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Abstract 
The objective of the present work is to identify and implement a numer

ical method that can deal with the motion of a packed bed of fuel particles 
in combustion chambers such as a grate furnace and a rotary kiln. As a 
result of an extensive review of the various numerical methods applied in 
the areas of granular matter and molecular dynamics a time driven approach 
was found to be suited to the numerical simulation of particle motion in 
combustion chambers. Furthermore, this method can also be employed to 
deal with moving boundaries which are required for the present application 
e.g. travelling grate. The method works in a Lagrangian frame of reference 
which uses the position and orientation of particles as independent variables. 
These are obtained by time integration of the three-dimensional dynamics 
equations, derived from the classical Newtonian approach for each particle. 
This includes keeping track of all the forces and momentums acting on each 
particle at every time step. Visco-elastic contact forces include normal and 
tangential components with visco-elastic models for energy dissipation and 
friction. The particle shapes are approximated by spheres and ellipsoids, 
whereby a varying size and ratio of the semi-axis accounts for the variety of 
particle geometries in a combustion chamber. For these shapes, the overlap 
of particles during contact is expressed by an polynomial of 4th order for two
dimensional case, and an polynomial of 6th order for three-dimensional case. 
A new algorithm to detect the two-dimensional elliptical particles contact 
sufficiently accurate was developed. It is based on a sequence of coordi
nate transformations and has proved its reliability in numerous applications. 
Finally, the method was applied to simulate the motion of spherical and el
liptical particles in a reetangular enclosure, on a travelling grate and in a 
rotary kiln. 
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Eine Methode zur Simulation 
der Bewegung von ~- und-0-climensionalen 

Brennstoffpartikeln in Brennkammern 

Zusammenfassung 
Die Zielsetzung der vorliegenden Arbeit war die Identifikation und die Im

plementierung einer numerischen Methode, die die Bewegung von Brennstoff
partikeln in Brennkammern wie auf dem Rost oder im Drehrohr simulieren 
kann. Als Ergebnis einer extensiven Literaturrocherche über vielfältige Me
thoden aus dem Gebiet der Bewegung von granularen Medien und der Moleku
lardynamik wurde ein zeitschrittgesteuerter Algorithmus als anwendbar für 
die Simulation der Bewegung von Brennstoffpartikeln in Brennkammern beur
teilt. Weiterhin kann die Methode mit bewegten Rändern umgehen, welche 
für die vorliegende Anwendung eines Vorschubrostes benötigt werden. Die 
Methode ist in einen Lagrange System formuliert, welches die Position und 
die Orientierung der Partikel als unabhängige Variablen benutzt. Sie ergeben 
sich aus der Zeitintegration der dreidimensionalen Newtonsehen Bewegungs
gleichungen für jedes Partikel. Dazu müssen Kräfte und Momente, die an 
den Partikel angreifen, für jeden Zeitschritt bestimmt werden. Die visko
elastischen Konta ktkräfte beinhalten normale und tangentiale Komponen
ten mit Dissipation und Reibung. Die Partikelformen werden durch Kreise, 
Kugeln und Ellipsen approximiert, wobei ein variables Verhältnis der Halb
achsen die Vielfalt der verschiedenen Partikelformen in einer Brennkammer 
berücksichtigt. Für die zweidimensionalen Geometrien wird die Überlappung 
durch ein Polynom 4. Grades ausgedrückt, während sich für den dreidimen
sionalen Fall ein Polynom 6. Grades ergibt. Zur Bestimmung der Überlap
pung von zweidimensionalen Partikeln wurde ein neuer Algorithmus entwick
elt. Er basiert auf einer Sequenz von Koordinatentransformationen und hat 
sowohl seine Genauigkeit als auch seine Zuverlässigkeit in vielen Anwendung
en bewiesen. Mit dieser Methode wurden Anwendungen von kreisförmigen 
und elliptischen Partikeln in einer Schleuse, auf einen Vorschubrost und im 
Drehrohr berochnet. 
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1 Introduction 

Waste material Packed bed 
Flue gas 

r-----t---r r r i 

l 
Combustion air inlet 

Figure 1: Burning of waste in a padred bed 

Technical applications involving a packed bed of particles (Fig. 1) are 
frequently used in the processing industry, energy-supplying industry and in 
waste incineration plants. Common to all these applications is that the entire 
flow and combustion process consists of several important thermodynamic 
and fluid dynamic processes, among which are the motion of the packed 
bed with its redistribution of particles and the chemical conversion processes 
of heterogeneaus combustion. The packed bed can be described as granular 
material which can be idealised as an ensemble of a large nurober of particles. 

For the simulation of the motion of fuel particles on a grate or in a rotary 
kiln a time driven approach was employed. Due to its application in com
bustion devices the size of the particles was chosen to be in the range of cm. 
In a first approach 2-dimensional circular and elliptical particles were used 
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in the predictions, because the overlap between particles is determined by a 
numerically stable algorithm. FUrthermore, the approximation of the motion 
in a rotary kiln or on a grate in a relevant plane with 2-dimensional particles 
is sufficiently accurate for technical applications. However, the method is 
already extended to the packing of 3-dimensional spherical soot particles. 

8 



2 Description of the Model 

Below we will describe shortly the method what we chose to simulate the 
motion of granular material. A time-driven method, which takes into account 
all forces and torques acting on a particle being in contact with neighbours 
at any time, was identified as the most favourable approach for numerical 
simulation of the motion of fuel particles in combustion chambers (Dziugys 
and Peters, 1998). 

However, most of the reviewed applications deal with spherical particles. 
It is not sufficient to represent the various shapes of fuel particles in a com
bustion chamber. Therefore, in a first approach an elliptical geometry was 
chooen to represent a large variety of shapes by different sizes and ratios of the 
semi-axis, thus ex:tending the circular shapes. Consequently, an algorithm to 
determine the two-dimensional overlap of elliptical particles accurately and 
reliably has to be developed, which is described here. Final applications of 
the method proofs its suitability to the application in combustion chambers. 

The time-driven method was used to simulate the behaviour of granular 
material, which means that an impact between particles is approx:imated by 
a representative overlap area or volume of particle shapes in the vicinity of 
the point of impact as shown in Fig. 2. 

\ 

Figure 2: Geometry of overlapping contact of two elastic particles 
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The state of all particles, at the time t, are updated after fixed time step 
tlt, which is smaller than the smallest time of impact. The motion of each 
particle in the granular material is described by the second Newton law 

(1) 

v· = dxi 
t dt (2) 

d28i 
Ii dt2 = litli = Ti (3) 

d8i 
W·=-

t dt (4) 

where vi, ~' xi, wi, 11i and 8i are vectors of velocity, acceleration, position, 
angular velocity, acceleration and orientation of the centre of gravity mi of 
the particle i ( i= [1 ,N]), N is the number of particles in the granular material. 
Ii is the inertial tensor of the particle. Fi and Ti are the sumofall forces and 
torques, respectively, which act on the particle i. External forces and the fluid 
influence were neglected. Therefore, Fi=mig + Fi,contact and Ti= Ti,contach 

where Fi,contact is the summation of direct contact forces between the particle 
i and another N - 1 particle 

N 

Fi,contact = E Fij 
j=l Jrfi 

(5) 

where Fij is a force acting on the contact area of elastic impacts between the 
particles i and j. Ti,contact is the summation of torques caused by the contact 
forces between particles 

N N 

Ti,contact = E Tij = E dij X Fij (6) 
j=l,#i j=l,#i 

where dcij is the vector pointing from the centre of gravity of particle i to 
the contact point with particle j. 

The particles of a granular material were of the same material. The 
siruplest linear elastic repulsion and dissipation forces model for normal inter
particle contact forces between two particles i and j was applied. 

F n,ij = F n,ij,elastic + F n,ij,viscous (7) 
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F n,ij ,viscous = _, n mij V n,ij 

(8) 

(9) 

where kn is the spring stiffness coefficient related to Young's modulus, 'Yn is 
the normal dissipation coefficient and mij is the reduced mass of the contact
ing particles i and j 

~i is the equivalent radius 

~Ri 
~i = Ri+Ri 

(10) 

(11) 

of particles iri contact with the radii Ri and Ri, and hiiis the depth of contact 
overlap. 

The tangential force acting between particles was expressed by the Coulomb 
criteria 

(12) 

with rt being the tangential dissipation coefficient and J-L closely related to 
the dynamic friction coefficient. 

The solution of the equations (1), (2), (3) and (4) is obtained by a 5th order 
Gear predictor-corrector scheme. The time step f::l.t of the integration was 
chosen such that the entire contact between the particles would be resolved 
at least within 10 time steps. 

The boundary conditions are defined by walls, which were defined as 
particles too and were of the same material. Contact forces acting between 
particles and walls are defined in the same way as between particles. 

The simulation method was programmed in the programming language 
C++ (Stroustrup (1991)) by using OOP methodology (Peters and Dziugys 
(1998), and Peters and Dziugys (1998b)). This approach supports objects 
that describes various dimensions, shapes and sizes for particles as well as for 
the walls as boundaries of simulation area. The description ofmotion dynam
ics of particles is universal for all shapes and is defined at the first stages of the 
abstraction. The programming code is implemented in the TOSCA (Tools 
of Object-oriented Software for Continuum mechanic Applications) software 
package, which allows for a high degree of fiexibility and for the shortening 
the software development process (Peters (1996) and Peters (1997)). 
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3 Contact Detection Algorithm for Ellipses 

3.1 Introduction 

Ellipses for two-dirnensional particles and ellipsoids for three-dirnensional 
particles are other often used shapes, because various kinds of granular ma
terial particle resernble these shapes. Therefore, according to Rothenburg 
and Bathurst (1991) the characteristics of granular material are better repre
sented by systerns of ellipsoidal particles than by systerns of spherical parti
cles. For discussions of the irnplementation of ellipses and ellipsoids, see Lin 
and Ng (1995), Lin and Ng (1997). 

At this time, various analytical methods of contact detection for two
and three- dimensional elliptical particles are constructed by intersection, 
geometric potential and cornmon normal algorithrns. 

Figure 3: Contact of two ellipses according to intersection algorithm 

Two similar intersection algorithrns developed by Rothenburg and Bathurst 
(1991) and Ting (1991) are based on idea to find contact location, point C, 
as the midpoint of the line joining the intersection points A and B (Fig. 3). 
Location of the points A and B is the result of solution of quartic polyno
mial equation, which may be solved analytically or iteratively. However, this 
method has difficulties with accuracy and stability. When overlap area is 
very small or even a point (what is often for stiff particles), or when semi
axes of ellipses are aligned each with other, the resulting quartic equation 
can be ill conditioned. More discussions about that problern could be found 
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in Ting (1992) and Ting et al. (1993). Another problern isthat this method 
is not Straightforward extendible into three-dimensional particles. 

Figure 4: Contact of two ellipses according to geometric potential algorithm 

Alternatively, Ting (1992) and Ng (1992) developed two basically similar 
geometric potential algorithms where contact location, point 0', is defined 
as the midpoint of the line joining the "tauch" points Ti and TJ (Fig. 4). 
The point Ti is defined as a "deepest" point of ellipse i inside ellipse j, 
and the point Tj - as a "deepest" point of ellipse j inside ellipse i. The 
algorithm developed by Ting results a quartic polynomial equation, which is 
better conditioned as one, obtained by intersection algorithm (Ting (1992)). 
'frigonometric equation obtained by Ng is equivalent to quartic polynomial of 
Ting what means that both algorithms have the same stability and accuracy. 
Besides, Lin and Ng (1995) developed more common geometric potential 
algorithm for three-dimensional particles. 

Lin and Ng (1995) described common normal algorithm (Fig. 5) devel
oped for two- and three-dimensional particles. After testing, they concluded 
that algorithm based on geometric potential was more favourable in terms 
of accuracy and efficiency and was used for later simulations in Lin and Ng 
(1997)' 

As result, analytical solutions of contact detection for two-dimensional 
elliptical particles requires the solution of a 4th polynomial (e.g. Rotheuburg 
and Bathurst (1991) and Ting (1992)). This can be clone by an analytical 
or an numerical methods. However, both methods have to detect and to 
determine an overlap accurately, in particular for usually small regions of 
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ellipsej 

Figure 5: Contact of two ellipses according to the common normal concept 

contact. Today existing intersection (Rothenburg and Bathurst (1991) and 
Ting ( 1991)) and geometric potential (Ting ( 1992)) algori thms results to the 
4th polynomial which can be ill-conditioned when overlap area is very small 
or even a point ( what is often for stiff particles), or when semi-ruces of ellipses 
are aligned each with other, what gives unstable solution of ellipse shapes 
overlap. 

Below, we describe a new algorithm to calculate contact overlap of two
dimensional ellipses which appeared to be more stable than one of Ting 
(1992). 
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3.2 Description of the Algorithm 

Let two elliptical partich:s i and j, which shapffi are defined by parameters 
{xi,Yi,ai,bi,Bi} and {xi,Yi,ailbi,Bi} incontact. (Fig. 6) 

y 

Figure 6: Initial position of two ellipsffi in contact 

Thus, the shapes of the ellipses i and j are described by equations 

Ii (x, y) = A (x-xi) 2 +Bi (y- Yi) 2 + 2Ci (x - xi) (y- Yi) - 1 = 0 (13) 

fi (x, y) = Ai (x-xi) 2 +Bi (y- Yi) 2 + 2Ci (x- xi) (y- Yi) - 1 = 0 

where coefficients A, B ad C are defined as 

A = ( c:O)' + ('i~Or 

B = ('~0) \ ( oo:O)' 
C = cosBsinB (:2 - ~) 

(14) 

{x, y} is location of ellipsecentrein world frame reference, a and bare semi
axffi and B is the angle between the major semi-axis of the ellipse and the 
x-axis of the Cartesian co-ordinate system. In order to calculate "touch" 
points Ti and Ti and the overlap a sequence of three transformations of Co

ordinates is carried out to transfer ellipses into a more convenient form. 
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y' 

b; ellipse i 

x' 

Figure 7: Two ellipses in contact in co-ordinate system { x ', y '} 

The first co-ordinate transformation {x,y) ~ {x',y') 

x' 
y' 

(x- xi) cos(}i + (y- Yi) sin(}i 

- (x- xi) sin(}i + (y- Yi) cos(}i 
(15) 

sets ellipse i into canonical form with the centre of ellipse i in the origin of 
frame reference {x',y '} and the semi-axes parallel to the axes of co-ordinates 
(Fig. 7) 

fi(x'' y
1

) = ( :: r + ( ~: r -1 = 0 (16) 

Then ellipse j is described as 

iJ (x', y') = Aj (x'- xj)
2 
+ Bj (y'- yj)

2 
+ 2Cj (x'- xj) (y'- yj)- 1 = 0 

(17) 
where coefficients of ellipse j are defined as follows 

Aj = C"::; )' + ( si~;o; )' 

Bj = ( si:;o'1) \ ( co:
1
U1 )' 

Cj cos ej sin ej ( :; - :; ) 

16 
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where 

x'. 
J 

yj 

Oj = f}i - Oi, 

X~ = 0, y: = 0 

(xi - Xi) cos f}i + (Yi - yi) sin f}i 

- (xi- xi) sin f}i + (Yi- Yi) cosf}i 

The second co-ordinate transformation {x',y') ~ {X', Y'} 

X' 
x' 

= 
ai 

Y' .-
y' 

bi 

(19) 

(20) 

(21) 

will transform ellipse i into a circle with radius equal to 1 and its centre 
positioned in the origin of frame reference {X', Y'} (Fig. 8) 

ellipsej Y' 

Figure 8: Two ellipses in contact in co-ordinate system {X', Y'} 

fi (X', Y') = X 12 + Y'2 
- 1 = 0 (22) 

This furthers the following description of ellipse j 

fJ (X', Y') =Ai (X'- Xjf +B (Y'- Yj)
2 
+20 (x'- xj) (Y'- YJ)-1 = 0 

(23) 
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where 

AJ 2A' ai J (24) 

BJ b~ß'. 
l J 

cj aibic; 

X'. 
xl 
=..1.. 

J ai 
(25) 

y~ 
y'. 

= 5?.1. 
J bi 

Parameters ä;, bj and 0 JOf the ellipse j in frame reference {X', Y'} may be 
calculated by 

2 

1 
A-·+B·-..L 

J J ä2 
J 

oj = -2
1 

arctg ( ( -
2
C;- ) ) 

- AJ- BJ 

The third co-ordinate transformation {X', Y'} --*{X, Y} 

X = (x'- Xj) cosÖJ + (Y'- YJ) sinÖJ 

Y = -(X'-Xj)sinÖJ+(Y'-Yj')cosÖJ 

(26) 

(27) 

(28) 

(29) 

transforms the centre of ellipse j into the origin of frame reference {X, Y} 
and the centre of ellipse i in the position Oi(Xi, Yi) (Fig. 9) 

Xi = -Xj cosÖJ- Yj sinÖJ 

li = Xj sinÖJ- YJ cosÖJ 

This yields the final form of the equations for the ellipses i and j: 

18 
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f;(X,Y) = (~)' + (~)' -1 = 0 (32) 

If a circle with radius Pr is defined, which shares the origin together with 
circle ( ellipse) i in the point oi' and touches the ellipse j in the point 
~ (Xrj, Yrj) (Fig. 9), then point Ti is the nearest point of ellipse j to the 
point Oi. At the same time, the point Ti is the same "touch" point defined 
in geometric potential algorithms of Ting (1992) and Ng (1992) (Fig. 4). 

Let us define p as the distance from Oi to any point of ellipse j as follows 

p2 = (X- Xi)2 + (Y- li)2 (33) 

Mter substituting Y expressed from (32) into equation (33) 

p2 =(X- Xi)
2 + (±kjäJ -X2

- Yif (34) 

where k = bi /äi :::; 1. 
Now, the location of the point Ti may be found analytically or iteratively 

by determining the shortest distance 

Pr = min (p) (35) 

lf ellipses are overlapping then point Ti is inside circle i, i.e. the distance Pr 
from point Oi (Xi, li) to the point Ti (Xrj, Yri) must satisfy the condition 

Pr = j(Xri- Xi? + (Yrj - li) 2 S 1 (36) 

otherwise there is no overlap. 
The position of the "touch" point Ti now can be calculated analytically 

or iteratively from the equation (34) according to the conditions (35) and 
(36). Below we present an analytical solution. 

el/ipse i 
y 

ellipsej 

Figure 9: Two ellipses in contact in co-ordinate system {X, Y} 
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3.2.1 Analytical Solution 

According to the condition (35), the location of the "tauch" point 1j as 
the nearest point of the ellipse j from the origin of circle (ellipse) i may be 
calculated by the differential equation 

äp2 
ax =O (37) 

Substitution of (34) into (37) and differentiation gives a quartic polyno
mial 

where 

a1 = (1- k2
)

2 

a2 = -2 ( 1 - k2
) xi 

a3 = r?k2 +Xl- a] (1- k2
)

2 

a4 = 2a] (1- k2)Xi 
X2-2 a5 =- iai 

(38) 

(39) 

The solution of equation (38) gives a set of four complex roots X~, l = 

[1, 4]. Only real roots of the set of X1(Im(X1) = 0) are used to calculate 
Y from (32). The resulting set of (X, Y) under applying the condition (35) 
gives the location of the point Ti(Xrj, Yrj)· 

Ellipse i overlaps with ellipse j if the location of Ti satisfies the condition 
{36). Finally, the co-ordinates of "tauch" point Ti (xTi, YTi) in the Iabaratory 
frame reference { x, y} are restored by a sequence of reverse transformations 
of co-ordinates. Another "touch" point ~ on the ellipse i is calculated by 
the same algori thm. 

Due to limited computer accuracy, calculation of analytical solution of 
polynomial (38) is complicated only for k = bi(äi --7 1 or Xi --7 0. But then, 
location of Ti may be found simply without solution of quartic polynomial 
(38) in these cases. Therefore present algorithm appeared to be more re
liable than Ting (1992) algorithm, which may result ill-conditioned quartic 
polynomial in other cases of ellipses parameters. 

Solution of the quartic polynomial (24) may be non-stabile (unreliable) 
due to considerable round-off errors which may be caused by limited com
puter accuracy. Below the analysis of such possibilities is presented. 
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By substitution of 

X= z + 2 (1- k2) (40) 

the quartic polynomial (38) is transformed into non-full quartic polynomial 

z4 + pz2 + qz + r = 0 

where parameters p, q and r are defined as 

(41) 

(42) 

(43) . 

(44) 

The polynomial ( 41) is solved by standard analytical procedure (Korn 
and Korn (1968)) through roots of the cubic polynomial 

3 p 2 p2- 4r q 
w + 2 w + 16 w - 64 = 0 

Roots of ( 41) is calculated as 

z = ±~ ± JW; ± v'Wa 
where signs are selected by the condition 

(±yW";). (±yfw;). (±y'w;) = -~ 

(45) 

(46) 

(47) 

But due to limited computer accuracy, solution of the polynomial ( 41) is 
complicated and unstable at least in two cases. 

The first trouble case is when k = bi(äi approaches to one, because it 
leads to considerable round-off errors. But in this case ellipse j may be 
treated as circle in frame reference {X, Y} and Ti may be calculated by 
simpler algorithm without problem. 

The second trouble case is when parameter q approaches to zero. Due 
to round-off errors the choosing procedure of roots by the condition (47) 
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may be unreliable. In the present algorithm, it may happen when Xi -t 0. 
The procedures of solution of 7j aretrivial in these cases and may be found 
without solution of quartic polynomial (38). 

Result of Ting (1992) geometric potential algorithm parameter is quartic 
polynomial too. And parameter q of non-full quartic polynomial of Ting 
(1992) may approach to zero in some other cases. Such example is for el
lipses defined as xi = 0.0490546, Yi = 0.0826842, ai = 0.00427 403, bi = 
0.00347603, ti = 1.66736, Xj = 0.0554617, Yj = 0.0797356, aj = 0.00430882, 
bi = 0.00247172, ti = 2.24469 (Fig. 10), which results to q = -2.09 · w-5 • 

AB a way out is to consider the quartic polynomial (41) as a quadratic poly
nomial by q = 0 and the substitution of Z = z2 , i.e. 

(48) 

But in certain locations of ellipses, it may result to no real roots at all for 
equation (38), if discriminate of the quadratic equation ( 48) is negative (for 
the example discriminate = 1.35817 · 10-6

). So solution may be unstable. 

"'-, 
\ 

Figure 10: An example of two ellipses contact 
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3.2.2 Iterative Solution 

ellipse i 
y 

el/ipsej 

Figure 11: The limits for searching the location of the touch point Tj 

Too many methods exist to find i teratively the touch point Tj (X Tj, Yrj) 
by looking for the shortest distance from the point oj - origin of the ellipse 
i to the ellipse j according to the equation (34) and the condition (35). 

The main problern is to optimise method by narrowing the limits for the 
searching of possible location of the touch point Tj. 

The touch point ~ is located within the semi-plane bounded by lines 
through the centres of both ellipses and furthermore is inside the triangle 
which is defined by three points Oi(Xi, Yi), Oj(Xj = 0, }j = 0) and P(Xi, 0) 
(Fig. 11). This defines three conditions to determine the position of the 
touch point. 

The first condition is that 1j is located in the same quarter of frame 
reference as oi 

sign(Xrj) = sign (Xi) 
sign(Yrj) = sign (Yi) 

The second condition is that 

(49) 

(50) 

The last condition defines that Tj is on the ellipse j between the crossing 
point s of the line, connecting the origins of the ellipses oi and oj' and the 
X-axis. 

(51) 
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IYil (52) 
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4 Simulation results 

4.1 Motion of Spheres in a Reetangular Enclosure 

The possibilities affered by the method to simulate particle motion in general 
and on a moving grate or in a rotary kiln of a combustion device in particular 
are demonstrated for the two-dimensional motion of granular material con
sisting of 500 three-dimensional spherical of different sizes but of the same 
material properties, of which the relevant details are listed in Table 1. 

Since the initial conditions for particles moving or resting in a packed bed 
cannot be specified a priori, the calculations were carried out in two stages. 
Especially since the packaging of the particles results from their previous 
dynamics, plausible initial conditions can only be obtained by a separate 
calculation. The first calculation was started with the setup shown in Fig. 
12. 

Initially, the three-dimensional particles were distri buted on an orthogo
nal and uniform grid represented by a two-dimensional box of 2 x 3 m in size 
(Fig. 12). The size of the grid cells was equal to the diameter of the largest 
particle. Thus, particles placed in the centre of the cells did not experience 
contact with their neighbours. Particle size and initial velocities of the indi
vidual particles were chosen randomly. The components of the velocity and 
the position into the y-direction were set to zero, which Iimits the motion to 
the xz-plane. The subsequent motion of particles was calculated taking into 
account the inftuence of gravity forces (9x = -l0mjs2 ,gy = 9z = 0) and 
particle contacts occurring during motion. The final result shows how the 
particles came to rest within a particular arrangement (Fig. 13). 

The random distribution of particles and void space determines the total 
volume needed for the arrangement. The grey-coloured scale of the particles 
represents the averaU contact forces acting on a particle 

(53) 

which are inhomogeneously distributed in the packed bed. Connections be
tween neighbouring particles with approximately the same load display the 
typical arc structures of such arrangements. These arcs act as bridge-like 
structures concentrating loads on a few particles at the base of their "pil
lars" and thus hinder the motion. 

The results obtained from these calculations were taken as initial con
ditions for the following calculation, which predicts the motion of particles 
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Partide radius R 
Initial velocity v 
Density p 
Normal spring stiffness coefficient kn 
Normal energy dissipation coefficient ln 
Tangential energy dissipation coefficient lt 
Friction coefficient J-t 

Table 1: Spherical particle data 

0.03- 0.05 m 
0- 1 m/s 
1000 kg/m3 

5.0·10S Pa 
100 s- 1 

20 s- 1 

100 

Figure 12: Setup for particle motion: 2D problern in pseudo 3D plane 
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Figure 13: Particles at rest 

Figure 14: Start of discharge of particles 

27 



Figure 15: Discharge of particles into a combustion chamber 

when they are discharged through an open gate into a combustion chamber 
of 4 x 3m in size. In order to simulate this behaviour, the right wall of the 
box in Fig. 13 was displaced by a certain distance at the start of the calcula
tion. A front of moving particles penetrates the open space like an avalanche 
as shown in Fig. 14. 

Once the gate opens, the particles accumulated just behind it discharge 
into the combustion chamber, moving freely under the effect of gravity forces. 
While a liquid is subject to the linear variation of the pressure as a function 
of the depth, the moving bed experiences an inhomogeneaus Ioad distribution 
during the entire motion. During the motion of the bed, the particles order 
themselves into structures with the contact between them in the bed being 
more or less strong. These structures are shown in Fig. 14 and Fig. 15 and 
indicated by the different colours. If particles experiencing approximately 
the same load were connected by imaginary lines, these would delimit the 
structures. They extend throughout the bed and in some cases reaching its 
upper surface. Fig. 15 displays the state of the calculation when the front 
reaches the opposite wall, from where the particles bounce back, some of 
them leaving the formation completely. 

In general, particles in this region have a very loose contact with their 
neighbours, resembling a fluidised bed to a certain extent. As a result, the 
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void space has increased as compared to a packed arrangement. Again, 
branches of tree-like structures for the distribution of particles with approx
imately the same load become apparent and remain throughout the entire 
motion. 
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4. 2 Motion of Spheres in a Rotary kiln 

The following example depicts the mixing of granular material in a rotary 
kiln. lnitially, the three-dimensional spherical particles were randomly dis
tributed on a two-dimensional grid inside drum of 1.5 m radius, in similar 
way to the case of the previous chapter. Under the influence of gravity the 
particles came to rest after 2 seconds and then the drum started to rotate 
with an angular velocity Wy = 1 s- 1. 

A valanches occurring during the mixing process form rather flat surfaces 
of granular material (Fig. 16). However, the flow of particles may also form 
wave-like irregularities on the surface of the granular material (Fig. 17), 
which depend on the inner structure of the granular material and distribution 
of the contact force. 

Figure 16: Particles in rotary kiln- almost flat surface of the granular mate
rial 

30 



Figure 17: Particles in rotary kiln - waves on the surface of the granular 
material 
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4.3 Motion of Ellipses in a Rotary kiln 

Material properties, employed for the current simulation in a rotary kiln are 
listed in Table 2. 

Initial conditions were specified similar to the case of the previous chapter. 
Fig.18 shows an image of the particles falling under the influence of gravity 
and inter particle contacts. 

At an initial stage, particles almost do not experience any contacts with 
each other, so that they move freely under the influence of gravity and initial 
velocity. The motion is bounded by the bordering shape of the rotary kiln, 
which firstly stops the purely vertical motion and secondly causes particle to 
interact with each other as shown in Fig.18 for a timeoft = 0.1 s. 

Approximately half of the particles still fall down without contact to their 
neighbours, while a denser arrangement with increasing particle interaction 
takes place in the bottom part of the rotary kiln. Here, particles already 
experience several contact with their neighbours, indicated by the colour 
scale for the allover forces acting on a particle. Finally, all particles come to 
rest packed in the bottom part of the rotary kiln. At this stage, the random 
distribution of particles and void space determine the total volume needed 
for the arrangement. 

The following Figs. 19, 20 and 21 depict the arrangement. of particles 
during the transition of mainly vertical motion during the packaging process 
to rotational motion at time steps oft = 1, 1.5, 2 s. 

While a liquid is subject to the linear variation of pressure as a function 
of the depth, the moving bed experiences an inhomogeneaus load distribu
tion during entire motion. During the motion of the bed, the particles order 
themselves into structures with the contact between them in the bed being 
more or less strong. The colour scale of the particles represents the overall 
contact forces acting on a particle. Fig. 19 and 20 show rather inhomo
geneaus load patterns of the particles. While in Fig. 20 medium forces of 
approximately f = 10- 12 N govern the load in the bottom part of the kiln, 
the load distribution in Fig. 19 displays a smaller load level of approximately 
f = 6 N in this region. 

Fig. 21 depicts the typical arc structures of such arrangements, which are 
build up of particles cormected by approximately the same load. 

If particles experiencing approximately the same load were connected by 
imaginary lines, these would delimit these structures. These arcs act as 
bridge-like structures concentrating loads on a few particles at the base of 
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Partide Semi-axis 
Initial velocity 
Density 
Elastic constant 

R 
V 

p 

c 
Normal spring stiffness coefficient kn 
Normal energy dissipation coefficient 'Yn 
Tangential energy dissipation coefficient 'Yt 
Friction coefficient p, 

Table 2: Elliptical particle data 

their "pillars" and, thus, hinder the motion. 

0.001 - 0.005 m 

0- 1 m/s 
1000 kg/m3 

108 Pa 
5.0·105 Pa 
100 s- 1 

20 s- 1 

0.6 

FUrthermore, the velocity vectors and its direction in Fig. 22, attached 
to the centre of particles, show the motion of the centre of gravity of each 
particle. The velocity vectors indicate an inner and an outer loop, which the 
particles follow. The inner and outer loop represent a segregation of small 
and large particles, whereby smaller particles gather in the centre surrounded 
by bigger particles. The inner loop is located at approximately the centre 
of the packed bed, whereas particles of the outer loop follow the path along 
the surface of the packed bed and the contour of the rotary kiln. This effect 
is caused by different potential and kinetic energy of particles ernerging on 
the right hand side of the surface of the packed bed. Large particles, sliding 
down the slope of the packed bed reach the lower end of the slope due to 
a higher kinetic energy, while smaller particles already come to rest halfway 
the slope. There, they separate from bigger particles and enter the inner 
loop. 
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Figure 18: Motion in a rotary kiln and distribution of particle forces [N], 
t = 0.1 s 

Figure 19: Motion in a rotary kiln and distribution of particle forces [N], 
t = 1 s 
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Figure 20: Motion in a rotary kiln and distribution of particle forces [N], 
t = 1.5 s 

Figure 21: Motion in a rotary kiln and distribution of particle forces [N], 
t = 2 s 
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Figure 22: Motion m a rotary kiln and distribution of particle velocities, 
t = 2 s 
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4.4 Motion on a Travelling Grate 

The following Fig. 23 depicts the instantancous distribution of particle po
sitions and velocities for the transport on a travelling grate. 

Figure 23: Motion on a moving grate and distribution of particle forces [N] 

A part of the grate with its particles extracted is depicted in Fig. 24 to 
show particle velocities. A maximum value of the velocity of v = 0.09 m / s 
occurs due to the kinetics of the grate. Although, the motion of the particles 
is inhomogeneous, a major direction of the motion along the grate dominates. 
This indicates, that only little lateral e.g. versus the bed height occurs, 
and thus, the bed motion resembles a rigid body motion to a large extent 
H unsinger et al. ( 2000) and Beckmann and Scholz ( 2000). 

In general the load of particles increases with depth of the bed. However, 
arc-like structures, caused by the arrangement and the contact of particles, 
may prevent high loads on particles located on the grate surface. 
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Figure 24: Motion on a moving grate and distribution of particle velocities 
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4.5 Three-dimensional Packing of Soot Particles on a 
Filter 

The last application deals with the arrangement of spherical particles on a 
filter to demonstrate the capabilities of the method for the predictions of 
3-dimensional motion of particles. Filters for separation of solid particles 
are often used in teclmical applications and the packing of the particles on 
the filter surface is of particular interest. The latter is characterised by 
the porosity of the filtered particulate phase and allows to estimate loading 
and regeneration of the filter versus time. Therefore, the simulation method 
was applied to investigate the packing of spherical soot particles on a filter 
surface. The size distribution was taken from experimental measurements 
and is shown in the following Fig. 25 and Table 3. 

0.00 
l() 0 l() 0 l() 0 0 0 0 0 
N ("') ("') ~ '<!; ~ ~ ~ 0 l() 

0 0 0 0 0 0 "..- <"i <"i 
Radius, j.lm 

Figure 25: Distribution of the soot particles size 
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particle radius, ~-tm 0.25 0.3 0.35 0.4 0.45 
probability 0.074 0.059 0.029 0.059 0.074 
particle radius, ~-tm 0.5 1 1.5 2 2.5 
probability 0.294 0.162 0.132 0.074 0.044 

Table 3: Distribution of sizes of soot particles 

The sizes of the particles were chosen according to the given distribution, 
whereas the initial velocity of individual particles was assigned randomly 
up to a maximum value of Vmax = 0.5 mm / s. The initial positions of the 
particles were specified above the filter, from were the soot particles fall under 
the influence of gravity onto the filter surface. The following Fig. 26 depicts 
an intermediate stage during the packing of the soot particles. 

Figure 26: Packing of soot particles on the filter 

The distri bution is mainly govemed by the largest particles and some of 
the void space between the particles is occupied by smaller particles, which 
amounts to a value of the porosity of e rv 43%. 
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5 Summary 

Within this study a simulation method for the motion of granular material 
was approved to be applicable for the motion of fuel particles in combustion 
devices. The latter include different means of transport such as motion on 
a travelling grate or in a rotary kiln. The variety of geometrical forms of 
the fuel particles requires an additional elliptical shape beside a spherical 
shape. For the latter no difficulties arise to detect the overlap, however, to 
determine the contact for elliptical particles involved the development of a 
new algorithm. It is based on a sequence of transformations and thus, reduces 
the evaluation of the overlap to determine the distance between a point and 
the circumference of the elliptical body. The simulation method was applied 
to the motion in a rotary kiln and on a grate to proof its applicability to the 
above-mentioned objectives. In particular, the resl).lts for the forward moving 
grate showed, that the motion resembles a plug flow with little lateral mixing. 
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