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Finite element analysis of liquid filled structures under gravity loading

The large deformation analysis of membrane or shell structures loaded and/or supported by liquid can be based on a
finite element description for the structure only. Then in statics the effects in the liquid have to be considered by using
the equations of state for the liquid, the information about the current volume and the current shape of the structure.
The interaction with the structure is then modeled by a pressure resulting from the liquid always acting normal to
the current wetted structural part. This description can be easily used to model the filling process without all the
difficulties involved with standard discretization procedures. In addition the consistent derivation of the nonlinear
formulation and the linearization for a Newton type scheme results in a particular formulation which can be cast
into a very efficient solution procedure based on a sequential application of the Sherman-Morrison formula.

1. Governing equations

The mathematical description of static liquid structure interaction can be based on the principle of stationarity for
the total potential energy δW of a liquid in an elastic structure and additional equations describing the physical
behaviour of the liquid. The variation of the elastic potential of the structure is specified by δelV ; δ�V denotes the
variation of a compressible gravity potential which interferes between structure and fluid; δexΠ is the virtual work
of external forces acting on the structure, see also [1].

δW = δelV + δ�V − δexΠ = 0 (1)

The interaction term between liquid and structure is described by a body fixed pressure force �p ∗n, with a non-
normalized normal vector ∗n = x,ξ ×x,η and the pressure level �p, see equation (2). x,ξ, x,η denote covariant unit
vectors on the wetted surface of the structure. The pressure acts normal to the covariant surface element dξdη along
the virtual displacement δu. Therefore a variational expression of a follower force is given.

δ�V =
∫

η

∫
ξ

�p ∗n · δu dξdη (2)

The hydrostatic pressure law �p for compressible liquids can be derived from a variational analysis of the gravity
potential and the virtual work expression of the pressure resulting from Hooke’s law hp = −K v−V

V by respecting mass
conservation for the liquid. For technical applications an uniform density and compression distribution throughout
the volume v of the liquid can be assumed. K denotes the bulk modulus and V the undeformed volume of the liquid.

�p = cp − xp − hp = ρ(v)g · (c − x) − hp (3)

With g as gravity and ρ as density, the pressure at the center c of the liquid is given by: cp = ρ(v)g ·c and resp. the
pressure at an arbitrary point x on the wetted structure by: xp = ρ(v)g ·x. In the view of a mesh-free representation
of the liquid, the constitutive equations are described by the shape and the volume of the structure via a boundary
integral representation. The volume v and the center c of the liquid can be computed via:

v =
1
3

∫
η

∫
ξ

x ·∗ n dξdη and c =
1
4v

∫
η

∫
ξ

x x ·∗ n dξdη. (4)

2. Linearization, discretization and solution algorithm

A large deformation analysis of the structure including the liquid can be performed using a Newton type scheme by
applying a Taylor series expansion on the total potential energy and the constraint equations. The discretization
with standard FE-shell elements results in a symmetric displacement formulation. This implies that the proposed
model is conservative. The system of equations with the elastic and load stiffness matrix el,�K, the residual of
internal, external and interaction forces �F, the nodal displacement vector d, a volume pressure gradient �α and two
rank-one vectors a and b results in:

[el,�K + �αa ⊗ a + b⊗ a + a ⊗ b]d = �F. (5)

This can be interpreted as a symmetric rank-three update of the matrix el,�K coupling all wetted degrees of freedom
together. Applying the Sherman - Morrison formula an efficient solution can be computed by two additional forward-
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backward substitutions:

d1 =el,� K−1 �F, d2 = el,�K−1 a, d3 =el,� K−1 b. (6)

The nodal displacement vector for one iteration step is given by a linear combination of the three auxiliary solution
vectors: d = d(d1,d2,d3).

3. Numerical example

An elastic cylindrical vessel (weightless, elastic modulus E = 21 · 1010 N
m2 , Poisson’s ratio ν = 0.3) with a very thin

wall - close to a membrane - is completely filled with water (density ρ = 1000 kg
m3 , bulk modulus K = 0.5 · 109 N

m2 ).
In a first load step the vessel is pressurized by 1 bar at the top of the vessel indicating the weight of the plate. In a
second step the structure is loaded by a given displacement uext of the loading plate, see figure (1b).
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Figure 1: a) radial displacement vectors - first load step; b) height h = 10m, diameter d = 10m, piston diplacement
uext = 4m; c) radial displacement vectors - final load step; d) mass conservation vs. piston displacement uext; e)
liquid pressure hp / gas pressure gp vs. fluid volume v; f) location of center c of volume vs. piston displacement uext

Due to the large deformation with a maximum of uext = 4m density and volume change according to the conservation
of mass, see figure (1) d). The decrease of the volume implicates an increase in the pressure level hp in the liquid.
For comparison only a gas filling is considered too, see figure (1) e). A provisional result is the position of the center
c of the volume, which changes with the displacement of the piston, see figure (1) f).

4. Conclusion

The proposed approach to describe the interaction of liquids with strongly deforming structures by state equations
has several advantages. First, the mesh-free analysis of the liquid avoids remeshing procedures in large deformation
analysis. Second, no contact models between liquid and structure have to be considered. Third, stability inves-
tigations can be carried out taking the specific decomposition of the stiffness matrix of the coupled problem into
account. Fourth, the solution of the coupled equation can be efficiently performed based on the subsequent use of
the Sherman - Morrison formula involving only the triangular decomposition of the structural matrix. Summarizing
all, the computational effort is significant lower and better adjusted than in conventional fully discretized methods.
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