Forschungszentrum Karlsruhe Technik und Umwelt

Wissenschaftliche Berichte FZKA 6464

11

a di tan

Das Zeitstandfestigkeitsund Kriechverhalten der niedrigaktivierenden martensitischen OPTIFER-Legierungen (Abschlussbericht)

M. Schirra, A. Falkenstein, S. Heger, J. Lapeña

Institut für Materialforschung Projekt Kernfusion Association FZK/EURATOM

Juli 2001

Forschungszentrum Karlsruhe

Technik und Umwelt Wissenschaftliche Berichte FZKA 6464

Das Zeitstandfestigkeits- und Kriechverhalten der niedrigaktivierenden martensitischen OPTIFER-Legierungen (Abschlussbericht)

> M. Schirra, A. Falkenstein, S. Heger, J. Lapeña* Institut für Materialforschung Projekt Kernfusion Association FZK/EURATOM *) ITN-CIEMAT (Madrid) Programa de Materiales

Forschungszentrum Karlsruhe GmbH, Karlsruhe

2001

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)

ISSN 0947-8620

Zusammenfassung

Das Zeitstandfestigkeits- und Kriechverhalten der niedrigaktivierenden martensitischen OPTIFER-Legierungen (Abschlussbericht)

Die Zeitstandfestigkeits- und Kriechversuche an den niedrigaktivierenden OPTIFER-Legierungen im Temperaturbereich 450-700°C werden zusammenfassend und abschließend beschrieben. Parallel zur Referenzlegierung mit 9,5Cr1W-Mn-V-Ta wird eine W-freie Variante (+Ge) betrachtet, die ein günstigeres Aktivierungs- bzw. Abklingverhalten aufweist. Den geringeren Festigkeitswerten stehen deutlich bessere Zähigkeitswerte gegenüber.

Von jeder Entwicklungslinie wurden mehrere Chargen mit geringen Variationen in der chemischen Zusammensetzung bis zu Standzeiten von 40 000 h untersucht. Neben der Referenzwärmebehandlung mit 1075°C Härtetemperatur und 750°C Anlasstemperatur wird der Einfluss erniedrigter Härtetemperaturen (bis 950°C) aufgezeigt. Der langzeitige Einsatz bei höheren Temperaturen (max. 550°C - 20 000 h) hat einen Alterungseffekt mit Erniedrigung der Festigkeitskennwerte des vergüteten Zustandes zur Folge. Zur quantitativen Erfassung dieses Alterungseffektes wurden Versuche an Proben mit unterschiedlichen T/t-Glühungen (550°-650°C, 330-5000 h) im Zeitstandversuch geprüft. Auf der Basis aller Versuchsergebnisse können für den T-Bereich 400-600°C Mindestwerte für die 1%-Zeit-Dehngrenze und Zeitstandfestigkeit als Auslegungskurven für 20 000 h angegeben werden.

Die aus den kontinuierlich aufgezeichneten Kriechkurven ermittelten Werte für die minimale Kriechgeschwindigkeit in Abhängigkeit von der Versuchsspannung ergeben für die einzelnen Prüftemperaturen den Spannungsexponent n (n. Norton). Das Kriechverhalten in Abhängigkeit von der Prüftemperatur ergibt die Werte für die effektive Aktivierungsenergie des Kriechens Q_K.

Der Einfluss einer vorlaufenden Temperatur-Transiente bis 800°C (\leq Ac_{1b}) bzw. bis 840°C (> Ac_{1b}) mit anschließenden Zeitstandversuchen bei 500° und 550°C wird beschrieben.

Die Ergebnisse der OPTIFER-Legierungen werden mit den Ergebnissen der japanischen 2% W-Legierung F82H-mod. verglichen.

Abstract

Creep Rupture Strength and Creep Behavior of Low-activation Martensitic OPTIFER Alloys (Final Report)

The creep rupture strength and creep experiments performed on low-activation OPTIFER alloys in the temperature range of 450-700°C shall be summarized in the present report. Together with the reference alloy of the type 9.5Cr1W-Mn-V-Ta, W-free variants (+Ge) with a more favorable activation and decay behavior shall be studied. Their smaller strength values are compensated by far better toughness characteristics.

Of each development line, several batches of slightly varying chemical composition have been investigated over service lives of up to 40,000 h. Apart from the impact of a reference thermal treatment at a hardening temperature of 1075°C and an annealing temperature of 750°C, the influence of reduced hardening temperatures (up to 950°C) has been determined. A long-term use at increased temperatures (max. 550°C - 20,000 h) produces an aging effect with strength being decreased in the annealed state. To determine this aging effect quantitatively, creep rupture experiments have been performed using specimens that were subjected to variable types of T/t annealing (550°-650°C, 330-5000 h). Based on all test results, minimum values for the 1% time-strain limit and creep rupture in the T range of 400-600°C can be given as design curves for 20,000 h.

The minimum creep rates obtained from the creep curves recorded as a function of the experimental stress yield the stress exponent n (n = Norton) for the individual test temperatures. Creep behavior as a function of the test temperature yields the values for the effective activation energy of creeping Q_{K} .

The influence of a preceding temperature transient up to 800°C (\leq Ac_{1b}) or 840°C (> Ac_{1b}) with subsequent creep rupture tests at 500°C and 550°C, respectively, shall be described.

The results obtained for the OPTIFER alloys shall be compared with the results achieved for the Japanese 2% W-containing F82H-mod. alloy.

Résumé

Le comportement de résistance à la rupture et au fluage des alliages martensitiques de faible activation OPTIFER (Rapport final)

On présente une conclusion finale des essais de résistance à la rupture et de fluage effectués sur les alliages de faible activation OPTIFER dans le domaine de température de 450-700°C. Parallèlement à l'alliage de référence avec 9,5Cr1W-Mn-V-Ta, on considère une variante exempte de W (+Ge) qui présente un comportement d'àctivation et de désactivation respectivement plus favorable. Les valeurs de résistance plus basses correspondent à des valeurs de ténacité nettement meilleures.

Pour chaque filière de développement, on a étudié plusieurs charges pendant des durées d'utilisation allant jusqu'à 40 000 h, avec de petites variations de la composition chimique. En plus du traitement thermique de référence, avec une température de trempe de 1075°C et une température de revenu de 750°C, on présente l'influence des températures de trempe réduites (jusqu'à 950°C). L'utilisation de longue durée à des températures plus élevées (max. 550°C - 20 000 h() entraîne un effet de vieillissement accompagné d'une baisse des caractéristiques de résistance de l'état traité. Pour déterminer quantitativement cet effet de vieillissement, on a examiné dans l'essai de fluage des échantillons subissant différents revenus T/t (550°-650°, 330-5000h). Sur la base de tous les résultats d'essai, pour le domaine de T de 400-600°C, on peut indiquer des valeurs minima pour la limite d'allongement-temps 1% et la résistance au fluage pour une durée déterminée comme courbes de conception pour 20 000 h.

Les valeurs déterminées à partir des courbes de fluage enregistrées en continu, pour la vitesse de fluage minimale en fonction de la tension expérimentale donnent l'exposant de tension n (selon Norton) correspondant aux différentes températures d'essai. Le comportement de fluage en fonction de la température d'essai donne les valeurs de l'énergie d'activation effective du fluage Q_k .

On décrit l'influence d'un transitoire de température préalable jusqu'à $800^{\circ}C (\leq Ac_{1b})$ ou jusqu'à $840^{\circ}C$ respectivement (> Ac_{1b}) suivi d'essais de fluage à $500^{\circ}C$ et $550^{\circ}C$.

On compare les résultats obtenus pour les alliages OPTIFER avec ceux de l'alliage japonais F82H-mod. à 2% de W.

Resumen

El comportamiento de resistencia a la rotura y a la fluencia de las aleaciones martensíticas de baja activación OPTIFER (informe final)

El informe presenta la conclusión final de los ensayos de resistencia a la rotura y de fluencia realizados sobre las aleaciones de baja activación OPTIFER en el margen de temperaturas de 450-700°C. En paralelo con la aleación de referencia con 9,5 Cr1W-Mn-V-Ta, se estudia una variante exenta de W (+Ge) que presenta un comportamiento de activación y de desactivación respectivamente más favorable. Los valores de resistencia más bajos corresponden a valores de tenacidad claramente meiores.

Varias variantes de cada serie de desarrollo con pequeñas variaciones de la composición química se estudiaron durante tiempos de servicios de hasta 40 000 h. Partiendo del tratamiento térmico de referencia con una temperatura de temple de 1075°C y una temperatura de revenido de 750°C, se estudia la influencia de temperaturas de temple reducidas (hasta 950°C). El empleo de larga duración a temperaturas más elevadas (al máximo 550°C - 20 000 h) têne como consecuencia un efecto de envejecimiento con disminución de las características de resistencia del estado tratado. Para determinar cuantitativamente el efecto de envejecimiento, se estudiaron probetas en ensayos de resistencia a la rotura con varios revenidos diferentes (550°-650°C, 350-5000 h).Basándose en todos los resultados experimentales, para el margen de temperaturas de 400-600°C pueden indicarse valores mínimos para el límite de alargamiento con el tiempo del 1% y resistencia a la rotura como curvas de concepción para 20 000 h.

Los valores determinados a partir de curvas de fluencia trazadas continuamente para la velocidad de fluencia mínima en función de la tensión experimental dan el exponente de tensión (según Norton) para las diferentes temperaturas de ensayo. El comportamiento de fluencia en función de la temperatura de ensayo da los valores de la energía de activación efectiva de la fluencia Q_k .

Se describe la influencia de un transiente de temperatura inicial hasta $800^{\circ}C (\leq Ac_{1b})$ y $840^{\circ}C (> Ac_{1b})$ seguido de ensayos de resistencia a la rotura a 500° y $550^{\circ}C$.

Se comparan los resultados de las aleaciones OPTIFER con los de la aleación japonesa F82H-mod. con 2% de W.

INHALTSVERZEICHNIS

.

1	Einleitung]	. 1
2	Versuchs	legierungen	. 1
3	Ergebniss	se der Zeitstandversuche	.3
3.1	1 Versuo	che an OPTIFER I-III (1. Serie), Wertetabellen 2-5	.3
3.2	2 Versuo	che an OPTIFER-V-VII (2. Serie), Wertetabelle 6-11	.5
З	3.2.1 Ei	nfluss der Vergütungsbehandlung	.6
3.3	3 Vergle	ich mit F82H-mod. (2%W)	.7
3.4	4 Versuo	che an OPTIFER-IV (offen erschmolzen)	.8
Э	3.4.1 Ze	eitstandversuche an OPTIFER-IVa, Tabelle 12	. 8
Э	3.4.2 Ur	ntersuchungen an OPTIFER-IVc	. 9
3.	5 Kriech	verhalten und Aktivierungsenergie des Kriechens	15
3.0	6 Festle	gung der Mindestwerte für $R_{p1\%}$ - und R_m - 550°C - 20 000 h	16
4	Diskussio	n der Versuchsergebnisse	16
5	Literatur		19
Anh	ang A	Bemerkungen zu experimentellen Details	90
Anh	ang B	Extrapolationsverfahren und Optimierung des c-Wertes im Larson-Miller- Parameter	96

1 Einleitung

Als Strukturwerkstoff für Fusionsreaktoren werden im internationalen Rahmen verschiedene Werkstoffgruppen betrachtet [1]. Neben Vanadiumlegierungen und keramischen Composits (SiC/SiC) kommt kurz- und mittelfristig den martensitischen 8-12% Cr-Stählen eine besondere Bedeutung zu, weil deren Herstellungs- und Verarbeitungstechnologie sowohl für den konventionellen als auch nuklearen Bereich beherrscht wird [2]. Mitte der 80iger Jahre wurde die Forderung gestellt, Werkstoffe zu entwickeln, die unter dem Einfluss der 14 MeV-Neutronenstrahlung möglichst wenig aktiviert werden bzw. ein günstiges Abklingverhalten aufweisen. D.h., dass aktivierte Komponenten nach ihrer Betriebszeit und einem überschaubaren Zeitraum soweit abgeklungen sind, dass sie ohne besondere Schwierigkeiten wieder aufgearbeitet werden können. Für die Gruppe der martensitischen 8-12% Cr-Stähle bedeutete diese Forderung, dass bewährte Legierungselemente mit hoher Langzeitaktivität (z.B. Nb, Mo, Ni, Al) durch andere Legierungselemente substituiert werden mussten mit dem Ziel, das erreichte hohe Festigkeits- und Zähigkeitsniveau möglichst zu erhalten [3] [4] [5]. Im IMF gibt es eine weit zurückreichende Entwicklungslinie zu den martensitischen Stählen, in deren Verlauf optimierte Legierungen für Komponenten des Schnellen Brüters, für die konventionelle Energietechnik und mit MANET (MArtensit für NET) ein potentieller 1. Wand-Werkstoff entwickelt worden waren [6] [7] [8], wie aus der Übersicht in Bild 1 hervorgeht. Auf dem weiteren Entwicklungspfad zu niedrigaktivierenden Legierungen konnte gezeigt werden, dass die Substitution der o.g. radiologisch kritischen Legierungselemente beispielsweise durch Cer, Tantal, Hafnium den grundsätzlichen Charakter der martensitischen 12% Cr-Stähle nicht negativ verändert und dass die Anforderungen in Bezug auf Festigkeit und Zähigkeit erfüllbar sind [5] [9] [10]. Auf der Grundlage neuerer Aktivierungsrechnungen, unter Berücksichtigung sequentieller Reaktionen, wurden für alle unerwünschten Legierungs- und Begleitelemente die maximal zulässigen Obergrenzen bestimmt [11] [12]. In einem weiteren Entwicklungsschritt wurde darauf aufbauend vom IMF im Rahmen des Projektes Kernfusion eine Gruppe martensitischer Stähle entworfen, die unter der Bezeichnung OPTIFER (OPTImierter FERrit) im europäischen longterm-program untersucht und weiterentwickelt wurden [13]. Diese Arbeiten führten zur Spezifikation und Herstellung einer gemeinsamen europäischen Legierung unter der Bezeichnung EUROFER, die als 3,5 to-Charge in verschiedenen Halbzeugabmessungen den europäischen Labors für ihre Versuchsprogramme seit 1999 zur Verfügung steht [14] [15]. Bei den OPTIFER-Legierungen handelt es sich um vollmartensitische Stähle mit 8,5-9,5% Cr und W, Mn, Ta als Substitutionselemente für Mo, Ni, Nb. Bei der Erschmelzung erfolgt der Desoxidationsprozess über Cer statt wie üblich über Aluminium.

Der vorliegende Bericht beschreibt das Zeitstandfestigkeits- und Kriechverhalten der verschiedenen OPTIFER-Varianten, nachdem zuvor in zwei Arbeiten die charakterisierenden physikalischen und mechanischen Eigenschaften (Umwandlungs-, Härte- und Anlassverhalten, Zugfestigkeits- und Kerbschlagzähigkeitseigenschaften) behandelt wurden [16] [17].

2 Versuchslegierungen

Tabelle 1 umfasst in chronologischer Reihenfolge die bisher hergestellten und untersuchten OPTIFER-Varianten und deren chemische Zusammensetzung. Allerdings ohne die radiolo-

gisch unerwünschten Begleitelemente, die in [16] angegeben und kommentiert werden. Alle Chargen wurden von der Fa. SAARSCHMIEDE (vormals SAARSTAHL bzw. Röchling) hergestellt und als geschmiedete Stäbe angeliefert. Die Vergütungsbehandlungen wurden nach entsprechenden Vorversuchen im IMF durchgeführt.

In einer 1. Serie wurden 4 Varianten konzipiert (OPTIFER-Ia, Ib, II, III) und als 25 kg-Chargen doppelt vakuumerschmolzen. D.h. nach der 1. Erschmelzung im Vakuum-Induktionsofen wurde der Kokillenabguss auf Ø 75 mm geschmiedet und auf Ø 70 mm abgedreht. Anschließend wird dieser Stab als selbstverzehrende Elektrode im Vakuum-Lichtbogenofen umgeschmolzen. Der dann vorliegende Block von Ø 100 mm wurde zu 4-kant 25 mm-Stäben ausgeschmiedet, womit auch die Verformbarkeit dieser Legierungen demonstriert wurde.

Erste Gefügeuntersuchungen nach verschiedenen Wärmebehandlungen ergaben, dass alle Varianten δ -Ferrit-frei waren und metallografisch kein Restaustenit erkennbar war, d.h. erwartungsgemäß und in Übereinstimmung mit dem CrNi-Diagramm sind alle Varianten als vollmartensitisch anzusehen [18].

Bei den Varianten Ia und Ib handelt es sich um 1% W-Chargen, bei denen der Desoxidationsprozess variiert wurde (über Cer bzw. Yttrium). Die Varianten II und III sind W-freie Stähle, die als wesentliche Substitutionselemente Ge [19] bzw. Ta enthalten. Nachdem die Versuchsergebnisse in [16] gezeigt hatten, dass sowohl die Desoxidation über Yttrium (Ib) als auch ein hoher Ta-Gehalt (III) zu unbefriedigenden physikalischen und mechanischen Ergebnissen führten, wurden diese beiden Varianten ausgesondert.

In einer 2. Serie wurden mit OPTIFER-V und VI praktisch 2 Parallelchargen zu OPTIFER-Ia und II hergestellt, allerdings Bor-frei und mit erniedrigtem Ge-Anteil, sowie mit OPTIFER-VII eine Variante mit auf 8,4% abgesenktem Cr-Gehalt.

Parallel zu diesen beiden Serien wurden Chargen mit der Bezeichnung OPTIFER-IV hergestellt. Da die Versuchslegierungen im Hinblick auf möglichst hohe Reinheit an radiologisch unerwünschten Begleitelementen doppelt vakuumerschmolzen werden (SV 4-Verfahren), ist die Materialmenge auf 25 kg beschränkt. Um auch umfangreichere Untersuchungsprogramme mit größerem Materialbedarf (LCF-Versuche, Zugfestigkeits- und Kerbschlagzähigkeitsoptimierungsprogramme) durchzuführen, bei denen die extrem niedrigen Gehalte an unerwünschten Begleitelementen keine wesentliche Rolle spielen, wurden 150 kg-Chargen offen erschmolzen und im Vakuum-Lichtbogenofen umgeschmolzen (SV1-Verfahren). OPTIFER-IVa und IVb sind also Parallelchargen zu OPTIFER-VII mit erniedrigtem Cr-Gehalt (+B), und die 4 OPTIFER-IVc-Chargen sind vergleichbar mit la (+Bor) und V (B-frei). Die Untersuchungen an den praktisch identischen 4 Chargen von OPTIFER-IVc geben auch Aufschluss über den Chargeneinfluss auf die verschiedenen Kenngrößen im Rahmen der normalen Analysenschwankungen im Herstellungsprozess.

Die Varianten OPTIFER-VIII-X wurden in Anlehnung an die europäische Großcharge EU-ROFER spezifiziert und werden insbesondere im Rahmen von Bestrahlungsversuchen zur He-Bildung bei unterschiedlichen B-Gehalten untersucht. Dabei ist die Charge 804 = Xa eine Ausschusscharge, weil eine Unregelmäßigkeit beim Umschmelzprozess zu einem extrem hohen O_2 -Gehalt führte. Trotzdem werden einige Untersuchungen an dieser Charge durchgeführt, um beispielsweise bei Kerbschlagversuchen den negativen Einfluss eines hohen O_2 -Gehaltes nochmals aufzuzeigen [17 Bild 11].

3 Ergebnisse der Zeitstandversuche

Die experimentellen Details zur Durchführung der Zeitstandversuche und der vorlaufenden Wärmebehandlungen sind im Anhang A beschrieben.

3.1 Versuche an OPTIFER I-III (1. Serie), Wertetabellen 2-5

Die Zeitstandversuche wurden im Temperaturbereich 450-700°C durchgeführt und decken den Standzeitbereich bis rd. 33 000 h ab. Diese breite experimentelle Abdeckung der maximal vorgesehenen Einsatzbedingungen dieser Legierungen (550°C/20 000 h [20]) sollte vor allem eine Standortbestimmung in Bezug auf die Langzeitfestigkeitseigenschaften sein im Vergleich zum bisher betrachteten 1. Wand-Werkstoff MANET-II [21]. Dieser Vergleich wurde schon in [16] vorgenommen auf der Basis von Standzeitwerten von einigen Tausend Stunden und soll den weiteren detaillierten Ausführungen vorangestellt werden.

Im Bild 2 sind die seinerzeit verfügbaren Daten in Form des Larson-Miller-Parameters als Zeitstand-Hauptkurven vergleichend dargestellt. Die höchsten Zeitstandfestigkeitswerte werden zunächst im unteren T/t-Bereich von der 1.6% Ta-Charge 666 = OPTIFER-III erreicht, die noch über den Werten von MANET-II liegen. Durch die bei dieser Variante beobachtete Rekristallisation kommt es bei $T \ge 600$ zu einem drastischen Abfall der Zeitstandfestigkeit. Die mit Cer desoxidierte W-Variante OPTIFER-Ia (Charge 664) liegt in den Zeitstandfestigkeitgkeitswerten im Bereich von MANET-II, scheint aber oberhalb P=25 stabiler zu sein. Die mit Yttrium desoxidierte W-Variante OPTIFER-Ib (Charge 667) ist gegenüber der Charge 664 zu deutlich niedrigeren Zeitstandfestigkeitswerten hin abgesetzt. Die Mittelwertkurve der W-freien Ge-legierten Variante OPTIFER-II (Charge 668) entspricht praktisch der Vorläuferlegierung CeTa [10]. Diese Darstellung zeigt, dass trotz eines massiven Eingriffs in ein bewährtes Legierungssystem mit der OPTIFER-Linie ein hohes Langzeitfestigkeitsniveau gehalten werden kann.

In den Bildern 3a+b sind die aus den Kriechkurven entnommenen Zeiten bis 1% Kriechdehnung und die Standzeiten in Abhängigkeit von der jeweiligen Versuchsspannung aufgetragen. Bei 450 und 500°C Prüftemperatur werden mit der 1.6% Ta-Version OPTIFER-III (\blacksquare) die besten Werte erzielt, jedoch bei 550°C treten erhebliche Streuungen in beiden Kennwerten auf, und ab 600°C ist ein drastischer Abfall gegenüber den anderen Varianten erkennbar. Die Ursache für die Streuungen dürften die nur bei dieser Variante beobachteten zahlreichen Primärkarbide sein, und der Abfall in den Festigkeitswerten hängt mit dem Auftreten einer Sekundärrekristallisation mit Grobkornbildung und Härteabnahme auf \approx 110HV30 zusammen, wie in [16] ausführlich beschrieben wurde.

Bei Versuchszeiten > 10⁴h ist die mit Cer desoxidierte W-Variante OPTIFER-Ia (▲) den übrigen Varianten überlegen. Bei der mit Yttrium desoxidierten W-Variante OPTIFER-Ib (▼) wurde ein erhöhter Al-Gehalt analysiert, der zu einem ungünstigen N/Al-Verhältnis führt, das nach stöchiometrischer Berechnung ein Stickstoffdefizit ergibt, d.h., der als Legierungselement zugesetzte N-Anteil wird als AIN abgebunden und steht nicht mehr zur Karbonitridbildung zur Verfügung. Damit geht ein erheblicher Festigkeitsverlust einher, wie in einer Arbeit an zahlreichen CrNiMoVNb-Stählen gezeigt wurde [22]. Nach N-(Al-0.52) ergibt sich für

OPTIFER-Ib	N/AI = 62/150 p	ppm = -16 ppm N ein Defizit
OPTIFER-la	= 155/80 p	pm = +113 ppm N ein Überschuss
OPTIFER-II	= 159/80 p	ppm = +117 ppm N ein Überschuss
OPTIFER-III	= 173/100	ppm = +121 ppm N ein Überschuss

Die W-freie, mit Ge-legierte Version OPTIFER-II wurde in 2 Vergütungszuständen untersucht. Die Härteversuche [16] ergaben, dass bei der Referenzhärtetemperatur von 1075°C sich wegen des niedrigen Ta-Gehaltes ein sehr grobes Korn (150 μm) bildetet, das zu unakzeptablen Kerbschlagzähigkeitswerten führte. Da das Härtemaximum schon bei 950°C Austenitisierungstemperatur erreicht wird und das nun sehr feinkörnige Gefüge (28 µm) zu vergleichbar (mit Ia) guten Kerbschlagzähigkeitswerten führte, wurde dieser Vergütungszustand mit erniedrigter Härtetemperatur parallel mit untersucht. Die Zugversuche ergaben im Prüftemperaturbereich 400-600 für beide Vergütungszustände praktisch gleiche Festigkeitskennwerte, so dass noch zu prüfen war, ob der starke Gewinn an Kerbschlagzähigkeit evtl. mit einem Verlust bei den Langzeitfestigkeitskennwerten erkauft wird. Aus Bild 3a+b ist ersichtlich, dass die Versuche mit 1075°C Härtetemperatur (

) bis 650°C Prüftemperatur durchweg zu längeren Zeiten für 1% Dehnung und Standzeit führen als die Proben mit 950° HT (o). Deutlicher geht das aus den Bildern 4a+b hervor, in denen die Werte in Form des Larson-Miller-Parameters als Hauptkurven vergleichend dargestellt sind. Durch die Absenkung der HT von 1075° auf 950°C werden beide Zeitstandfestigkeitskennwerte um ca. 10% erniedrigt.

Aus den beiden Diagrammen ist auch der zuvor angesprochene drastische Festigkeitsverlust bei der Ta-Charge OPTIFER-III wegen Rekristallisation und die Überlegenheit der W(Ge)-Charge OPTIFER-Ia zu höheren Temperaturen und langen Zeiten hin deutlich sichtbar. Die bei 700°C Prüftemperatur durchgeführten Versuche sind zusätzlich markiert. Bei dieser hohen Temperatur kommt es teilweise zu erheblichen Veränderungen im Vergütungsgefüge, weswegen sich die Werte nach dem Larson-Miller-Parameter nicht mehr auf einer Mittelwertkurve einordnen. Dieser Aspekt wird im Anhang B noch näher betrachtet. Die Duktilitätskennwerte Bruchdehnung A_u und Brucheinschnürung Z_u sind in den Bildern 5a+b in Abhängigkeit von der Versuchszeit aufgetragen. Im Prüftemperaturbereich 450-550°C werden durchweg relativ hohe Werte erreicht, jedoch ist ab 550°C und besonders bei 600° und 650°C erkennbar, dass die Werte von OPTIFER-Ia und die grobkörnigen Gefügezustände von OPTIFER-II und III eine deutliche Abnahme mit zunehmender Standzeit aufweisen. Dagegen liegen die Werte von OPTIFER-II im feinkörnigen Zustand mit 950° HT weiter auf hohem Niveau.

Die Abhängigkeit der minimalen Kriechgeschwindigkeit von der Versuchsspannung ist ein weiteres wichtiges Auslegungskriterium. Im Vergleich der OPTIFER-Legierungen ergibt sich praktisch eine spiegelbildliche Darstellung von Bild 3b. Eine Bestimmung der daraus resultie-

renden n- und k-Werte nach der Norton'schen Kriechbeziehung wird erst im Kapitel 3.5 mit den Werten der weiteren OPTIFER-Varianten vorgenommen.

Die bisherigen physikalisch-mechanischen Untersuchungen an den 4 OPTIFER-Versionen erlauben folgende vergleichende Aussagen und Bewertungen:

- Eine Desoxidation über Yttrium beim Schmelzprozess der Wolfram-Varianten ist weniger effizient als über Cer, weil ein höherer Rest-Al-Gehalt festgestellt wird. Damit verbunden sind ungünstigere Festigkeits- und Kerbschlagzähigkeitseigenschaften.
- Die Ta-Version (1.6%) bildet beim Erstarren zahlreiche Primärkarbide, die einen Teil des C-Gehaltes abbinden und das Härtungsverhalten ungünstig beeinflussen. Damit verbunden ist ein ungünstiges Kerbschlagzähigkeitsverhalten (hohe FATT) sowie frühe Neigung zur Rekristallisation und Grobkornbildung.
- Die besten Kerbschlagzähigkeitswerte werden mit der W(Ce)- und Ge(Ce)-Version erreicht. Sowohl in der Hochlage als auch bezüglich der Temperatur des Steilabfalls (FATT bzw. DBTT) stellen diese beiden OPTIFER-Varianten einen erheblichen Fortschritt gegenüber CeTa und dem konventionellen martensitischen 10.5% Cr-Stahl MA-NET-II dar.
- Trotz gleicher Kerbschlagzähigkeit weist die W(Ce)-Version (OPTIFER-Ia) gegenüber der Ge(Ce)-Version (OPTIFER-II) deutlich bessere Zug- und Zeitstandfestigkeitswerte auf, die bei T ≥ 550°C noch über den Werten von MANET-II liegen.

3.2 Versuche an OPTIFER-V-VII (2. Serie), Wertetabelle 6-11

In der zweiten OPTIFER-Serie wurde eine 1% W-Version (V) und eine W-freie Version mit erniedrigtem Ge-Gehalt (VI) hergestellt, sowie eine 1% W-Version mit einem auf rd. 8.5% abgesenktem Cr-Gehalt (VII), weil zwischenzeitlich durchgeführte Kerbschlagversuche an der offen erschmolzenen OPTIFER-IVa-Charge hervorragende Kerbschlagzähigkeitswerte ergaben [23]. Diese 3 Varianten wurden im Hinblick auf geringere He-Bildung unter Neutronenbestrahlung B-frei erschmolzen. Nachdem die Versuche an OPTIFER-II aus der ersten Serie und die Zugversuche in [17] zeigten, dass eine Erniedrigung der Härtetemperatur von 1075° auf 950°C mit einer erheblichen Verbesserung des Kerbschlagzähigkeitsverhaltens bei moderatem Festigkeitsverlust verbunden waren, lag das Schwergewicht der Zeitstanduntersuchungen auf Vergütungszuständen mit 950° HT. Ergänzend wurden noch bei OPTI-FER-V und VI Versuche mit höheren HT durchgeführt (Tabelle 7, 8, 10).

In den Bildern 6a+b sind die Zeiten für 1% Dehnung und Standzeit in Abhängigkeit von der Versuchsspannung für die 1% W-Version OPTIFER-V aufgetragen. Für den Vergütungszustand mit 950° HT (\blacktriangle) werden als Vergleich, und im Vorgriff auf Kapitel 3.4, die Ergebnisse von OPTIFER-IVc (•) herangezogen, und für 1075° HT werden die Werte von OPTIFER-Ia (\triangle) aus der 1. Serie verwendet.

Bei 450°C Prüftemperatur ordnen sich alle Werte eng auf einer Mittelwertkurve ein, es ist also kein Chargeneinfluss und kein Einfluss der HT erkennbar. Ab 500°C und mit steigender

Prüftemperatur immer ausgeprägter, ist erkennbar, dass die Proben mit 950° HT ($\blacktriangle \bullet$) deutlich kürzere Zeiten erreichen als die Proben mit 1075° HT ($\forall \triangle$). Beim Chargenvergleich erkennt man, dass bei 950° HT die OPTIFER-V-Version (\blacktriangle) ab 550°C bessere Werte ergibt als die ebenfalls B-freie Version OPTIFER-IVc (\bullet). Beim Zustand mit 1075° HT ist die Bhaltige OPTIFER-Ia Version (\triangle) OPTIFER-V überlegen.

Die Ergebnisse der W-freien Version OPTIFER-VI sind in den Bildern 7a+b der Legierung OPTIFER-II aus der 1. Serie gegenübergestellt. Auch hier führt der Vergleich zum gleichen Ergebnis, dass die höhere Härtetemperatur und die B-haltige Version II bessere Zeitstandfestigkeitskennwerte ergeben.

Für die OPTIFER-VII-Version mit dem abgesenkten Cr-Gehalt sind die Versuchswerte in den Bildern 8a+b im Vergleich zur 8.5% Cr-Version IVa und 9.5% Cr-Version V dargestellt. Die Proben von IVa lagen allerdings in einem Vergütungszustand mit 900° HT vor, der im Rahmen der Optimierungsarbeiten an dieser Version vorgegeben war [23] und durch die begrenzte Probenzahl waren je Prüftemperatur nur einige Versuche möglich. Allerdings sind die Unterschiede zwischen den 3 Varianten nicht so ausgeprägt wie bei den Varianten in den Bildern 7+8. Tendenziell werden ab 550°C Prüftemperatur für die 9,5% Cr-Varianten V längere Zeiten für die beiden Kennwerte erreicht als für OPTIFER-VII, und für die bei 900°C gehärtete Variante IVa kürzere Zeiten.

Übersichtlicher wird der Vergleich der 3 Legierungstypen, wenn man die Werte aus den Bildern 6-8 im Larson-Miller-Parameter zusammenfasst und als Zeitstand-Hauptkurven darstellt. Im Bild 9a sind die Hauptkurven für die 1%-Zeit-Dehngrenze eingezeichnet. Absolut die höchsten Werte werden von der 1%W-Legierung OPTIFER-Ia erreicht (1. Serie), die deutlich über denen der B-freien Vergleichslegierung OPTIFER-V (▲) liegen. Die niedrigsten Werte weisen die W-freien Varianten auf, wobei die B-freie Charge VI (●) deutlich unter der Vergleichslegierung II liegt. Die Kurven von OPTIFER-VII mit dem auf 8.5% erniedrigten Cr-Gehalt und die Vergleichslegierung OPTIFER-IVa mit 900° HT liegen knapp unter der Kurve von OPTIFER-V mit 9.5% Cr. Die gleiche Abstufung ergibt sich aus Bild 9b in Bezug auf die absolute Höhe der Zeitstandfestigkeitskurven.

3.2.1 Einfluss der Vergütungsbehandlung

In den vorangegangenen beiden Kapiteln wurde schon der Einfluss unterschiedlicher Härtetemperaturen aufgezeigt, aber z.T. mussten bei gleicher Legierung die Ergebnisse verschiedener Chargen miteinander verglichen werden. Zur Vertiefung dieser Frage wurden mit Proben der W-Charge OPTIFER-V nicht nur die HT variiert (950°-1030°-1075°C), sondern neben der einfachen Anlassbehandlung 750°2h wurde noch eine doppelte Anlassbehandlung 525°2h+750°2h nach der Härtung bei 950° bzw. 1075°C durchgeführt. Die Glühung bei 525°C verfolgte den Zweck, das Ausscheidungspotential, das bei den Anlassversuchen zu einem Sekundärhärtemaximum führt, [16] [17] auszuschöpfen.

Die Ergebnisse von Versuchen an 5 verschiedenen Vergütungszuständen sind im Bild 10 als Zeitstand-Hauptkurven zusammengestellt, deren Primärdaten in den Wertetabellen 6-8 enthalten sind.

Bei der erniedrigten HT von 950°C spielt es praktisch keine Rolle, ob einfach oder doppelt angelassen wurde. Sowohl die Werte für 1% Dehnung (Teilbild a) als auch die Bruchzeiten (b) lassen sich mit relativ geringer Streuung jeweils durch eine Hauptkurve beschreiben. Dagegen werden nach Härtung von 1075°C und doppelter Anlassbehandlung bei gleicher Spannung längere Versuchszeiten erreicht als bei einfacher Anlassbehandlung, insbesondere für die 1%-Zeit-Dehngrenzen-Werte. D.h., die höhere Löslichkeit bei der 1075°C-Austenitisierung führt beim doppelten Anlassen zu einem höheren Ausscheidungspotential mit starkem positiven Einfluss insbesondere auf das Kriechverhalten bis 1%, also im ersten Lebensdauerabschnitt bzw. dem praktisch genutzten Einsatzzeitraum. Diesem Gewinn bei den Festigkeitswerten steht nur ein moderater Verlust bei den Duktilitätskennwerten gegenüber, wie aus den Wertetabellen 7+8 hervorgeht.

Die W-freie Variante OPTIFER-VI wurde ebenfalls in verschiedenen Vergütungszuständen untersucht, allerdings nur mit variierter Härtetemperatur (950-1075°C) und begrenzter Probenzahl (Tabelle 9+10). Die Werte für 1%-Zeit-Dehngrenze und Standzeit sind im Bild 11a+b als Hauptkurven im Vergleich zur B-haltigen Charge von OPTIFER-II aus der 1. Serie dargestellt. Die schraffierten Bereiche geben den Unterschied in der Versuchsspannung zwischen B-freier und B-haltiger Charge wieder, der bei 1075° HT sehr ausgeprägt ist. Der Einfluss der Härtetemperatur ist beim Übergang von 950° HT (●) auf 1000°C (●) bzw. 1050°C (⊗) sehr deutlich zugunsten der höheren HT erkennbar, wohingegen die bei 1075°C (☉) gehärteten Proben praktisch deckungsgleiche Werte mit den 1050° HT-Proben ergeben.

3.3 Vergleich mit F82H-mod. (2%W)

Parallel zu den Arbeiten an den OPTIFER-Legierungen wurden seit 1995 Untersuchungen an dem japanischen niedrigaktivierenden Stahl F82H-mod. durchgeführt. Dabei handelt es sich um einen vollmartensitischen 8% Cr - 2% W-Stahl, der von NKK-JAERI als 5 t-Charge hergestellt und in verschiedenen Halbzeugabmessungen als Referenzmaterial für einen round-robin-test im internationalen Rahmen über die IEA zur Verfügung gestellt wurde. Im IMF ist die Charge umfassend untersucht worden [24]. Insbesondere das Zeitstandfestig-keits- und Kriechverhalten im T-Bereich 450-700°C bis zu Zeiten von rd. 40 000 h [25] [26].

Im Bild 12 a+b werden die Zeitstandhauptkurven für 1%-Dehnung und Standzeit der OPTI-FER-Varianten mit 1% W im Vergleich zu F82H-mod. (2% W) dargestellt. Die Kurven für F82H-mod. gelten für den Anlieferzustand mit 1040° HT und 750°C angelassen, der allerdings eine erhebliche Streubreite der Messwerte aufweist, was durch die feine Schraffur dargestellt ist. Wenn die Härtetemperatur zur Erzielung besserer Kerbschlagzähigkeitswerte auf 1000° bzw. 950°C erniedrigt wird, hat das keinen Einfluss auf die 1%-Zeit-Dehngrenzwerte und die Standzeit, die innerhalb der Streubreite des Anlieferzustandes liegen [25].

Die Kurven für die OPTIFER-Variante Ia (mit B) für den Referenzzustand mit 1075° HT liegen deutlich über den Kurven für F82H-mod., ebenso die Werte von den offen erschmolzenen 4 Chargen von OPTIFER-IVc (ohne B), die im folgenden Kapitel ausführlich behandelt werden. Die Werte von OPTIFER-V (ohne B) im einfach angelassenen Zustand (●) entsprechen den F82H-mod.-Werten, im doppelt angelassenen Zustand (▲) liegen sie allerdings höher. Wird nun bei diesen OPTIFER-Varianten die Härtetemperatur wegen besserer Kerbschlagzähigkeitseigenschaften auf 900-1030°C erniedrigt, so ist eine deutliche Abnahme in den Versuchszeiten bzw. Spannungen erkennbar (x und offene Symbole). Die Werte liegen deutlich unterhalb von den F82H-mod.-Kurven bzw. erreichen im besten Falle diese. Das stabilere bzw. unempfindlichere Verhalten von F82H-mod. dürfte teilweise auf den höheren W-Anteil zurückzuführen sein, aber einen ganz wesentlichen Anteil hat die Korngröße. Während bei F82H-mod. sich die mittlere Korngröße zwischen 950 bis 1040° AT von 33µm auf 55µm (Faktor 1.7) verändert, liegt bei den OPTIFER-(W)-Varianten bei 950° HT mit 12-14 µm ein extrem feines Korn und bei 1075° HT mit 45-103µm (Faktor 4-7) ein teilweiser deutlich gröberes Korn vor.

Diese Aussagen werden bekräftigt, wenn man Bild 13 a+b betrachtet, in dem die Werte der W-freien Varianten OPTIFER-II und VI im Vergleich zu F82H-mod. dargestellt sind. Absolut liegen alle Kurven der W-freien Chargen unter denen der 2% W-Kurven und auch die Korngröße ändert sich um den Faktor 5-7 bei Änderung der HT von 950-1075°C, im Gegensatz zum Faktor 1.7 bei F82H-mod.

3.4 Versuche an OPTIFER-IV (offen erschmolzen)

Bei den in der Tabelle 1 aufgeführten Chargen OPTIFER-IV a-b-c handelt es sich um 150 kg-Chargen, um primär mehr Versuchsmaterial für breiter angelegte Untersuchungsprogramme zu haben, wie schon im Kapitel 2 ausgeführt, im Gegensatz zu den Entwicklungslegierungen OPTIFER-I-III und V-X mit jeweils 25 kg. OPTIFER-IV a+b wurden in Anlehnung an Ia (1.Serie) spezifiziert jedoch mit einem auf rd. 8.5% abgesenkten Cr-Gehalt und veränderten Mn- und N₂-Gehalten und sind vergleichbar mit der B-freien Entwicklungslegierung OPTIFER-VII (2. Serie). Die 4 Chargen von OPTIFER-IVc wurden ebenfalls in Anlehnung an Ia spezifiziert, jedoch B-frei erschmolzen und sind Parallelchargen zur Entwiclungslegierung OPTIFER-V (2. Serie). Das Material liegt als 4 kt. 40 mm und 4 kt. 65 mm Stäbe vor und wird auch von europäischen Partnern im Fusionsprogramm für Untersuchungen benützt.

3.4.1 Zeitstandversuche an OPTIFER-IVa, Tabelle 12

OPTIFER-IV a+b wurden in erster Linie dazu verwendet, den Einfluss unterschiedlicher Vergütungsbehandlungen auf das Kerbschlagzähigkeitsverhalten und die Zugfestigkeitseigenschaften zu untersuchen (Optimierungsprogramm) [23]. Ergänzend wurden lediglich von IVa zwei vorgegebene Vergütungszustände im Temperaturbereich 500-650°C auf ihr Zeitstandverhalten untersucht. Zustand I hat eine auf nahe Ac_{1e} (855°C) abgesenkte Härtetemperatur von 900° + 750°C AT und ist im Kapitel 3.2 im Vergleich zu OPTIFER-VII schon behandelt worden. Zustand II wurde von 1000°C gehärtet, aber zur Erziehung höherer Zugfestigkeitswerte nur bei 700°C angelassen.

Im Bild 14 sind die Standzeiten als Zeitstand-Hauptkurven im Vergleich zu den OPTIFER-Varianten der 1. Serie und MANET-II eingezeichnet. Im niedrigeren T/t-Bereich (P < 22) werden vor allem mit dem bei nur 700°C angelassenen Zustand (\blacktriangle) hohe Zeitstandfestigkeitswerte erreicht, jedoch bei langzeitiger Beanspruchung bei \geq 550°C ist ein markanter Abfall der Zeitstandfestigkeit zu beobachten.

3.4.2 Untersuchungen an OPTIFER-IVc

Von OPTIFER-IV c wurden 4 Chargen gleicher Spezifikation erschmolzen, so dass 600 kg einer Variante in Form von 4 kt. 40 und 4 kt. 65 mm Stäben zur Verfügung standen. Damit konnte auch erstmals der Chargeneinfluss auf verschiedene Kenngrößen als Folge geringer Schwankungen der Legierungselemente innerhalb der Legierungsspezifikation aufgezeigt werden (s. Tabelle 1). Das aus der Schmiedehitze abgelegte und angelieferte Material (mit undefiniertem Gefügezustand) wird von Labors bzw. Verwendern nach den jeweiligen Erfordernissen vergütet (Härten und Anlassen). Bei Anwendung von Härtetemperaturen ≥ 1000°C sollte zuvor eine Homogenisierungsglühung bei 950°C (1-2 h) erfolgen, weil insbesondere bei den 4 kt. 65 mm Stäben durch den geringen Verschmiedungsgrad von Ø 100 zu 4 kt. 65 mm ein ausgeprägtes Schmiedekreuz beobachtet wurde. Wenn nun z.B. die Referenzhärtetemperatur von 1075°C angewendet wird, kommt es zu einem sehr ungleichmäßigen Kornwachstum und unterschiedlichen Härtewerten. Die Austenitisierung bei 950°C bewirkt mit nachfolgenden Härtetemperaturen ≥ 1000°C eine deutliche Homogenisierung in der Gefügeausbildung und Abschreckhärte. Die Ergebnisse der Untersuchungen zum Umwandlungs-, Härte- und Anlassverhalten sowie der Zug- und Kerbschlagversuche sind in [27] ausführlich beschrieben.

In Bezug auf das Zeitstandfestigkeits- und Kriechverhalten wurden die 4 Chargen umfassend im vergüteten Zustand untersucht. Zur Klärung des Alterungsverhaltens wurden Stabilisierungsglühungen mit unterschiedlichen T/t-Kombinationen durchgeführt und auch die Frage, wie sich kurzzeitige Temperaturerhöhungen auswirken, kann durch die Ergebnisse von entsprechenden Transientenversuchen beantwortet werden.

3.4.2.1 Zeitstandversuche im vergüteten Zustand (Tabelle 13-17)

Im Temperaturbereich 450-650°C wurden alle 4 Chargen untersucht, da im Zeitstandfestigkeits- und Kriechverhalten bei langzeitiger Beanspruchung sich geringe Unterschiede in der chemischen Zusammensetzung noch am ehesten bemerkbar machen. Einschließlich noch einiger laufender Langzeitversuche ist der Versuchszeitraum bis $\geq 10^4$ h experimentell abgedeckt.

Für den Referenzzustand mit 1075°C Härtetemperatur sind im Bild 15 a-c die erreichten Versuchszeiten für die 0,2%- und 1%-Zeit-Dehngrenze und die Standzeit in Abhängigkeit von der jeweiligen Versuchsspannung aufgetragen, die Werte der 4 Chargen ergeben für jede Prüftemperatur ein Streuband, dessen untere Begrenzung bei 500° und 550°C durch die Versuche an der Charge 986780 gebildet wird (\blacksquare). Die Ursache ist das deutlich feinere Korn (13 µm) aufgrund des etwas höheren Ta-Gehaltes von 0.12%. Dass die Streuung bei den Messwerten für 0.2% Kriechdehnung allgemein größer ist, hängt mit dem unterschiedlichen Kriechverlauf der Werkstoffe im Primärbereich zusammen.

Bemerkenswert ist auch, dass die Unterschiede bei der Charge 986778 wegen der Vergütungsbehandlung ohne (☉) und mit (●) Homogenisierung im Zeitstandversuch nicht mehr so stark ausfallen wie im Zugversuch [27] und sich beide Zustände gut durch eine Mittelwertkurve, insbesondere die Standzeitwerte, beschreiben lassen. Im Bild 16 a+b sind die Werte für die 1%-Zeit-Dehngrenze und Standzeit nach dem Larson-Miller-Parameter als Zeitstand-Hauptkurven dargestellt. In dem Parameter $P=T_K(c+\log t)$ wurde für die 1% W-OPTIFER-Varianten anhand der Messwerte der c-Wert optimiert und zu 28 bestimmt (s. Anhang II). Damit wird in der Hauptkurve insbesondere für die 550°- und 600°C-Werte eine gute Passung (Überlappung) erreicht, denn c ist keine Konstante, sondern werkstoff-, temperatur- und zeitabhängig. Bei der 2%-W-Legierung F82H-mod. wurde c zu 33 bestimmt [25] und bei den W-freien 12% Cr-Stählen und OPTIFER-Varianten hat sich c=25 als optimal erwiesen. Bei einem Vergleich verschiedener Stähle und Varianten in einem Bild muss als Kompromiss mit einem einheitlichen c-Wert gerechnet werden, wie in den Kapiteln zuvor praktiziert wurde.

Die Werte der 4Chargen bilden ein relativ enges Streuband, das nicht breiter ist als z.B. das aller Werte von verschiedenen Platten einer Charge der Legierung F82H-mod. In beiden Teilbildern ist noch die Hauptkurve für den Vergütungszustand mit der erniedrigten Härtetemperatur von 950°C eingetragen, die an der Charge 986778 ermittelt wurde (Tabelle 17). Ein Vergleich der an OPTIFER-IVc ermittelten Werte mit weiteren OPTIFER-(W)-Varianten erfolgt im Bild 17. Für die Vergütungszustände mit der Referenzhärtetemperatur 1075°C und der erniedrigten HT 950°C ergeben sich über dem LM-Parameter je 2 Streubänder als Einfluss der Legierungsvariation, Korngröße und Anlassbehandlung. Aus dieser Darstellung ist auch deutlich die Einbuße an Festigkeit zugunsten besserer Kerbschlagzähigkeit [27] bei den OPTIFER-(W)-Varianten erkennbar. Die Werte für die minimale Kriechgeschwindigkeit sind im Bild 18 in Abhängigkeit von der jeweiligen Versuchsspannung aufgetragen. Wie bei den zuvor behandelten Kennwerten ergibt sich je Prüftemperatur ein Streuband durch die 4 Chargen, in die sich auch die Werte von OPTIFER-la und V (⊡) gut einordnen. Als Vergleich sind die Mittelwertgeraden von F82H-mod. [25] eingezeichnet, und man kann erkennen, dass die OPTIFER-Werte deutliche niedrigere Kriechraten bei gleicher Spannung aufweisen.

Die Duktilitätskennwerte Bruchdehnung (A_u) und Brucheinschnürung (Z_u) sind für die beiden wichtigsten Prüftemperaturen 500° und 550°C im Bild 19 in Abhängigkeit von der Standzeit aufgetragen, um einen eventuell Duktilitätsverlust bei langzeitiger Beanspruchung zu erkennen. In [24] ist gezeigt worden, dass bei $T \ge 600$ °C und t > 10³h bei W-haltigen Stählen eine deutliche Abnahme der A_u- und Z_u-Werte zu beobachten ist. Bei den OPTIFER-IVc-Chargen sind bis 550°C und 10⁴h die beiden Kennwerte praktisch standzeitunabhängig. Als Vergleich zeigt F82H-mod. bei den Bruchdehnungwerten eine klare Tendenz zu abnehmender Duktilität [25]. Dieser Duktilitätsverlust wird bei OPTIFER-IVc erst bei den 600° und 650°C Versuchen beobachtet (Tabellen 13-16). Ob dieser Duktilitätsverlust auch bei 550°C und Standzeiten > 10⁴h auftritt, werden die noch laufenden Langzeitversuche zeigen. Die Ursache ist durch Laves-Phasenbildung aufgrund des W-Anteils erklärbar und deshalb auch die stärker ausgeprägte Tendenz bei F82H-mod. mit 2% W gegenüber 1% W bei OPTIFER.

Auf die Spannungsabhängigkeit der minimalen Kriechgeschwindigkeit und die daraus resultierenden n- und k-Werte, sowie auf die Langzeitabhängigkeit der Duktilitätskennwerte wird im Kapitel 3.5 und in der abschließenden Diskussion nochmals eingegangen.

3.4.2.2 Zeitstandversuche mit unterschiedlichen Stabilisierungsglühungen (Alterung) (Tabelle 18-21)

Durch Härten + Anlassen (Vergütung) wird bei martensitischen Stählen ein dem vorgesehenen Verwendungszweck entsprechendes Härte- bzw. Festigkeitsniveau eingestellt. Beim langzeitigen Einsatz bei höheren Temperaturen ist dieser Gefügezustand einer weiteren Anlasswirkung ausgesetzt, die allgemein als Alterung bezeichnet wird. Wenn eine Wärmebehandlung mit dem Ziel, im Laufe der Zeit zu erwartende Form-, Maß- und/oder Gefügeänderungen in einem Werkstück vorwegzunehmen, angewendet wird, spricht man von künstlichem Altern oder Stabilisieren (DIN 17014).

Umfangreiche empirische Untersuchungen zur Anlassbeständigkeit haben gezeigt, dass in Bezug auf die Härteänderungen, Anlasstemperatur und -zeit in begrenztem Rahmen gut austauschbar sind. Hollomon und Jaffe haben diesen Zusammenhang durch einen Parameter der Form P=T_K (c+log t) beschrieben [28], der später durch eine Arbeit von Larson-Miller zur Beschreibung des Zeitstandfestigkeitsverhaltens bekannter wurde. Als max. Auslegungsdaten für ein Blanketmodul sind z.Zt. 550°C und 20 000 h vorgegeben [20]. Dies entspricht nach der Hollomon-Jaffe Beziehung einem Wert von P = 18.36. Um diesen T/t-Bereich abzudecken, wurde bisher Versuchsmaterial im vergüteten Zustand zusätzlich bei 550°C-5000 h bzw. 600°C-5000 h geglüht. Diese beiden Glühungen entsprechen P = 17.86 bzw. 18.94, wie aus der schematischen Darstellung im Bild 20 hervorgeht. Im Rahmen der Untersuchungen an OPTIFER-IVc stand genügend Versuchsmaterial zur Verfügung, um auch weitere T/t-Kombinationen von Stabilisierungsglühungen zu untersuchen. So wurden ergänzend zur 600°C-5000 h-Glühung mit gleichem P-Wert 2 höhere Temperaturen (625°C + 650°C) mit kürzeren Zeiten (1250 g bzw. 330 h) gewählt, um zu zeigen, inwieweit sich die Glühtemperatur zugunsten kürzerer Glühzeit erhöhen lässt. Desweiteren wurden mit 580°C-3300 h und 600°C-1050 h zwei T/t-Kombinationen gewählt, die punktgenau der vorgesehenen maximalen Beanspruchung (= 550°C-20 000 h ^ P=18.36) entspricht. Die folgende Zusammenstellung gibt eine Übersicht über die durchgeführten Wärmebehandlungen und nachfolgenden Untersuchungen, die auch in [27 b] beschrieben sind.

	Zustand:			,,		
	geh. + ange	l. + geglüht	P ^{x)}	Zugvers.	Zeitst.Vers.	ISO-V-Vers.
				[27 b]		[27 b, c]
1)	1075°+750°	+550°5000 h	17,86	х	x	x
2)	п	+580°3300 h	18,36 ^{xx)}	-	x	x
3)	u	+600°1050 h	18,36	-	x	x
4)	u	+600°5000 h	18,94	х	x	x
5)	81	+625°1250 h	18,94	-		x
6)	ti -	+650°330 h	18,94	х	x	x
7)		+625°5000 h	19,49	х	x	x
8)	950°+750°	+550°5000 h	17,86	х	x	x
9)	11	+600°5000 h	18,94	х	x	x
10)	11	+625°5000 h	19,49	-		nur RT
	^{x)} P=T _K (18+1	og t) Hollomon-J	affe [28] ××) ⁄	550°-20 000 h		

Wie ersichtlich, wurden Zeitstandversuche an fast allen T/t-Kombinationen durchgeführt. Schon die Zugversuche ergaben z.T. nur geringe Änderungen der mechanischen Kennwerte, so dass nur für die Kerbschlagversuche (ISO-V) der gesamte Parameter-Bereich experimentell abgedeckt wurde [27]. Auch für den Vergütungszustand mit der erniedrigten Härtetemperatur von 950°C (Nr. 8-10) wurden die Zug- und Zeitstandversuche auf 2 T/t-Kombinationen beschränkt, die den maximalen Beanspruchungsbereich mit P=18,36 überdecken.

Vorab ist zu bemerken, dass der Einfluss der verschiedenen Stabilisierungsglühungen auf die Zeitstand-Kennwerte nicht markant ist, d.h. dieser Stahltyp ist in Bezug auf das Zeitstandverhalten sehr alterungsbeständig. In der Darstellung als Larson-Miller-Hauptkurve ordnen sich z.B. die Werte aller Zustände für 1%-Kriechdehnung und Standzeit in die Streubänder der 4 Chargen von OPTIFER-IVc ein, wie im Bild 16 dargestellt, und ergäbe wegen der vielen Messpunkte ein wenig aufschlussreiches Bild (Tabellen 18-21). Deshalb sind zunächst in der σ -t-Darstellung, für jede Prüftemperatur separat, die Werte für 1%-Kriechdehnung und Standzeit in den Bildern 21 a+b dargestellt im Vergleich zum Vergütungszustand mit 1075° HT (\odot •).

Zunächst erkennt man, dass alle Stabilisierungsglühungen die Zeit bis zum Erreichen von 1% Dehnung und Bruch verkürzen, aber auch die Tendenz besteht, dass zu längeren Versuchszeiten hin ($\geq 10^4$ h) dieser Effekt schwächer wird. Am stärksten ausgeprägt ist der standzeitverkürzende Effekt bei den T/t-Kombinationen mit den hohen P-Werten von 18,94-19,49. Dagegen nähern sich die Werte der beiden Zustände mit P = 18.36 (\otimes x) ($\Delta 550^{\circ}$ C-20000 h) dem Wertestreuband des Vergütungszustandes der gleichen Charge an. Dies wird beispielhaft im Bild 22 demonstriert, in dem die 550°C-Versuche mit stärker gespreizten σ -t-Skalen aufgetragen sind.

Das schraffierte Band enthält jeweils die Werte der 4 Chargen für 1% Kriechdehnung bzw. Standzeiten für den vergüteten Zustand. Die Kurven für die geglühten Zustände sind mit steigenden P-Werten deutlich erkennbar zu niedrigeren Spannungen (d.h. kürzeren Versuchszeiten) verschoben. Ebenso klar erkennbar ist, dass die beiden Zustände mit der Glühung, die der maximalen Einsatzbeanspruchung entspricht (P=18.36 - - -), nur um 10% unter den schraffierten Bereichen liegt.

Diese Aussagen gelten in gleicher Weise auch für die Spannungsabhängigkeit der minimalen Kriechgeschwindigkeit $\dot{\epsilon}_{Pmin}$, wie aus dem Bild 23 ersichtlich ist. Dieser Kennwert liegt für die geglühten Zustände bei 450° und 500°C Prüftemperatur durchweg um 10-20% (bezogen auf die Prüfspannung) unter den Werten des vergüteten Zustandes. Bei 550° und 600°C Prüftemperatur besteht die Tendenz einer Annäherung der Geraden für die Spannungsabhängigkeit von $\dot{\epsilon}_{Pmin}$, insbesondere der Werte mit den betriebsrelevanten Glühungen (x \otimes).

Aus den Bildern 22 + 23 kann auch abgeleitet werden, dass die Glühzeit nicht beliebig durch Erhöhung der Glühtemperatur verkürzt werden kann, sondern auf max. 600°C begrenzt werden sollte ($550^{\circ}/20\ 000\ h = 580^{\circ}/3300\ oder\ 600^{\circ}/1050\ h$)

Beim Vergütungszustand mit der abgesenkten HT von 950°C wurden nur 2 T/t-Kombinationen (550°C-5000 h und 600°C-5000 h) untersucht. Die Werte für 1%- Kriechdehnung und Standzeit sind im Bild 24 a+b als Larson-Miller-Kurven dargestellt. Während die Standzeitwerte der geglühten Proben fast dehnungsgleiche Werte mit dem Referenzzustand ergeben, ist die Streuung bei den 1%-Dehnungswerten etwas größer, aber mit der deutlichen Tendenz, dass zu niedrigeren Versuchsspannungen hin das Zeitstand- bzw. Kriechverhalten positiv durch die Stabilisierungsglühung beeinflusst wird. Diese Aussage wird gestützt durch Bild 25, in dem die Werte für die minimale Kriechgeschwindigkeit vergleichend aufgetragen sind. Bei 550°C Prüftemperatur sind die Werte der 3 Zustände praktisch deckungsgleich, und bei 600°C werden sogar etwas niedrigere Kriechraten gemessen (s.a. Tabelle 17).

Die metallografischen Befunde der verschiedenen Alterungszustände geben keinen Hinweis auf gravierende Gefügeänderungen im Vergleich zu den Ausgangszuständen mit 1075° bzw. 950°C Härtetemperatur (Bilder 26-28). Lichtmikroskopisch sind keine Veränderungen erkennbar. Lediglich die Härtewerte werden durch Glühungen bei 580°C (3300 h) bzw. 600°C (1050 h) um 10 Einheiten erhöht (Bild 26 c+d), d.h. es wird ein zusätzliches Ausscheidungspotenzial ausgeschöpft. Längere Glühzeiten bei 600°C (5000 h) bzw. Glühungen bei höheren Temperaturen bis 650°C ergeben Härtewerte, die exakt denen des Ausgangszustandes entsprechen (Bild 27 a-d). Bei den 3 Zuständen mit 950° HT sind die Unterschiede in den Härtewerten minimal (Bild 28 a-c).

3.4.2.3 Zeitstandversuche mit vorlaufender Temperaturtransiente

Unter der Annahme, dass im Betrieb ein kurzzeitiger Temperaturanstieg erfolgt, erhebt sich natürlich die Frage, wie der durch die Vergütungsbehandlung eingestellte Zustand beeinflusst wird. Ein T-Anstieg bis zum Beginn der α - γ -Umwandlung (Ac_{1b}-Punkt), der für OPTI-FER-IVc bei 810°C liegt, wird je nach Einwirkungszeit eine Anlasswirkung haben und das ursprünglich eingestellte Festigkeitsniveau herabsetzen.

Über Ac_{1b} hinaus bildet sich T/t-abhängig Austenit. Bei Abkühlung auf Raumtemperatur wandelt der Austenit zu Martensit um. Wird dagegen nach einer Temperatur-Transiente in einem höheren Temperaturbereich abgefangen, so ist im T-Bereich zwischen 650°C - Ac_{1b} mit Perlitbildung zu rechnen, zwischen RT und ~400°C (Martensitpunkt) mit teilweiser Martensitbildung (T-abhängig), und zwischen M_s und der Perlitstufe bleibt der oberhalb Ac_{1b} gebildete Austenit als unterkühlter Austenit erhalten. Diese Vorgänge können aus dem ZTU-Schaubild mit den stahltypischen Umwandlungstemperaturen abgelesen werden [27] [29].

Um den Einfluss einer T-Transiente auf das Zeitstandfestigkeits- und Kriechverhalten zu quantifizieren, wurden Proben in der Zeitstandprüfanlage ohne Belastung rasch aufgeheizt und durch Abschalten der Ofenheizung wieder rasch abgekühlt bis auf die vorgesehene Prüftemperatur. Dies wird in der halbschematischen Darstellung im Bild 29 veranschaulicht. In der Versuchsführung I erfolgte der schnellste Durchlauf des T-Bereiches 750°-800°-750°C in 4-5,5 min. In der Serie II verlief die Aufheizung und Abkühlung etwas langsamer, so dass die Durchlaufzeit oberhalb der Anlasstemperatur von 750°C 14-44 min betrug. Bei der Serie III erfolgte die Aufheizung bis in den α - γ -Bereich, so dass eine teilweise Umwandlung erfolgte und im nachfolgenden Zeitstandversuch neben dem Vergütungsgefüge ein nicht bekannter Anteil unterkühlten Austenits vorlag, der nach Versuchsende bei Abkühlung auf RT zu Martensit umwandelt.

Nach dem Temperaturausgleich bei der vorgesehenen Prüftemperatur von 500° bzw. 550°C (≈ 2 h) wurden die Zeitstandversuche angefahren. In den Tabellen 22+23 sind die ermittelten Kennwerte der Transienten-Versuche mit den Vergleichsversuchen ohne vorlaufende T-Traniente (aus Tab. 13+14) zusammengestellt.

Die Zeiten bis 1% Kriechdehnung und Bruch sind im Bild 30 in Abhängigkeit von der Versuchsspannung aufgetragen. Die T-Transiente bis 800°C mit schneller Durchlaufzeit von T>750°C hat praktisch keinen negativen Einfluss auf die beiden Kennwerte, erst die Versuchsreihe II mit den längeren Durchlaufzeiten von 14-44 min ergibt eine deutliche Verkürzung der Versuchszeiten und bezogen auf die Versuchsspannung eine Abnahme von ca. 10% (Bild 30a), wobei der Effekt bei 550°C Prüftemperatur etwas ausgeprägter ist als bei 500°C (w.g. Anlasswirkung).

Wesentlich stärker ist der Einfluss einer T-Transiente bis 840°C mit Durchlaufzeiten von 6-7 min im α - γ -Gebiet (Bild 30b). In diesem Fall ist bei 500°C Prüftemperatur der Effekt stärker ausgeprägt als bei 550°C, wo es zu langen Versuchszeiten hin (> 10⁴ h) zu einer Angleichung der Kurven kommt (w.g. Austenitanteil).

Die Werte für die minimale Kriechgeschwindigkeit È werden im Fall der T-Transiente bis 800°C praktisch nicht beeinflusst und liegen im Rahmen der normalen Streuung dieses Kennwertes. Im Fall III mit der T-Transiente bis 840°C ist der Effekt sehr ausgeprägt, und es ergibt sich ein Bild spiegelbildlich zur Darstellung in Bild 30b.

Die Aussagen zur stärkeren Beeinflussung der Kennwerte, wenn die T-Traniente über Ac_{1b} hinausgeht, stimmen gut überein mit früheren Versuchen an der japanischen Version F82Hmod. und den beiden konventionellen martensitischen 10% Cr-Stählen MANET II und 1.4914, wie aus Bild 31 hervorgeht [21] [25] [30].

Völlig anders ist die Situation, wenn ein Temperaturanstieg langzeitig auf den vergüteten Werkstoff einwirkt und unter Spannung beschleunigtes Kriechen auftritt. Dieser Fall wurde durch Zeitstandversuche im Temperaturbereich 650-925°C am Stahl 1.4914 untersucht [30]. Im Bild 32 sind die wesentlichen Ergebnisse aus dieser Arbeit zusammengestellt. Die Standzeit und die Zeit bis 1% Kriechdehnung werden mit steigender Prüftemperatur bis 775° (=Ac_{1b}) erwartungsgemäß wegen der zusätzlichen Anlasswirkung stark verkürzt und die Werte für die minimale Kriechgeschwindigkeit ebenso deutlich erhöht (Bild a-c). Bei weiterer Erhöhung der Prüftemperatur werden bis 850°C mit steigendem Austenitanteil wieder längere Zeiten und kleinere Kriechgeschwindigkeiten gemessen. Dies ist auf die geringere Anzahl von Gleitebenen im kfz-Gitter zurückzuführen. Oberhalb 850°C dominiert wieder die höhere Temperatur das Kriechverhalten. Analog verhalten sich die Bruchdehnungs- und einschnürungswerte als Folge der unterschiedlichen Gefügestruktur und Prüftemperatur (Bild d), ab 775°C werden diese Duktilitätskennwerte mit zunehmendem Austenitanteil zunächst kleiner und erreichen nach Überschreiten von Ac_{1e} (Umwandlungsende) das Niveau vor Umwandlungsbeginn.

3.5 Kriechverhalten und Aktivierungsenergie des Kriechens

Die kontinuierliche Aufzeichnung des Kriechverlaufes erlaubt eine exakte Bestimmung der minimalen Kriechgeschwindigkeit $\dot{\epsilon}_{pmin}$, die sich je nach Prüftemperatur und Versuchsspannung innerhalb eines mehr oder weniger stark ausgeprägten quasi-stationären Kriechbereiches einstellt. Eine Auftragung der minimalen Kriechgeschwindigkeit in Abhängigkeit von der jeweiligen Versuchsspannung (log $\dot{\epsilon}_{pmin} \rightarrow \log \sigma_{o}$) ergibt für jede Prüftemperatur eine Gerade, aus deren Neigung sich nach der Norton'schen Kriechbeziehung $\dot{\epsilon} = k \cdot \sigma^{n}$ der Spannungsexponent berechnen lässt [31].

Für die OPTIFER-(W)-Chargen wurde der Spannungsexponent n aus der Neigung der unteren Streubandbegrenzung in dem Bild 18 bestimmt. Für die W-freien OPTIFER-Chargen wurde das Schaubild 33 verwendet. Die ermittelten n-Werte und die daraus resultierenden k-Werte sind in der Tabelle 24 zusammengestellt im Vergleich zu den Werten des japanischen Stahles F82H-mod. [25]. Mit angegeben ist der jeweils experimentell abgedeckte Spannungsbereich, für den die Werte zunächst gelten. Denn insbesondere bei höheren Temperaturen und/oder langen Versuchszeiten kann es aufgrund struktureller Änderungen zu einer Abknickung der $\varepsilon - \sigma$ -Geraden kommen und somit zu einer Änderung des Spannungsexponenten n, wie es beispielhaft für 650°C und F82H-mod. angegeben ist und schon mehrfach beobachtet wurde [21].

Die vorliegenden umfangreichen Daten zum Kriechverhalten erlauben auch die Bestimmung der effektiven Aktivierungsenergie des Kriechens. Wenn man in den Darstellungen $\dot{\epsilon}_{pmin} \rightarrow \sigma$ bei einer oder mehreren Spannungen einen Schnitt legt, erhält man Kriechgeschwindigkeitswerte mehrerer Prüftemperaturen. Durch die Auftragung $\dot{\epsilon}_{pmin}$ gegen ¹/T ergibt sich aus der Neigung der jeweiligen Geraden die effektive Aktivierungsenergie des Kriechens über $Q_{\rm K} = 4,56 \Delta \log \dot{\epsilon} / \Delta$ ¹/T [32].

Als Mittelwert aus mehreren Spannungsschnitten ergaben sich die in der folgenden Tabelle zusammengestellten Werte im Vergleich zu F82H-mod. und zwei konventionellen martensitischen Stählen [6] [8] [21] [24].

Aktivierungsenergie des Kriechens [Q _K] (Referenzzustände)														
OPTIFER (W)	160 kcal/m	ol -	671 kJ/mol	(T=450-650°)										
OPTIFER (Ge)	101 kcal/mo	ol -	423 kJ/mol	(T=450-650°)										
F82H-mod.	149 kcal/m	ol -	625 kJ/mol	(T=450-700°)										
MANET-II	127 kcal/m	ol -	532 kJ/mol	(T=450-700°)										
1.4914	110 kcal/m	ol -	461 kJ/mol	(T=500-700°)										

3.6 Festlegung der Mindestwerte für $R_{p1\%}$ - und R_m - 550°C - 20 000 h

Beim derzeitigen Stand der ITER-Planung wird als maximale Beanspruchung des 1. Wand-Werkstoffes 550°C und 20 000 h zu Grunde gelegt [20]. Für diesen T/t-Bereich ist das Zeitstandverhalten maßgebend und begrenzend für den Ausleger. Fasst man alle Zeitstandversuchswerte mehrerer Chargen einer Variante und Vergütungsbehandlung zusammen, so bilden sich Streubänder, deren untere Begrenzung die Mindestwerte ergeben (s. Kapitel 3.1 -3.4.2.1). Wenn die Glühversuche zur Bestimmung des Alterungsverhaltens einen witeren festigkeitsmindernden Einfluss haben (s. Kapitel 3.4.2.2)verschiebt sich die Untergrenze zu kleineren Werten. Die so erhaltenen Werte für 1% Kriechdehnung und Standzeit sind im Bild 34 für die OPTIFER (W)-Variante für den Referenzzustand mit 1075°C Härtetemperatur und für den Zustand mit der abgesenkten HT von 950°C als Auslegungskurven dargestellt. In gleicher Weise enthält Bild 35 die Kurven für die W-freie Variante OPTIFER (Ge). Die Gegenüberstellung der beiden Varianten in den Bildern 36 a+b verdeutlicht den starken festigkeitssteigernden Einfluss von 1% Wolfram.

In der Tabelle 25 sind die ermittelten Mindestwerte zusammengestellt, mit den Werten für den japanischen 2% W-Stahl F82H-mod. als Vergleich [25]. Die OPTIFER-1% W-Variante hat im Referenzzustand mit 1075° HT deutlich höhere Zeitstandfestigkeitswerte und 1% Zeit-Dehngrenzwerte. Der Vergütungszustand mit der erniedrigten Härtetemperatur von 950°C (zur Erzielung besserer Zähigkeitswerte) hat lediglich noch bei 400° und 450°C etwas höhere Zeitstandfestigkeitswerte.

Für die europäische Referenzlegierung EUROFER können noch keine belastbaren Werte angegeben werden. Beim derzeitigen Stand der Ifd. Versuche (bis 10⁴h) zeichnet sich als vorläufiges Ergebnis ab, dass die EUROFER-Werte zwischen den Werten von OPTIFER (W) und F82H-mod. liegen [33].

4 Diskussion der Versuchsergebnisse

Die umfangreichen Zeitstandversuche an den verschiedenen Varianten der OPTIFER-Entwicklungslinie zeigen, dass der Verzicht auf die Legierungselemente Nb, Ni, Mo aus radiologischen Gründen und Substitution durch Ta, W, Ge keine gravierende Abnahme der Zeitstandfestigkeitskennwerte zur Folge hat (≈ 10-15%), aber mit einer deutlichen Verbesserung der Kerbschlagzähigkeitswerte verbunden ist. Diese insgesamt posititve Aussage in bezug auf die mechanischen Eigenschaften ist aber nicht nur auf die Substitution zurückzuführen, sondern insbesondere auf die Optimierung innerhalb der Richtanalyse.

- So kommt dem Verhältnis Stickstoff/Aluminium eine besondere Rolle zu [22], weil erst ein genügende hoher Anteil an <u>freiem</u> Stickstoff für die Nitrid- und Karbonitridbildung zur Verfügung steht, deren Vorhandensein insbesondere bei Langzeitbeanspruchung zur Strukturstabilität beiträgt.
- Die Absenkung des Kohlenstoffgehaltes zur Verbesserung der Spannungsrisskorrosion kann in gewissen Grenzen durch Erhöhung des N-Gehaltes kompensiert werden. Es

konnte gezeigt werden, dass für gleiche Kurzzeitfestigkeitswerte Kohlenstoff im Verhältnis 1:3, aber für gleiche Langzeitfestigkeitswerte ein Verhältnis 1:1 ausreicht [3] Bild 37.

- Bei Wolfram als Substitutionselement sind einige Einschränkungen zu machen. In bezug auf die Aktivierung ergaben die Rechnungen ein verzögertes Abklingverhalten bis zum Erreichen des Handhabungsniveaus (Hands-on-level) [17] [34]. Bei T ≥ 550°C wird Laves-Phasenbildung beobachtet, die zu einem Duktilitätsverlust führt, der sich in deutlich abnehmenden Bruchdehnung- und Brucheinschnürungswerten äußert (Bild 38). Die Verbesserung der Zeitstandfestigkeit wurde bisher überschätzt und ist nicht so stark wie erwartet [35], wie auch die neueren Arbeiten an den konventionellen martensitischen Stählen zeigen [36] und alte VDEh-Erfahrungen bestätigen [37]. Dies kommt auch z.T. deutlich im vorliegenden FZKA-Bericht beim Vergleich der OPTIFER-1%W-Varianten mit F82H-mod. (2% W) zum Ausdruck. Ein völliger Verzicht auf W ist allerdings mit einer deutlichen Abnahme der Zeitstandfestigkeitskennwerte verbunden, wie der Vergleich von OPTIFER-(W) mit OPTIFER-(Ge) zeigt.
- Die erwartete Kornfeinung durch Ge konnte nicht beobachtet werden und als Substitution für Si, als nächst höheres Homologes im periodischen System, konnte bei den mechanischen Eigenschaften kein Einfluss erkannt werden [38].
- Wesentlichen Anteil an dem hohen Niveau der Zeitstandfestigkeit hat allerdings auch der Cr-Gehalt. Die festigkeitssteigernde Wirkung ist unstrittig. Allerdings hat eine restriktive Handhabung des Schaeffler-Diagrammes bei der amerikanischen und japanischen Legierungsentwicklung zu einer Absenkung des Cr-Gehaltes auf 8 - 9% geführt, um δ -Ferrit zu vermeiden; obwohl der Verlust an Oxidationsbeständigkeit bei der Absenkung von 11% auf 8% eklatant ist. Dieser schon als historische Fehlentwicklung zu bezeichnende Trend kehrt sich aber mittlerweile bei den konventionellen Cr-Stählen um, denn für Einsatztemperaturen ≥ 600°C werden auch Stähle mit bis zu 12% Cr erprobt [36]. Anteil haben auch verbesserte Herstellungsverfahren, wie Vakuumerschmelzung oder Schlackeumschmelzverfahren, sowie eine bessere Abstimmung der Legierungselemente, so dass Cr-Gehalte bis 11% durchaus für δ-Ferrit-freie Stähle sorgen [39]. Auch konnte gezeigt werden, dass im Schaeffler-Schneider-CrNi-Diagramm, das ja kein Gleichgewichtsdiagramm ist, unter Einschluss der MANET- und OPTIFER-Legierungen, der martensitische Bereich im Cr-Âquivalent durchaus für Legierungen mit bis zu 10,8% Cr erweiterbar ist (Bild 39) [18]. Gegen eine Absenkung des Cr-Gehaltes auf Werte <9,5% spricht auch, dass bei Glühungen im Bereich 800-900°C der Werkstoff 2-phasig wird und sich α-Ferrit bildet. Untersuchungen an den in diesem Bericht behandelten Stählen zeigen klar den steigenden Anteil an α -Ferrit mit abnehmenden Cr-Gehalt [40], wie die Zusammenstellung in der Fußleiste von Bild 40 ausweist. Diese Befunde stehen in guter Übereinstimmung mit den Ergebnissen von Irvine et al. [41], wie aus den Diagrammen 1a+b im Bild 40 ersichtlich ist. Danach gibt es im System Fe-Cr-C sowohl für den Cr- als auch C-Gehalt ein Minimum der α -F-Bildung. Daraus erklärt sich, dass F82H-mod. den höchsten α -F-Anteil hat, denn sowohl im Cr- als auch im C-Gehalt liegt dieser Stahl unter den aufgeführten Stählen. (Das von Irvine et al. verwendete Diagramm 1a entstammt als Original einer Arbeit von Tofaute-Sponheuer-Bennek [42]).

- In Bezug auf die radiologisch unerwünschten Begleitelemente sind im Laufe der OPTI-FER-Entwicklungslinie bis zu EUROFER auf dem metallurgischen Sektor erhebliche Fortschritte erreicht worden; so ist z.B. eines der kritischsten Begleitelemente (Nb) vom 100 ppm-Niveau auf 1-5 ppm reduziert worden. Beim derzeitigen Stand der Metallurgie sind die vorliegenden realen Legierungen aus radiologischer Sicht noch nicht als niedrigaktivierende (LA = Low Activation), sondern als reduziertaktivierende (RAFM = Reduced Activation Ferritic Martensitic) Stähle zu betrachten [14], [43], [44]. Die zuvor gemachten Aussagen sind im Laufe der Entwicklungslinie der OPTIFER-Legierungen und der Arbeiten an F82H-mod. z.T. gewonnen bzw. eingeflossen. Das erklärt auch die relativ breiten Streubänder für die Zeitstandfestigkeit und 1%-Zeit-Dehngrenze der OPTIFER (W)-Legierungen (Bild 18), die auch B-freie und Varianten mit erniedrigtem Cr-Gehalt umfassen. Wesentlich enger ist das Streuband, wenn nach gleicher Spezifikation erschmolzen wird, wie anhand der 4 analysengleichen Chargen von OPTIFER-IVc gezeigt wird. Dabei ist die Frage des Cr-Gehaltes in Bezug auf das Zeitstandfestigkeitsverhalten eindeutig. Schon bei den OPTIFER-Varianten IVa+b und VII mit 8,1-8,5% Cr wird ein ungünstigeres Zeitstandfestigkeitsverhalten beobachtet im Vergleich zu OPTIFER mit 9,1-9,5% Cr. Wesentlich ausgeprägter ist die niedrigere Zeitstandfestigkeit beim Vergleich OPTIFER (W) mit F82H-mod. (7,6-7,8% Cr), obwohl diese noch 2% W aufweist. Dazu passt auch der bisherige Stand der Untersuchungen an EUROFER mit 8,8-8,9% Cr, deren Ergebnisse am unteren Streuband von OPTIFER (W) liegen [15] [33].
- In Bezug auf die Härtetemperatur ergibt sich eine eindeutige Präferenz für 1075°C, wenn das Ziel optimales Zeitstandfestigkeits- und Kriechverhalten ist. Eine Absenkung der HT auf 950°C z.B. ergibt wegen der sich einstellenden kleineren Austenitkorngröße ein deutlich verbessertes Kerbschlagzähigkeitsverhalten mit einer deutlichen Verschiebung der DBTT und FATT zu tieferen Temperaturen [27], aber wie aus Bild 17 ersichtlich, ist damit eine erhebliche Abnahme der Zeitstandfestigkeitswerte und auch der Zugfestigkeitskennwerte [27] verbunden. Dagegen zeigt sich beim Stahl F82H-mod. mit 2% W kein Einfluss der Härtetemperatur auf die genannten Festigkeitswerte, bzw. geringe Unterschiede liegen innerhalb des deutlich größeren Streubereiches des vergüteten Anlieferzustandes [24] [25].
- Das Alterungsverhalten der OPTIFER-Legierungen und der japanischen Charge von F82H-mod. ist als sehr gut zu bezeichnen und wird durch die lfd. Untersuchungen an EUROFER bestätigt. Selbst langzeitige Glühungen bei 600°C haben keine gravierende Änderungen des Zeitstandfestigkeits- und Kriechverhaltens zur Folge. In der Literatur wird zwar ein Alterungseinfluss bei 12% Cr-Stählen erwähnt und deutliche Gefügeänderungen nach Langzeitbeanspruchung bei 550°C beschrieben, jedoch sind diese Stähle, z.B. vom Typ X20CrMoV 12 1, durch den hohen C-Gehalt, fehlendem Nb-Gehalt und nicht ausreichendem freien N-Gehalt alterungsanfälliger, weil z.B. die Neigung zur M₂₃C₆-Vergröberung und Veränderung ausgeprägter ist [45].
- Wichtig für die Ausleger von Komponenten ist, ob in dem vorgesehenen T/t-Einsatzbereich sich das Kriechverhalten wegen struktureller Änderungen ändert; dargestellt durch die minimale Kreichgeschwindigkeit ė_{pmin} in Abhängigkeit von der Versuchsspannung. Daraus resultiert der Spannungsexponent n (nach Norton) [31]. Die OPTIFER-Varianten zeigen bei 550°C bis 20 000 h und bei 600°C bis 30 000 h, auch unter Ein-

schluss der geglühten Proben, keine Änderung des Spannungsexponenten. Erst bei 650°C kommt es im untersuchten Spannungsbereich zu einer Änderung des Spannungsexponenten, wie deutlich am Beispiel von F82H-mod. gezeigt wurde (Tabelle 24) und wie es bei dem unstabilisiertenStahl X20CrMoV 12 1 schon bei 600°C beobachtet wird [45], wo sich der Spannungsexponent von n=13 (im oberen σ -Bereich) auf n=6,6 (im unteren σ -Bereich) ändert.

 Die Ausleger-Forderung f
ür die Zeitstandfestigkeit - 550° - 20 000 h > 100 MPa - werden von OPTIFER (W) und auch OPTIFER (Ge) erf
üllt [33]

Danksagung

Die Autoren danken den Herren Graf und Zimmermann für die metallografischen Untersuchungen und Härtemessungen und Frau Thun für die Herstellung des Manuskriptes als FZKA-Bericht. Die chemischen Analysen zur Kontrolle und Ergänzung der Herstellungsangaben wurden von der chemischen Analytik des IMF I, Frau Dr. Adelhelm, durchgeführt.

Die vorliegende Arbeit wurde im Rahmen des Projekts Kernfusion des Forschungszentrums Karlsruhe durchgeführt und ist ein von den Europäischen Gemeinschaften geförderter Beitrag im Rahmen des Fusionstechnologieprogramms.

5 Literatur

- [1] K. Ehrlich; "Structural Materials Assessment", FZKA 6332, August 1999
- [2] K. Ehrlich, D.R. Harries, A. Möslang (Editors); "Characterization and Assessment of Ferritic/Martensitic Steels", FZKA 5626, 1996
- K. Ehrlich; "Die Entwicklung niedrigaktivierender ferritisch-martensitischer Stähle für Fusionsreaktoren". Nachrichten Forschungszentrum Karlsruhe, Jahrgang 29 - 1/97, S. 43-50
- [4] U. Colombo, A. Jaumotte, E. Kennedy, C. Lopez-Martinez, M. Popp, C. Reece, H. Schopper, E. Spitz, F. Troyon; "Report of the Fusion Programme Evaluation Bord prepared for the Commission of the European Communities", July 1990
- [5] Proceeding of the IEA workshops on Low-Activation-Materials
 a) Ispra/Italien, 1.-3.10.1990
 b) Culham/GB, 8.-12.4.1991
 c) JAERI/Japan, 26.-28.10.1992

- [6] M. Schirra; "Charakterisierende thermische und mechanische Untersuchungen an einem Nb-legierten martensitischen 12% Cr-Stahl (W.-Nr. 1.4914) mit abgesenktem Stickstoffgehalt". KfK 3640, August 1984
- [7] M. Schirra, K. Ehrlich; "Development of a High-Strength Martensitic CrNiMoVNb steel with 10,5% Cr und 0,11% C (OPTIMAR-Type)". Advanced Heat Resistant Steels for Power Generation, San Sebastian, E, April 27-29, 1998, Conf. Preprints, S. 1-10
- [8] M. Schirra, P. Graf, S. Heger, H. Meinzer, W. Schweiger, H. Zimmermann; "MANET-II, Untersuchungsergebnisse zum Umwandlungs- und Vergütungsverhalten und Prüfung mechanischer Eigenschaften". KfK 5177, Mai 1993
- [9] E. Dequidt, J. Arroyo, M. Schirra; "The Mechanical Behaviour of Newly Designed Low Activation High Chromium Martensitic Steels". Journal of Nuclear Materials 179 (1991) 659-662
- [10] K. Anderko, K. Ehrlich, L. Schäfer, M. Schirra; "Ceta, ein Entwicklungsschritt zu einem schwach aktivierbaren martensitischen Stahl". KfK 5060, Juni 1993
- [11] S. Cierjacks, Y. Hino; "The Importance of Sequential (x, n) Reactions on Element Activation of Fusion Reactor Materials". Journal of Nuclear Materials 170 (1990) S. 134-139
- [12] K. Ehrlich, S. Cierjacks, S. Kelzenberg, A. Möslang; "The development of structural materials for reduced long-term activation". 17th Intern. Symposium, Sun Valley - Idaho, USA, June 20-23, 1994, to be published in ASTM-STP 1270
- K. Ehrlich, S. Kelzenberg, H.D. Röhrig, L. Schäfer, M. Schirra; "The Development of Ferritic-Martensitic Steels with Reduced Longterm Activation". Proceedings of ICFRM-6, Stresa-Italy, 27.9.-1.10.93, Journal of Nuclear Materials 212-215 (1994) S. 678-683
- [14] R. Lindau, M. Schirra; "First Results on the Characterisation of the Reduced-Activation-Ferritic-Martensitic Steel EUROFER". SOFT 21, 11.-15. Sept., Madrid -Spanien
- [15] M. Schirra, R. Lindau; "Untersuchungen zu physikalischen und mechanischen Eigenschaften des niedrigaktivierenden martensitischen 9% Cr-Stahles EUROFER-97". 23.
 VDEh-Vortragsveranstaltung 1.12.2000, Düsseldorf, Tagungsband S. 36-49
- [16] M. Schirra, K. Ehrlich, S. Heger, M.T. Hernández, J. Lapena; "OPTIFER, ein weiterer Schritt zur Entwicklung niedrigaktivierender martensitischer Stähle", FZKA 5624, Nov. 1995
- [17] M. Schirra, S. Heger, H. Kempe, M. Klotz, H. Zimmermann, J. Lapena; "Untersuchungen zu physikalischen und mechanischen Eigenschaften der OPTIFER-Legierungen", FZKA 6167, April 1999

- [18] M. Schirra; "Die historisch-empirische Entwicklung des Gefügediagramms der Cr-Ni-Stähle". Stahl und Eisen 112 (1992) Heft 10, S. 117-120
- [19] M. Schirra, K. Ehrlich, L. Schäfer; "Germanium enthaltender Stahl und seine Verwendung". Patent 4432516 v. 18.7.95
- [20] Schleisiek; "Nuclear Fusion Project", Annual Report, Seite 68-69, FZKA 6050, Dez. 1997
- [21] M. Schirra, S. Heger, A. Falkenstein; "Das Zeitstandfestigkeits- und Kriechverhalten des martensitischen Stahles MANET-II", FZKA 5722, Okt. 1996
- [22] M. Schirra, K. Anderko; "Anomalies in creep-curves of martensitic 9-14% chromium steels under long-term loading". Steel research 61 (1990) Nr. 6, S. 242-250
- [23] L. Schäfer; "OPTIFER-IV, ein martensitischer Chromstahl mit hoher Kerbschlagzähigkeit", Jahrestagung Kerntechnik '96, Mannheim, KTG und Deutsches Atomforum e.V., Tagungsbericht, Bonn: INFORUM-Verl. S. 597-600
- [24] M. Schirra, Ch. Adelhelm, P. Graf, S. Heger, H. Kempe, H. Zimmermann, M.P. Fernández, J. Lapena; "Arbeiten zur Grundcharakterisierung am niedrigaktivierenden Stahl F82H-mod. im Vergleich zu OPTIFER". FZKA 6008, Dez. 1997
- [25] M. Schirra, S. Heger, A. Falkenstein; "Das Zeitstandfestigkeits- und Kriechverhalten des niedrigaktivierenden martensitischen Stahles F82H-mod." (Abschlussbericht), FZKA 6265, Mai 1999
- [26] HTM-Data Bank, Joint Research Center, Petten, NL, Materials Division
- [27] Interne Berichte
 a) PKF 154, März 2000 (HT mech. Eigenschaften)
 b) PKF 152, Juni 2000 (IV c)
 c) PKF 159, Sept. 2000 (WB Kerbschl.)
- J.H. Hollomon, L.D. Jaffe; "Time-Temperature Relations in Tempering Steel", Transaction of the Am. Inst. of Mining and Met. Eng. 162/1945, pp. 223-249.
 F.R. Larson, J. Miller; "A time-temperature relationship for rupture and creep stresses", Trans. ASME 72 (1952, 765/75)
- [29] H. Finkler, M. Schirra; "Transformation behaviour of the high temperature martensitic steels with 8-14% chromium". steel research 67 (1996) Nr. 8, S. 328-342 (englisch).
 FZKA 5607, Sept. 1995 (deutsch)
- [30] M. Schirra; "Creep rupture and creep behaviour of martensitic X 18 CrMoVNb 11.1 type steel at elevated temperatures and after a temperature transient. steel research Nr. 6/93, p. 322-330

- [31] F.H. Norton; "The Creep of Steel at High Temperatures", Mc Graw Hill Publishing Co. Ltd. 1929
- [32] F. Garofalo; "Fundamentals of Creep and Creep-Rupture in Metals", Macmillan Series in Materials Science, New York, 1965
- [33] M. Schirra; "Das Kriech- und Zeitstandfestigkeitsverhalten von EUROFER-97 im Vergleich zu F82H-mod. und OPTIFER". Beitrag Jahrestagung Kerntechnik, Mai 2001, Dresden
- [34] E. Daum; "Katalogisierung des Aktivierungsverhaltens aller stabilen Elemente mittels Fispact 97-Rechnungen für DEMO 1. Wand".
 "Aktivierungsverhalten aller stabilen Elemente in verschiedenen Bereichen des HCPB-Blankets", Interne Berichte
- [35] A. v. d. Steinen; "Zum Zeitstandverhalten von Stählen mit rd. 0.1% C, 10% Cr und 0-4% W". Dissertation RWTH-Aachen, Juli 1974
- [36] Proceedings of the 9th International Conference on Creep and Fracture of Engineering Materials and Structure". Swansea (GB) 1.-4. April 2001
- [37] Ergebnisse deutscher Zeitstandversuche langer Dauer. VDEh-Atlas, Düsseldorf 1969
- [38] M. Schirra, K. Ehrlich, L. Schäfer; "Germanium enthaltender Stahl und seine Verwendung". Patent 4432516 v. 18.7.95
- [39] M. Schirra, S. Heger; "Der Einfluss des Delta-Ferrit-Gehaltes auf die Vergütungseigenschaften und das Zugfestigkeits- und Zeitstandverhalten eines Cr-Ni-Mo-V-Nb-Stahles mit 9-14% Chrom", KfK 5080, Febr. 1994
- [40] E. Materna-Morris Pers. Information
- [41] K.J. Irvine, D.J. Crowe, F.B. Pickering
 "The physical metallurgy of 12% Cr-steels", Journal of the Iron and Steel Institute, Aug. 1960, S. 386-405
- [42] W. Tofaute, A. Sponheuer, H. Bennek
 "Umwandlungs-, Härtungs- und Anlassvorgänge in Stählen mit Gehalten bis 1% C und bis 12% Cr". Archiv für das Eisenhüttenwesen 8 Jhrg. Heft 11, Mai 1935
- [43] L. Bloos "Schicksalsfrage Werkstoff", Handelsblatt Nr. 69 (8.4.98) S. 46

- [44] R. Schneider, P. Würzinger, G. Lichtenegger, H. Schweiger
 "Metallurgie an den Grenzen höchster Reinheitsgrade und niedrigster Spurenelementgehalte". BHM 145 (Jg. 2000) Heft 5, S. 199-203
- [45] G. Eggeler, B. Ilschner, P. Schepp, R. Zohner
 "Kurzzeit-Kriechverhalten des warmfesten Stahles X20CrMoV 12 1 bei 550° bis 650°C". Material und Technik 1986, Nr. 4, S. 187-195
- [46] J. Granacher, H. Wiegand; "Überprüfung von Verfahren zur Extrapolation der Zeitstandfestigkeit warmfester Stähle", Archiv für das Eisenhüttenwesen 43, Heft 9 (1972), S. 699-704
- [47] M. Schirra; "Das Zeitstandfestigkeits- und Kriechverhalten des SNR-300 Strukturwerkstoffes X6CrNi 18 11 (W.Nr. 1.4948)", KfK 4273, Febr. 1988
- [48] K. Bungard, W. Schmidt; "Vergleich verschiedener Verfahren zur Extrapolation von Zeitstandwerten", DEW-Techn. Berichte, 1. Band, 1961, Heft 3, S. 84/95
- [49] F.R. Larson, J. Miller; "A time-temperature relationship for rupture and creep stresses", Trans. ASME 72 (1952, 765/75)
- [50] M. Schirra et al.; "Arbeiten zur Grundcharakterisierung und das Zeitstandverhalten des niedrigaktivierenden Stahles F82H-mod. FZKA 6008, Dez. 1997 und FZKA 6265, Mai 1999
- [51] M. Schirra, S. Heger, A. Falkenstein; "Das Zeitstandfestigkeits- und Kriechverhalten des martensitischen Stahles MANET-II". FZKA 5722, Okt. 1996

Variante	Charge	Cr	С	Mn	V	Та	W	Ge	P	S	В	N ₂	O ₂	Al	Erschmelzung
	Nr.	Gew.	\rightarrow						∙ppm	\rightarrow					Bem.
		%													
la	664	9,3	0,10	0,50	0,26	0,066	<u>0,96</u>	-	46	50	61	155	47	80	<u>SV4=</u> Vakuum-Induktionsofen
•>															+Vakuum-Lichtbogenofen
lb ⁷	667	9,5	0,12	0,49	0,234	0,163	<u>0,98</u>	-	40	10	63	62	87	150	
		·										(25 kg-Chargen
	668	9,5	0,125	0,49	0,28	0,018	0,006	1.2	43	20	59	159	90	80	1. Serie mit Bor
			[1									·		Desoxidation uber Cer
	000	0.00	0.10	0.40		1 00	0.004			00		170		100	Desoxidation uper Yttrium
	666	9,32	0,12	0,49	0,248	1,60	0,024	-	40	20	64	1/3		100	
IVa	986489	<u>8,5</u>	0,11	0,57	0,23	0,15	1,16	-	40	40	40	600	35		<u>SV1=</u> offen erschmolzen
						0.00							i		+ Vakuum-Lichtbogenoten
IVb	986635	<u>8,1</u>	0,12	0,29	0,21	0,08	1,57	-	l	60	30	200			(6-stellige Chg. Nr.)
							1					= 10	100	_	150 kg-Chargen B-frei
IVc	986778	9,05	0,13	0,52	0,25	0,09	1,00	-	40	30	-	540	190	<5	
(=la)	986779	9,35	0,12	0,54	0,26	0,07	1,03	-	40	30	-				
	986780	9,15	0,12	0,55	0,24	0,12	1,05	-	40	40	-				
	986781	9,35	0,12	0,57	0,26	0,08	1,00		30	50					
V	735	9,48	0,115	0,39	0,245	0,061	0,985	-	35	25	2	225	60	70	SV4 2. Serie B-frei
(=la)			0.405		0.075	0.000	0.005	0.00	10			050	100		
VI	734	9,35	0,125	0,61	0,275	0,083	0,005	0,38	43	30	2	250	160	70	25 kg Chargen
(=11)	700	0.00	0.00	0.07	0.005		1 00		00	05		000	170		
	/36	8,38	0,09	0,37	0,205	0,069	1,03	-	30	25	2	203	170	70	
(=IVa+D)		0.01	0.100	0.000	0.100	0.047	1.07		05*	47	0.0*)	010	100		
VIII	806	9,31	0,109	0,602	0,190	0,047	1,27	-	30*	1/	82	210	130	10	SV4 3. Serie "SAARSTAHL
	803	9,27	0,12	0,374	0,209	0,040	1,40	-	25*)	10	2*	200	200		25 kg Chargen Analyse
	004 904	9,41	0,086	0,084	0,198	0,032	1,25	-	30	21	2	400	320 !	10	
N	024	9,15	0,09	0,42	0,195	0,088	1,06		15		5	235	99	30	~
EUROFER	E83699	8,87	0,12	0,42	0,19	0,14	1,10	-	40	30	<5	180	13	80	Böhler-Kapfenberg
EUROFER	E83698	8,82	0,11	0,47	0,20	0,13	1,09	-	50	40	<10	200	10	90	Abnahmeprüfzeugnis
L			·			•- <u> </u>					~~~~~				1402 00 80

Tabelle 1: Chemische Zusammensetzung der OPTIFER-Schmelzen (ohne radiologisch unerwünschte Begleitelemente)

24

08-00 SCHI

Tabelle 2

Zeitstandversuche

	OPT-la.doc 4-99														
Legierung Charge-Nr. Zustand	Vers. Nr.	°C &	σ₀ MPa	t _m h	е. %	t _{ef0,1%} h	t _{ef0,2%} h	t _{ef0,5%} h	t _{ef1%} h	t _{⊧r2%} h	t _{er5%} h	Probe doxLo	A _u %	Z _u %	ê _{pmin(abs)} x10 ⁻⁶ /h
OPTIFER-la	CIEMAT	450	400	57		1,5	3	10	25	42	1	5x25	20,7	84,0	400
664			350	464		18	54	143	290	356	452	н	22,5	82,2	30
1o75°30'V/V			320	. 5490		6,5	48	289	1339	3612	5029	"	25,4	83,5	4,2
+750°2hV/V	3592	500	400	1,7	0,4	1	/	0,4	0,8	1,2	1	н	20,5	82,3	1
	3606		300	807	0,14	0,2	10	61	202	512	778		24,0	82,1	30
	ZSV2496		280	4392	0,24	0,5	1,5	47	290	1600	4140	33	20,0	72,9	6,4
	3559		250	ohne Bruch	0,12	25	215	4000	40000	1		8x50	bis 1%	1	/
	CIEMAT	550	250	120		0,4	1	3	16	53	110	5x25	23,3	86,5	270
			225	1218		0,9	3	22	130	502	1102	"	20,5	78,8	25
·			200	4313		0,2	1,8	54	694	3548	4179	33	21,1	62,4	5
	3604	600	220	25	0,16	0,1	0,3	1,7	6,5	16	1	n	26,0	82,3	880
	3567		180	424	0,14	0,3	1	10	62	224	403	33	20,0	69,0	63
	ZSV2601		170	900	0,08	0,5	1	12	155	580		11	18,0	51,8	28
	ZSV2591		160	2473	0,16	0,5	2	130	1000	2175		"	7,6	12,0	5,8
	3556		150	3444	0,12	1	5	125	1040	2740		**	9,6	23,8	4,5
	ZSV2565		130	32875	0,12	1	10	2480	15900	31200		17	6,4	4,0	0,34
	3580	650	130	129	0,12	0,2	1,2	15	56	102		23	23,6	75,1	130
	ZSV2495		110	1037	0,12	2	19	255	600	858			15,6	36,0	10,5
	3564		100	1392	0,06	4	47	390	805	1227		33	19,6	39,9	10,5
	ZSV2600		100	1713	0,12	2	26	450	1003	1414	1672	11	16,8	38,9	2,7
	ZSV2599		90	5578	0,08	0,5	50	790	2080	3790	5427	11	17,2	47,7	4
	3568		80	8384	0,06	130	664	2690	4640	7240		8x50	8,2	31,3	1,3
	ZSV2437		60	30355	0,05	205	1050	6880	14350	23650	30011	"	12,6	43,9	0,5
	ZSV2458	700	60	493	0,10	2	19	75	157	303	452	5x25	30,0	88,4	55
	ZSV2445		40	2408	0,06	33	85	305	730	1407	1901	8x50	21,8	87,8	12
· · · · · · · · · · · · · · · · · · ·															

Zeitstandversuche

	ZSV-Nr.=Versuche unter Vakuum														opt-lb 7-97
Legierung Charge-Nr. Zustand	Vers. Nr.	ဂံ မ	σ。 MPa	t _m h	ε. %	t _{∈f0,1%} h	t _{⊧f0,2%} h	t₅ _{€0,5%} h	t _{er1%} h	t _{erz%} h	t _{ɛr5%} h	Probe doxLo	A _u %	Z _u %	^ɛ pmin(abs) x10 ⁻⁶ /h
OPTIFER-Ib	CIEMAT	450	340	91		0,1	0,6	2,6	11	30	77	5x25	23,8	88,3	460
667			320	400		1	4	33	94	202	342	13	26,0	85,6	85
1075°30'V/V			300	3420		13	48	195	589	1354	2900	57	25,1	80,8	17
+750°2hV/V			280	3455		10	57	252	381	790	2530	IJ	24,5	83,7	10-20
	3605	500	300	15,5	0,16	0,15	0,5	2	5	9,5	14,5	н	28,4	87,0	1800
	3558		250	573	0,16	1	3,5	17	55	164	417	8x50	28,4	86,9	89
	ZSV2457		220	3755	0,12	1	2	20	114	597	2563	5x25	34,8	87,0	13
	CIEMAT	550	230	80		0,5	1,1	3,1	9,1	28	64	55	31,9	90,0	546
			215	152		1	1	2	14	48	116	11	29,7	91,2	296
			200	716		0,8	2,2	12	53	212	598	11	23,9	89,6	67
			180	1227		0,6	2,3	13	64	291	873	22	31,4	92,4	38
	3573	600	180	24	0,16	/	0,2	0,8	2,2	6,4	17	33	36,0	87,1	2422
	3555		150	419	0,10	0,2	1	7	34	137	337	33	28,8	87,1	89
	ZSV2448		130	755	0,12	0,5	1	5	30	158	598		28,8	95,2	56
	3623		110	1237	0,12	0,5	2,5	20	100	424	958		26,0	93,2	32
	ZSV2459		100	7898	0,12	0,5	2	26	190	1180	5825	11	34,8	89,8	5,4
	3569	650	100	137	0,1	0,2	0,4	2,5	9	33	67	8x50	36,2	96,0	408
	3584		80	1332	0,04	2	10	100	405	922	1290	5x25	28,0	93,2	16
	ZSV2442		60	1536	0,06	1	4	35	140	443	1152	8x50	32,0	97,7	35
	ZSV2443		40	26294	0,04	12	88	605	2380	8280	20630	13	34,8	96,0	1,7
	3554	700	60	123	0,60	0,1	0,5	4	14	38	86	5x25	53,6	96,0	418
	ZSV2461		40	735	0,10	0,2	1,5	19	74	230	517	"	45,6	95,9	62

and 11 7 0

Tabelle 4

Zeitstandversuche

		OPT-II 3-98													
Legierung Charge-Nr. Zustand	Vers. Nr.	о. С	σ。 MPa	t _m h	ణ %	t _{ef0,1%} h	t _{ɛю,2%} h	t _{ef0,5%} h	t _{ef1%} h	t _{612%} h	t _{ef5%} h	Probe doxLo	A _u %	Zu %	^{έ_{pmin(abs)} x10⁻⁶/h}
OPTIFER-II	3589	450	300	367	0,20	1	4,5	26	80	179	314	5x25	28,4	82,3	93
668	3557	500	250	975	0,16	1	5	33	118	348	768	8x50	26,6	83,0	43
1o75°30'V/V	ZSV2429	17	200	4855	0,16	1	4	58	348	1620	3708	5x25	34,8	91,0	7
+750°2hV/V	3588	550	200	60	0,12	0,15	0,35	2	7	21	47	33	31,6	84,1	730
	3550	600	150	52	0,06	0,1	0,2	1,2	4,5	14	36	"	37,2	89,7	1030
	3598	39	120	652	0,10	0,3	1,5	16	71	238	520	33	28,0	82,2	56
	ZSV2432	IJ	100	5146	0,12	0,5	3	100	900	3020	4334	33	20,0	39,41	2,9
	3561	650	80	523	0,07	1,5	7	48	136	261	438	8x50	24,0	71,0	57
	ZSV2435	n	60	1886	0,08	1	12	168	558	1076	1620	11	27,8	56,2	13
	ZSV2439	51	40	32094	0,05	60	610	4540	11700	22400	29780	22	30,4	65,4	0,68
	3553	700	60	4	0,24	1	1	0,15	0,5	1,3	2,7	5x25	44,4	94,2	12900
950°2hV/V	3595	450	320	150	0,26	2	4,5	16	39	76	126	5x25	26,0	82,1	232
+750°2hV/V	3583		300	306	0,20	1	3,5	19	58	135	247		31,2	83,9	480
	3593		270	1310	0,16	6	16	86	266	603	997		28,0	80,6	28
	3646		230	15662	0,16	8	50	475	1730	4910	10880		32,0	86,9	3,1
	3575	500	250	81	0,24	0,5	1	6	16,5	38	67		28,8	82,4	472
	3582		220	451	0,16	1	3	20	65	170	353		30,8	82,4	95
	ZSV2430		200	2319	016	0,2	3	52	215	668	1695		28,8	84,0	21
															Fortsetzung
			ļ											<u> </u>	Seite 2

Tabelle 4 ff

Zeitstandversuche

			ZS	V-Nr=Vers	uche ur	nter Vakuu	m						OPT-I	3-98	
Legierung Charge-Nr. Zustand	Vers. Nr.	°C ð	σ。 MPa	t _m h	ε. %	t _{₅f0,1%} h	t _{₅ю,2%} h	t _{₅n,5%} h	t _{er1%} h	t _{sr2%} h	t _{er5%} h	Probe doxLo	A _u %	Zu %	^{έ_{pmin(abs)} x10⁻⁶/h}
OPT-II.doc Seite 2	3578	550	220	9	0,24	1	0,1	0,7	1,9	3,9	7	5x25	34,0	85,5	4800
	3579		180	108	0,20	1	0,5	3,5	12,5	36	82		28,8	88,4	425
	3613		140	2074	0,08	2	8	50	192	680	1745		28,8	84,1	20
	3666		120	13871	0,04	3	15	155	1220	5970	12020		30,8	80,5	2
	3551	600	150	24	0,16	0,1	0,2	0,7	2,3	6	15,5		26,7	88,4	2627
	3576		130	105	0,04	/	/	1	7	23	66		50,0	92,1	607
	ZSV2431		100	1608	0,12	0,5	1	19	112	509	1285		27,2	85,6	25
	ZSV2462		80	7536	0,12	0,2	1	45	800	2940	5990		36,4	74,7	4
	3560	650	100	27	0,02	0,5	1,8	6,5	13,5	21,5			44,0	92,1	613
	3562		80	114	0,04	0,1	1	5,5	18	43	86		42,8	90,9	407
	ZSV2436		60	1359	0,08	1	1	34	200	620	1165		33,6	86,9	24
	ZSV2456		40	11449	0,06	1	10	470	2790	6100	11028		29,2	87,0	2
	3552	700	60	30	0,12	0,1	0,3	1,2	3,3	7,5	17		55,2	93,2	2293
	ZSV2454		40	278	0,08	0,2	1	8	28	81	183		56,0	95,9	187
															OPT-II.doc
															3-98

28
Zeitstandvers	uche			ZSV-N	r=Versuc	he unter Vak	uum					c)PT-III 7-9	97	
Legierung Charge-Nr. Zustand	Vers. Nr.	о в	σ₀ MPa	t _m h	е. %	t _{⊧f0,1%} h	t _{₅f0,2%} h	t _{₅í0,5%} h	t _{ef1%} h	t _{ef2%} h	t _{ɛſ5%} h	Probe doxLo	A _u %	Z _u %	^Ê pmin(abs) x10 ⁻⁶ /h
OPTIFER-III	CIEMAT	450	420	33		0,3	1,2	4	14	26		5x25	18,2	76,8	520
666			400	2434		27	75	590	1690	1891	2415	11	14,8	73,6	4,8
1075°30'V/V			380	830		2,8	16	91	234	567	805	11	17,8	77,3	30
+750°2hV/V			360	2171		2,7	21	170	726	1578	2120	11	17,9	77,1	9,3
	3607	500	400	9	0,32	0,1	0,4	1,5	3,6	6,6			19,2	70,8	2280
	ZSV2449		350	656	0,28	0,3	1,5	19	108	350	642	11	20,4	77,1	43
	3586		300	858	0,24	0,7	3,5	35	148	448	821	"	21,2	80,6	34
	3565		250	ohne Bruch	0,17	55	660	10000	bis	20770h	≃0,77%	13	1	1	<0,05
	CIEMAT	550	280	1926		639	818	1142	1458	1770	1910))	16,9	80,7	10
			250	4807		1	6,8	275	1552	4004	4689	11	20,7	81,6	11,2
			230	3482		2	5	86	796	3072	3363	11	20,5	74,6	2,5
			215	2100		2	15	/	/	1	549	tt	16,7	69,7	9
			200	5892		8	56	2438	4225	5720		33	11,8	48,8	2,6
	3585	600	220	66	0,24	1	0,2	2,5	12	37	63		21,6	82,4	413
	3574		180	1163	0,14	1	6	133	644	981	1158	п	18,0	77,0	9
	ZSV2440		150	3253	0,10	2,5	45	970	2430	3067	3244		19,2	82,6	2,5
	3594	650	130	215	0,12	8	45	153	195	209		11	22,0	86,9	11
	3563		1.00	396	0,04	50	210	343	368	381	390	11	33,6	89,8	5,3
	3602		80	535	0,06	55	345	461	485	502		11	29,6	95,1	3,1
	ZSV2438		60	1132	0,05	295	790	912	981	1061	1107	8x50	28,6	92,4	1,3
	ZSV2441		40	6314	0,04	480	930	1485	2040	2620	6062	55	57,8	88,7	0,6
	ZSV2460	700	_60	57	1	/	/	/	37	42	47	5x25	47,6	93,2	220
	ZSV2444		40	568	/	60	84	127	<u> </u>	297	347	8x50	37,2	91,1	9,3

Zeitstandversuche

			ZSV-	Nr=Versuc	he unte	er Vakuum	1					OPT-V	/.doc		
Legierung Charge-Nr. Zustand	Vers. Nr.	ъ в	σ。 MPa	t _m h	Ео %	t _{en,1%} h	t _{₽Ю,2%} h	t _{ef0,5%} h	t _{sr1%} h	t _{er2%} h	t _{er5%} h	Probe doxLo	A _u %	Z _u %	έ _{pmin(abs)} x10 ⁻⁶ /h
OPTIFER-V	3808	450	350	858	0,48	0,5	2	28	110	385	750	5x25	24,0	83,6	36
735	ZSV2634		330	2143	0,28	1	1	50	305	1055	1995		24,4	88,5	14
950°30'/L	ZSV2953	500	300	118	0,24	0,5	1	6	19	55	103		34,0	88,5	300
+750°2h/L	ZSV2596	_	260	1568	0,16	0,3	1	30	175	545	1355		26,0	84,1	22
	3767		240	9731	0,12	1,5	13	165	680	2350	8330		22,4	89,2	4,2
	3772	550	225	123	0,14	0,2	1	6	19	49	101		32,4	84,0	336
	3765		200	720	0,20	0,1	2	17	68	219	578		31,6	87,0	64
	3774		180	3205	0,12	3	15	90	350	1210	2714		29,2	84,0	12
	ZSV2610	600	160	60	0,08	/	0,5	4,5	16	38		موان به الارو <u>ر و اور و رو</u> ر و و و و و و و و و و و و و و و	27,2	89,8	424
	ZSV2608		140	305	0,14	0,5	1	6	39	134	269		25,6	89,8	115
	ZSV2613		120	627	0,12	/	1	13	87	295	540		27,6	88,5	45
	ZSV2624		100	8534	0,08	1	8	255	2010	5530	7940		33,6	91,1	2,5
	ZSV2615		80	19520	0,08	1	20	2440	8250	15075	18720		30,0	84,1	0,8
	3806	650	80	909	0,06	1	7	81	267	536	806		30,4	85,6	28
	ZSV2616		60	3274	0,10	1,5	19	335	925	2005	2957		39,6	85,6	8,2
												·			11-99

				ZSV-Nr=\	/ersuche	unter Vakuu	m					OPT-V-WB.d	00	11-	.99
Legierung Charge-Nr.	Vers. Nr.	е Р	σ。 MPa	t _m h	е. %	t _{ef0,1%} h	t _{₅f0,2%} h	t _{₅f0,5%} h	t _{₅r1%} h	t _{⊧r2%} h	t₅ _{€%} h	Probe doxLo	Au %	Zu %	έ _{pmin(abs)} x10 ⁻⁶ /h
Zustand															
OPTIFER-V	3839	500	280	238	0,24	1	4	27	82	167		5x25	23,6	87,0	91
735	ZSV2650	550	200	805	0,16	0,5	2	14	59	237	686		26,0	91,0	47
1030°30'V/V	3848	600	160	269	0,08	0,5	2,5	13	49	137	248		28,8	88,4	110
+750°2hV/V	ZSV2617		140	531	0,12	0,5	1	6	37	193	467		24,0	89,8	59
	ZSV2641	650	90	682	0,12	0,5	1	22	130	345	596		32,0	89,8	43
1075°30'V/V	ZSV2651	500	320	19	0,28	1	1	1,2	4,5	11			29,6	89,9	1520
+750°2hV/V	ZSV2652		260	1197	0,20	1	2,5	44	196	530	1104		25,2	85,7	34
	3849	550	220	471	0,06	0,8	3	17	57	137	421		24,8	87,1	73
	3853		200	2477	0,14	1	6	46	220	964	2166		26,8	87,0	13
	3850	600	180	79	0,12	0,2	0,6	3,5	13	38	71		36,0	91,0	390
	3804		160	509	0,12	1	2	11	52	202	436		27,2	88,5	65
	3852		140	2431	0,10	2	7	250	985	1892			21,2	76,9	7
	3851	650	120	202	0,16	0,2	0,9	9	40	105	182		26,4	89,8	139
	ZSV2635		100	473	0,12	1	1,5	22	106	248			28,8	85,6	59
	ZSV2644		80	2983	0,12	1	15	265	760	1720	2768		22,0	64,4	9,5
			1												
	1		1		<u> </u>										
													1		
	1												1		
			1										<u> </u>		
	1												1		
	ليترج والمحاجب والمسادر الر		<u> </u>	L		L				here we have a second s			L		ļ

Zeitstandversuche

Zeitstanuvers				ZSV-Nr=V	ersuche	unter Vakuur	n					OPT-V-WB.dd		11-	99
Legierung Charge-Nr. Zustand	Vers. Nr.	သိ ဇ	σ。 MPa	t _m h	ε. %	t _{₅f0,1%} h	t _{₅f0,2%} h	t _{₅f0,5%} h	t _{sf1%} h	t _{cr2%} h	t _{ef5%} h	Probe doxLo	A _u %	Zu %	^{ɛ_{pmin(abs)} x10^{−6}/h}
OPTIFER-V	3840	500	260	1288	0,16	2	10	88	304	727	1222	5x25	26,8	88,4	24
735	ZSV2643	550	200	624	0,16	0,5	1	12	52	186	500		29,6	88,5	66
950°30'/L	ZSV2614	600	120	1125	0,1	1	2,5	25	135	538	1000		25,2	85,7	25
+525°2h/L	ZSV2638	650	80	578	0,12	1	4	42	153	340	505		29,2	89,8	46
+750°2h/L															
1075°30'/L	3869	500	260	ohne Bruch	0,16	15	230	7750	bis	15000 h	=0,92%	8x50	1	1	0,16
+525°2h/L	ZSV2674	550	220	6627	0,16	1,3	14	335	1872	4530	6627		18,0	78,8	3,2
+750°2h/L	ZSV2668	600	160	1064	0,12	0,5	3	48	262	635	978		23,8	86,9	22
	3873		140	3219	0,02	22	245	1615	2764	3195			16,6	76,2	2
	ZSV2664	650	100	745	0,10	0,5	4	77	222	430	646		25,2	85,1	33
	ZSV2658		80	3752	0,08	11	128	625	1240	2335	3578	·	23,2	61,2	5,4
													[
			i												

.

Zeitstandversuche

Zeitstanuvers	uche											OP	T-VI.doc		
Legierung Charge-Nr. Zustand	Vers. Nr.	ာ မ	σ。 MPa	t _m h	ε. %	t _{er0,1%} h	t _{ero,2%} h	t _{₅r0,5%} h	t _{ef1%} h	t _{e12%} h	t _{ef5%} h	Probe doxLo	A _u %	Zu %	ė̃ _{pmin(abs)} x10 ⁻⁶ /h
OPTIFER-VI	3807	450	300	352	0,28	1	4	20	59	141	273	5x25	30,0	82,5	116
734	3847		260	2853	0,28	2	12	135	546	1250	2214		30,4	82,4	12
950°30'/L	3759	500	220	301	0,12	1	4	19	58	120	278		33,6	84,0	128
+750°2h/L	3799		180	2000	0,12	4	16	112	298	580	1350		34,8	89,8	29
	3763	550	160	124	0,08	0,2	0,7	6,5	16,5	36	76		40,0	88,5	472
	3764		140	420	0,12	1,5	3	19	51	115	257		36,4	87,1	153
	ZSV2606	600	100	90	0,12	/	1	3	10	24	56		34,0	89,8	740
	ZSV2632		60	1325	0,08	1	4	60	243	498	846		45,2	89,8	29
	3790	500	200	456	0,23	/	/	27	85	189		3x35	13,7	75,1	86
	3783	600	120	28	0,20	/		1,5	3	8			_ 20,9	86,7	2400
															44.00
			[]		[]								[11-99
													<u> </u>		
									<u> </u>				l		
													<u> </u>		
			[{						

.

³² Tabelle 10

Zeitstandversuche

			ZSV-	Nr=Versuc	he unte	r Vakuum						OP'	T-VI-WB.do		
Legierung Charge-Nr.	Vers. Nr.	e So	σ。 MPa	t _m h	е. %	t _{∈f0,1%} h	t _{ef0,2%} h	t _{⊧f0,5%} h	t _{ef1%} h	t _{⊧f2%} h	t _{ef5%} h	Probe doxLo	A _u %	Zu %	έ _{pmin(abs)} x10 ⁻⁶ /h
Zustand															
OPTIFER-VI	3801	500	200	2752	0,23	/	/	115	360	908	2045	3x35	19,4	84,1	18
734	3812	550	160	979	0,23			38	150	477	797		15,4	84,1	29
1000°30'/L	3785	600	120	160	0,23			5	18	48	111		18,6	84,0	357
+750°2h/L															
1050°30'/L	3832	500	200	o.Bruch	0,23	/	/	1100	4930	bis	20000 h	3x35	1	/	0,9
+750°2h/L	3826	550	160	6415	0,34			155	700	2515	5626		13,7	46,2	5,3
	3789	600	120	1262	0,20			55	250	640	1106		_19,1	78,4	22
			<u> </u>	[
1075°30'/L	3836	500	240	760	0,16	2,5	13	91	253	500	717	5x25	29,6	80,6	31
+750°2h/L	3822	550	160	4324	0,10	4	23	180	630	1785	3680		31,2	78,8	8,6
	3823	600	120	1563	0,14	2,5	8,5	66	268	732	1348		26,4	73,0	20
	ZSV2627	650	80	458	0,12	0,5	2	18	86	214	376		38,0	80,8	72
		L		<u> </u>											
															11-99

.

······								-				05	-1-VII.00C		
Legierung Charge-Nr. Zustand	Vers. Nr.	С Э	σ₀ MPa	t _m h	е. %	t _{₅f0,1%} h	t _{₅f0,2%} h	t _{sf0,5%} h	t _{ef1%} h	t _{sf2%} h	t _{er5%} h	Probe doxLo	Au %	Zu %	ε _{pmin(abs)} x10 ⁻⁵ /h
OPTIFER-VII							-								
736	ZSV2609	450	340	388	0,22	1	3	20	80	213	367	5x25	24,0	88,5	75
950°30'/L	ZSV2646		320	1294	0,32	3,5	11	68	278	760	1247		23,6	87,0	19
+750°2h/L	3810	500	280	322	0,18	2,5	7	30	84	181	294		27,2	83,9	100
	3781		260	1028	0,16	1	6	48	209	537	960		24,8	83,9	29
	ZSV2595		220	17514	0,16	2	14	355	1500	5000	15190		27,2	84,1	2,3
]												
	3773	550	200	297	0,14	0,5	2	14	46	119	246		34,0	88,4	136
	3768		180	1454	016	1,5	6,5	53	181	505	1160		29,6	85,6	31
	3805	600	140	298	0,12	0,4	2	13	41	108	226		42,0	88,4	145
	ZSV2607		100	1735	0,12	0,5	2	60	315	841	1427		30,4	89,9	18
	ZSV2632		90	5443	0,08	2	14	290	1315	3540	4860		25,6	88,5	3,8
	3811	650	80	307	0,12	0,5	2,5	22	72	152	253		30,0	91,0	100
	ZSV2619		60	1167	0,08	0,5	2	36	164	458	919		40,8	91,0	35
															11-99

offen erschmolzen

Ac1b=800°

Ac1e=855°

Zeitstandvers	uche		ZSV-Nr=	Versuche unt	er Vakuun	n								OPT-IV	a.doc
Legierung Charge-Nr. Zustand	Vers. Nr.	о в	σ₀ MPa	t _m h	е. %	t₅ _{€0,1%} h	t _{sf0,2%} h	t _{₅f0,5%} h	t _{sf1%} h	t _{₅r2%} h	t _{₅r5%} h	Probe doxLo	A _u %	Zu %	έ _{pmin(abs)} x10 ⁻⁵ /h
OPTIFER-IVa	ZSV2542	500	300	105	0.28	1	0.5	3.5	19	43	88	5x25	28.0	84.1	352
986489	3694		220	16229	0,16	3,5	24	400	1620	4340	13190		26,0	77.0	3.1
900°30'/L	3693	550	180	661	0,04	0,4	3	27	85	206	480		332	84,1	87
+750°2h/L	ZSV2530		150	6258	0,06	2	30	200	830	3580	6223		23,6	84,2	2,9
	3683	600	150	23	0,06	1	0,2	1	2	5,5	15		26,4	84,0	2400
	3687		120	180	0,06	0,3	1	7	21	50	110		44,0	89,6	360
	ZSV2513		100	1726	0,16	6	18	77	285	780	1534		27,2	84,1	19
	ZSV2531	650	80	142	0,05	1	1	5,5	20	48	92		40,8	87,1	328
	ZSV2520		60	798	0,08	1	2	39	153	344	583		47,2	92,2	37
	ZSV2528		50	1348	0,04	1	4	72	267	623	1030		51,2	94,3	26
1000°30'/L	ZSV2532	500	350	499	0,24	0,2	1,6	17	73	215	441		26,0	80,7	67
+700°2h/L	ZSV2543		300	13794	0,24	2,5	16	260	1460	5700	13615		22,4	77,2	2,4
	ZSV2529	550	300	61	0,08	/	1	7	20	42	59		24,8	80,7	368
	3695		250	980	0,04	0,3	1,9	25	140	411	820		24,0	70,8	34
	ZSV2544		220	2865	0,20	2	12	180	622	1510	2589		20,0	56,8	10,5
	3691	600	180	209	0,12	0,5	2,5	20	56	106	170		24,8	79,7	118
	ZSV2510		150	573	0,16	0,5	3,5	49	154	315	489		22,0	68,9	48
	ZSV2553		120	1872	0,12	1	13	260	695	1284	1768		15,2	73,0	11
	ZSV2522	650	120	80	0,12	1	1,5	10	26	46	68		25,6	80,7	300
	ZSV2523		80	600	0,04	1	10	71	177	323	528		28,0	85,6	48
	ZSV2527		60	1596	0,12	12	45	148	308	658			40,4	92,3	28

8-97

			ZSV-	Nr=Versuc	he unte	er Vakuum	l					OPT-IVc2.dc	IC .	2-2001	
Legierung Charge-Nr.	Vers. Nr.	ъ С	σ₀ MPa	t _m h	е. %	t _{ef0,1%} h	t _{⊧f0,2%} h	t _{⊧n,5%} h	t _{₅f1%} h	t _{⊧r2%} h	t _{₅f5%} h	Probe doxLo	A _u %	Zu %	ε _{pmin(abs)} x10 ⁻⁶ /h
Zustano			ļ							ļ			ļ		
	3846a	450	420	313	0,16	7,5	21	68	140	229	307	Ø8x50	16,0	78,7	64
	ZSV2678		400	1511	0,20	2	19	170	474	947	1493	Ţ	18,6	81,0	17
OPTIFER-IVc	ZSV2663		380	4682	0,24	0,8	6,5	270	1125	3070	4540	5x25	23,6	82,4	7,5
986778	3866		360	o.Bruch	0,18	16	205	3430	14800	bis 16003h	=1,06%	13	1	1	0,4
1075°30'/L	3846		320	1	0,14	75	1800	bei 6000h	abgebr.und	mit 420MPa	weitergef.	19	1	1	1
+750°2h/L	3870	500	340	863	0,28	0,5	3	32	161	477	835	5x25	20,0	78,8	30
	3867		320	782	0,14	6	29	193	462	700		33	22,8	82,3	15
4kt.65mm	3891		300	16800	0,08	2	16	365	2085	7845	15360	8x50	19,4	76,2	1,7
	3845		280	o.Bruch	0,16	9	123	2770	17100	-	-	8x50	1	1	0,29
	3868	550	280	116	0,20	0,1	0,8	6	23	59		5x25	24,4	84,0	265
	3864		260	534	0,16	0,4	2	25	101	270	496	13	24,0	80,6	53
	ZSV2659		240	951	0,16	0,5	2	35	175	480	858	\$9	28,8	84,0	31
	ZSV2677		220	5386	0,14	1,5	14	288	1380	3320	5093	8x50	21,0	76,3	4,6
	ZSV2653		200	23748	0,14	4,5	65	1920	8900	17760	23118	55	16,0	56,5	0,7
	3865	600	180	575	0,06	0,5	4	65	195	366	532	5x25	23,2	67,5	44
	3887		160	2354	0,12	2	28	395	1115	1856	2328	8x50	11,4	54,5	6,3
	ZSV2645		140	5051	0,10	3	70	980	2435	3840	4864	22	16,8	47,8	3
	ZSV2656	650	100	729	0,10	6	41	164	292	465	665		20,8	74,8	20
	ZSV2647		80	3317	0,08	4	82	423	940	1830	3024		21,0	44,4	9
	ZSV2649		60	10963	0.08	4	100	880	3155	6840		5x25	9.6	4.4	2.6
						· · · · ·									
	\														
<u> </u>			<u> </u>						·		·				
l	L	L	l	L	L	L	L	L	L	I	l	L	L	L	L

homogenisiert 950°2hV/V + 1075°30'V/V+750°2hV/V

Zeitstandversuche

ZSV-Nr=Versuche unter Vakuum

OPT-IVc3.doc 5-20001

Legierung Charge-Nr. Zustand	Vers. Nr.	ос	σ₀ MPa	t _տ ի	ε. %	t _{ef0,1%} h	t _{ef0,2%} h	t _{₅í0,5%} h	t _{ef1%} h	t _{er2%} h	t _{er5%} h	Probe doxLo	A _u %	Zu %	^É pmin(abs) x10 ⁻⁶ /h
OPTIFER-IVc	3922	450	420	74	0,44	0,3	1,2	8	27	54	73	5x25	20,4	75,0	260
986778	3923		400	303	0,36	0,5	4	35	123	232			19,6	77,0	58
	ZSV2691		380	1386	0,32	1,5	10	220	631	1088	1366		21,2	84,2	12
	3906	500	350	17	0,26	0,1	0,5	2	10	15			20,0	82,3	1600
4kt.65mm	3908		330	1377	0,20	1	9	90	345	840	1329		23,2	80,6	18
	ZSV2686		320	194	0,20	1	0,5	8	46	119	186		23,2	82,4	117
	ZSV2690		300	ohne Bruch	0,20	0,2	9	1110	9550	bis	20 000 h	=1,52%	/	/	0,4
	3920	550	270	86	0,20	0,2	0,8	6	21	49			24,0	85,6	315
	3919		250	1041	0,20	2	9	73	249	615	999		21,2	84,0	25
	3933		230	2310	0,24	1	6	97	448	1275	2202		20,0	80,6	12
	3935	600	200	314	0,08	0,4	3,5	34	112	207	297		24,4	77,0	59
	3921		180	1036	0,20	1	13	147	432	751	1001		17,2	56,5	15
	ZSV2688		160	1114	0,16	0,5	3,5	111	400	766	1056		20,4	64,1	16
	ZSV2685	650	100	699	0,12	0,25	3	73	225	427	638		26,8	75,1	32
	ZSV2683		80	1741	0,08	2	19	234	540	1033	1616		16,8	51,0	15
986780	3911	500	300	185	0,21	0,5	1	13	51	120		8x50	17,0	81,9	130
4kt 65mm	3910		280	1859	0,22	1,5	8,5	113	468	1170	1790		17,8	84,0	14
	3912		260	8555	0,22	1,5	15	345	1575	4730	8406		17,8	84,1	3.2
	3895	550	250	158	0,17	0,2	1	9,5	35	87	148		20,0	84,9	180
	3907		230	426	0,09	4	11	41	101	224	392		20,6	85,9	74
	3926		210	3619	0,16	2	14	158	700	2075	3490		16,6	84,1	6,8

.

homogenisiert 950°2hV/V + 1075°30'V/V+750°2hV/V

ZS	V-Nr-	=Versi	iche u	inter \	/akuum

			_ZSV-	Nr=Versu	che unt	<u>er Vakuur</u>	<u>n</u>							OPT-IVc4.d	oc 6-2000
Legierung Charge-Nr. Zustand	Vers. Nr.	о в	σ₀ MPa	t _m h	દુ %	t _{sf0,1%} h	t _{ero,2%} h	t _{≈™,5%} h	t _{ef1%} h	t₂r₂% h	t _{er5%} h	Probe doxLo	A _u %	Zu %	έ _{pmin(abs)} x10 ⁻⁶ /h
OPTIFER-IVc															
986781	ZSV2715	500	300	1005	0,22	3	7	56	340	676	955	8x50	22,0	86,0	22
	ZSV2710		280	3220	0,18	4	50	506	1170	2180	3049	11	26,0	85,1	7,3
4kt 40mm	3894	550	250	205	0,12	0,5	2,8	20	58	123		37	21,8	86,9	130
	3936		230	1017	0,16	1	4	55	208	535	942	<u>n</u>	21,0	84,1	29
	3898		200	13272	0,10	215	1400	6640	11370	13210		37	17,8	51,1	0,5
	ZSV2711	600	180	367	0,16	0,5	2	17	75	198	298		20,4	72,5	74
	ZSV2709		150	1905	0,10	1	7	128	570	1245		\$3	16,8	40,1	12
	3946	650	120	329	0,11	0,3	2,5	30	107	217	314	<u>n</u>	14,0	49,1	66
	ZSV2708		100	837	0,06	2,5	26	172	365	597	807	n	12,8	30,0	23
	ZSV2687		80	2864	0,08	20	160	718	1303	2108			9,0	19,6	5,2
			[
			L												
												<u></u>			
L													l		

40

homogenisiert 9502hV/V+ 1075°30'V/V+750°2hV/V

Loncotanavoro			ZSV-	Nr=Versuc	he unte	r Vakuum							OPT-I	Vc5.doc	6-2001
Legierung Charge-Nr. Zustand	Vers. Nr.	о Э	ರಂ MPa	t _m h	ε. %	t _{sf0,1%} h	t _{sf0,2%} h	t _{вЮ,5%} h	t _{ef1%} h	t _{ef2%} h	t _{e15%} h	Probe doxLo	A _u %	Zu %	έ _{pmin(abs)} x10 ⁻⁶ /h
OPTIFER-IVc	ZSV2719a	450	440	18	0,26	0,5	1	3,6	7,4	12		Ø5x25	24,0	82,5	1200
986779	ZSV2749		420	98	0,44	0,5	1	9,5	36	71		5x25	20,0	82,5	185
	3960		400	4411	0,28	5	40	435	1430	3066	4358	8x50	17,8	78,7	4,9
4kt.40mm	ZSV2727		380	5574	0,28	3	32	435	1630	3995	5515	8x50	15,4	68,7	3,8
	ZSV2719		340	ohne Bruch	0,24	7	270	4340	bei 4440 h	abgebr. und	mit 440MPa	weitergef.	1	/	
	3982	500	350	231	0,28	0,3	1,8	17	65	144	217	5x25	24,0	82,4	103
	3958		320	3652	0,12	2	12	225	1073	2376	3557	5x25	21,6	78,9	3,3
	3957		300	ohne Bruch	0,20	5	60	1480	9000	1		8x50	1	1	0,6
	ZSV2724		280	*lfd.	0,18	5	115	3560				8x50			<0,2
	ZSV2738	550	270	200	0,24	1	0,8	6	37	108	187	5x25	24,8	87,1	142
	3949		250	2344	0,08	1,5	18 [.]	142	680	1565	2272	5x25	23,2	80,6	8,8
	3953		230	13355	0,14	4	55	1200	5030	10462	13309	8x50	10,8	45,9	1,3
	ZSV2718		220	13059	0,14	2	42	1305	5310	9835	12736	8x50	14,8	56,6	1,4
	ZSV2721	600	200	291	0,16	0,3	0,5	12	67	175	268	5x25	30,0	85,7	76
	ZSV2717		180	1152	0,14	1	11	190	557	920	1135	8x50	13,8	49,6	13
	ZSV2723		160	2479	0,12	0,5	6	260	1075	1790	2414	5x25	14,8	39,5	5,8
	ZSV2708	650	120	422	0,16	1	1	65	173	290		5x25	26,8	77,2	34
	ZSV2706		100	1009	0,08	26	83	245	440	682	947	8x50	18,8	67,2	16
· · · · · · · · · · · · · · · · · · ·	ZSV2714		80	3917	0,08	3	72	405	1005	2160	3678	5x25	18,8	36,0	8
				*Stand 6//		005.0 799									

ZSV-Nr=Versuche unter Vakuum OPT-IVc1.doc															
Legierung Charge-Nr. Zustand	Vers. Nr.	°C 8	ਰ₀ MPa	t _m h	е. %	t _{ef0,1%} h	t _{⊧r0,2%} h	t _{₅ऌ,5%} h	t _{ef1%} h	t _{er2%} h	t _{ะกร%} h	Probe doxLo	A _u %	Z _u %	έ _{pmin(abs)} x10 ⁻⁶ /h
OPTIFER-IVc	3859	450	360	329	0,36	0,5	2	14	52	147	280	5x25	28,0	85,6	104
986778	3882		350	1037	0,28	1	3	27	126	457	953	"	22,0	84,1	29
950°30'/L	3859		340	2052	0,28	1	5	45	242	930	1870	,,	24,0	84,0	15
+750°2h/L	3858	500	300	107	0,28	0,3	0,8	4	14	43	91	59	27,2	78,8	340
	ZSV2657		280	279	0,24	1	0,5	5	29	118	274	"	30,8	87,1	103
	3878		260	1407	0,20	3	22	280	738	1168	1396	"	24,0	85,6	9,4
4kt.65mm	3857	550	240	40	0,20	1	0,4	2,2	7	17,5	33	15	33,2	87,0	920
	3861		200	185	0,16	1	0,5	9	36	82	147	"	34,8	84,1	185
	3871		180	443	0,12	1	5	35	94	192	359	"	29,2	85,5	85
	3884	_	180	800	0,08	1	6	76	201	423	729	17	25,2	85,5	42
	ZSV2673		180	605	0,16	0,5	2	23	87	223	459		30,8	87,1	74
	3875		160	o.Bruch	0,08	2	53	1510	10600	bis 15000h	=1,3%	"	1	1	0,4
	3856	600	160	40	0,12	1	0,4	2,3	6,3	14		33	37,6	87,0	920
	3872	_	120	281	0,12	0,5	3	17	43	96	183	15	42,0	87,0	198
	ZSV2666		100	1194	0,12	3	11	70	234	516	887	. 11	36,8	87,1	33
	ZSV2648	650	100	31	0,16	1	/	1	3	8	19	17	42,4	94,3	2133
	ZSV2665		80	118	0,16	0,5	1	5	17	39	77	11	46,4	88,5	400
	ZSV2662		60	893	0,08	1	5	65	208	426	718	17	32,6	80,7	35
															5-2000

Einfluß der Stabilisierungsglühung (künstliche Alterung)

Homogenisierung 950°30min/L+1075°30min/L+750°2h/L

Zeitstandversuche

Zeitstanuvers	ucne		ZSV-	Nr=Versuc	he unte	er Vakuum	1					IVc-Alt1.c	loc		6-2001
Legierung Charge-Nr. Zustand	Vers. Nr.	о в	σ₀ MPa	t _m h	е. %	t₅ _{€0,1%} h	t₅ _{€0,2%} h	t _{вю,5%} h	t _{sf1%} h	t _{sf2%} h	t _{₅r5%} h	Probe doxLo	A _u %	Zu %	^ê pmin(abs) x10 ⁻⁶ /h
	3915	500	300	133	0.28	04	2	10.5	32	73	119	5x25	27.6	83.9	223
986778	ZSV2682		260	6061	0.16	2.5	9	97	720	2940	5694		22.4	84.1	4.3
	3890	550	240	84	0.12	1	2	8	25	54			24,8	83.9	276
+550° 5000h/L	3891		220	554	0,12	0,7	3,5	30	136	368			21,6	85,5	39
	ZSV2675		200	3470	0,16	0,5	2	38	435	1853	3275		26,4	84,1	8,1
	3896		180		0,10	8	75	1820	8830	18430	*)				0,6
	3916	600	180	251	0,24	0,2	0,5	4,5	28	111	226		26,0	88,4	120
	ZSV2683		150	1020	0,12	1	1	41	305	805			16,4	75,1	15
+580° 3300h/L	ZSV2728	450	380	53	0,44	0,5	1	5	12,5	33			24,8	83,0	506
	ZSV2722		350	723	0,32	1,5	8	63	205	450	672		24,0	83,0	36
	3959		350	798	0,28	1	4	41	168	465	780		20,0	71,7	32
	3962	500	300	454	0,24	0,5	2,3	19	87	261	442	and the second	20,0	81,1	54
	3963		280	2004	0,20	1	5,5	75	480	1223	1945		20,8	73,7	16
	3955		260	11730	0,16	2	18	330	2200	7150	11648		18,4	75,5	2
	ZSV2726	550	240	138	0,24	0,25	0,5	6	29	80	131		24,8	83,0	185
	ZSV2720		220	852	0,16	1,8	6	50	217	544	828		24,8	84,6	28
	3956		200	7254	0,22	1,5	11	270	1850	4940	7116		22,0	77,7	2,7
	ZSV2725	600	180	250	0,16	0,5	1,3	9	39	157			25,2	84,5	83
	ZSV2714		170	458	0,20	1	3	26	120	287	423		26,8	81,2	49
	ZSV2707		150	1910	0,12	0,5	1	95	590	1355	1860		20,0	69,7	9,7
								*)	Stand 6-01	=22 500 h	=4%				

Einfluß der Stabilisierungsglühung (künstliche Alterung)

1114 0,16

Homogenisierung 950°30min/L+1075°30min/L+750°2h/L

29,2

1023

585

84,1

24

Z

ZSV2681

150

eitstandvers	uche		ZSV-I	Vr=Versuc	he unte	r Vakuum						IVc-Alt2.d	00		6-2001
Legierung Charge-Nr. Zustand	Vers. Nr.	°C ð	σ。 MPa	t _m h	ε₀ %	t₅ _{60,1%} h	t _{ef0,2%} h	t _{₅ю,5%} h	t _{₅r1%} h	t _{₅r2%} h	t _{sr5%} h	Probe doxLo	А _и %	Z _u %	ε _{pmin(abs)} x10 ⁻⁶ /h
OPTIFER-IVc	3940	450	360	495	0,16	1	5	37	134	304	468	Ø5x25	21,6	75,2	49
986778	ZSV2702		340	2234	0,24	1	6	86	470	1388	2143		23,6	80,7	12
	3930	500	300	273	0,24	0,4	2	14	55	153	255		24,4	79,0	96
+600°1050h/L	3948		280	1370	0,16	1,5	8	73	327	862	1331		20,0	80,9	17
	3947		260	7616	0,28	1,5	9	200	1520	4290	7230		24,8	77,1	3,3
	3939	550	240	145	0,16	0,5	1,2	8,5	33	86	139		26,0	85,7	172
	3932		220	675	0,20	0,5	3	28	127	354	627		24,0	84,2	41
	ZSV2704		200	3602	0,16	0,5	2	78	625	2070	3440		22,8	82,7	6,2
	ZSV2703		180	17900	0,16	0,5	18	790	4450	11420	17227		21,6	80,6	1,3
	3931	600	180	263	0,20	0,3	1	8,5	42	127	237		28,4	80,9	117
	ZSV2695		150	1995	0,16	0,7	3,5	139	595	1317	1904		20,8	64,1	11
	ZSV2701		130	7423	0,08	5	38	660	2650	5305	7130		16,4	48,1	2,6
+600°5000h/L	3914	500	300	112	0,24	0,4	1,4	7,5	24	59	100	Ø5x25	28,0	80,6	267
	ZSV2680		260	1344	0,20	2	9	32	255	821	1306		24,0	84,1	18
	3899	550	240	74	0,20	0,3	0,6	4	15	38	66		26,0	85,6	413
	3893		220	369	0,16	0,8	3,5	32	116	254			30,8	84,1	. 63
	3888		200	3071	0,14	1,5	12	154	640	1715	2888		29,6	83,9	8,3
	3900		180	17400	0,10	10	92	1060	4370	10810	16746		20,0	76,9	1,6
	3913	600	180	136	0,18	0,2	0,6	3,5	18	61	119		32,0	83,9	236

1,5

0,5

30

Einfluß der Stabilisierungsglühung (künstliche Alterung)

Homogenisierung 950°30min/L+1075°30min/L+750°2h/L

Zeitstandversuche

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$												IVc-Alt3.d	loc	2	-2001
Legierung Charge-Nr. Zustand	Vers. Nr.	ာ့ န	o₀ MPa	t _m h	€₀ %	t _{ɛf0,1%} h	t₅ _{f0,2%} h	t _{₅f0,5%} h	t _{ef1%} h	t _{ɛr2%} h	t _{er5%} h	Probe doxLo	A _u %	Z _u %	[€] pmin(abs) x10 ⁻⁶ /h
OPTIFER-IVc	ZSV2670	450	350	282	0,40	1	2,5	14	63	160	268	Ø5x25	22,8	80,8	92
986778	ZSV2672		320	2300	0,28	2,5	12	123	625	1552	2200		24,0	80,7	8,6
	ZSV2669		300	o.Bruch	0,24	2	15	1215	10250	bis 21000	= 1,6%		1	1	0,5
+650°330h/L	3877	500	300	66	0,20	0,2	0,8	5	16	37			29,2	80,6	416
	ZSV2676		270	606	0,24	1	2,5	28	149	382	574		25,2	80,9	36
	3883		260	3306	0,16	1,5	10	188	950	2197	3165		22,4	84,1	6
	3879		250	3127	0,16	1	6,5	135	790	2000	3015		23,2	85,7	7
	3862	550	240	37	0,20	1	0,5	2,7	9,3	22	34		24,0	82,6	702
	3863		220	229	0,16	0,5	1,5	13	52	129	212		30,0	84,0	115
	ZSV2660		200	1441	0,16	0,3	2	27	210	705	1385		21,6	87,1	20
	3881		180	9451	0,12	1	15	355	1910	5665	9220		21,2	79,0	2,6
	3876	600	180	11	0,12	/	/	0,5	1,6	3,5	7,5		38,4	88,4	4466
	ZSV2667		160	390	0,16	0,5	1	10	52	176	351		31,6	89,8	78
	3874		150	885	0,12	1	6	53	232	583	858		24,8	78,9	25
	ZSV2671		140	2314	0,12	0,5	1,5	24	255	1160	2125		25,2	80,8	11
+625°5000h/L	3917	500	300	77	0,24	0,5	1,5	7,5	21	45	68		30,0	84,0	3510
	3912		260	_ 2251	0,12	2	8	110	592	1492	2210		22,0	86,6	11
	3909	550	220	139	0,20	0,3	0,5	5	21	65	121		26,8	85,5	180
	3889		200	1551	0,10	1	6	75	313	848	1474		25,2	87,0	18
	ZSV2679		180	6623	0,16	0,5	2,5	98	748	3055	6150		24,4	84,1	4,4
	3918	600	180	79	0,20	0,2	0,4	2,5	10,5	33	67		34,0	89,8	432
	ZSV2684		150	708	0,16	0,5	1	15	88	321	635		30,0	88,5	42
	ZSV2693		130	4146	0,20	4	20	210	970	2530	3883		23,2	73,1	5,5

ZSV-Nr=Versuche ur Legierung Vers. & Job tm Eg			he unte	er Vakuum	l					IVc-Alt4.doc	;	5	-2001		
Legierung	Vers.	Ð	σ。	t _m	εo	ί _{εf0,1%}	t _{ef0,2%}	t _{ef0,5%}	t _{ef1%}	t _{∈f2%}	t _{ef5%}	Probe	Au	Zu	e Epmin(abs)
Charge-Nr.	Nr.	°C	MPa	h	%	h	h	h	h	h	h	doxLo	%	%	x10 ⁻⁶ /h
Zustand							_								
OPTIFER-IVc	3938	500	300	45	0,28	0,2	0,4	3	8	20		Ø5x25	26,8	84,0	848
986778	3934		260	838	0,20	1	4	23	96	316	696		27,6	85,5	44
	ZSV2699	550	200	128	0,20	0,2	0,5	3	11,5	39	97		32,8	88,5	340
+550°5000h	3945		180	804	0,16	0,5	3	20	85	281	650		30,0	84,0	50
	ZSV2700		160	2009	0,12	1	2	20	142	614	1580		27,6	87,0	21
	ZSV2697	600	150	48	0,16	1	1	0,7	2,5	42			35,2	89,8	1053
	ZSV2696		130	298	0,12	0,25	1	7	29	93	211		35,6	87,1	154
	ZSV2698		110	1058	0,12	0,5	1	15	120	400	782		42,4	85,6	35
+600°5000h	3941	450	360	81	0,40	0,2	0,6	3,8	13	34	67		27,2	80,6	473
	3944		350	190	0,36	0,2	1	7	25	69	150		29,2	82,4	200
	ZSV2716		340	543	0,36	1	3	19	87	215	448		30,0	82,4	110
	3971		330	1860	0,20	1,5	6,5	52	218	712	1580		26,0	82,4	21
	3925	500	300	57	0,24	0,2	0,5	3	9	23,5			29,2	76,9	683
·····	3905		260	757	0,20	0,5	2,2	19	98	330			28,4	80,6	45
	3954		240	2544	0,16	0,5	2,5	43	315	1135	2312		25,2	84,1	12
	3927	550	240	27	0,20	0,15	0,4	1,5	4,3	11	22		30,8	87,1	1500
	3937		220	98	0,16	0,25	0,7	4,5	15	40	83		30,0	84,0	400
	3924		200	371	0,16	0,5	4	14	54	145	299		42,0	84,0	105
	3928		180	857	0,12	1	3	30	120	336	706		30,0	84,0	47
	ZSV2712		160	1998	0,12	0,5	1,5	28	193	690	1610		29,2	87,1	20
	ZSV2692	600	150	81	0,16	0,2	0,5	2,2	7,5	24	58		36,8	92,2	584
	3929		130	404	0,12	0,7	4	18	60	151	302		36,4	91,0	106
	ZSV2694		110	1159	0,12	0,5	1,5	24	141	445	888		38,8	84,1	31
	ZSV2734		90	5004	0,08	1,5	19	365	1265	2660	4165		34,4	73,0	5,6
· · · ·	ZSV2733		80	13569	0.04	0,5	6	390	2870	7330	11830		22,0	48,4	2,1
	ZSV 2744	650	70	687	0,04	0,25	1	58	245	440	604		42,8	85,6	25

Transienten-VersucheOPTIFER-IVcChg.986780

A_{c1b}=810° Probe:8x50mm (doxLo)

Leitatana ei aucine

	ZSV-	Nr=Versuc	he unte	r Vakuum	l					IVc-TI	R2.doc	6-20	00		
Zustand	Vers. Nr.	в С	ਨ₀ MPa	t _m h	ε. %	t _{ef0,1%} h	t _{ef0,2%} h	t _{ef0,5%} h	t _{ef1%} h	t _{₂r2%} h	t _{ef5%}	t oberhalb 750°(AT)	A _u %	Zu %	ε _{pmin(abs)} x10 ⁻⁶ /h
950°2h homogenisiert	3950	500	300	117	0,32	0,2	1,2	9	33	78	113	33min	18,0	85,9	183
+1075°30min/L	3951		280	499	0,26	1	4	34	151	345		25'	18,4	85,9	40
+750°2h/L	3942		260	4383	0,18	3	21	330	1220	2956		14'	17,0	87,7	7,4
+1800°↓500°	3976	500	300	305	0,20	0,5	2,5	21	84	191	285	5'	21,6	85,9	75
	3975		280	1886	0,12	1,5	7,5	111	500	1223	1852	4'	17,0	85,0	12
+↑800°↓550°	3943	550	230	91	0,18	0,2	0,7	5	21	89		44'	20,0	85,0	276
	3952		210	1058	0,16	0,5	4	52	190	543	1020	15'	18,6	85,9	29
	3961		200	3952	0,18	1	10	125	542	1890	3740	23'	19,8	81,9	3,5
	3978	550	230	536	0,20	0,5	2,5	27	97	253	487	5'	20,2	84,3	64
	3975		210	3204	0,14	1,5	14	148	598	1733	3100	5,5'	18,4	86,0	8,4
950°2h homogenisiert	3911	500	300	185	0,21	0,5	1	13	51	120			17,0	81,9	130
+1075°30min/L	3910		280	1859	0,22	1,5	8,5	113	468	1170	1790		17,8	84,0	14
+750°2h/L	3912	•	260	8555	0,22	1,5	15	345	1575	4730	8406		17,8	84,1	3,2
4kt65mm	3895	550	250	158	0,17	0,2	1	9,5	35	87	148		20,0	84,9	180
(aus OPT-IVc3)	3907		230	426	0,09	4	11	41	101	224	392		20,6	85,9	74
	3926	<u> </u>	210	3619	0,16	0,2	14	158	700	2075	3490		16,6	84,1	6,8

Transienten-Versuche OPTIFER-IVc Chg.986778 Ac1b=810°

Probe 8x50mm(doxLo)

Zeitstandversuche

ZSV-Nr=Versuche unter Vakuum

			ZSV-	Nr=Versuc	he unte	r Vakuum	1					IVc-T	R1.doc		
Zustand	Vers. Nr.	°C ∂	ਰ₀ MPa	t _m h	ε. %	t _{₅n,1%} h	t _{ef0,2%} h	t _{ero,5%} h	t _{ef1%} h	t _{₂r2%} h	t _{ef5%} h	t oberhalb Ac1b=810°	A _u %	Zu %	[€] pmin(abs) x10 ⁻⁶ /h
1075°30min/L	3897	500	300	3		1	/	1	1			7min	21,4	86,0	1
+750°2h/L	3902		250	203	0,10	0,5	1	6	26	77		6'	20,4	86,0	188
1840°↓500°	3903		230	760	0,32	1,5	8	86	243	435	756	7'	19,8	85,9	29
1840°↓550°	3886	550	220	24	0,46	1	0,15	1	2,5	6		7'	30,0	85,0	1
	3904		210	3056	0,16	1	9	106	444	1595	2971	6'	18,2	81,9	12
	3885		200	6227	0,14	1,5	17	202	962	3120		7'	19,4	83,0	48
			l				-								
					l										
1075°30min/L	3870	500	340	863	0,28	0,5	3	32	161	477	835	5x25	20,0	78,8	30
+750°2h/L	3867	ļ	320	782	0,14	6	29	193	462	700		<u> </u>	22,8	82,3	15
4kt.65mm	3891	ļ	300		0,08	2	16	365	2085	7845					
	3845		280	o.Bruch	0,16	9	123	2770	17100	/		8x50		/	
aus OPT-IVc2.doc	3868	550	280	116	0,20	0,1	0,8	6	23	59		5x25	24,4	84,0	265
	3864	[260	534	0,16	0,4	2	25	101	270	496	<u>n</u>	24,0	80,6	53
	ZSV2659	L	240	951	0,16	0,5	2	35	175	480	858	9 9	28,8	84,0	31
	ZSV2677		220	5386	0,14	1,5	14	288	1380	3320	5093	8x50	21,0	76,3	4,6
	ZSV2653	L	200		0,14	4,5	65	1920	8900	17700		11	ļ	ļ	
															5-2000

Tabelle 24: n-	und k-W	/erte (n.	Norton) vo	on OPTIFER	im Verglei	ch zu F82H	-mod. [25]
	T°C	n	k	σ-Bereich	F82H-mod. n	Chg. 9741 k	σ-Bereich
OPTIFER (W)	450°	24	3.10 ⁻⁶⁶	440-320 MPa	29	2,5·10 ⁻⁷⁸	400-300 MPa
(la, IVc, V	500°	21	1.10 ⁻⁵⁶	350-250	23	5,2·10 ⁻⁶¹	300-220
6 Chg.	550°	20	9·10 ⁻⁵²	280-200	18	8,1·10 ⁻⁴⁷	240-160
1075° geh.	600°	15	6·10 ⁻³⁸	220-130	12,5	4,2·10 ⁻³²	180-100
+750° angel.)	650°	(5,5)	7·10 ⁻¹⁶	130-60	a) 8,4	a) 2,1·10 ⁻²¹	140-80
					b) 5	b) 6·10 ⁻¹⁵	80-50
OPTIFER (W)	450°	23	6·10 ⁻⁶³	360-320			
900°-950° geh.	500°	16	1.10 ⁻⁴³	300-220			
+750° angel.	550°	16	6·10 ⁻⁴¹	240-150			
(IVa, IVc, V, VII	600°	11	4·10 ⁻²⁷	160-80			
4Chg.)	650°	(6)	2·10 ⁻¹⁵	100-50			
OPTIFER (Ge)	450°	14	3·10 ⁻³⁹	300-230			
(II, VI, 2 Chg)	500°	13	3·10 ⁻³⁵	250-180			
950° geh.	550°	12,5	2·10 ⁻³²	180-120			
+750° angel. (II)	600°	10,5	2·10 ⁻²⁶	150-80			
bzw.	650°	(6,5)	8·10 ⁻¹⁷	100-40			
1075° geh.							
+750° angel. (II,VI)							

Legierung	1	% Zeit-De	hngrenze	R _{p1%} [MP	a]		Zeitstand	lfestigkeit	R _m [MPa]	
Zustand	400°	450°	500°	550°	600°	400°	450°	500 °	550°	600°
OPTIFER (1% W)	350	270	200	142	83	370	310	235	165	103
1075° geh. + 750° 2h										
950° geh. + 750° 2h	330	245	160	93	53	[,] 365	280	195	120	68
OPTIFER (Ge)	270	210	150	105	63	305	250	185	130	78
1075° geh. + 750° 2h										
950° geh. + 750° 2h	260	190	108	55	-	300	220	140	75	-
F82 H-mod. (2% W)	340	260	190	130	80	345	270	220	160	95
Anl.=1040° geh. + 750°1h										
EUROFER-97 (1% W)				}						

im Vergleich zu F82H-mod (mit 2%W)

<u>Bild 13</u> : <u>Einfluß der Härtetemperatur auf die 1%</u> Zeit – <u>Dehngrenze</u> <u>bzw. Standzeit von OPTIFER – Legierungen (ohne W,+ Ge)</u> <u>im Vergleich zu F82H-mod (2%W)</u>

Forschungszentrum Karlsruhe Technik und Umweit Institut für Materiatorschung 1 ~5CHI

Bild 19: Bruchdehnung und -einschnürung in Abhängigkeit von der Standzeit

der Versuchsspannung

. -

OPTIFER-IVc Ohg.986778 Bild 26 vergütet 1075⁰30min + 750⁰2h +550⁰5000h b a (U) - 1) <u>ල</u> ල BBBB 1 **.** ଥିଷ୍ଣ 30747500 16750 16761 Optifer IVc 1871/1 3871/6. 15 t. 1, 1 E. 20 HV30=203-205 HV30=204-206 +580⁰3300h +600⁰1050h C d 70406 70407 10750+7500+6000 10504 506 500 1929 I up ti fer <u>OPtifen</u> 0932/2 <u> 1932/</u> 30 10

HV30=214-216

75

HV30=214-217

HV30=204...

Bild 32 :Das Zeitstandfestigkeits-und Kriechverhalten des martensitischen Stahles 1.4914 (X18CrMoVNb 11 1) bei erhöhten Temperaturen.

(steel research 64 (1993) Nr.6 S.322-330

Bild 34 : Auslegungskurven für OPTIFER-1%W (Mindestwerte)

Bild 36 a+b : Vergleich der Auslegungskurven OPTIFER-W und OPTIFER-Ge.

Abhängigkeit der Zugfestigkeit R_{m/RT} und der Zeitstandfestigkeit R_{m/10}3/600 vom C- und N-Gehalt

<u>Bild 37</u>

Forschungszentrum Karlsruhe Technik und Umweit Institut für Materialforschung 1 –SCHI

5-01-сні

Anhang A Bemerkungen zu experimentellen Details

Die Zeitstandversuche wurden nach DIN 50118 mit Gewindekopfproben der Abmessung \emptyset 8x50 und \emptyset 5x25 mm und vereinzelt mit \emptyset 3x35 mm (Abb. 1a-c) in Einproben-Prüfständen durchgeführt. Soweit Versuche unter Vakuum durchgeführt wurden, ist der Versuchsnummer in Spalte 2 der Wertetabellen die Bezeichnung ZSV vorangestellt. Die Belastung erfolgt über einen Hebelarm (1:15) durch Gewichte (Bauart MFL). Die Prüftemperatur wird durch einen 3-Zonen-Heizofen mit drei PID-Reglern (JUMO) eingestellt. Die Temperaturkontrolle und Regelung erfolgt über 3 PtRh-Pt-Thermoelemente, die über die Probenlänge verteilt sind. Diese Anordnung gewährleistet ein homogenes Temperaturfeld über die Probenlänge und eine Temperaturkonstanz von $\pm 2^{\circ}$ C über die Versuchszeit.

Die Probendehnung (Kriechverlauf) wird über zwei induktive Wegaufnehmer erfasst, die über ein Gestänge diametral an den Probenkragen befestigt sind. Zu jeder Probe bzw. jedem Extensometerpaar gehört ein x-t-Schreiber, der den Kriechverlauf kontinuierlich registriert. Der x-t-Schreiber kann in weiten Bereichen eingestellt werden, so dass für jede Versuchszeit bzw. jeden Kriechverlauf eine optimale Aufzeichnung erfolgt (Abb. 2-4). Bei Langzeitversuchen sind kleine Kriechgeschwindigkeiten im Bereich von $10^{-7}h^{-1}$ (abs.) noch sicher erfassbar. Über eine Digitalisierungseinrichtung wird der so erhaltene Kriechverlauf für die weitere Datenverarbeitung gespeichert. Alle Kriechkurven werden in der Darstellung log ε - log t in internen Berichten zusammengestellt.

Die verschiedenen Wärmebehandlungsschritte wie Austenitisieren, Anlassen, Glühen werden normalerweise mit Probenrohlingen in Muffelöfen mit anschließender Abkühlung an Luft, Öl oder Wasser (Kennzeichnung T,t/L-, T,t/Öl-, T/t/W) durchgeführt (Abb. 5a). Soll bei Härteversuchsproben oder bei fertig bearbeiteten Proben für mechanische Versuche eine Oxidation vermieden werden, erfolgt die Wärmebehandlung unter Vakuum in einem Quarzrezipienten (Abb. 5b). Die Abkühlung erfolgt durch Abziehen des Ofens und entspricht bei kleineren Abmessungen in etwa der Luftabkühlung und wird mit (T,tV/V) bezeichnet.

Abb. A.1: Probenformen für Zug- (b+c) und Zeitstandversuche (a+b)

Zeitstandprüflabor (ZS)mit 30 Teststrecken (Vers.in Normalatmosphäre)

unter Vakuum

Forschungszentrum Karlsruhe

Technik und Umwelt

Institut für Materialforschung I Postfach 3640, D-76021 Karlsruhe

Abb. A.3: Teststrecke für Zeitstandversuche

in Normalatmosphäre

unter Vakuum

Locatio	n:	FZK	FZK, Karlsruhe		
Status:		Operational			
Capacit	y:	a)	30 units for tests in normal atmosphere		
		b)	19 units for tests in vacuum		
		c)	1 unit for test in vacuum with direct loading (max. 80 N)		
Technical description:					
Single specimen furnaces with 3 heating zones. T = 300 - 900°C. Each furnace with 3 PID-temperature controllers. Temperature measuring with 3 Pt/Rh-Pt-thermo-couples. Loading system: Lever arm with plates (1:15). Max. 5 tons.					
Continuous creep registration for each specimen with 2 extensometers and separate ε-t-recorder. Digitalizing of creep curve after test.					
Speciality: Long term tests (> 104 hours) in low-stress and low-creep-range.					
Realized long-term-tests: max. 144 444 hours = 16,5 years (Ref. 1).					
Ref.:	[1] Ki	FK 427	3 - Feb. 1988 (Report) (ss 1.4948)		
	[2] Ki	FK 486	1 - Aug. 1991 (Report) (ss 316 L (N))		
	[3] Ki	fK 244	0 - Jan. 1989 (Report) (Vanadium-alloys)		

Abb. A.4: Creep- and rupture test installation

Öfen für Wärmebehandlungen: a) Muffelöfen <u>Abb.5</u> b) Rohröfen mit Quarzrezipienten

Anhang B Extrapolationsverfahren und Optimierung des c-Wertes im Larson-Miller-Parameter

Aus technischen und wirtschaftlichen Gründen sind schon sehr früh Anstrengungen unternommen worden, durch experimentelle Abkürzungsverfahren oder rechnerisch/grafische Extrapolationsverfahren den Versuchsaufwand zeitlich stark zu begrenzen und auf das Verhalten bei langen Zeiten zu extrapolieren. Technische Rückschläge, sowie kritische Überprüfung von vorgeschlagenen Extrapolationsverfahren (mehr als 130 im Laufe der Jahrzehnte) anhand experimenteller Datensätze [46] führten zu der Erkenntnis, dass keines der vorgeschlagenen Verfahren sich als allgemein anwendbar erwies und die experimentelle Absicherung durch Langzeitversuche unverzichtbar ist, wie in [47] ausführlich dargelegt ist. Die Ursache liegt bei den komplex aufgebauten hochwarmfesten Legierungen in temperatur- und zeitabhängigen strukturellen Änderungen, die nicht vorhersagbar sind und z.T. zu abrupten Änderungen in der T,t-Abhängigkeit der verschiedenen Kennwerte führen. Bungardt-Schmid haben in einer Arbeit [48] verschiedene Extrapolationsverfahren anhand von Datensätzen von 27 Stählen und Ni-Basis-Legierungen überprüft. Dabei wurden nur die Standzeiten < 5000 std für eine Extrapolation auf 10⁴ und 10⁵ std benützt und die Abweichung zu den experimentell ermittelten Standzeiten von > 5000 std bestimmt. Dabei zeigte sich, dass die Verfahren von Larson-Miller [49] und Sherby-Dorn noch die kleinsten Abweichungen zu den experimentellen Daten zeigten. Technisch akzeptable Abweichungen lagen aber nur dann vor, wenn die Festwerte in den Parametern anhand aller vorliegenden Daten für jede Legierung optimiert wurden (± 15%), wohingegen die Abweichungen wesentlich größer wurden, wenn mit einem vorgegebenen Festwert oder mit Festwerten, die nur aus den Versuchen bis 5000 std Standzeit vorlagen, gerechnet wurde. Das bedeutet, dass eine allgemeine Anwendbarkeit nicht gegeben ist und eine Anpassung an die jeweilige Legierung vorgenommen werden muss, was einen entsprechenden experimentellen Aufwand erfordert. Bei Verwendung einer neuen, oder modifizierten Legierung ist lediglich eine Abschätzung des Langzeitverhaltens möglich.

Für eine vergleichende Betrachtung von Zeitstandfestigkeitswerten und Zeit-Dehngrenzwerten, sowie für eine Abschätzung auf experimentell noch nicht abgedeckte Zeiträume, wurde in diesem Bericht das einfach aufgebaute Verfahren nach Larson-Miller benutzt:

$P = T_{K}(c+\log t).$

Dabei sind Prüftemperatur T und Versuchszeit t mit einer werkstoffabhängigen Größe c als Parameter zusammengefasst. P in Abhängigkeit von log σ aufgetragen, führt zu einer sog. Zeitstand-Hauptkurve (master-curve), die aus sich überlappenden Kurvenstücken der verschiedenen Prüftemperaturen besteht (Bild 1). Eine gute Überlappung bzw. guter Anschluss ergibt sich, wenn c anhand der ermittelten experimentellen Daten optimiert wird (Bild 2). Dabei genügt aber nicht eine Bestimmung mit 2 Wertepaaren, sondern mehrere über den experimentell abgedeckten T/t-Bereich, denn c ist auch temperatur- und zeitabhängig, was vielfach vergessen wird. So ergab sich für die 1%W-Variante von OPTIFER ein c-Wert von c=28 als Mittelwert aus je 5 Wertepaaren im T-Bereich von 450-700°C (min. 18, max. 34). Die mit 28 gerechneten Hauptkurven für 1% Kriechdehnung und Standzeit sind im Bild 3 dargestellt und zeigen für 3 Varianten bis 600°C Prüftemperatur eine gute Anpassung und Überlappung. Lediglich die bei 650°C ermittelten Werte, bei denen auch schon deutliche strukturelle Änderungen auftreten, zeigen in der Standzeitkurve keine gute Anpassung.

Dass auch ein optimierter c-Wert immer nur ein Kompromiss ist, ergibt sich aus Bild 4. Hier sind die an den 4 OPTIFER-IVc-Chargen ermittelten Werte für jede Prüftemperatur mit ihren Streubereichen dargestellt. Mit c=28 ergibt sich für T=500-600°C eine gute Passung, ist aber für die 450°C-Versuche zu niedrig. Eine Erhöhung auf c \geq 30 würde die 450°/500°C Passung verbessern aber zu höheren Temperaturen hin verschlechtern. Für den 2% W-Stahl F82H-mod. ergab sich als Mittelwert c=33 (min. 25,4, max. 41,4) [50] und für den konventionellen martensitischen Stahl MANET-II [51] ergab eine nachträgliche Optimierung, unter Berücksichtigung von Langzeitwerten bis zu 40 000 h, für die 1%-Kriechdaten c=32 (27-34,9) und für die Standzeitwerte c=28 (22-30,4). D.h., wenn man die Hauptkurven verschiedener Stähle direkt miteinander vergleichen will, muss wiederum als Kompromiss ein c-Wert (z.B. 30) verwendet werden.

Die Zeit- und Temperaturabhängigkeit von c wird im Bild 5 an 2 Chargen des austenitischen Strukturwerkstoffes 1.4948 aufgezeigt [47]. Von den experimentellen Zeitstandfestigkeitskurven wurde mit jeweils 3 verschiedenen c-Werten auf die nächst niedrigere Kurve gerechnet. Der Vergleich der 3 gerechneten Kurvenstücke mit der experimentellen Kurve zeigt bei der Charge 206 (a) deutlich, wie bei 600-650 und 700°C die experimentelle Kurve die gerechneten Kurven in Abhängigkeit von der Standzeit durchläuft. Die Temperaturabhängigkeit wird dadurch demonstriert, dass bei der Charge 206 (a) die 550°C Kurve und bei der Charge 326 (b) die 600°C Kurve deutlich über den errechneten Kurven liegt.

Abb. B.1: Einfluss des c-Wertes auf die Ausbildung der Zeitstand-Hauptkurve nach dem Larson-Miller-Parameter (schematisch)

Abb. B.2: c-Bestimmung (Optimierung des Larson-Miller-Parameters in verschiedenen Zeit- und Prüftemperaturbereichen ($P = T_K(c+\log t)$)

Abb. B.5: Vergleich experimentelle Daten zu extrapolierten Daten (nach Larson-Miller)