ) Fa= ). (A1.20)

The integral function F may be eliminated from (A1.20) by using (A1.19) which yields the
exact relation

o'(x)= Ke'(x) - ‘:‘f‘; [0t 1) —e(x— )]

U
SRR R o-ot)] (A1.21)
pt o+ e

Close to the boundary x=x;=0 we have
Pr+puT =p+x, (u*t+upu-) =1

Using the Taylor series approximation (A1.7), we get
+ -\ +, i » +\2 ~\2
EQ+p’) —E(x—p) = €' (x) (W +H )+2'8 @) [W)" =) (A1.22)
If x approaches the boundary x;=0, then (A1.21) takes the form

1 v
0 (x) = Ke' () — - Cus” (x0) + i [K e(x)-0(x1)] (A1.23)

Combining (A1.18) and (A1.23) allows to eliminate the 2nd order derivative:
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o' () = Ke' (k) — L1 ey - 3Ce7 () - € o)1 + L [K et)-0tu)]
2 u p u

or more compact

o' -2 o= (K+—§-C) e-Lok-Ccye, x=x=0. (A1.24)
u u

This is the required boundary condition at x;=0 where the left side is a prescribed quantity.

The r.h.s. contains the strain € as well as its 1st gradient €’ and all three material parameters
of the non-local model are involved. Ignoring the non-local effect, i.e.

-0, u-0,

(A1.24) simply reduces to the trivial classical result

v
o=Ke¢ at x=x;=0.

From (A1.24) an important conclusion can be drawn for the case that the cross-section A(x) of
the rod has a relative minimum at x= x;=0. Then

A’(x) =0 at x= x;=0

and thus
0’=0 at x=x.=0.

For the classical case without non-locality the strain gradient at the boundary is then
£,=0 at x=x=0.

However, accounting for non-locality we obtain from (A1.24)

o=L@Kk-C)e- (K+§C) g,

2 1
b

which is still a complex boundary condition including both the strain and its gradient.
Summarizing, the non-local model is approximated by the following DEQ’s and
boundary conditions:

DEQ’s:
x2p: o(x) = K&x) — %C,u2 €7 (x).

(A1.25)
O<x<u: o(x) = Ke(x) — Cy (x) €'(x) — Cp (x) €' (x).
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B.C.s:

2 3 1
x=0:0'-— o=K+-C) - —(2K-0) ¢
P > u( 0)

x=W : Continuity of € and £ (A1.26)
P 1

X—00 | £= £po= —— |
A, K

where the functions C; (x) and Cy, (x) are defined by (A1.13). Following the discussion of their
properties and assuming that u is small compared to L*

U<<L*,

it appears possible to ignore the first order term in (A1.25), and to use the approximation

|
Cu(x)= gcﬂ ,

such that the form of the differential equation is the same in the whole domain O<x. However,
the boundary conditions (A1.26),3 should not be affected by this approximation. The validity
of this simplification needs further analysis.

Case II : Symmetric Case

In the interior of the rod, far from the boundary x= x;=0, the non-local model (Al.1) can be
approximated by the same 2nd order differential equation (A1.10) as for the non-symmetric
case. However, close to the boundary x= x;=0 the deformable material on the left side of the
boundary affects the response on the right side x;=0<x. Because of the assumed perfect
symmetry of the strain distribution around x=0 the non-local model (Al.1) takes now the
following form:

v c M u-2x
o= Kew)- 5o { [ exsndy + [ eawenyay } =

y c U=-x
=K£(x)—§-ﬁ{ [ e@dz + [ ez }. (A1.27)
0 0

Using the Taylor series approximation (A1.7), the integrations in (A1.27) are performed and
one obtains

v C
ow) =K et~ 5 { &) ([ux] + [p—2x4+x]) +
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1 ‘ 1
+ €@ ([UP=x*] + [(u=2x)* —x*1) + S€°® (21 + [(u=2x)* +x°1) }

More compactly the governing differential equation is now given by

o(x) = Kex) - C1 (x) €(x) = Cu (x) €”(x). (A1.28)
with
v
K=K-C
~ 1 x?
Cr(x) =C— [ u—2x+—1] (A1.29)
2 Iz
~ 1 x°
Cir ()= C¢ [ —3prt6x’ = 2
The largest values of C; is at the boundary x= x,=0
~ 1
(Cr)max = 5 C,Ll. s (A1.30)

followed by a parabolic decay towards zero at the relative minimum at x=u. The cubic
function Cp takes the same value at the boundary and at x=p as the constant coefficient of the
2nd order gradient term in the interior of the rod (u<x):

- - 1
(Cr)x=xz=0 = (Cit ) x=p = 5 Cu*. (A1.31)

The above values (A1.30) and (A1.31) agree with the corresponding values of the non-
symmetric case. The relative minimum of Cy is

cu, (A1.32)

| =

Cyoin =
i mm—9

which is positioned at x=u/3. Compared to the non-symmetric case this minimum is shifted
towards the boundary. The relative maximum is at x=u. Its mean value in the interval 0<x<u
is

(Ct Ymean = cut. (A1.33)

B
O\ |

The required boundary condition at x= x;=0 is found analogously to the previous approach.
Approaching the boundary x= x;=0, Eq.(A1.28) reduces to

159




1 1
o) = Kelxy) —— Cue'(a) =2 i’ €70x),
which is the same as for the non-symmetric case. The formal integration in (A1.27), yields
v C
0w = K &) = 5 {(F@)ewon~F @m0 + (F@emier ~F @)oo} (A134)
where F(z) is the integral of £(z). The first derivative with respect to x is
v C
ox) =K &) - o {e(x+p) —e(u—=x)} =
v C
=K g - m { eGe+ ) —e(x(u—-2x)) }. (A1.35)
Using the Taylor series approximation (A1.7) yields

, V. . C , | N
o'(x) = Ka(x)—z—#- {e(x>+e<x>u+56 o’ -

1
= (800 + £'() (u20) +5 £7(x) (u-2x)%) }=

v X x2
K €(x)- € E0+ C(x—7 )E” (x). (A1.36)

If x approaches the boundary x=x;=0, then (A1.36) reduces to the simple condition

v

o' (xp)= K €(x1). (A1.37)
This is the required boundary condition which represents only a condition on the strain
gradient; in contrast to the previous result (A1.24) the strain is not involved. Also only a
single material parameter, that of the classical part of the constitutive relation, is of
importance. Ignoring the non-local effect, i.e.

C—-0, u—0,
does not affect condition (A1.37) which is then simply a consequence of the classical linear

stress-strain relation. However, clearly this observation does not imply that in the non-local
case the local strain at the boundary is determined by the stress, i.e.

ot % K e(x).
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An important result follows from the boundary condition (A1.37). If the cross-section
variation is smooth, i.e. A(x)=0 and thus o’(x)=0 at x=x;=0, then (A1l.37) implies the
vanishing of the strain gradient

€ () =0, (A1.38)

This is a rather obvious result implied by symmetry and smoothness. Only under these
conditions the non-local model yields the vanishing of the 1st order gradient at this boundary.

As for the non-symmetric case it appears conceivable to replace the differential equation
(A1.28), valid in the regime x;, = 0 < x < u, by the simpler form (A1.10) such that (A1.10) is
applicable in the whole regime x, = 0 < x. However, the boundary condition (A1.37) should
still apply.

Conclusions:

The 2nd order linear gradient model

d’e
o=Ke-KI} i . (A1.39)

and its non-classical boundary condition

9E 0 at xmrr0 (A1.40)
ol at x=x;= .

generally cannot be considered as an approximate representation of a non-local model such as
(A1.1), first of all because of the smaller number of material parameters (two instead of three).
However, far from boundaries or geometric discontinuities the 2nd order gradient model is a
valid approximation if the internal length (J;) is appropriately interpreted. However, in a small
region (size less than u) close to the boundary (A1.39) differs from the non-local model by a
first order strain gradient term which is missing in (A1.39). The importance of a first order
gradient close to the boundary has also been pointed out by Pijaudier-Cabot et al. [A1.5]. But
more important, the boundary conditions obtained from the non-local model for the non-
symmetric and the symmetric case differ significantly from (A1.40). However, for the case of
perfect symmetry and smoothness of the cross-section variation at the boundary, Eq.(A1.39),
ignoring additional terms in the interval x;=0<x<u, and the boundary condition (A1.40) agree
with the appropriate representation of the non-local model (Al.1). Thus, aside from this
exception, the gradient model (A1.39) and its non-classical boundary condition (A1.40) need
another motivation than a non-local integral model.
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Appendix (2): Derivation of the Exact Solution for the Linear
Problem of an Exponentially Tapered Rod

The homogeneous solution of (3.14) is

Eom = Cre° + Cre™* (A2.1)
and a particular solution is chosen to be of the form

Eart = Do+ D% ; (A2.2)

here f<1 is required. Then

and the left side of (3.14) reads
—~(D1(1-B%) e~ P¢ +Dy).

Comparison with the right side of (3.14) yields

P 1 1 P 1
D,=——a, D)= ——({-a). (A2.3
A K 1B A,,K( ) )
Therefore
l-a
Epun = €co [0+ 7 ¢ & (A2.4)
where
P 1
Ecop = —— A2.5
e (A2.5)

4]

is the maximum strain of the classical solution at the minimum cross-section area. The general
solution is

&(8) = nom + Epart. (A2.6)
The boundary condition B.C.I, Eq.(3.16),, implies
Ci =0 (A2.7)

and &, = €. which is trivially satisfied. The boundary condition B.C.II, Eq.(3.16),, yields
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(A2.8)

Thus the complete solution for the non-classical strain distribution, using £ again as the
independent variable and with f<1, is given by

11:;:2 ] - 11__;‘2 Beth ). (A2.9)

e =6, { [a+
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Appendix (3): Derivation of the Governing System of Perturbation
Equations

The partial derivatives in Eq.(4.35) and (4.36) are expressed in terms of the polynomial
presentation (4.37) and a collection according to powers of f is done. This yields

d2é 0 1 2 3
ﬂzggz— =p° {[8¢¢+ﬁ8¢«:+ﬁ2€¢¢+ﬁ365¢]+

’ 0 i 2 3
+2%[ 5§n+ﬁ€én+ﬂ28€n+ﬁ33¢n] +

2 _
’ 0 1 2 3
"‘(%) [ Enn+ﬁ3nn+ﬂ23nn+ﬁ38nn]+

0 1 2 3
+‘;[8n+53n+ﬁ25n+ﬁ35n]}
3 1 /2 ’ 3 //2
=B [555"'2/1 Emt+ (UW)2Em+ U En]"'
2 0 /1 ’ 2 nl
+ B [8§5+2M Egp+t (UW)2Emqp+ U En]+
1 /0 ’ 1 //0
+ B' [2u Eegpt (M) Emgm+ U En]+
0
+ B [wH2em]. (A3.1)

The power law term € ", 0<n<l, and the exponential term ef are approximated in terms of
powers of f. Thus

1 2 N\
5"=(g+ﬁe+ﬁ28 +B3g) =
On 1 0 22 0 3 3 0\"
=e"|1+Pele+Pele +PB° €le
0 10 20 1 1 0\2
=£"{l+ﬂ[n€/6] +ﬁ2[n8/8—5n(1-n) (8/8) ]+

£ B [né/g—%n (1—n)2(fs/ g) (ﬁ/ 2) + %n (1-n) (2-n) (é/ 2]3] +.}.(A32)

With

M
i
ho
+

<
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1 22 33
v=PBe+PBe+P ¢
one finds
2 3
& 1%

0 0 v Vv
=efev = ef L p—
e- =e"ev=¢e {1+1!+2!+3!+...}

where
2, L 312
V=B (e)+2[B’ce]+.
1
v=pEl+.. ;
here terms higher than cubic in f are excluded. Then

of — ef {1+ﬁ3€ +ﬂ2(§ +-;—(119)2)+ﬁ3(2‘ +EE + %(::)3)}. (A3.3)

Inserting (A3.1), (A3.2) and (A3.3) into the differential equation (4.7) and ordering according
to powers in 3 one obtains

0 /20 On g
B [(u)Y enpn—¢€ +rr(d) e 1+
1 ,21 On 1 0 , 0 ”0 gl
+ B [ em-ne"|ele| + 2p o+ pu' Eq+rr(defe]+

5 92 0, (20 0 , | L, 1
+ B [(u) Epgp—n€ | Ele) +Eeg+2U" Egn+ U €n+

2 0
+2"% n () (618 +ra@ef (€ +%(é)2)] ¥

3 , 23 On 30 1 , 2 ”2
+f [(u) Egqm—nE | ElE| +Eg+2u" €+ u’ En+

3
+e" —;-n (l—n)Z(é‘/ g) (é‘/ g) g ‘é‘n (1-n) (2-n) (']3/ g) +
et (& 48+ ()] =0 (A34)

The bracketed terms in (A3.4) are independent of f. Then, following the “Fundamental
Theorem of Perturbation Theory” (Simmonds & Mann (1986, [4.7])), for small and positive

but otherwise arbitrary values of 8 each bracketed term must vanish. This yields the following
system of differential equations:
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g :
B°: DEQ(0) = &py———s=— r (E)e

W) (uy?
: 1 5 i 0
B :DEQ()= &y — 2°(6) € =Ri(e, 1)
(A3.5)
5 2 ) 2 0 1
B°:DEQQ2)= €4 — (&) € =Ry(€,€, Y, ry)
3 3 5 3 01 2
B’ :DEQQ3)= €py — 2°(&) € =R3(€,€,€, U, rp)
where
8!1
Q&)= 2%~
( )
(A3.6)
0'1
n €
QR =7
T w)?
such that
1 n 0
Q2(&)=— 3—1 en, O<n<l. (A3.7)
wH | =
The right sides R;, i=1,2,3 are differential operators defined as follows
Ri=——— (2 ¢ er)
1=—-, HEq +U E
(1 )2 én n
e
1
Ry =Rp; - 4 l(8)2
(uoj 2
R QW ey W eyt eg) — QF = (1n) 5 (8)
Re=——— QW Eg + U EgtEg)— & S (1-n) 5 (¢
(u )2 &n n & 2 g
(A3.8)
0
€712 1
R3=Rg3 — "r® (EE'F 1 (8)3)
[Tis})
12
1 ,2 L2 2 EE
Rrs=—"—— (2 W egm + W enteg) - & (I-n) 5 +
) £
©° )’
+ .QR —(1—n)(2—n) B
(€)°
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The terms underlined in (A3.6) to (A3.8) represent the contribution due to the cross-section
reduction. A similar procedure is applied to the two boundary conditions (4.36). Ordering
according to powers of f3 gives

s

¥

- no

2,

W™ ™ ™

B.C.1 (§(,— )

0
€€

i
£-0
2
£—0

3
-0

B.C.Il (¢, n=0)
0

Mey=0
0 1
Ec+ U ey=0
1 2
Ee+ M €7=0 (A3.9)
2 3
e+ pey=0

3
(ee =0).

Note that the condition B.C.II for 8° is not accurate since 4th order terms in the development
of £ were not included; it will be seen that this condition is not required.
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Appendix (4): The Particular Solution of DEQ(2)

For the particular solution of the perturbation equation DEQ(2), Eq.(4.38)3, with the right side
R, given by (4.58), the choice

: part — —%’% +AEM e X 4 p(Ey) 72NN (A4.1)

is used where f and & have to be determined. Then

J 2 ) .
—Epn=(f —Qf) e 4 (h —2Qh) e >

on
(A4.2)
2
é%z—zpart:(f —2QF + 2 e My (h-4Q " +4Q2%)e™™
where
. d
()= o

Inserting (4.1) and (A4.2), into DEQ(2) and observing the structure of R;, Eq.(4.58), one
obtains the following condition:

(f =20 F)e™ M +(h-4Q h +32%) e 2™ = (m+a e +0, e 2 (A4.3)
o

Equating the corresponding exponential terms, two linear ordinary differential equations in the
n-space for the functions f and k are obtained:

f -2 f=a+an

(Ad.4)
h—4Qh +3Q% =aq,
Obviously
f=HE@n+HO 7 (A4.5)

and so Eq.(A4.4), gives
26-2R%(i+26 M=+,
which implies
2/L-28Q fi= oy

—4Q =0 .
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Thus

! o
=] —4+—=
A& (29 4522)
(A4.6)
__%
H(§)= 10
Eq.(A4.4), implies that (k) is independent of the variable 7; one gets
oy *
h="hy(&= : A4.7
10(8) 302 (A4.7)
And the particular solution is
e =2 faP) e 4 hge 2 (A4.8)
part = T 2 m+nn 0 ) .

where «,, 2, fi, f and h, are functions of &,
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Appendix(5): Determination of the Function B;(&)

The solution of the differential equation (4.75)

B+il g -0, (A5.1)
2.u

which is a consequence of the suppression of the secular terms, is found as follows. With

_;_ Z: _21_ BdE It = 2?2 In( )" (A5.2)
and

v=( )2 (A5.3)
we get

1pr v

20 v

Then Eq.(AS5.1) takes the form
VB + VB =(vB)’' =0 (AS.4)

and the general solution is

By (&) =€-= (“,(;1,2 , (A5.5)
where c is an integration constant. With u’ given by (4.72) the function B; reads
0 V4
B =p| £ | (A5.6)
n—£(5)
where the constants ¢ and ¢ have been lumped into a new constant D:
D = ¢4, (AS.7)

1
This integration constant is determined from the boundary condition for € at &n=0,

Eq.(4.42):

0 1
e+ WeEy=0; En=0. (A5.8)
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With (4.54), one gets

(8D ( W)oR (B)o=0,

such that

(B1)o = B1(0) =— 1

WV e,

and consequently

0
(Eé)o
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(A5.10)




Appendix (6): The Particular Solution of DEQ(3)
The differential equation DEQ(3), Eq.(4.38),, reads
B*:DEQG) = ey — Q2(E) & =Ra(€,8,¢, 1, r) =Rs(£,€,6, 1), (A6.1)

where R; is defined by (4.47); and (4.41)s

0

-~ 01 2 01 2 e (12 171}
R3(e.,e,€,u)= Rps(€,€,€6, W) — ——; es+—(s) . (A6.2)
() 6
12
1 ,2 L2 1 , 1 EE
Rrs=—"—5Q Weg + W Exteg)— Lk ;(l—n)ZT +
\Iu) “ £

08

+.QR2%(1—n)(2—n) N (A6.3)
(8]
With
£ = By (E)eVor — il (§)+ h,(E)e2en
= Byl - 228 “gf‘) Hen, (A64)
we get
£ y=—J¢ Boe 1" —2[“2 ~2yon
(A6.5)
S N
further
£ = Bi(&)e Vo | (‘1355= Bl(&)e Vo (A6.6)
as well as
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12 . _ _ O!* -
E E =—31 —“e «,/(l_”] +B1 Bz [ 2\/577 +B1‘3‘(—20‘C 3\[(50
¢

(A6.7)
() =( B o1

1 2
Using the results for € and € and their derivatives, Rg3 takes the following explicit form

Rr3 = Yri1(6) e Vo 4 Yr2(E) e 2 4 Ye3(&) e o ,

(A6.8)
where
2 u’ 1 , 1 1 a
== Jo By +--—.[p B, - B +Q} —~(1-n)25 — B
Yr1(6) u ¢ B, W) ¢ By ) 1 R 2( ) Ty 1
2 2() W 20 _,1 1
=== + = - Q¢ —(1-n)2+ B/ B (A6.9)
Yr2(8) w3 Jo T W) 3 do R 2( )25 B1 B,

£

*

1 1 1 1
m@=-{ @ S a-n2g LB - @ < (-m)@-n) @)}

! (4

€
and

On
£
(w)?

(e +=(e))=

0
E

% _ @ 1 _
=y {-& > ° Yen 1 B, B, e e +Bio2+ o B)) e won 1 (A6.10)

n

Combining all terms on the right side of (A6.2), we obtain

Ry=1(He ™V 4+ 1y(&e VT 4 yy(&e oT (A6.11)

where
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2 ’ u 1 e
YI=—,'\/(?B2 ('u/)z \/Fb— 2—( /)2 Bl +
1 g o
£ 0
+ (9 -2—(l—n)28+ )y B
2 u
- — Br _ B//
w0 B e B G B
2(n(l n) 1)——B1
ICERP I
pol2(@) w20
W3 o Twr3Je
. ;O (A6.12)
- (2 z(l—n)2g+( ~) BB =
_22@) w20 -1\ g g
W3 o w3 e (u)z( (&) +1) BB,
1 1 a2
-\ =(-n)25 =B ——1—2 By)’ -
h= - 0w 25 S0 - Gl ")(g)(‘)}
_(3)3 =
0
B en {(n(l n) 1) _(n(l n)(2 n) 1)(B1)3}
72
(.u') (8) = (P 6(8) g
Thus the DEQ(3), Eq.(A6.1), reads with Eq.(4.71)
¢ m—¢ £ = N eV 4 p(&e N 4 e, (A6.13)

3
With the boundary condition (4.42), 7—eo, € —0, the solution has the form
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3 3 3 _ 3
€ = E€hom+ €pat = B3(§)C Jon + € part -

The function B3(&) is not of interest here since accuracy only up to 2nd order perturbation
terms is required. The unknown function B,(&) is contained in the two functions ¥; and ¥, but
its derivative B, is included only in . As previously, the particular solution has to be

3 .
analyzed to remove the secular terms in £; this gives an additional condition for the
determination of Bs.
The following formulation is used

€ pun = u(EM eV + v (EMe T 4 w(Em)e T
(zpan)n'—' u Cﬁ\/an + v e—-Zﬁn + w 6‘3\/5'7 _

“\/a (ue—ﬁn +20 eV 3we_3\/a")
(AG.14)
3
(span)nn= i e_‘/_(p_" + ij e—z\/ar’ + W e—3\/an _

2o (i eV 1205 & 3y ey 4
+0 (ue ™V 4 4p eV 4 gy HOM),
Then Eq.(A6.13) reads
(ii=2+Jp 11)e V" +(5-4Jp ©+3¢ v)e VT4 (3—6.fp Ww+8Qw) e VT =
= 1OV 4 1p(Ee 4 py(Ee N (A6.15)
Comparison of the corresponding exponential terms yields
i=2+o u =y

G—4Jo 0430 v = (&) > (A6.16)

w=6/o w+8ow=1(f), .

which implies (only particular solutions are required!)
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)
wEm =wmén= ——y;j—%n,

‘
= _ @) (A6.17)
vEN=v,©6= 30 ?
(3 )
WEN) = wo(®) =y—38(f—
and thus
& pur( &) = (O e 4 0,(He O 4y, (B NN, (A6.18)
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Appendix (7): Determination of the Function B,(&)

The solution of the differential equation (4.86)

B, +1¥ B, =5 (A7.1)
2pu
where
11 1 11 ¢ [na
SO=7-—7=—B"-= 8— n(o n)+1 Zo B, (A7.2)
2o u 2o W | @2 )

is derived as follows. Applying the approach used in Appendix (5), we get

’

Bz’ +X— B;=§,
1%
or
VB; + V' By = (VBy) = VS, (A7.3)
with
0\ 174
1 -
V= (u/)llz = = r(l) € . (A74)
Q (8)1—)1

Thus the solution is, in general terms,
¢
1 c
B,= —.fv Sdr+—,
& v
with the integration constant ¢ or

on
\%

£
B=1 f vSdr +22%(B,),, (A7.5)
1%
0

where

172

Mo=(), »  (Bo=BxA0) (A7.6)

are boundary values at £=0. (B;) is determined from the boundary condition B.C. II,
Eq.(4.42),,
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1 2
Ee+We,=0 at  En=0.
With
1
£ = B(&)e VT

% & 2

R

one obtains from (A7.7)
2 *
B~ (W)oo [B2o +3 -(—O%)—O] =0

which yields

B/) 1 2 (a3)
Bo)o=| - - =210
( 2)0 ( ‘u, jo \/a 3 ©

(A7.7)

(A7.8)

The right side is explicitly determined as follows. With (4.57) and (4.39), the term (0(2* )o 18

0
n(l—-n £
(0 ) 11 = | (B))g
(e)g “ln-¢

(05) = )
0

where (4.72) is used. Observing (4.77) and (4.78) gives

172

gl—n 0
(B1)o =B1(0)= 51 (€&
n—=¢€,
Consequently
1 02 1 1 0
(@3)0= =50 [n(-n)+ (), ] — ——(€¢)o
== 0 n
’1“(3)0] o
Further
o ) e e B o
£ -n)(n-—
Bll(g)':D Z 0 0 (85)
n—¢ (n—¢)?
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(A7.10)




and thus,

)

0

0

0o o0, 0
(n-£)y(e)" (n_g)

Combining (A7.10) and (A7.11) finally yields

1 1 1 |7 4 2
(B2)o= = [—n(l—n)+n(g)0+§(g)z}(ggjo.

4 (,1_(2)0)2 (g)g 3

0
B _1 A-n) )" |(0 Y
( /)0_4‘/—(5 + 2 (Ef) )

(A7.11)

(A7.12)

Note that the constant ¢ has canceled. An explicit integration of the integral in (A7.5) needs -

0
in the first place- an explicit expression for the zero order approximation & (&) which is
equivalent to the classical solution £(&). Even then it appears that an integration must make

use of numerical methods.
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Appendix (8): Analytical Solution for the ug-Function
(Exponentially Tapered Tensile Rod, Cross-
Section Reduction Neglected)

With the cross-section reduction neglected, the tg-function, Eq.(4.100), reads

N2 E LN 1
L =(1) J’(s)‘?dr, (A8.1)
) %

0
where € is given by

i tin
£(8) =€) ("R(‘E)) (Ai—llg} (8(6) "= (8(&))" . (A8.2)
with
( p1)"
o= £/(0) =(A—D-E]
(A8.3)
g =o+(1-0)e*
Thus
n)"? Erh e
uR=(E) (e,), 2 ‘(‘;g(r) m dr . (A8.4)
Using the transformations
p=—>, S=m=2p+l (A8.5)
and
dg = (a-g)dr,
we get
(&)
G(g(Op) = jg(f) o dr = ! m (A8.6)

For integer values of p, Table A8.1, the right hand integral can be obtained from standard
tables of integrals (e.g. Dwight [3.4]). With g(&) given by (A8.4), the G-functions are listed in
Table A8.2. Then the ug-functions for odd exponents m=2p+1 are given by
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12 1-n
1-n
URr = ((p) (Ec)() 2 G(g() —En—) . (A8.7)
Table A8.1: Relations between power exponents.
)4 1 2 3 4 5 6
m=1/n 3 5 7 9 11 13
n 0.333 0.2 0.143 0.111 0.091 0.077
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Table A8.2: ug Function for the exponentially tapered rod, g(&) = o+ (1-¢) e%; 0 < @ < 1; cross-section reduction neglected.

1-n
p | m=ln G(g(&);p)=pr /[(n! @) (&c)o ? ]
0 1 £
1 3 1
. (E+Ing(&))
1 0y, L
2 5 a(l—[g(f:)] )+ = (E+Img(®)
1 1 . 1
3 7 E(l—[g(é)]‘2)+?(l—[g(§)] ‘)+?(5+1n g(®)
1 1 1 1
4 9 5;(1—[g<§)1‘3)+%;(1—[g<5)1‘2)+—0;3—(1—[g(§>1“‘)+;z(§+ln g(®)
1 1 _ 1 N 1 - 1
s | 2o (118 *)+5 7 (1-18@1)+5 = (L1817 + — (1-L8(&T) +—5(§ +1n g(&)
1 _ 1 N 1 _ 1 _ 1
6 | 13 - (1-18@1°)+ = (=181 )+ 55 (1-Te @1 + 57 (1- 18O )+—5 (1- 18O )+ — (£ +In (D)




Appendix (9): Analytical Solution for the Function By(&)
(Exponentially Tapered Tensile Rod, Cross-
Section Reduction Neglected)

The integral representation of the function By(&) is given by (4.114):

¢
1
BZ(®=T{IVR SgdT +(VR)0(B2)0} , (A9.1)
R |0
where
: 1
D U0 W SRR O W SN
2 o ui 2o Hr\ (0> ) @
, ,\ 172
ve = (4 )1/2 r)o = (Ur),
172
py =—=| 2 (A9.2)
R — "~ 1— .
'\/(; gl~n
0 V4 /4
El—n 1-n 0
Bl(g) :D[ " ] s D=[ ) (Ef)o
0
1 o
o~ Eg
’ 2
(%)

and from (4.90) neglecting the underlined terms,

11 1 7 0 )2
(B2)o ZZn_Z o —n(l—n) (85)0 . (A9.3)
©"
With (4.93) and (4.99)
£ (8) = () =(eo [2(O1" (A9.4)
one gets
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1-n

0 1 =
Er = (&) P " (0—g)

(A9.5)
0 1yl-n =2 L
g :(80)0; — 8" (a-g)—g ™ (06—8)};
here the property
dg
= = = (— A9.6
LAY (-g) (A9.6)
is used. Further
D 1-no0-2o
B/ =— e 4 ¢
1 Az ¢
(A9.7)
, D 1-n 340 0-22 o 5 021 o
B Rz {_ 4 ¢ ¢ o(gg)+e ! 855}'
The integrand in (A9.1) takes the form
VeSp=1+J, (A9.8)
with
11 B” 11 Dl-nyf 3+n0-2 0 , oMo
=1 = - € 2 (er)'+¢€e 2 Egf. A9.9
2\/5(“},?)1/2 2(p“4 4 2 { 4 (g¢) 149 ( )
and
1 1 n(l-n) e B 1 1 _1-no-t"o
Jeo =T _C8 Sl p TR gy (A9.10)
2\/5 (£)2n (UR)* @ 2@V4  n¥2
Observing (A9.4) and (A9.5) and with the transformation
df=dgl(o-g) (A9.11)

we obtain, omitting the lengthy algebraic manipulations ,
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a-g
‘%ﬁ”?lyh )éj {1;5"815—'5*"<a—g> g }dg (A9.12)
and
j. Jd'c-—-j- Jad_g =
0 1 8
_ %;1_1)15/5 Ce, )lfj {aom g @g-ng™ }dg. (a0

These integrals allow exact integration in terms of elementary functions. For n # 1/3 the result
is

4
f (I +))dt =
0
1-n l—3n 1-n
1-n — 1 ¢ 17-21n 117~ n e
=D— 21— 1 1) —— n~1)t. A9.14
prrperaCUN ST (¢ ) T61on 8 )} (A9.14)
With (A9.2) and (A9.3) and
(8)e=0 =1
we get
1 71-n(l-a o
(Vr)o (B2)o = (p1/4 _1—2— n32 ( ) (e, )0
0 /4 n l-n
VR—l = (';) (8(‘)04 g 4n (A9.15)
1 1 5—n

(94
n

and the function By(&) takes the following form
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4
Bo&) = v (| (+Dde+(v)o(By)o)
0

1 17-21 1=3n
= (ec), " (- a)—g(f)“ ({e [ 1_3nn [1_g(5) 2n )_

17n
1-

Ln 7
(1 8(5)2"]]+-1-2“(1—06)}~ (A9.16)

Note that the constant (¢ ) has dropped out. Also it is emphasized that for linear hardening
(n=1) the function B,(&) vanishes identically

(B209),_, =0 (A9.17)

Furthermore, if n=1/3 the right-hand sides (rhs) of (A9.14) and (A9.16) have indeterminate
forms. Thus, (A9.16) is to be interpreted as

[B,(£)],..,, = lim[ths(A9.16)]=

n—1/3

=(&.), (1~a ); 8(5)"2{145[ 3aring(&)- 5(1—g(§))]+7(1—a)} (A9.18)

by L’ Hospital’s rule.
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Appendix (10): Analytical Solution for the Function B»(©
(Three-Point-Bending of Uniform Beam)
The function B,(€) is given by (5.58)

:
By = IJ.VBSBdT+(VB)°(B2)o, (A10.1)
1Y 0 Vv

B B
Where, analogous to (A9.2) and (A9.3),

0
11 1 n -
SB'—' o ’ BI,/-—_I_ 1 a ’ n(IO n) & Bl (A10.2)
2 o Up 2o 'l g2 | @
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('zé)o (A10.3)

With

z=1-¢ (A10.4)
and (5.15) and (5.16) the Oth order approximation reads

0 In
K=Kc= Kol .

0 1 =
Ke= g =t L2 7 (A10.5)
n

0 1-n 1-2n
K= Kcﬁ!’;:’(co—z‘z n
n
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and the terms (A10.3) take the following form

o
N
Vp= — K 4 Z 4n
B co
@
1/4
n e
(VB)O—[_(;] Keo 4
1 5-n
DB= —;5-/2-’(00 4
1 3-n 1-n
1= =37 Keo 2 Z 4n
B (pl—n 9en 2-3n
o=y e
7 1-n 2—
B)o= ———K.,“ "
(B2)o 5 Keo

The derivatives of B, are

1-n 3-n 150

Bll =] ey Kco 2 Z 4n
" (1-n) 1-5n) 3n I2n
B, =- —K,, 2 Z4n.

4nn¥2  4n

The integrand of (A10.1) is
vgSg=I+J,

with

1
5 ‘/— 1/2

0
Jer 11 Kn n(lo—n) ngl.

2 \/—_ ]/2 02 (p

Using (A10.6) and (A10.7) we obtain explicitly
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(A10.7)

(A10.8)

(A10.9)




1 1 (-n)(1-5n) I3 I
= K, 4 22n
2 QU4 16n2n7/4

(A10.10)

—n)2 T3 1-5n
1 1 (1-n) 4"Z7.

V4 42574 Keo
2 Y4 np

The integration is straightforward

: ; ;
[Vespdr = [+ ndr =-[(1)+ 7 (2))dz =
0 0 1

- _ 7-3n| 13
_ 1 a-m7 21n)Km " 7 -1 (A10.11)
o4 16(1-3n)nn74

provided n#1/3. Then the function B,(£) takes finally the following form:

1-n nig 17-21n 1=3n
- 2-n N < o ———— — n . .
Ba8) = (105,)>"—= 2(5) 4 {12 16(1-3,1)[1 «$)? J} (A10.12)

If n=1/3 the right hand side of (A10.12) is indeterminate. Using L'Hospital’s rule, we get

[B2(O)],-y5 = lim. B, (5)= (Kco)5’3§z(§)“2 {7 +-‘:—51nz(§)} : (A10.13)
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