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On the Gradient Plasticity Approach to Size Effects 
Part II: Applications 

Abstract 

The size effect in deformation and failure of structures is presently a subject of 
increasing interest. lt has been observed frequently for a variety of conditions and specimen 
types (Part I 'Reviews' of this report). Evidently, the assessment of its significance is 
important for the validity of the transfer of small-scale model testing results to full-scale 
structures and also for the computational modeling of large scale components when the 
material parameters of the used constitutive model are obtained from small scale Iabaratory 
type test results. Different explanations have been proposed in the past but only recently non­
classical continuum mechanics theories have provided a means to interpret size effects; for 
example, by incorporating higher order spatial strain gradients into classical plasticity 
theories. These extensions implicate additional material parameters which relate to intemal 
length scales of the material. In spite of the increased complexity of such extended material 
models~ a relatively easy theoretical treatment may be possible in cases of simple loading 
configurations and under simplifying assumptions. 

In this study deformation theories of plasticity, extended by spatial first and/or second 
order strain gradients, are used. On this basis, solutions are obtained for different types of 
idealized specimens to determine the extent at which strain gradient models describe size 
influences on the deformation behavior. This assessment is accomplished by 

(a) fitting simple elastic-plastic 1st and 2nd order strain gradient models to available 
experimental data of geometrically similar specimens revealing a decrease of the yield 
stress with size under non-uniform stresses (pure torsion and pure bending), 

(b) performing systematic parameter variations (in particular the size or an intemallength) to 
determine the relative influence of the non-classical 2nd order strain gradient 
generalization; the constitutive part describing homogeneaus deformations is given by a 
Rollomon type strain hardening power law and the analyses are performed for 
geometrically scaled specimens of the same material (tension of tapered rods and three­
point-bending of smooth beams). 

The first group of tasks requires only the solution of some algebraic equations and a 
least squares fitting. A comforting agreement of the fitted models with the mean yield stresses 
of the torsion and bending experiments of two different structural steels is obtained, without 
making·a particular effort for a careful physical interpretation of the gradient terms. 

The second group of tasks Ieads to one-dimensional, generally non-linear, 2nd order 
differential equations for the strain or curvature distribution supplemented by non-classical 
boundary conditions. For small intemallength scales relative to the size of the specimen they 
represent singularly perturbed boundary value problems. Upon linearization (linear hardening 
and small deformations) exact solutions are obtained. For the non-linear problems and 
relatively small intemal length scales the method of multiple scales is used to obtain 
approximate analytical solutions for the singular perturbation problems of boundary layer 
type. An extensive evaluation of the results is provided, yielding a direct understanding of the 
effects of the strain gradient terms. Close form expressions and graphical representations are 
obtained which allow an immediate quantitative estimate of the relative influence of various 
parameters, particularly the size of geometrically similar specimens or the intemal length. A 
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comparison with experimental results is not possible since corresponding experimental data 
are presently not available. 
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Über den Ansatz der Gradientenplastizität zur 
Beschreibung von Größeneffekten 

Teil II: Anwendungen 

Zusammenfassung 

Der Größeneinfluss auf das Deformations- und Versagensverhalten von Strukturen 
erfährt gegenwärtig ein wachsendes Interesse. Unter verschiedenen Bedingungen und für 
verschiedene Probentypen ist er häufig beobachtet worden (Teil I: "Überblicke" dieses 
Berichts). Ganz offensichtlich ist eine Überprüfung seiner Bedeutung wichtig für die 
Übertragbarkeit der Ergebnisse von verkleinerten Modellversuchen auf das (1: 1 )­
Strukturverhalten und auch für die rechnerische Modeliierung von Großkomponenten, wenn 
die in den Stoffmodellen benutzten Materialparameter auf kleinen, labortypischen 
Versuchsergebnisse beruhen. Verschiedene Erklärungen sind in der Vergangenheit bisher 
vorgeschlagen worden, aber erst seit kurzem werden nicht-klassische, 
kontinuumsmechanische Theorien eingesetzt, um Größeneffekte zu interpretieren; 
beispielsweise Gradientenkonzepte, die klassische Plastizitätstheorien um höhere räumliche 
Verzerrungsgradienten erweitern. Diese Erweiterungen beinhalten auch zusätzliche 
Materialparameter, die im Zusammenhang mit materialtypischen, inneren Längenskalen 
stehen. Trotz der erhöhten Komplexität solcher erweiterter Materütlmodelle, kann eine relativ 
leichte theoretische Behandlung für einfache Belastungsfälle und unter vereinfachenden 
Annahmen möglich sein. 

In dieser Studie werden Deformationstheorien der Plastizität eingesetzt, die durch 
räumliche Verzerrungsgradienten erster und/oder zweiter Ordnung ergänzt sind. Auf dieser 
Basis werden Lösungen für verschiedene idealisierte Proben entwickelt, um zu ermitteln, in 
welchem Ausmaß Verzerrungsgradientenmodelle den Größeneinfluss auf das Deformations­
verhalten beschreiben können. Diese Überprüfung wird erreicht, indem 

(a) einfache, elastisch-plastische Modelle, die um Verzerrungsgradienten 1. und 2. Ordnung 
erweitert sind, an verfügbare experimentelle Daten geometrisch ähnlicher Proben 
angepasst werden, welche eine Abnahme der Fließspannung mit der Probengröße bei 
ungleichförmiger Spannungsverteilung (reine Torsion und reine Biegung) zeigen; 

(b) systematische Parametervariationen (insbesondere die Größe oder eine innere Länge) 
durchgeführt werden, um den relativen Einfluss der Ergänzung durch den nicht­
klassischen Verzerrungsgradienten 2. Ordnung zu bestimmen; der konstitutive Teil, der 
homogene Deformationen beschreibt, wird durch einen Potenzansatz (nach Hollomon) 
für die Dehnungsverfestigung gegeben und die Analysen werden durchgeführt für 
geometrisch skalierte Proben aus demselben Material (Zugbeanspruchung von sich 
verjüngenden Rundproben und Drei-Punkt-Biegung glatter Balken). 

Die erste Aufgabengruppe erfordert nur die Lösung einiger algebraischer Gleichungen 
und eine Anpassung mit der Fehlerquadratmethode. Eine ermutigende Übereinstimmung des 
angepassten Modells mit den Mittelwerten der Fließspannung der Torsions- und 
Biegeversuche zweier Baustähle wird erzielt, wenn auch ohne eine besondere Bemühung um 
eine sor·gfältige physikalische Interpretation der Gradiententerme. 

Die zweite Aufgabengruppe führt auf eindimensionale, im allgemeinen nicht-lineare 
Differentialgleichungen 2. Ordnung für die Dehnungs- oder Krümmungsverteilung, ergänzt 
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durch nicht-klassische Randbedingungen. Für kleine innere Längen relativ zur Größe der 
Proben stellen sie singulär gestörte Randwertprobleme dar. Bei Linearisierung (lineare 
Verfestigung und kleine Deformationen) werden exakte Lösungen erhalten. Für die nicht­
linearen Probleme und relativ kleine innere Längen wird die Methode der Mehrfachskalen 
eingesetzt, um approximative, analytische Lösungen für die singulären Störungsprobleme 
vom Grenzschichttyp zu erhalten. 

Eine ausführliche Auswertung der Ergebnisse wird durchgeführt, die ein direktes 
Verständnis der Einflüsse der Verzerrungsgradienten liefern. Geschlossene Ausdrücke und 
graphische Darstellungen werden erhalten, die eine unmittelbare Abschätzung des Einflusses 
verschiedener Parameter, insbesondere der Größe geometrisch ähnlicher Proben oder der 
inneren Länge, liefern. Ein Vergleich mit experimentellen Daten ist nicht möglich, da 
entsprechende experimentelle Daten gegenwärtig fehlen. 
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1. Introduction 

The objective of Part I "Reviews" [1.1] of this report was to provide a limited survey of scaled 
experiments of geometrically similar specimens of metallic materials and to examine briefly 
several pertinent gradient plasticity theories. The purpose of the present report Part ll 
"Applications" exemplifies to what extent strain gradient models can describe the size 
influence on the deformation behavior. 

Strain gradient models in elasticity and plasticity are not just Straightforward 
modifications of the standard models. The extensions consist of an enrichment of the classical 
constitutive equations by gradient terms of the strains or other variables, which increase the 
order Of the goveming differential equations and this implies also the definition of additional 
boundary conditions; in some cases even extra balance equations are introduced. Thus, in 
general, they lead to three-dimensional boundary value problems of a system of coupled 
partial differential equations with a higher order structure than the classical models. 

However, depending on the complexity of the gradient model, in cases of simple loading 
configurations and under simplifying assumptions, relatively easy theoretical treatments may 
be possible. For example, when the equilibrium equations can be trivially satisfied and the 
strain distribution is assumed as in classical treatments (e.g. torsion and pure bending), the 
gradient theory may not even require the solution of any boundary value problem. 

In other cases, the equilibrium equations can be solved independently of the constitutive 
relations (e.g. tension of a thin rod with non-uniform cross-section). This 'uncoupling' often 
allows a direct integration of the constitutive equations, which now take the form of 
differential equations for the strain. Thus, a grossly simplified boundary value problern is 
obtained. 

It is weil known that the classical mathematical theories of plasticity can be divided 
roughly into two types: deformation theories and flow theories. The deformation theories are 
characterized by constitutive equations that relate the instantaneous strain to the stress in a 
uniquely determined way or vice versa. Flow theories, however, are characterized by relations 
between increments or rates of stress and strain, which are homogeneaus of degree one in the 
rate terms and thus are independent of the time scale. Although flow theories describe better 
plastic deformation phenomena involving loading and unloading, gradient enhanced 
generalizations of deformation type plasticity models are used in this report because 
deformation plasticity is mathematically more convenient and also sufficient for proportional 
loading configurations. Furthermore, the applications of these strain gradient theories to be 
treated in this study belong to the two aforementioned simplified problern groups. 

The assessment of the size influence on the deformation behavior is accomplished by 
fitting the strain gradient model to some available experimental data and also by performing 
systematic parameter variations (size or intemallength) to determine the relative influence of 
the non-classical part of the constitutive equations. 

To this end, Part ll is organized as follows. In Section 2, size effects for yield initiation 
under non-uniform stress distributions are discussed. Two characteristic examples are 
considered which do not require the solution of a boundary value problem. The first example, 
considered in Section 2.1, pertains to the yield behavior of cylindrical bars in torsion. 
Experiments have shown that the apparent yield stress increases with decreasing specimen 
diameter [1.2]. The second example, considered in Section 2.2, pertains to the yield behavior 
of beams with reetangular cross-section in pure bending. In this case, experiments [1.3] have 
shown that the apparent yield stress increases with decreasing specimen depth. A simple strain 
gradient dependent strength of materials approach, which does not require the solution of a 
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boundary value problem, is employed for interpreting the results. The respective gradient 
coefficients are assigned a purely phenomenological meaning and are treated as fitted 
parameters without being calculated from independent tests. 

In Section 3, the tensile behavior of tapered rods is discussed using a linear version of a 
2nd order gradient dependent constitutive equation for a uniaxial state of stress. The 
assumption of a uniaxial state of stress allows an independent solution of the equilibrium 
equation. Thus, the problern reduces to the integration of the gradient enhanced constitutive 
equation to obtain the strains. This one-dimensional boundary value problern is considered for 
an exponentially tapered rod, as weil as for an idealized U-notched rod. Due to the assumed 
linearity in the stress-strain relation (without also taking into account the cross-section area 
reduction), an exact solution of the resultant 2nd order differential equation is obtained. These 
solutions are used to demonstrate the influence of the gradient term on the deformation and 
failure behavior. 

In Section 4, a conventional deformation plasticity model with a non-linear power law 
for the strain hardening is extended by a 2nd order strain gradient term but also the cross­
section reduction due to the plastic deformation is allowed for. The tensile behavior of an 
exponentially tapered rod is considered again. In this case, an exact solution of the goveming 
differential equation can not be deduced. However, provided the intemal length parameter 
associated with the 2nd order strain gradient term is small compared to the dimensions of the 
specimen, a singularly perturbed boundary value problern is obtained. Using a singular 
perturbation method for ordinary differential equations, an approximate analytical solution is 
derived. 

Section 5 pertains to the size dependent strength of a beam with a uniform cross-section 
subjected to a three-point bending test. A 2nd order strain gradient term and a power law for 
the strain hardening is adopted again. An ordinary 2nd order differential equation for the 
curvature is derived which allows an analogaus approximate solution procedure for this one­
dimensional boundary value problern as for the previous tension problem. 

Both the tension problern in Section 4 and the bending problern in Section 5 reflect, to a 
limited extent, test conditions as investigated in the experimental part of Task 5 in the 
REVISA project ([1.4, 1.5]). 

The conclusions of the present report Part II are discussed in Section 6 and detailed 
calculations conceming various elaborate portians of the work are provided in Appendices 
(2)-(10). In addition, Appendix (1) contains a discussion of the non-classical boundary 
condition of a 2nd order strain gradient model by comparing the gradient model with a simple 
non-local (integral) model. 

2. Size Effects in Vielding (Yield Initiation) 

In this section a strength of materials approach based on the gradient dependent constitutive 
equation 

(2.1) 

is used for the interpretation of the size effects observed by Morrison (1939, [1.2]) and 
Richards (1958, [1.3]). Morrison carefully performed a series of tension, torsion, bending, and 
combined tension-torsion tests on the yield behavior of cylindrical plain carbon steel 
specimens of different size. The specimens were geometrically similar with varying diameter. 
A scale factor up to 3.55 was used for the tension tests. The results of these tests showed that 
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the yield stress and the ultimate stress are size invariant for homogeneaus states of tensile or 
compressive stresses. On the other hand, Morrison's torsion and bending tests indicated an 
increase in the apparent yield stress with decreasing specimen size. A scale factor up to 8.67 
and up to 5.2 was used for the torsion tests and the bending tests, respectively. The value of 
yield stress increases by about 15,5 % and 8 % respectively, when the size is decreased from 
the largest to the smallest (diameter 2.586 mm) specimen. 

Richards (1958, [1.3]) performed a series of pure bending tests for geometrically similar 
mild steel beam specimens of different size. In these tests a scale factor up to 6.31 was used 
and the value of yield stress increases by about 41.7 % as the specimen size is decreased from 
the largest to the smallest (depth 4.026 mm) specimen. In our analysis, the results conceming 
the smallest specimen are not taken into account because of the doubts that Richards has about 
their validity. 

For the interpretation of these size effects, Hooke's law for the elastic region and 
Eq.(2.1) for the plastic region are adopted and a simplified strength of materials analysis is 
used. 

It is noteworthy that also recent dynamic and quasistatic scaled bending tests with 
austenitic stainless steel specimens (scale factor 10, minimum diameter 1mm) showed a size 
influence on the initial yield stress with a similar trend (Stach (1997,[2.1]), Jordan and 
Malmberg (1998, [2.2])). However, also recent tension tests with the same material show a 
significant size influence with the same trend as the bending specimens (Malmberg, Aktaa, 
Schlossmacher (1999, [2.3]), see Part I). This implies that the macroscopic non-uniformity of 
the stress or strain distribution is not responsible for the size effect in this case. 

2.1 Torsion Problem 

In the elastic region the shear stress r is given by the standard elastic relation r = Gy, where y 
denotes the shear strain and G the shear modulus. 

Carbon steel may be considered as perfectly plastic for homogeneaus deformations 
beyond the elastic Iimit. Therefore, n is zero in Eq.(2.1), where k now denotes the tensile yield 
stress 0"0 • For the present shear deformation problem, the effective axial stress a equals to r I 
A. and the effective axial strain e is yA., where A. is the ratio of the shear yield stress T0 over the 

tensile yield stress 0"0 (A. = 0.5 for the Tresca yield criterion and A. = 1 I .J3 = 0.577 for the von 
Mises yield criterion). By also assuming that the coefficient m is unity, Eq.(2.1) takes the form 

(2.2) 

where c1 = c1 A.2 and c2 = c2 A.2 . 

In polar coordinates we have that y = qJr, where qJ denotes the angle of twist per unit 
length of the bar and r is the radial coordinate measured from the rod axis. We assume that 
yielding first occurs when the stress at the outer surface of the specimen (r = a) becomes 
equal to the yield stress value Y in shear. Therefore, 

(2.3) 

since Vy = qJ and vzy = qJ Ir. On eliminating qJ from the system of Eqs.(2.3), we obtain 

the following relation for the dependence of the yield stress Y on the specimen radius a 
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( 
a2 J Y(a) = 1'0 • 

a 2 + (c2 I G) + (c1 I G) a 
(2.4) 

According to the experimental results of Morrison, Y( a) must be a decreasing function of a. 
This implies that the admissible values of c1 and c2 are those which satisfy the inequality 

cia + 2C'z < 0. This relation holds true for all positive values of radius a, provided that both 

c1 and c2 are negative. However, restricting the validity of this inequality to the range of 
radii where experimental results are available, positive values arealso allowed for only one of 
them. Then two intemal length scales may be defined as l1 = ic11 I G and 

lz = ~lc2 l I G, respectively. 
Using the least squares method, Morrison's torsion experimental results are fitted and 

the values of the alternative intemallengths .e 1 =I CJI I G (= l1 I A2
) and .e 2 = ~lc2 11 G (= [z I 

A) are calculated as shown in Fig.2.1. It is noted that c1 (and therefore c1) is negative, while cz 
(and therefore c2 ) is positive having a value such that Y(a) is a decreasing function in the 

range of a of the fitted data. The ratio A of the shear yield stress 1'0 to the tensile yield stress 
0"0 is also calculated by the aforementioned fitting and is found to be equal to 0.516. This 
value is between 0.577 obtained by the Von Mises yield criterion and 0.5 obtained by the 
Tresca yield criterion and it is comparable to the values found in the Iiterature on carbon steel. 

Another approach related to an integral yield condition involving an intemallength scale 
has been used by Malmberg (1995, [2.4]) for the interpretation of Morrison's torsion results. 
This treatment, which corresponds approximately to the enhancement of the classical local 
yield condition by stress gradients, gives the right trend to the observed behavior but does not 
fit adequately the experimental data. This is partly due to the fact that only one parameterwas 
available for the fitting procedure. 

2.2 Bending Problem 

In the elastic region the axial stress ain the beam axis is given by Hooke's law a= Es, where 
E is the Young's modulus and e = Ky is the axial strain; this corresponds to Bernoulli's 
hypothesis, where K denotes the curvature of the beam and y is the coordinate along the depth 
of the beam measured from the neutral axis. 

Mild steel behaves as a perfectly plastic material for homogeneaus deformations beyond 
the elastic Iimit. Therefore, n is zero in Eq.(2.1) and k is equal to the tensile yield stress 0'0 • 

Furthermore, assuming that the coefficient m is unity, Eq.(2.1) in tension takes the form 

(2.5) 

We assume that yielding first occurs when the stress at the outer surface of the specimen 
(y = ±h I 2) becomes equal to the yield stress value Y. Therefore, 

Y= E7dll2 = 0'0 - CJK, (2.6) 

since "Ve = K and V2 e = 0 for the case of pure bending. On eliminating K from the system 
of Eqs.(2.6), we obtain the following relation for the dependence of the yield stress Y on the 
specimen depth h 
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Y(h) = a o ( h I 2 J . 
(h I 2) + (c1 I E) 

(2.7) 

Observing Richards' results (1958, [1.3]), Y(h) must be a decreasing function, which 
implies that the value of c1 must be negative. Also, Y(h) must be greater than zero. This 
indicates that Eq.(2.7) is valid for depth values h/2 greater than an intemal characteristic 
length l = -c1 I E. 

Using the least squares method, Richards' bending experimental data are fitted, as 
shown in Fig.2.2, and the value of the intemal length l is calculated. With this value of l we 
can compute an alternative intemal characteristic length f. 1 = -c1 I G = 2.641, where the value 
v = 0.32 for the Poisson ratio was used. It is noted that this intemal length is two times larger 
than the one obtained for the torsion data. This difference may be attributed to the fact that the 
two steels used have different microstructure and composition. Because of the lack of data for 
the tension behavior of the material used, the tensile yield stress is also calculated by the 
aforementioned fitting and is found tobe equal to 225.6 MPa. This value is comparable to the 
value 250 MPa found in the Iiterature on mild steel. 

3. The Tapered Tensile Rod: Two Linear Problems 

3.1 Exact Solution for an Exponentially Tapered Rod 

3.1.1 Statement of the Problem 

Restricting the problern to a uniaxial state of stress and infinitesimal deformations, the 
uniaxiallinear stress-strain relation is taken to be 

with the two material constants: 
K : constitutive modulus 1 

l; : intemallength scale. 

The uniaxial stress, which is in fact the average stress in a cross-section, is given by 

P : prescribed longitudinal force 
AR: undeformed cross-section of tapered rod 

(3.1) 

(3.2) 

which simply follows from the static equilibrium in the rod. Here the exponentially tapered 
rod as shown in Fig.3.1 is considered. 

1 In the elastic case K corresponds to Y oung modulus E 
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A() A Pz p2=[a+(1-a)e-x!L*]-1 R X = o , 

A 
a= - 0 <1 

A.x, 

A0 : minimum cross-section area 
A"": largest cross-section area at infinity 
L * : characteristic length of the exponential profile. 

} (3.3) 

In Fig.3.2 various profiles are shown to illustrate the influence of the geometry parameters a 
and L *. Introducing dimensionless quantities 

X f=-
L*' 

(3.4) 

and combining the constitutive relation (3.1) and the equilibrium condition (3.2), the 
following 2"d orderdifferential equation for the strain e, 

du 
e=-

dx 

u: displacement function, 

is obtained 

the right-hand side 

does not involve the parameter ß. 

(3.5) 

(3.6) 

(3.7) 

Two boundary conditions are required for the solution of this differential equation. They 
are motivated by the following considerations. Ignoring the strain gradient influence by setting 
ß=O in Eq.(3.6), we obtain the classical solution for the strain distribution 

(3.8) 

For the present exponential cross-section variation the strain ec is almost uniform at large 
values of f. Thus, it is reasonable to assume that the non-classical solution, including the 
strain gradient effect, behaves similarly for large f· This provides the first boundary condition 
(B.C.I): 
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B.C. I: lim e= eoo = _f__!_, 
~~= A.,., K 

(3.9) 

At the minimum cross-section (~=0) the classical strain ec has its absolute maximum but its 
first order spatial derivative is discontinuous. If the variation of the cross-section would allow 
the classical strain gradient to be continuous, then 

dec = 0 at ~=0 
d~ 

for symmetry reasons and this would also apply to the non-classical strain distribution. 
However, for the present cross-section distribution this is not so obvious. For purely 
mathematical reasons one could choose either the value of the strain or its first order 
derivative or a combination of both of them. The prescription of the strain at ~=0 is physically 
unreasonable; a combination of e and deld~ is not immediately obvious but such a boundary 
condition can be derived if the gradient model is interpreted as an approximation to a certain 
non-local (integral) constitutive model (Appendix (1)). We do not follow this motivation but 
assume that the gradient model renders a continuous gradient2

• Then the second boundary 
condition follows from symmetry: 

B.C. II: 
(

de J _ 0 
d~ g=O- • 

(3.10) 

We consider now geometrically similar specimens scaled up by the geometric scaling 
factor A> 1. Then the geometrical data are changed as follows 

Ao = Ao .?t? , Aoo = Aoo II? , L* = L* II.., a = a = constant. (3.11) 

According to similarity theory (Malmberg (1995, [2.4])) the strain at homologaus points .X= 
x/1.. will be the same e(.X)=e(x) if the dimensionless characteristic parameters of the goveming 
differential equation and boundary conditions are the same, i.e. 

ß=ß and 
p 1 p 1 

= 

or (3.12) 

and 

These are the general similarity conditions for this simple gradient problem. They imply that 
the ratio of the constitutive intemallengths l;l l; equals the macroscopic geometric scale factor 

II..; also the ratio of the stresses at the minimum cross-section is required to correspond to the 
modulus ratio, i.e. 

2 This assumption needs motivation from a physically based model which, under certain restriction, gives rise to 
the gradient model. 
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PI Ao K 

PI A0 K 

In principle these conditions can be satisfied if different materials are used for the small and 
the large scale specimen. However, if the sarne material is used, then 

~ =1 
[. ' 
I 

K = 1 
K 

and according to Eq.(3.12)1 similarity in differently sized specimens cannot be achieved. This 
implies a size effect when testing of scaled specimens of the same model material is done. 
When the gradient effect is not present, then l;=l; =0 and condition (3.12)1 is identically 
satisfied and (3.12)z yields 

p p 
=-=- or P =P)} 
Ao A0 

that is, the stresses at the rninimum cross-section (and at any homologaus section) are required 
tobe the same; correspondingly, the scaling of the tensile force Pis govemed by the ratio of 
the cross-sections Aol A

0
= 1\?. 

3.1.2 Qualitative Estimate of the Strain-Gradient Influence 

Without solving the above simple boundary value problern a qualitative estimate of the 
gradient effect on the maximum strain, as obtained by the classical model, is determined. 

The classical strain distribution is given by Eq.(3.8); its absolute maximum is at ~=0 
with a discontinuity of the gradient dsjd~. For large values of ~ 

dsc <0 and lim dsc =0 
d~ ;~oo d~ 

and 

The non-classical solution s, including the 2"d order gradient effect, will also have these 
properties for large values of ~. especially 

At ~=0 the non-classical strain distribution e(~ will have a vanishing firstderivative (B.C. II) 
and it is reasonable to expect that there is no other relative extremum at some finite value of ~. 
Therefore, the function e(~ has a tuming point at some finite value of ~; a saddle point at 9=0 
contradicts the symmetry condition at ~=0. Consequently, 
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in some neighborhood of ~=0. Therefore, at ~=0 the gradient term in the constitutive equation 
(3.1) is additive. Comparing the classical and the non-classical solutionsec and e, respectively, 
for the same stress level a at ~=0 shows, that the non-classical solution yields a smaller 
maximum strain: 

The inclusion of a 2nd order strain-gradient in the constitutive model together with the non­
classical boundary condition yields a srnoothing-out of strain peaks (discontinuities in the 
first order strain gradient) and a reduction in their rnaxima. This qualitative finding is not 
restricted to a classical part of the constitutive equation, which is linear in the strain, it 
applies also for the non-linear case e.g., power law strain dependence. 

The importance of the non-classical boundary condition may also be illustrated. Naively one 
may suggest that to a first approximation the gradient term in the constitutive equation (3.1) 
can be approximated by the classical solution er. Then with (3.8) 

and the gradient term in (3.1) is subtractive and the non-classical strain is approximated by 

This estimate is larger than the classical value 

which is clearly in conflict with the previous result. The essential deficiency of this estimate is 
the neglect of the non-classical boundary condition at ~=0. 

3.1.3 The Exact Solution 

The 2nd order differential equation (3.6) is linear and thus allows an exact solution. For 
reasons of convenience we introduce the coordinate transformation 

(3.13) 

and the DEQ simplifies to 

(3.14) 
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with 

and the boundary conditions are 

B.C. I: lim E= Eoo, ,400 

B.C. II: ( :~ L = 0. 

(3.15) 

} (3.16) 

In the following we restriet attention to the case ß<l. The cases {P-.1 do not make 
physical sense since the intemal constitutive length l; is somehow related to the microstructure 
of the material and the minimum dimension of the specimen should certainly be larger than h 
On the other hand for {3=1 the particular solution of (3.14) needs special attention. 

For ß<1 the solution of (3.14) + (3.16) is easily obtained (Appendix (2)) and reads 

~ 

{[ 1-a ~] 1-a -ß} 
E( ~ = Eco a + 

2 
e- -

2 
ß e 

1-ß 1-ß 

where 

p 1 
Eco=-­

A0 K 

(3.17) 

(3.18) 

is the maximum strain of the classical solution at the minimum cross-section. On the other 
hand, the classical solution is 

(3.19) 

The displacement distribution u(~ in the non-classical case is simply 

~ 

u(~ = L* J E(~')d~' 
0 

(3.20) 

and for the classical case (ß=O) 

(3.21) 
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3.1.4 Discussion 

3.1.4.1 General Observations 

It is noted that the non-classical solution, Eq.(3.17), consists of two parts: apart 

[ 1-a -e] 
fco a+ 2 e 

1-ß 

which essentially represents the classical solution Eq.(3.19) for small values of ß and which is 
determined by the variation of the cross-section along the length of the rod and another part 

1 a _{ 
fco [ -

2 
ß e ß] 

1-ß 

which for small values of ß is a fast decaying contribution close to the boundary ~=0; in fact, 
it represents for ß<<1 a boundary layer effect. This is also the region where the first and the 
second orderderivative of the classical solution fc are largest. Obviously, the 2nd order strain 
gradient influence is largest where the classical solution shows a large variation, i.e. 
inhomogeneity. 

This boundary layer effect is demonstrated in Fig.3.3 and 3.4 for different values 
Osßs0.4 and two different cross-section ratios 

a = AJAoo = 0.0625 & 0.5625 

Ja= rJroo = 0.25 & 0.75 

where r0 and roo are the minimum and maximum radii of the cylindrical rod. It is seen that the 
2nd order strain gradient effect reduces the maximum strain of the classical solution at the 
minimum cross-section which was already qualitatively demonstrated in section (3.1.2). This 
reduction can be formulated mathematically in very simple terms. Using the result (3.17) one 
gets 

(f)
0 

1 +aß 
--=---'--

fco 1+ ß 
(3.22) 

and this is illustrated in Fig.3.5. It is seen that the qualitative influence of the gradient effect is 
moderate: e.g., for a very small cross-section ratio a=0.0625 the strain reduction is less than 
20% if ß is less than 0.2. 

We note that a variation in ß is obtained by either changing the internal length scale l; 
that is, by changing the material or by changing the characteristic length L *. The latter can be 
done in two very different ways: 

• Either by scaling up (or down) all dimensions of the specimen such that the new cross­
sections are 

- 2 - 2 -
Ao = Ao Jl , Aoo = Aoo Jl , a = a = const. 
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and the characteristic length is 

L*=L* lt, 

where lt is the geometrical scaling factor 

• or by keeping the cross-sections Ao andAoo the same and again a=const. but changing the 
characteristic length L * alone. This corresponds to a partial change of the specimen 
shape. 

Whatever choice is made, the diagram Fig.3 .5 will be the same. The first approach will reveal 
a size dependence of the specimen response. 

3.1.4.2 On the Size-Effect in Deformation and Failure 

The size dependence of the above linear model manifests itself in two different aspects: 

• Size dependence of the deformation behavior 
• Size dependence of failure. 

Deformation Behavior 

Classical elasticity - linear or non-linear - as well as classical rate-independent plasticity do 
not involve an internallength scale. Thus, it may be shown using similitude theory (Malmberg 
1995, [2.4])) that geometrical similar structures of different sizes but made from the same 
elastic or rate-independent plastic material are subject not only to the same strain but also to 
the same stress distribution if the loading is quasistatic and if the stress and displacement 
boundary condition are the same or are properly scaled? Thus, complete similarity, 
geometrical and physical, is obtained whatever shapes of the structure are chosen and no size 
dependence can be observed. If such a classical material model is enriched by a 2nd order 
strain gradient dependence, complete similarity is also obtained if the material parameters are 
constant everywhere and if the geometry and the external loading or constraint conditions are 
such that no 2nd order gradients will occur. In the present context this is the tensile rod with a 
uniform cross-section and under quasistatic loading at the ends and with homogeneous 
material properties. However, even under these conditions a non-similarity or size dependence 
may show up if large deformations are considered and the response becomes unstable together 
with a localization of the deformation, for example necking of the rod. Furthermore, in the 
dynamic case longitudinal wave propagation induces an inhomogeneous strain field that 
triggers the 2"d order strain gradient influence and thus may induce non-similarity. Thesemore 
complex problems are excluded from the following discussion. 

We will demoostrate this size dependence for the above model first by constructing a 
dimensionless force-displacement graph of the tapered tensile rod. Clearly, this graph will 

3 Gravitational forces are ignored. In the dynamic case also the characteristic velocities, e.g. impact velocities 
have tobe the same (Malmberg (1995, [2.4])). 
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depend on the reference length of the rod. Here the characteristic length L * is chosen. For ~=1 
Eq.(3.20) gives the displacement u* at x=L * or equivalently the average strain 

I 

'l*=u*IL*=e [1+ 1-a (ß 2 e-ß -e-I)]. 
CO 1- ß2 (3.23) 

The dimensionless force P is obtained by dividing P by a force like quantity such as A0K; 
thus 

- p 1 
P =--=Eco• 

A
0 

K 
(3.24) 

With (3.23) the dimensionless force-displacement graph is given by the linear relation 

P = C(a,{J) g * (3.25) 

where the stiffness Cis defined by 

I ]-I 1 a --
C(a,ß) = [1 + -

2 
(ß 2e ß -e-I) 

1-ß 
(3.26) 

If the gradient dependence is not present at all or if the characteristic length L * is very large 
compared to the intemallength 1;, then fJ=O and Eq.(3.25) reduces to 

(3.27) 

with 

(3.28) 

On the other hand, if {3--71, one obtains from (3.26) in the Iimit 

[ 
3 ]-I CI_(a) = limC(a,ß) = 1-(1-a)-e-I 

ß-ti 2 
(3.29) 

These values give an idea of the stiffness variation with a change in ß 

(3.30) 

We consider now geometrical similar specimens of different size but made from the same 
material and subject to scaled loading. The small scale specimen is denoted by the subscript m 
and the large scale by p. Then 
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and (3.31) 

where /\>-1 is the geornetric scale factor. If the scale factor lt is very large, then ßp--70 and the 
lower bound of the stiffness, Eq.(3.30), defines the dirnensionless force-displacernent graph. 
Thus, the relation (3.27) applies to specirnens which are very large cornpared to the intemal 
length h For geornetrical sirnilar specirnens that are very srnall, theoretically one gets {3-71 
and the upper bound in (3.30) applies. The corresponding dirnensionless force-displacernent 
graphs are shown in Fig.3.6(a) for two values of the cross-section ratio a=0.0625 and 0.5625. 
It is obvious that the srnaller specirnens are stiffer than the larger. 

lt is noted that the upper lirnit of ß (--71) is certainly exaggerated. In any case it should 
also be assured that the rninirnurn diarneter 2r0 is not srnaller than the intemal length l;. 
Therefore, the upper lirnit of ß should be 

ß < Min [1, 
2ro ]. 
L* 

(3.32) 

It is instructive to visualize the size dependence of the deformation by using another 
dirnensionless force-deformation graph. With the dirnensionless force P, Eq.(3.24), which 
corresponds to the dirnensionless stress at the rninirnurn cross-section, the strain ratio (3.22) 
yields 

P- = C' - 1+ß (C') 
c-co- "' o 

1+aß 
(3.33) 

a linear relation between the dirnensionless force P and the local strain at the rninirnurn cross­
section. The corresponding graphs for very srnall ({3-71) and very large ({3-70) specirnens are 
plotted in Fig.3.6(b) for the two cross section ratios a=0.0625 & 0.5625. Note that for very 
large specirnens 

P = (B)o 

which is independent of the cross-section ration a, in fact a trivial result. 
A cornparison of Figs. 3.6(a) and 3.6(b) dernonstrates a fairly obvious fact: The size 

influence is rnore readily detectable in dirnensionless force-deformation graphs when local 
strains- frorn regions of intensive strain-nonuniformities- are used as a deformation measure 
than approaches which use an average on extended spatial dornains. 

Failure Behavior 

Only two very simple cases are considered which are cornrnon in engineering. In addition to 
the deformation law an extra failure criterion is introduced e.g., 
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• a criticallocal stress O"c 
• or a criticallocal strain cc . 

They are considered to be local fracture criteria characteristic for the material and they are 
assumed to be size independent. 

Critical stress criterion 

The maximum stress in the tensile rod is at the minimum cross-section. Thus, prescribing a 
size invariant critical stress ac yields a critical normalized load 

p = amax = ac 
ca K K. 

Therefore, by inverting Eq.(3.25) we can compute the corresponding average strain e* at 
CU 

fracture, 

(3.34) 

which is a size dependent quantity. From Fig.3.6(a) it is obvious that proportionally scaled-up 
tensile specimens have larger average strains at fracture. Trivially this is also true for the 
critical strain (c)oca at the minimum cross-section. With (3.22) and (3.24) we obtain 

1+aß -
( c)aca = 

1 
+ ß Pca · (3.35) 

Thus, for a size invariant critical stress (i.e. critical normalized load Pca) the associated local 
failure strain is determined as shown in Fig.3.6(b). From the graphs of this figure we see that 
the scaled-up specimens have !arger local failure strains. lt is noted that this qualitative trend 
is not in agreement with the trends observed experimentally (e.g. Brown et al. (1947, [3.1])). 

Critical strain criterion 

The maximum strain in the tensile rod is at the minimum cross-section and at the initiation of 
fracture we may assume that 

The associated normalized failure load Pce is given by 

p = 1+ß 
ce 1+aß cc. (3.36) 
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This result is sketched in Fig.3.6(b) for a size invariant critical local strain. It is obvious that 
smaller specimens ({3--71) are characterized by I arger normalized fracture Ioads. This is a 
qualitative trend that is in accordance with experimental observations (e.g. [3.1]). 

With the notation (3.31) the ratio of the fracture Ioads for a large and a small specimen 
is given by 

1+aßpit 1+ßp = it+ßm 1+aßm <1. 

1+ßpit l+aßP it+aßm l+ßm 
(3.37) 

It is evident that this ratio does not only depend on the geometrical scale factor it but also on 
the absolute size via ßm or ßP. Therefore, keeping A=const. but increasing the size of the small 
(m) and the large specimen (p) proportionally will increase this ratio towards "one" suchthat 
this size effect dies out with an increase of the absolute size. 

From the knowledge of the normalized failure Ioad Pce one may determine the 

associated average strains g* for various specimen sizes. Note that although the maximum 
cE 

local strains are assumed to be the same at fracture, the average strains are not equal. This may 
be seen from Fig.3.6(a). In fact, the average strains at failure are larger for the small specimen 
than for the large one. This is again a manifestation of the size dependent response of this 
model. 

3.2 Exact Solutionfora U-Notched Rod 

3.2.1 Statement of the Problem 

The linear 2"d order gradient model is now applied to another uniaxial stress problern which 
differs from the previous one by the choice of the cross-section variation AR(x) along the axis 
(Fig.3.7): 

00 

Ao: minimum cross-section area 
2L : length of notched region. 

(3.38) 

The applied tensile force is P and the uniaxial stress varies in the notched region but is 
vanishing for L-;;, I x I. Therefore, approaching the boundaries of the notch, the axial strain will 
vanish. 

With the dimensionless quantities 

(3.39) 
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the governing differential equation, corresponding to (3.6), is 

(3.40) 

p 1 ( 1r \2 
r(~=-- cos(-~) 1. 

A0 K 2 J 
(3.41) 

The associated boundary conditions are 

B.C.I: (.e)S'=l= 0 

B:c. rr: ( :~ L = o. 
} (3.42) 

Here the B.C. ll follows from the smooth distribution of the cross-section area within the 
notch and the symmetry at f-=0. 

3.2.2 The Exact Solution 

We introduce the coordinate transformation 

~ X ~"=- =-. 
'=' ß l; ' 

(3.43) 

then Eq.(3.40) simplifies to 

(3.44) 

with 

r(() = r(ß(J = ~_!_(cos(;r ß() 12

• 

A0 K 2 J 
(3.45) 

The homogeneaus solution is 

(3.46) 

A particular solution is obtained by using the method of "variation of parameters" ( e.g. 
Hildebrand (1962, [3.2])). Forthis 2ndorderdifferential equation we obtain: 
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with 

} (3.47) 

The choice of the cross-section distribution was such that a closed-form integration of (3.47) 
is possible by using integral tables. One obtains (e.g. Dwight (1967, [3.3])) 

p 1 1 -1: [ cos
2

(n ßO l 
a 1(S)=-- e 2 - 2 +sin(nßS)-nß 

A0 Knß ( 2) n ß - +4 2 
nß 

The complete solution 

is then found by accounting for the boundary conditions (3.42) 

( J::\ _ . 1 { 2(n J:) 1 ( ß)2(1 cosh(~ I ß))} e ':>1 - Eco COS - ':> +- n - , 
1 + (nß) 2 2 2 cosh(l I ß) 

where the coordinate ~ has been reintroduced and with 

p 1 
f--­
co- A K' 

0 

(3.48) 

(3.49) 

(3.50) 

which is the strain at the minimum cross-section of the classical solution. For {3--70 the non­
classical solution (3.49) approaches the classical one 

2 n J: Ec(~ = Eco COS ( -s). 
2 

(3.51) 

The displacement u(~ in the region 0~~~1 is obtained from (3.49) by integration with the 
boundary condition u(O)=O: 
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(
J:\ _ L { _!_ t 1 sin(n~) _ (nß) 2 ß sinh(~ I ß) } . 

U ~J - Eco ':> + 2 ' 
2 1 +(nß) 2n 2[1 +(nß)2

] cosh(l/ ß) 
(3.52) 

for the classical case (/3=0) we get 

(J:\-L {.!.t sin(n~)} 
Uc ~J - Eco ~;:. + · 

2 2n 
(3.53) 

3.2.3 Discussion 

We will not repeat the extensive discussion performed in Section 3.1.4 but we will mention 
only a few corresponding facts. 

The maximum strain is found at ~=0: 

c(O) = Eco { 1- (nß)
2 

(1 + 1 ) } . 
2[1 + (nß) 2

] cosh(l/ ß) 
(3.54) 

Here the first term is the classical part and the second term is the non-classical contribution 
due to the gradient influence. Evidently, the 2nd order strain gradient contribution in the 
enriched constitutive equation reduces the maximum value Eco of the classical solution. For 
small values of ß<<1 this reduction is only quadratic in ß and thus rather small, as 
demonstrated in Fig.3.8. 

Introducing the dimensionless force P 

- p 1 
P=--=Eco• 

A
0 

K 

which corresponds to the dimensionless stress at the minimum cross-section, we can invert 
Eq.(3.54) to give the relation between P and maximum local strain at the minimum cross­
section: 

P = C(ß) e(O) (3.55) 

with 

C(ß) = 1- (nß) (1+ 1 ) [ 
2 ]-1 

2[1 + (nß) 2
] cosh(1 I ß) 

(3.56) 

The stiffness C(ß) reflects the size influence if ß is varied between ß=O (very large specimens) 
and h1 (very small specimens). For ß<<1 the influence of ß on the stiffness C is only 
quadratic. This is in contrast to the previous example, the exponentially tapered rod, where, 
according to Eq.(3.33), the influence is linear. This difference will be analysed more deeply in 
section 4.4. 

The displacement at ~=1 is obtained from (3.52) 
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u(1) = L Eco _!_ { 1- (nß)
2 

2 
ß tgh(1 I ß) } 

2 l+(nß) 

and the corresponding classical solution yields 

1 
uc(1) = L Eco -. 

2 

They deterrnine the average strains in the notch region 

e = u(1)/L, ec= uc(1)/L 

and their ratio is 

e I'( = 1- (nß)
2 

2 
ß tgh(ll ß) . 

1+(nß) 

For ß<<1 this ratio shows a 3rd order dependence on ß (Fig.3.9) which is even more difficult 
to detect than the ratio of local strains obtained from (3.54). 

4. The Exponentially Tapered Tensile Rod: A Non-Linear 
Problem due to Power Law Hardening and Cross­
Section Reduction 

4.1 Statement of the Problem 

Assuming a uniaxial state of stress as previously, the uniaxial non-linear stress-strain relation 
is taken to be of the following form 

(4.1) 

where a is the true (Cauchy) stress and e is the logarithmic strain; the derivative is defined 
with respect to the Lagrangian coordinate X along the axis of the rod. For the uniaxial case 
considered the two conjugated variables a and e are defined as follows 

p 
a=--

A(X) 

(4.2) 
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where: 
P : longitudinal force 
A(X) : instant cross-section of rod 
sR : engineering strain 
u : displacement along the rod. 

The uniaxial stress a given by (4.2) 1 is the averagein a deformed cross-section and it follows 
simply from the quasistatic equilibrium in the rod. 

For the case of power law hardening the non-linear function.f(s) takes the form4 

j(s)=~ ; O<n~l 

Three material constants are involved 
n: hardening exponent 
K: power law modulus 
l;: internallength scale. 

(4.3) 

The restricted range of the hardening exponent assures that the plastic modulus da/ds is a 
decreasing function of strain as observed in a tensile test of a uniform specimen. The initial 
undeforrned geometry of the tapered rod is defined by the cross-section distribution AR(X) 

along the axis of the rod. Here an exponentially tapered rod as shown in Fig.3.1 is considered: 

A 
a=-0 <1 
~ 

Ao : minimum cross-section 
Aoo : large cross-section at infinity 
L* : characteristic length of the exponential cross-section. 

} (4.4) 

The change of the cross-section with the deformation is assumed to be controlled by the 
volume conserving plastic deformation, ignoring the elastic part of the deforrnation. Volume 
conservation of a material element yields 

= 

Reference configuration Instantaneous configuration 

suchthat 

(4.5) 

4 This corresponds to a Rollomon (1949, [4.1]) finite strain deformation law for plasticity where the elastic 
strains and a distinct yield point are ignored. 
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Introducing dimensionless quantities 

X 
~=-, 

L* 
ß= _1_ 

L* 
(4.6) 

and combining the constitutive relation (4.1), the equilibrium condition (4.2), and the 
condition of volume conservation ( 4.5), the following 2nd order differential equation for the 

logarithmic strain e is obtained 

(4.7) 

where 

(4.8) 

here aR represents the engineering stress. As previously for the linear case and small 
deformations, the boundary conditions are 

B.C.I 

B.C. II 

lim e = e", 
.;~oo 

de =O. 
d~ 

} 
Here e", is the solution of (4.7) at infinity where the gradient influence has vanished. 

(4.9) 

Corresponding to section (3.1.1), geometrically similar specimens are considered which 
are scaled up by the geometrical scaling factor A.> 1. The geometrical data take the values 

- 2 - 2 -
Ao = Ao A. , Aoo = Aoo A. , L * =L * A. , a = a = constant. (4.10) 

If geometrical and physical similarity is required, then the dimensionless characteristic 
parameters of the determining differential equation and the boundary conditions must be the 
same, i.e. 

ß=ß or 

n=n (4.11) 

p 1 p 1 
-=---=- = -- or 
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Theseare the similarity conditions for this gradient problem. Compared to (3.12) the equality 
of the hardening exponents is added to the list. Again, in principle these conditions can be 
satisfied, provided the hardening exponents are the same. Then 

and (4.12) 

However, due to the gradient term similarity cannot be achieved if the material is the same, 
i.e. l; = l; among others, in the small and the large-scale specimen. 

4.2 Solutions without Gradient Effect 

4.2.1 Uniform Cross-Section 

For a uniform cross-section, AR = const., gradient effects are not introduced. Thus, Eq.(4.7) 
reduces to a non-linear algebraic equation for t: : 

where 

n aR e 
t: =- e 

K 
(4.13) 

(4.14) 

is the engineering stress. In terms of aR and the engineering strain t:R, Eq.(4.13) corresponds to 
the following stress-strain relation 

(4.15) 

The slope of the graph aR vs. t:R is given by 

(4.16) 

which yields a maximum value for the engineering stress when 

or 
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SR= e n -1 } (4.17) 
s=n 

and 

(4.18) 

At this instant the increase in Ioad P or stress aR due to hardening is balanced by the 
"geometric softening" due to cross-section reduction. Introducing the inverse of the hardening 
exponent 

1 
m=-, 

n 

the associated strain Iimits are given in Table 4.1. 

(4.19) 

These critical strains suggest that the following analysis is restricted to strain values less 
than the critical ones, i.e. 

s<n. (4.20) 

The non-linear equation (4.13) allows a simple solution for the logarithmic strain s if the 
cross-section reduction is ignored. Then 

(4.21) 

In the general case, however, an exact solution is not possible. Approximations can be found 
as follows. Using the inversem, Eq.(4.13) reads 

( )

111 

e= i e me. (4.22) 

With 

s =m s, _ (aR)m a=m-
K 

(4.23) 

Eq.(4.22) takes the simple form 

(4.24) 

We note that for a ~1 a real solution certainly does not exist. Also, according to (4.20), f is 
restricted to 
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which implies 

- 1 
a <- = 0.3679. 

e 

(4.25) 

(4.26) 

Moreover, Eq.(4.24) implies Cf< e. For f <<1 the exponential function can be approximated 
by its Taylor series approximation at f =0: 

Thus, Eq.(4.24) yields with a < e << 1 

1- a J(l- a) 2 

c = ----=- ± ----=- - 2 a a 
(4.27) 

provided the radicand is non-negative, i.e 

- 1 
(J' ~ ~ :::0.4142 

v2 +1 
(4.28) 

which is assured since the morestringent condition (4.26) applies. 
With f =1-m, m<<l an expansion at f =1 can be used 

e 1 2 1 -2 
e =e(l-m+ 2m + ... )=e 2(1+s ) 

which yields 

(4.29) 

From (4.27) and (4.29) we easily obtain, observing (4.23), the explicit relation between t: or t:R 

and aR. 

4.2.2 Non-Uniform Cross-Section 

If one considers a non-uniform cross-section but ignores the non-classical part of the 
constitutive equation, then the above results are also valid with the engineering stress aR being 
a function of X: 
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A solution of (4.13), its two approximations given by (4.27) and (4.29), is called a classical 
solution cc for the tapered rod problem. A few peculiar properties of the logarithmic strain 
distribution cc(c;) are found as follows. Derivation of (4.13) with respect to ~ yields 

d 
where ( )' = d~ ( ) and 

For the second derivative we obtain 

c n(cc)~ 
c/' = ( cc)gg = (In (j R )"--C -+ (In (j R )' ----'---

11-cc (n-cc)2 

c c {(In a R )" ( n - c c ) 2 + [(In a R )'] 2 n}. 
(n-cc)3 

Thus, for the strain cc approaching the critical value n, the two derivatives are unbounded 

However, the curvature of the function cc( c;) 

k= 

approaches a finite value 

(jR 1 
lim k=--, -
Ec~n (jR 11 

provided a/ # 0. 
With (4.5) the firstderivative of the instantaneous cross-section is 
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where d is the instantaneous diameter of the section. Therefore, a tensile rod with a sharp 
circumferential notch having initially a finite-opening angle at the tip will defom1 such that 
the notch angle will decrease and will shrink to zero, i.e. the notch becomes sharper when the 
strain reaches the critical value. This is a peculiar property of this simplified uniaxial model. 

4.3 Approximate Analytical Solution by the Method of Multiple 
Seal es 

4.3.1 The Governing System of Perturbation Equations 

For n=1 and ignoring the cross-section reduction, i.e. 

the problern described in section (4.1) reduces to the linear case for which an exact solution 
was derived. However, for the more general case n<l, with or without consideration of the 
cross-section deformation, the differential equation for the logarithmic strain is non-linear and 
an exact solution appears not to be possible. But assuming that 

z. 
ß= _, <<1 

L* , (4.30) 

then the first term in the differential equation (4.7) is small (provided d2 fldf is bounded) for 
ß---70 and it represents a "perturbation" in the equation. Ignoring it entirely, the differential 
equation (4.7) reduces to a non-linear algebraic equation for the logarithmic strain, which was 
discussed in section (4.2). Its solution does not satisfy the boundary condition at the minimum 
cross-section. This suggests that the influence of the perturbing term {fd2 fldf is operative 
over a boundary layer at g=O, as observed in the exact linear solution. The linear solution 
consists of two parts: 

• a first part which essentially represents the classical solution and which is determined by 
the variation of the cross-section along the length of the bar 

• a second part which is controlled by the parameters ß and which dies out exponentially 
with g!ß (boundary layer term). 

Thus, there are essentially two types of spatial dependencies involved. According to 
perturbation theory (e.g. O'Malley (1991, [4.2])), the above problern is a singular perturbation 
problem. For this problern an approximate asymptotic solution for a small parameter ß 
appears possible using an analytic approach, e.g. the method of matched asymptotics or the 
multiple scale method (e.g. Nayfeh (1973, [4.3]; 1981, [4.4]), Kervorkian & Cole (1981, 
[4.5]), Holmes (1995, [4.6])). Compared to a purely numerical approach, analytic 
approximations often reveal the essential influence of the small parameter on the exact 
solution more satisfying. 

The method of multiple scales introduces new spatial coordinates for each dependency, 
which are considered to be independent of one another. As a consequence, starting with an 
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ordinary differential equation, its transformation Ieads initially to a partial differential 
equation. 

It is assumed that the logarithmic strain distribution can be represented in the form 

(4.31) 

where 

X 
J! is the "slow" variable ~::o= L* 

and (4.32) 

fJ = f..t~) is the "fast" variable . 

The function f..t(~ remains to be determined. Observing the linear case Eq.(3.17), the "fast" 
variable is 

Thus f..t = ~· In the nonlinear case one may show that this choice is too restrictive. The 
introduction of the function f.,t(~ follows a generalized version of the method of multiple 
scales by Nayfeh (1973, [4.3]). This method, as applied to the present problem, proceeds in 
the following steps. 

The derivatives in the ordinary differential equation and in the boundary conditions are 
developed in terms of the two-scale representation of the strain distribution E = e (~,fJ;ß>. This 
gives 

} (4.33) 

where 

(4.34) 

and 

a2-
- E 
E~~ = (}~ 2 etc. 
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arepartial derivatives of the two-scale function s. Then the differential equation (4.7) and the 
boundary conditions take the following fonn 

B.C.I ;, 1J --7 00 

B.C.ll ;, 1J = 0 

lim s = foo 
~,ry-';oo } 

(4.35) 

(4.36) 

lt is assumed that the two-scale function s ( ;, 1J;ß> admits a uniformly valid expansion in 
terms of the small parameter ß, i.e. 

(4.37) 

As demonstrated later, the inclusion of the cubic term is necessary if the approximation should 
be accurate up to and including the quadratic term. 

The partial derivatives in Eq.(4.35) and (4.36) are expressed in terms of the polynomial 
presentation (4.37) (Appendix (3)). Further, the power law term s n and the exponential term 

ee are approximated in terms of powers of ß. Finally all terms in the differential equation 
(4.35) are collected according to powers of ß which yields (Appendix (3)) 

ß0 
Do + ß 1 

D1 + ß2 
Dz + ß3 

D3 = 0. 

Following the "Fundamental Theorem of Perturbation Theory" (Simmonds & Mann (1986, 
[4.7])), for small and positive but otherwise arbitrary values of ß the terms D; must vanish 
identically. This yields the following system of differential equations: 

(4.38) 

where 
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====== 

suchthat 

Ü<n:::;1. 

The right sides R;, i=1,2,3, aredifferential operators defined as follows: 

1 0 0 
R1 = ---2 (2 11' e~11 + 11" e 11 ) 

(f.l') 

======= 

1 I I 0 2 1 1(1)
2 

RR2 = ---2 (2 11' e~7J + 11" e7J+e~~)- QR -(1-n) 0 e 
(11') 2 e 

0 

R3 =RR3 -~ ee+- e r eE (I 2 1 (I )3 J 
(11') 6 
============ 

1 2 2 I 
RR3 = ---2 (2 11' e~7J + 11" e7J+e~~)­

(11') 

I 2 
1 ee 

-Qj 2 (1-n) 20 
e 

(4.39) 

(4.40) 

(4.41) 

We show in Appendix (3) that the underlined terms in (4.39)-(4.41) represent the contribution 
due to the cross-section reduction. A similar procedure, applied to the two boundary 
conditions (4.36), gives 
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B.C. I (~, 1J -7 oo) B.C. II (~, 1J = 0) 

{JI: 
0 

J.l'e 11 =0 

ßo: 
0 0 I 
E-?Eoo e ~ + J.l' E 11 = 0 

ßl: 
I I 2 
e-70 e ~ + J.l' e 11 = 0 (4.42) 

ß2: 
2 2 3 
e-70 e ~ + J.l' e 11 = 0 

ß3: 
3 3 
e-70 (e~ = 0). 

Note that the condition B.C.II for ß 3 is not accurate since 41
h order terms in the development 

of e are not included; it will be seen that this condition is not required. 
Several comments concerning the structure of this system of differential equations are in 

place: 

• The equations of this system are ordinary differential equations in the 1J variable. With 
respect to their integration the ~-variable is silent. This implies that the integration 
constants of these 2nd order differential equations will be functions of ~ which need to be 
determined like J.l(~. For their determination, additional conditions have tobe set up. 

• This system appears to be almost completely uncoupled, however, it must be solved in 
successive steps since the right side of the kth equation depends on the solution of the 
previous differential equations. 

0 
• The non-linearity is restricted to the very first equation governing the 01

h approximation e . 
A solution for this differential equation DEQ(O) and its boundary conditions is obtained if 
one sets 

0 0 

then e n= rR(~ e 8 

0 
which implies that e is simply the classical solution without gradient effects 

wi th lim ec = e.", • 
~~00 

The results (4.44) and (4.45) imply that the differential operators R; simplify to 
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(4.44) 

(4.45) 

(4.46) 



0 
0 I - 0 I 0 I (e )" 1 I 2 R2(e ,e, Jl., rR) = R2(e ,e, Jl.) =RR2(e ,e, Jl.)- --

2 
-(e) 

(J.l') 2 
========= 

012 -012 
R3 (e, e, e, Jl., rR) = R3 (e, e, e, Jl.) = 

0 I 2 (~)n (I 2 1(1)3) = RR3 ( e , e , e , p,) - --
2 

e e + - e . 
(Jl.') 6 
--------------------------

(4.47) 

• From the structure of the differential equations (4.38)2+4 a peculiar property becomes 
evident: as long as 

I 2 3 
the homogeneaus solutions for e , e , e are exponential functions in ~ which reflects the 
result of the linear small strain result, section (3.1.3). With (4.40), i.e. 

0<n:5:1, 

0 
.Q 2 may vanish if the limiting condition (4.17) is reached, i.e. e = n, and the yet unknown 

0 
function 11-' is non-zero. If e >n , the stress and strain state is in the descending branch of 

the engineering stress-strain curve where the geometric softening exceeds the strain 

hardening; here possibly .Q 2 <0 provided ( 11-' )2>0. This would imply that the homogeneaus 
I 2 3 

solutions for the perturbations e , e , e become oscillatory. In the following, the analysis is 
0 

restricted to the ascending branch of the stress-strain curve, e < n. 

• A corresponding set of equations can be formulated when the cross-section reduction is 
entirely ignored. This simplified problern is discussed in section (4.3.3). 

4.3.2 Solution of the Perturbation Equations in the Ascending Stress-Strain 
Branch (dcrR/dsR>O) 

0 
As shown above, the 01

h approximation e(~) is equivalent to the classical Solution 

(4.48) 
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As a consequence, the right-hand side R1 of the DEQ(1) vanishes identically 

and the DEQ(l) takes the simple form 

(4.49) 

with Q 2 >0. Its general solution is 

(4.50) 

with 

Q(~)=[-1 (n -1)~~~]112 
(J1')2 ~ 

(4.51) 

The associated boundary condition for 1']-7= requires 

(4.52) 

and (4.50) reduces to 

(4.53) 

where the functions B1 (~ andQ(~) remain tobe determined. With 

} (4.54) 

the right-hand side R2, Eq.(4.47)z, is given by 
0 

1 I I 0 2 1 1 (I) 
2 ( c ) 11 

1 I 2 R2=---2 (2f.lt:;11 +J1"t: 11 +t:;;)- .Q? -(1-n) 0 t: ---
2 
-(t:) = 

(}11
) 2 c (J1') 2 

= a + (a + a 1']) e-!211 + [a - a)n !B2 J e-2!211 
0 I I 2 (J1') 2 2 I 

--------------

(4.55) 
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where a
0

, ai, aj, a2 as weil as .Q and.QR are functions of g: 

(4.56) 

With 

0 [ J 0 
* ( C )II 1 2 1 C II 1 2 

a 2 (g) =a2 ---2 
-BI =- n(l-n)-

0
-+ 1 --2 -

2 
BI 

~] __ :__ ( c) 2 = (Jl') 
-------

(4.57) 

we get the compact formulation 

(4.58) 

The solution of the DEQ(2), Eq.(4.38)3, consists of a homogeneaus and a particular solution 

2 2 2 
E ( g' 17) = E hom ( g, 17) + E part ( g, 17) · (4.59) 

The homogeneaus part is 

(4.60) 

For the particular solution the following formulation is used 

(4.61) 

wherefand h have tobe determined. The details are given in Appendix (4) and the result is 
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with 

äj 
fz(~= --

4.Q 

a * 
ho(~=~. 

3.Q 

(4.62) 

(4.63) 

Combining the homogeneaus and the particular solution and observing the boundary 
condition for 1J~oo, Eq.(4.42)4, the exponential terms vanish since 

lim 1Je-n1J = 0, 
1]~"" 

lim 172 e -.!21] = 0 
1]~"" 

except A2(~ en1J; thus, it is required that 

and the solution (4.59) reduces to 

(4.64) 

(4.65) 

k 
It is now required that the various perturbation functions E , k=0,1,2, ... are restricted by the 
condition (Nayfeh (1973, [4.3])) 

<oo (4.66) 

for all ~ and 1]. This condition expresses the fact that the series expansion (4.37) is regular. 
Otherwise there may be ~. 1J - regimes where the higher order perturbation terms become 

2 I 
larger than the smaller order terms, even for small values of ß. In order that EIE be bounded 

for all 1], the coefficients of 17 e -.!21] and 172 e -2.!21J must vanish ( removal of secular terms, 
Holmes (1995, [4.6])); this yields 

} (4.67) 
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2 I 
Further, the ratio s I s gives also the term (a

0 
I .Q 2 B1) e.a17 which must be bounded: 

(4.68) 

We come to this condition later. From Eq.(4.67) we have 

} (4.69) 

This is a set of differential equations for B1 and f.1 where Q is defined by (4.40). Since only 
.Q Br#O is of interest, (4.69)z gives 

.Q '=0. (4.70) 

Thus 

.Q = ±j(P = const. 'i= 0 ; (4.71) 

the constanup has to be suitably adjusted. Observing (4.39), the function Jl{~ is then the 

integral of 

(4.72) 

(4.73) 

where the conditions 

).l(O) = 0 and J.l ~ 0 (4.74) 

are implied. From (4.69)1 one gets 

(4.75) 

The general solution, derived in Appendix (5), is 
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(4.76) 

I 
and the integration constant c is determined from the boundary condition for E at ~. 1']=0, 
Eq.(4.42). This yields 

( 

0 J 114 BI(~) = D c(~~~-~~ 
n- c(~) 

where 

( 

0 J 1/4 1-11 0 
114 E 

D = ccp = --o ( E e) o . 
n-E 0 

I 

Thus, the first order perturbation function c(~, 77) is 

Since 

0 E 1-11 c(~) 1-11 _ 

( 

0 J 114 ( 0 J 114 
=(E~)o --o o e #Tl. 

0 
lim E = E""' , 
~~""' 

n- E o n- c(~) 

I 

(4.77) 

(4.78) 

(4.79) 

the function B 1 (~ is bounded everywhere and E (~,1']) satisfies the boundary condition at 
~,1']----)oo, Eq.(4.42). Further, the condition (4.68), observing (4.56)1, (4.72), and (4.76), is 
satisfied since 

I 
This completes the determination of E (~,1']), except that the constantcp, which effects p,(~ 

and thus 1']=)1/ß, has to be defined. However, an explicit determination is not yet necessary 

since .j{P cancels in the exponential term of (4.79) when (4.73) is accounted for: 
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f.l(~) 1 ; n o 

[[ ) ]

1/2 

fon = fop = ß[ ~ -1 e
11 

dr. (4.80) 

2 
As an intermediate result we note the reduced form of the perturbation function t: (~,17) 

(4.81) 

For a complete description of the logarithmic strain distribution 

0 I 2 
f = e (~ + ßt: (~,1]) + ~ E (~,1]) 

up to terms quadratic in ß the function B2( ~ remains to be determined. This is done 
analogously to the determination of B1 (~, i.e. we suppress the secular tenns in the 

3 
perturbation solution t: (~,1]). Therefore, the general solution of DEQ(3), Eq.(4.38)4, is derived 
in Appendix (6): 

} (4.82) 

with 

(4.83) 

and Y;. i=l,2,3 given by (A6.12). Requiring 

(i) 
-<oo 
(~) 

V~,1J' (4.84) 

gives u 1 (~=0 or 

n(l- n) 1 ao B = 0 (~)' += 'P 1-. 
(4.85) 

This is a linear first order differential equation for B2( ~ which takes the following lucid form 
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I 1 1111 
B2 +--B2 =S 

2 111 

where the right-hand side is a known function given by 

1 1 1 " 1 1 s 11 n(l- n) ao 
0 ( J S(~ = z fo 111 Bt - 2 fo/1 (~)2 +! q; Bt. 

(4.86) 

(4.87) 

Note that this is theinhomogeneaus counterpart of the differential equation for B1, Eq.(4.75), 
and a similar integration technique as in Appendix (5) can be applied. This is done in 
Appendix (7). The solution of (4.86) is, in general terms, 

1 Je (v)o 
B2(~=- vSdr+-(B2)o 

V 0 V 
(4.88) 

where 

[ ]

114 

0 

1 
112 1 n- s 

V = (I' ) = q> ( ~r , (4.89) 

and 

1 1 1 [7 ...(0) 4(0)2j (0 )2 (B2)o=B2(0)= 4 0 2 0 II 3n(1-n)+.\c o+3 c 0 ce 0 
(
n-(s)0 J (s) ==== ==== 

0 

(4.90) 

is the boundary value of B2 at ~=0 which is determined from the boundary condition B.C.II, 
Eq.(4.42)3 (see Appendix(?)). Note that the parametertp is not contained in (4.90) and 

inspection of the other terms on the right-hand side of (4.88) shows thattp cancels out. 
0 

The integration of the integral in (4.88) requires s, which is equivalent to the classical 
solution Be, to be known explicitly. Only approximate analytical solutions, limited to either 
small or large strains have been obtained (section 4.2). Provided a solution was available, it 
appears that an integration can be done only numerically. 

The approximate perturbation solution for the logarithmic strain takes now the 
following form 
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with 

~1] = ~J.l(~) =_!_J ~-t: dT. 
g [ 

0]112 

ß ß 0 t: 1-n 
(4.92) 

The pararneter ({J cancels out in (4.91). 
It should be pointed out that the derived approxirnate solution for the logarithrnic strain 

distribution does not explicitly depend on the distribution of the cross-section area; this is 
0 

solely contained in the function t: =t:c and the obtained solution is applicable to any srnooth 
cross-section variation in the region O<~<oo satisfying the appropriate properties (~~oo). 

0 
Without solving Eq.(4.13) for t:c=t: and determining the integral in (4.88), an irnportant 

result can be obtained frorn (4.91). This is the rnaxirnurn strain at the rninirnurn cross-section. 
This analysis and its discussion are postponed to Section 4.4.2. 

In cornparison to the linear problern analyzed in section (3) further insight is obtained by 
reducing the non-linear problern to srnall strains, i.e. ignoring the cross-section reduction. This 
allows to obtain explicit solutions, which are derived in the following section. 

4.3.3 Solution for Power Law Hardening without Cross-Section Reduction 

The restriction to srnall strains irnplies that the cross-section reduction due to the volurne 
conserving plastic deformation is ignored. Then the Cauchy stress and the logarithrnic strain 
are approxirnated by the engineering stress and engineering strain, O'R and t:R, respectively. For 
reasons of sirnplicity the subscript (R) of the engineering strain is dropped in the following. 

The classical solution, denoted by t:c. follows frorn (4.13) 

(4.93) 

where 

(4.94) 

is the strain at the rninirnurn cross-section and 

(4.95) 

is related to the inverse of the cross-section area variation along the axis of the rod. Naturally, 
the geornetric instability cannot be described by this sirnplified rnodel. 

The differential equation ( 4. 7) reduces to 
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(4.96) 

The boundary conditions are given by (4.9) with 

(4.97) 

An analytical solution is not feasible, but again the method of multiple scales can be used to 
obtain an asymptotic solution for small values of ß. In fact, this small strain case is contained 
in the previous analysis and, clearly, advantage is taken from this property by ignoring all 
underlined tenns, which are due to the exponential term ee. An abridged description is given 
in the following. 

The system of perturbation equations (4.38) reduces to 

0 
0 0 C II ß : DEQ(O) =} CTJTI 

(J.-t/)2 

(4.98) 

where !2j is given by (4.39)2 and the differential operators R1, RR2, RR3 are defined by (4.41). 
Also we use the notation J.lR instead of J.l. 

Evidently, the corresponding boundary conditions are given by (4.42). The oth 

0 
approximation s is now 

(4.99) 

For later purposes the first and second derivative are cited here 

0 . 1 1-11 1 1-11 

s~ = (cc)o - g 11 g~ = (cc)o- g 11 (a- g) 
n n } (4.100) 

where the property of the derivative g~ , 

dg 
g~ = dg = (a-g)' (4.101) 
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I 
is accounted for. Further, the first order perturbation function e ( ~. 1]) is 

(4.102) 

Following the procedure in section (4.3.2), the removal of secular terms of the particular 
2 

solution of the 2nd order perturbation function e yields now 

.QR = + .j{P = const. (4.103) 

which implies, observing (4.39)2, 

[ ]

112 

, 1 n 
f.lR = + --0-

({J eI-n 

and (4.104) 

Further, as previously with the integration constant c, 

(4.105) 

and explicitly 

(4.106) 

where 

( 
0 Jl/4 I-n 

114 e o 
D= c({J = -n- o (e~)o; (4.107) 

I 
here the boundary condition for e at ~.1] =0, Eq.(4.42), is accounted for. Thus, the general 

I 
result (4.79) for the first order perturbation function e (~,1]) simplifies to 
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Observing (4.99), (4.100)I, and 

o 1-a 
(e~ )o = -(t:c)o --, 

n 

Eq.(4.108) takes the following explicit form 

(4.108) 

(4.109) 

(4.110) 

. 2 
The intermediate result for the 2nd order perturbation function t: (~,1]), Eq.(4.81), reads now 

(4.111) 

where a0(~ and a2(~ are given by (4.56)I&4. The suppression of the secular term in the 
3 

particular solution of t: (~,17) yields a differential equation for B2, formally the same as (4.86): 

here the right-hand side (SR) is slightly different from (4.87) in the second term 

SR(J=\ = _!__1 __ 1_ B " _ _!__1_ ~ n ( n(1- n) J a 0 B . 
~) 2 c I I 2 c I 0 I 

vCf' J.lR vCf' J.lR (t:) 2 Cf' 

Recalling Eq.(4.88), the solution of (4.112) is 

where the VR is now defined by 

1 112 1 n 

( J

l/4 

V R = (J.lR ) = --0 - ' 
cp eI-n 

112 

(v R )o = (J.t/)o 

and with (4.90) (see also Appendix (7), Eq.(A7.12)) 
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(4.113) 

(4.114) 

(4.115) 



1(1)
2 

1 [7 ](0 )2 CB2)o = B2(0) =- - - 0- -n(l- n) s~ . 
4 n (s)n 3 o 

0 

(4.116) 

0 
The explicit determination of J.lR(~ and B2(~ requires definite knowledge of s (~=Sc(~. For 
the exponential cross-section distribution (4.4) and odd integer values of m=lln analytical 
solutions for J.lR(~ are obtained as shown in Appendix (8). The result is 

(4.117) 

with 

1 1-n 
.v=2 cm-t) = ~ = o, 1, 2, .... 

The integral functions G(g( ~;p) are listed in Table A8.2; they are valid only for the specific 
cross-section variation ( 4.95). 

The determination of the function B2(~, according to the integral representation (4.114), 
can be done analytically for arbitrary hardening exponents n and for the exponentially tapered 
rod when the cross-section area varies according to g(~-1 • The essential steps of this lengthy 
procedure are contained in Appendix (9). The result is for nt:1/3 (otherwise see Appendix 9) 

1-11 ( 1-311) 2-n 1-n - 1 17-21n -B2(~ = (s ) (1-a)- g(~) 4n {- [a 1- g(~) 2n -
c o 11

3 16 1- 3n 

-~ 1-g(~)z,; ] + -(1-a)}. 17 ( I-n) 7 
1-n 12 

(4.118) 

With B2(~ given by (4.118) the intermediate result for the 2nd order perturbation function 
2 
s (~,1}), Eq.(4.111), is almost completely defined when aJ ({J and a2/3 ({J are given. With 

(4.56)1&4, (4.99), and (4.100)2 one obtains 

and 

1 2-311 

=-(Sc )~-n -
3 

g-11- (g-a) (g-a + na) 
n 
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a2 ( ~) 1 2 1 1 2 ( ) 2_11 1- n 1 2 - l+ll 
--= -- .Q? -(1-n)-0-BI (~) =- ec 

0 
- 3--(1-a) g 211 

3cp 3q> 2 e(~) 11 6 
(4.120) 

Finally we note, accounting for (4.117), 

f.lR (~) 1 11 

( )

112 

.fP1J = .J(P ß = ß (t:Jb-11 G(g(~;p). (4.121) 

Eq. (4.99), (4.108) or (4.110) and (4.111) together with (4.118) to (4.121) define the 
asymptotic perturbation solution 

0 I 2 
e= i(~;ß) = e(~,1J;ß)= e(~+ß e(~,1J)+ß 2 e(~,1J) (4.122) 

for the strain distribution in the exponentially tapered tensile rod, It is noted again that the 
integration constant cp cancels out in all terms. Thus, any finite value, preferably the value 

"one", may be attributed to cp . 

Thus 

For the special case 11=1 we obtain 

: (~,1]) =-ao(~) = (ec)o(g-a) 
q> 

e= (ec)o [g(~- ß(1-a) e-l;fß + ~(g(~-a)] = 

(4.123) 

(4.124) 

For the linear case (n=1) we can benefit from the luxury of the existence of the exact solution, 
Eq.(3.17). It is found that the asymptotic solution (4.124) and the exact solution agree exactly 
up to and including terms quadratic in ß. 
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4.4 Evaluation 

4.4.1 Second Order Perturbation Solution for Power Law HardeDing 
without Cross-Section Reduction 

To begin with attention is put to that part of the exponentially tapered rod where the non­
classical 2nd order gradient term will have the largest effect, i.e. at the minimum cross-section 
where the maximum axial strain is produced and where gradients are largest. At ~ = 0, 1J = 0 
the perturbation solution (4.122) reads 

0 I 2 
c(O,O) = E (0) + ß E (0,0) + ß2 

E (0,0) = E0 • (4.125) 

With (4.99), (4.108) and (4.111) as weil as (4.103), (4.106), (4.116), (4.119) and (4.120) we 
have 

0 
E (0) = Ec(O) = Eco 

I E 1-n 0 l 0 Jl/2 
E (0,0) = B1(0) = -n-

0 

( q ), 

(4.126) 
(

0)!-n 

1 ( 1 )
2 

1 [7 J (o )2 
E 

0 (0 ) =- - -
0
- -n(l-n) E~ + c~~ -

4 n (s )~ 3 o n o 

(
0)!-n 

1 1 c 0 (0 )2 
- -(1-n)-

0
- E~ 

6 (s )o n o 

a) ~-n ( 0 ) 5 1 - n 1 ( 0 )
2 

= E~~ + ----- s~ . 
n 0 12 n a)~ 0 

Then the relative strain at the minimum cross-section is defined by the strain ratio E(O,O)/ Eco 

and is given by 

[ l
l/2 

c o s(O,O) 1 ß 1 ( o ) -= = + E~ + 
c c (0)1+11 

CO CO n C O 0 

+ß2[ o1 l{(~~~) (~)o+2_(1-n/~~)2}. 
( )

l+n 0 12 'l 0 n E 0 

(4.127) 
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0 
Here it should be recalled that the 01

h order approximation c (~ is equal to the classical 
Solution cc(~, i.e. 

(4.128) 

Recalling the analysis, it is noted that the result (4.127) is generallyvalid independent of the 
specific cross-section variation along the rod, except obeying the symmetry with respect to 
~=0 and uniformity for X~oo. 

It is noteworthy that the relative strain is determined, among others, by the 1st and not 
only by the 2nd order spatial derivative of the classical solution cc(~ at ~=0. lf the cross­
section variation AR(~ is smooth at ~=0, i.e. 

(A~)~=O =0, (4.129) 

then 

(4.130) 

and the termlinear in the parameter ß dropsout in Eq.(4.127). Thus, the relative strain and the 
2nd order strain gradient contribution is only quadratically depending on the length ratio ß: 

!_g_ = c(O,O) = 1 + ßz[ o1 l+n] {(~~~) a)o} 
cco cco n(c )o o 

(
0 ) c~~ 

= 1 + ß2 0 0 . 

n(c)~ 
(4.131) 

This reflects the quadratic dependence of the constitutive equation ( 4.1) on the intemal length 
l;. Thus, a 1st order dependence of the relative strain on ß is induced only by the non­
smoothness of the stress-distribution. For the case of a smoothly tapered rod with a neck at 

0 
~=0, the classical strain distribution Ec(~ =c (~ has a relative maximum at ~=0 suchthat 

Thus, Eq.(4.131) reads 

!_g_ = c(O,O) = 1 _ ßzl(cc~~ )ol 
cro cro nc! 

(4.132) 
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obviously the 2nd order strain gradient term implies a r~QllfY.9Q of the maximum strain e(O,O) 
of the non-classical solution. 

The expression (4.132) can be put in a more lucid form, which allows further 
interpretation and easy determination of the internallength scale l; using two scaled thought­
experiments with smoothly necked specimens. 

With (4.128) one obtains 

e): = - - A -(l+n)tn A' = a R _ ___!i_ 0 { p )1/n 1 { )l/n 1 A' 
"' K n R R K n AR ' 

(4.133) 

where 

} (4.134) 

then 

~ _ {!_)1/n .!..{A-(I+n)ln AN _1+n A-(1+2n)ln (A' )2} 
gg - K R R R R n n 

= {aR )Itn _!_{A; -~(A~ )2}' 
K n AR n AR 

(4.135) 

where 

With (4.129) one gets 

(4.136) 

where D/2 is the radius of the circular rod. 
The radius Ro of curvature of the meridional profile at the minimum section (~=0) is 

given by 

(4.137) 
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where (4.6) is observed. Thus 

*)2 
(A"') =nD ~ 

R 0 0 R 
0 

and with (4.128), (4.134) and (4.135) 

(4.138) 

Finally (4.132) takes the form 

(4.139) 

here aRo is the stress at the minimum cross-section. Eq.(4.139) shows that the relative strain 
reduction due to the 2nd order strain gradient plasticity, given by 

= (e )1-n ~(lLl!J__) 
CO 2D R' n o o 

(4.140) 

depends non-linearly on the stress Ievel aRo or the classical strain Ievel eco and is proportional 
to the length ratios l;/D0 and l;/R0 • Do and Ro represent the minimum characteristic dimensions 
of the rod. Thus, the result (4.140) demonstrates that the intemallength scale l; in relation to 
the minimum geometricallength scales determines the gradient effect. Here the ratio l;/R0 is of 
special importance since for very uniform necks, i.e. RJDo very large, the gradient effect 
vanishes. 
From Eq.(4.140) the influence of the increasing non-linearity, i.e. n ~ 0, can be derived under 
different assumptions. Decreasing the hardening exponent n but holding all other parameters 
constant, especially the intermediate variable 'non-classical strain' eco = const., implies that 
the normalized stress aRjK increases according to 

aRo n 
K=eco ' eco= const. 

With this assumption and depending on the strain Ievel eco• the relative strain reduction 
(4.140)z decreases and after passing through a minimum increases beyond bounds when the 
hardening exponent approaches very small values. 
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On the other hand, if not the strain Eco but the nominal stress CJRo is held constant, i.e. 
aR0=const., a quantity which really can be controlled, then Eq.(4.140)1 applies. Fig.4.1 shows 
the relative strain reduction versus n; it demonstrates the presence of a maximum for the 
relative strain reduction (or minimum for the relative strain) which suggests the interaction of 
two opposing effects. An interpretation can be given as follows. Eq.(4.132) can be 
transformed to read 

(4.141) 

With (4.128) and (4.135) the magnitude of normalized 2"d order derivative of the 
dassical strain for a smooth neck is defined as 

(4.142) 

This quantity is a relative measure for the non-uniformity of the classical strain distribution 
around g = 0; it depends only on the local geometry and the hardening exponent n but not on 
the strain or load level. For decreasing n-value it increases monotonously beyond bounds at n 
= 0. This implies that a 'relative localization' of the plastic deformation occurs with 
decreasing hardening exponent. 

The term 1/n in Eq.(4.141) has a similar dependence on n as the normalized 2"d order 

strain gradient j(ccgg )
0 
I Ecol· The strain or stress dependence is solely contained in the term 

1-n 

1-n = ( (j Ro )--;-
cco ' K 

(j 
_.ß2__ < 1· 
K ' 

its dependence on the hardening exponent n is determined whether the strain Eco is held 
constant or whether the normalized stress aRjK is fixed. In the first case it decreases 
monotonously with decreasing n and it remains between the finite bounds 1 and Eco· In the 
second case the term 

(j 
_.ß2__ = const. < 1 

K 

also decreases monotonously with decreasing n within the bounds 1 and 0. This is contrary to 
the dependency of the other terms in Eq.(4.141) and explains the existence of an extremum in 
the relative strain reduction when the hardening exponent n is changed. Under the constant 
strain assumption a minimum for the relative strain reduction is obtained but for the constant 
stress case a maximum is found. 
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We consider two geometrically similar specimens of different sizes made of the same 
material under scaled loading. The large specimen is denoted by the subscript p (prototype) 
and the small specimen by m (model). The geometric scale factor is 

and the scaling of the loading implies 

(4.143) 

Then, taking the ratio of ( 4.139) for specimen p and m, this yields 

(4.144) 

We consider the quantities [.s(O,O)]P and [e(0,0)]
111 

tobe measured with the property 

[e(O,O)]P > [.s(0,0)]
111 

• 

Solving (4.142) for (Ii, one gets 

(4.145) 

In principle this equation represents a possibility to determine the internallength l; using two 
scaled tension experiments of smoothly necked specimens in the range of small strains when 
the cross-section reduction due to plastic deformation is still small. If this gradient theory is 
truly the appropriate model to describe the observed size effect, then another pair of 
differently sized tension specimens of the samematerial should yield the same internallength 
l;. This is a necessary check of the usefulness of the model. 

Returning to the exponentially tapered rod with a sharp neck, the classical solution for 
the strain distribution is given by (4.93) where (4.95) defines g(~. With (4.99), (4.100) and 
g(0)=1 one gets 
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(4.146) 

(
o ) t: { 1-n } t:;4 = _E!_ --(1-a)2 + (1-a) 

o n n 

and (4.127) takes the following explicit form 

( 

1-n )112 
C0 =t:(0,0)= 1-ßt:co 1-a+ 
eoo eoo n n 

+ ß2 (t:~~n Y1-a)
2 

[17 (1-n)+-n J . 
n } n 12 1-a 

(4.147) 

For the linear case n=1 the relative strain (4.147) simplifies considerably: 

t: 
-

0 =1- ß(1-a) + ß 2(1-a). (4.148) 
t:co 

The exact ratio for n=1 is given by (3.22) 

(4.149) 

which is, in contrast to the perturbation solution (4.148), a monotonously decreasing function 
of ß for all values ß < 1. The graphs of the approximate and the exact solution for n=1 are 
shown in Fig.4.2 for the three values of a = 0.0625, 0.25 and 0.5625. Agreement within less 
than 10% overestimation is found up to ß = 0.275. For larger values of ß the parabolic 
character of the asymptotic solution becomes dominant and strongly erroneous: after passing a 
minimum at ß = 0.5 the relative strain of the asymptotic solution increases with ß. 

It is evident that for sufficiently small values of ß the dominant term in (4.147) and 
(4.148) is linear in ß. Its negative sign signals a decrease of the maximum strain at ~=0. This 
implies an apparent strengthening of a specimen when its size is reduced: for large sizes ß 
tends to 'zero' and the maximum strain e(O,O) approaches t:co• the classical solution; for a 
reduced size, such that ß is finite but small, e(O,O) becomes less than t:co· It is noteworthy that 
the relative strain t:(O,O)It:co of the fully linear problem, Eq.(4.148) or (4.149), does not depend 
on the Ioad Ievel or equivalently on the classical strain Ievel Eco whereas the consideration of 
the power law strain hardening (n<1) induces a strong dependence on the loading Ievel aRo. 
possibly defined by t:c0 , Eq.(4.128), and on the power law exponent n, Eq.(4.147). 

The influence of increasing non-linearity, i.e. n -7 0, on the relative strain t:(O,O)It:co can 
be madeevident as follows. The general perturbation solution (4.127) shows that this ratio 
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does not only depend on the classical strain Ievel Bco but also on the 151 and 2nd order spatial 
derivatives (Beg ) 0 and (Bcgg ) 0 at ~=0. Increasing the degree of non-linearity by decreasing n 

to small values but simultaneously increasing the load Ievel O'Ro such that 

0 ( )1/n 
Bco = (s )0 = a:o = const. (]Ro 1 --< K , 

yields an increase of the magnitude of the 151 and 2nd order derivative, Eq.(4.133h and 
(4.135)2. This corresponds to a shift of the plastic deformation distribution towards the center 
of the tension rod at ~=0. This localization of the deformation, generated by a decreased 
hardening exponent n and an increased stress O'Ro I K such that Bc0 =const., increases the non­
uniformity of the strain distribution which enhances the strain gradient influence. The 
localization as well as the intensified gradient effect are illustrated in Fig.4.3a & b. The 
influence of the gradient term is more readily seen in Fig.4.4a & b; obviously it is restricted to 
a boundary layer at ~=0 for small values of ß. These graphs are based on the full perturbation 
solution Eq.(4.122) together with the integral function G(g(~; p) (Table A8.2). 

To illustrate the influence of the various quantities, the relative strain s(O,O)Ieco is 
plotted versus the normalized strain gradient coefficient ß (ß :=:; 0.15) for the exponents n=1, 
1/3, 1/5, 119, 1/13 and for fixed values of the classical strain Ievel, i.e. Bco=0.01, 0.05, 0.1, 
0.15, 0.3 and a = 0.81, 0.64, 0.5625, 0.25, the initial cross section ratio ARJARoo (Fig.4.5a & 
b). For the variation of ß in the interval 0 :=:; ß :=:; 0.15 the parahohe character of the curves is 
seen for some of the parameters and here the 2nd order approximate perturbation solution is 
clearly not sufficiently accurate. Therefore, expanded graphs with ß restricted to smaller 
values in the interval 0 :=:; ß :=:; 0.04 arealso shown (Fig.4.6a & b). Fig.4.5 & 4.6 also reveal that 
the increase of the parameters Bc0 , n and a reduce the range of ß-values where the quadratic 
perturbation solution is an acceptable approximation. 

From these figures the following trends are obvious: increasing the degree of non­
linearity (decrease of n), with the strain Bco and parameters held constant or with an increase of 
the strain Ievel Bco as well as the degree of tapering (decrease of a), the sensitivity 'S' of the 
strain ratio c(O,O)Isco with respect to ß rises. Mathematically 'S' is simply given by the 
magnitude of the derivative 

S := ld[c(O,O)/ccoll [ 1 ]

112

(
0 J 

dß ß~O = n(~)~+n Bg o 

1-n 1-n 

=-1-[(~)0 ]2 (1-a) =-1-(aRo)~ (1-a) , 
n112 n n112 K n 

(4.150) 
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where the right-hand sides follow from Eq.(4.127) and (4.147). A more detailed analysis laid 
open that for small constant values of t:co in Eq.(4.150)4 the sensitivity S first decreases, passes 
through a minimum, and then increases beyond bounds for small n-values when the hardening 
exponent n is decreased. lf, however, n is decreased and the stress Ievel aRJK and the tapering 
a are held constant, then Eq.(4.150)5 applies. Fig.4.7 shows a plot of S versus n (aRJK = 0.3, 
0.5, 0.7 and a = 0.0625) revealing a maximum of the sensitivity; this is qualitatively similar to 
n-dependence of the relative strain reduction of a tensile specimen with a smooth neck 
(Fig.4.1). Also the explanation, relating this to two opposing effects, is similar: the normalized 
strain gradient, obtained from Eq.(4.133), 

is independent of the strain or stress Ievel and increases with decreasing hardening exponent 
n. This increase represents a 'relative localization' of the plastic deformation. On the other 
hand the term 

a 
__&!_ = const. < 1 

K 

decreases with decreasing n under constant normalized stress aRJK since t:co diminishes 
towards zero. These opposing effects are responsible for the maximum of the sensitivity. 
Since ßS is the dominant term determining the relative strain, this peculiar behavior is also 
seen in the dependence of the relative strain on the hardening exponent for aRJK = const. 

The validity of the graphs in Fig.4.5, 4.6 & 4. 7 is actually restricted to small stress Ievels 
or strains t:co since the geometric non-linearity due to the reduction of the cross-section by the 
plastic deformation is not accounted for. Therefore, the graphs for t:c0=0.15 and 0.3, which 
correspond to 15% and 30% strain at g=O of the classical strain distribution, have a rather 
limited validity and require an improved model. 

It should be recalled that the normalized strain gradient parameter ß=l;IL * is inversely 
proportional to a characteristic geometric dimension L *, the transition length of the specimen. 
For geometrically similar specimens this is a measure for the specimen size. Thus, Fig.4.5 & 
4.6 map the size influence on the relative strain: very large specimens correspond to ß::: 0 and 
thus e(O,O)It:co::: 1; decreasing the size considerably, a noticeable decrease of the relative strain 
is seen. For example, if a=0.56255

, n=l/96
, ß=0.004 and ec0 =0.05 one gets from Fig.4.6b 

about t:(O,O)Iec0 =0.9883; decreasing the specimen size in all dimensions by a factor of 10 and 
scaling the loading such that the §!_r~§LQ'Ro.J~m.ajnL~Q.l!.SJ~n! (or equivalently holding eco 
constant), one obtains ß = 0.04 and the corresponding relative strain is e(O,O)Iec0 =0.898. Thus, 
the maximum strain, which is affected by 2nd order gradient plasticity, reduces by about 

0.9883- 0.898 
--0-.9-8-83--100 = 9'1%. 

5 a = 0.64 corresponds to a 20% difference between the maximum and minimum diameter of the specimen. 
6 n=l/9 corresponds roughly to the hardening exponent of the ferritic reactor vessel steel A533-B at 93°C (see 

Table 5.2). 
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The 1st order approximation Sß, based on the sensitivity S, Eq.(4.148), yields a value of 
11.37%. 

Obviously, larger effects can be obtained by an increase of the stress CJRo or the strain 
Eco• respectively and by reducing a. From Fig.4.5a & b one estimates that the difference in the 
maximum strains may possibly become about 20%. 

4.4.2 Second Order Perturbation Solution for Power Law Hardening with 
Cross-Section Reduction: The Fully Non-Linear Problem 

We recall that the distribution of the classical logarithmic strain Ec(g) is the solution of 
Eq.(4.13), i.e. 

(4.151) 

it corresponds to the 01
h order approximation of the perturbation solution: 

(4.152) 

However, an explicit analytical representation of Ec(g) in terms of CJR(g) is not available. The 
approximate perturbation solution for the non-classicallogarithmic strain distribution is given 
by (4.91) which requires the integration of Eq.(4.73) and (4.88) to get the ,u(g)-function and 
the B2(g)-function. In general this can be done only numerically. It is not the intention in this 
report to get involved into this numerical analysis to obtain the actual strain distribution in the 
boundary layer. Instead, attention is put to the most important question, i.e. the gradient effect 
on the maximum strain at g=O in relation to the maximum classical strain Eco· This 
information can be obtained from the results of Section 4.3.2 without the mentioned 
integrations as follows. 

From (4.91) one gets at ;=o, 1J=O 

0 I 2 
c:(O,O) = c: (0) + ß c: (0,0) + ß~ c; (0,0) = Eo • (4.153) 

With (4.79) and (4.81) one obtains 

0 
e (0) = Ec(O) = Eco 

(4.154) 
[ ]

1/2 
0 

1 e~n 0 

e (0,0) = B1(0) = n _ ~ 
0 

( eo ), 

~ (0,0) = B2(0) - ao (0) + a; (0) 
({J 3cp 

where, observing (4.90), (4.56)1 (4.57) and (4.72), 
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(4.155) 

a;(o) = __ 1 [(1-n) + ~] _!_(.Q 2B12 ) 

3({J 3({J ~ n 2 R 
0 

= 0 

and with (4.39)z and (4.72) one finds 

{ 2) ln (~)n J [ n ~ l-n ] = n({J 
\.QR 0 = 0-( ')2 = ~--0 ({J 0 

e 11 
0 

t: 111 n-t: n-(t:)0 
= 0 

(4.156) 

Inserting (4.155) and (4.156) into (4.154)3 yields 

(O)t-n l J-2 2 e 0 0 0 0 -n 0 2 5 e(O,O)= 0 (egg) + n-(t:)0 (e) (eg) [
12

n(1-n)+ 
n-(t:)o o === o o 

+ n a)o+_!_(~)~J (4.157) 
4 6 
===== == 

and the relative strain is 

+ ß'[[ n-~ ]<~):+• r {(~" ). (~). + 

+(~< ):[ n-~ rl~ n(l-n)+ ~~+ ~~]} . (4.158) 
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The underlined terms in the above equations are due to the allowance for the cross-section 
reduction. If they are set equal to zero in Eq.(4.154) to (4.157) and especially (4.158), the 
small strain results of Section 4.4.1 are obtained again. 

0 
It is noted that the expression [n- ( e) 0 ] instead of n appears in the denominator. 

0 
Recalling the analysis in Section 4.2, the logarithmic strain eca= ( e) 

0 
is approaching the value 

n, the point of instability, with increasing engineering stress CJ'Ro and the derivatives 

(4.159) 

I 2 
become unbounded (Section 4.2.2). Therefore, the 151 and 2"d order terms e(O,O) and e(O,O), 

Eq.(4.154h and (4.157), and thus (4.158) grow beyond limits when instability is approached. 
Consequently, this perturbation solution is not valid close to the critical state eca = n. 

With Section 4.2.2 one has 

(4.160) 

where 

(4.161) 

~ "] { A~ ( A~ )
2 J (lna ) = ----

R 0 A A2 
R R 0 

With (4.161) the derivatives (4.160) are determined by the initial geometry of the rod at ~=0, 
the strain Ievel eca. and especially the difference (n-ec0 ). Then this applies also to the relative 
strain (4.158). Thus, it follows that the consideration of geometric non-linearity by accounting 
for the cross-section reduction intensifies the gradient effect. 

For the exponentially tapered tensile rod the above expressions are now put in an 
explicit form. The undeformed cross-section AR(~ is given by 

(4.162) 

suchthat 
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} (4.163) 

and thus 

} (4.164) 

0 
With (4.152) and results of Section 4.2.2 one gets for the spatial derivatives of e(~) 

(~~~) = (~~ 0 
3 
{(1-a)a(n-(~) 0 )

2 

+(1-a) 2 n}. 
o (n-(s)o) == 

(4.165) 

Dropping the underlined terms, which are induced by the cross-section reduction, yields the 
previous result (4.146). Inserting (4.165) into (4.158) gives finally 

1/2 

(~)10-n eo =1-ß 0 

eco n- (s )o 
1-a 

0 + 
n-(s)0 

2 

(
0)1-n 

ß
2 s o 1-a 

+ 0 0 
n-(s)0 n-(s)0 

(4.166) 5 n(o) 1(0)2} +-n(l-n) +- f 0 +- f 0 . 
12 4 6 

==== ==== 

Of course, deleting the underlined terms again gives the relation (4.147) after some 
rearrangement. Eq.(4.166) allows to define the sensitivity 'S' of the ß-dependence of the 
relative logarithmic strain analogaus to Eq.(4.150)1: 
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S = ld[e(O,O) I ecJI = [ e~:~~ )
112 

1-a 
dß ß~O n-t:co n-t:co 

(4.167) 

lt is recalled that the strain Ievel eco should be definitely less than the critical strain, the 
hardening exponent n, such that the perturbation solution remains approximately valid. 
Therefore, it appears reasonable to consider the case where eco takes only a constant fraction 
z<1 of the critical strain, i.e. 

eco =Zn. 

This coupling of eco and n allows to put (4.167) into the following form 

S = ZN(l-a), (4.168) 

where the definitions 

(1-n)/2 
Z=-z __ _ 

(1-z)3t2 ' 
N =-1 _ _!_ 

nn/2 1l 
(4.169) 

are introduced. In the interval 0<n~1 the factor N varies in the range 1 ~ N < oo, 

To get an estimate of Z and N and their product ZN for different hardening exponents n, 
it is assumed that eco amounts only up to 10% of the critical strain n, i.e. 

z=0.1. 

With this restriction the results are listed in Table 4.2 
The increase of the product-term ZN with decreasing hardening exponent n implies that 

the sensitivity S increases, in spite of the Iimitation of the strain eco to a constant fraction z = 
0.1 of the critical strain n; in fact, this is found also for smaller fractions z < 0.1. This trend is 
apparently in qualitative agreement with the sensitivity variation when the hardening exponent 
n is decreased but the fractional Iimitation is given up and the strain eco is held constant: the 
sensitivity S increases considerably as shown in Fig.4.8, where only the 1st order perturbation 
term is included in the e(O,O)/ eco versus ß representation. Note that for this plot the sufficiently 
small constant value 0.13 for the strain eco was chosen such that eco ~ n for all values of n used 
in Fig.4.8. 

The evaluation of the n-dependence of the sensitivity S, Eq.(4.167), under the constant 
stress condition (i.e. aRJK = const.) and observing the stress-strain relation Eq.(4.151), 
remains to be pursued. 

The influence of the strain gradient term can be made evident also in a more seizahle 
way by representing the results in the form of a stress-strain diagram. Such a representation is 
a rather natural choice to demonstrate the influence of the size of geometrically similar 
specimens, especially if spatially local measures of the strain are used; this was pointed out for 
the fully linear case already in Section 3.1.4.2. 
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The stress-strain diagram to be shown is the normalized engineering stress aRJK at g=O 
versus the local engineering strain ER(O,O) at g=O, which is obtained from the logarithrnic 
strain s(O,O) via 

ER(O,O) = ee(O,O) - 1 . 

For the construction of these diagrams we proceed as follows: the strain measure Eco<n, which 
is also a measure for the stress Ievel and which is considered here only as an intermediate 
variable, is prescribed in discrete steps. With (4.151) the normalized engineering stress O'Ro is 
given by 

The corresponding non-classical logarithmic strain e(O,O) = e0 is calculated from (4.166). For 
given values of n, a and ß the parameter representations of aRJK and ER(O,O), with Eco as 
parameter, are obtained. Elimination of Eco yields finally a (aRJK versus ER(O,O))-graph or vice 
versa. Then, for given values of n and a and varying ß within a diagram, the size influence is 
demonstrated. The calculations were performed for a = 0.0625 & 0.5625 and n = 115 & 1/9 
and the normalized gradient coefficient ß is in the interval 0 ~ ß ~ 0.1. These plots, which 
include the cross-section reduction influence and which are based on the 2nd order 
perturbation solution, are shown in Fig.4.9a-d. lt should be noted that the graphs are certainly 
not valid beyond the critical value n of the logarithrnic strain e(O,O). Thus, the corresponding 
Iimits of the engineering strain are indicated in Table 4.3 

In Fig 4.9a-d plots covering the whole strain regime are shown but also enlarged details 
in small strain regions. Inspection of the figures shows that the successive increase of the 
normalized gradient coefficient ß, which is a measure for the increasing gradient parameter l; 
or for the decreasing size L*, yields as successive increase of the normalized flow stress aRJK, 
provided the strains are sufficiently small. Of course, this expected result corresponds to the 
common size effect already discussed for the relative strain s(O,O)IEco· As discussed before, in 
this range of small strains the 2nd order perturbation solution gives reasonable accurate 
approximations provided the parameter ß is not too large. From Fig 4.9a-d it is qualitatively 
seen that the increase in flow stress with decreasing size is rather small. A specific example 
will illustrate this. We choose a specimen with a profile as shown in Fig.3.2b, top-right, with 
the following parameters 

a= 0.5625, 
L* 
-- =0.188. 
DCK>/2 

For the large specimen the normalized gradient parameter is assumed to be 

which yields 
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thus, the above choice implies that the intemallength scale l; is only about the thousandth part 
of the minimum diameter Do. 

The strain hardening exponent is taken to be 

n=l/5. 

The corresponding engineering stress-strain curves for various parameters ß are shown in 
Fig.4.9a. For the !arge specimen with ß=O.Ol and an engineering strain of 2% at the minimum 
section Fig.4.9a allows to estimate the corresponding normalized engineering stress to be 

aR = 0.4485. 
K 

Decreasing the size proportionally by a factor of 10, the ß-parameter becomes {3=0.1 and the 
corresponding engineering stress at a strain of 2% increases to 

aR = 0.4561, 
K 

This is a 1.7% change of the flow stress. For an engineering strain Ievel of 4% the increase in 
flow stress by reducing the specimen size is only slightly !arger (1.8% ). Results for a !arger 
strain Ievel at the minimum section are difficult to obtain from Fig.4.9a since the 2nd order 
perturbation solution appears to be not accurate enough. 

It is fairly obvious that such small effects on the stress-strain curve are experimentally 
not detectable: the natural scatter due to other influence would likely mask this size effect. 

The intemal length-to-minimum diameter ratio and the non-uniformity of the stress 
distribution need a considerable increase to produce an observable effect. Fig.4.9a-d show that 
for !arger strains, approaching the critical strain limit, an 'inverse' size effect is found for all 
parameter constellations: the flow stress including the ultimate stress decreases with 
increasing {3-values. This effect is related to the erroneous dominance of the quadratic 
perturbation term, as already noted for relative strain-versus-ß representation even without 
consideration of the cross-section reduction (Fig.4.2, 4.5 and 4.6). In fact, Fig.4.10 shows 
engineering strain - engineering stress curves which account only for the 1st order perturbation 
term: a qualitatively different behavior is obtained which shows no intersection of the curves. 
However, for !arge strains these results are equally erroneous. These results demonstrate that 
an approximate perturbation solution for !arge strains requires more than just the 1st and the 
2nd order perturbation terms. In the following section some results are presented and discussed 
which include contributions of the 3rd order perturbation term. 
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4.4.3 On the Contribution of the Third Order Perturbation Term (Power 
Law Hardening without Cross-Section Reduction) 

lt is rather noteworthy that, using only the results of Section 4.3.1 and 4.3.2 and Appendix 6, 
3 3 

it is possible to deterrnine the 3rd order terrn e(~,1J) at ~=0, 1]=0, i.e. e(O,O). This allows the 

improvement of the maximum strain e(O,O) at the minimum cross-section, which is now given 
by 

0 I 2 3 
e(O,O) = e (0) + ß e (0,0) + ß2 e (0,0) + ß3 e (0,0). (4.170) 

3 
Thus, the deterrnination of the distinct value e(O,O) does not require the inclusion of the 4th 

3 
order perturbation terrn. If, however, the function e(~,1J) were of interest, then the analysis 

4 
must be extended to include the 4th order tem1 e(~ ,17) followed by the suppression of secular 

terrns as previously. For the present, including the cross-section reduction due to the 
deforrnation forrnally, one gets with Eq.(4.82), (4.83), and (4.85) 

} (4.171) 

where Y2(~ and y3(~ is given by (A6.12). Thus 

3 
e (0,0) = B3(0) + vo(O) + w0 (0) . (4.172) 

Here V0 (0) and w0 (0) or Y2(0) and y3(0) can be deterrnined from the results obtained already. 
The terrn B3(0) can be deduced from the boundary condition (B.C.ll)4, Eq.( 4.42): 

2 3 
e~ + JJ' e 71 = 0, at ~=0, 1J=Ü. (4.173) 

The 1}-derivative of (4.171)1 at ~=0, 1]=0 is found tobe 

( i. t:: ~ -Ji [B3(0) + 2v"(O) + 3w,(O)], (4.174) 

which yields with (4.173) 

(4.175) 

Thus 
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3 1 1 (2 ) e (0,0) = .j(p (Ii~ )o e~ 
0

- vo(O)- 2w0(0); (4.176) 

2 
here Jl'(g) is given by (4.72) and e~ (g,f/) follows from (4.81). The explicit determination of 

the various terms is considerably simplified if the cross-section reduction due to the 
deformation is consistently neglected. Under this simplification and after a lengthy 
intermediate calculation one obtains finally 

(e)o =e(O,O)=eco eco 1-a 75n-11(1-n)-14+n 1-n [1-a(1-n)]-
3 3 ( 1-n )3/

2
( )3 { 

n n 288 12 1-a 

- (~)
2 

(1-2n)(l-n) + a (1-n)(2-n)-
1 

} . (4.177) 
1 - a (1 - a) 2 (1 - a) 2 

Thus, with the previous result Eq.(4.147) and (4.177), including cubic terms of ß, the relative 
strain at the minimum cross-section reads 

e 0 = e(O,O) = 1-ß eco 1-a + ß2 eco 1-a 17 (1-n)+-n- _ 
( 

1-n )112 ( 1-n r )2 [ J 
e co e co n n n n 12 1-a 

( 
1-11 )3/2( 3 { -ß3 eco 1-a) 11-75n (1-n)+ 14+n 1-n [1-a(1-n)] + 
n n 288 12 1-a 

+ (~)
2 

(1-2n)(1-n)- a (1-n)(2-n) + 
1 

} . (4.178) 
1-a (1-a) 2 (1-a) 2 

For linear hardening n=l Eq.(4.178) yields 

e0 ß ß2 ß3 -=1- (1-a) + (1-a)- (1-a). (4.179) 
eco 

This agrees with the exact solution Eq.(4.149) up to the cubic term. For vanishing small 
hardening n~O Eq.( 4.178) simplifies to 

e 0 = e(O,O) :::: 1-ß eco 1-a + ß2 eco 1-a !2. _ 
( 

1-n ]1/2 ( X )2 
eco eco n n n n 12 

(4.180) 

The ß-derivative of these two limiting cases gives 
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d[e(O,O)/ ecol- A 2R 3ßzA ----=--- 1 + ,JAz- 3 
dß 

(4.181) 

with 

n=1 

n-70 

n=1 

n-70 
(4.182) 

n=1 

n-70 

Then a relative minimum of the (e(O,O)/Eco versus ß)-curve is obtained, if the condition 

d[c:(O,O)I ecol = O 
dß 

admits a real solution for ß. The roots of this quadratic equation are 

For both limiting cases (4.182) the radicand of Eq.(4.184) is found tobe negative: 

(4.183) 

(4.184) 

(4.185) 

thus, a real root does not exist. Therefore, it may be expected that the (c:(O,O)Ieco versus ß)­
curve does not admit an extremum (minimum) but is a continuously decreasing function not 
only for the limiting values of the hardening exponent but also in the intermediate range 
1>n>O. This is confirmed by the numerical results shown in the following. 

Fig.4.11 shows a comparison of the ß-dependence of the exact and the 3rd order 
perturbation solution for the relative strain assuming linear strain hardening (n=1) and 
ignoring cross-section reduction. 1t is seen that the 3rd order approximation generally 
overestimates the effect of the strain reduction 

c:co- c:(O,O) 

due to the gradient term. Comparing this with the corresponding 2nd order approximation, 
Fig.4.2 shows a considerable improvement: agreement within less than 10% underestimation 
in the relative strain is found up to ß=0.5 and more, instead of ß=0.275 in Fig.4.2. 
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The dependence of the relative strain on the normalized gradient coefficient is shown in 
Fig.4.12 for non-linear strain hardening 0<n~1 and for the parameters a = 0.5625, 0.7225, 
0.81 and Sco = 0.01, 0.05, 0.1, 0.3. Depending on the parameters n, a, and Sco the 3rd order 
approximation exaggerates the gradient effect for larger ß-values. This is noted when the 
magnitude of the derivative d(s(O,O)Isco)ldß starts to increase from an initially almost constant 
value. 

The size effect is illustrated using the same parameters as used previously for the 2nd 
order approximation, i.e. a=0.5625, n=l/9, and Sc0 =0.057

, which is well below the critical 
value Sc0=1/9=0.1 I. From Fig.4.12 this yields the strain ratio s(O,O)!Sc0=0.7616 if ß=0.1 8

• An 
increase of size by a factor of ten (---7{3=0.01) gives s(O,O)Iec0=0.966. Thus, the maximum 
strain, estimated by a 3rd order perturbation approximation, reduces by about 

0.966-0.7616 
100 = 21.2% 

0.966 

when the size is reduced by a factor of 10 such that the normalized gradient parameter ß is 
increased from 0.01 to 0.1. This is a sufficient amount of deviation of the rather local axial 
strain at the minimum cross-section, which certainly should be measurable by appropriate 
means. However, an important condition is here that the other parameters, especially the 
measure for the stress level Sco• are the samein both the small and the large specimen. 

The choice of the parameters of the above example, in fact, corresponds to a realistic 
specimen geometry, as shown in Fig.3.2b, top right, with 

then 

a=0.5625, 

{

797.9 
Do 
-= 
[. 

I 79.79 

D 
-

0 =Ja= 0.75, 
Doo 

L* 
-- =0.188; 
Doo/2 

for 

[. 
ß = -' = 0.01 large specimen 

L* 
[. 

ß = -'- = 0.1 small specimen. 
L* 

If, for example, we interpret the intemal length scale l; as the grain size, then the above 
numbers define the number of grains along a specimen diameter; provided D0=3 mm (2 mm) 
for the small specimen the grain size would correspond to 37.6 ~m (25 ~m), which are grain 
sizes of a realistic magnitude. 

Of course, the percentage strain reduction calculated accounts only for the axial strain 
gradient in the specimen; the effect of the radial strain variations are not captured by this 
simple uniaxial model. 

As previously done in Section 4.4.2, stress-strain diagrams (Fig.4.13a & b, 4.14a & b), 
relating the local stresses and strains at the minimum cross-sections, have been obtained 
including the 3rd order perturbation correction; however, the influence of the cross-section 
reduction is not contained here. 

7 Thisstrain Ievel corresponds to the normalized stress Ievel O'R,jK=0.7169. 
8 As seen in Fig.4.5b, the 2"d order perturbation solution is not accurate enough for this parameter combination. 
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It is evident frorn these curves that the instability (relative stress rnaxirnurn) is not 
captured; rnore irnportant, also the 3rd order perturbation approxirnation fails (backward swing 
of the curves) for large values of ß when the strain is increased beyond a certain lirnit. Yet for 
sufficiently srnall strains and ß-values the increase in strength with decreasing size (increase 
of ß) is seen which is just another aspect of the size influence. But the influence of the 
gradient term on the stress at a given strain is relatively srnall: for 

a= 0.5625, n = 1/9, eco = en(O,O) = 0.05 

the normalized stress an/K is increased by only about 3.77% if ß is increased frorn ß=O (very 
large specirnen) to ß=0.1 (Fig.4.14a). A sornewhat larger strengthening effect is obtained even 
at a lower strain Ievel if the non-uniforrnity of strain distribution is increased. For a rather 

wasp-waisted specirnen ( a = 0.0625, .Ja= D 
0 

I D"" = 0.25), the sarne hardening exponent (n = 
1/9), and a srnaller local strain fco = en(O,O) = 0.015 the normalized engineering stress is 
increased by about 6.5% when the dirnensionless gradient pararneter ß is again increased frorn 
ß=O (very large specirnen) to ß= 0.1 (Fig.4.14b). With 

ß= }J_=..!J_ Do 
L* D L* ' 

0 

one gets 

D0 1 D
0 -=--

1; ß L* 

The ratio D)l; rnay be interpreted as the nurnber of grains along the rninirnurn neck diameter, 
say D)l; = 50. Then L */D0 = 0.2 which represents a very steep transition frorn the rninirnurn 
diameter Do to the largest diarneter Doo, i.e. within a diarneter Do's distance frorn the rninirnurn 
section the diarneter increases up to 95.3% of the asyrnptotic value Doo. The detection of these 
effects in the percentage range requires very careful specirnen preparation and testing to 
rninirnize rnasking influences and pseudo size effects. 

5. Three-Point-Bending of a Uniform Beam with Power 
Law Hardening 

5.1 Statement of the Problem 

Within the EU-Project REVISA [1.4, 1.5] U-notched bearns with reetangular cross-section 
will be tested quasistatically in three-point-bending using specirnens of different sizes. In the 
following a strength of rnaterials theory for an un-notched bearn is formulated accounting for 
plasticity by using a power law hardening deformation theory which includes a 2nd order strain 
gradient Iinearly. Only srnall deformations will be considered and shear deformation is 
ignored. This problern is considered as a first step towards understanding the response of the 
notched bearn subjected to hardening. It is shown in the following that, owing to the 
sirnplifications, this problern Ieads to a singular perturbation problern for the bearn curvature, 
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which has the same formal structure as the problern for the tapered rod. Thus, the same 
solution procedure - multiscale perturbation theory - can be applied. In fact, part of the 
previously derived equations can be directly used by proper reinterpretation of the variables. 

Accounting for tensile and compressive strain in the bending problem, the uniaxial 
stress-strain law reads 

a = K ltf sign(c)- Ki?V2E , O<n~l. (5.1) 

With the longitudinal coordinate x and the thickness coordinate y (see Fig.5.1) the strain is 
given by (Bernoulli hypothesis) 

E(x,y) = k(x)y 

where 

k(x) = __ d_z_w_(x_) : curvature of center line 
dx2 

w(x): beam deflection. 

The Laplacian of the strain yields 

2 d2 d2 d2k 
VE=-E+-E=-y. 

dx2 dy2 dx2 

(5.2) 

(5.3) 

(5.4) 

The length of the beam between the simple supports is 2L and the central load is denoted by 
2P. Then the bending moment is simply given by 

M=P(L-x) O~_L. (5.5) 

The bending moment is balanced by the moment of the normal stresses in the reetangular 
cross-section. This yields, tagether with (5.1), 

h/2 h/2 d2k 
M(x) = b J ay dy = 2bK J [knl-li

2 dx2 y] y dy = 
-h/2 0 

= K [J kn- J ~~ d2k] 
n I dx2 

where 

bh3 
l=lJ=-

12 

h/2 bh2+n 
J - 2b J l+1dy- ----
n- 0 - (2+n)21+n 
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The following dimensionless variables and parameters are introduced 

K = Lk : dimensionless curvature 
~ = x/L: dimensionless axial coordinate 

J 1 d' . 1 q =--- : tmenston ess parameter 
J n-n n 

ß = l/L : dimensionless intemallength scale. 

With 

=_!__1_=!._ Ln = l!!_JI-n (2 +n)21+n 
q J D-n L J L 12 n n 

it is noted that for h/L<1 , 0<n~1 

1 h 
-- < q ~ qmax = (q)n=l = 1. 
3L 

Consequently, the moment-curvature relation (5.6) reads 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

Combining this with the equilibrium equation (5.5), the following 2nd order differential 
equation for the curvature is obtained 

where the right-hand side is 

fl+np l LJI+n p An=--= - -- (2+n)2l+n 
KJn h Kbh 

and the lumped parameter ßq is introduced 

(5.12) 

} (5.13) 

(5.14) 

The differential equation (5.12) has the same formal structure as for the tapered tensile rod 
under small deformations, Eq.(4.96). However, the small parameter ßq involves not only the 
ratio l/L but also (h/L), which is a constant for geometrically similar beam specimens, as well 
as the hardening exponent n. 
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For a complete mathematical formulation the differential equation (5.12) requires two 
boundary conditions for the curvature. Before approaching this choice, some remarks 
conceming the classical solution Kc are in place. The solution Kc is obtained from (5.12) by 
ignoring the gradient effect by setting ßq=O: 

0 <; s;1 

(5.15) 

K = A iln = L n _!__ (2+n)lln 2-;-
( 

J

l+n( Jl/n l+n 

co 11 h bhK 

} 
where Kco is the largest curvature at ;=o. The first and second derivatives are 

} (5.16) 

At the center cross-section ( ;=O) the classical curvature Kc has its absolute maximum but its 
first order spatial derivative is discontinuous. 

The distribution of the second order derivative depends strongly on the power exponent 
n. We find 

n=1 

112<n<1: 

n=112 

n=1/3 

0<n<ll3: 

d
2

Kc vanishes identically, O<c;:;1 
d;2 

d
2

K:c • I · · f · f J! • f --ts a monotonaus y mcreasmg concave unctton o ~;, startmg rom a 
d;2 

finite value at ;=o and approaching infinity at ;=1. 

d21( 
~is constant (=2Kco) 
d~;,2 

d
2
J!K:c is a linearly decreasing function (=6K:co(l-~) 

d~;,2 

d
2

Kc is a monotonuously decreasing concave function of ; starting from 
d;2 

the largest finite value at ;=o and approaching zero at ;=1. 

For ns;l/3, which is the technologically most interesting regime, the second orderderivative of 
the curvature has its absolute maximum as one approaches the central position ;=o. Therefore, 
the largest effect of the gradient term in the differential equation (5.12) is expected araund 
;=o. Furthermore, it can be argued that the central force 2P is the limiting case of a uniformly 
distributed loading along some small finite beam section of length s araund ;=o. The 
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corresponding moment distribution in this section is parabolic and, for n=1, so is the curvature 

according to the classical theory. Then the second derivative d
2

Kc is proportional to s-1 at 
d;z 

;=o which yields even an unbounded value for s~O and fixed Ioad P. Therefore, the largest 
influence of the second order gradient term in (5.12) will be at and around ;=o. For small 
values of ßq it will be confined to this regime. 

Coming back to the choice of the boundary conditions, the prescription of the curvature 
at ;=o for the gradient dependent case is physically unreasonable. We follow here a similar 
argument as for the tapered rod (Section 3.1.1): it is assumed that 

(
de(x,y)) =O '1/y 

dx x=O 

which yields with (5.2) the boundary condition 

B.C.ll (dK) =0 
d; ;=o . 

(5.17) 

The other boundary condition is prescribed at ;=1 : 

B.C.I (K)g=l = 0. (5.18) 

This choice reflects the assumption that the gradient influence for small values of ßq is 
restricted to the central part of the beam and is not sensible at the ends. This assumption and 
the vanishing of the bending moment at ;=1 implies condition (5.18). 

We consider geometrically similar beam specimens which are scaled up by the 
geometrical scaling factor A.> 1. The geometrical data take the following values. 

h = hA, b =bA, L =LA. (5.19) 

If geometrical and physical similarities are required, then the dimensionless characteristic 
parameters of the differential equation and the boundary conditions must be the same, i.e. 

n=n (5.20) 

With (5.20)2 and if the strict geometrical similarity (5.19) applies, then 

q=q (5.21) 

and also 
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-
ß=ß or !.!_=;., 

Z; 

and (5.22) 
p 1 p 1 P K =A2. -===-=- = or 

bh K bh K PK 

Here conditions (5.22) are formally the same as (4.11). Again similarity cannot be achieved 
strictly if the gradient term is present and if the material is the same in the small and the large­
scale specimen. 

However, the situation is, at least theoretically, somewhat relaxed for specimens made 
of the same material if geometrically distorted specimens are considered. To obtain the same 
dimensionless curvature at homologaus positions x I I =xiL, only the conditions (5.20) have 
tobe satisfied. We introduce the distorted scale factors 

Condition (5.20)z is identically satisfied and (5.20)1 yields 

I-n (;., )2 3-n ll' =}., or AJz = }.,2, n:;t:l. 

Condition (5.20)3 implies 

p =( A~z )I+n 1 1 

p l A /\,Jz Ab. 

If the cross-section areas are required to scale according to }.2, i.e., 

hb 1 2 - =AJzAb =A 
hb 

as for the non-distorted case, then 

and 

-= - 11 
;., =A 2 . 

p l A )I+n 2 5-n2 

P ;., 

Assuming A=lO, we obtain distorted scale factors A~z and Ab as listed in Table 5.1 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

Fora given ratio h I b of the full scale beam (the "prototype") we obtain with (5.24) and 
(5.27) 
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(5.29) 

Thus, increasing the length scale factor A reduces the depth-to-width ratio h/b of the small­

scale model. However, for the linear case n=1 Eq.(5.9) yields q = q=1 and then ß = ß 
implies A=1: a scaled down distorted model is not possible for the linear case n=l. The result 
(5.29) implies a very large distortion of the cross-section dimensions. For example, with 
A=lü, n=l/5 and 1/9 one finds ;ti-n = 6.31 and 7.74, respectively. Formally this is valid for any 

non-zero intemal length scale l;. On the contrary, if l;=O exactly or if ß & ß <<1, the 

conditions (5.20) are either exactly or only approximately satisfied. In these cases similarity, 
i.e. equality of the dimensionless curvatures, can be achieved exactly or approximately 
without cross-section distortion but of course with the standard scaling of the applied Ioad 

p 2 5-n
2 

( p) -=.A < ;t 2 =- . 
p p distorted 

5.2 Solution of the Linear Problem (n=l) 

For the linear case n=1 the lumped parameter ßq reduces to 

[. R-ß-_!__ pq- -
L 

and the differential equation (5.12) reduces to a linear one 

d2K: 
{f --K:= -rBJ(~ 

d~2 

TBJ(~ = J\.1(1-~ 

(L)' p AI= h bhK12. 

(5.30) 

(5.31) 

(5.32) 

} (5.33) 

The exact solution, observing the boundary conditions (5.17) and (5.18), is easily obtained 

(5.34) 

} (5.35) 

where Kc( ~ is the classical solution without gradient effect. 
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With (5.3) and (5.8) the differential equation for the dimensionless deflection w(f,)IL of 
the centrally loaded simply supported beam is 

d
2
(wl L) =-Lk=-K(f,) 
d~2 

and the associated boundary conditions are 

(dw] _ 0 
d~ ~=0- ' 

(w)~=l = 0. 

The solution is 

w(~)=wc(~)-Adf[ 1 + 1 ]<1-f,)+ 
L L 1+e-2tß 1+e21ß 

where weiL is the classical solution without gradient effect 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

5.3 Approximate Analytical Solution by the Method of Multiple 
Scales for the Non-Linear Case 

5.3.1 The Governing System of Perturbation Equations 

For small ßq-values, 0< ßq<<1, an approximate analytical solution is possible using the 
method of multiple scales of perturbation theory. Because of the mathematical analogy the 
results of section 4.3.3 can be used when the variables are properly reinterpreted: 

(5.40) 

of course, the spatial dependence of the right-hand sides of the differential equation are very 
different, and differences are in the boundary conditions. 

The multi-scale expansion of the dimensionless curvature K is given by 

0 I z 2 3 3 

=K (~,r]) + ßq K (~,r]) + ßq K (~,r]) + ßq K (~,r]) (5.41) 

with 
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~ = _::_ : the "slow" spatial variable 
L 

17 = 11ß:~) : the "fast" spatial variable . 
} (5.42) 

i 
The development of the differential equations and the boundary conditions in terms of K: (~,17) 

(i=0,1,2,3), f.ls(~ and ßq yields 

0 
0 1( n 

ß~ : DEQ(O) => K:ryry (f.ls'F 

l I 0 
ßJ : DEQ(l) => K:ryry - Q ~ K: = RBI(K:, f.ls) 

(5.43) 
2 2 0 I 

ßJ : DEQ(2) => K:ryry- Q ~ K: = Rs2(K:,K:, f.ls) 

3 3 0 I 2 
ßJ; DEQ(3) => K:ryry- Q ~ K: =Rs3(K:,K:, K:, f.ls) 

where 

0 
n K: n 

QB2(~)= 
~ (f.ls'F 

(5.44) 

and Rßi, i=1,2,3 are the differential operators 

1 ,o "o 
RBI = (2f.1s K:~ry +f.ls K:ry) 

(f.ls'F 

1 I I 0 1 1(1)
2 

Rs2 = (2 f.ls' K:~ry + f.ls" K:ry+K:~~)- .Q}- (1-n) -0 K: 
(f.1s')2 2 1( 

(5.45) 
I 2 

1 2 2 I 1(1( 

Rs3 = (2 f.ls' K:~ry + f.ls" K:ry+K:~~)- Q}(1-n) - 0- + 
(f.1s')2 K: 

tl 1 
+ .Q 2 -(1-n)(2-n) 

B 6 ( ~)' 

where 
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(·)' = d(.). 
d~ 

The boundary conditions (5.18) and (5.17) yield 

B.C. f (~=1, fl-7 oo) B.C. li (~=0, 17 = 0) 
0 

ß-1· q . J.in' K11 = 0 
0 0 I 

ßO· q• K-70 K~ + J.in'K11 = 0 
I I 2 

ß1· q• K-70 K~ + J.iB
1 
K11 = 0 

2 2 3 
ß2· q• K-70 q + J.in'K11 = 0 

3 3 
ß3· q. K-70 (K~ = 0). 

(5.46) 

Note that the boundary condition B.C.I at x=L, Eq.(5.18), is transformed into conditions at 
~=1 but fl-7= in the (~,71) space since fl=J.in(~lßq may become large for arbitrary small values 
of ßq; this argument is different from the reasoning in Section 4.3. 

5.3.2 Solution of the Perturbation Equations 

Comparison of the perturbation system (5.43) and (5.46) with (4.98) and (4.42) shows that the 
differences concem only the right-hand sides of the differential equation DEQ(O) and the 

0 
associated boundary condition B.C.I. Thus, if K is found, all higher perturbation functions are 

0 
fully determined in terms of K and n. Since the differential equations and boundary conditions 
(except the spatial assignment ofthe B.C.I in the (~,17)-space) for the higher order perturbation 
functions are mathematically the same for the two systems, the solution procedure of section 
(4.3.3) can be formally transformed to the present problem, the only difference - apart from 
the oth order approximation- being the notation. 

0 
As previously, the 01

h order approximation K corresponds to the classical solution Kc 

(5.47) 

which satisfies the differential equation DEQ(O) and the two associated boundary conditions. 
Thus 

and 

o 1-n l-2n 

K~~ = Kco -
2 

(1-~) n 
n 

} (5.48) 
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RBI = 0. (5.49) 

I 
Then the 1st order perturbation function K(g,fJ), the solution of DEQ(2), is 

(5.50) 

I 
where the boundary condition B.C.I for K is observed. Following the procedure of Section 

2 
4.3, the secular terms of the particular solution of the 2nd order perturbation K can be removed 
which yields 

Q8 = ±.j(P = const. 

and thus 

and 

, 1 n 
f-lB = + --0-

[ ]

112 

({J 1( 1-n 

1( 1-n 0 

( 
0 Jl!4 

Ds = -n- o (K~ )o 

0 1 
(K~)o=- Kco- · 

n 

(5.51) 

(5.52) 

(5.53) 

2 
The intermediate result for the 2nd order perturbation K(g,fJ), analogaus to Eq.(4.111), reads 

(5.54) 

where 
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1 1 
a2 (~) = - Q} 2(1-n) 0 Bl = (5.55) 

K 

1 r~l-nJ
112

(o )2 1 r~(~)l-nJ
112 

= -QJ- (1- n) -- K; -
0

- ___;_:::,.:_____ 

2 n o o K(~) n 

which are formally the same as (4.56)1&4. The removing of the secular term in the particular 
3 

solution K(~,1J) yields, analogaus to (4.112), a differential equation for B2(~ 

1 f.l II 

B/+--8 -B2 =Ss 
2 f.l/ 

where (compare with (4.113)) 

With (4.114) the solution of (5.56) is 

and with (4.115) and (4.116) we get 

114 

( ')1/2 VB = J.ls = 
q>(~r 
1 n 

n(l-n) 

(~)' 

1(1)
2 

1 [7 ](0 )
2 

(B2)o~B2(0)~ 4 n (~J: 3n(l-n) rq 
0

. 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

The function J.is(~ can be found explicitly by integrating (5.52) using the initial condition 
J.is(O)=O. For n:t1/3 we get 
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n I-n 2n _I-3n 

( )

112 [ ] 
Jls(fJ = qJ Kco -z- I-

3
n (I-~) 2n -I (5.60) 

and, provided n=l/3, 

( n) 112 
1 

[Jls(fJ]n=l/3 = - qJ t<:co -3 ln(I-fy. (5.6I) 

The determination of the function B2(~. according to (5.58), can be done analytically for 
arbitrary hardening exponents n. This somewhat lengthy analysis is given in Appendix (10). 
The result is for n::f:.l/3 (otherwise see Appendix (10)) 

I-n l-n { 7 I7- 2In [ l-
3
n ]} 

B2(fj = 7<:2-n -- z(~) 4n - _ I- z(~) 2n 
co n 3 12 I6(1-3n) 

z(f} =I-~. 
} (5.62) 

2 
For a complete representation of the 2nd order perturbation curvature 1<:(~,1]), Eq.(5.54), we 
require a 0 (fj and a2(fy defined by (5.55). The first function is already determined, 
Eq.(A10.6)6, and the second is found tobe 

(5.63) 

Summarizing we get the following perturbation functions 

0 
1( = Kc( fJ = Kco z( fJ l/n 

(5.64) 

=7<:2-n -- z( ~) 4n -- I- z( ~) 2n e -v({JTJ I-n { I-n( 7 I7-2In [ I-Jn]) r:: 
co n 3 I2 I6(I- 3n) 

with 
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J; 1 ( )1/2 2 [ 1-3n ] .j(P'f] = .J(P llB(~.;,) =- _,_z _n_ (1- ~) -z,;- -1 . 
ß ß. 1(1-n 1- 3n q q CO 

(5.65) 

Here n:t:l/3 is implied; otherwise appropriate changes for B2(~ and /lB(~ have to be made. 
The above functions define the asymptotic solution 

(5.66) 

For the special case n=1 we get 

0 
K(~)= Kc(~ = Kco z(~, (L)2 

p 1( = - --12 
CO h Kbh 

(5.67) 

and 

(5.68) 

Thus, the approximation yields 

(5.69) 

We note that this result satisfies the boundary condition B.C.ll, Eq.(5.17), at the center of the 
beam exactly; the boundary condition B.C.I, Eq.(5.18), at the end of the beam, is satisfied only 
for ~0. This is due to the transformed boundary condition B.C.I, Eq.(5.46), where for x=L 
the fast variable 17 was required to take very large values (1J-7=). 

The exact solution (5.34) for the linear case n=1 can be approximated for small values 

ß<<1 suchthat e-Ztß <<1; this transforms (5.34) into 

(5.70) 

For ~ close to zero the dominant gradient contribution is given by the first term in parentheses. 
For ~ close to unity the terms in parentheses cancel; thus, the boundary condition B.C.I is 
exactly satisfied. In comparison to Eq.(5.69), note the additional exponential terms in (5.70), 
which are necessary for an exact satisfaction of the boundary condition at the end of the beam. 
However, at the center of the beam ~=0 the perturbation solution (5.69) agrees exactly with 
the dominant term in (5.70). 
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5.4 Evaluation 

5.4.1 The Linear Case (n=l) 

The non-classical distribution of the dimensionless curvature is given by Eq.(5.34) and is 
plotted in Fig.5.2. It consists of the classical part Kc and a non-classical part depending on ß 
which -for small values of ß, e.g. ß<.0.1 - is a fast decaying contribution close to the center of 
the beam ~=0 (boundary layer). For greater values of ß the gradient term influence is found 
over the whole length of the beam. 

With Eq.(5.2) the bending strain in the beam is proportional to the curvature. Thus, the 
maximum tensile strain opposite to the applied centralload is 

h h 
c0 max = (k)g=O 2 = 

2
L (K)g=O · 

With cc being the classical strain distribution, its maximum value (at ~=0) is 

h 
Cco max = 2L Kco; 

then the ratio of the maximum strain of the non-classical and the classical solution is given by 

comax = (K) 0 

ccomax 1(co 

Fig.5.2 shows the rather strong reduction of the maximum strain (-curvature) at the center 
~=0. In explicit terms the relative strain is given by 

comax = (K) 0 = 
1
_ß 2sinh(2/ ß) 

1( 1 + 2cosh(2 I ß) 
CO 

(5.71) 

which is plotted in Fig.5.3. For small values ß (-~0.1) this can be approximated by 

comax = (K)o = 1-ß. (5.72) 
ccomax 1(co 

The upper limit of ß = l;IL = 1 is a purely mathematical construct if the internallength scale l; 
is somehow related to the microstructure of the material. Then the Iimit 

z. L 
_I_ =ß-2<1 
h/2 h -

appears tobe more reasonable but is still exaggerated. This gives the upper bound 

80 



If the shear deflection is required to be less than 5% of the bending deflection to be negligible 
in steel (Szab6 1958, [5.1], p.125), then hiL<0.227 and this implies 

ß<O.ll (5.73) 

in the linear case. 
A change in the parameter ß reflects a change in the material (l;) or a change in size (L). 

Thus, Fig.5.3 visualizes the size dependence of the bending strain at the beam center since ß is 
inversely proportional to the size. With the subscript (p) denoting a large specimen 
("prototype") and (m) denoting a small specimen ("model") we have 

(5.74) 

and 

(eomax)p = 1-ßp = 1-ßm/A 

(eomax)m 1- ßm 1- ßm 
(5.75) 

Assurning ßm tobe given by the Iimit value 

ßm=O.ll (5.76) 

as described above, Eq.(5.75) yields 

(eomax)p 1 1 
1.1236-0.1236 /\,- . (5.77) 

Comparing a very I arge specimen (A-?oo) and the smallest specimen satisfying the Iimit value 
(5.76), Eq.(5.77) shows that at the most a difference of 12% in the maximum strain of the 
bending specimens is predicted. 

The results of Section (5.1) allow also to illustrate the size influence on a dimensionless 
force-deformation relation. The maximum bending stress opposite to the applied central load 
is, according to the classical theory, 

PL h 
a = 

comax bh3 /12 2. (5.78) 

With (5.15) and n=1 we get 

and thus Eq.(5.71) yields 
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(j p co max = C(ß) K eomax } (5.79) 

ß) [ ß 
2sinh(2 I ß) ]-I 

C( = 1- . 
1 + 2cosh(2 I ß) 

The left-hand side of Eq.(5.79)1 is a dimensionless stress calculated using the classical theory 
-a measure for the loading- and e0 max is the maximum local strain according to the non­
classical solution. The stiffness Cis size dependent via the parameter ß and is bounded from 
below and above by 

1 ~ C(ß) ~ 1.1216 ~ 6.7086 

with 0 ß=!i< ::; L _ 0.11 ~ 1 

where the very large specimen yields the value C0 =l and the reasonable smallest specimen 
(ß=O.ll) yields the stiffness Cß=o. 11=1.1216. In this range, to a first approximation, 

C(ß)=l+ß (5.80) 

when the exponential term in (5.79) is approximated by "1". Thus the relative change in 
stiffness is proportional to ß: 

It is fairly obvious that the qualitative trends are very similar to those obtained for the linear 
case of the tapered tensile rod (Section (3.1.4)). 

5.4.2 The Non-Linear Case (n:;Cl) 

The approximate perturbation solution for the gradient enhanced deformation plasticity law is 
given by (5.64) to (5.66). Naturally, it consists of the classical solution Kc (the Oth order 

0 
approximation K) and the non-classical part (the 151 and 2nd order terms) depending on ßq· The 
latter are exponentially decaying contributions close to the center of the beam. For g<<l the 

exponent fo11, Eq.(5.65), simplifies to 

1 ( ]

112 

fo11 ~ - _n_ g. 
ß. 1( 1-n q CO 

(5.81) 

The decay rate d, defined by 
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1 ( n )
112 

d--
- ß. 1(1-n ' 

q CO 

(5.82) 

is not only depending on ßq and the hardening exponent n but also on 7<:c0 , defined by (5.15)2, 

(
L)

1
+n ( p )1/n 1+n L ( 4PL )1/n ( )lln 

7<:c = :__ 11 
-- (2+n) lln 2 n = - -- 1 + ~ 2 

o h Kbh h Kbh 2 2 
(5.83) 

which is the maximum dimensionless curvature at ~=0 according to the classical solution. It is 
a nonlinear measure for the loading P. Thus, by increasing Kco the decay rate (d) is reduced. 
For example, if n=l/5 and 119, then 

( 
p )-2 ( p )-4 

d- Kbh and Kbh 

This is in cantrast to the linear case (n=1), Eq.(5.68), where the decay is not depending on the 
loading level but given by 

1 1 
(d)n=l = ßq = ß . 

It appears necessary to estimate the expected admissible range of the dimensionless shear 
force 

- p 
P=­

Kbh 
(5.84) 

using realistic material response data K, n and others, for example for the ferritic reactor 
pressure vessel steel A533-B and stainless steel 304 at room or low temperatures. Kumar et al. 
(1981, [5.2]) used the Ramberg-Osgood stress-strain relationship 

(5.85) 

for the interpolation of uniaxial tensile test results less than 30% strain. An alternative form of 
(5.85) is 

(5.86) 

where 
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(5.87) 

The corresponding material data are Iisted in Table 5.2 
Ignoring the elastic strain a/E in Eq.(5.86) yields the classical deformation plasticity 

model used in this section. Within this model the maximum bending stress at ~=0 is 

a = K ( Kco !!:_)n = K (__!__) ( L) (2+n) 2 = 
comax L 2 Kbh h 

=K(~) (1+~) . 
Kbh 2 2 

(5.88) 

For h/L=0.2 and the A533-B steel this gives 

acomax= 21.03 K( ~h) = 16.32 10
3 

( ~~J [MPa] 

and for the stainless steel we get 

acomax= 21.84 K( ~h) = 14.67 10
3 

( K:h) [MPa]. 

If the Ioad P is assumed to be very large such that 

then the maximum bending stress is out of the range of validity of the power law hardening 
model; a reasonable upper Iimit is estimated tobe 100ksi == 690MPa (see ref. [5.2]). Thus, an 
acceptable range for the variable P is 

or 

p = __!__ ~ 0.042 < 
690 

Kbh 16.32103 

::: 4PL 
P= -- ~1.0 

Kbh 2 

} h 
--02 L . (5.89) 

For smaller values h!L<0.2 the variable P is restricted to even smaller values. If, however, 
h!L>0.2, then P may take somewhat !arger values than given by (5.89)1• In any case it is 
concluded that 

- p 
P= -- <<1 

Kbh . 
(5.90) 
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The quantity P and the condition (5.89)2 may be given a simple interpretation. The bending 
moment at ~=0 is M 0=PL. Assuming that the bending stress distribution in the cross-section is 
piecewise constant as in ideal plasticity, then the corresponding bending stress, which 
balances M 0 , is given by 

Thus, Eq.(5.89)z implies 

aF <1 
K-. 

(5.91) 

(5.92) 

In fact, in the limit n-70 the power law hardening model (without gradient enhancement) 
yields 

a=±K, 

the rigid ideal-plastic stress-strain relation. Therefore, an ideal plastic bending stress 
distribution is obtained at the center of the beam if the limit Ioad, defined by 

:::: 4PL 
P= -- =1 

Kbh 2 ' 
(5.93) 

is reached. Thus, Eq.(5.89h is a rather natural restriction although strictly valid only for n=O. 
The normalized curvature distribution along the beam is obtained from equations (5.64) 

+ (5.66) and (5.15)2. It is shown for the specific values n=0.2, P =P!Kbh=0.035 and h/L=0.2 
in Fig.5.4 for several 2nd order strain gradient parameters ß. The boundary layer effect of the 
strain gradient term (ß>O) is clearly seen. Compared to the linear case (n=1, Fig 5.2) and for 
0<ß<0.05 it is evident that the non-linearity increases the reduction of the relative maximum 
curvature at ~=0, because it becomes load-dependent. It is also exemplified by Eq.(5.15) & 
(5.16) that the power law hardening produces a very different classical curvature distribution 
(ß=O): The non-linearity shifts the normalized curvature Kc!Kco towards the center of the beam. 

Now attention is put to the curvature and relative strain at ~=0. With ~-70, TJ-?0 we get 
in general terms 

0 I 2 
K(O,O) =K(O) + ßq K(O,O) + ßi K(O,O) 

where 

0 
K(O) = l(co 

I ( 1(1-n )
112 

0 
K(O,O) = BI(O) = ~ (K;)0 
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~(0,0) = B2(0)- ao(O) + a2 (0) = 
(/) 3cp 

suchthat 

and the relative curvature and bending strain is 

Eomax 
0 

= K(O,O) = 1 + ßq ( K~;;n )1/2 (K do + 
Kco n Kco ccomax 

(5.94) 

Recalling the analogaus procedure in section (4), this result is generally valid irrespective of 
the specific Ioad distribution along the beam, provided it is symmetric with respect to §=0 and 

0 0 0 
the boundary conditions (5.17&18) apply. Of course the specific values (K)0 , (Kg)0, (Kgg)0 

0 
depend on the Ioad distribution and its magnitude. Especially if (Kg )0=0, which is the case 

when the bending moment distribution is smooth around ~=0, then the term linear in ßq drops 
out and (5.94) simplifies to 

Eomax K(O,O) 1 ß.2 1 ( 0 ) = = + q -- Kgg 0 . 
ccomax Kco nK~o 

(5.95) 

Thus, the relative strain reduction (1 - comax I Ecomax) is only quadratically affected by the 

small parameter ßq due to the non-classical 2nd order strain gradient extension of the 

deformation law. This is a result that is reasonably expected. 
With (5.48) the curvature at ~---?0 is in explicit terms 

( )
112 ( ) 1 KI-n K KI-n 17 -n 

K(O 0) = K - ß. _fQ_ __fQ_ + ß. 2 
.....EL. - -- K 

' CO q q 12 2 CO n n n n 
(5.96) 

and the relative strain (5.94) reads 
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cornax 

(

KI-n )
112 

1 2(1(1-n) 1-n 17 1- ß. _fQ_ - + ß. _fQ_ ----. 

q n n q n n2 12 
(5.97) 

Using the decay rate parameter (d), Eq.(5.82), this ratio takes the form 

cornax 1 ( 1 )
2 

17 1-- + - (1-n)- ; 
nd 11d 12 

(5.98) 

thus, an increase in the decay rate (d) is connected with a decrease of the relative strain 
reduction (1 - cornax I ecornax ). 

The relative strain is plotted versus ß = l;IL in Fig.5.5. As in Section 4, it is seen that, 
depending on the magnitude of the hardening exponent 11, the relation (5.97) becomes 
erroneous when ß approaches -0.1 from below because a monotonaus decrease of the relative 
strain is expected, as found for the linear case (11=1) (Fig.5.3). This is due to the dominance of 
the quadratic ß-term for large ß-values. For example, for 11=119 the result appears to be 
reasonable up to {3=0.03. Thus, Fig.5.5 showsalso that a decrease in the hardening exponent 11 
will reduce the range of validity of the 2"d order perturbation approximation to smaller values 
of ß. An extension of the range of validity can be obtained by including higher order terms in 
ßq in the approximation. 

For the purpose of comparison the relative strain versus ß is also shown without the 
quadratic term (Fig.5.6). The results show that for a given loading PIKbh, geometry hiL, and 
ß=l;IL a decrease of the hardening exponent 11 down to 119 produces an increase in the relative 
strain reduction (1 - eornax I t:comax ). In other words, the importance of the 2"d order strain 

gradient influence and thus the size influence on the relative strain increases with a decrease 
of the hardening exponent 11. However, because of the mathematical similarity of the tension 
rod problern (Section 4) and the beam bending problem, a similar behavior, especially for 
varying hardening exponents 11, is evident. Conceming the classical solution, Eq.(5.15), 
(5.16), (5.47) & (5.48), a decrease in the hardening exponent 11 yields a shift of the relative 
curvature KciKco and its 1st and 2"d order derivative, Kct/Kco and Kc~~IKc0 , respectively, towards 
the center of the beam. Thus, the 'relative non-uniformity' of the curvature distribution at ~ = 
o+ is increased. For very srnall values of 11, their maximum at ~ = o+ behave according to 

with 

1 
(Kc~)o I Kco = -- • 

11 

[~]IIn 2L 
K == p el/2_ 

CO h ' 

1-11 
( Kc~~)o I 1C co = - 2-

11 

In Section 4.4.1 this increase of the relative non-uniformity with decreasing hardening 
exponentwas called 'relative localization'. 
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Keeping the geometry, the loading P, and the parameters K and ß constant but 
decreasing the hardening exponent n, the maximal deformation measures Kca. (Kc~)o, (Kc~~)o 
decrease and their Iimit values vanish: 

In this Iimit state the beam does not suffer any deformation as long as P <1. 
Thus, opposing effects are obviously contained in the general equation (5.94) when the 

hardening exponent is decreased. These qualitative findings, already discussed in the context 
of the tapered tensile rod, suggest that the relative strain, Eq.(5.97), will show a peculiar 
dependence on the hardening exponent n, i.e. some optimal influence when all other 
parametersandvariables are held constant. These results are confirmed in Fig.5.7 and Fig.5.8. 
Fig.5.7 shows the dependence of the maximum bending strain (non-classical solution) on the 
hardening exponent. For a certain range of small hardening exponents almost no deformation 
is obtained but for !arger values of n a strong, almost linear increase in deformation is seen. 

Fig.5.8, the relative strain versus n, is of special interest: for a fixed set of parameters, 
especially the dimensionless shear Ioad P, there exists a specific value of the hardening 
exponent for which the 2nd order gradient influence on the relative strain is largest, i.e. at the 
minimum of the plots in Fig.5.8. For the chosen parameters the characteristic exponents are 
close to actual hardening exponents of structural materials (Table 5.1). Obviously, the 

stoutness h/L and the loading Ievel P or P have a strong influence on the relative strain. We 
note that the range of stoutness data in Fig.5.8a corresponds to the following range of the load 

parameter P 

Further, the range of the shear load parameter P in Fig.5.8b is equivalent to 

o.5~P~0.9. 

The dependence of the relative strain on the Ioad parameter P can be obtained from (5.97) 
using (5.83). It is shown in Fig.5.9 for fixed parameters n=0.2, h/L=0.2 but ß varying between 

0.01 and 0.04 and the load parameter restricted to 0~ P ~0.04 (0~ P ~0.8). 
For {3=0.01 and h/L=0.2 the intemal length l; is 5% of the depth of the beam and the 

relative strain reduction is about 7% for the maximalload parameter P =0.04. Decreasing the 
size of the beam by a factor of four, the intemal length corresponds to 20% of the beam depth 
and the strain reduction is almost 20%. In any case it is obvious that the 2nd order gradient 
influence to be effectively detectable, the intemal length should amount to several hundredth 
of half-length of the beam. Of course, some other parameters, e.g. the stoutness h/L, can be 
changed to increase its influence. 

Analogaus to Section 5.4.1, Eq.(5.97) is used to determine the bending strain ratio of 
two geometrically similar beam specimens of different size -the model (m) and the prototype 
(p )- made of the same material and under scaled loading, i.e. Plbh = const. 

With (5.74) we get from (5.97) 
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1-B A - 1+B 2 A - 2(1-n)!I_ 
m m 12 =--------------=:..=-

17 
1-Bm+B~(l-n) 12 

(5.99) 

where 

(
KI-n )112 1 1 

B = cqß __f!!__ - = -
m -../'1. m d · n n n m 

(5.100) 

The quantity Bm is determined by the shape and the material properties of the beam and the 
loading but especially by the absolute size Lm of the beam model via the parameter ßm=l/Lm. 
To obtain a typical value for Bm the following example is considered: 

We take h/L=0.2 and n=l/9. This yields q=0.043. The Ioad parameter P is assumed tobe 
quite large 

:::; 4PL 
p = -- =0.8 

Kbh 2 

which gives with (5.83) 

Kco = 2.183 

and thus 

Bm = 7.9267 ßm· 

According to Fig.5.5, it is estimated that the perturbation approximation is appropriate up 
to /3=0.03 if n=l/9. This ß-value defines the minimum size (length) of the beam, which 
can be treated with the present perturbation approximation. Thus we assume 

ßm=0.03; 

this implies that the intemallength amounts to 15% of the beam depth h. Consequently 

Bm =0.2378. 

With these data Eq.(5.99) gives 
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(fomax)p _ l.000-0.238A., -]+0.0712A -2 

0.
833 

= 1.200-0.285 A..-1 + 0.085 .A-2
. 

(fomax)m 

For A=10 we get 

(fomax) p 

(fomax)m 
1.172. 

Increasing A, indefinitely yields the upper bound 

(5.101) 

For the purpose of comparison we consider the linear case n=l. Then B111=ßm and 
Eq.(5.75) or (5.99) gives for the very ]arge specimens 

(5.102) 

Eq.(5.101) compared with (5.102) illustrates again the enhancement of the strengthening 
effect of gradient plasticity in small specimens when non-linear hardening (n<l) is 
involved. 

Of course the strain ratio Eq.(5.101) increases with a rise of the load Ievel P. Table 5.3 
shows the strong non-linear dependence for a set of discrete Ioad Ievels. For small values of 
Bm this non-linearity follows the power law relation 

for n =119 the exponent is 4. For values of P approaching I the solution Eq.(5.101) becomes 
erroneous. 

The result (5.96) for the maximum curvature at ~=0 allows to demonstrate the size 
influence on a dimensionless force-deformation relation. Fig.5.10 zooms in on the relation 

between the non-classical Iocal bending strain at ~=0 and the Ioad parameter P =P!Kbh 
(dimensionless shear stress) for h/L=0.2, n=l/5, and with ß as a parameter. It is seen that the 
bundle of dimensionless stress strain curves fansout and, with increasing ß-values (decreasing 
size L), smaller specimens suffer less strain under the same scaled Ioading. We recall that all 
curves would collapse into one curve if no size effect were involved (l,-=0). In principle such 
qualitative trends can be tested by scaled experiments since both quantities can be determined 
easily. However, it is evident that the theory is very simple. Several effects (e.g. Iarge 
deformations, shear deformation, multiaxiality) are ignored and some of them may not only 
produce quantitative but also qualitative effects. Therefore, the fitting of the internal length 
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parameter l; to a set of experiments may be a delicate task since the result may be sensitive to 
the simplifications of the theoretical model. 

6. Summarizing Discussion and Conclusions 

6.1 Scope of the Section 

The enhancement of elastic-plastic and darnage models by higher order gradient or non-local 
(integral) terrns in the stress-strain relations, yield condition, or evolution equations for the 
intemal variables has been introduced to Iimit 'pathological' strain localization and mesh 
dependence occuring in finite element solutions of conventional boundary value problems 
which do not involve an intemal material length. Thus the above models were developed, in 
part, to cope with the non-well-posedness of the classical material models, which arises when 
material softening comes into play. Generally, the advanced theories implicate gradient or 
non-local terms which, in turn, can be associated with intemal length scales that have the 
status of material parameters. Although several authors introduced these terms motivated by 
computational arguments, we emphasize here the more physical point of view that the intemal 
length scales are somehow characteristic of the material microstructure. As a consequence of 
the gradient generalization, the interaction between the geometric length of a specimen and 
the intemal length causes a size-dependent response of the theoretical model. Physically, this 
is quite plausible since the microstructure may influence the response; for example, when the 
sizes of domains with rather non-uniform strain distributions become comparable with typical 
length scales of the microstructure. 

As mentioned in the Introduction of Part I [1.1] and of Part II, the general objectives of 
the theoretical work described in Part II 'Applications' are to exemplify the extent strain 
gradient plasticity captures the size influence on the deformation behavior. This, of course, 
requires the choice of specific gradient plasticity models and therefore any qualitative and 
quantitative results will be model-dependent. 

Generally, gradient enhanced plasticity models do not allow easy analytical solutions of 
the corresponding boundary value problems. Therefore, depending on the model, numerical 
procedures have been developed, for example as sketched in Part I, Section 3. However, 
instead of the development or adoption of a purely numerical solution procedure and its 
realization in a computer program, a direct approach was chosen to be more appropriate at the 
present development state: Simple loading configurations are selected and relatively simple 
gradient plasticity models are used such as proposed by Aifantis (1984, [6.1]); i.e. extensions 
of the usual yield condition of classical plasticity by terms proportional to the norm of the 
strain gradient and the Laplacian of the strain, which are amenable to relatively easy 
theoretical treatment. At most one-dimensional problems are considered which belong to two 
different categories: 

1st Group: Algebraic problems 

The size dependence of the yield initiation in pure bending and pure torsion is treated 
using a conventional elasticity model in the elastic regime and a conventional yield 
condition enhanced by a 1st and a 2nd order strain gradient term. No boundary value 
problern needs to be solved. Fitting of the strain gradient solutions to available 
experimental data is performed. 
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2"ct Group: One-dimensional boundary value problems 

The size dependence is systematically studied for geometrically similar specimens of the 
same material and the relative influence of the strain gradient terms is determined. 
Ignoring elastic effects, a deformation type plasticity law with power law hardening is 
assumed, which is extended by the Laplacian of the strain. Spatially one-dimensional 
boundary value problems are considered, i.e. tension of tapered rods and three-point 
bending of uniform beams. Exact solutions are obtained for the linear cases and 
approximate analytical solutions are developed for the non-linear problems using the 
method of multiple scales of singular perturbation theory. Appropriate experimental data 
are presently not available for comparison. 

In the following we will discuss these two different task groups and extract related 
conclusions. 

6.2 First Group: Algebraic Problems 

The Iiterature survey (Part I, Section 2) on the size effect of the initiation of yielding under 
non-uniform stress in geometrically similar specimens of the same material (especially steel 
with pronounced lower and upper yield stress) revealed, for various types of specimens, a 
quasi-exponential decrease of the yield stress when the size is increased. 

Two relatively simple specimen families, i.e. 
• torsion of circular rods (Morisson 1939, [1.2]) 
• pure bending of smooth reetangular beams (Richards 1958, [1.3]), 
were selected to assess the interpretative capability of gradient plasticity models. In the 
context of small deformation theory the yield condition is taken to be of the form 

( 
~ )1/2 2 a = ao -cl Ve. V e -c2 V e' (6.1) 

where a and c: are scalar stress and strain measures, V is the Nahla-operator and V2=V'·V' the 
Laplace-operator, and a0 (=const.) is the tensile yield stress under homogeneaus stress 
conditions for the case of ideal plasticity (no hardening). In the elastic region Hooke's law is 
assumed to apply. lt is important to note that the strain c: in the enriched yield condition is the 
elastic strain at the instant of yielding which is also linearly related to the stress according to 
Hooke's law. Thus, in a certain sense, the strain gradient terms in the enriched yield condition 
can also be interpreted as 1st and 2"d order spatial stress gradients. 

Definitely, this model cannot predict any size effect if the macroscopic strain or stress 
gradients vanish identically, i.e. for a homogeneaus state. Therefore, the interpretation of 
geometrically scaled experiments under non-uniform stress states with this model is 
reasonable only if homogeneaus tensile tests with the samematerial do not reveal a size effect 
on the initiation of yielding. 

In fact, for the material (plain carbon steel) used by Morrison for the torsion tests, 
several scaled tension and compression tests with a scale factor of only up to 3.55 have been 
performed, which showed neither a size dependence of the yield nor of the ultimate stress. 

On the other hand, for the mild steel used by Richards (1958, [1.3]) for his scaled 
bending tests, no accompanying tensile tests were performed. However, Richards carried out a 
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large number of tensile tests for a mild steel not identified to be the same to that used for the 
bending tests; these tensile tests demonstrate a definite decrease of the yield stress with 
increasing size and a considerable scatter. 

However, frequently the opinion is expressed that true size effects in ordinary tensile 
tests of ductile engineering materials are so small that they are difficult to detect (see Shearin, 
Ruark and Trimble (1948, [6.2])). The Iiterature survey performed on this topic and described 
in Part I shows that the yield stress, the 0.2%-proof stress or the stress at 0.5% strain are 
frequently found to be not affected by the change in size. However, there are definite 
exceptions where a decrease of these quantities is observed when the diameter is increased. 
Also, experimental evidence obtained by Piechanova and Ratner (1954, [6.3]) supports the 
suggestion that this size dependence may not only be generated by surface hardening induced 
by the machining of the specimens; possibly it is an inherent material property related to the 
heterogeneity of the microstructure. 

The adaption of the gradient plasticity model to Morrison' s torsion tests implied a least 
squares fitting of three parameters: the two gradient parameters ctfG and c2/G (where G is the 
elastic shear modulus) and the parameter A, which is the ratio of the yield stress in shear and 
tension, i.e. A = 'l'o I C!o. 

The size effect formula, Eq.(2.4), may also be written in the form 

Y(a) A 

ao l-(l,la)+(lzla) 2 
, 

(6.2) 

where Y is the yield stress at the surface of the circular torsion rod, a is its radius and where 
the two intemal length parameters 

(6.3) 

are the coefficients of the radius dependent terms. 
The fitting procedure yielded 

ctiG = -1.427 mm, c2/G = 0.85 mm2
, (6.4) 

or altematively 

z, = 0.38mm , 12 = 0.476mm 

} (6.5) with 

A= 0.516. 

The ratio Ais between 0.577 (von Mises yield condition) and 0.5 (Tresca yield condition) and 
is comparable to values found in the Iiterature on carbon steel. 

The fitting shown in Fig.2.1 is remarkably close to the experimental results, which show 
a rather small scatter9

• It is obvious that the intemal length parameters 11 and [z are fairly 

9 Some of the scatter has been eliminated by normalizing the yield stress with respect to the tensile yield stresses 
of the various specimens. 
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comparable in magnitude but the effect of the corresponding terms in Eq.(6.2) is opposite: the 
first order term is dominant not only in magnitude but more important, the proper trend to 
capture the experimentally observed size dependence is contained in the 1st order term 
because of the sign of c1/G. It appears that the inclusion of only the 2nd order gradient term in 
the gradient enhanced deformation plasticity model would not suffice to obtain an acceptable 
fit. 

For comparison, the rninimum radius of the smallest torsion specimen is 1.293 mm and 
the grain size is less than 0.042mm. Thus, the intemallength parameters 11 and 12 (Eq.(6.5)) 
are considerably less than the minimum dimension of the torsion specimens and both are 
about 10 times !arger than the grain size. This is a fairly reasonable result. With some caution 
one may interpret qualitatively this result that the 'joint action of several crystal grains' 
deterrnines an intemal length scale responsible for the size dependence of the yield initiation. 
This is in line with suggestions by Morrison (1939, [1.2] and Part I). Morrison proposed a 
simple theory of yield for the case of non-uniform stressing. He suggested for a bending test 
that 'yield cannot occur in an individual crystal surrounded by unyielded material but only in a 
number of crystals which occupy a sufficient thickness to permit of the complicated 
readjustment (of the crystals) which must take place before movement can occur, it is 
unreasonable to expect to find yield before a stress equal to yield stress in uniform tension is 
applied to a depth of this magnitude. It seems reasonable to suppose that the depth might be of 
the order of a few crystal diameters.' 

The adaption of the gradient plasticity model to Richards' pure bending tests, was also 
done by applying a least squares fit. It is important to note that for this loading configuration, 
the 2nd order gradient term involving the gradient parameter c2 vanishes identically and thus 
only the Istorderterm remains. The two parameters G0 and ctfE were determined by the fitting 
procedure. Eq.(2.7) with the data from Section 2.2 can be written in the form 

with 

Y(h) 1 

~- l-(h:2) , 

l = _.s_ = _5_ 1 = 1.125 mm 
E G 2(1+V) 

5_ =- 2.97 mm 
G 

G0 = 225.6 Mpa . 

(6.6) 

(6.7) 

The intemallength parameter 1 is found tobe weil below the half-depth (h/2 = 3.19 mm) of 
the smallest beam specimen accounted for in the fitting process; this is, of course, a necessary 
requirement for a reasonable quasi-hyperbolic fit of the size effect model. 

The obtained fit (Fig.2.2) with only two parameters, covering a scale range of 3.84, is 
comforting, but it refers to the mean values of the relatively large scatter bands associated 
with each specimen size. Also the experimental results are somewhat masked by the observed 
non-uniformity of the yield stress along the radius of the circular stock barthat the specimens 
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were taken from (Part I, Richards (1958, [1.3])). A comparison of the internal length scale 
with the grain size is not possible since these data are not reported. 

It is interesting to compare the two corresponding intemal length parameters (ct/G), 
Eq.(6.4) and Eq.(6.7), associated to the first order strain gradient term. It is noted that the 
intemallength parameter for the bending case is two times la..rger than the one obtained for the 
torsion data. This difference may possibly be attributed to a difference in composition and 
microstructure of the two steels used. Of course, it may also be an indication that the proposed 
gradient termsarenot capable to catch the two size effects uniformly if the materials were the 
same. 
The conclusions may be stated as follows: 

(a) The two separate fitting processes of a simple gradient plasticity model, including Ist and 
2nd order strain gradient terms, gave comforting agreement of the fitted models with the 
mean values of experimental data in torsion and pure bending experiments. Evidently, 
these phenomenological models are useful means to interpret these observed size effects 
although a physical interpretation of the gradient term was not used. 

(b) The results indicate that it is important to include a Ist order strain gradient term in the 
enhanced yield condition and it suffices to use a linear dependence on the strain gradient 
only. The 2nd order strain term is of no importance for the case of pure bending and of a 
minor one in the case of torsion; here it introduces an opposing compensating size effect 
compared to the Ist order term. 

(c) The Istorderstrain gradient parameters obtained in the two different tests with different 
materials differ by only a factor of two. Whether this is accidentally so or due to the 
difference in material cannot be decided. 

( d) For the case of torsion, the 1st order strain gradient coefficient was found to be about I 0 
time larger than the grain size. Possibly this may be an indication to interpret the 
existence of an internallength scale by the 'collective action of several crystal grains' in 
the yielding process, a suggestion already made by Morrison and others. 

(e) The enhancement of the classical ideal plastic yield condition by Ist and 2nd order strain 
gradient terms may be viewed as being equivalent to an enhancement by Ist and 2nd order 
stress gradients. 

(f) Finally, further comparison between gradient theory and mechanical tests of 
geometrically scaled specimen families of the same material is necessary which really 
allows assessing the predictive capabilities of the theoretical models. This requires testing 
of scaled specimens to identify conventional material parameters and especially the 
gradient coefficients (intemal length scales) but also independent scaled tests, using the 
same material to verify the predictive capabilities of the phenomenological model. 

At the present state we do not have recourse to such experimental data, neither from 
the open Iiterature nor from the experimental part of the REVISA project. This is partly 
due to the delay of the project but also due the complexity of the specimen geometry, 
which requires elaborated numerical solution of the non-classical boundary value 
problems. 
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6.3 Second Group: One-Dimensional Boundary Value Problems 

In the znd group one-dimensional boundary value problems were solved and parameter 
calculations were performed by changing the specimen size or the intemal length scale to 
assess the influence of the strain gradient term in comparison to the classical part of the 
constitutive equation. 

In contrast to the first group, elasticity and the existence of a yield condition were 
ignored. Instead, a linear or power law hardening deformation type plasticity law was assumed 
for the classical part; also for the gradient term, only the znd order strain gradient (Laplacian) 
was used. Fora uniaxial state of stress, this model reads 10 

(6.8) 

for the case of large strains, a is the applied Cauchy stress, s is the logarithmic strain and X 
the material (Lagrangian) coordinate. This form is related to early proposals of Aifantis and 
coworkers (1987, [6.5], 1988, [6.6]); the gradient term can also be considered as an 
approximation to a certain non-local (integral) forrnulation (Appendix 1). 

The following cases were analyzed: 
• tension of tapered rods under different assumptions, 
• three-point bending of smooth beams. 
Under the assumptions of a uniaxial state of stress the goveming equilibrium equation can be 
trivially solved independently of the constitutive relation. This 'uncoupling' allows a direct 
integration of the constitutive equation which takes the form of a znd order differential 
equation for the strain. The required non-conventional boundary conditions, which typically 
have to be introduced for gradient models, are defined. The most important condition is the 
assumed vanishing of the strain gradient at the center of the tapered rods and of the beams. 
For smooth specimens this follows from the symmetry but not for the non-smooth 
exponentially tapered rod. Under simplifying assumptions it is shown in a separate analysis 
{Appendix (1)) that a znd order strain gradient model may be a valid approximation for a non­
local (integral) model far from boundaries or geometric discontinuities, if the intemallength l; 
is appropriately interpreted. However, in a small region close to the boundary a gradient 
approximation should also include a 1st order strain gradient. But more important, the 
boundary condition obtained from the non-local model may differ significantly from the 
assumed vanishing of the strain gradient at the center of the specimen. Thus, the gradient 
modeland its non-classical boundary condition generally require a different motivation. 

(i) Tension o(Tapered Rods: Linear Case 

First we considered a linear stress-strain relation without allowing a cross-section area 
reduction (small strains). Thus, under the assumption of small strains and linear hardening 
two fully linear tapered rod problems are analyzed and discussed: 
• an exponentially tapered rod under tension, 
• a U-notched rod under tension. 

1° K and Ii are material constants, with Ii determining the gradient influence. An alternative gradient formulation is 
obtained by the use of spatial (Eulerian) coordinates (Eringen 1962, [6.4]). We did not follow this assumption. 
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Exact solutions were obtained which allow a qualitative insight easily. A comparison of 
the classical and the non-classical solution cc and c, respectively, for the exponentially tapered 
rod at the same stress Ievel shows that the inclusion of a 2nd order strain gradient in the 
constitutive model together with the non-classical boundary condition yields 
e a reduction of the maximum strain at the minimum cross-section and 
• a smoothing-out of the strain peaks, i.e. the discontinuities of the 1st order strain gradient. 

The importance of the non-classical boundary condition to obtain these effects is 
emphasized. The qualitative findings are in line with results obtained by Altan and Aifantis 
(1992, [6.7]), Ru and Aifantis (1993, [6.8]) and Vardoulakis, Exadaktylos and Aifantis (1996, 
[6.9]) by using strain gradient-dependent elasticity theories, i.e. modifications ofHooke's law, 
to account for excessively high strain gradients developed in the neighborhood of a crack-tip 
(singular stress and strain field). These modifications dispense with the crack-tip strain 
singularity. 

With L* being the transition length (a characteristic measure for the size of the 
specimen) of the exponentially tapered rod and l; being the internal length, a non-dimensional 
gradient parameter ß = l; I L* < 1 is defined. With Da being the minimum diameter (at ~ = 0) 
and D"" the largest diameter ( at ~ -7 oo) one obtains 

ß=l_=J__ Do D~ =li_.JaD~ 
L* D D L* D L* ' 

0 ~ 0 

(6.9) 

where 

A D2 
a--0 __ o 

- A~- D~ . 
(6.10) 

For geometrically similar specimens the dimensionless factors a and D"" I L * remain constant, 
whereas only the ratio l; I Da changes if the size is changed and the material is the same. A 
change of shape is obtained by varying at least one of the three quantities D0 , Doo and L*, or 
holding the ratio of two dimensions constant (e.g. Ja) and varying independently the third 
one. Since l; is assumed to be related to the microstructure, the ratio l; I Da should be clearly 
less than '1 '. 

The exact non-classical solution c depends on the parameter ß and, of course, on the 
geometry of the specimen. For the relative strain c0 I cco 11 at the minimum cross-section one 
obtains, Eq.(3.22), for the purely linear case 

(6.11) 

which decreases monotonically with increasing ß-value (decreasing size) and approaches '1' 
for very large specimens (ß -7 0); the rate of decrease d(c0 lcco)ldß is largest for ß -7 0. For 
example, for a wasp-waisted specimen with a = 0.0625 (D0 I D"" = Ja= 0.25) and a large ß­
value (ß = 0.2)12 the relative strain reduction, i.e. (cco- c0 )lcc0 , is about 19% (Fig.3.5). The 
non-classical strain distribution is found to consist of two contributions: a part that essentially 

11 
Ea = non-classical strain and Eca = classical strain at minimum cross-section. 

12Note that with Eq.(6.9) the values .Ja= 0.25 and ß = 0.2 corresponds to (/;I Da)= 0.8(L• I D~) = 0.2(L• I Da); 
thus for a small value of l; I Dm say 0.02, a wasp-waisted neck with L* I Da = 0.1 is required. 
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represents the classical strain distribution and another part which for small values of ß and 
increasing distance from the strain maximum is a fast decaying contribution; in fact, it 
represents for ß << 1 a boundary layer effect which is entirely due to the gradient term. This is 
also the region where the first and the second order derivatives of the classical strain solution 
are largest. Thus, the 2nd order strain gradient influence is largest where the classical solution 
shows a large variation, i.e. inhomogeneity. 

The size dependence of the deformation behavior of the linear model can also be 
represented by determining dimensionless Ioad-displacement or dimensionless stress-strain 
graphs. For example, the plot of the local dimensionless stress-strain relation at the minimum 
cross-section (where the gradient effect is largest), which is a linear relation, yields the largest 
stiffness for the smallest specimen (ß ~ 1). Of course, for very large specimens (ß ~ 0) the 
classical relation is obtained. 

With the obtained solutions also a fairly obvious fact is demonstrated: the size influence 
is more readily detectable in dimensionless force-deformation graphs when a local strain -
related to a region of intensive strain non-uniformity - is used as a deformation measure than 
in approaches which use a strain average on an extended spatial domain. 

The combination of the linear 2nd order strain gradient deformation model with two 
common engineering fracture critetia, i.e. 
• a criticallocal stress, or 
• a criticallocal strain, 
which are assumed to be size independent material data, yields a theoretical assertion about 
the size dependence of fracture. However, the reader should recognize that the authors do not 
expect that the combination of a relatively simple size-dependent deformation law and a size­
independent local failure criterion will yield qualitatively correct trends for the failure stress 
and failure strain. 

Assuming the validity of the size invariant local critical stress criterion, the combination 
with the gradient model yields, of course, a size-independent normalized failure Ioad, whereas 
the normalized deformation measures are size-dependent: scaled-up specimens have larger 
local and average strains at fracture. It is noted that this qualitative trend is not in agreement 
with trends observed experimentally: frequently the normalized fracture Ioad and strain 
decrease with an increase in size (e.g. Brown et al. 1947, [3.1], Shearin et. al. 1948, [6.2]). 

Provided a size invariant critical local strain criterion holds, then, of course, the local 
fracture strain at the minimum cross-section is size invariant. However, the associated 
normalized fracture Ioad decreases with an increase in size. This last trend is in qualitative 
accordance with experimental Observations. 

On the other hand from the knowledge of these normalized fracture Ioads one may 
determine the associated average strains for different specimen sizes. Although the maximum 
local strains at fracture are assumed to be the same, the average strains are size dependent, i.e. 
they are larger for small specimens than for large ones. 

With the parameter ß = l;IL * being the goveming parameter for the size dependence, it is 
obvious that the influence of size will decrease with increasing dimensions. Furthermore, if 
two size dependent quantities are compared, for example the normalized fracture Ioads 
obtained from a critical strain criterion, then the ratio of the normalized fracture Ioads, 
Eq.(3.37), is not only depending on the geometrical scale factor A but also on the absolute 
size. Therefore, keeping A = const., but increasing the size of the small and the large specimen 
proportionally, willlead to an equalization of these normalized fracture Ioads. 
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(ii) Tension o(Tapered Rods: Non-Linear Case 

Next we considered a non-linear stress-strain relation (power law hardening) and 
allowed for cross-section area reduction during loading. Although the purely linear problern of 
the exponentially tapered tension rod provides rather valuable qualitative information, the 
consideration of the non-linearities due to power law hardening (n<1) and large strains 
(allowance for cross-section reduction due to volume conservation) is an important step 
towards a more realistic deformation model. The goveming nonlinear differential equation, 
Eq.(4.7), is 

(6.12) 

is proportional to the engineering tension stress CJ'R({l in the rod. 
It is noted that the two non-linear effects imply instability in the classical case (ß = 0) 

when the locallogarithmic strain e becomes equal to the hardening exponent n. At this instant 
the increase in Ioad due to hardening is balanced by the 'geometric softening' due to cross­
section reduction. Thus, a hardening before and a softening phase after the Ioad maximum are 
to be distinguished in the classical case. 

An exact solution for the non-linear gradient enhanced deformation model, Eq.(6.12), 
appears not to be possible. However, for small ß-values and a bounded 2nd order strain 
derivative the gradient term represents a perturbation in Eq.(6.12). The exact linear solution 
proved that essentially two types of spatial dependencies are involved: a part, which 
essentially represents the classical solution, and a second part, which is a boundary layer 
contribution controlled by the parameter ß. For ß = 0 the differential equation (6.12) reduces 
to an algebraic problem, its solution being the classical solution ec which satisfies the 
boundary condition at ~ --7 oo but not at ~ = 0 (minimum cross-section). Thus, Eq.(6.12) 
together with its boundary conditions (4.9) signals a singular perturbation problem. An 
approximate asymptotically valid analytical solutionwas obtained using a generalized version 
of the method of multiple scales by Nayfeh (1973, [4.3]). A 'slow' and a 'fast' variable, 

and (6.13) 

were introduced and a uniformly valid expansion 

0 I 2 3 
f (~,1J;ß) = e (~,1]) + ß e (~,1]) + ß2 e (~,1]) + ß3 e (~,17). (6.14) 

k 
was assumed tobe applicable, where the two-scale functions e(~,1J), k = 0, 1, 2, 3 as weil as 

J.l({j remain tobe determined. By developing and arranging according to powers of the small 
parameter ß, the differential equation (6.12) and its boundary conditions transform to a system 

k 
of ordinary differential equations of 2nd order in the 1]-variable for the e(~,1J) and associated 
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boundary conditions, where the g-variable is silent. The system must be solved in successive 
steps since the right-hand side of the k1

h equation depends on the solutions of the previous 
differential equations. This system of differential equations is characterized by the fact that the 

0 
nonlinearity is restricted to the 01

h order equation for c(g,1J); but fortunately, it allows a 

simple solution, namely, 

(6.15) 

the classical solution being independent of the 'fast' variable 17· The successive equations for 
k 
c(g,1J), k = 1, 2, 3, are linear differential equations; their solutions involve 'integration 

constants' which, of course, are functions of g. They are determined partly by the boundary 
conditions. Further conditions in the form of differential equations are obtained for the 
remaining 'integration constants' and for the yet unknown function J-1,( g) by suppressing 

k+l k 
'secular terms' which make the ratio c I c unbounded in the (g,1J)-domain; this is an 
essential part at the heart of the singular perturbation method. This yields, among others, the 
function J.l,(g}, which determines the 'fast' variable 1J as a functional of the classical strain 
distribution: 

~ l . 0 Jl/2 
J.l,(g} = J _!__ [~- c(r)] dr; 

o (/) [c(r)]1-n 

(6.16) 

the constant qJ may be chosen as convenient. Since a closed form representation for the 
0 

classical solution fc(g) = c(g) does not exist, the above integral and others of the general 

solution need numerical integration. It is noted that the derived asymptotic solution for the 
logarithmic strain distribution, Eq.(4.91), does not explicitly depend on the spatial variation of 

0 
the cross-section area. This geometric quantity is solely contained in the function f = fc and 
the obtained solution is applicable to any smooth cross-section variation in the region 0 ::; g < 
oo satisfying the properties at g--? oo. 

If the perturbation solution of the fully non-linear problern is reduced to the case of 
small strains (neglect of the cross-section reduction), an explicit analytical solution for the 
classical strain distribution is trivially obtained 

(
a )IIn o 

" - __fi_ - " cc- -c 

K 
(6.17) 

and the integral in Eq.(6.16) simplifies to 

~ l Jl/2 f 1 n 
/lR = 0 dr; 

o (/) [c(T)]1-n 

(6.18) 
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Furthermore, for the exponentially tapered rod a closed form solution for odd integer values of 
l/n is derived for /lR and other integrals such that an analytical representation of the non­
classical strain distribution along the tension rod and especially in the boundary layer close to 
g = 0 is obtained. 

Although the perturbation solution of the fully non-linear problern requires numerical 
integrations, important results can be derived without recourse to numerical methods. These 
refer to the maximum strain e(O,O) at the minimum cross-section (g = 0) and its dependence 
on the size and shape of the tension rod and the constitutive parameters. Thus, closed form 
approximate analytical solutions are obtained which allow direct insight into the essential 
response characteristics. 

With Sco being the maximum strain at g = 0 of the classical solution, one obtains the 
maximum e(O,O) of the non-classical strain in normalized form (relative strain ratio), up to 
terms quadratic in ß, as follows (Eq.(4.158)): 

(6.19) 

0 
where ec = e is the solution of 

(6.20) 

0 0 0 
here (e )0 , (e~ )0 and (e~~ )0 are the classical solution and its 1st and 2ndorderderivative at 

the minimum cross-section (g = 0). 
The explicit representation of the relative strain for the exponentially tapered tensile rod with 
a sharp neck13 and for the fully non-linear case is 

1/2 

o i-n 

s(O,O) =l-ß (s)o 

eco n- (~)o 
1-a 

0 + 
n- (s)0 

13The term 'sharp neck' is used to indicate the shape of the initial profile of the tapered rod at hand. This in 
cantrast to the localized neck due to usual geometric softening of initially smooth specimens. 
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+ 0 
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1-a 
0 

n- (s )0 

2 

-n---::-~~-)o {l~a( n-(~o )' +n 

5 n (o) 1 (0)2} +-n(1-n)+- e 0+- s 0 12 4 6 
===== ==== 

in the purely linear case (n = 1 and deletion of the underlined terms) this simplifies to 

s(O,O) =1- ß(l-a) + ß2(1-a). 
eco 

(6.21) 

(6.22) 

The following observations and qualitative conclusions can be made, conceming the 
properties of the approximate solution and its limitations and including the trends imposed by 
a change of material parameters, the specimen size and shape, and specific assumptions: 

(a) Foratension rod with a sharp neck one finds for ~ = o+ 

0 0 
(ec~ )0 = (e~ )0 < 0, (ec~~ )0 = (e~~ )0 > 0, 

0 
since the classical strain Ec = s is essentially a function of the inverse of the cross-section 
distribution. Thus, the dominant term of the relative strain approximation, Eq.(6.19), 
linear in the parameter ß, is negative. This implies for sufficiently small ß-values a 
reduction of the maximum non-classical strain s(O,O) compared to the classical value Eco· 

Provided the tensile Ioad is properly scaled and the specimens are geometrically similar 
and of the same material, the size influence is entirely contained in the parameter ß: if the 
size is decreased, then L * decreases and ß increases, which implies a decrease of the 
relative strain. Within the present context, this is the most important aspect of the size 
effect for the tensile rod. 

(b) The singular perturbation solution for the fully non-linear and non-uniform tension 
0 

problem, Eq.(6.19), is not valid close to instability. Then (s)0 = Eco approaches the 
0 0 

hardening exponent n and the derivatives (s4 )0 and (s44 )0 grow beyond bounds. Thus, a 

prerequisite of the perturbation solution for the differential equation Eq.(6.12), i.e. 
boundedness of d2fid~ 2 , is not assured for large strains approaching instability. 

(c) The underlined terms in Eq.(6.19) are due to the allowance for cross-section reduction 
induced by the assumed volume conservation during plastic deformation. lf this is 
ignored (small strain assumption), Eq.(6.19) simplifies to 
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e(O,O) = 1 + ß[ 1 ]112(~ ) + 
e (O)l+n ~ 0 co n e o 

+ ß2
[ 0

1 
] {(~~~) (~)o +2_(1-n)(~~ ) 2

) 

( )
l+n 0 12 o n e 0 

(6.23) 

0 
and e is simply given by 

(6.24) 

0 
(d) For the case of a smooth neck at ~ = 0, the strain ec(~) = e(~) has a relative maximum at 

~=0 

(6.25) 

and Eq.(6.19) simplifies to 

(6.26) 

This reflects the quadratic dependence of the gradient enhanced constitutive equation on 
the intemal length l;. The sign of the quadratic term shows that the strain gradient term 
implies a reduction of the strain maximum compared to the classical solution. lf only the 
specimen size is reduced but the stress Ievel aR( ~ is kept constant by proper scaling of 
the Ioad, then the parameter ß increases and the maximum strain e(O,O) as weil as the 
relative strain are shifted to smaller values. 

Clearly, the size effect is not restricted to a sharp neck but is, of course, also present 
for a smooth neck. However, it is only quadratically depending on the normalized 
gradient parameter ß. Therefore, the smoothness of the neck as defined by Eq.(6.25)14 
determines a 'switch' from a linear to a quadratic dependence on ß. Obviously, the 
smooth minimum section of the neck may be a rather 'local affair' which needs a 
'magnification' to be detectable. This shows that the relative strain reduction at the 
minimum neck section, i.e. a local value at g = 0, may be rather sensible to the local 
geometric properties. 

The relative strain of a smooth neck can be given a lucid interpretation if the cross­
section reduction is ignored. The Eq.(6.26) simplifies to 

14Note: these conditions do not define a 'degree' of smoothness 

103 



(6.27) 

with 

0 ( (J' )!ln (e)o= Bco = ;o 
0 

(6.28) 

With Do being the mtmmum neck diameter and Ro the radius of curvature of the 
meridional profile at the minimum section one obtains (Eq.(4.140)) 

(6.29) 

Thus, this result for a smooth neck demonstrates that the intemal length scale 'l;' in 
relation to the minimum geometrical length scales Do and Ro determines the relative 
strain reduction, i.e. the gradient effect. The ratio l;IR0 is of special importance since for 
very uniform necks, i.e. RJDo very large, the gradient effect vanishes. 

Also, the form of Eq.(6.29) and the assumption that 'l;' is related to a 
microstructural length scale suggest that both ratios l;ID0 and l;/R0 should be clearly less 
than '1' suchthat the model remains reasonable. Thus, the Iimit of Eq.(6.29) for Ro ~ 0, 
which formally gives a singular result, should be excluded. Geometrically this Iimit 
represents a sharp neck and here the non-smooth solution applies. 

In addition, Eq.(6.29) proofs the importance of the hardening exponent n for the 
relative strain reduction. If the classical strain Ievel Bco is controlled by increasing the 
loading suchthat 

(J' Ro 

( )

1/n 

Cco = K = const. , 

for decreasing values n, then the relative strain reduction may decrease, pass through a 
minimum and is very sensitive especially for small values of n, because it increases 
beyond bounds for n ~ 0. If, however, the normalized stress aRJK is required to be 
constant 

(J' Ro n 1 -- = eco = const. < , 
K 

then the strain Bco decreases monotonously towards zero with decreasing n but the relative 
strain reduction shows a maximumforafinite n-value (Fig.4.1). It is shown that this is 
due to two opposing effects, i.e. the above mentioned decrease of Bco and the increase of 
the 'relative localization' 
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with decreasing hardening exponent. 

(e) Fora non-smooth tension rod with a sharp neck at ~ = 0 the relative strain depends also 
linearly on the normalized gradient parameter ß although only a second order strain 
gradient is assumed in the constitutive model. Observing the previous statement, this is 
due to the non-smooth cross-section distribution araund ~ = 0 which induces non­
smoothness in the tension stress aR(~. 

0 0 
(f) The derivatives (e~ )0 and (eee )0 , given by Eq.(4.160), are determined by the initial 

0 

geometry of the tensionrod at ~ = 0, the strain Ievel eco =(€)0 (or engineering stress Ievel 

aRo) and especially by the distance (n - fco) from instability. This applies also to the 
relative strain e(O,O) I eco· 

0 

Fora prescribed engineering stress Ievel aRo the corresponding classical strain eco =(e)0 

is larger when the cross-section reduction is accounted for, compared to the case without 
0 0 

this geometric non-linearity. The same trend is valid for the derivatives (e~ )0 and (eee )0 • 

Thus, it follows from Eq.(6.19) that the relative strain reduction (ec0-e(O,O))Ieco is 
increased when the cross-section reduction due to plastic deformation is accounted for. 

(g) When all parameters and the tensile loading aR/K are held constant but the hardening 
exponent n is decreased ( 1 ~ n ~ 0), then the classical strain Eco decreases. Under the 
small strain assumption its derivatives (ece )0 and (ec~e )0 decrease in magnitude and in 

the Iimit n ~ 0 no deformation is obtained. However, the 'relative localization' for a 
sharp neck, i.e. 

increases with decreasing n. These two opposing effects generate a peculiar n-dependence 
of the sensitivity (Fig.4.7) 

s = lde(O,O)/ eco I 
dß ß-)0 

and of the relative strain reduction (ec0-e(O,O))Iec0 : a maximum at a finite n-value. 

(h) For ß increasing towards '1' (i.e. very small specimens of a family of geometrically 
similar probes) the parabolic character of the asymptotic solution becomes dominant and 
strongly erroneous: the exact solution for the relative strain, Eq.(6.11), of the purely linear 
case is a monotonously decreasing function of the normalized gradient parameter ß; 
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however, the perturbation solution, Eq.(6.22), has a relative minimum at ß = 0.5 and 
underestimates the gradient effect for !arge ß values (small sizes). 

For the non-linear case this minimum is shifted to ß values less than 0.5 and thus, 
the range of validity of the quadratic perturbation approximation reduces to very small 
values of ß (i.e. large specimen sizes). 

(i) The range of validity of the perturbation approximation can be extended by accounting 
for higher order terms in ß. This has been done by including terms cubic in ß, but 
neglecting the cross section reduction. By comparison with the exact solution for the 
linear case, adefinite extension of the validity of the perturbation approximation to larger 
values of ß is observed. However, for ß becoming too large, this 3rd order approximation 
overestimates the gradient effect and thus becomes also erroneous. 

The validity of the perturbation solution can be extended to larger ß-values by 
including even higher-order powers of ß but this becomes yet more laborious. This 
extends also the strain range wherein the perturbation approximation is reasonably 
applicable. However, close to instability the approximation fails in any case since the 
terms of the power series representation are not affected by a series extension and they 
become singular. 

(k) Aside from demonstrating the size influence via a graph of the relative strain reduction 
versus ß, which is a mathematically very convenient way, the results can also be used to 
prepare engineering stress-strain diagrams. This representation is a rather natural choice 
since it simulates the size influence in a tensile test with a tapered specimen. As pointed 
out previously, spatially local measures of the strain should be used instead strain 
averages over extended domains. Therefore, the engineering stress aRo and the 
corresponding gradient affected engineering strain eR(O,O) at the minimum neck section, 
where the main gradient effect is located, were plotted in the same diagram by eliminating 

0 

the intermediate variable eco = (e)0 from the goveming equations. 

This has been done for the fully non-linear case (Section 4.2.2) using the 2nd order 
perturbation solution (Fig.4.9) and also for a 3rd order approximation (Fig.4.13 & 4.14) 
but without the effect of the cross-section reduction (Section 4.3.3). For large strains and 
large ß-values (small sizes) the results are, as mentioned before, not sufficiently accurate. 
Nevertheless, for sufficiently small strains and ß-values, valid approximations are 
obtained which show the increase in flow stress with decreasing size (increase of ß); this 
is just another aspect of the size influence. 

An example may illustrate this. Fora rather wasp-waisted specimen (a = 0.0625, 
.Ja = Do I Doo = 0.25) low hardening exponent (n =119, ferritic steel), and a small local 
stain eco = eR(O,O) = 1.5% the normalized engineering stress is increased by about 6.5% if 
the dimensionless gradient parameter ß is increased from ß = 0 (very large specimen) to ß 
= 0.1 (Fig.4.14b). With Eq.(6.9) and with D0 ll; interpreted as the number of grains along 
the minimum diameter, say D0 I l; = 50, one gets L" I Do = 0.2. This is a very steep 
transition from the minimum diameter Do to the largest diameter Doo: within a diameter 
D0 's distance from the minimum section the diameter has increased up to 95% of the 
asymptotic value Doo. An experimental detection of a flow stress increase in the 
percentage range requires a very homogeneous material, careful specimen preparation and 
testing to minimize masking influences and pseudo size effects (e.g., macroscopic 
material inhomogeneity, surface hardening due to machining). 
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( f) It should be realized that the exponentially tapered tensile rod was treated as a uniaxial 
stress problem. Under a multiaxial stress state and using a classical material model, a 
sharp neck induces a stress and strain singularity, i.e. locally much !arger stress and strain 
gradients are generated than in the uniaxial stress model. Thus, the quantitative size 
effects of the simple model presented here may possibly underestimate the influence of 
the 2nd order strain gradient term generated in a fully three-dimensional state. 

(iii) Bending o(Smooth Beams 

The parametric size effect studies were also performed for the problern of quasistatic 
bending of smooth beams (length: 2L) with reetangular cross-section under a single Ioad 2P at 
the center and simply supported at the ends. Again the validity of a power law hardening 
deformation type plasticity theory was supposed which includes a 2nd order strain gradient. 
Only small deformations were considered, shear deformation was ignored and a linear strain 
distribution (Bemoulli's hypotheses) across the depth of the beam was assumed. This problern 
yields a 2nd order differential equation for the beam curvature. It is especially noteworthy that 
it represents a singular perturbation problern of boundary layer type, which has the same 
formal structure as the problern for the tapered rod. Thus, the sarne solution procedure -
multiscale method for singular perturbation boundary value problems - was applicable such 
that a very large part of the previously derived equations was transferable to the new problern 
by proper reinterpretation of the variables. 

The goveming dimensionless differential equation, Eq.(5.12) is 

X 
Ü<-=~~1, 

L 
(6.30) 

where K = Lk is the dimensionless curvature, r8( ~ is proportional to the bending moment and 
the smalllumped parameter ßq is defined by 

with the dimensionless gradient parameter 

ß 
[. 

_I 

-L, 

and the parameter q 

!!!:_ ~ q = (!!._ y-n (2+n)21+n ~ 1 
3 L L) 12 

L: half length of beam } 
h: depth of beam 

h 
- < 1 L . 

(6.31) 

(6.32) 

(6.33) 
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In contrast to the tapered tension rod problem, the dimensionless perturbation parameter ßq 
has a more complex structure: a shape factor h/L and the constitutive parameter n are 
involved. Boundary conditions are assumed, Eq.(5.17) & (5.18), with the essential assumption 
being the vanishing of the 1st order derivative K'~ at the center of the beam (~ = 0); this is 
analogaus to the tension rod. 

For the linear case n = 1 (implying ßq = ß), the goveming equation (6.30) admits an 
exact solution. With K'co being the maximum dimensionless curvature of the classical solution 
at the center of the beam (Eq.5.67), i.e. 

( )

2 
- L ~12 

K'co- h Kbh (6.34) 

and K'(O) = (K')o denoting the maximum value of the non-classical solution, the relative strain 
in the tension side at the center of the beam is found to be 

eornax = (K')o = 1_ ß 2sinh(2/ ß) 
ecomax K'co 1 + 2cosh(2/ ß) 

(6.35) 

for small ß-values this can be approximated by 

eornax = (K')o = l-ß. (6.36) 
C CO IDaX 1( CO 

For the non-linear case 0 < n < 1 and small ßq-values an approximate analytical solution was 
developed by applying mathematical analogy with the tapered tension rod problern and 
transferring the essentials of the tapered tension rod solution. 

With 

(6.37) 

being the classical Solution and identical with the Oth order perturbation Solution, the 
dimensionless curvature at the center of the beam (~ = 0) of the classical solution is (see 
Eq.(5.83)) 

o 0 L ( 4PL )lln ( n)lln 
KC(O) = K = K'(O) = (K) =- -- 1+- 2. 

CO 
0 h Kbh 2 2 

(6.38) 

The determination of the maximum K'(O,O) of the non-classical curvature in normalized form 
(Eq.(5.94)) yields 

K'(O,O) = 1 + ßq ( K' ~;n )1/2 (~ ~ )o + 
K'co n K'co 
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(6.39) 

which is equivalent to the relative strain at the tension side of the beam at ~ = 0. In explicit 
terms one obtains 

(6.40) 

Clearly, for the linear case n = 1 it simplifies to 

comax = K'(O,O) = 1- ß. (6.41) 
Ecomax K'co 

The following observation and qualitative conclusions can be made which reflect, to a 
considerable extent, results obtained for the tapered tension rod: 

(a) For the case of three-point-bending with a single load 2P at the center of the beam, the 
moment distribution is non-smooth at ~=0. Thus one finds for ~ = o+ 

0 0 

(K'c~ )o = (K' ~ )o <0, (K'c~~ )o = (qdo > 0 . 

Thus, the dominant term, linear in ßq, of the relative strain, Eq.(6.39), is negative which 
implies a reduction of the maximum non-classical strain Bomax compared to the classical 
value Ecomax· For geometrical similar specimens of the same material and for scaled 
loading, 

A : geometrical scale factor A ~ 1 

P : load for large scale specimen 
P : load for small scale specimen 

(6.42) 

similarity cannot be achieved but a size effect is present which is entirely contained in the 

parameter ß = l;IL, which is part of the lumped parameter ßq = .j{j ß: if the size decreases, 

ß increases and the relative curvature or strain decreases. 

(b) In cantrast to the tapered tension rod similarity of the curvature distribution (but not the 
strain distribution) can be achieved theoretically, if specimens with geometrically 
distorted cross-sections are considered. Different geometric scale factors for the length L, 
the depth h and the width b are assumed, i.e. 
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(6.43) 

lf the cross-section areas are required to scale according to A?, then lt11Ab = lt2 and for a 
given ratio h I b ofthelarge scale beam, one obtains for the small scale distorted beam 

h 1 h 
-;;= A,l-n b 

and the loading is required to scale according to 

p 5-n2 

-=A 2 . 
p 

(6.44) 

(6.45) 

Thus, increasing the length scale factor ,t. > 1 reduces the depth-to-width ratio h/b of the 
small-scale beam and its loading P has tobe smaller than geometrical scaling ( P IP = lt2) 

requires. However, for the linear case n = 1 a distorted small-scale beam obeying the 
similarity conditions for the curvature is not possible. Also for the non-linear case the 
result Eq.(6.44) implies a large distortion of the cross-section dimensions, which is 
difficult to realize. 

(c) For the case of a uniform Ioad distribution along the beam the moment distribution 
around ; = 0 is smooth and has a relative maximum such that 

and Eq.(6.39) simplifies to 

0 

eomax = K'(O,O) = 1-ßi K'J;;n (K'~~ )o 

ecomax 1(co n 1(co 
(6.46) 

It teflects the quadratic dependence of the gradient enriched constitutive equation on the 
internallength l;. Again a decrease of size of geometrically similar specimens of the same 
material reduces the relative curvature K'(O,O)IK'co and the relative strain eomaxlecomax· 

Clearly, the smoothness of the Ioad distribution determines a dominantly linear or 
quadratic dependence on ßq: a smooth Ioad (moment) distribution implies only a 
quadratic dependence of the relative curvature on the ßq-parameter, whereas a non­
smooth Ioad (moment) distribution triggers also a linear dependence on ßq· This is 
entirely analogous to the results of the tension rod problem. Thus, evidently non­
smoothness in the Ioad or geometry increases the non-uniformity of the strain distribution 
and gives rise also to first order contributions to the size effect induced by a second order 
gradient plasticity model. 

(d) For increasing ßq-values (ß-values), i.e. decreasing size, the parabolic character of the 
asymptotic solution becomes dominant and erroneous: the size effect is underestimated. 

110 



Further, a decrease in the hardening exponent 11 will reduce the range of validity of the 2nd 

order perturbation approximation to smaller values of ß. 

(e) When the geometry, the single force loading P ( P = 4Pl I Kbh2 < 1) and the constitutive 
parameters K and l; are held constant but only the hardening exponent 11 is decreased, then 
the maximal measures of the classical curvature Kc0 , (Kc~)o and (Kc~~)o decrease and their 
Iimit values for 11 -t 0 vanish. In this Iimit state the beam is undeformed. However, the 
distribution of the relative curvature KciKco and its 1st and 2nd order derivative Kc~IKco and 
Kc~~IKco are shifted towards the center of the beam. This trend of a 'relative localization' 
of the deformation can be quantified by measures for the 'relative non-uniformity' of the 
curvature distribution at ~ = 0, i.e. 

(6.47) 

which for 11 -t 0 increase and become unbounded. In the general expression for the 
relative curvature Eq.(6.39) an opposing trend is caused by the decrease of the term 
Kco (1-n)/

2 towards zero. These opposing trends create a special11-dependence of the relative 
curvature or relative strain when the hardening exponent 11 is varied but the dimensionless 

Ioads P or P and all other parameters are held constant: a minimum of the relative strain 
(maximum of the relative strain reduction) at a small but finite 11-value (Fig.5.8); this 

effect becomes more pronounced for larger applied loadings P = P I Kbh. 

(f) The perturbation solution for the beam curvature consists of the gradient-unaffected 
classical solution and 1st and 2nd order contributions due to the gradient plasticity terms. 
The two gradient plasticity affected terms are exponentially decaying contributions close 

I 
to the center of the beam (boundary layer terms), the 1st order contribution ßqK(~,1J) 

being proportional to e-~TI. The 'fast' spatial variable JiP11 in the neighborhood of the 

center is given by (Eq.(5.81)) 

(6.48) 

where 

d- _1 ( 11 )1/2 = 1 
- ß. KI-n 8 

q CO 

(6.49) 

is the dimensionless decay rate. lts inverse 11d = 8 is a dimensionless measure for the 
length of the decay (width of the boundary layer) which is proportional to ßq· 

It can be shown that the relative strain or curvature is closely related to decay rate d 
or decay length measure 8 (Eq.(5.98)): 
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comax = K(O,O) = 1 _ §_ + ( §_)2 
( 1-n) ~~ . 

Ccomax 1( CO n l n 
(6.50) 

Thus, an increase of the decay length measure 8 increases the relative strain reduction 
(Ecomax-Eomax)lccomax· Fig.5.4 visualizes the obvious trend and qualitatively the same 
behavior is found for the tapered tensionrod (Fig.3.3, 3.4, 4.4). 

(g) A quantitative estimate of the size effect on the maximum bending strain of two 
geometrically similar specimens - (m) denoting the model and (p) the prototype - of 
different sizes but under scaled loading has been detennined in general terms (Eq.(5.99)). 
lf a very large specimen is compared with the small-scale specimen suchthat Jl = Lp !Lm = 
hp I hm ~ oo, an upper bound estimate for the size effect on the bending strain ratio is 
obtained 

(6.51) 

where 

} (6.52) 
ßm = l;/ Lm 

refer to the small scale model and d111 is the decay rate and 8111 the decay length of the 
small- scale model. 

The size independent quantities are 

L(::::~'Y n) 
K co = h P J l1 + "2 2 = const. 

:::: 4PL 
P=-­

Kbh2 
= const. 

l h )1-n (2 + n)21+n 
q = - = const. 

L 12 

For sufficiently small values of Bm < 1 Eq.(6.51) allows the rough estimate 

(6.53) 

(6.54) 

For a typical set of data the upper bound strain ratio is found as follows. A beam depth-to­
length ratio h/L = 0.2, a hardening exponent n = 1/9 (characteristic for a ferritic reactor 
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vessel steel), and a fairly large Ioad factor P = 4PL/Kbh2 = 0.8 < 1 were assumed. For the 
normalized gradient coefficient a value of ßm = l;!Lm = 0.03 was used for the small-scale 
beam specimen; this represents the maximum value for which the approximate 
perturbation solution remains appropriate when n = 1/9. With these data the intemal 
length l; amounts to 15% of the beam depth h111 of the small specimen. This yields 

Bm =0.2378 

and from Eq.(6.51) one obtains 

[
(eomax)p] = 1.20, 
(eomax)m A~ 

i.e., in comparison to the small specimen a 20% higher bending strain in the very large 
- -

specimen under scaled loading~, = PP = 0.8. Of course, the strain ratio Eq.(6.51) is 
- -

strongly dependent on the Ioad Ievel P and increases with its rise; e.g., for P = 0.7 and 
0.9 one obtains for the strain ratio 1.13 and 1.25, respectively. However, for large Ioad 

Ievels P, the estimate becomes erroneous because of the dominance of the quadratic term 
of Bm. 

(h) The results of the perturbation solution have been used to demonstrate the size influence 
on a dimensionless Ioad versus maximum bending strain diagram (Fig.5.10). As 
mentioned before for the tapered tension rod, this representation of the size effect is a 
rather natural choice since it simulates directly experimental conditions. It is found that a 
bundle of dimensionless curves fans out and, with increasing ß-values (decreasing size 
L), smaller specimens show a higher flow stress at the same strain. However, the size 
influence on the stress becomes effective in the percentage range only for ß-values of 
0.01 and larger. 

6.4 Recommendations for Further Theoretical Work 

(1) A quantitative estimate of the accuracy of the singular perturbation solution can, of 
course, be given if an exact solution is available for the purpose of comparison; this 
luxury is restricted to the exception of a fully linear problem. In the non-linear case one 
has to include in the power series approximation at least one additional term beyond the 
order of the required approximation. For example, if a perturbation approximation up to 
2nd order (i.e. ß 2 -terrn) is required, this solution requires, in any case, also the 3rd order 
contribution for the suppression of the secular terms in the 2nd order contribution, but a 
complete presentation of the 3rd order contribution is not necessary. 

This may suffice to determine the 3rd order contribution at distinct positions 
(Section 4.4.3) which then allows to estimate the accuracy of the second order 
approximation at this position. lf an extended comparison is of interest, then the complete 
3rd order contribution is necessary. This, in fact, requires the inclusion of the 4th order 
contribution to suppress the secular terms in the 3rd order contribution. Thus, the amount 
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of algebra to obtain higher order approximations may be discouraging. The objective of 
the derivation is, of course, to get a non-numerical solution which contains the parameters 
in the problem; thus, attention should be given to computerized symbolic manipulations, 
using symbolic languages like 'Maple', 'Mathematica' or others. 

(2) For the fully non-linear case the evaluation of the sensitivity 

S =(dc(O,O)Icco) 
dß ß=O 

for varying hardening exponents n and with the stress Ievel being constant (aRJK = 
const.) remains tobe done. 

(3) The developed analytical perturbation solution is not valid close to instability and beyond. 
However, the influence of a gradient term in the plasticity law and of a change of 
specimen size on the ultimate stress and on the response in the softening region, 
especially the formation of deformation pattems, are important questions. A first step 
towards these questions should be a review of the related literature. 

(4) The simple linear non-local (integral) model approximated in Appendix (1) by a gradient 
model and associated boundary conditions should be solved analytically and should be 
compared with the standard gradient model, to obtain further insight into the importance 
of the non-classical boundary condition. 

(5) The gradient enhanced plasticity law should include also a first order strain gradient term 
which implies that two different intemallength scales are operative. Thus, there exists the 
possibility of mode transitions in deformation and failure when the size is changed. Also, 
the development or application of an appropriate singular perturbation solution appears to 
be a challenging task. 

(6) The gradient plasticity model used in this report did not include rate dependence 
(viscoplasticity) or damage. Especially in the softening regime the darnage evolution is 
important for the modeling of failure (fracture) and its size dependence. First steps 
towards this direction have been done by Aifantis and coworkers. 

(7) The develpment of numerical solution procedures and computer programs for gradient 
plasticity models are required for more complex geometries than those treated in this 
study. Of course, this development depends largely on the physical effects included in the 
modeland its mathematical structure. Some concepts are presented in Part I. 
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Tables 

Table 4.1: Limitstrains at instability. 

m E=n ER (aR )max n" 
-

K e" 
1 1 1.718 0.368 
3 0.333 0.3956 0.497 
5 0.2 0.2214 0.593 
9 0.11 0.1175 0.701 
13 0.077 0.08 0.760 

Table 4.2: Influence of hardening exponentnon the sensitivity S- ZN under the constraint 
z=0.1 

n z N ZN 
1 1.1712 1 1.1712 

1/3 0.5436 3.6028 1.9586 
1/5 0.4663 5.8731 2.7384 
1/9 0.4209 10.1685 4.2800 

1113 0.4047 14.3479 5.8061 
~0 ~ 0.3704 ~00 ~00 

Table 4.3: Critical strain Iimits 

c:(O,O) = n ER(O,O) 
1/5 =0.2 0.2214 

1/9 = 0.1111 0.1175 

Table 5.1: Distorted scale factors A11 and Ab for A=10. 

n= 1/3 1/5 1/9 

A11= 21.54 25.12 27.83 

Ab= 4.64 3.98 3.594 

Table 5.2: Ramberg-Osgood Material Parameters 

Material O"o Co a m E n K 
[MPa] [MPa] [MPa] 

A533-B (93°C) 414 0.002 1.12 9.71 207 103 0.103 776.05 
(ref. [5.2] pp. 6-14) 
SS 304 (R.T.) 207 0.001 1.691 5.421 207 103 0.184 671.88 
(ref. [5.2] pp. 6-23) 
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Table 5.3: Influence of Ioad Ievel P on upper bound strain ratio (comaxiEcomaxh~ (h/L = 0.2, 
n = 1/9, ßm = 0.03) 

p Bm ( '"m" J 
ccomax }"~oo 

0.4 0.01486 1.0148 
0.5 0.03285 1.0359 
0.6 0.07524 1.0731 
0.7 0.1394 1.1299 
0.8 0.2378 1.200 
0.9 0.3809 1.2472 
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Fig. 2.1 Morrison's experimental data of the size-dependent yielding in torsion of mild steel 
and fitting of a gradient plasticity model. 
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Fig. 2.2 Richards' experimental data of the size-dependent yielding in pure bending of mild 
steel and fitting of a gradient plasticity model. 
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Fig. 3.1 An exponentially tapered tensile rod. 

. I . 

--·-·---,--,.---,-·--.,..-.,---"-·-------- .• : ·-----·....;·-·-,·-·-·---··.;..·---·-·····~-
1 

~ 
l --------------------

(a) Large and small scale exponentially tapered tensile specimen (scale factor 1:10) 

Ro = 0.5, a = 0.25, L' = 0.125 Ro = 0.75, a = 0.5625, L' = 0.188 

0.0 0.5 1.0 4.0 0.0 0.5 
X X 

10~ 
R o.o ! .),) 025, !L' = 0!25 I R :.:t---+--+--R-ot-=-0.-75+, _a_=_,0.-56-25-,t-L.-=-0+.3-75--i 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 
X X 

R : :1w .),) 025,! L' = ~5 I R : :1---+--+--R-o+=-0.-75+, a-=-0-+.5-62-5-+, L-. =-0--1.7f-5---l 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

X X 

R:::l:tft1.,,.~02)L'=l! I R:: I I I I l 
Ro = 0.75, a = 0.5625, L' = 1.5 

I I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
X X 

(b) Cantours of exponentially tapered tensile rods. 

Fig. 3.2 Profiles of exponentially tapered tensile rods. 
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Appendix (1): On the Non-Ciassical Boundary Condition B.C. II 

In the following we compare the linear 2nd order gradient model (3.1) and its associated non­
classical boundary condition (3.10) with a simple non-local (integral) model. To realize this 
comparison the non-local model is approximated by a differential constitutive equation and 
corresponding boundary conditions. 

Several authors (e.g. Mühlhaus & Aifantis [A1.1 ], Zbib [Al.2], Peerlings et al. [A1.3]) 
have used non-local models of integral type, which involved an average strain or the average 
of an other variable (e.g. damage) in some neighborhood of the material point at x in the 
interior of the body, to motivate higher order gradients in the constitutive equations (see also 
Bazant & Chen [Al.4]). However, these considerations did not include points at or close to 
the boundaries or geometric discontinuities. This question will be discussed here to some 
extend within an one-dimensional setting. 

The uniaxial non-local model is taken to be of the form 

p+ 

V C J a = Ke- e(x+y)dy, 
J..l+ + Jr -w 

(A1.1) 

V 

where K and C are material constants and J..l+ and J..l- define the size on a small material 
neighborhood of the material point x. 

If the strain distribution is uniform, then (A1.1) reduces to 

a=Ke, 

where 

V 

K= K-C>O (Al.2) 

is required. Provided the material point is far from any boundary or discontinuity, then 

+ -
J..l =f1 =f1, (A1.3) 

11 being a material constant with the dimension of a length and Eq.(A1.1) takes the following 
form 

V C 1 a= Ke-- e(x+y)dy; (Al.4) 
2!1 -p 

The second term is simply proportional to the average strain in a small one-dimensional 
"volume" of size 2f1. 

The lower and upper integration Iimit 11- and 11+ need further definition close to and at 
the left boundary x=O. Since the constitutive equation is non-local, some decision about the 
influence of physical constitution beyond the boundary, i.e. in the interval -11 Sx<O, on the 
behavior in the regime 0Sx has to be made. 

We consider two simple cases treated consecutively 
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Case 1: The exponentially tapered rod is attached to a rigid solid at XL=O. Thus, there is no 
deformation in the regime x<O. 

Case II: The tapered rod consists of two deformable parts of the same material symmetrically 
arranged. Thus, the strain field is perfectly symmetric with the center of symmetry at 
x=O. 

Case I : Non-Symmetrie Case 

As long as the material point x is not too close to the boundary, the form of the Eq.(A1.4) 
does not change. lf the averaging integral in (A1.4) encloses the boundary at x=O suchthat the 
center (x) of the integration regime in (Al.4) has a distance from the boundary less than J.l, 
then the relation (A1.1) applies instead of (A1.4) with 

J.1 + = J.l, } (Al.5) 

and 

+ -J.1 +J.l =J.l+x; (Al.6) 

thus the lower integration limit is at the boundary. 
As previously, we assume that for very large values x the strain distribution approaches 

the uniform distribution of a rod with constant cross-section. These conditions completely 
describe the problern if the stress distribution is given by prescribing the longitudinal force 
and the variation of the cross-section. No other conditions, especially at the boundaries, are 
necessary. In fact the problern is to solve a very special kind of one-dimensional integral 
equation. 

Aside from the integral formulation there is a major difference to the gradient model of 
V 

section (3.1.1): The non-local model involves the three distinct material parameters KorK, C 
and J.1 instead of the two parameters K and l;. 

A numerical solution could be obtained by discretizing the range between the 
boundaries1 suchthat the discrete values of the strains E; (i=1,2, ... n) are the unknowns and the 
integral is evaluated numerically. This discretized form of (Al.1) is then tobe satisfied at all 
nodal points which finally yields a system of linear equations for the discrete E;. 

It is generally known that some types of one-dimensional integral equations can be 
transformed exactly into equivalent ordinary differential equations with associated boundary 
conditions. It is conjectured that this is not possible (or not easily possible) for the present 
case. However, the approximate reduction of the non-local problern to the solution of 
differential equations with associated boundary conditions is feasible and will be derived in 
the following. This approximate formulation is then compared with the gradient model of 
section (3.1.1). 

1 The right boundary has to be set at some fixed !arge value x=xR. 
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Using the Taylor series approximation of the strain distribution2 around x up to 
quadratic terms 

1 1 1 N 2 
s(x+y) = s(x) +-

11 
s (x) y + 1 s (x) y + .... , 

. 2. 
(A1.7) 

the integral in (Al. I) is approximated by 

J.l+ 

C J s(x+y)dy = 
J.l+ + J.l- -w 

(A1.8) 

Thus (Al. I) takes the form 

(A1.9) 

If the material point x and the dragged along averaging integral are far from the boundary 
x=xL=O, then (A1.3) applies and (A1.8) simplifies to 

(Al.lO) 

We note that the inclusion of a 3rd order term in the Taylor series (Al.7) would have dropped 
out in (Al.lO). This relation corresponds fully to the higher order gradient model (3.1) if 
instead of the length scale J.l the length scale l; is introduced. 

~ z; = v 6 K: ).l < J.l. (Al.ll) 

Close to the boundary x=xL=O Iimits of integration are given by (A1.5). Consequently (Al.9) 
takes the following form 

a(x) = Kc(x)- C1 (x) t:'(x)- Cu(x)t:n(x), (A1.12) 

where 

2 Continuity and sufficient differentiability of E(x) is presumed. 
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} (A1.13) 

We note here explicitly that 3rd order derivatives, if they were included in the Taylor 
expansion (A1.7), would not drop out in (A1.12). 

C1 (x) is a linear function in the interval xf5, x ~L + J.l . At x=xL+/JFJ.l it vanishes and 
thus agrees with the derived fact that 1st order gradients of the strain are not effective in the 
interior. Its largest value is at the boundary x=xL=O, 

(A1.14) 

which shows that the 1st order gradient term in (Al.l2) is given the largest irnportance at the 
boundary. 

The function Cu(x) is a parabola in the interval XL'5: x ~L + J.l. At the boundary x=xL=O 
and at x=xL + J.l = J.l it takes the same value as the constant coefficient of the 2nd order 
gradient term in the interior of the body: 

(Al.15) 

Its minimum is 

(Al.16) 

which is located at the center of the interval. The average value of Cu (x) in the boundary 
interval is 

5 1 2 
(Cu)average = 6 6 Cj.l · (Al.l7) 

Thus, except for a small dip close to the boundary the coefficient of the 2nd order strain 
1 

gradient is constant everywhere and equal to 6 CJ.l2 • 

In the interior of the body and close to the boundary x=xL=O the integral model has been 
approximated by the two different differential equations of 2nd order, (Al.lO) and (Al.12), 
which differ mainly in the presence of the 1st order-strain derivative in the equation close to 
the boundary. A solution of these DEQ's require a boundary condition at x=xL=O. From the 
theory of ordinary DEQ's this can involve the strain and/or its 1st derivative but no higher 
order derivatives. This condition is found as follows. 

At the boundary x=xL=O the differential equation (Al.12) yields the relation 
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(A1.18) 

which still involves the 2nd order derivative. The general integral of (Al.l) may be written in 
the form 

V C Jif+ V C x+r+ 
a = K e(x) - -=---- e(x+y)dy =K e(x) - e(z)dz = 

ll+ + ll- - ll+ + ll- - -
-Jl X J.l. 

(Al.l9) 

where F(z) is the integral of e(z). The derivative of (Al.l9) is 

(A1.20) 

The integral function F may be eliminated from (Al.20) by using (A1.19) which yields the 
exact relation 

(A1.21) 

Close to the boundary x=xL=O we have 

Using the Taylor series approximation (Al.7), we get 

(Al.22) 

If x approaches the boundary XL=O, then (Al.21) takes the form 

(A1.23) 

Combining (Al.18) and (Al.23) allows to eliminate the 2nd order derivative: 
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or more compact 

a'- ]_ a= (K+-JC) c'- j_(2K-C) c, x= XL=O. (A1.24) 
)1 2 )1 

This is the required boundary condition at XL=O where the left side is a prescribed quantity. 
The r.h.s. contains the strain c as well as its 1st gradient c' and all three material parameters 
of the non-local model are involved. Ignoring the non-local effect, i.e. 

C-70, Jl-70, 

(A1.24) simply reduces to the trivial classical result 

V 

a=Kc at x=xL=O. 

From (Al.24) an important conclusion can be drawn for the case that the cross-section A(x) of 
the rod has a relative minimum at x= XL=O. Then 

A'(x) =0 at x= XL=O 

and thus 

a'=O at x = XL=O. 

For the classical case without non-locality the strain gradient at the boundary is then 

c~=O at x= XL=O. 

However, accounting for non-locality we obtain from (Al.24) 

]_ a= j_(2K-C) f- (K+lC) c', 
)1 )1 2 

which is still a complex boundary condition including both the strain and its gradient. 
Summarizing, the non-local model is approximated by the following DEQ's and 

boundary conditions: 

DEQ's: 

1 
x~)l: a(x) = Kc(x)- 6 C)l2 c"(x). 

O<x<Jl: a(x) = Kc(x)- C1 (x) c'(x)- Cu (x) c"(x). 
} (Al.25) 
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B.C.'s: 

2 3 1 
x=O: a'-- a= (K+- C) s'-- (2K-C) s 

/J 2 /J 

x=JJ : Continuity of s and s' (A1.26) 

p 1 
x~oo: c= Coo = --

Aoo K' 

where the functions C1 (x) and C11 (x) are defined by (A1.13). Following the discussion of their 
properties and assuming that JJ is small compared to L * 

JJ<<L*, 

it appears possible to ignore the first order term in (A1.25)z and to use the approximation 

such that the form of the differential equation is the same in the whole domain O<x. However, 
the boundary conditions (A1.26)1+3 should not be affected by this approximation. The validity 
of this simplification needs further analysis. 

Case II : Symmetrie Case 

In the interior of the rod, far from the boundary x= XL=O, the non-local model (Al.1) can be 
approximated by the same 2nd order differential equation (Al.10) as for the non-symmetric 
case. However, close to the boundary x= XL=O the deformable material on the left side of the 
boundary affects the response on the right side XL=O<x. Because of the assumed perfect 
symmetry of the strain distribution around x=O the non-local model (Al.1) takes now the 
following form: 

a= k E(x)- 2~ { 1 E(x+y)dy /T E(x+y)dy } = 
-x -x 

C x+f.J 11-x 

= K s(x) - - { J c(z)dz + J c(z)dz } . 
2/J 0 0 

(Al.27) 

Using the Taylor series approximation (A1.7), the integrations in (A1.27) are performed and 
one obtains 

V C 
a(x) = K c(x)-

2
/J { s(x) ÜJJ+x] + [JJ-2x+x]) + 
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More compactly the goveming differential equation is now given by 

a(x) = Ks(x)- CI (x) s'(x)- Cu (x) s"(x). (A1.28) 

with 

V 

K= K -C 

- 1 x
2 

CI (x) = c- [ Jl-2x+-] 
2 Jl 

(A1.29) 

- 1 2 2 x3 
Cl/ {..-\- r- [u -3/Jy.Lhv _-::t-1 

\.t\.. ,- '-' 

6 
f"" ,."...., .. I VA -' Jj j • -

The largest values of C1 is at the boundary x= xL=O 

- 1 
( Cdmax = 2 Cfl' (A1.30) 

followed by a parabolic decay towards zero at the relative minimum at x=Jl. The cubic 
function Cu takes the same value at the boundary and at x=Jl as the constant coefficient of the 
2nd order gradient term in the interior of the rod (Jl'5:x): 

- - 1 2 
(Cu )x=xL=O = (Cu )x=Ji = 6 Cfl · (Al.31) 

The above values (A1.30) and (Al.31) agree with the corresponding values of the non­
symmetric case. The relative minimum of Cu is 

- 5 1 2 
(Cu )min = 9 6 Cfl , (A1.32) 

which is positioned at x=)1}3. Compared to the non-symmetric case this minimum is shifted 
towards the boundary. The relative maximum is at x=Jl. lts mean value in the interval O~Jl 
is 

- 3 1 2 
(Cu )mean = 4 6 Cfl . (A1.33) 

The required boundary condition at x= XL=O is found analogously to the previous approach. 
Approaching the boundary x= XL=O, Eq.(Al.28) reduces to 
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which is the same as for the non-symmetric case. The formal integration in (A1.27)z yields 

V c 
a(x) = K s(x)-

211 
{ (F(z))z=x+11 -(F(z))z=o + (F(z))z=11-x -(F(z))z=o} , 

where F(z) is the integral of s(z). The firstderivative with respect to x is 

V c 
a'(x) = K s'(x)-

211 
{ s(x+J.l) -S(j.l-x)} = 

V c 
= K s'(x)- - { s(x+J.l) -s(x+(J.l-2x))}. 

2}1 

Using the Taylor series approximation (A1.7) yields 

V C 1 
a'(x) = K s'(x)- - { s(x) + s'(x)J.l +- s"(x)p?-

2}1 2 

V X X2 
= K s'(x)- C- s'(x) + C ( x-- )s"(x). 

J.l J.l 

If x approaches the boundary x=xL=O, then (Al.36) reduces to the simple condition 

V 

a'(xL) = K s'(xL). 

(A1.34) 

(A1.35) 

(A1.36) 

(A1.37) 

This is the required boundary condition which represents only a condition on the strain 
gradient; in contrast to the previous result (Al.24) the strain is not involved. Also only a 
single material parameter, that of the classical part of the constitutive relation, is of 
importance. lgnoring the non-local effect, i.e. 

C--70 , J.l--70 , 

does not affect condition (Al.37) which is then simply a consequence of the classical linear 
stress-strain relation. However, clearly this observation does not imply that in the non-local 
case the local strain at the boundary is determined by the stress, i.e. 
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An important result follows from the boundary condition (Al.37). If the cross-section 
variation is smooth, i.e. A'(x)=O and thus a'(x)=O at x=xL=O, then (A1.37) implies the 
vanishing of the strain gradient 

(Al.38) 

This is a rather obvious result implied by syrnmetry and smoothness. Only under these 
conditions the non-local model yields the vanishing of the 1st order gradient at this boundary. 

As for the non-syrnmetric case it appears conceivable to replace the differential equation 
(Al.28), valid in the regime XL = 0 < x < )1, by the simpler form (Al.lO) such that (Al.lO) is 
applicable in the whole regime XL = 0 < x. However, the boundary condition (A1.37) should 
still apply. 

Conclusions: 

The 2nd order linear gradient model 

and its non-classical boundary condition 

de 
- = 0 at x=xL=O 
dx 

(A1.39) 

(Al.40) 

generally cannot be considered as an approximate representation of a non-local model such as 
(ALl), first of all because of the smaller number of material parameters (two instead of three). 
However, far from boundaries or geometric discontinuities the 2nd order gradient model is a 
valid approximation if the intemallength (li) is appropriately interpreted. However, in a small 
region (size less than )1) close to the boundary (Al.39) differs from the non-local model by a 
first order strain gradient term which is missing in (Al.39). The importance of a first order 
gradient close to the boundary has also been pointed out by Pijaudier-Cabot et al. [A1.5]. But 
more important, the boundary conditions obtained from the non-local model for the non­
symmetric and the syrnmetric case differ significantly from (A1.40). However, for the case of 
perfect symmetry and smoothness of the cross-section variation at the boundary, Eq.(A1.39), 
ignoring additional terms in the interval XL=O<x<J.l, and the boundary condition (Al.40) agree 
with the appropriate representation of the non-local model (Al.l). Thus, aside from this 
exception, the gradient model (Al.39) and its non-classical boundary condition (A1.40) need 
another motivation than a non-local integral model. 

References 

[A1.1] H.B. Mühlhaus and E.C. Aifantis, A variational principle for gradient plasticity, Int. J. 
Solids & Struct. 28, 845-857, (1991). 

[Al.2] H.M. Zbib, Strain gradients and size effects in non-homogeneaus plastic deformation, 
Script. Metall. Mat. 30, 1223-1226, (1994). 

161 



[A1.3] R.H.J. Peerlings, R. de Borst, W.A.M Brekelmans and J.H.P de Vree, Gradient 
enhanced darnage for quasi-brittle materials, lnt. J. for Num. Meth. In Eng. 39, 3391-
3403, (1996). 

[A1.4] Z.P. Bazant and E-P. Chen, Scaling of structural failure, Appl. Mech. Rev. 50, 593-627 
(1997). 

[A1.5] G. Pijaudier-Cabot , Z.P. Bazant and M. Tabarra, Comparison of various models for 
strain-softening, Eng. Comput. 5, 141-150 (1988). 

162 



Appendix (2): Derivation of the Exact Solution for the Linear 
Problem of an Exponentially Tapered Rod 

The homogeneaus solution of (3.14) is 

C ' c _, Ehom = 1 e + 2e 

and a particular solution is chosen to be of the form 

here ß<l is required. Then 

and the left side of (3.14) reads 

Cornparison with the right side of (3.14) yields 

p 1 
Da=--a 

A K ' 
0 

Therefore 

1 p 1 
D~=----(1-a). 

1-ß2 Ao K 

1-a -ß' 
epart = Eco [a+--2 e ] 

1-ß 

where 

p 1 
Eco=--

A0 K 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

is the maximurn strain of the classical solution at the rninirnurn cross-section area. The general 
solution is 

(A2.6) 

The boundary condition B.C.I, Eq.(3.16)1, irnplies 

(A2.7) 

and Ecaa = Eoo which is trivially satisfied. The boundary condition B.C.ll, Eq.(3.16h, yields 
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1-a 
Cz = -fco ß2 ß . 

1-
(A2.8) 

Thus the complete solution for the non-classical strain distribution, using ; again as the 
independentvariable and with ß<1, is given by 

_ { 1 - a -.; 1 - a -.;t ß } 
e( ~ - fco [ a + ß2 e ] - ß2 ß e · 

1- 1-
(A2.9) 
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Appendix (3): Derivation of the Governing System of Perturbation 
Equations 

The partial derivatives in Eq.(4.35) and (4.36) are expressed in terms of the polynomial 
presentation (4.37) and a collection according to powers of ß is done. This yields 

J1 0 I 2 2 3 3 

( ']2 + ß [ frm+ßfrm+ß fw1+ß frm]+ 

(A3.1) 

The power law term f 11
, 0<n~1, and the exponential term e8 are approximated in terms of 

powers of ß. Thus 

f II = f + ß f + ß 2 
C + ß 3 

f = (0 I 2 3) 11 

0 ( I 0 2 0 3 0) 11 

= f II 1 + ß f I f + ß 2 
f I f + ß 3 

f I f 

0 { [ I 0 ] [ 2 0 1 ( I 0) 2 ] 
=f

11 1+ß nsls +ß 2 nsls-
2 

n(1-n) sie + 

[ 3 0 1 ( I 0) ( 2 0) 1 ( I 0) 3 ] } +ß3 nsls-2n(1-n)2 cls cls +6n(1-n)(2-n) c!E + .... (A3.2) 

With 

0 
f =f +V 
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one finds 

where 

-3 3 I 3 
v=ß(c)+ ... 

here terms higher than cubic in ß are excluded. Then 

(A3.3) 

lnserting (A3.1), (A3.2) and (A3.3) into the differential equation (4.7) and ordering according 
to powers in ß one obtains 

0 1 ( 1 0) ( 2 0) 0 1 ( I 0) 3 +c n 2n (l-n)2 c/ c c/ c - c n 6n (1-n)(2-n) cl c + 

(A3.4) 

The bracketed terms in (A3.4) are independent of ß. Then, following the "Fundamental 
Theorem of Perturbation Theory" (Simmonds & Mann (1986, [4.7])), for small and positive 
but otherwise arbitrary values of ß each bracketed term must vanish. This yields the following 
system of differential equations: 
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(A3.5) 

2 
2 

2 
2 0 I 

ß : DEQ(2) => c rm - .Q ( ~) B = R2( B , B , f.l, rR) 

3 3 2 3 012 
ß :DEQ(3)=> Brm- .Q (~) B =R3(B,B,B,f.l,rR) 

where 

(A3.6) 

suchthat 

!.P(~)= -1 -(~-1 J~ 11
, 

(J,l')Z ~ = 
O<n::;l. (A3.7) 

The right sides R;, i=1,2,3 aredifferential operators defined as follows: 

----------------

(A3.8) 

I 2 
1 2 2 I 2 cc 

RR3=- (J1') 2 (2f.l'cgTJ +J.('BTJ+Bgg)- .QR (1-n) ~ + 

I 
2 1 (c)3 

+ .QR -(1-n)(2-n) - 0-

6 (c)2 
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The terms underlined in (A3.6) to (A3.8) represent the contribution due to the cross-section 
reduction. A similar procedure is applied to the two boundary conditions (4.36). Ordering 
according to powers of ß gi ves 

B.C. I (~, 1J ~ oo) B.C. TI (~. 1J = 0) 

{JI: 
0 

J-l' e 11 = 0 

ßo: 
0 0 I 
e~&o eg + )1,' e 71 = 0 

ßl: 
I I 2 
e~O e g + J-l' e 11 = 0 (A3.9) 

ß2: 
2 2 3 
e~O eg + ll' e 71 = 0 

ß3: 
3 3 
e~O (eg = 0). 

Note that the condition B.C.II for ß 3 is not accurate since 4th order terms in the development 
of e were not included; it will be seen that this condition is not required. 
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Appendix (4): The Particular Solution ofDEQ(2) 

For the particular solution of the perturbation equation DEQ(2), Eq.(4.38)3, with the right side 
R2 given by (4.58), the choice 

(A4.1) 

is used where fand h have to be deterrnined. Then 

a 2 . .a . 2.a 
d1] fpart = (/ -Qj) e- T7 + (h - 2Q h) e- T7 

} (A4.2) 

where 

Inserting (4.1) and (A4.2h into DEQ(2) and observing the structure of R2, Eq.(4.58), one 
obtains the following condition: 

Equating the corresponding exponential terms, two linear ordinary differential equations in the 
7]-space for the functionsfand h are obtained: 

} (A4.4) 

Obviously 

(A4.5) 

and so Eq.(A4.4)t gives 

which implies 

-4.Q !2= a1. 
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Thus 

Eq.(A4.4)2 implies that (h) is independent of the variable 1]; one gets 

a2 * 
h=ho(~= - 2 . 

3.Q 

And the particular solution is 

where ao, .Q , /1, /2 and ho are functions of ~. 
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Appendix(5): Determination of the Function B1(~ 

The solution of the differential equation (4.75) 

(A5.1) 

which is a consequence of the suppression of the secular terms, is found as follows. With 

1 II 1 d d 
_1:!:._ = -- In J.l = - In( ,u')112 

2 ,u' 2 d~ d~ 
(A5.2) 

and 

(A5.3) 

we get 

1 f.i" V I 
--=-
2 f.i' V 

Then Eq.(A5.1) takes the form 

(A5.4) 

and the general solution is 

(A5.5) 

where c is an integration constant. With ,u' given by (4.72) the function B1 reads 

(A5.6) 

where the constants c and ({J have been lumped into a new constant D: 

D = ccpll4. (A5.7) 

I 
This integration constant is determined from the boundary condition for e at ~. 1J=O, 
Eq.(4.42): 

0 I 
s ~ + ,u' s Tl = 0 ; ~.1J=O. (A5.8) 
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With (4.54)1 one gets 

suchthat 

c 1 0 
(B ) - B (0) - - ( e ) 

1 o- 1 - (J.l')~Z - .Q(J.l')o ~ o (A5.9) 

and consequently 

[ 

0 )114 114 e 1-n 0 
D = ccp = --0 ( e~) o • 

n-s o 

(A5.10) 
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Appendix (6): The Particular Solution ofDEQ(3) 

The differential equation DEQ(3), Eq.(4.38)4, reads 

3 3 2 3 012 -012 
ß : DEQ(3) ==? e 7711 - .Q (~) e = R3(E, e, e, f.l, rR) =R3(E ,E ,E, J.l), (A6.1) 

where R3 is defined by (4.47)3 and (4.4l)s 

- 0 I 2 0 I 2 ~ n ( I 2 1 ( I )3 J R3 ( e , e , e , J.l) = RR3 ( E , E , e , J.l) - --2 E E+- e . 
(J.l') 6 

(A6.2) 

(A6.3) 

With 

* 
= B2 ( ~)e -#Tl - ao ( ~) + a2 ( ~) e -2../(pry , 

(/J 3cp 
(A6.4) 

we get 

} (A6.5) 

further 

(A6.6) 

as well as 
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"' 
~ ~ =-BI ao e -[<iiTJ +BI Bz e -Z[<iiTJ +BI a 2 e -3JiPry 

~ 3~ } (A6.7) 

I 2 
Using the results for s and s and their derivatives, RR3 takes the following explicit form 

(A6.8) 

where 

J=\ 2 r;;: I f.lH r;;: 1 II 2 1 1 ao 
YRI('=>,= -, v~ B2 +-,-...;~ B2- --2 BI +QR -(1-n)2 0 - BI 

f.1 (f.l )2 (Jl') 2 c ~ 

* * 2 2 ( ~ )' f.1
11 2 ~ 2 1 1 

YR2(~ = ~- -~ -+----- QR -(1-n) 2- BI B2 
f.1 3 fo (f.1')2 3 fo 2 ~ 

(A6.9) 

* 
{ 2 1 1 ~ 2 1 1 3} 

YR3(~ =- QR -(1-n) 20 -BI - QR -(l-n)(2-n) ( ) 2 (BI) 
2 c 3~ 6 ~ 

and 

0 
Sn I 2 1 I 

--2 ( c c + - ( c )3 
) = 

(f.l') 6 

0 * 
= ~2 {-BI ao e -[<iiTJ +BI B2 e -2#TJ +(BI a

3
! + 

6

1 
(Bd) e -3#TJ } . (A6.10) 

(f.l') ~ 'r 

Cornbining all terms on the right side of (A6.2), we obtain 

(A6.11) 

where 
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2 N 1 
Y -- ~B'+~ t,;B ---B"+ 

I - J.t' "'J 1P 2 (J.t' )2 VIP 2 (J.t') 2 I 

2 N 1 
-- 1,; B'+~ ~ B ---B"+ 
- ~-t' VIP 2 ()1')2 "VIP 2 (J1,')2 I 

(A6.12) 

* 2{ 1 1 ~ 1 1 3} Y3 = -QR -(1-n) 20 -BI - -(1-n)(2-n) - 0-(Bt) -
2 E 3(/J 6 (E)2 

---- ===== ----

Thus the DEQ(3), Eq.(A6.1), reads with Eq.(4.71) 

(A6.13) 

3 
With the boundary condition (4.42), 1J~oo, e ~0, the solution has the form 
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3 3 3 -~17 3 
c = c hom + c part = B3(~)e + c part. 

The function B3(~ is not of interest here since accuracy only up to 2nd order perturbation 
terms is required. The unknown function B2(~ is contained in the two functions Yt and Y2 but 
its derivative B2' is included only in y1• As previously, the particular solution has to be 

3 
analyzed to remove the secular terms in c:; this gives an additional condition for the 
determination of B2. 

The following formulation is used 

( ~ ) u· e-~17 + v· e-2~17 + w· e-3~17 -c. part 17 = 

(A6.14) 

( 
3 ) - .. -~17 .. -2~17 .. -3~17 c part 1717 - u e + V e + w e -

Then Eq.(A6.13) reads 

(A6.15) 

Comparison of the corresponding exponential terms yields 

(A6.16) 

which implies (only particular solutions are required!) 

176 



Yl(~) 
u(~,fJ) = u 1 (~rJ =- z.j{P fJ, 

v(~,fJ)=V (~= Y2(~) 
0 3cp 

Y3(~) 
w(~,fJ) =Wo(~=--

8(/J 

and thus 

(A6.17) 

(A6.18) 
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Appendix (7): Determination ofthe Function B2(g) 

The solution of the differential equation (4.86) 

1 1 J..t" 
B2 +--B2 =S 

2 J..t' 

where 

is derived as follows. Applying the approach used in Appendix (5), we get 

or 

with 

v' 
B5. +- Bz= S, 

V 

vB5. + v' Bz = (vBz)' = vS, 

( ,)112 1 n- E 

( 

0 J 1/4 

V= J..t = --0--
({J (c)I-n 

Thus the solution is, in general terms, 

1 ~ 
Bz=-Jvsdr +~, 

V 0 V 

with the integration constant c or 

1 J~ (V)o 
Bz=- vSdr+--(Bz)o, 

V 0 V 

where 

1/2 

(v)o = (J..t')
0 

, (Bz)o = Bz(O) 

(A7.1) 

(A7.2) 

(A7.3) 

(A7.4) 

(A7.5) 

(A7.6) 

are boundary values at ~=0. (B2)0 is determined from the boundary condition B.C. ll, 
Eq.(4.42)J, 
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I 2 
e~ + ).l e11 = 0 at ~.77=0. 

With 

one obtains from (A 7. 7) 

( ') , r::: [ 2 ( a;> 0 ] B1 o- (J.l )o-y({J (B2)o +3 -({J- =0 

which yields 

(B2)o = (BI'J _1_- ~ (a;)o. 
).l' 0 fo 3 ({J 

(A7.7) 

(A7.8) 

The right side is explicitly determined as follows. With (4.57) and (4.39)2 the term (a;)0 is 

( *) - _ _!_ [n(l- n) 1IJ_l (B )2 a2o-
2

({J 0 +_ 0 10 

(e) 2 
- n-e 

0 = 0 

where (4.72) is used. Observing (4.77) and (4.78) gives 

l 0 Jl/2 ei-n 0 
(BI)o =B1(0)= --0 (e~ )o. 

n-e 0 

(A7.9) 

Consequently 

1 02 1 1 0 2 

(ai)0= --z({J [n(1-n)+(e) 0 ] ( J2 -0-(e~)0 
=== o (e)n 

n-(e)o o 

(A 7.10) 

Further 

[ 

0 J-3/4 0 0 0 1 ei-n (1-n)(n-e)e-n+el-n o 
B{(~=D- --0 0 (e~) 

4 n-e (n-e)2 
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and thus, 

(A7.11) 

0 
(1- n) (f )

1
-n (o )2 

0 0 + 0 
2 f~ . 

(n-f)0 (f)~ (n-~l 0 

Combining (A7.10) and (A7.11) finally yields 

(A7.12) 

Note that the constant cp has canceled. An expiicit integration of the integral in (A 7 .5) needs -
0 

in the first place- an explicit expression for the zero order approximation f ( ~ which is 
equivalent to the classical solution fc(~. Even then it appears that an integration must make 
use of numerical methods. 
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Appendix (8): Analytical Solution for the 
(Exponentially Tapered Tensile 
Section Reduction Neglected) 

J.lR-Function 
Rod, Cross-

With the cross-section reduction neglected, the ,UR-function, Eq.(4.100), reads 

( 
y/2 .;(0) 1-n 

llR = ; J [ f -2 dr, 

0 
where f is given by 

with 

Thus 

Using the transformations 

and 

1-n 
p=-

2n ' 

dg = (a-g)dr, 

1 
-=m=2p+l 
1l 

we get 

.; 1-n g(.;) d 
G(g(~;p) = J g(r) -2,; dr = J g 

0 I gP(a- g) 

(A8.1) 

(A8.2) 

} (A8.3) 

(A8.4) 

(A8.5) 

(A8.6) 

For integer values of p, Table A8.1, the right hand integral can be obtained from standard 
tables of integrals (e.g. Dwight [3.4]). With g(~ given by (A8.4), the G-functions are listed in 
Table A8.2. Then the /lR-functions for odd exponents m=2p+1 are given by 

181 



( ) 

112 1-n 
n -- 1-n 

/lR=- (cc)o2 G(g(~;-). 
~ 2n 

(A8.7) 

Table A8.1: Relations between power exponents. 

p 0 1 2 3 4 5 6 
m= 1/n 1 3 5 7 9 11 13 

n 1 0.333 0.2 0.143 0.111 0.091 0.077 
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...... 
00 
(j.) 

Table A8.2: 1-'-R- Function for the exponentially tapered rod, g( ~ = a + (1-a) e -e ; 0 < a:::; 1; cross-section reduction neglected. 

1-n 

p m=lln G(g(~); p) = /lR I [(n I cp) 112 (ec)~2] 

0 1 ~ 

1 3 1 
-(~+lng(~)) 
a 

1 1 
2 5 -(1-[g(~)r1)+-2 (~+lng(~)) a a 

1 1 1 
3 7 2(1-[g(~)r2)+-2 (1-[g(~)r1 )+-3 (~+In g(~)) a a a 

1 ( ) 1 1 1 
4 9 3 1-[g(~)r3 +22 (1-[g(~)r2)+-3 (1-[g(~)r1 )+-:d~+lng(~)) 

a a a a 

5 11 
1 ) 1( 1 1 1 -(1-[g(~)r4 +-2 1-[g(~)r3)+-3 (1-[g(~)r2)+4(1-[g(~)r1)+-5 (~+lng(~)) 4a 3a 2a a a 

1 1 1 1 1 1 
6 13 -(1-[g(~)r5)+-2 (1-[g(~)r4)+-3 (1-[g(~)r3)+-4 (1-[g(~)r2)+-s (1-[g(~)r1 )+-6 (~+In g(~)) 

5a 4a 3a 2a a a 



Appendix (9): Analytical Solution for the Function B2(~ 
(Exponentially Tapered Tensile Rod, Cross­
Section Reduction Neglected) 

The integral representation of the function B2(/;) is given by (4.114): 

where 

1 1 1 
SR=---

2 J(P f.l~ 

1-n 0 

[ 

0 J 1/4 

D= ~ 
0 

(c:~) 0 

and from ( 4.90) neglecting the underlined terms, 

1 1 1 7 (0 ) 2 

(B2)o =--2 - 0- -n(l- n) ~ c;~ • 
4n (c:)n 3 o 

0 

With (4.93) and (4.99) 

0 1/n e ( /;) = Ec( /;) =( Ec)o [g( /;)] 

one gets 
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(A9.1) 

(A9.2) 

(A9.3) 

(A9.4) 



0 1 1-n 

c~ = (cc)o - g n (a-g) 
n 

0 1 1- n 1-2n 1-n 

s~~ = (cc)o-{- g n (a-g)2 -g n (a-g)} ; 
n n 

here the property 

I dg 
g =- = (a-g) 

d~ 

is used. Further 

D 1 
3+n -n O-- o 

B1' =--- s 4 St 
n 114 4 -

D 1 3 3+n 3+n 
- n { + n o ---1 o o -- o } 

B1"= n1t4 -4- --4- s 4 (s~)2+ s 4 s~~ . 

The integrand in (A9.1) takes the form 

with 

} 

} 

I-
- _1_1_ B/' _ _!__1_D 1-n { 3+n 0-

3
+n o 2 0- 1~n o } 

- -4- c 2 
( c ~ ) + c c ~~ . 

2 .J(P (JJ~ )1/2 -2 q>l/4 4 nl/2 

and 

Observing (A9.4) and (A9.5) and with the transformation 

ag = dgl(a-g), 

we obtain, omitting the lengthy algebraic manipulations , 
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(A9.5) 

(A9.6) 

(A9.7) 

(A9.8) 

(A9.9) 

(A9.10) 

(A9.11) 



; g 

f I d-r= f I 3._ = 
o 1 a-g 

1 1 D 1- n 1-n g { 1- Sn I-Sn l-3n } 

= 2174-4 572 (eJo2 J --g 2n (a-g) -n g 2n dg 
~ n 1 4 

(A9.12) 

and 

; g 

f JdT= f ]~= 
o 1 a-g 

(A9.13) 

These integrals allow exact integration in terms of elementary functions. For n i= 113 the result 
is 

f (I +J)dT= 
0 

1-n l-n a 17-21n l-3" 1 17-n l-n 
-D (e ) 2 { (g 2n -1) ----(g 2n -1)} 
- ~114 n312 c 0 16 1- 3n 16 1- n · 

With (A9.2) and (A9.3) and 

(g);=o =1 

weget 

( ) 

114 1-n I-n 
~ --

VR -I = - ( e ) 4 g 4n n c o 

and the function B2( ~ takes the following form 
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(A9.15) 



~ 

B2(~ = VR-
1 

{ f (/ +J)dr+(VR)0 (B2)0 } 

0 

1-n ( l-3n) 2-n 1- n - 1 17 - 21n -
= (e ) (1-a)- g(~) 4n {- [a 1- g(~) 2n -

c o n3 16 1- 3n 

( 
1-n) 17 -n - 7 

--- 1- g(~) 2n ] + -(1-a)}. 
1-n 12 

(A9.16) 

Note that the constant ( cp) has dropped out. Also it is emphasized that for linear hardening 

(n=1) the function B2(~ vanishes identically 

(A9.17) 

Furthermore, if n=1/3 the right-hand sides (rhs) of (A9.14) and (A9.16) have indeterminate 
forms. Thus, (A9.16) is tobe interpreted as 

[B2 (~)] = lim [rhs(A 9.16)]= 
n=113 n~1/3 

by L' Hospital's rule. 
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Appendix (10): Analytical Solution for the Function B2(~ 
(Three-Point-Bending of Uniform Beam) 

The function B2(~ is given by (5.58) 

Where, analogaus to (A9.2) and (A9.3), 

( ')112 
VB= J.lB ' 

, 1 n 

( J

l/2 

J.lB = fo ~ 1-n 

1( 1-n 

( 
0 Jl/4 

B1 (~) =D8 -n- , 
1(1-n 0 

( 
0 Jl/4 

DB = -n- o (K~ )o 

1 1 1 7 (0 )2 
(B2 ) 0 = -2-0--n(l-n) q . 

4 n Kn 3 o 
0 

With 

z=1-~ 

and (5.15) and (5.16) the Oth order approximation reads 

0 1/n 
K= Kc = KcoZ . 

0 1 1-n 

K~= Kc~ = -Kco - Z n 
n 

o 1-n l-2n 

1( ~~ = Kc~~ = Kco - Z n 
n2 
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(A10.1) 

(Al0.2) 

(Al0.3) 

(Al0.4) 

(Al0.5) 



and the tenns (Al0.3) take the following form 

( 

n 1114 1-n _1-n 

V 8 = cp J Kco -4 z 4n 

1 5-n 
D8 =---K 4 

n5/4 CO 

1 3-n 1-n 

B 1 = --- 1( 2 z 4n 
n3/2 CO 

cp 1-n 2-n 2-3n 
a =----K z n 0 2 CO 

n n 

(B ) = }_ 1-n K 2-n . 
2 0 12 n3 CO 

The derivatives of B 1 are 

1 3-11 I-Sn 

B ' -n -
1 = K 2 z 4n 

4nn312 co 

" (1-n) (1-5n) 3-n l-9n 
B1 =- 1( 2 z 4n • 

4nn312 4n co 

The integrand of (A10.1) is 

with 

Using (A10.6) and (A10.7) we obtain explicitly 
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(A10.6) 

(A10.7) 

(A10.8) 

(A10.9) 



1 1 (1-n)(1-5n) ?-3n I-Sn / = -- - 1( 4 z 2n 
2 lpl/4 16n2n714 co 

(A10.10) 
1 1 (1- n)2 7-3n 1-Sn 

]= -- - 1( 4 z 2n • 
2 lfJI/4 n2n714 co 

The integration is Straightforward 

~ ~ z 

J vB SB dr = J (I +l)dr = -J (I(z)+J(z))dz = 
0 0 I 

=- 1( 4 z 211 -1 
1 (1- n)(17- 21n) 7-3n [ t-

311 
] 

qJ 114 16(1-3n)nn114 co 
(A10.11) 

provided n=t113. Then the function B2(/;) takes finally the fo1lowing form: 

B2(/;) = (Kc
0
)2-n_ z(~) 4n -- 1-z(~) 2n . 1-n i-n { 7 17- 21n [ l-

311 
]} 

n3 12 16(1- 3n) 
(A10.12) 

lf n=l/3 the right hand side of (A10.12) is indetenninate. Using L'Hospital's rule, we get 

(A10.13) 
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