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Vorwort des Herausgebers

Zukiinftige Mobilfunkgerite werden eine wesentlich hohere Flexibilitét besitzen als
die heute im Betrieb befindlichen. Dazu gehoren natiirlich die von Software Radios
geforderten Multiband- und Multistandardféhigkeiten. Neue Entwicklungen, die
in engem Zusammenhang mit verénderten Verfahren der Frequenzvergabe und
der Nutzung des elektromagnetischen Spektrums (gemeinsame Nutzung, flexible
Ressourcenzuteilung) stehen, zielen unter anderem darauf ab, Endgerite sensibel
fiir ihre Umgebung zu machen. Dabei stellt das Terminal z.B. fest, wer in seiner
Umgebung welche Frequenzen mit welchen Ubertragungsverfahren nutzt. In letzter
Konsequenz fiihrt das auf die Entwicklung von Cognitive Radios * .

Funkiibertragungsverfahren werden durch die Definition ihrer Luftschnittstel-
len, die so genannten Standards, festgelegt. So ist es nur natiirlich, dass ein
Cognitive Radio die Luftschnittstellen spektral benachbarter Sender bestimmen
konnen sollte. Unter Erkennung einer Luftschnittstelle wird in diesem Zusam-
menhang immer ihre Wiedererkennung verstanden. D.h. sdmtliche Parameter
der zu erkennenden Luftschnittstelle sind dem Cognitive Radio bekannt, es fiihrt
keine Signalanalysefunktion aus. Seine Aufgabe besteht dann darin, bei vorgegebe-
nem Empfangssignal festzustellen, welcher Standard hinter der Ubertragung steht.
Da die Erkennung einer Luftschnittstelle Teilaufgaben umfasst, die, wie z.B. die
Modulationsartenerkennung oder die Bitstromanalyse, bekanntlich fiir sich allein
genommen schon schwierig sind, sollte in der vorliegenden Arbeit allein die Wie-
dererkennung von Standards innerhalb der ihnen zugewiesenen Frequenzbereiche
untersucht werden. Diese Einschrankung ermdéglicht, wie der Autor zeigt, eine
Losung der Aufgabe.

Die vorliegende Dissertation Air Interface Identification for Software Radio
Systems von Herrn Mengii¢ Oner liefert erste Erkenntnisse zur Wiedererkennung
von Luftschnittstellen in Software Radios bzw. Cognitive Radios. Der Beitrag der
Arbeit liegt in

o der Untersuchung einer Methode zur automatischen Kanalsegmentierung mit
Hilfe von Clusteranalyseverfahren und

e dem Nachweis, dass unter den vorgegebenen Randbedingungen (insbeson-
dere die Kenntnis des zu erwartenden Sendeverfahrens) eine Wiedererken-
nung von Luftschnittstellen {iber die Analyse zyklostationdrer Eigenschaften
erfolgen kann.

Karlsruhe, im Dezember 2004
Friedrich Jondral

I{Uber eine Definition des Begriffs Cognitive Radio wird derzeit im Software Defined
Radio Forum debattiert. Diese Diskussion basiert u.a. auf der Dissertation Cognitive
Radio - An Integrated Architecture for Software Defined Radio von Joe Mitola (KTH
Stockholm, 2000)
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Zusammenfassung

Der Begriff Software Radio (SR) wird um 1990 erstmalig in der Literatur erwéhnt.
In das Bewusstsein einer breiten Offentlichkeit wurde er 1995 mit der Veréffent-
lichung eines Sonderhefts des IEEE Communications Magazine zu diesem Thema
geriickt: Ein SR ist ein Transceiver, dessen Funktionen so weit wie moglich als
Programme auf einem Rechner laufen. Seine Hardware ist so beschaffen, dass
auf ihr unterschiedliche Sende-/Empfangsalgorithmen, die in aller Regel Uber-
tragungsstandards wiedergeben, implementiert werden konnen. Das Ziel dieser
Arbeit ist die Entwicklung eines Verfahrens zur Wiedererkennung des benutzten
Ubertragungsstandards zur automatischen Einstellung der Basisbandsignalverar-
beitung eines SR-Empfangers. Fiir diesen Zweck sollen die fiir die Einstellung des
Empfingers notwendigen Parameter aus dem Empfangssignal schnell und zuverlés-
sig extrahiert werden.

In dieser Arbeit wird angenommen, dass es keine feste Bindung von Ubertra-
gungsstandards zu Frequenzbidndern gibt wund die Frequenzzuteilung
nachfragegesteuert erfolgt. Der Empfinger soll das benutzte Ubertragungsverfahren
durch das Empfangssignal wiedererkennen und seine Parameter dementsprechend
automatisch einstellen. In der Literatur wird dieser Vorgang als Initial Mode Iden-
tification (IMI) bezeichnet. Dariiber hinaus muf der Empfinger den Kanal stéindig
iiberwachen, um alternative Ubertragungsméglichkeiten zu finden, um ein verti-
kales Handover durchfiihren zu konnen, wenn es fiir den Nutzer vorteilhafter ist,
was in der Literatur als Alternative Mode Monitoring (AMM) bezeichnet wird.

In der vorliegenden Arbeit erfolgt die Wiedererkennung in zwei Stufen. In der
ersten Stufe werden die Anzahl, die Bandbreiten und die Trégerfrequenzen der sich
im Kanal befindenden Signale aus dem digitalisierten Signalgemisch extrahiert.
Dieser Vorgang wird als Kanalsegmentierung bezeichnet. In dieser Arbeit wird
ein auf Clusteranalyse basierendes automatisches Kanalsegmentierungsverfahren
vorgestellt.

Werden die Bandbreiten und Trégerfrequenzen der detektierten Signale richtig
geschétzt, kann man davon ausgehen, dass der zweiten Stufe des Erkennungssys-
tems Basisbandsignale zur Verfiigung stehen, die zu einem der bekannten Uber-
tragungsstandards zugeordnet, oder als unbekannt abgelehnt werden miissen. In
dieser Arbeit wird ein Verfahren zur Wiedererkennung der Luftschnittstellen vor-
gestellt, das die zyklostationdre Eigenschaften der Empfangssignale ausnutzt, um
luftschnittstellenspezifische Merkmale zu erzeugen, die zur Wiedererkennung des
Ubertragungsstandards benutzt werden kénnen. Dieses Verfahren, im Gegensatz
zu den herkdmmlichen Modulationsartenerkennungsverfahren, ist robust gegenii-
ber Rauschen und Mehrwegeausbreitung, und in der Lage, Signale mit komplexen
Strukturen zu erkennen, zum Beispiel CDMA ond OFDM basierte Signale.






Table of Contents

1 Introduction

1.1 Software Radio Reconfigurability: Implications . . ... ...
1.1.1 Spectrum Allocation . . . . . ... ... .. ......
1.1.2  Air Interface Identification . ... ... .. ... ...

Software Radio Fundamentals

2.1 Software Radio Overview . . ... ... ............

2.2  Software Radio Architecture . . . . . . .. . ... ... ....
2.2.1 Analog to Digital Conversion . . . ... ........
2.2.2  Software Radio Front End . . . . .. ... ......

2.3 Summary . . ... e e e e e e e

The Mobile Communication Environment

3.1 The Mobile Radio Propagation Channel . . . . .. ... ...
3.1.1 The Channel Impulse Response . . . . . . ... ....
3.1.2 Rice and Rayleigh Fading . . . .. ... ........
3.1.3 The Tapped Delay Line Channel Model . . . . .. ..
3.1.4 The WSSUS Assumption . . ... ... ........
3.1.5 The Doppler Effect . . . . . . ... ... ... .....

3.2 Mobile Transmission Schemes . . . . . ... ... .......
3.2.1 Single Carrier TDMA Systems . . ... ........
3.2.2 Single Carrier CDMA Systems . . ... ........
323 OFDMSystems. . . . ... ... ... .. .......

3.3 Summary ... ...

Automatic Channel Segmentation

4.1 Analyzing the Spectrum . . . . . ... ... ... oL,
4.1.1 Swept Spectrum Analyzers . ... ... ... .....
4.1.2 FFT Based Spectrum Analyzers . ... ........

4.2 Automatic Channel Segmentation . . . . . . .. ... ... ..
4.2.1 Preprocessing . . . .. ... .. .. ... ... ...,
4.2.2 Cluster Analysis . . . . . .. ... ... ... ...
4.2.3 Post Processing and Parameter Estimation . . . . . .
4.2.4 Simulation Results . . . . .. ... ... .. ...

=N

© ~

10
17
18

19
19
21
22
23
26
27
29
30
33
40
44



4.2.5

Summary . ... .. e 73

5 Air Interface Identification Exploiting Cyclostationarity 81

5.1 Imtroduction. . . ... ... .. ... ... .. ... 81
5.2 Continuous Time Cyclostationary Processes . . . . . . .. .. 83
5.2.1 Periodically Correlated Processes . . . . . ... .. .. 83
5.2.2 Polyperodically correlated processes . . . ... .. .. 84
5.2.3 Properties of Cyclic Autocorrelation Functions . ... 85
5.24 Cycloergodicity . . . . . .. ... ... ... 86
5.2.5 Cyclostationarity as Spectral Correlation . . . . . .. 87
5.2.6 The Spectral Correlation Density Function . . .. .. 88
5.2.7 Motivation . ... .. .. ... o o 91
5.3 Cyclostationary Properties of Communication Signals . ... 93
5.3.1 The Cyclic Autocorrelation of a linear modulated Signal 93
5.3.2 Cyclostationary Properties of a GMSK signal . . . . . 100
533 OFDMSignals . ... ... .. .. ........... 107
534 CDMA Signals . . .. ... ... ... ........ 109
5.3.5 Spectral line generation . . . ... ... ... ... .. 113
5.3.6 Summary . . ... ... 117

5.4 A CFAR Test for Detection of Cyclostationary Behaviour . . 118

5.4.1 Asymptotic Statistics of the Conjugate Cyclic Auto-
correlation Estimators . . . . . . .. .. ... .. .. 120
5.4.2 The Generalized Likelihood Principle . . . . . . .. .. 121
5.4.3 The Decision Statistics . . . . . . . ... .. ... ... 124
5.4.4 Implementation Issues . . . . ... ... .. ...... 127
5.4.5 Simulation Results . . . . .. ... ... .. ...... 128
54.6 Summary . .. .. ... 132
5.5 Effects of the Carrier Frequency Estimation Errors . . . . . . 133
6 Conclusion 137
A 139
Acronyms, Notations and Symbols 143
Bibliography 149

Curriculum Vitae 155



1 Introduction

Wireless digital communications is experiencing a veritable boom since the
beginning of the last decade and has been one of the fastest growing segments
in the telecommunications industry. The wireless revolution has started in
the nineties, with the introduction of the second generation mobile commu-
nications systems, such as GSM and DECT in Europe, IS136 and IS90 in the
USA and PDC in Japan. The next generation mobile standards, like UMTS
in Europe, are just beginning to enter service. Furthermore, wireless local
area network (WLAN) systems are drawing more and more interest. Digi-
tal Audio Broadcasting (DAB) and terrestrial Digital Video Broadcasting
(DVB-T) systems represent two examples, where digital wireless technology
was able to penetrate the area of terrestrial broadcasting, which was tradi-
tionally dominated by analog transmission schemes. Works on standardizing
the fourth generation of mobile communication systems have already started.

The main disadvantage of this explosion in the number of wireless stan-
dards is that the users require different equipment for each of these services.
As a consequence, there has been growing interest in terminals, which can use
multiple transmission standards (also called air interface standards). Techni-
cally, a reconfigurable receiver is required to implement this multi-standard
capability.

In nineties, Mitola has introduced the concept of Software Radio, which is
a design philosophy for building transceivers, that can accomodate a signifi-
cant range of radio frequency (RF) bands and air interface standards through
software running on general purpose digital signal processors (DSPs) [1]. For
the ideal Software Radio, that range includes all the frequency bands and
standards required by the user. Although not fully realizable with today’s
technology, the ideal Software Radio is considered as the ultimate evolutio-
nary stage in wireless communications.

1.1 Software Radio Reconfigurability: Implica-
tions

The multi-standard capable Software Radio terminals are expected to pro-
vide the users with unprecedented flexibility, since they will make it possible



2 1 Introduction

to choose, among the set of existing air interface standards, the one, which
is best suited to the user needs at a given time, in terms of provided service,
cost, traffic requirements and quality of service, which is expected to lead
to a considerable network indepence. However, in order to fully exploit this
flexibility, more intelligence and environmental awareness is required, both
from resource management systems, and from user terminals [2].

1.1.1 Spectrum Allocation

One of the most interesting implications of the Software Radio concept af-
fects the area of spectrum management. The reconfigurability and the multi
standard capability of the software radio can lead to more flexible, demand
oriented dynamic spectrum allocation schemes, that may benefit next gene-
rations of wireless communication systems.

The spectrum allocation process aims to distribute the scarce resource
of radio spectrum among available services. Today’s widely used approach
of a fixed and standardized spectrum allocation leads to very well defined
frequency channels, which can be only used by specific services. The fixed
planning of the spectrum use has the advantage of being easy to manage,
encourages strict standardization in user and operator equipments, allows
the best choice of technology for a given frequency band, leading to an
efficient and robust use of the allocated spectrum.

The main disadvantage of such a conventional approach is the lack of
flexibility in ressource allocation. It does not take the user demands and
traffic requirements into consideration, which leads to an overall inefficient
use of total available spectrum resources. Actually, the main goal of this
scheme is rather interference avoidance than capacity maximization

The introduction of reconfigurable Software Radio systems is expected to
pave the way to more flexible, demand oriented dynamic spectrum allocation
schemes, which will ensure the optimum delivery of the user’s wanted service
via the most appropriate air interface, while using the available spectrum
ressources as efficiently as possible [2].

As the software radio technology progresses, different spectrum allocation
schemes with increasing levels of flexibility may be introduced gradually,
with the ultimate goal of reaching fully dynamic, demand oriented spectrum
allocation.

¢ Fixed spectrum allocation with radio ressource sharing. This
is the first logical stage of evolution towards a fully flexible spectrum
allocation. In this case, fixed frequency bands are allocated for dif-
ferent wireless air interface standards. Interstandard handovers are
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possible to allow radio ressource sharing. This makes it possible to ba-
lance the traffic loads between standards and frequency bands. That
means, radio ressources are not, operated independently of one another,
requiring some degree of operator interoperability.

e Fixed spectrum allocation with spectrum pooling. Spectrum
Pooling is a ressource sharing strategy, which allows a license owner of
a spectral band to rent a sporadically used part of it to other users,
until he needs it himself [3]. This strategy can be used in combina-
tion with fixed spectrum allocation, providing fixed spectrum bands,
in time and frequency, for each standard and allowing the sharing of
some spectrum bands (the so called spectrum pools) between air in-
terfaces. This scheme allows a dynamic increase or decrease of the
spectrum allocated to each air interface according to the traffic needs,
leading to a more efficient use of the total available spectral ressources.
However, the spectrum sharing between different air interaces of possi-
bly different operators requires new mechanisms for resolving spectrum
contention, which will increase the complexity of the ressource mana-
gement algorithms and signalling requirements.

e Fully flexible spectrum allocation. In this scheme, no predefined
part of the frequency band is assigned to any of the standards. The
spectrum allocation takes place in a totally flexible and demand orien-
ted manner. This strategy requires a very high level of coordination
between the operators of the different air interfaces and the user ter-
minals, leading to highly complex ressource management algorithms
and signaling requirements.

To be able operate in an environment with dynamic frequency allocation,
and make the optimum use of its reconfigurability, a Software Radio terminal
needs some kind of environmental awareness. In [4], Mitola has described
an “intelligent” agent controlling the software radio user terminal, which is
able to adapt itself to the traffic, frequency environment and user needs,
which he refers to as the Cognitive Radio. The Cognitive Radio has to
continuously observe the physical environment, and make decisions about
how to use the available ressources in a most efficient manner. One of the
most important functions supporting the environmental awareness is the air
interface identification, which is discussed in the next section.
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1.1.2 Air Interface Identification

The multi mode capability of the Software Radio requires that a SR terminal
is capable of detecting, identifying and monitoring any of the air interfaces
available in its environment. The SR, when it is switched on, has to be able
to scan large areas of the spectrum in order to locate, identify and use an
air interface, and while connected to a network, it has to be able to monitor
alternative air interfaces to be able to perform interstandard handover if
necessary.

In the best case, the identification and monitoring takes place in a fixed
frequency allocation environment. In this case, the mode identification
consists of simple energy detection on a couple of predefined frequency bands:
If the software radio detects energy in the 900 MHz band in Europe, it can
only be GSM and nothing else.

The worst case scenario occurs, when the identification has to take place
in an unknown environment with dynamic frequency allocation, as discussed
in the previous section. In this case, the most obvious solution to this pro-
blem would be using a global pilot channel, known and accessable to every
user, which transmits information about existing air interfaces. The scope of
this information could range from the mere existence of the service in a spe-
cific frequency band, to more detailed and useful tips like tariff information
or the quality of service.

Despite the obvious advantages it offers, the global pilot channel concept
is not regarded as a possible future solution. Issues such as the ownership
of the channel, the involved costs and revenues and other economical and
political problems proved themselves to be insurmountable obstacles for the
industry to accept and standardize a global pilot channel [5]. That means
that the identification has to take place in a blind manner, i.e. without any
help from the network .

In a fully dynamic frequency allocation system, each air interface can
be operated at any frequency band. Therefore, prior to identification, the
SR has to detect and locate the individual air interface standards in the
frequency domain. I.e. it has to determine the number of different available
air interfaces in the radio frequency environment, and estimate their car-
rier frequencies and bandwidths. This process is referred to as the channel
segmentation.

It is reasonable to assume that, even in an environment with dynamic
frequency allocation, there will still be only a limited number of possible
well defined air interfaces, whose relevant parameters will be known to the
user terminals, or can be downloaded, as new air interface standards emerge.
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Features

Reconfiguration
Parameters

Fig. 1.1 SDR with a Mode Identification Subsystem

This reduces the problem of the air interface identification into a problem of
recognition: The air interface identification subsystem classifies the received
signal as belonging to one of the known air interfaces, or rejects it as unk-
nown. Fig. 1.1 presents the Software Radio structure proposed in this work,
where the air interface identification is performed using the bandwidth and
carrier frequency information provided by the channel segmentation stage
together with information provided by the air interface database, which in-
cludes all the relevant information about the air interfaces to be recognized.

In this work, a novel air interface identification algorithm, along with a
channel segmentation step, is investigated, which, unlike many of its coun-
terparts, is fairly robust against multipath fading and AWGN, and is also
capable of identifying signals which have a rather complicated structure, such
as OFDM and CDMA signals. This work is organized in the following man-
ner: In Chapter 2, an overview of the Software Radio concept is presented,
along with the technological aspects regarding its implementation. Chapter
3 provides an overview of the mobile communication environment, where
the characteristics of the mobile radio propagation channels are described,
and different types of mobile communication signals encountered in today’s
radio frequency environment are investigated, which give rise to different
signal structures. In Chapter 4, a channel segmentation algorithm is presen-
ted, which is based on cluster analysis. Chapter 5 provides an air interface
identification method based on exploiting the cyclostationary properties of
mobile communication signals. And finally, concluding remarks are made in
chapter 6.
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2 Software Radio Fundamentals

This chapter provides an overview of the Software Radio concept. It begins
with a definition of the Software Radio, summarizes the implications of the
flexibility which is an inherent property of the Software Radio, and discusses
the potential benefits it has to offer. Subsequently, this chapter adresses the
technological problems associated with the implementation of the Software
Radio, especially analog to digital converters and front end design.

2.1 Software Radio Overview

An exact and standardized definition of Software Radio (SR) does not exist.
Some definitions commonly found in the literature are [6]:

e A flexible transmitter /receiver architecture, controlled and program-
mable by software.

e A transceiver, where the frequency band, radio channel bandwidth,
modulation type, coding scheme, radio ressource management and user
applications are defined by software.

e Radio equipment, which is dynamically reconfigurable by downloa-
dable software at every protocol layer.

e A transceiver, where digital signal processing takes over as many radio
functionalities as possible.

In consideration of all these different points of view, we can come to the
following, more general definition: Software Radio is an emerging design pa-
radigm, geared towards building flexible radio systems, which are multi func-
tion, multi mode, multi band as well as reconfigurable and reprogrammable
by software.

The SR is mainly characterized by its flexibility, which is a direct conse-
quence of its reconfigurability. A Software Radio is multi mode capable,
which means, its air interface is reconfigurable and reprogrammable by soft-
ware, leading to a transceiver not only capable of using any existing wireless
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Air interface standard  Uplink(MHz) Downlink(MHz)
GSM 900 890-915 935-960
GSM 1800 1710-1785 1805-1880
GSM 1900 1850-1910 1930-1990
DECT 1881.792-1897.344 1881.792-1897.34
UMTS FDD 1920-1980 2210-2170
UMTS TDD 1900-1920 1900-1920
2010-2025 2010-2025
Bluetooth 2400-2483.5 2400-2483.5
IEEE 802.11b 2400-2497 2400-2497
HIPERLAN/2 5150-5350 5150-5350
5470-5725 5470-5725

Tab. 2.1 Operating frequencies of major wireless air interface standards

standard, but also of incorporating any future air interfaces, when they be-
come available, via software downloads or other means. Considering the
operating frequencies of today’s most important wireless standards given in
Tab. 2.1, it becomes quite clear that in the current frequency environment, a
multi mode SR transceiver has to be able to cover a wide range of frequency
bands, from 890 MHz for GSM to 5725 MHz for Hiperlan/2. This feature is
commonly referrered to as the multi band capability.

Another kind of reconfigurability affects the higher layers of the protocol
stack. The aim of this kind of reconfiguration may be to improve the perfor-
mance of those layers in terms of quality, speed and functionality, or to add
new features. For example a new encryption algorithm to improve system
security, or a new user application.

At the hardware level, achieving a high degree of reconfigurability re-
quires a reduction in the amount of relatively inflexible analog signal pro-
cessing elements used in the transceiver and the implementation of as many
of the radio functionalities as possible in the digital domain. That means
the analog to digital conversion in a software radio receiver has to take place
very near to the antenna.

From the perspective of digital signal processing hardware, reconfigura-
bilty means moving from dedicated application specific integrated circuits
(ASICs) towards more flexible programmable hardware, such as digital si-
gnal processors (DSPs) or field programmable gate arrays (FPGAs) for si-
gnal processing. The reprogrammability of the hardware allows the software
implementation of radio functionalities such as coding, modulation, demo-
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dulation, equalisation etc., which is a fundamental requirement for the multi
mode capability.

The software radio concept offers many advantages over the existing
conventional systems, which can be mainly attributed to its flexibility. These
advantages include:

e The enhanced user roaming provided by the reconfigurable terminals
is going to make the users able to roam around the world with the
same terminal without worrying about compatibility issues.

e The users will be able to choose the most attractive network, conside-
ring cost, quality of service, offered services, etc. from a set of available
networks.

e The ability to incorporate new features dynamically, as technology
progresses, will lengthen the life spans of the user terminals.

e The radio transmission characteristics of a software radio can be op-
timized according to the environment, traffic loads and to the service
desired, promoting a more spectrally efficient delivery of the service to
the user.

2.2 Software Radio Architecture

The simplified structure of an ideal software radio receiver is illustrated in
Fig. 2.1. The RF signal from the frequency band of interest, is digitized
immediately behind the antenna, without any substantial analog preproces-
sing steps. All of the signal processing required for the radio functionalities,
including downconversion and channelization, is performed by software run-
ning on digital signal processing elements. This approach, while allowing
a very flexible receiver in terms of reconfigurability, is not practicable with
today’s technology and will remain so for the forseeable future. Because of
the following reasons:

e Analog to digital conversion of the whole frequency band of interest
directly after the antenna requires high performance wideband analog
to digital converters (ADCs) which are not realizable with today’s
technology.

o Without the data reduction provided by the analog preprocessing, the
amount of data that has to be handled in the digital domain remains
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T BPF | » [>>| »ADC| » DSP

Fig. 2.1 The ideal Software Radio receiver

very high, requiring a very high processing power which in turn leads
to very high power consumption.

Hence, the ideal software radio, has to be considered as the ultimate stage
of evolution for research and development efforts, which can be hopefully
achieved in the future.

As an earlier stage of development towards the ideal Software Radio,
the so called Software Defined Radio (sometimes also called the pragmatic
software radio) represents a balancing act between full flexibility and tech-
nological limitations [1]. In a Software Defined Radio (SDR) the signal has
to undergo some analog preprocessing before the transition to the digital
domain, reducing the signal bandwidth that the ADC’s and the digital pro-
cessing have to cope with. As the technology progresses in core areas like
analog to digital converters, memory chips and signal processors, the tran-
sition boundary between the analog and digital domains will shift towards
the antenna, approaching the ultimate goal of a fully digital software radio.

In the light of the discussion above, it becomes quite evident that analog
to digital converters play a most critical role in the development of the
Software Radio technology. The performance of the ADC and its location in
the receiver chain affect the whole structure of the device and are key factors
determining the extent of the flexibility and the reconfigurability offered by
the system. In the following, we are going to have a closer look at the ADCs
and discuss their performance issues.

2.2.1 Analog to Digital Conversion

An ideal ADC, as depicted in Fig. 2.2, consists of a sample and hold circuit,
which performs the sampling operation, converting the continuous time si-
gnal into a discete time signal, a quantizer, and an encoder, which converts
the discrete samples into digital words.

For an ideal ADC, the only source of error is the so called quantisation
noise e, = Y, — Tn, which is generated in the quantization process. Given
an ADC with maximum and minimum quantized values of V and —V, a
number of of output levels @), and a resolution of N, = log2(Q,), the least
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(1) X Y,

Fig. 2.2 The ideal analog to digital converter

significant bit (LSB) is equivalent to A = Qi‘il.

error does not exceed half the LSB, i.e. |e,| < 5.

Therefore, the quantization

In order to facilitate the analysis, the following assumptions are made
about the noise process:

e The quantization noise is a sample sequence of a stationary random
process.

e The noise process e, is uncorrelated with the input sequence x,,.

e The probability density function of the noise process is uniform over

e The noise process is white.

Under these assumptions, the average power of the noise process is given

as:
A2 1 ov \P 1 [a4v?
2:—:— —_— ~ —| == 2.1
e T 19 12<2No—1> 12(22No> (2.1)

and the power spectral density of the noise process is given by:

A2

See(f) = 2
sample

|f| S fsample/2 (22)

with the sampling rate fsampie
If the signal is a zero mean random process with an average power of o2,
the signal to noise ratio of the ADC due to quantization is given as

2

Izy = 10109% +4.77 + 6.02N, (2.3)

2
SNRq = 10log(—5

a2
It is easily seen that increasing the resolution of the ADC leads to an increase
in SNRg, about 6dB per extra bit of resolution. Since the total noise
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power is independent from the sampling rate, oversampling can be used to
spread the noise power over a band greater than the bandwidth of the signal,
decreasing the in band noise power. If the input signal is a low pass signal
with a bandwidth 2fy,q. < fsample, only a small fraction of the total noise
power will fall into the frequency band [— fiaz, fmaz]- The noise power
outside the signal bandwidth can be easily suppressed by a low pass filter
after the analog to digital conversion. The in band noise power is calculated
as:

fsam le
Uf(ib) =07 (72,]8771:1 ) (2.4)

And the signal to noise ratio is then

2 max

2
SNRq = 10109% + 477+ 6.02N + 10109(%) (2.5)

An important performance measure of an ADC is its dynamic range.
The dynamic range gives the range of input amplitudes, for which the ADC
produces a positive SNR [7]. It is defined as the ratio of the power of a
sinusoidal signal, which produces the optimum SNRg to the power of a
sinusoid which results in 0dB SN Rq. Obviously, the maximum SNR occurs
when the signal has the maximum amplitude V', and, accordingly, the power
V?2/2. The sinusoid with the power 03 ib) will produce a SNRq of 0 dB.
Therefore, the dynamic range of an ADC can be given as:

Po t V2/2 fsam le
D = 10log—=22t =101 ( 710)
0 Ongin 0 o9 A2/12 2fmaw
= 1.76 4 6.02N, + 10109(%) (2.6)

In a practical ADC, there exist other error sources than the quantization
noise, mainly due to the limitations in the hardware. The most important
ones being;:

e Aperture jitter

e Thermal Noise

e Intermodulation products due to nonlinearities
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e Comparator ambiguities

These errors manifest themselves as additional noise in the ADC output,
decreasing the total SNR of the device. This is equivalent to a decrease in
the effective resolution for a given output signal to noise ratio, or a decrease
in the dynamic range for a given resolution.

The aperture jitter refers to the sample to sample variation in the sam-
pling instant due to the errors in the clock source. In practice, the sampling
process can be characterized by a mean and a standard deviation with res-
pect to the sampling time. The mean represents the average delay in the
sampling instant, whereas the standard deviation characterizes the varia-
tion of the sampling point and is defined as the rms aperture jitter 7,. The
additional noise power due to the aperture jitter errors can be given as

Jgj = (T fmazVTa)?, (2.7)
and depends on the bandwith of the input signal. This makes the aperture
jitter one of the main factors limiting the bandwidth of an ADC. A detai-
led analysis of the effects of jitter and other sources of error appearing in
practical ADCs is given in [8].

The power consumption is another important performance measure for
an ADC, especially in wireless applications, where the battery life is a crucial
issue. The power consumption usually increases with increasing resolution
and sampling rate, which limits the performance of the ADCs in a mobile
terminal.

Over the last two decades, there have been tremendous research efforts
in the area of analog to digital conversion, which led to the great amount of
different types of ADCs commercially available today. In the following, we
are going to have a look at the few core ADC architectures, which most of
the converters in the market are based on.

Flash Converters

The flash, or parallel analog to digital converter is one of the oldest and most
primitive ADC architectures. It consists of 2" — 1 comparators. One input
of all of the comparators is connected to the input signal via a sample and
hold circuit. The other inputs are connected to successive steps of a resistor
ladder, which functions as a voltage divider, as illustrated in Fig. 2.3. The
reference voltage connected to the resistor ladder represents the range of the
ADC. As the input voltage increases, the comparators, one after another,
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Fig. 2.3 Typical Flash ADC architecture

give 1 as output, which is then encoded into an N-bit word by the encoding
logic.

The benefits of this architecture are its straightforward design, high
speed, and its low cost at low resolutions. The most important drawback
of this design lies in the exponential increase in the number of comparators
with increase in resolution, which leads to a very high power consumption,
large chip area and high cost at high resolutions. Due to these problems,
flash converters are seldomly used for applications requiring more than 10
bits of resolution.

Multistage Converters

A multistage ADC, as shown in Fig. 2.4, consists of a cascade of k stages,
each containing a sample and hold circuit, a low resolution m bit analog
to digital converter, an m bit digital to analog converter and a gain block
between each stage [8]. During the operation, each stage converts the output
from the previous stage into a low resolution digital code, and then back to
an analog representation. The interstage amplifier is fed with the difference
from the held analog signal and the reconstructed analog signal, which turns
the residual signal over to the next stage. The residual signal is processed by
the next stages in the same manner. After the completion of all k£ conversion
stages, the outputs of the k£ m bit analog to digital converers are combined
to generate the final & x m bit word.
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Fig. 2.4 The Multistage ADC

In comparison to the flash converters, the number of comparators requi-
red by this design are much less: k(2™ — 1) comparators for k£ x m bits of
resolution instead of 2™* — 1, which results in smaller die size, lower power
consumption and reduced cost. On the other hand, the speed of conver-
sion is substantially lower, since the conversion takes place in more than one
step. With today’s technology, multistage ADCs can achieve up to 16 bits
of resolution at moderate bandwidths [8].

Sigma-Delta Converters

Sigma-delta (X-A) analog to digital conversion is a relatively new and pro-
mising technology, which uses noise shaping techniques in combination with
oversampling to achieve a high resolution. A first order Sigma-Delta Conver-
ter is illustrated in Fig. 2.5, where the quantizer has been modeled as an
additive noise source with properties described in the previous section. The
converter consists of a ¥-A modulator subcircuit , a digital low pass filter
and a decimator.

If the digital to analog converter is ideal, the output at the quantizer can
be given in the time domain as:

Yn = Tp—1+ €n — €p_1 (2.8)

and in z-Domain:

Y(2)=27'X(2)+ (1 - 27 HE(2) (2.9)
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Fig. 2.5 A first order ¥-A ADC

The output y,, consists of the sum of the delayed input signal plus the dif-
ferentiated quantization noise. Since differentiation is a high pass filtering
operation, the quantization noise is attenuated at low frequencies and am-
plified at high frequencies, which is called noise shaping. The out-of-band
noise is then removed by the low pass filter and the decimator following the
quantization.

The simplest form of 3-A ADC uses 1-bit quantization for the internal
DAC and ADCs. This provides sufficient resolution for high oversampling
rates. A detailed analysis of such an ADC is given in [9], where it is shown
that the output of the 1-bit quantizer is in pulse density modulated format,
which is averaged by the digital low pass filter to produce a digital signal
closely approximating the analog input signal.

Better noise attenuation can be achieved using a higher order noise trans-
fer function. In such a case, the input-output relationship of the ADC is
given as:

Y(2)=2"'X(2)+ (1 -2"HEE(2) (2.10)

where L is the order of the ADC.
Due to the noise shaping, the quantization noise analysis for 3-A conver-
ters is different. For an L’th order ¥-A converter, SN R given as [9]:

2L

|

) + (2L + 1)10l0g( IE ) — 10109 (57

NRo = 101 (
SNRg 0log o Y]

)(2.11)

ag
g

o N

From (2.11), it can be easily seen that increasing the order of the ADC
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results in a higher SINRg. However, higher order ¥-A converters are more
complex to design and lead to higher time delays and stability problems.

Another issue associated with the X-A design is that as a result of noise
shaping, high resolution can only be attained for low to medium signal band-
widths. This can be solved by using more complicated conversion architec-
tures with multiple Sigma-Delta converters in parallel, each of them conver-
ting different portions of the signal band [8].

In light of the discussion above, the problems associated with the ideal
Software Radio approach can be more easily comprehended. In order to
digitize the whole frequency band of interest with a bandwidth around 5
GHz, high speed ADCs with very low aperture jitter and very high dynamic
range are needed, which cannot be realized with any of the architectures
discussed above. This makes the existence of analog preprocessing in the
Software Radio receiver indispensable for the time being.

2.2.2 Software Radio Front End

The front end in a conventional wireless receiver performs the following func-
tions:

Channel selection

Interference suppression

Amplification

e Downconversion of the signal from the radio frequency (RF) to base-
band.

The front end of a Software Radio has two important differences compared
to the conventional receivers:

e Its operating frequency is not predetermined
e Its channel bandwidth is not predetermined

Many different front end architectures are currently in discussion for
a SDR. The traditional superheterodyne architecture, which performs the
downconversion in multiple steps has the drawback of being highly complex
and power hungry. More important than that, it lacks the flexibility, which
is crucial for a multi-mode multi-band operation. On the other hand, the
zero-IF receivers, which perform the downconversion in a single step, are less
complex and provide easier image suppression. The main problem here is
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Front End

Fig. 2.6 SDR architecture with a digital frontend

the need for phase and amplitude balanced mixers and oscillators over very
wide frequency bands [10]

Using a combination of analog mixing and downconversion with digital
down conversion and filtering is another approach, which has drawn conside-
rable attention in recent years [10]. In this case, the SDR Frontend consists
of an analog and a digital subsystem (see Fig. 2.6). First, in order to match
the dynamic range and the bandwidth of the signal to the capabilities of
the ADC and the DSPs, a limited band out of the full 5 GHz band is se-
lected and brought to an intermediate frequency (IF) by the analog stage.
This wideband signal contains a bundle of different channels, possibly from
different wireless standards. The signal is digitized at the IF and further
downconversion, filtering and channel selection is performed in the digital
domain, by the so called digital front end, which acts as a bridge between the
analog (RF and IF) signal processing and the digital baseband (BB) signal
processing.

From the Software Radio point of view, transferring a part of the func-
tions of the front end into digital domain makes perfect sense in terms of
reconfigurability and reprogrammability, shifting the transition boundary
between the digital an analog domains closer to the antenna, thus increasing
flexibility.

2.3 Summary

This section presented an overview on the Software Radio concept, along
with its strengths and limitations. The technological obstacles in the rea-
lization of an ideal Software Radio have been discussed, and an alternative
transceiver architecture, the so called Software Defined Radio has been in-
troduced



3 The Mobile Communication
Environment

This chapter presents an overview of the mobile communication environment,
in which the air interface identification is to be performed. In the first part,
the characteristics of the mobile communication channel are described, which
is a relatively hostile environment. In the second part, three fundamental
transmision schemes encountered in today’s radio frequency environment are
investigated, which give rise to quite different signal structures.

3.1 The Mobile Radio Propagation Channel

In mobile communications, electromagnetic waves are used to transmit si-
gnals from a transmitter to a receiver. The propagation properties of the
radiowaves are primarily determined by the carrier frequency of the signal,
and the physical environment of the transmitter and the receiver. In terres-
trial wireless communications, principally three different types of propaga-
tion scenarios are considered [11]

e Picocells, having usually a small radius, up to 100 m, are usually found
in indoor areas. Because of the small size of the cell, there usually
exists a direct line of sight (LOS) connection between the receiver and
the transmitter. The user speeds are usually low, around a couple
of kilometers per hour. The picocells are commonly used for wireless
LAN (WLAN) and cordless telephony applications.

e Microcells are usually located in urban areas and are characterized by
non line of sight (NLOS) conditions. The cell radius may be around
1 km. In this scenario, the user speeds are assumed to be around 50
km /h.

e Macrocells, having radii in the order of tens of kilometers, are usually
found in suburban and rural areas. A LOS connection between the
receiver and transmitter occurs rarely. The user speeds are assumed
to be higher than both of the previous cases, for example on highways
or in trains.
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Fig. 3.1 The Multipath Propagation in a Mobile Communications System

The propagation of electromagnetic waves in a mobile communications
environment is caracterized by three different effects

e Path loss is the attenuation in signal power due to the distance between
the transmitter and receiver. In vacuum, this loss is proportional to
the square of the distance. In mobile environments, where no line of
sight exists, the path loss may increase with higher exponents of the
distance, from 3 to 5, depending on the terrain characteristics. The
effect of path loss is a relatively slow long term variation in the mean of
the received signal power, which can be corrected using power control
schemes.

e Shadowing is the attenuation in signal power due to the physical obs-
tacles on the signal path, i.e. buildings, terrain characteristcs, tunnels,
etc. The effects of the shadowing falls into the category of slow fading,
and may also be compensated by power control algorithms [12].

e Multipath propagation is caused by the reflection, scattering and dif-
fraction of electromagnetic waves, as illustrated in Fig. 3.1. The signal
travels from transmitter to receiver on multiple different paths.The
replicas of the signal arrive at different time instants with different
phases, different amplitudes, different angles of arrival and different
polarisations. The superposition of the signal replicas cause a destruc-
tive or constructive interference at the receiver, depending upon the
relative phases. Since the variations in the interference pattern take
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Fig. 3.2 The Mobile Communications Channel

place over distances in the order of the signal wavelength, even small
changes in location of either the transmitter or the receiver may cause
major changes in the received signal level, giving rise to fast fading.

3.1.1 The Channel Impulse Response

From a system theoretic point of view, mobile communication channels can
be characterized as linear time variant systems [12]. Fig. 3.2 illustrates a
typical mobile channel, with the time varying impulse response h(t,v) and
the additive noise component n(t). The received signal in this case can be
given as:

o0

r(t) = 2(t)  h{t, v) + n(t) = / h(t, V)t — v)dv + n(t) (3.1)

— 00

The time varying channel impulse response (sometimes also called the delay
spread function) is the response of the channel at time ¢ to an impulse at time
t — v. The Fourier Transform of the time varying channel impulse response
with respect to v is called the time varying channel transfer function and is
given by:

T(t, f) = /Oo h(t,v)e 32"V dy (3.2)

— 00

In terms of the time varying channel transfer function, the received signal
can be given as:

r(t) = /:’O /,OO T(f, t)a(t —v)e® " dfdv + n(t) (3-3)
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3.1.2 Rice and Rayleigh Fading

A communication channel is called narrowband, when the time delay between
the longest and the shortest multipaths A7y is much less then the reciprocal
of the signal bandwidth B, i.e.

1
Amy << & (3.4)

In such a case, the receiver cannot distinguish between multipath replicas
arriving at different times, and cannot resolve the particular paths in time.
The channel impulse response in this case can be given as [13].

h(t,v) = h(t)d(v) (3.5)

and the time varying channel transfer function
T(t, f) = / h(t)8(v)e™ 2™V dy = h(t) (3.6)

Hence, the received signal is calculated as
r(t) = h(t)z(t) + n(t) (3.7)

The channel transfer function in this case is a time varying multiplicative
attenuation, also called a multiplicative fading coefficient. Since the whole
signal spectrum is attenuated with the same fading coefficient, channels of
this type are referred to as flat fading channels, or non-frequency selective
channels.

Since the wavelengths of the mobile communications systems are usually
much smaller than the path differences between multipath replicas of the
signal, we can assume that the phases of the multipath components are un-
correlated. This and the assumption of a large number of incident multipath
components leads to an analytic description of the probability density func-
tion (pdf) of the fading coefficient. Assuming that no single path dominates
others, and using the central limit theorem, we get a complex Gaussian den-
sity for the fading coefficient, which leads to a uniform distribution in phase
over the interval [0,27) and a Rayleigh distribution in amplitude, which is
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defined as [13]

falp) = L2 0 <p<oo (3.8)
g

where 02 is the variance of the underlying Gaussian process and p is the
amplitude of the process. The Rayleigh density is a useful tool for charac-
terizing narrowband channels with no dominating line of sight component.

If there is a dominant contribution from a line of sight path, the assump-
tions which have led to the Rayleigh distribution do not hold. It can be
shown that in such a case, the fading coefficient follows a Rice distribution

—(p24+82) /252 pﬁ
n(p) = %e (p"+67)/2 IO(;)’ 0<p< (3.9)

where (3 is the amplitude of the dominant path and Iy(.) is the modified
Bessel function, first kind, zero order, which is given as

1 [ 2
Io(pﬁ) - —/ eBreos(®)/” gy (3.10)
0

o2 2

The Rayleigh distribution can be seen as a special case of the Rice distribu-
tion with 8 = 0. In Fig. 3.3 Rice pdf’s are illustrated for different values of
the parameter .

3.1.3 The Tapped Delay Line Channel Model

Assuming that the transmitted signal x(¢) has a two sided bandwith of B,
applying the sampling theorem on the low pass equivalent signal x;(t) results
in the following signal representation [14]:

0= 3 () win

n=-—oo
The Fourier transform of x;(t) is

o) —i2nfn B
H 30 a(n/B)e /B | < B

Xz(f):{ s

.12
0 otherwise (3.12)
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Fig. 3.3 The Rice probability density functions with 02 = 1 for different
values of 3. For 5 = 0, The Rice density reduces to a Rayleigh density.

Using the low pass equivalent of the time variant channel transfer function
T,(t, f) the low pass equivalent of the received signal can be expressed as:

r(t) = / T X ()T, eIt + () (3.13)

Substituting (3.12) in (3.13) yields

1 & B/2 _
n(t) =4 > ai(n/B) [ B/QTl(t, e =B qf 4 n(t). (3.14)

n=—oo

Defining the band limited version of the low pass equivalent channel impulse
response as

B/2

hp(t,v) :/ Ti(t, f)e??™Vdf = hy(t,v) *

—B/2 (7v)

sin(wBv)

(3.15)
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we get
r(t) = % S° win/B)hp(t,t —n/B) +n(t) (3.16)
_ % S° wilt —n/B)hp(t,n/B) + nt).

Obviously, for large B, hp(t,v) converges to h;(t,v). We can write

o0

rl(t)z% > @t —n/B)h(t,n/B) + n(t). (3.17)

n=—oo

Introducing the time varying channel coefficients h,(t) as
1

the output of the channel can be expressed as

o0

r(t) =~ % Z x1(t — n/B)hn(t) + n(t). (3.19)

n=—oo

The form of the received signal in (3.19) implies that the channel can be
modeled or represented as a tapped delay line. The time varying impulse
response for the channel can be expressed in terms of the channel coefficients
as:

hi(t,v)= > ha(t)d(v —n/B) (3.20)
and the time varying channel transfer function is
Tyt f) = Y ho(t)e 7>/ (3.21)

In practice, multipath channels can be represented by a finite number of
taps. The number of taps M required for a channel depends on the co-
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Fig. 3.4 The Tapped Delay Line Channel Model

herence bandwidth of that particular channel, which is defined as the fre-
quency separation, where the correlation of two received signal components
becomes less than 0.5 [14]. Fig. 3.4 illustrates a tapped delay line channel
with M channel coefficients. The coefficients of the channel impulse response
are time varying stochastic processes with complex Gaussian distributions,
which give rise to Rice or Rayleigh distributed magnitudes, as discussed in
section 3.1.2 .

3.1.4 The WSSUS Assumption

This section describes the simplifying assumptions made in order to model
the statistical characteristics of the channel impulse response h;(t, v).

First, the assumption of wide sense stationarity (WSS) shall be examined.
A process is called wide sense stationary, if its first two moments, i.e. mean
and autocorrelation are independent of absolute time [15]. For a wide sense
stationary channel, this means that the autocorrelation function depends
only on time difference, and the mean is constant. In the tapped delay line
channel, described in the previous section, the WSS assumption leads to
random channel coefficients h,,(t) with constant mean values.

The second important assumption is the uncorrelated scattering (US) as-
sumption. In channels with uncorrelated scattering, the statistics describing
signal components arriving with different delays are assumed to be uncor-
related with each other. For the tapped delay line channel model, the US
assumption leads to channel coefficients which are uncorrelated with each
other.

The most useful channel model from the viewpoint of a mobile radio en-
gineer is the hybridization of the above channels, referred to as wide sense
stationary uncorrelated scattering (WSSUS) channels. The particular si-
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Fig. 3.5 The Doppler effect is caused by the relative movement of the
receiver with respect to the transmitter

gnificance of this kind of channels comes from the fact that they are the
simplest channels to analyse and model, that exhibit time and frequency
selective fading [16].

3.1.5 The Doppler Effect

For an accurate modelling of the mobile communication channels, the effects
of the doppler shift have to be also taken into account. The Doppler effect is
caused by the relative movement between the receiver and the transmitter,
which is illustrated in Fig. 3.5. The relative velocity v of the user causes a
shift in the frequency of the incident wave fc, which can be calculated as

fD = f%cos(ﬂ - 7) = fDmaa:COS(Tr - ’7) (322)

whith the Doppler shift fp, the speed of light ¢ ~ 3 x 108m/s, and the angle
of arrival of the wave is m — « as shown in Fig. 3.5. The maximum doppler
shift 4+ fp.nqq for a given v and fo occurs, when the wavefront arrives directly
from behind or from ahead (i.e. cos(y) = +1).

In an environment with multipath propagation, the signal at the receiver
is composed of several multipath components with different angles of arrival
and, consequently, different doppler shifts. The superposition of the signals
from different multipaths leads to the superposition of their individual Dop-
pler shifts, resulting in a spread of the signal in the frequency domain.

An analytic representation of the effects of the Doppler shift is achieved,
using the following simplifying assumptions:
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Fig. 3.6 The Jakes Spectrum

e The angle of the arrival of the incident multipath components is uni-
formly distributed over [0, 27)

e The wave propagation takes place on a horizontal plane

e The receiver employs an omnidirectional antenna with a circular pat-
tern

These assumptions result in a Doppler spectrum, which is given as [12]

1
O(f) = { V1=(f/foma=)? 1= fomas (3.23)
0 otherwise

and is illustrated in Fig. 3.6. This kind of Doppler spectrum is also cal-
led the Jakes Spectrum and represents the spread in the frequency domain
of a purely sinusoidal signal under the influence of the Doppler effect in a
multipath channel. Due to the time frequency duality, this frequency dis-
persive phenomenon results in a time selective behaviour of the channel, i.e.
higher user velocities result in wider doppler spreads, which lead to faster
fluctuations in the channel impulse response.

Taking the WSSUS assumption, Doppler spreading and fading effects into
account, an individual channel coefficient of the tapped delay line channel
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Fig. 3.7 Generation of a channel coefficient

model can be generated numerically as shown in Fig. 3.7. The imaginary
and the real parts of the channel coefficient are generated separately by
using two uncorrelated white Gaussian processes, giving rise to a Rayleigh
distributed amplitude. The effects of the doppler spread are modeled by the
filters approximating the Doppler spectrum.

3.2 Mobile Transmission Schemes

According to the transmission scheme used, this chapter divides the mobile
communication signals into three categories:

e Single Carrier time division multiple access(TDMA) signals. Most of
the second generation mobile telecommunication signals fall into this
category. The most prominent examples are GSM, DECT, PDC and
1S-136.

e Single carrier code division multiple access (CDMA) signals. The ame-
rican IS-95 and the 3rd generation UTRA systems are well known
examples belonging to this category.

e Orthogonal frequency domain multiplex (OFDM) signals. The wireless
LAN standard TEEE 802.11a and the terrestrial digital video broadcas-
ting (DVB-T) systems are air interfaces using this transmission scheme.
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Frequency Band 1880-1900 MHz
Carrier Separation | 200 KHz

Users/carrier 8
Duplexing Method | FDD
Frame Length 4.616ms
Slot Length 576,9us

Total Symbol Rate | 270,833 Kbit/s
Modulation Type GMSK with BT=0.3

Tab. 3.1 GSM System Parameters

3.2.1 Single Carrier TDMA Systems

An overwhelming majority of the second generation mobile communica-
tion systems currently in operation belongs to the category of single carrier
TDMA systems, where each user accesses the full channel bandwidth for a
fraction of time on a periodic basis. This means that, at a given time, there
is only one signal of one particular user on the channel, which makes the
separation of the users relatively less complicated. In the following a brief
overview of some air interfaces using this transmission scheme is presented.

GSM

Introduced in early nineties, GSM is one of the most successful mobile com-
munication standards. In Europe, GSM networks are operated on 900 MHz
(GSM 900) and 1800 MHz (GSM 1800) bands whereas the GSM variant used
in northern America resides on the 1900 MHz band. GSM uses a frequency
domain duplex (FDD) scheme, where uplink and downlink signals are trans-
mitted on different frequencies. On 900 MHz band 124 carrier frequencies
and on the 1800 MHz band 374 carrier frequencies are allocated for GSM
transmission with a carrier separation of 200 MHz. Each carrier is shared by
8 users in a TDMA fashion, with slot lengths of 576,9 us and frame lengths
of 4.616 ms. The total symbol rate on the channel is 270,833 kbit/s resulting
in a symbol length T of 3.692 us.

Because of its robustness against signal fading and interference, GSM uses
Gaussian minimum shift keying (GMSK) modulation, which is derived from
the minimum shift keying (MSK) scheme. The linear phase changes between
adjacent bit periods im MSK are smoothed in GMSK using a Gaussian filter,
avoiding the discontinuities in the phase derivative that result in a widening
of the signal spectrum [16].
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GMSK modulation, which is used in GSM, can be interpreted as a 2-level
FSK modulation with a modulation index h = 0.5. The complex envelope
of a GMSK modulated signal is

s(t) = exp[j2rmh Z dn/_ g(t — nTy)dr]. (3.24)

n=—oo

with the symbol sequence d,, € {—1,1}, the symbol rate f; = 1/T, and the
frequency impulse g(t) given as

1

gs(t) = irect(%) * PGauss (t)- (3.25)

The gaussian impulse pgauss(t) has the form

21

PGauss (t) = @ B - eajp( -

2(mBt)? )

3.26
n2 ( )

The key parameter of the GMSK modulation is the product of the 3dB
bandwidth B and the symbol length T, which is also referred to as the
normalized badwidth. A low BT, product results in a broader frequency
impulse g(t), leading to a higher ISI, while reducing the bandwidth, whereas
for a high BT product, GMSK converges to MSK, decreasing the spectral
efficiency. Fig. 3.8 illustrates the frequency impulse g(t) for different values
of normalized bandwidths BTs. For GSM, a BT product of 0.3 has been
chosen.

In order to compensate for the ISI arising from the low BT product and
from the time dispersive nature of the mobile propagation channel, the GSM
employs a Viterbi equalizer which performs Maximum Likelihood Sequence
Estimation (MLSE).

Originally designed for voice communication, the GSM system has under-
gone some modifications over the years to allow data communications with
moderate symbol rates. The HSCSD ( high speed circuit switched data) en-
hancement is a connection oriented scheme allowing the combination of up
to 4 time slots for a single user to achieve net data rates up to 57.4 kbit/s.
The GPRS (Global packet radio system) also allows the combination of time
slots, however, in a packet oriented manner. Using the GPRS scheme, data
rates of 115 kbit/s can be attained. The EDGE (Enhanced Data for Glo-
bal Evolution) uses a more radical approach to achieve data rates up to 384
kbit/s. It employs a higher level modulation type (8 PSK) instead of GMSK,
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Fig. 3.8 The Frequency pulse g(¢) for different values of the parameter
BT

using a pulse shape designed to maintain the 200 kHz carrier separation.

DECT

The DECT (Digital Enhanced Cordless Telephony) system has been intro-
duced in the early nineties [17]. It has been designed for cordless telephony
and data transmission in indoor office environments, for small mobile net-
works and as a mobile access method to the public telephone network (i.e.
local loop).

The air interface of the DECT system is based on TDMA on a frequency
band between 1880-1990 MHz. On this band, 10 carriers with a carrier
spacing of 1.728 MHz are used. Each carrier is shared by 12 users. The
uplink and downlink are separated by using a Time Division Duplex (TDD)
scheme. The frame duration is 10 ms, and the slot length 0.417 ms.

The total symbol rate on the channel is 1152 kbit/s, resulting in a sym-
bol length of 0.868 us. In DECT, like in GSM, the GMSK modulation is
employed, however, with a normalized bandwidth of BT, = 0.5. The higher
BT, product compared to GSM results in a simplification on the required
clock recovery procedures, and, most importantly, in a reduction in the ISI
inherent to the GMSK modulation , while increasing the signal bandwidth
(see Fig. 3.8). Since the DECT system has been dimensioned for use in



3.2 Mobile Transmission Schemes 33

Frequency Band 1880-1900 MHz
Carrier Separation | 1.728 MHz

Users/carrier 10
Duplexing Method | TDD
Frame Length 10ms
Slot Length 0.417ms

Total Symbol Rate | 1152 Kbit/s
Modulation Type GMSK with BT=0.5

Tab. 3.2 DECT System Parameters

picocells with radii in the order of 100 m and with maximum user speeds
of 20 km/h, the multipath delays in the order of hundreds of nanoseconds
occuring in such indoor environments do not cause any significant intersym-
bol interference either. Hence, DECT systems do not necessarily use any
channel equalization schemes. The flat fading ocurring in the channel is
compensated using antenna diversity techniques. Tab. 3.2 summarizes the
most important parameters of the DECT system.

IS 136

IS 136 is a mobile communication system primarily used in the USA. It is
the succesor of the IS-54 system which was introduced in 1991.

IS 136 uses frequency division duplexing with uplink on the 824-849 MHz
band and downlink on the 869-894 MHz band. The carrier separation is 30
kHz, which requires an efficient source coding scheme for voice transmission.
6 Time slots are assigned to each carrier. The total symbol rate is 24.3
kbaud/s, resulting in a symbol duration of 41.15 us. The IS-136 system
employs 7/4-DQPSK modulation using a raised root cosine impulse shaping
filter, with the roll-off factor p = 0.35. The relatively long symbol duration
compared to GSM results in a less severe ISI, which requires less complex
channel equalisation algorithms. However, unlike in GSM, the channel may
change significantly in one burst interval.

3.2.2 Single Carrier CDMA Systems

Most of the 3rd generation mobile communications systems are based on
single carrier code division multiple access (CDMA) schemes. In the CDMA
scheme, unlike in TDMA, the users are allowed to access the whole available
frequency band simultaneously, interfering with each other in time and fre-
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Fig. 3.9 Generation of a DS/SS Signal

quency. The separation of different users is achieved using user specific code
signatures. In this section, we shall investigate the principles of the CDMA
communications.

CDMA is based on the direct sequence spread spectrum (DS/SS) tech-
nique, which was originally conceived to provide covert communications with
an inherent robustness to jamming. The Figures 3.9 and 3.10 illustrate the
principle of the DS/SS scheme. The information signal with a data rate
1/Ts is multiplied with a pseudo random spreading code with a higher rate
1/T,. Since multiplication in time domain corresponds to a convolution in
the frequency domain, this operation results in a spreading of the informa-
tion signal in the frequency domain by a factor of T,/7T.. At the receiver,
the signal is recovered by multiplying again with the code sequence.

In a CDMA system, individual users transmit DS/SS signals simulta-
neously over the whole available channel bandwidth. The separation of the
user signals is achieved by using user specific spreading code sequences, which
display certain auto- and cross correlation properties.

Considering a synchronous system in an AWGN channel, the CDMA
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signal during the n’th symbol interval can be represented as:
K
r™(t) = Z dicx(t) +n(t), (n—1)Ts <t <nTs (3.27)
k=1

with the noise signal n(t), number of users K and the spreading code signal
¢k (t) which is defined as follows

Q
cr(t) = ergg(t— (g — 1)T0) (3.28)

where g(t) is the impulse shaping filter, and ¢y, 4 is the code sequence of the
k’th user with a code length Q.

In the receiver, the symbol of the j’th user is detected multiplying the
received signal with the code sequence of the j’th user and integrating over
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a symbol interval, giving

Ts K (T,
0 k=1 Y0

k#j

with n; = fOTS n(t)c;(t)dt. If the codes are normalized, i.e.fOTS c(t)dt =1,
we get

K T,
dj = dj + Z/O dij (t)Ck (t)dt + ny (330)
k=1

k]

The middle term in the expression above is called the multiple access inter-
ference (MAI), and vanishes if the codes of the different users are orthogonal
to each other, i.e.

Ts
/ Cj (t)Ck (t)dt = Ojk (331)
0

allowing the optimal separation of the individual users. Codes satisfying
the ortogonality criterion can be generated using a multitude of different
methods.

Under real life conditions with multipath propagation and possibly asyn-
chronous data transmission, where user signals and their multipath replicas
arrive at the receiver with different time delays, the orthogonality condition
of (3.31) by itself does not suffice to suppress the MAI. In such a case, the
cross correlation functions of the codes have to vanish for all possible time
delays [18], i.e.

/OO ciWert+7)dt =0  VjAk (3.32)

— 00

and, additionaly, the autocorrelation functions of the codes must approach
the ideal. Since such code sequences are not realizable, this receiver structure
is unable to totally eliminate the MAI, however, its effects can be mitigated
choosing code sequences with good auto- and crosscorellation characteristics.

The total CDMA signal at the receiver can be expressed as (see Fig.
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Fig. 3.11 The CDMA signal at the receiver
3.11), [18]:
K oo
r(t) =Y Agdr(n)er(t — nTs — i) * hi(t, v) + n(t) (3.33)
k=1 —o0
where

e 71 is the delay of the k’th user
e A; is the amplitude of the k’th user
e hy(t,v) is the time variant channel impulse response of the k’th user

As discussed before, one of the most important measures of the per-
formance of a spreading code family are its autocoerrelation and crosscor-
relation properties. If the user specific codes do not exhibit appropriate
correlation characteristics, additional signal processing may be required. To
give an example, the orthogonal variable spreading (OVSF) codes used in
the 3rd generation mobile communications system UTRA [19] have the ad-
vantage of being very flexible in terms of code selection. The codes from the
OVSF family remain orthogonal to each other, even for different spreading
factors. This property allows the variation of the symbol rate at a fixed
bandwidth according to the user demands. However, the the cross- and au-
tocorelation functions of the codes differ significantly from the ideal, leading
to an increased sensitivity against multipath propagation.

In order to improve the correlation characteristics of the user signal, the
so called scrambling codes are used [20]. The signal is multiplied with a
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scrambling code sequence after the user specific spreading. In UTRA, the
scrambling code sequences from the family of Gold codes with a code length
of 38400, or from the family of S(2) codes with a code length of 256 are
employed. The cell specific scrambling used in UTRA downlink serve also
for separating the signals from different cells.

In the following sections, we provide a brief overview of the UTRA and
IS-95 air interface standards which are two well known cellular mobile com-
munication systems using CDMA.

UTRA

The 3rd generation mobile communications standard UTRA has two dif-
ferent air interface modi. In UTRA TDD, uplink and downlink are separated
using a time division duplexing (TDD) scheme, whereas UTRA FDD uses
frequency division duplexing (FDD).

Both air interfaces use a bandwidth of 5 MHz per carrier on the 2 GHz
range. A total of 12 carriers are reserved for the UTRA-FDD mode, and 7
carriers for the UTRA-TDD mode. Both modi use QPSK modulation with
a root raised cosine impulse shaping filter with roll off factor p = 0.22 and a
chip rate of 3.840 Mchip/s.

The user specific spreading is carried out using orthogonal variable sprea-
ding factor (OVSF) codes, which, as pointed out earlier, allow transmitting
variable symbol rates over the same 5 MHz channel.

The UTRA FDD signal has a frame length of 10 ms. Each frame consists
of 15 timeslots, comprising 2560 chips. The spreading factor may take the
values 4, 8, 16, 32, 64, 128 or 256 in uplink, and 4, 8, 16, 32, 64, 128,
256 or 512 in downlink. In the downlink, the user signal undergoes a cell
specific scrambling, improving the correlation characteristics of the signal,
and providing cell identification. In uplink, the scrambling is done with user
specific scrambling codes instead. Since the user separation is provided by a
combination of the spreading and the user specific scrambling, this approach
allows the reuse of the OVSF codes by other users inside the same UTRA
cell. In uplink, each user can transmit over up to 6 data channels in parallel.
In such a case, the spreading factor must be chosen as 4.

UTRA-TDD uses time division duplexing to separate the uplink and
downlink signals. Like in the FDD mode, each 10 ms frame consists of 15
slots of length 2560 chips. Unlike the FDD, however, these 15 time slots
have to be shared between uplink and downlink. It is also allowed to assign
the time slots to uplink and downlink in an asymmetric manner, according
to the user needs. This flexibility makes the UTRA-TDD mode particularly
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| Air Interface | UTRA-FDD | UTRA-TDD |

Duplexing Method FDD TDD

Bandwidth 5MHz 5MHz

Chip rate 3.84 Mchip/s 3.84 Mchip/s

Frame Length 10ms 10ms

Slot per frame 15 15

Modulation Type QPSK QPSK

Impulse shaping filter Root raised cosine Root raised cosine,
roll off: r=0.22 roll off: r=0.22

Spreading Codes OVSF OVSF

Spreading Factors 4,...,256(Uplink) 1,...,16(Uplink)
4,...,512(Downlink) | 1 or 16 (Downlink)

Scrambling code length | 256 or 38400 16

Tab. 3.3 UTRA System Parameters

suitable for applications requiring asymmetric data flow, such as internet
browsing, where downlink almost always requires higher data rates than
uplink.

Again, OVSF codes are used for spreading. In uplink, spreading factors
of 1, 2, 4, 8 and 16 are allowed, and each user can transmit over a maximum
of 2 parallel channels. The spreading in downlink is carried out with a
spreading factor of 16. Tab. 3.3 summarizes the most important system
parameters of the UTRA air interface.

IS 95

The mobile standard IS-95 was introduced in the mid nineties in the USA
as the first mobile communication system ever based on the CDMA scheme.
It operates on the 824-894 MHz band with a bandwidth of 1.25 MHz per
channel, leading to a maximum of 20 available carrier frequencies. The chip
rate on each channel is 1.2288 Mchip/s with 7/4-DQPSK modulation for
the downlink and offset QPSK for the uplink. In downlink, Walsh codes
of length 64 are used for user specific spreading in combinalion with long
codes, which are used for scrambling. In uplink, the spreading takes place
a little differently. Each possible 6 bit combination is assigned to one of the
64 possible Walsh sequences of length 64, which are transmitted in place of
the actual bit sequence, which is called an orthogonal modulation. For the
user specific spreading, long codes are employed.
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3.2.3 OFDM Systems

The main drawback of single carrier transmission is the intersymbol inter-
ference (ISI) arising in mobile communication channels, where multipath
propagation occurs. This makes the received symbol d, not only dependent
of the actual transmitted signal d,,, but also of the previous transmitted sym-
bols d,,—;. The ISI increases with decreasing symbol length Ts and increasing
delay spread of the channel. Especially for broadband systems with very
short symbol time, the removal of ISI requires the use of computationally
demanding equalization algorithms, which increase the overall complexity of
the systems. The underlying principle of conventional multicarrier transmis-
sion is to divide a data stream into lower rate data streams and to transmit
them over a number of different subcarriers, well separated in freqgency by
guard bands to avoid intercarrier interference. This approach allows an in-
crease in symbol duration on each carrier, reducing the time dispersion on
each symbol due to the multipath propagation. However, using nonoverlap-
ping carriers separated by guard bands leads to a decrease in the spectral
efficiency of the system. OFDM, which is a special case of multicarrier trans-
mission, provides a method for increasing the spectral efficiency by packing
the subcarriers more densely, while avoiding intercarrier interference. In an
OFDM signal, with the proper choices for the carrier separation Af and
symbol length T, it is possible to arrange the the subcarriers so that the
signal can be received without interference from neighboring subcarriers.

The OFDM scheme has the following key advantages in comparison to
single carrier systems:

e An OFDM system has an inherent robustness against the effects of
multipath propagation, reducing, if not eliminating, the computational
load required for channel equalization

e An OFDM system is more resistant against narrowband interference,
since such interference affects only a small number of subcarriers

e In an OFDM system, it is possible to increase the system capacity by
adapting the data rate per subcarrier according to the SNR of that
particular subcarrier

o An OFDM system exhibits high spectral efficiency, especially for a high
number of subcarriers
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Spectra of individual subcarriers

Fig. 3.12 Spectrum of an OFDM signal with 5 carriers

OFDM Transmission

In an OFDM system, the QAM (Quadrature Amplitude Modulation) or PSK
(Phase Shift Keying) modulated information symbols are transmitted over
multiple carriers in parallel. In contrast to the conventional multicarrier
methods, OFDM uses overlapping subcarriers for the transmission. It can
be shown that the orthogonality between the subcarriers can be achieved by
choosing the subcarrier spacing A f as an integer multiple of the symbol rate
on the individual subcarriers 1/T;, and using a rectangular impulse shape
of length T on each subcarrier. In this case, one single OFDM symbol can
be written as:

Ne-1 ;. jomit
s(t) = { 20 dieap( ) 0<t<T. (3.34)
0 sonst

Where N¢ is the number of carriers. The receiver demodulates the OFDM
symbol by downconverting each carrier to DC and integrating over a symbol
length Ts. Le. for the I’th carrier we get

Nc—1

T. . . .
N ° —j2mtl 2mit
dl = /O ezp( jT:T ) E dlexp(j ;Z )dt

=0
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Since each of the subcarriers except the desired one exhibit an integer
number of periods within the integration interval T, they are orthogonal, i.e.
their contribution to the demodulation is zero, eliminating the intercarrier
interference.

The orthogonality of the carriers can also be observed in the frequency
domain. Fig. 3.12 shows the spectra of overlapping carriers in an OFDM
system with 5 subcarriers. The use of a rectangular pulse shape of length T
leads to a sinc(w fTs) type of spectrum for each subcarrier, which has zeros
for all f that are integer multiples of 1/T. Since the carrier spacing is also
chosen as Af = 1/Ts, the maximum of each subcarrier coincides with the
zero crossings of all the other subcarriers, which satisfies the orthogonality
conditions.

Using a conventional modulator bank to generate the OFDM signal would
require a very high number of oscillators and filters, making the implemen-
tation of such a system very costly. However, it can be easily shown that
the OFDM symbol of (3.35) can be generated by using an inverse discrete
Fourier transform (IDFT) on the N¢ information symbols [21]. This makes
a computationally efficient implementation of the OFDM system possible,
using fast and efficientt IFFT algorithms. The OFDM modulation process
using IFFT is illustrated in Fig. 3.13. After a serial to parallel conversion,
the discrete transmit signal is calculated by using the IFFT. Subsequently, a
parallel to serial conversion is carried out and the digital signal is converted
to analog. If the number of carriers does not equal the IFFT length, zero
padding must be carried out before the IFFT.
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Fig. 3.14 An OFDM Symbol with cylic extension

Guard time and cyclic extension

In practical OFDM systems, the effects of ISI are almost completely elimina-
ted by using so called guard times. The guard time T}, which is introduced
for each OFDM symbol, has to be chosen larger than the expected multipath
delays from the channel, so that the signal components from different paths
of one symbol do not interfere with the next symbol. At the receiver, the
guard interval is removed before the FFT block, restoring the orthogonality,
which has been lost by artificially extending the symbol length at a fixed
frequency separation.

In order to avoid the intercarrier interference (ICI) under multipath,
resulting from the delayed replicas of the OFDM signal, the guard interval
has to be designed cleverly. Different subcarriers interfere with each other, if
the cycles of the delayed versions of the subcarrier signals in an FFT interval
T, do not have an integer number. To prevent this, the OFDM symbol is
cyclically extended in the guard time, as shown in Fig. 3.14. As a result,
multipath components, which have delays smaller than the guard interval
cannot cause any intercarrier interference.

In the following sections, a brief overview of IEEE 802.11a and DVB-T
air interfaces is presented, which are based on OFDM transmission.

IEEE 802.11a

TIEEE 802.11a air interface has been developed for wireless local area network
(WLAN) applications. In USA, it operates on 5.15-5.25, 5.25-5.35 and 5.725-
5.825 MHz bands, with a channel separation of 20 MHz, giving rise to 20
available channels. It uses an OFDM scheme with 52 subcarriers. In each
OFDM symbol, four of the subcarriers are dedicated to pilot signals, in order
to make the detection robust against frequency offset and phase noise. The
symbol duration on each carrier is Ty = 4us with guard interval duration
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T, = 0.8us and the useful signal duration 7, = 3.2us, leading to a carrier
separation Af = 312.5 kHz and a total signal bandwith of 16.6 MHz. As
explained above, the OFDM symbols are extended cyclically in the guard
interval. The OFDM carriers are modulated with BPSK, QPSK, 16-QAM
or 64-QAM modulation depending on the requested net data rate, which can
take the values 6, 9, 12, 18, 24, 36, 48 and 54 Mbit/s.

DVB-T

The DVB-T (Digital Video Broadcasting-Terrestrial) is the digital television
broadcasting standard developed for use in Europe in the nineties. The
DVB-T has two different operation modes, which differ from each other in
the length of their FFTs and, consequently, in their carrier separation. The
8k mode, which uses an FFT length of 8192 is primarily conceived for larger
single frequency networks, whereas the 2k mode with an FFT length of 2048,
which is more robust to multipath propagation, is more suited for single TV
stations or smaller networks.

In the DVB-T standard, the subcarriers can be modulated using 4QAM,
16QAM or 64QAM. When transmitting with 16QAM or 64QAM, a so called
hierarchical modulation can be used to transmit two different data streams
with different priorities. The data stream with the higher priority repre-
sents the basic service with a moderate quality of service (i.e. picture or
sound quality), requiring lower SNR values, whereas the lower priority si-
gnal provides higher picture and sound quality, and possibly other services,
requiring higher SNR, values for proper demodulation. Depending on the
channel state, the user can choose between the both signals. For the details
of the hierarchical modulation, see [22].

3.3 Summary

This chapter has provided an overview of the mobile communication envi-
ronment. In the first part of the chapter, the effects of the multipath propa-
gation on mobile communication signals have been summarized, along with
the effects of doppler shift, and the simplifying assumptions, which are made
when modeling and analysing the mobile radio channel have been described.
An overview of three different transmission schemes has been presented in
the second part: single carrier TDMA, single carrier CDMA and OFDM,
which give rise to completely different signal structures, making it quite a
challenge to devise a single unified method, which can be used to identify
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all three of them. Examples are provided in form of actual air interfaces
currently in operation.
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4 Automatic Channel Segmenta-
tion

Prior to identifying an air interface standard, the first thing a Software
Radio receiver has to do is to localize its signal in the frequency domain
and isolate it. For this reason, the SR has to be capable of analyzing large
portions of the electromagnetic spectrum. Using the data from the spectrum
analysis, the SR has to automatically detect the number of active emitters
in its environment and their respective carrier frequencies and bandwidths,
as discussed in chapter 1. In the literature, this problem is referred to as the
channel segmentation problem [7].

This chapter provides a brief discussion on different spectrum analysis
techniques and introduces an automatic channel segmentation scheme based
on applying cluster analysis techniques on the spectrum analysis data.

4.1 Analyzing the Spectrum

In theory, the localization of power in the frequency domain can be perfor-
med by passing the signal of interest through a narrow bandpass filter and
measuring the average power at the filter output. The spectral band of in-
terest can be partitioned using a bank of narrowband bandpass filters, whose
center frequencies are seperated by the filter bandwidths. In the limit, as
the filter bandwidths approach zero, the measurements of the average power
normalized by the filter bandwidths result in the so called power spectral
density (PSD) of the signal. The PSD of a signal z(t) is given as

/
Sux(f) = lim lim 11 |hd(8) * (t)2dt (4.1)

where * is the convolution operation and hé(t) is the impulse response of
a band pass filter with bandwidth B, center frequency f and a gain of 1 at
the center of the pass band.

In practice, two principal methods have emerged for approximating (4.1)
over wide frequency ranges, which are used in today’s spectrum analyzers
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x(t)

Fig. 4.1 The swept Spectrum Analyzer

1. Swept spectrum analysis
2. FFT analysis

This section briefly presents the basic operation principles of both types of
analyzers and discusses the advantages and drawbacks of each method.

4.1.1 Swept Spectrum Analyzers

The swept spectrum analyzer is the most commonly used spectrum analysis
technique in practice. Fig 4.1 illustrates the operating principle of such an
analyzer. Basically, this type of analyzers attempt to approximate (4.1) by
sweeping a narrowband filter across the frequency range of interest Bspqn,
measuring the PSD of the signal at each frequency by calculating the average
power at the output of the filter. Since bandpass filters tunable over large
frequency ranges are very expensive, the input signal x(t) is swept past a
fixed narrowband intermediate frequency (IF) bandpass filter instead, mixing
the input signal with the output of a voltage controlled oscillator (VCO),
which is driven by a sweep generator.

The effects of the parameters of the IF filter on the performance of the
analyzer can be summarized as follows:

e Two spectrum components of equal amplitude can be resolved, if their
frequency separation is greater than the 3dB bandwidth of the IF filter,
which is called the resolution bandwidth (RBW).

e The filter selectivity, which is defined as the ratio of the 3dB bandwidth
to 60dB bandwidth determines, as illustrated in Fig 4.2, the resolva-
bility of the spectral components having different amplitudes. Since
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both signals trace out the same filter response, it is possible for the
weaker signal to be buried under the skirt of its stronger neighbour’s
response, if the selectivity is low.

Thus the IF filter has to be both narrowband and have a good selectivity,
approaching the dirac response in the frequency domain, i.e. §(f — frr).
Because of their good selectivity, filters with approximately Gaussian shape
are used in most swept spectrum analyzers. Typical selectivity values which
can be realized using analog filters range between 1:15 and 1:11. With digital
filters, selectivities in the range of 1:5 to 1:4 are possible [23].

The IF filter requires a certain time period to produce the required output
at each frequency, thus, the VCO cannot sweep through the frequency range
of interest too fast. This results in long measurement times in measurements
requiring a narrow RBW and wide frequency range. The main limiting factor
in the measurement speed is the ability of the IF filter to respond to the
magnitude variations resulting from the sweep process. This limited response
speed leads to errors in amplitude and frequency as the sweep rate increases
for a given IF filter. As a rule of thumb, these are proportional to the square
of the sweep rate [24]. Conventional swept spectrum analyzers keep these
errors within acceptable limits by automatically limiting the sweep rates
according to the selected RBW [24].
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x(t)

Fig. 4.3 The swept Spectrum Analyzer using a digital IF filter

Swept Spectrum Analysis Using Digital IF Filters

As high performance analog to digital converters and DSP technologies be-
came more and more available and affordable, the transition from analog
domain in the spectrum analyzers moved towards the input side of the de-
vice, following the general trend observed in all radio receiver architectures.
Newer generation swept spectrum analyzers employ digital IF filters instead
of analog ones, as illustrated in Fig 4.3, converting the signal into digital right
after the mixing process. This approach presents the following advantages
over conventional swept spectrum analysis:

e Better filter shapes with higher selectivity can be realized using digital
filter design (up to 1:4 vs. a maximum of 1:11 with analog filters)

e Digital filters offer more flexibility in the resolution bandwidth.

e Digital IF filtering allows higher sweep rates, since errors from digital
filters can be accurately corrected. This comes from the fact that
the dynamic characteristics of digital linear phase IF filters are very
predictable and can be therefore corrected to some extent.

4.1.2 FFT Based Spectrum Analyzers

It is well known that the power spectral density of a signal is equal to the
Fourier transform of the autocorrelation function of that signal. FFT (Fast
Fourier Transform) based spectrum analyzers make use of this fact, which
has been established by the Wiener-Khinchine theorem, by converting the
whole frequency range of interest into the digital domain and calculating the
periodogram of the disrete-time signal, which is the magnitude squared of
the Discrete Fourier Transform of the input signal. It can be shown that
the periodogram of a signal is equivalent to the Fourier Transform of its
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Fig. 4.4 The swept Spectrum Analyzer using a digital IF filter

autocorrelation estimate [25]. The periodogram is calculated using FFT.
Fig 4.4 illustrates the basic operating principle of an FFT based analyzer.

In an FFT based spectrum analyzer, the whole spectrum range of interest
is analysed simultaneously. Actually, the effect of the periodogram is the
same as using a bank of narrow band pass filters in parallel, resulting in a
faster measurement speed compared to swept spectrum analyzers, which is
the primary advantage of the FFT-based analyzers. The measurement speed
is limited solely by the processing power of the DSPs, which perform the FFT
operation. Another advantage of the FFT- based analyzers is their snap
shot capability. Since the whole frequency range is analyzed simultaneously,
phenomena, which occur in a short time interval can be detected by the
FFT analyzer, whereas the detection of such an event in a swept spectrum
analyzer requires that the analyser was sweeping the particular portion of
the frequency range of interest, where the event took place, at the precise
moment in which the event took place, which is unlikely if the sweep time
of the analyzer is much higher than the duration of the event.

The major problem in FFT based spectrum analyzers is that the whole
frequency range of interest has to be converted from analog to digital at the
same time. However, as discussed in chapter 2, errors in ADCs resulting from
the jitter effects increase with increasing signal bandwidth, which adversely
affects the dynamic range of the converter. From that reason, the dynamic
range of analog to digital converters become an issue, if the frequency span
to be analysed is large. Note that the swept spectrum analyzers using digital
IF filters also require high speed analog to digital converters, however, in this
case, only a narrow frequency segment in the same order of magnitude as the
resolution bandwidth is converted into digital, avoiding the dynamic range
problems.

If the frequency span to be analysed exceeds the bandwidth specifications

of the ADCs, multiple FFT’s computed over narrower bandwidths can be
concatenated to cover the required frequency range. This approach can be
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interpreted as a combination of the swept spectrum analysis with the FFT
analysis, since a frequency window is swept over the frequency span to be
covered, albeit in discrete steps. Obviously, the measurement speed of this
approach is less than the single FFT case, nevertheless, it is still faster than
the swept spectrum analysis, limited solely by the processing power of the
DSPs and the hopping time of the oscillators and represents a reasonable
trade-off.

The variance of the PSD estimate in both swept spectrum and FFT based
analyzers can be reduced employing time averaging: Averaging the results
from multiple sweeps at each frequency bin in the former, and averaging
multiple periodograms in the latter [25].

From an engineering point of view, using FFT based spectrum analysis
techniques in a Software Radio terminal seems more reasonable, since the
SR already requires high performance wide band analog to digital conver-
ters, as discussed in chapter 2 in order to perform as many of the radio
functionalities as possible in the digital domain and furhermore, it requires
FFT capability as an integral part for OFDM communication, as discussed
in chapter 3. Thus, FFT based spectrum analysis can be performed using
capabilities, which are already integrated into the SR architecture, even if
it may require improved performance from the correponding modules, such
as longer FFT length etc. Using swept spectrum analysis in a SR would
require the integration of a different receiver structure completely dedicated
to spectrum analysis into the Software Radio, which would be undesirable.

4.2 Automatic Channel Segmentation

Fig 4.5 exhibits the spectrum analysis data from a spectral band which is
occupied by 4 different radio emitters with different transmit powers and
spectral shapes, which has been estimated using an FFT based approach
with an FFT length of 4096. The task of the automatic channel segmenta-
tion subsystem is to detect the presence of these 4 different sources and to
estimate the bandwiths and carrier frequencies of every one of them, so that
they can be isolated and brought to the base-band one by one for further
analysis and processing.

This problem pretty much resembles the so called image segmentation
problem encountered in computer vision. Image segmentation is used in
many applications of image processing. Its aim is to extract useful informa-
tion from a digital image [26], such as detection of objects or structures and
estimating their parameters, such as area or center of weight, by either iden-
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Fig. 4.5 A channel segment with 4 sources

tifying homogenous regions in the image (i.e. region based segmentation), or
by detecting the contours of the regions (i.e.boundary based segmentation).

Channel segmentation can essentially be interpreted as an image segmen-
tation problem [27] where the output of the spectrum analyser represents a
one dimensional image, the “pixels” are the frequency bins and the “pixel
intensities” are the values of the PSD estimates at each frequency bin. The
regions to be detected are the contributions from the individual emitters,
and the parameters to be estimated are the bandwidths and carrier frequen-
cies. In this section, a region based automatic channel segmentation method
is presented, which treats the spectrum data as a one dimensional digital
image and makes use of image processing techniques like smoothing, mor-
phological operations such as erosion and dilatation and image segmentation
methods based on cluster analysis. The proposed algorithm consists of three
main stages:

1. Preprocessing
2. Cluster analysis

3. Postprocessing and parameter extraction.
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Spectrum Segment Smoothed Using Median Filtering
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Fig. 4.6 A channel segment with 4 sources smoothed by a median filter

4.2.1 Preprocessing

The key functionality of preprocessing is to improve the spectrum analysis
data in a way to increase the chance of succes of the following processing
stages. In this case, preprocessing involves the smoothing of the spectrum,
which facilitates the convergence of the cluster analysis algorithm employed
in the succeeding stages. The two most commonly used smoothing methods
in the image processing are averaging, which is essentially a low pass filtering
operation, and median filtering, which is a nonlinear filtering operation.
Since median filtering is known to preserve the edge information [26], as
opposed to averaging, which smears the edges, widening the spectra of the
individual signals, the proposed algorithm employs median filtering to reduce
the amplitude variations in the spectrum data due to AWGN, measurement
noise, multipath fading, etc., producing a relatively smooth spectrum. Care
should be taken that the filter window does not exceed about 20 % of the
bandwidth of the signal with the narrowest bandwidth expected, so that no
oversmoothing takes place, and all the spectral features are preserved. Fig
4.6 exhibits the result of such a smoothing operation on the spectrum data
from Fig 4.5, using a filter window of 53 frequency bins.
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4.2.2 Cluster Analysis

Clustering is a popular method employed in image segmentation. The aim
of cluster analysis is to partition a set of objects into homogenous groups,
so called clusters. The partitioning should be performed in such a way that:

e The objects belonging to the same cluster are as similar to each other
as possible, i.e. inside a cluster, homogeneity is required.

e The objects belonging to different clusters are as different from each
other as possible, i.e. between clusters, heterogeneity is required [28].

Clustering can be considered as an unsupervised learning process, which
aims at discovering and detecting hidden structural relationships between
the data points in a data set [29], which makes them particularly interesting
for segmentation problems. Usually, pixel intensities are used as features in
clustering based segmentation techniques in gray value images, which gives
rise to a one dimensional feature space, or RGB values in color images, which
leads to a 3-D feature space. This kind of segmentation can be viewed as an
adaptive quantization of the image, where the discrete quantization levels are
determined by the clustering algorithm. The same principle can be applied
to the channel segmentation problem, adaptively quantizing the spectrum
analysis data in such a way that the contributions from individual sources
can be distinguished from the background noise.

The most popular clustering techniques found in literature belong to the
family of competitive learning algorithms, where randomly initialized clus-
ter centers, also called cluster prototypes compete with each other based on
some optimality criterion in the feature space as the algorithm progresses.
This competitive step is usually followed by a learning step, where the para-
meters of the cluster prototypes are updated. These steps are repeated until
some convergence criterion is met or the number of iterations exceeds some
predetermined maximum value. The simplest competitive learning (CL) al-
gorithms are based on the hard competitive learning principle [29], where
the adaptation of the prototype of a particular cluster is performed using
solely those data points, for which this particular prototype has won the
competitive stage. For example the well known K-means algorithm belongs
to this group. Soft competitive learning algorithms, such as the fuzzy c-
means algorithm, however, treat more than one prototype as the winner to
some extent, and the adaptation is performed accordingly. Since the channel
segmentation problem, by its very nature, requires unambiguous region bor-
ders, hard competitive learning algorithms are more suited for this purpose.
In the next section, starting with the much popular K-means algorithm,



56 4 Automatic Channel Segmentation

K-means Segmentation
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Fig. 4.7 Channel Segmentation with K-means Algorithm; K=5

cluster analysis methods based on hard competitive learning principle are
investigated for use in the proposed channel segmentation algorithm.

K-means

The K-means algorithm has its roots in the works of Gauss [30], where he
proposed using the method of minimum mean squared error for parameter es-
timation problems. The K-means clustering algorithm is explicitly described
for the first time in the works of Hart and Duda [31]. K-means partitions the
data into K clusters in such a way that the mean squared error cost function

K

JKfmeans - Z ||)?] - Z ijﬁk||2 (42)

jeqQ k=1

is minimized,where X ;j is the feature vector for the j’th sample in the data
domain {2, (which is the smoothed PSD estimate at the j’th frequency bin
in our case), B, is the cluster prototype of the k’th cluster and z;j is the
membership indicator function, which is equal to unity, if the vector X j
belongs to the cluster k and zero otherwise. The K-means clustering problem
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can be stated as:

(Zjk, ﬁk] =argmin (Jx—means),J € L, k=1... K (4.3)

2k Pr

(4.3) can be solved iteratively by alternating between a competitive step,
where the assignment is carried out given the current estimate of the cluster
prototypes, and a learning step, where the cluster centers are updated given
the current clustering. The entire procedure is repeated until the clusters no
longer change. The cluster assignment of an input sample is determined by
selecting the cluster that minimizes the cost function, i.e. using the nearest
neighbor criterion. The cluster prototypes are determined by solving for the
zero gradient condition on Jx _cqns With respect to the cluster prototypes.
The algorithm can be summarized as follows:

1. Choose the number of clusters K
2. initialize K cluster prototypes randomly

3. For each j € Q, select zj;, such that

zjr =argmin (Jx —means),j € Q,k=1... K

Zik
4. Fork=1... K

p— Djeq 2k X
= g€Q IR
Zjeﬂ Zjk

5. Repeat steps 3 and 4 until z;; no longer changes.

Fig. 4.7 displays the K-means clustering results with K=5 on the smoothed
spectrum from Fig. 4.6. Note that all four sources are detected fairly well,
however, the bandwidth of the weakest source is somewhat underestimated,
since it is only 2 dB above the noise level.

Edge Adaptive Competitive learning

A problem associated with the K-means algorithm is that the contextual
information which is contained in the data set is completely disregarded,
that is all data points are evaluated by themselves, and their neighborhood
relationships are completely ignored during the clustering process. In [32]
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Pham has proposed an image segmentation algorithm, which incorporates
the edge information already present in the image in the cost function. This
algorithm is referred to as the edge adaptive K-means algorithm and can be
considered as a generalisation of the K-means clustering. The cost function
of the edge adaptive clustering algorithm is given as:

K K

Tea= > |1X; =Y zpPel> +AD VX =V Yz Pl (4.4)

jeQ k=1 jeq k=1

Note that the vector signs on P, and X; have been dropped, since this
algorithm is specifically designed for a 1-dimensional feature space. V is
the gradient operator which in our case is a simple differentiation, since
the image is one dimensional and can be approximated by using finite diffe-
rences. The first term in (4.4) is the cost function of the K-means algorithm,
which penalizes the difference between the original image and the segmented
image. The second term is the so called edge penalty, which requires that
the gradients of the original and segmented images to be as close as possible
to each other. Hence the segmentation is carried out based on both the spec-
trum intensity and the edge information, and the balance between the both
terms is controlled by the parameter A\. For A = 0 this algorithm converges
to the ordinary K-means algorithm, whereas when X is large, the influence
of the edge information on the segmentation becomes more predominant.
Since the scales of the amplitude feature space and gradient feature space
are different, it is more convenient to introduce a normalized balance factor
Ao which is defined as

~ scale(VX;)

Ao = scale(X;) (45)

As in the previous case, the competitive and learning stages are carried
out alternatingly, and the cluster prototypes are determined by solving for
the zero gradient condition on Jg4 with respect to the cluster prototypes.
The algorithm can be summarized as follows:

1. Compute the gradient of the spectrum data
2. Choose the number of clusters K

3. Initialize K cluster prototypes randomly
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Edge Adaptive K-means Segmentation
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Fig. 4.8 Edge Adaptive K-means segmentation with (a)\o = 1 (b)A\o = 5.



60 4 Automatic Channel Segmentation
4. For each j € (), select z;;, such that

zjr =argmin (Jga),j € Qk=1... K

Zjik

5. Fork=1... K

2jen (zijj FAV(XG = 2 Zijl)Vij)
2jea ik + AVl

P, =

6. Repeat steps 4 and 5 until z;, no longer changes.

Figs 4.8(a) and 4.8(b) display the results of an edge adaptive K-means seg-
mentation on the spectrum data from Fig. 4.5, \g = 1 and )¢y = 5 respec-
tively. As Ag increases, the edge information becomes more influential on
the learning process, i.e. the algorithm tries to place the cluster borders at
the extrema of the gradient of the smoothed spectrum, which may result in
misclassifications, if there are any sharp local peaks in the spectrum due to
noise or multipath fading, etc. which could not be smoothed out and give
rise to sharp maxima and minima in the gradient data. This phenomenon
can be observed in Fig. 4.8(b) where frequency bins belonging to the weakest
emitter have been misclassified because of the presence of a local maximum
in the smoothed spectrum.

Determining the Number of Clusters

Although both the K-means and the Edge Adaptive K-means are unsuper-
vised learning algorithms, they require that the number of clusters K is
predetermined. However, the number of the natural clusters in the input
data set is usually not known prior to the cluster analysis. If K is chosen
too low, this may lead to the so called one-prototype-takes-multiple-clusters
(OPTMC) phenomenon, which means that some of the natural clusters in
the input data set may be merged into one single cluster, and the corres-
ponding cluster prototype moves into the center of weight of these clusters.
This phenomenon is illustrated in Fig 4.11(a) in a two dimensional feature
space with three natural clusters and K =1 . If the K-means algorithm is
used, the cluster prototype P obviously moves into the center of the clus-
ters and starts to oscillate as input patterns are presented to the algorithm.
In the context of channel segmentation, this means that the segmentation
algorithm may fail to detect emitters with low SNR values, as illustrated



4.2 Automatic Channel Segmentation 61

The OPTMC Phenomenon
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Fig. 4.9 The OPTMC problem in Channel Segmentation

in Fig. 4.9 with K = 3, where the noise level and the level of the weakest
emitter a have been merged into one single cluster.

If K is chosen too large, this may lead to the so called shared cluster
problem, where one single natural cluster is unnecessarily partitioned into
multiple clusters, as displayed in Fig. 4.10 leading to an ambiguous segmen-
tation of the channel.

The usual approach for determining the optimum number of clusters is
to repeat the clustering for different values of K, incrementing it after each
clustering. The clustering result is evaluated using the corresponding cost
function at the end of each pass (i.e. Jx—means Or Jpa in our case). The
loop is terminated, if the gain resulting from further incrementing K (i.e
the reduction in the cost function) drops below a predetermined threshold.
However, this approach not always yields good results, if the abovementioned
threshold is chosen arbitrarily, without taking into account the distribution
of the input data, which requires a further analysis of the feature space.

The Self Splitting Competitive Learning (SSCL) algorithm, which is in-
vestigated in the following section presents a viable alternative to the ap-
proach described above, automatically finding the optimal number of clusters
in a data set, leading to good segmentation results.
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Fig. 4.10 The Shared Cluster Phenomenon in Channel Segmentation

Self Splitting Competitive Learning

The Self Splitting Competitive Learning (SSCL) algorithm, which has been
proposed by Zhang and Liu in [29] is based on the so called OPTOC (one
prototype tales one cluster) paradigm. The SSCL starts with one single
prototype randomly initialized in the feature space. During the learning
process, this prototype splits into two prototypes, based on a so called split
validity criterion. As the algorithm progresses, other prototypes are chosen
to split, if they meet the necessary criterion. The splitting terminates, if no
more prototype is found suitable for splitting. The membership function z;,
is determined using the nearest neighbor criterion as before.

In the core of the SSCL algorithm lies the OPTOC idea. In conventional
CL schemes, choosing the number of prototypes K less than the number of
the actual natural clusters in the data set leads to the OPTMC phenomenon,
as discussed previously where two or more natural clusters are merged into
one single cluster, and the corresponding cluster prototype moves into the
center of mass of these clusters. The OPTOC principle, however, ensures
that this cluster prototype is biased towards only one of these clusters and
ignores the others, as illustrated in 4.11(b)

This behaviour is achieved by assigning an auxilliary vector for each
cluster prototype, called the asymptotic property vector (APV) Ay, which
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OPTMC Phenomenon OPTOC Principle
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Fig. 4.11 Trajectory of a cluster prototype (a) In the case of OPTMC (b)
using OPTOC paradigm

is initialized at a random location far away from the corresponding prototype
Fj,. With the help of the asymptotic property vector, the so called dynamic
neighborhood of P is defined as the set of input patterns X; for which

1P — X5 < [1Ps — Al (4.6)

The OPTOC scheme is devised in such a way that the data points inside
this neighborhood will contribute much more to the learning process of P,
than those outside. At the beginning of the algorithm, Ay, is far away from
ﬁk, hence the neighborhood of ﬁk is large, containing patterns from all of
the natural clusters, i.e. there is no bias towards any of the clusters. As
the input patterns are randomly presented to the algorithm, B, and A}, are
updated in such a way that they choose a natural cluster and converge to its
center, progressively reducing the size of the neighborhood. The patterns X j
are presented to the algorithm one by one in a random fashion. Each time
a pattern is presented to the algorithm, the winning prototype is determi-
ned using the nearest neighbor criterion. Assuming that P, is the winning
prototype for X j, the update equation for the corresponding APV is given
as:

6k — — —

Ay = (X; — Ap)O(Py, Ay, X

) (4.7)

.

TLAk
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Where A’y is the APV update and @(ﬁk, A, X ;) is an indicator function
given as

5 L || Be = Al > ||1Pe = X

OF%, Ar, X5) = { 0, otherwise (48)

0 < dx < 1 is the learning rate of ﬁk, which may be constant or adaptive,
and n i is the so called winning counter of A which is updated as

TL;Tk :ngk +5k®(p}c;/¥k;)€j) (49)

Thus, Ay, will shift towards the presented sample, if it lies in the neighbo-
rhood of Py, otherwise it will not be updated at all. OPTOC is achieved by
letting Ay guide the learning process of P;. Consider the update equation:

Py = Py + (X, — Py) (4.10)
with
B A ’
= ( R ) (4.11)
|Pr — X + [ Px — Ag|l

For | P, — X;|| > || Py — Ai||, the learning rate 7, approaches 0, hence the
patterns outside the neighborhood do have only a small amount of influence
on the learning process of Py, whereas for || P, — X;|| < || Py — Ag|l, nx — 1,
which means patterns inside this neighborhood have a very large influence
on the learning stage. It can be shown that ultimately, Ay, and P, converge
to the same natural cluster, ignoring the others. B, is considered to have
converged, if the distance between ffk and ﬁk is smaller than a predefined
threshold ¢, i.e.

1P — Ayl < ¢ (4.12)

OPTOC by itself is not enough for a successful clustering, since it enables
each prototype to find one natural cluster, but does not adress the issue of
finding the optimum number of clusters K, which is especially crucial in
OPTOC, since choosing K too low will cause some of the clusters to be
ignored. In [29], a so called split validity criterion is introduced to judge if
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all the natural clusters have been classified after an OPTOC stage. If this is
not the case, one of the prototypes is chosen to split into two, incrementing
the number of clusters, and the OPTOC stage starts over from the begining.
This procedure is repeated until no further prototype satisfies the splitting
criterion. The overall clustering algorithm starts with one single prototype,
randomly initalized, and a new ptototype is spawned after each OPTOC
iteration, until all the natural clusters are found.

To calculate the split validity criterion, another auxilliary vector, the so
called center property vector C is assigned to each prototype. During the
learning process for ﬁk, Cr is updated according to K-means learning rules
using the input patterns, for which P, has been the winner. Obviously, if
the discrepancy between B, and Cj, is too large at the end of the OPTOC
stage, this means that this prototype does not accurately represent all the
patterns in the cluster k, and there must exist at least one natural cluster
which has been ignored by the OPTOC stage. The split validity criterion is
fulfilled,if

1B, — G|l > ¢@ (4.13)

where ¢(?) is a preset threshold. To simplify the algorithm, ¢() = ¢ = ¢
may be chosen. The parameter ¢ controls the accuracy of the clustering.
Choosing a too large threshold may lead to larger clusters and OPTMC
phenomenon, whereas a too small threshold leads to an unnecessarily large
number of clusters, leading to shared clusters and increasing the convergence
time of the algorithm. Determining ¢ adaptively from the analysis of the
feature space usually gives good results. In our case, choosing ¢ as 5% of the
maximum scale of the input feature space has provided a robust segmentation
of the channel.

After splitting, the mother prototype stays in its location, whereas the
daughter prototype has to be initialized at a location far away from the
mother prototype, in order to ensure that it does not compete with its pre-
cursor for the same cluster in the next OPTOC iteration. This is achieved
by employing a third auxilliary vector, a so called distant property vector
Rk, which is initialized at the same location as Pk, an progressively moves
away from it, as the OPTOC stage progresses. The update equation for Ry,
is given as

R = B+ 25 (X, — BB, X, By) (4.14)
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Trajectory of P,
T T

Fig. 4.12 P moving towards the centroid of a cluster coinciding with the
global centroid

0 < k <1 is the learning rate, which may be constant or adaptive, and
ng, is the winning counter of Rj, which is updated as

n/ék =Nz, +I€k@(Pk,Xj,Rk). (4.15)

If P, is found to be suitable for spliting, the daughter prototype is initialized
at the location of Ry.

It may sometimes occur that ﬁk moves to a cluster whose centroid coin-
cides with the global centroid of the feature space. In this case, P, will not
fulfill the split validity criterion, and the algorithm terminates, failing to find
the other clusters. This phenomenon is illustrated in Fig. 4.12. To prevent
this from happening, an additional bias factor is introduced to the update
equation of Pk, which is guided by Ry, The overall update equation P, can
be given as:

Py = Pe+ &i(X; — By) (4.16)

where the bias factor £ is given as

- - 2
& = | = R (4.17)
1Pk = Xl + || Pe — R
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as a result, data samples closer to B, will attract P, more than those closer
to Ry, leading to a bias effect. The interested reader is referred to [29] for
more details on the SSCL algorithm. The overall clustering algorithm can
be summarized as follows:

o Initialization

Set K =1;

Initialize Rl = ]31 randomly;

Initialize A; = C; randomly, but far from 131;

Determine (;
e Clustering

1. Repeat until | P,— 4| < ¢forl =1,..., K or a maximum number
of iterations is reached:

— Present a randomly chosen data point, find the winner proto-
type using the nearest neighbour criterion, label it with index
k,
— Update ffk, C_"k, Ry, and ﬁkaccordingly.
2. Splitting:
— ||P — Con| = maxy | P, — G| for L =1,..., K
if || P, — Con|| > ¢, split P, increment K;
- ﬁK - Rm;
assign C'x,Rx andAg;

goto 3

else goto 4

3. Reset:
— for 1=1,...,K do:
— RBi=F;
~ A=Cj;
— set all the winning counters to zero

— goto 1

4. Find K clusters, terminate.
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SSCL Segmentation
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Fig. 4.13 Segmentation using the SSCL Algorithm

Fig. 4.13 displays the results of an SSCL segmentation. The algorithm
has determined K = 5 as the optimal number of clusters. Comparing Fig.
4.13 to Fig. 4.7 and 4.8(a), the SSCL segmentation traces out the spectral
shape of the individual emitters and background noise much better than the
K-means and Edge Adaptive K-means algorithms, which is mainly due to the
progressively decreasing neighborhood size in the OPTOC paradigm, which
allows the input patterns concentrated in the close proximity of the natural
cluster centers to have more influence on the learning of cluster prototypes
than the ones farther away. Interestingly, the results provided by the SSCL
algorithm are better than the ones provided by the Edge Adaptive K-means
algorithm, although the latter makes use of the edge information, whereas
the former ignores it. Even though the SSCL algorithm can be modified to
incorporate the edge information, or some other type of contextual infor-
mation, it increases the computational complexity of the algorithm, which
is already considerably higher than the conventional clustering algorithms,
resulting in very little, if any, performance increase in return. Because of the
aforementioned advantages, the SSCL algorithm has been chosen to be the
core piece of the overall channel segmentation algorithm presented in this
work.
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4.2.3 Post Processing and Parameter Estimation

After the cluster analysis, the quantized spectrum data has to be processed in
such a way to detect the individual emitters and estimate their parameters.
The post processing stage can be summarized as follows:

1. Binarize the quantized spectrum by determining the noise level from
the clustering results.

2. Remove small artefacts or spikes which may arise at cluster boundaries
causing ambiguities using morphological operations, such as erosion
and dilation.

3. Detect the regions belonging to each emitter.
4. For each detected emitter, do the following:

(a) Focus on each emitter by extracting the corresponding frequency
bins from the smoothed spectrum, allowing for some offset from
the neighboring noise regions.

(b) Use SSCL clustering once more, this time only on the extracted
spectrum segment.

(c¢) Binarize the result.
(d) Remove the artifacts using morphological operations

(e) Estimate the bandwidth and carrier frequency of the emmiter
using the binarized spectrum.

Step 4 is an optional step, which focuses on the emitter segments one by
one, that have been detected in the initial clustering of the whole spectrum
range, in order to increase the accuracy of the parameter estimation, which
increases the computational complexity of the algorithm, since the clustering
has to be repeated for each detected signal source.

The noise-level threshold used in binarizing the quantized spectrum in
step 1 and step 4(c) is determined using by analyzing the two lowest quan-
tization levels, making, to some extent, allowances for the shared cluster
phenomenon, which may arise if the fluctuations due to measurement noise,
fading and AWGN could not be smoothed adequately in the preprocessing
stage. The lowest quantization level is chosen as the binarization threshold,
if the difference between the two lowest levels does exceed a predetermined
value ¢, otherwise, the average of the two lowest quantization levels are taken
as the binarization threshold. ¢ is chosen as 15% of the scale of the input
data segment for the step 4(c), and as ¢ = 0.5dB for the step 1.
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The morphological operations used on the binarized spectrum in steps 2
and 4(d), the dilation and erosion operators are well known basic operators
in image processing employed on binary images [26]. The so called opening
operator, which is an erosion operation followed by a dilation, is known to
remove artefacts like spikes, which may arise at the region boundaries due to
ambiguities in the segmentation, while preserving the region shapes excee-
ding the dimensions of the analysis window. Care sould be taken that the
window size of the opening operation does not exceed the smallest bandwidth
the segmentation algorithm is required to detect, so that its contribution is
not totally removed from the binary image.

4.2.4 Simulation Results

This section provides simulation results for the segmentation algorithm des-
cribed in the previous section. Three different scenarios are considered in
the simulations, which are displayed in Figs. 4.14(a), 4.14(b) and 4.14(c)
respectively.

Scenario 1

This scenario represents a crowded spectrum segment with 6 different sources
which have different bandwidths, different spectral shapes and considerably
different SNR. Tab 4.1 summarizes the parameters of the emitters for this
scenario. The SNR values for each source is given in terms of the background
noise level, NL, which is , for example, -15 dB in Fig 4.14(a).

S;; represents the j’th emitter (from left) in the i’th scenario. Tables 4.2
to 4.4 present the channel segmentation results for NL=-10dB,-15dB and -20
dB respectively, where

e the mean value of the carrier frequency estimates fc

the standard deviation of the carrier frequency estimates oy,

e the mean value of the bandwidth estimates E

the ratio of the standard deviation in the bandwidth estimate norma-
lized by the mean value of the bandwidth estimate op/B

are used to evaluate the segmentation of the channel. 1000 different rea-
lizations of the same channel are used for the segmentation algorithm for
each value of NL. In these three cases, the FFT resolution is 2 kHz/bin, and
an FFT length of 4096 is used to cover the 8MHz band. The segmentation
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results indicate that both the carrier frequency and the bandwidth estimates
are pretty accurate, and the standard deviations of the estimates increase
as the SNR decreases. Obviously, the emitters with lowest SNR values have
the highest standard deviations.

Tables 4.4 to 4.7 display the segmentation results for the same scenario,
but this time, the FFT resolution is twice as fine as the previous case i.e.
1kHz per frequency bin. Decreasing the resolution bandwidth results in a
reduction in the standard deviations of the estimates and leads to an increase
in the in the accuracy of the measurements, at the expense of an increase
in the computational burden, both on the clustering stages on the spectral
analysis stage.

Scenario 2

The second scenario represents a case, where a wide band and three compa-
ratively narrowband signals occupy the frequency band of interest, as shown
in Fig. 4.14(b). Table 4.8 summarizes the parameters of the four sources
to be detected. The ratios of the bandwiths of the narrowest emitter to
the wideband emitter is approximately 1:20. Note that all the emitters are
accurately detected, even though the emitter with the narrowest bandwith
occupies only about 2% of the spectrum range to be detected. Similar to
the previous scenario, three simulation runs have been performed using a re-
solution of 2 kHz per frequency bin, which are displayed in Tables 4.9, 4.10
and 4.11 (with NL=-5dB,-10dB and -15dB respectively), and another three
simulations are carried out with a resolution bandwidth of 1kHz/frequency
bin, which are shown in Tables 4.12 to 4.14.

Scenario 3

The third and final scenario describes a case, where two wide band and one
narrowband signals occupy the frequency range of interest, as illustrated in
Fig. 4.14(c). The parameters of the three emitters have been summarized
in Table 4.16. Tables 4.17 to 4.19 display the segmentation results for a
resolution bandwith of 2kHz with NL=-5dB,-10dB and -15dB respectively,
whereas in Tables 4.20 to 4.22, the results for 1kHz/frequency bin case are
shown.

The simulation results provided in this section allow the following conclu-
sions:

e The presented channel segmentation algorithm is capable of detecting
the signals and accurately estimating their bandwidths and carrier fre-
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quencies, even under low SNR conditions, and even if the bandwiths,
magnitudes and spectral shapes of the individual signals differ signifi-
cantly.

e The variance of the estimates increase as the SNR decreases, since
the fluctuations in the signal spectra increase and the distance to the
background noise level decrease with decreasing SNR.

e As expected, the variance of the estimates decreases and the measure-
ment accuracy increases with increasing FFT resolution.

e The mean of the bandwidth estimates increase with increasing SNR,
since a larger portion of the signals remain above the background noise
level.

4.2.5 Summary

Starting with a brief overview on spectral analysis methods, this chapter
presented a channel segmentation method based on cluster analysis of the
spectrum data. Several clustering algorithms have been investigated, and
among them, the SSCL has been found the most suitable for channel seg-
mentation purposes. The performance of the algorithm is shown by means
of simulation results.

The main problem associated with the proposed channel segmentation
approach is the bandwidth of the frequency range to be covered. If the whole
890MHz-5.8 GHz range has to be segmented, the amount of processing po-
wer, storage and time required for spectrum analysis and segmentation would
be enormous. The choice of the FFT resolution is also of considerable rele-
vance to this problem, which is dictated by the smallest signal bandwidth to
be detected: For an UTRA-FDD signal with 5 MHz bandwidth, a 40 kHz/bin
FFT resolution may be more than sufficient for an accurate estimation of
the parameters, whereas for a 200kHz GSM signal, it is obviously insuf-
ficient. However, using, for instance, a 2kHz/bin resolution, which would
be adequate for the GSM Signal would obviously generate a 20 times more
spectrum samples to be analysed.

Actually this is the same question, which was adressed in chapter 2. If the
segmentation is to be implemented in an ideal Software Radio application,
this would require the segmentation of the whole 5 GHz frequency range,
leading to a very high computational complexity, but ensuring a very high
flexibility.

If however, we are talking about a Software Defined Radio, which digi-
tizes a limited band out of the full 5 GHz band, the computational burden
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required by the segmentation algorithm could be brought to menagable le-
vels. However, this approach would require a-priori information in some form
about where, in the frequency domain, to look (or where not to look) for
a specific type of service, or that only a limited number of spectrum bands
out of the whole 5Ghz band are reserved for dynamic ressource allocation
(e.g. so called spectrum pools), which is a reasonable assumption for the
forseeable future.

If the spectrum range of interest is still too large, an iterative channel
segmentation may be the best way to go, performing the segmentation with
a low resolution at the beginning of the analysis, and filtering out and ana-
lysing interesting segments with higher resolution.
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Source | fo B SNR

S11 342.33kHz | 414kHz -NL(dB)
S12 1024kHz 341.3kHz -NL-12dB
S13 2048kHz 1331.2kHz -NL-0.5dB
S14 3413.33kHz | 591.6kHzkHz | -NL-9dB
Si1s 4468.3kHz | 682.6kHz -NL-8dB
S16 5461.33kHz | 341.3kHz -NL-2dB

Tab. 4.1 Channel segmetation Scenario 1

Source | fo o B os/B
S11 340.4kHz 3.87kHz 395.82kHz | 0.048
S12 1016kHzz 45.3kHz 256.6kHz 0.2537
S13 2047kHz 5kHz 1251kHz 0.022
S14 3414.6kHz | 44.71kHz | 518.5kHz 0.12
S1s 4468kHz 13.8kHz 663kHz 0.1
S1e 5460kHz 5.25kHz 334.6 0.08

Tab. 4.2 Scenario 1, FFT resolution= 2kHz/bin, NL=-10 dB

Source ?C o B o/ B
S11 340.4kHz | 3.26kHz | 405.32kHz | 0.04
S12 1022.4kHz | 16.7kHz | 301.4kHz 0.12

S13 2046.8kHz | 3.76kHz | 1274.7kHz | 0.018
S14 3412.6kHz | 7.07kHz | 548.6kHz | 0.051
St1s 4466.8kHz | 9.61kHz | 743.8kHz | 0.06
S16 5460.2kHz | 3.86kHz | 363.76kHz | 0.0721

Tab. 4.3 Scenario 1, FFT resolution= 2kHz/bin, NL=-15dB

Source | fc g B op/B
S11 340.7kHz 3.01kHz | 418.72kHz | 0.038
S12 1023.6kHz | 5.29kHz | 329.24kHz 0.077
S13 2046.8kHz | 2.52kHz | 1293.62kHz | 0.014
S14 3412.8kHz | 3.06kHz | 556.6kHz 0.036
S1s 4466.5kHz | 6.10kHz | 806.28kHz | 0.046
S16 5460.1kHz | 3.51kHz | 394.12kHz | 0.073

Tab. 4.4 Scenario 1, FFT resolution= 2kHz/bin, NL=-20 dB
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Source | fo o B ag/ﬁ
S11 340.9kHz 2.55kHz 394.4kHz 0.043
S12 1023.1kHz | 23.39kHz | 282.75kHz 0.152
Si3 2047.5kHz | 3.45kHz 1254.2kHz 0.020
S14 3412.5kHz | 6.50kHz 532.8kHz 0.048
S1s 4467.5kHz | 10.1kHz 683.19kHz 0.085
Sie 5461kHz 3.1kHz 332.801kHz | 0.072
Tab. 4.5 Scenario 1, FFT resolution= 1kHz/bin, NL=-10 dB
Source | fe gf B op/B
S11 341.06kHz | 1.55kHz | 397.35kHz | 0.034
S12 1024.1kHz | 5.07kHz | 313.31kHz | 0.085
S13 2047.5kHz | 2.28kHz | 1275.1kHz | 0.015
S14 3412.9kHz | 3.50kHz | 547kHz 0.040
S1s 4467.5kHz | 6.31kHz | 753.94kHz | 0.056
S16 5461.1kHz | 2.89kHz | 359.03kHz | 0.062

Tab. 4.6 Scenario 1, FFT resolution= 1kHz/bin, NL=-15 dB

Source | f gs B op/B
S11 340.81kHz | 1.6kHz 408.03kHz | 0.043
S12 1023.8kHz | 3.3571kHz | 340.24kHz | 0.061
S1s 2047.4kHz | 1.69kHz 1292.2kHz | 0.011
S1a 3412.9kHz | 2.03kHz 553.53kHz | 0.0314
S1s 4467.9kHz | 4.28kHz 814.89kHz | 0.039
S16 5461.2kHz | 2.12kHz 385.02kHz | 0.054

Tab. 4.7 Scenario 1, FFT resolution= 1kHz/bin, NL=-20dB

Source | fco B SNR

Sa1 455kHz 170.6kHz | -NL(dB)
Sa2 2730kHz 3550kHz | -NL(dB)
Sos 5461kHz 227.5kHz | -NL(dB)-1
So4 6824.6kHz | 341.2kHz | -NL+3dB

Tab. 4.8 Channel Segmentation Scenario 2
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Source | fo g B op/B
So1 452.91kHz | 3.4kHz 170.12kHz | 0.14
S22 2729.6kHz | 18.3kHz | 3240.6kHz | 0.026
Sos 5460kHz 5.6kHz 212.22kHz | 0.106
Saq 6827.2kHz | 6.735kHz | 383.7kHz | 0.084

Tab. 4.9 Scenario 2, FFT Resolution=2kHz/bin, NL=-5dB

Source | f¢ o B op/B
So1 452.94kHz | 2.71kHz 179.7kHz 0.107
Sog 2728.6kHz | 9.90kHz 3335.2kHz 0.017
Sos 5460kHz 3.86kHz 227.56kHz 0.088
Soy 6827kHz 4.1085kHz | 406.276kHz | 0.064501

Tab. 4.10 Scenario 2, FFT Resolution=2kHz/bin, NL=-10dB

Source | f¢ o B op/B
So1 453.64kHz | 2.68kHz 195.42kHz 0.099
Sog 2729.2kHz | 5.9303kHz | 3394.4kHz 0.013351
Sos 5460.2kHz | 3.3208kHz | 250.276kHz | 0.079
Soy 6826.4kHz | 5.4015kHz | 431.88kHz 0.06972

Tab. 4.11 Scenario 2, FFT Resolution=2kHz/bin, NL=-15dB

Source fc g B op/B
So1 453.56kHz | 2.69kHz 161.38kHz | 0.093
Sao 2730.8kHz | 12.68kHz | 3195.2kHz | 0.0269
So3 5461.9kHz | 3.72kHz 202.74kHz | 0.087
Sa4 6828.1kHz | 4.29kHz 363.25kHz | 0.067

Tab. 4.12 Scenario 2, FFT Resolution=1kHz/bin, NL=-5dB
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Tab.

Source | f. g B op/B
Sa1 454kHz 1.65kHz | 172.44kHz | 0.067
Sao 2730.2kHz | 8.55kHz | 3326.4kHz | 0.018
Sas 5460.7kHz | 2.7kHz 221kHz 0.0674
Saa 6827.2kHz | 2.4kHz | 395.3kHz | 0.053
4.13 Scenario 2, FFT Resolution=1kHz/bin, NL=-10dB
Source | fo of B op/B
Sa1 454.1kHz | 1.47kHz | 186.2kHz | 0.065
S22 2730.2kHz | 4.75kHz | 3393.8kHz | 0.0122
Sas 5460.7kHz | 2.2kHz | 239.98kHz | 0.066
Soa 6826.7kHz | 1.7kHz 416.72kHz | 0.044

Tab. 4.14 Scenario 2, FFT Resolution=1kHz/bin, NL=-15dB

Source | fo B SNR

Ss1 1638.4kHz | 2130kHz -NL+5dB
Ss32 3686.4kHz | 227.5 -NL+3.5dB
S32 5800.6kHz | 2250.6kHz | -NL(dB)

Tab. 4.15 Channel Segmentation Scenario 3

Source | fo g B op/B
S31 1637.1kHz | 6.50kHz 1992kHz 0.021
Ssa 3684.8kHz | 5.15kHz 229.04kHz | 0.104
Sss 5801.6kHz | 6.9685kHz | 2173.8kHz | 0.015

Tab. 4.16 Scenario 3, FFT resolution=2kHz/bin, NL=-5dB

Source | f gL B op/B
Ss1 1637.44kHz | 3.91kHz | 2030kHz 0.017
Ss39 3685kHz 3.52kHz | 249.62kHz | 0.093
Sss 5801.4kHz 4kHz 2201.8kHz | 0.010

Tab. 4.17 Scenario 3, FFT resolution=2kHz/bin, NL=-10dB
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Source | f¢ os B op/B
S31 1637.38kHz | 2.64kHz | 2055.2kHz | 0.014
Ssa 3685kHz 3.42kHz | 272.48kHz | 0.092
Ss3 5801.4kHz 2.72kHz | 2216.4kHz | 0.008

Tab. 4.18 Scenario 3, FFT resolution=2kHz/bin, NL=-15dB

Source | fo g B op/B
Ss1 1637.9kHz | 4.44kHz | 1995.3kHz | 0.020
Ss39 3685.6kHz | 3.39kHz | 227.66kHz | 0.088
Ss3 5801.6kHz | 5.19kHz | 2181kHz 0.0130

Tab. 4.19 Scenario 3, FFT resolution=1kHz/bin, NL=-5dB

Source | fo gf B op/B
S31 1638.1kHz | 2.85Hz | 2033kHz 0.015
Ss32 3685.8kHz | 2.42kHz | 245.5kHz | 0.073
Ss33 5801.4kHz | 2.99kHz | 2197.6kHz | 0.010

Tab. 4.20 Scenario 3, FFT resolution=1kHz/bin, NL=-10dB

Source | f. g B op/B
Ss1 1638kHz 1.95kHz | 2052.4kHz | 0.014
Ss39 3685.9kHz | 1.83kHz | 263.6kHz 0.0623
Sss 5801.4kHz | 2.03kHz | 2212.7kHz | 0.008

Tab. 4.21 Scenario 3, FFT resolution=1kHz/bin, NL=-15dB
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5 Air Interface Identification Ex-
ploiting Cyclostationarity

5.1 Introduction

This chapter presents a method for identifying the air interface signals of
interest, that have been isolated and brought to the baseband after the
channel segmentation stage, which has been investigated in the previous
chapter. We limit the analysis of the signal of interest to the physical layer,
which is the easiest to access. As a matter of fact, the parameters from higher
protocol layers are only accessible after the demodulation of the signal, which
requires actually knowing the air interface standard.

In the literature, most commonly, modulation type recognition algo-
rithms are proposed for the purpose of air interface identification. Algo-
rithms of this kind usually include a feature extraction subsystem and a
classification subsystem. The feature extraction subsystem maps the recei-
ved signal into a feature vector, which is used by the classification subsystem
to assign the signal to a modulation class. The modulation type classification
algorithms found in the literature most commonly use the phase, amplitude
and instantaneous frequency information from the received signal to recover
the modulation type specific features required for the classification. The
generation of features is performed using well known tools of statistical si-
gnal processing, such as histograms, statistical moments of second or higher
order, linear or nonlinear transformations (such as DFT, Wavelet Tansform,
quadratic or higher order nonlinearities) on the phase, amplitude or instan-
taneous frequency information (see [33], [34], [35], [36], [37] and [38]). The
classification of the modulation type is usually performed using a pattern
recognition or decision theoretic approach, employing standard techniques
of pattern recognition (such as polynomial classifiers, nearest neighbor clas-
sifiers) in the former, and multiple hypothesis testing methods in the latter.

There are three practical problems that makes this approach unsuitable
for air interface identification in a Software Radio system

e The recognition of the particular modulation type employed in the
received signal may not be sufficient for a non-ambiguous identification
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of an air interface standard. As a matter of fact, there exist air interface
standards which use the same modulation scheme (such as PDC and
IS 136, both of which use 7/4 DQPSK). Some air interfaces also allow
the use of multiple modulation types, depending on the state of the
transmission channel.

As discussed in chapter 3 , the mobile communication channel is cha-
racterized by a low SNR and frequency selective multipath fading.
Most of the modulation type classification algorithms found in the li-
terature perform relatively poorly under these hostile conditions.

Standard modulation type classification algorithms are usually based
on the assumption that there exists only one modulated signal of one
particular user in the channel at a given moment. This assumption
may be appropriate for the air interfaces which are based on the TDMA
scheme, where each user is allowed to access the channel for a fraction of
time on a periodic basis. However, it does not hold for CDMA systems,
where signals from all users overlap both in the time and the frequency
domain. In this case, the received signal consists of the sum of all the
modulated user signals which, in the worst case scenario, have different
amplitudes and delays, and are distorted by different channel impulse
functions. Conventional modulation type classification algorithms are
unable to extract the modulation type from such a signal mix. Simi-
larly, in the case of OFDM, the symbols from one particular user are
transmitted over multiple overlapping carriers in parallel. Hence, the
received signal consists of multiple modulated carriers interfering with
each other in time and frequency, and the modulation type on par-
ticular carriers cannot be classified by conventional methods. Thus,
conventional modulation type recognition algorithms cannot be used
to recognize CDMA and OFDM based air interfaces, which constitute
the majority of the newer generation wireless communication systems.

In our work, we present a different approach to the air interface iden-

tification problem. We propose exploiting the cyclostationary properties,
which exist in virtually all man made communication signals, as features for
air interface recognition. In the following, we are going to show that signals
belonging to different air interface standards usually exhibit different cyclo-
stationary properties. The presence and absence of these distinct properties
can be exploited for the recognition of the particular system. The proposed
method presents a unified approach to the recognition of signals belonging
to the all three basic air interface categories discussed in chapter 3: single
carrier TDMA systems, OFDM systems and single carrier CDMA systems.
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5.2 Continuous Time Cyclostationary Processes

This section provides an overview on continuous time cyclostationary pro-
cesses [39]. It begins with the introduction of the concept of cyclostationa-
rity along with the formal definitions of conjugate and nonconjugate cyclic
autocorrelation functions and spectral correlation density functions. Sub-
sequently, the concept of cycloergodicity is introduced and an alternative
interpretations to the cyclostationarity is discussed, which provides a more
profound insight to the nature of cyclostationarity. Finally, the motive be-
hind the intention to exploit the cyclostationarity properties of communica-
tion signals is discussed.

5.2.1 Periodically Correlated Processes

For a complex zero mean time continuous process z(t), (¢ € R), the time
varying autocorrelation function (TVAF) is defined as:

Ryt +7/2,t —7/2) = E{x(t + 7/2)x™(t — 7/2)} (5.1)

In the continuous time theory of cyclostationarity, it has been found more
convenient to use the symmetric version of the TVAF, rather than the asym-
metric version, R,.(t,t — 7) == E{x(t)a*(t — 7)}. However, the results
provided in this section can be easily modified for the assymetric case [39].

The random process z(t) is characterized as periodically correlated, if the
TVAF is periodic in time variable ¢ with a period P, i.e.

Ryw(t+7/2,t —7/2) = Ryw(t+7/24+ mP,t —7/2+mP);¥Ym € 7Z(5.2)

As a result of this periodicity, the time varying autocorrelation function of
z(t) can be represented as a Fourier series:

Ryn(t+71/2,t —7/2) = Z RS, (T)e??mot (5.3)

where the sum is taken over the integer multiples of the fundamental fre-
quency ay = k/P, k € N. The Fourier coefficients, which depend on the lag
parameter 7 are called the cyclic autocorrelation function and are given as
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[39]:

1 P2 _
R0 =5 [ Reslt 72,0 =/ (5.9

For some complex valued signals, the time varying conjugate autocorrelation
function (TVCAF) may also be useful, which is defined as

Ryw(t+7/2,t —7/2) = E{x(t + 7/2)z(t — 7/2)} (5.5)
Analogous to the nonconjugate case, the complex valued random process
x(t) is called conjugate periodically correlated, if the TVCAF is periodic in
time:

Rywr(t+7/2,t—7/2) = Rygr (t+7/24+mP,t —7/2+mP);Vm € Z(5.6)

and admits a Fourier series representation

Ryge(t+7/2,t —7/2) =Y | RS, (7)e??™ (5.7)

As before, the sum is taken over the integer multiples of the fundamen-
tal cycle frequency ay = k/P. The Fourier coefficients of the TVCAF are
referred to as the conjugate cyclic autocorrelation function and are given as:

1 P/2 )
R3 (1) = P / P/2 Roge (t+7/2,t — 7/2)67j27mtdt (5.8)

5.2.2 Polyperodically correlated processes

A complex valued zero mean continuous process z(t) is called (conjugate)
polyperiodically correlated , if the TVAF (TVCAF) consists of multiple per-
iodic components with incommensurate periods Py, ..., P,. In this case the
TVAF (or TVCAF) admit a Fourier series representation:

Ryt +7/2,t—7/2) = Z RY,(7)ed?mot

Ryws(t+7/2,t —7/2) = ZR;YI*(T)eﬂ”O‘t (5.9)
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where the sum is taken over all the incommensurate fundamental frequencies
a€{ki/Py,... ky/P,} with ky, ...k, € Z. Since multiple periodicities with
different fundamental frequencies exist, the Fourier coefficients cannot be
calculated performing a time averaging operation over one period, as in (5.4)
and (5.8), and an infinitely long time interval has to be used instead, in order
to suppress the contributions from the signal components exhibiting different
periodicities. Thus, the cyclic autocorrelation function for a polyperiodically
correlated process can be expressed as

1 (772 4
Ry, (1) = lim — Ruw(t +7/2,t — 7/2)e 727 qt (5.10)
T—oo T -T/2

and the conjugate cyclic autocorrelation function for a conjugate polyperio-
dically correlated process is [39]

L T _
RS, .(T) = lim —/ Ryg-(t +7/2,t — 7/2)e 92 qt (5.11)

In the following work, the term cyclostationary is used to characterize
both conjugate and nonconjugate periodically and polyperiodically correla-
ted processes. The terms conjugate cyclostationary and nonconjugate cyclo-
stationary are employed, wherever it is necessary to explicitly differentiate
between the conjugate and nonconjugate cases. Furthermore, the more ge-
neral definitions from (5.10) and (5.11) are going to be used for the cyclic
autocorrelation functions throughout this chapter.

5.2.3 Properties of Cyclic Autocorrelation Functions

The conjugate and nonconjugate cyclic autocorrelation functions are dis-
crete functions of the frequency parameter a and are continuous in the
lag parameter 7. For a process which does not exhibit cyclostationarity,
RS (1) =0 and R2,.(7) = 0 Va # 0. It should be noted that, for a purely
stationary process, these functions are reduced to conventional autocorrela-
tion functions. Any nonzero value of the frequency parameter «, for which
R2 (1) #0o0r RY,.(T) # 0is called a cycle frequency, and the discrete set of
the cycle frequencies A, (corresponding to RS, (7)) and A,,- (correspon-
ding to R%,.(7)) are referred to as the cycle spectrum and conjugate cycle
spectrum respectively. For a cyclostationary signal, the cycle spectra contain
harmonics of each of the incommensurate fundamental cycle frequencies. A
signal is said to exhibit cyclostationarity (or conjugate cyclostationarity)
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with the cycle frequency ay, if ag € Azy (g € Ager). For telecommunica-
tion signals, the cycle frequencies are typically related to the symbol rate,
spreading code repetiton rate, carrier frequency, frequency hopping rate,
chipping rate, etc [40].

5.2.4 Cycloergodicity

The concept of ergodicity in relation to a random process implies that the
long term behaviour of time averaged measurements on a sample path of
a random process can be calculated from the probabilistic model of the
random process using ensemble averages, i.e. expectation operator, and the
large sample behaviour of hypothetical ensemble averaged measurements can
be predicted from actual time averaged measurements on one sample path
of the ensemble.This means that the time and ensemble average operations
can be freely exchanged.i.e.

1 [T/
E{z(t)} = lim —/ x(t)dt (5.12)
T—o0 7T/2
which leads to
1 [T/ 1 [T/
lim —/ FE{x(t)}dt = lim —/ x(t)dt (5.13)
Jim [ Bl = gim g [ )

since E{E{-}} = E{-}. These assumptions , in general, simplify mathema-
tical analysis and experimental design greatly. The property of stationarity
is a prerequisit for a random process to exhibit ergodic properties.

The concept of ergodicity can be extented to include cyclostationary pro-
cesses. This property is referred to as cycloergodicity [41]. For a cycloergodic
process, the asymptotic sinusoidally weighted sample path averages are equal
to the corresponding sinusoidally weighted ensemble averages, i.e.

1 [T/2 1 (T/2
lim —/ BE{z(t)}e 7*™dt = lim —/ z(t)e 7*dt  (5.14)
Jim o [ Bla() Jim [ e

With the assumption of cycloergodicity, the expectation operator in the
nonconjugate and conjugate cyclic autocorrelation functions can be dropped
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[39]:
1 (T2 ‘
RS (1) = lim — / z(t 4 7/2)x*(t — 7/2)e I* M dt (5.15)
T—o0 T —T/2
and
1 (T2 _
RS..(17) = lim = / x(t+7/2)x(t — 7/2)e 2 qt (5.16)
T—oo T —T/2

5.2.5 Cyclostationarity as Spectral Correlation

A useful interpretation of the cyclic autocorrelation Function can be obtained
by factoring e 727! in (5.15):

1 T/2 ) )
R2.(1) = lim — / [2(t47/2)e I/ D] [ (t—7 /2) ™ =T/ D] 4t (5.17)

T—oo T —-T/2

Thus, R%,(7) can be interpreted as a conventional cross correlation function:

R, (r) = Jimo % /i/; u(t +7/2)v(t —7/2)"dt = Ru(T) (5.18)
with

u(t) = w(t)e 9™ (5.19)
and

v(t) = x(t)etIm, (5.20)

u(t) and v(t) are frequency translates of z(t) by +«/2 and —a/2 respecti-
vely. It follows from (5.18) that a signal x(¢) exhibits cyclostationarity if
and only if its spectral components separated by a cycle frequency « are
temporally correlated, i.e. R,,(7) is nonzero for some 7 and for « # 0 [39].
The conjugate cyclic autocorrelation function can be reexpressed as a cross
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correlation function in a similar fashion:

T/2
RS, .(7) = lim 1 u(t+ 7/2)w* (t — 7/2)dt = Ry (T) (5.21)
xT Tooo T 12

where
w(t) = z*(t)e™Im, (5.22)

is the frequency translate of x*(t)

5.2.6 The Spectral Correlation Density Function

The conventional power spectral density function (PSD) is a useful measure
employed to localize the average power E{|z(t)|?} = R..(0) of a stationary
random process z(t) in the frequency domain. The PSD can be expressed
as:

Sealf) = Jim_ Bl X0 (1)} (523)
where
T/2
Xr(f) :/ x(u)e 2" dy (5.24)
—T/2

is the Fourier Transform of z:(¢) over the time interval T'. It can be shown that
Sz (f) is directly related to R, (7) through the Wiener-Khinchin relation:

Sea(f) = /jo Rao(T)e 2™ 7 dr (5.25)

Similarly, for a cyclostationary process, the spectral correlation density func-
tion (SCD) provides a measure for the localisation of the correlation between
the frequency shifted versions of the signal x(t) , i.e. Ry, (0) = R%,(0), in
the frequency domain.The spectral correlation density function can be de-
rived starting from the so called instantaneous PSD, in the same manner
as the cyclic autocorrelation is derived from the time varying autocorrela-
tion function. The instantaneous PSD of a signal is defined as the Fourier
transform of the time varying autocorrelation function with respect to the
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lag parameter 7:

Sea(t, f) = /OO Ruw(t+7/2,t —7/2)e 72T dr (5.26)

— 00

If x(t) exhibits cyclostationarity, this function admits a Fourier series repre-
sentation

Seal(t, f) = Z fer2mat (5.27)
where the Fourier coefficients can be calculated as

T/2 _
S (f) = lim 1 Sy (t, fle 72t qt. (5.28)
e T—oo T —T/2

S& (f) is referred to as the spectral correlation density function. From (5.26)
and (5.28), it is easily seen that the spectral correlation density function and
the cyclic autocorrelation function are related through the cyclic version of
the Wiener-Khinchin relation, i.e:

s = [ Rme i (5.29)

— 00

Like its nonconjugate counterpart, the conjugate spectral correlation den-
sity function can be obtained by Fourier transforming the conjugate cyclic
autocorrelation function:

Se(f) = / - R%..(1)e 2™ dr (5.30)

— 00

Similar to (5.23) it can be shown that the conjugate and nonconjugate spec-
tral correlation density functions can be calculated using the Fourier trans-
form of the signal directly [42]. With the assumption of cycloergodicity

v/2 4
~ X (t f + a/2) XA [ — a/2)dt (5.31)
ve T

V—ooT—oo V

S2.() = Jim_tim 7 [
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and

v/2

1
S2-(f) = Jimtim - | X0+ 0/2) Xt 02— (.32

with X7(t, f) = j;tjg //22 x(u)e 727/ du. Following the same line of thought
as in Section 5.2.5, the conjugate and nonconjugate spectral correlation den-
sity functions can be interpreted as conventional cross spectral density func-

tions of frequency translated versions of z(t), i.e.

ng(f) = Suv(f) (533)

and

Sga (f) = Suw(f) (5.34)

where u(t), v(t) and w(t) are defined in (5.19) (5.20) and (5.22) respectively.

The existence of temporal correlation between spectral components sepa-
rated by the cycle frequency « in a cyclostationary signal can be interpreted
as spectral redundancy in the information theoretic sense. Signal proces-
sing techniques which do not make use of the cyclostationarity ignore the
presence of this redundant information in the signal, whereas the methods
exploiting cyclostationarity take advantage of this redundancy, in order to
increase the performance and robustness of the algorithms used.

When the signal z(t) undergoes a linear time variant filtering operation

oo

2(t) = h(t) + o(t) = / h(u)z(t — u)du (5.35)

— 00

the nonconjugate and the conjugate SCD of the output signal z(¢) can be
calculated as [40]

Se(f)=H(f+a/2)H*(f — a/2)S5.(f) (5.36)
and

Sgo-(f) = H(f + a/2)H (/2 = [)S7,-(f) (5.37)
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respectively, where H(f) is the Fourier transform of h(t). Hence, the linear
time invariant filtering operation cannot change the cycle spectra of the si-
gnal. However, depending on the shape of the filter spectrum, the filtering
operation may lead to a suppression or an enhancement of the cyclostatio-
nary characteristics.

5.2.7 Motivation

Exploiting cyclostationarity in air interface recognition for a Software Ra-
dio system presents two main advantages, which shall be discussed in this
section.

First of all, virtualy all man-made communication signals exhibit cyclo-
stationarity with cycle frequencies related to hidden periodicities underlying
the signal, such as the carrier frequency, symbol and/or chip rates, period
of the spreading or scrambling codes etc. From this reason, signals from
different air interfaces with different transmission schemes, symbol rates etc.
exhibit cyclostationarity with different cycle frequencies and for different va-
lues of the lag parameter 7. Thus, each air interface signal has its unique
cyclic signature. The presence or absence of a particular signature in the
received signal is therefore a distinct feature that can be used to recognize
a particular air interface.

The second advantage lies in the discriminatory capability that the use
of cyclic statistics presents between the signal sources with disparate cycle
spectra and the robustness against noise and interference which this signal
selectivity provides.

Let x(t) be a noisy observation of the cyclostationary signal of interest
s(t)

x(t) = s(t) + n(t), (5.38)
where n(t) is stationary noise. It can be easily shown that the cyclic auto-

correlation function and the spectral correlation density function of x(t) are
given by:

RZ.(T) = RE(7) S (f) = S&(f); a#0 (5.39)
In a more general case, where the interfering signal or signals also exhibit

cyclostationarity, it is still possible to separate the signal of interest from the
interference by choosing a cyclic frequency «p which is different from that
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of the interfering signals. Let z(¢) be a composite signal

z(t) = Z si(t) + n(t), (5.40)

=1

with the zero mean cyclostationary signals s;(t), all of which are statistically
independent of each other and the additive stationary noise n(t), it can easily
be shown that:

L
R2,(1) =Y R%,(7) + Run(7)d]0l] (5.41)
=1
and
L
SE() =82, (f) + Sun(f)d[c (5.42)
=1

with the Kroenecker delta function d§[a]. From (5.41) and (5.42), it follows
that choosing o = aj, # 0 so that the only signal with the particular cycle
frequency ay, is si(t), i.e. ap € As, s, and ai € As,s,, VI # k , we can write:

R (1) = R, (7) (5.43)
and
Saa (f) = 855, () (5.44)

The same considerations are also valid for the conjugate cyclic autocorre-
lation and conjugate spectral correlation density functions. Hence, when
multiple signals overlap in time and frequency domain, their cyclic autocor-
relation and SCD functions do not overlap in the cycle frequency domain,
as long as the signals possess distinct cycle frequencies.

However, in practice, this perfect signal selectivity, which the ideal cyclic
autocorrelation and the spectral correlation density functions exhibit, suffers
from noise and interference. For finite observation lengths, the presence of
noise and interference affects the bias and the variance of the estimations
of RYo(7) and SSo(f) respectively. This effect diminishes with increasing
observation length T,.
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5.3 Cyclostationary Properties of Communica-
tion Signals

In this section, the cyclostationary properties of communication signals are
investigated, which are commonly encountered in practice, starting with
basic linear modulated signals, continuing with GMSK modulation, which
is a very widely used nonlinear modulation type, especially in TDMA based
GSM and DECT systems, as discussed in chapter 3. Subsequently, cyclic
autocorrelation functions of signals based on OFDM and CDMA schemes are
investigated, which are used in newer generation wireless communications
systems.

5.3.1 The Cyclic Autocorrelation of a linear modulated
Signal

A digital modulated signal is characterized as linear modulated, if the total
waveform of the signal can be expressed as the sum of waveforms of individual
symbols. Hence, a linear modulated signal can be expressed as an infinite
sum of time shifted impulse functions ¢(t), weighted by the discrete time
modulating sequence a,,, which is a realisation of the discrete time random
process a. The impulse functions are separated in time by integer multiples
of the symbol duration 7Ts. Given that the initial timing of the signal is
unknown, the linear modulated signal can be expressed as

z(t) = Z ang(t —nTs — ¢€) (5.45)

with the unknown symbol timing e. In the following, we assume that the
symbol sequence is indpendent and identically distributed, i.e. the different
states a(?) of the random process a occur with equal probability, and the
occurrence of the states in different symbol intervals are independent of each
other, that means for the individual probabilities:

- 1
P(a, = a¥) = i (5.46)

and

P(an = a9 Aay, =a®) = P(a, = a9) - Play, = a®) (5.47)
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This assumption implies that the data sequence is uncorrelated The time
varying autocorrelation function of the linear modulated signal can be cal-
culated as:

Ryt +7/2,t —7/2) = E{ i i anay,

gt —nTs —e+7/2)g"(t —mTs — € —7/2)}.

Assuming that g(t) is real valued and the symbol sequence a,, is independent
and identically distributed (i.i.d.), F{ana},} = 025[n — m|, where o2 =
E{|a,|*} is the variance of the emitted symbols, the autocorrelation function

can be expressed as an infinite sum of the lag product of the impulse functions

Reo(t+7/2,t —7/2) = o2 Z gt —nTs —e+7/2)

gt —nTs —e—17/2) (5.48)

It is straightforward to see that Ry, (t + 7/2,t — 7/2) is time-periodic with
a period equal to T, which means that the linear modulated signal exhibits
cyclostationarity with a fundamental cycle frequency oy = 1/T, and the
cycle spectrum contains the integer multiples of fs = 1/T:

Ry (7), a=kf;kel

Ra(7) = { 0, otherwise (5.49)

If the pulse function g(t) = gr(t) is a full duty-cycle rectangular pulse given
as

1, |t| < Ts/2
0, otherwise

gr(t) = { (5.50)

the cyclic autocorrelation of the linear modulated signal can be expressed
as:

in|rkfs(Ts — .
Riis (1) = ngsm[ﬂ / (k: |T|)]632”kf3€ for|T| < Ts (5.51)
T
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Cyclic Autocorrelation Function for a QPSK Signal (Rectangular Pulse Shape)

1.4

1.2

Fig. 5.1 The magnitude of the nonconjugate cyclic autocorrelation estimate
for a QPSK signal with rectangular pulse shape

The magnitude of the cyclic correlation estimate for a QPSK modulated si-
gnal with rectangular pulse shape is displayed in Fig. 5.1, where the discrete
correlation surfaces for a = kf; are clearly visible. The maximum value of
cyclic correlation occurs for o = £1/Ts = £f, and 7 = +T/2.

The effect of the pulse shape

Since the rectangular pulse shape has a spectrum which decays relatively
slowly, i.e. with 1/|f]| for large f, other pulse shape functions with higher
spectral efficiency are usually employed in practical digital communication
systems. In the following, we are going to investigate the influence of the
spectrum of g(t) on the cyclic autocorrelation function RS, (7) for a linear
modulated signal. Expressing the pulse shape g(¢) in terms of its Fourier
transform

o) = [ T G (5.52)

— 00
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allows the reexpression of the cyclic autocorrelation function in terms of the
pulse spectra. We obtain

T/2 00 00
fs _a y —
Ryl (1) Tlggo T /T/2 /m /m [exp[ﬂW(flt fre
+117/2+ fot — fae — for/2 = kfst)|G(f1)G(f2)

i e—jQﬂ'nTs [f1+f2]i| dfldfgdt

n=—oo

Expressing the infinite sum of phasors as an infinite sum of impulses we get

RE(7) = lim / v [ [ Jemtientit = fie iz + g

T—o0 T T/2

—fae — for /2 — kft)]G(f1)G(f2)

>° olfi+ fo—ifi)| dfadpadt. (5.53)

i=—00

Finally, integrating with respect to f; to eliminate the impulses leads to

RI;J;S(T) = %/oo |:efj27rf'rG(f) i G(ifs_f)eijWifs(ef'r/Q)

1=—00

1 T/2 ) )
lim —/ eﬂﬁfst(“k)}dtdf.
T—oo T 7T/2

2 e e]
_ %/ eIk (=TI G A\G(k fs — f)df (5.54)

From (5.54), it becomes clear that the amount of cylic correlation in
the linear modulated signal depends on the spectral overlapping between
the frequency shifted versions of the pulse spectrum, i.e. between G(f) and
G(kfs — f). The amount of this spectral overlapping obviously depends on
the shape of the particular signal pulse function.
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Fig. 5.2 Raised Cosine Spectrum

In digital communications, the signal pulse is usually designed to allow
symbol rates comparable to the two sided channel bandwidth B while mini-
mizing the intersymbol interference (ISI) between adjacent symbols in time.
The condition for no intersymbol interference is in time domain

g(nTy) = { (1) EZ ; 83 (5.55)

which, in frequency domain translates to the following condition

i G(f +m/T}) = T, (5.56)

m=—0o0

which is called the Nyquist pulse shaping criterion, or Nyquist criterion for
distortionless baseband communication [14]. For T, = 1/B, this condition
can only be satisfied by a rectangular spectrum, which leads to a pulse shape
g(t) = % However, there are two practical difficulties, that make this
pulse shape unsuitable for system design

e This pulse shape is physically unrealizable because of the abrupt tran-
sitions at the boundaries.

e g(t) decreases as 1/|t| for large |t|, resulting in a relatively slow rate of
decay. Accordingly, a timing mismatch in the receiver can result in a
very high intersymbol interference. Hence this pulse shape allows no
margin for error in the sampling times.
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G(f) G(fs-1)

~1/2T, 1T, f

Fig. 5.3 Spectral overlapping between the frequency shifted versions of
G(f)

A widely used pulse spectrum for this case is the raised cosine spectrum,
which consists of a flat portion and a roll-off portion that has a sinusoidal
form [14]

o3

(0<|f] < 572)
Gre(f) = %{st[w} (|f|—1275)}} (572 <11 < 58) (5.57)

0 (1] < 52)

where the parameter p is called the roll of factor and takes values in the range
0 < p < 1. The roll off factor determines the amount of the so called excess
bandwidth of the signal, i.e. the bandwidth occupied by the signal beyond
the Nyquist bandwidth Wy,, = 1/Ts, which is the minimum amount of
bandwidth required by the Nyquist theorem. For example, when p = 0.3,
the excess bandwidth is 30%, and when p = 1, the excess bandwidth is 100%.
For p = 0 it converges to a rectangular spectrum, as shown in Fig 5.2 The
pulse g,.(t) having the raised cosine spectrum is given by [14]:

sin(nt/Ts)  7wpt/T
mt/Ts 1 —4p2t2 /T2

Usually, the transmit and receive filters in a telecommunication system
are designed so that the total effect of these filters approximate the desired
spectrum. In this case, the so called root raised cosine filters are employed.
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Cyclic Autocorrelation Function of a QPSK Signal (raised root cosine pulse)

0.5

0.25

Fig. 5.4 The magnitude of the nonconjugate cyclic autocorrelation estimate
for a QPSK signal with root raised cosine pulse shape

The root raised cosine spectral characteristic is given by:

Grre(f) = VIGre(f)] (5.59)

The root raised cosine filter is used in series pairs, so that the total filtering
effect is that of a raised cosine filter. The advantage is that if the transmit
side filter is stimulated by an impulse, then the receive side filter is forced
to filter an input pulse shape that is identical to its own impulse response,
thereby setting up a matched filter and maximizing signal to noise ratio while
at the same time minimizing intersymbol interference. The pulse having the
root raised cosine spectrum is [14]

( (1+T;:)7rt )

4p cos + }&sin(—(l}z)m)

/T 1—4pt/Ts

Grre(t) = (5.60)
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Again, the roll off factor is the parameter determining the excess bandwidth
of the signal. UTRA, IS-95, IS-136 and PDC are some of the air inter-
faces using the root raised cosine spectrum, both at the transmitter and the
receiver.

Since the root raised cosine pulse spectrum suppresses the frequency
components of the signal for |f| > 12 = izpfs with 0 < p < 1 there

2T,
exists no spectral overlapping between the frequency translated versions of

Grre(ffor |k| > 1, ie.
Grre(f)Grre(kfs — f) =05k > 1 (5.61)

Thus, for a linear modulated signal with root raised cosine spectrum, we
get significant spectral correlation only for £ = +1. Fig 5.3 illustrates the
spectral overlapping for a root raised cosine pulse shape and k£ = 1. The
amount of spectral overlapping obviously increases with increasing excess
bandwidth or, equivalently, with increasing p.

The magnitude of the cyclic autocorrelation function for a QPSK mo-
dulated signal employing a root raised cosine spectrum with p = 0.22 is
displayed in Fig. 5.4. As predicted, the cyclic autocorrelation is suppressed
for |k| > 1. In contrast to the previous case, the cyclic correlation surfaces
at o« =+ f; peakat =0

5.3.2 Cyclostationary Properties of a GMSK signal

The Gaussian minimum shift keying (GMSK),which is employed in GSM
and DECT, is a nonlinear modulation type, which makes the theoretical
calculation of the cyclic autocorrelation functions quite a difficult task. The
analysis provided in this section is based on separating the GMSK signal
into its linear and nonlinear components and focusing on the linear part of
the signal, which is a permissible approach, since the linear part of the signal
contains ca. 99% of the total signal energy [43].

Linearisation of GMSK

GMSK can be interpreted as a 2-level FSK modulation with a modulation
index h = 0.5. The complex envelope of a GMSK modulated signal is

s(t) = exp[j2mh Z dn[ g (T — nTy)dr] (5.62)

n=—oo
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with the symbol sequence d,, € {—1, 1}, symbol rate f; = 1/T and g¢(¢) a
frequency impulse with a time bandwidth product BTs.

1

gs(t) = irect(%) * PGauss (t) (5.63)

where pGauss(t) is a Gaussian impulse

2 2(mBt)?
pGauss(t) = — B e:l:p( - (ZT;)

s (5.64)

For the GSM system, the factor BTs = 0.3 was chosen, whereas in DECT,
BT, = 0.5 . In practice, the infinite long Gaussian impulse is cut to a length
LT, with L > 3. In [43], it is shown that a GMSK signal can be represented
as the superposition of 2L~1 elementary impulse functions cg (t)

00 2L—1

s(t) = Z Z expljmhAg ncx (t —nTy)) (5.65)

n=—oo K=1

with the statistically dependent modulating sequence A ,,, which can be
expressed as a function of the data sequence d,, as follows

2L71

n
Agn = Z d; — Z dr—1vK 1
1=—00 =1
2L—1
K = Z 2L s vies €051 (5.66)
=1
The bit sequence vk, —1,...,VK,1 corresponds to the binary representation

of the index K. A very detailed discussion about the derivation of the
elementary impulse forms ck (t) is provided in [44] and [43]. For L = 4 which
is commonly used in practice, the GMSK signal consists of the superposition
of 8 elementary impulse functions:
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s(t) Z exp|jmhAon]co(t — nTy)
o 7
+ Z Z expljm A nlck (t —nTy) (5.67)
n=—oo K=1

It is easily seen that the first sum can be interpreted as a linear modulation.
From this reason, the base-band GMSK signal can be represented as the
superposition of a linear and a nonlinear component:

s(t) = D eapljmh 3 difeo(t = nTy)
oo 7
+ 30> enplinAxalex(t - nTy)
= () + () (5.68)

In Fig. 5.5, the first two impulses ¢ (t) and ¢; (t) are displayed for BT, = 0.3.
It can be shown that co(t) contains 99% of the signal energy [44], hence the
GMSK signal can be approximated by its linear component fairly accurately.
For a detailed discussion on this representation and the elementary impulse
functions cg (t), see [43]. The linear part of the signal s!(¢) can be written
as

oo

s(t) m s () = Y znco(t — ) (5.69)
with the symbol sequence

n n—1
Zn = ea:p[jﬂh Z di] :eo:p[jg(dnJr Z dz)]

1=—00 1=—00

jdnzn_1 (5.70)

It can be shown that the linear approximation of the GMSK signal is more
accurate for higher values of BT}, which is not surprising, since the GMSK
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BT,= 0,3

48

0 1 2 3 4 5

Fig. 5.5 ¢o(t) and ¢1(t) for L =4, BTs = 0.3

signal converges to a MSK signal for BTy — oo, which is a linear modu-
lation type. Since the input signal sequence d,, € {—1,1}, we see that the
modulating sequence z,, in s'"(¢) consists of alternating real and imaginary
symbols. This property leads to a conjugate cyclostationary behaviour in
the GMSK modulated signal.

Conjugate Cyclic Autocorrelation Function of a GMSK signal

We start our analysis with the conjugate cyclic autocorrelation RS..(7) of
a GMSK signal. In light of the discussion above, only the linear part of
the signal is considered. Assuming that the timing of the signal is unknown
to the receiver, we can express the time varying conjugate autocorrelation
function due to the linear component of the signal as follows:

1%

RS.(t+T7/2,t—7/2) E{s"™(t —e+1/2)s""(t — e —7/2)}

+oo —+oo

= Z Z E{znzm}co(t —e —nTs +7/2)
co(t —e—mTs —7/2) (5.71)

using (5.70) and E{dnd,} = E{d,d},} = é[n — m], we get

FE{znzm} = (=1)"2%__6[n —m] (5.72)

— 00
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with the constant 22 __ € {—1,1}, which depends on the initial state of the
sequence z,. Thus the the conjugate cyclic autocorrelation function can be
written as

—+00
RO (t+7/2t—7/2) = > 22 (1)t —e—nTs+7/2)
co(t —e—mTs —7/2) (5.73)

Obviously, R%.(t + 7/2,t — 7/2) is periodic with a period equal to 27T,

since the sequence (—1)™ is periodic with a period equal to 2, which leads
to a conjugate cyclostationarity with cycle frequencies o = k/2Ts = kf5/2,
k==+1,4+2.... We can write:

R (7) = { 1), o = kfs/2 (5.74)

0, otherwise

The conjugate cyclic autocorrelation function can be calculated as
ss*

Kf. )2 ) ) 1 T/2 ) .
R (1) = 22, lim —/ (=1)"co(t —e —nTs+ 7/2)

co(t —e — 7 —nTy —7/2)e K2/t gy (5.75)

as in the previous case, expressing the pulse co(t) in terms of its Fourier
transform

eolt) = / T o)y

and realizing that (—1)" = /™ leads to

1 T/2 00 00
R];zf/Q(q—) = z%oo lim —/ / / |:€Ip[j27r(f1t7f1€+f17'/2

T—oo T —T/2

+fot — fae = for/2 = k(fs/2)t)]Co(f1)Co(f2)
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3 e*ﬂmT[fﬁfr(fs/?)]] df1dfadt. (5.76)
Expressing the infinite sum of phasors as an infinite sum of impulses we get
T/2 9] 00
RM2(y — ;o Jim - /m /_OO /_OO [eaplion(fit — fre+ fir/2
+fat — fae — fo1/2 = k(f5/2)t)]Co(f1)Co(f2)
Z S[fi+ fo— foli+ = )]} df1dfadt. (5.77)

i=—00

Integrating with respect to fi to eliminate the impulses leads to:

oo

Rlszf/Q(T) _ Z—oo/ eijWfTCO(f)

— 00

Z Co(f QZ + 1 f)e*j%fs 2t (e—7/2)

1=—00

1 T/2 - +1 k
Jim — / / eI fst? dtdf.
— 00 7T 2

22

= T e o eywd -

(5.78)

Nonconjugate Cyclic Autocorrelation Function of a GMSK Signal

Since s'"(t) is a linear modulated signal and E{z,z%} = 0nm, the GMSK
signal also exhibits nonconjugate cyclostationarity with a fundamental cycle
frequency ay = 1/T, = f,. Recalling (5.54), the cyclic autocorrelation
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Fig. 5.6 Spectral overlapping for (a) the conjugate and (b) the nonconjugate
cyclic autocorrelation functions

Conjugate Cyclic Autocorrelation Function of a GMSK Signal
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Fig. 5.7 Magnitude of the conjugate Cyclic Autocorrelation Function esti-
mate of a base-band GMSK signal
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function for this case can be given as:

R’;zs(v):Ti / e PIUTERITBIC () Colkfs = Ndf - (5.79)

— 00

The Effect of the Pulse Shape

Equations (5.78) and (5.79) show that the spectrum of the pulse function
¢o(t) determines the shape of both conjugate and nonconjugate autocorrela-
tion functions of the signal. Since spectrum of the pulse, Cy(f), associated
with the linear part of the GMSK signal is very narrow, the spectral over-
lapping between Cy(f) and Co(kfs — f) in (5.79), which is illustrated in Fig.
5.6(b) for k = 1 is very small, leading to an almost total suppression of the
nonconjugate cyclic autocorrelation function. However, the spectral overlap-
ping between Cy(f) and Cy(kfs/2 — f) which appears in the expression for
the conjugate cyclic autocorrelation function, is much larger, as illustrated
in Fig. 5.6(a), making the conjugate cyclic statictics of the GMSK signal
the logical choice for the purpose of air interface identification.

The magnitude of the conjugate cyclic autocorrelation function RS.. (7)
of a GMSK signal with BT = 0.3 is shown in Fig. 5.7, where the discrete
cyclic correlation surfaces of the signal at o« = £ f/2 are clearly visible. The
maximum amount of correlation occurs at 7 = 0.

5.3.3 OFDM Signals

In an OFDM system, the PSK or QAM modulated information symbols
are transmitted over multiple carriers in parallel. OFDM uses overlapping
carriers for the transmission. Therefore the symbol waveforms from one
individual user modulated on different carriers overlap with each other in
time and frequency. The baseband OFDM signal can be expressed as a sum
of single carrier modulated signals

N.—1

1 & o o Ne_
s(t) = /F Z Z dnyiemmAf(t—nTs—e)gR(t,nTsfe)e—ﬂWN2lAft(5'80)

n=—oo =0

where d,, ; is the n’th information symbol modulated on the i’th carrier,
N, is the number of carriers, Af is the carrier separation, € is the unk-
nown symbol timing and gr(t) is the rectangular pulse function of length 7.
T, = T, +T is the symbol length, where T}, = 1/Af is the useful symbol du-
ration and Ty is the length of the guard interval. Assuming that the OFDM
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Cyclic Autocorrelation Function of an OFDM signal

1.2

Fig. 5.8 Magnitude of the Cyclic Autocorrelation Estimate of an OFDM
signal.

symbol is extended cyclically in the guard interval and that d,, ; is centered
i.i.d., the time varying autocorrelation of the signal can be expressed as:

oo N.—1
Ros(t 4 7/24,8=7/2) = A 37 37 emidfremsirimalr

n=-—oo =0

gr(t —nTs — e+ 7/2)gp(t —nTs — e —7/2)

with A = ¢3/N. and 05 = E{dnd} ;}. This expression can be further
simplified to:

sin(mtN.AfT
Res(t +7/2,t — 7/2);4817(1(?7&%) (5.81)
. Z gr(t —nTs —e+7/2)gp(t —nTs — e —7/2)

It is easily seen that Rs(t + 7/2,t — 7/2) is periodic in ¢ with a period
equal to T, hence the OFDM signal exhibits nonconjugate cyclostationarity
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with a cycle frequency o = k/Ts = kfs. The cyclic autocorrelation function
can be calculated as:

sin(rNAf1)sin[nk fs(Ts — |7])] pi2mhfae
wksin(rAfT)

RF:(1) = A (5.82)

The magnitude of the cyclic autocorrelation function for an OFDM signal
with N. = 15, T, = 16T,/21 is shown in Fig. 5.8, where the discrete cyclic
autocorrelation surfaces at the harmonics of the symbol rate o = k/Ts = k f;
are perfectly discernible. The peaks of the cyclic autocorrelation occur at

7 =4T, = £1/Af, where the factor % takes its maximum value.

5.3.4 CDMA Signals

In a CDMA system, the received signal consists of the sum of all the in-
dividual user signals. In section 5.2.7, we have established the fact that a
composite signal which consists of the sum of statistically independent si-
gnals has a cyclic autocorrelation function which is the sum of individual
cyclic autocorrelation functions. From this reason, the cyclic autocorrela-
tion function of the total CDMA signal is equal to the sum of the cyclic
autocorrelation functions of the received user signals, and depends on many
factors, which include

e The total number of active users in the system,

e The nature of the user specific spreading codes employed by the indi-
vidual users,

o Whether additional scrambling is employed or not, and the nature of
the scrambling code used,

e The relative amplitudes, with which the individual user signals are
received,

e The relative time difference of arrival of user signals.

In the following, we are going to demonstrate that signals of individual users
exhibit cyclostationarity with cycle frequencies fs = 1/Ts and f. = 1/T..
The signal of the {’th user in a CDMA system can be given as

+oo @
x(t) = Z Z dn g9t —nTs — qT. — €;) (5.83)

n=—oo q=1
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Where Q = T, /T, is the spreading sequence length, d,, ; the data sequence of
the {’th user and ¢; 4 is the code sequence of the ’th user. The time varying
autocorrelation function for this signal can be calculated as:

+oo 400 Q

Q
Rao)(t+7/2,t—7/2) = E{ SN S dusagdid,

n=-oo m=—00 g=0 p=0

gt —nTs —qT. — e+ 7/2)
g (t —mTs — pT. — e — 7/2)} (5.84)

Which can be simplified to:

+oo @

Q
Rayyw,(t +7/2,t —7/2) = 03 Z ZZCLQC?P

n=-—oo qg=0 p=0
gt —nTs —qT. — e+ 7/2)
g (t —nTs —pT, — e —7/2) (5.85)

It can be easily seen that the inner double sum term in (5.85) represents
the product of the shifted versions of the code sequence of length 7. The
outer summation term causes the repetition of the lag product with a period
of T, thus, the signal exhibits nonconjugate cyclostationarity with a cycle
frequency 1/T = f,. However, it is obvious that the cyclic autocorrelation
function depends on the particular code sequence of the user:

2
9d

RM: (1) = T

XX

/oo e~ I2rlrHhfsle=m/DI0y (O (k fs — f)df (5.86)

where Cj(f) is the Fourier transform of the particular code waveform
a(t) = Zqul ¢1,q9(t — qT). There are several practical problems associated
with using the cyclostationarity with the symbol frequency fs as a feature
for air interface identification.

e Some CDMA systems, for example UTRA -FDD and -TDD allow the
use of variable symbol rates, according to the user needs. This is
accomplished by using spreading codes with different spreading factors.
Hence, the individual user signals may have different symbol rates,
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leading to different cycle frequencies for each user.

e In some cases, scrambling may be used in addition to the user speci-
fic spreading. Usually, scrambling is performed over multiple symbol
periods, destroying the cyclostationarity with the symbol rate and in-
troducing a new cyclostationarity with the reciprocal of the scrambling
code length 1/T%..

e Since we are in search of a general solution to the recognition problem,
the dependence of the cyclic autocorrelation function on the particular
code sequences is undesirable.

In the following, it is shown that the time varying autocorrelation function
has a periodic component, which does not depend on the spreading code
sequence. (5.85) can be rexpressed in the following manner:

+oo Q Q

Ry, (t+7/2,t—7/2) = 07 Y D> cgciglt—nTs —ql. — e +7/2)
n=—oo g=1 p=1
p#q

g (t—nTs —pT. — e, —7/2)

+oo  Q
+ ooq Y Y leglglt —nTs —qT. —a+7/2)

n=—oo qg=1

g (t—nTs —qT. — e — 7/2) (5.87)

Since |¢; 4|* = 1 and QT = T, the second term of (5.87) can be simplified
to a simple summation

—+oo
o3 Z gt —qT. — e, +7/2)9"(t — qT. — e — 7/2) (5.88)

g=-00

Note that this term is periodic with a period of T, and does not depend
on the particular user code, and it is actually the same term that appears
in the time varying autocorrelation function of a linear modulated signal,
as in (5.48). In other words, a single user signal always exhibits cyclosta-
tionarity with the chip rate f. = 1/T., as a result of the impulse shaping,
regardless of the structure or the length of the particular code employed.
Thus, the cyclic autocorrelation function of a single CDMA signal consists
of a code dependent component, which is nonzero for « = kf,; and a code
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Cycllic Autocorrelation Function of a CDMA Signal

40

Fig. 5.9 Magnitude of the Cyclic Autocorrelation Estimate of a CDMA
signal.

independent component, which is nonzero for o« = k/T, = kf.. It should
also be noted that the chip rate f. = Qf;s itself is also an integer multiple of
the symbol rate. From this reason, the total cyclic autocorrelation function
at the cycle frequency o = k/T. = kf. has both a code dependent and a
code independent component. However, it can be shown that the contri-
bution from the code dependent term in (5.87) diminishes, as the aperiodic
autocorrelation function [20] of the code sequence approaches the ideal delta
function, which is desirable for CDMA code sequences, since codes with such
autocorrelation properties are more robust against the effects of multipath
propagation.

The code independent component in the cyclic autocorrelation function
of the user signal remains unchanged even if scrambling is carried out. As a
matter of fact, scrambling usually improves the autocorrelation characteris-
tics of the user signals, further decreasing the code dependency. Since every
user signal exhibits cyclostationarity with the chip rate of the system, the
total received signal also exhibits cylostationarity with f.. Therefore, ex-
ploiting the chip rate cyclostationarity is the logical choice for the purpose
of air interface identification for a CDMA signal.

Fig. 5.9 displays the magnitude of the cyclic autocorrelation function of
a synchronous CDMA signal, based on UTRA-FDD downlink specifications.
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The number of users L = 16 and the spreading code length is @ = 16,
the scrambling code length is Qs = 38400. The individual users employ
QPSK modulation with root raised cosine pulse shape, using a roll-off factor
p = 0.22. The cyclic autocorrelation surfaces at o = £ f. are clearly visible.
The cyclostationarity caused by the scrambling sequence do not appear in
this estimate, since the observation length of the estimator is shorter than
the scrambling code period T, = 384007.

5.3.5 Spectral line generation

A signal y(t) contains a finite strength additive sine wave component with
frequency fo, say Ael?™(fot+0) if the Fourier coefficient

1 T/2 .
bs, = lim —/ y(t)e 2ot gt (5.89)

is nonzero and is equal to by, = Ae’?™. In this case, the power spectral
density of y(¢) includes a spectral line at f = fy. That is, the PSD contains
the additive term

[bso|28(f = fo) (5.90)

with the dirac delta function §(-)

From the cycloergodic definitions of the cyclic autocorrelation functions
given in (5.15) and (5.16), it is obvious that additive sine wave components
can be regenerated from cyclostationary signals using so called delay-and-
multiply (DM) nonlinearities, as illustrated in Fig. 5.10, where the optional
complex conjugation operation has been denoted by (x) and the delay pa-
rameter is denoted as T;. The Fourier coefficients corresponding to the
regenerated spectral lines can be expressed as:

T/2 ) )
b, = lim —/ z(t)z* (t — Ty)e 2™ Fotqr = R0 (T)e 727 foTa/2 (5.91)

for the DM nonlinearity with complex conjugation and,

- 1 [T/2 . .
bro = Jim 75 / p "0~ Ty)e 720t dt = R, (Ty)e™727/oTa/2 (5.92)
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™ Ty

x(t Y

Fig. 5.10 The Delay-and- Multiply nonlinearity

for the DM device without complex conjugation operation respectively. Thus,
the intensity of the spectral line regenerated by a delay-and-multiply device
is actually equal to the magnitude of the corresponding (conjugate or non-
conjugate) cyclic autocorrelation function at « = fy and 7 = T,;. Therefore,
in order to regenerate the spectral line with maximum possible intensity
at the frequency fj, the delay parameter T; has to be chosen such that it
samples the corresponding cyclic autocorrelation surface at is maximum va-
lue. This interpretation also clarifies the reason, why, traditionally, the delay
parameter is chosen as T,; = Ts/2 for regenerating symbol rate spectral lines
for linear modulated signals: From Fig. 5.1 it is obvious that for linear
modulated signals with rectangular pulse shapes, the cyclic autocorrelation
surface corresponding to o = 1/T exhibits maxima at 7 = +7/2, and it has
a zero at 7 = 0. However, if a pulse shape with root raised cosine spectrum
is used, the optimum value of the delay parameter is Ty = 0, which can be
seen in Fig. 5.4.

GMSK-specific spectral lines

Since the GMSK signal exhibits both conjugate and nonconjugate cyclosta-
tionarity, both versions of the DM device can be employed for the spectral
line generation.

Figs. 5.11 and 5.12 display the spectral lines regenerated from a GMSK
signal with BT, = 0.3 by a DM device with complex conjugation operation,
which corresponds to the nonconjugate cyclic autocorrelation function, and
by a DM nonlinearity without complex conjugation, which corresponds to
the conjugate cyclic autocorrelation function respectively. For both cases,
the delay is chosen as T; = 0 in order to regenerate the optimum spectral
lines. As discussed in section 5.3.2, the GMSK signal exhibits nonconjugate
cyclostationarity with a cycle frequency o = 1/T, = f,, however Rfs (1)
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power spectral density
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Fig. 5.11 PSD of the DM output for a GMSK signal (with complex conju-
gation)

Spectral lines generated for a GMSK signal
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Fig. 5.12 PSD of the DM output for a GMSK signal (without complex
conjugation)
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Spectral lines Generated for an OFDM Signal
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Fig. 5.13 PSD of the DM output for an OFDM signal (with complex conju-
gation)

is very weak because of the pulse shape involved. Therefore, the spectral
line at f = fs in Fig. 5.11 is also very weak and difficult to detect under

noise. Nonetheless, as expected, the spectral line at f = f;/2 in Fig. 5.12
fs/2
R

Tx*

corresponding to (Ty) is fairly strong and much easier to detect.

OFDM-specific spectral lines

The OFDM signal exhibits only nonconjugate cyclostationarity, hence a DM
with complex conjugation has to be used for spectral line regeneration. The
PSD of the DM output for the OFDM signal of section 5.3.3 is displayed
in Fig. 5.13, where the spectral lines corresponding to discrete cyclic au-
tocorrelation surfaces at harmonics of 1/7 are perfectly visible. The delay
parameter is chosen as T;; = 1/A f, where the cyclic autocorrelation exhibits
sharp peaks.

CDMA-specific spectral lines

Finally, the DM output for the CDMA signal described in section 5.3.4 is
displayed in Fig. 5.14. T, = 0 was chosen to obtain the spectral line at
f=1/T. = f. with the maximum possible intensity.
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Spectral lines generated for a CDMA Signal

PSD (dB)

0 0.5 fTC 1 15

Fig. 5.14 PSD of the DM output for a CDMA signal (with complex conju-
gation)

Regeneration of spectral lines using a delay and multiply device has been
used in the literature for presence detection of DS/SS signals under noise
in [45] and [46], for the detection of the channel allocation information in a
spectrum pooling system in [47], for modulation type classification of PSK
and MSK signals in [48] or for synchronization purposes in [49]. However,
this papers have analysed the spectral line regeneration without any mention
of the concept of cyclostationarity.

5.3.6 Summary

The cyclostationary signal analysis provided in this section shows that signals
from different air interfaces exhibit different kinds of cyclostationarity for
different values of the parameters a and 7. Each of the investigated signal
types has shown conjugate and/or nonconjugate cyclostationary behaviour
with cycle frequencies and delays related to the symbol or chip rates of the
particular system. Table 5.1 summarizes the results of the analysis from this
section, where 7y denotes the value of the lag parameter, for which the cyclic
autocorrelation surfaces take their maximum value.

Assuming that the Software Radio receiver knows the particular cyclo-
stationary behavior of each air interface signal to be recognized, which is
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Signal Type Nonconjugate Conjugate To
cyclostationarity | cyclostationarity

Linear modulated ao =1/Ts N/A Ts/2

with rectangular pulse

Linear modulated ao =1/Ts N/A 0

with rrc pulse

GMSK ag = 1/Ts Qo = 1/2TS 0 for both

OFDM a0 =1/Ts N/A 1/Af

CDMA with rrc pulse | ag=1/T. N/A 0

Tab. 5.1 Cyclostationary behaviour of different signal types

in concurrence with the SR structure displayed in Fig. 1.1, the problem of
air interface recognition reduces itself to the detection of the presence of a
particular cyclic signature, i.e. to the detection of cyclostationary behaviour
in the received signal for certain values of « and 7. The next section inves-
tigates an asymptotically constant false alarm rate (CFAR) test, which is
devised exactly for this purpose.

5.4 A CFAR Test for Detection of Cyclostatio-
nary Behaviour

This section provides a method for detecting the presence of cyclostationarity
in a given signal employing the statistical test for the presence of conjugate
cyclostationarity, which has been developed by Dandawate in [50] for discrete
time processes which exhibit conjugate cyclostationarity, on the oversampled
received signal z[i] = 2(iTsample) and show that it can be extended to detect
nonconjugate cyclostationarity also.

The test provided in this section checks for a given cycle frequency o =
ay, the presence of the conjugate cyclostationarity from a data segment of
length T,,. The discrete time version of the estimation of the conjugate cyclic
autocorrelation function is given as [50]:

To—1
1

Rfc‘x(v)ZT Z wfi]x[i 4+ v]e 2T (5.93)
¢ =0

with v the discrete version of the lag parameter 7. Here, the assymetric
definition of the conjugate cyclic autocorrelation function is used, since v/2
does not exist for odd values of v in the discrete lag domain.
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The conjugate cyclic autocorrelation estimate can be written as the sum
of the actual value and the estimation error A?,.(v)

Rgx* (V) = Rgz* (U) + A:C;z* (U) (594)

Considering the general case, where presence of cycles has to be checked
for a set of lags v, rather than a single one, a 1 x 2N row vector consisting
of conjugate cyclic autocorrelation estimates at the cycle frequency o = ag
can be defined as follows:

Prxr = {Re{Ri‘g*(Ul)},...,Re{Rfc‘;*(vN)}
,Jm{Rg;* (vl)}, Im{égg* (vN)H (5.95)

with the fixed lags vy, ..., vx. The row vector of the true values of the conju-
gate cyclic autocorrelation ryx- is defined similarly as:

S {Re{Rg‘g*(vl)},...,Re{R;‘;*(vN)}

,Im{R;‘;* (ul)}, Im{R;‘g‘;* (UN)H (5.96)

and the estimation error vector Ayyx
Anxr = [Re{Ag;*(vl)},...,Re{Ag;*(vN)}

Im{ A% o)} Im{ A (o) }] (5.97)
so that we can write
f'xx* = Iyxx* + Axx* (598)

Using this vector-matrix notation, the detection of the presence of conjugate
cyclostationarity can be formulated in terms of a binary hypothesis testing
problem. Given that the hypothesis Hj represents the case where x(t) does
not exhibit conjugate cyclostationarity with the cycle frequency «g and the
hypothesis H; represents the case where x(t) does exhibit conjugate cyclosta-
tionarity, the following binary hypothesis testing problem can be formulated:
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Hy : g is not a cycle frequency Yv € {v, }V_; = frur = Asxr
Hi : g is a cycle frequency for some v € {v, }_ | = Frxr = Tuxr + Axxr

Since ryx+ is nonrandom, the distribution of fxx+ under Hy and H; differs
only in mean.

Devising a decision strategy for this binary hypothesis testing problem
requires the knowledge of the distribution of Axy«, which is unknown, be-
cause the distribution of the data is not known to the air interface recognition
subsystem of the software radio under the hypothesis Hy. Therefore, in [50],
it has been proposed to exploit the asymptotic properties of the cyclic au-
tocorrelation estimators to infer the asymptotic properties of the estimation
error vector A yxx.

5.4.1 Asymptotic Statistics of the Conjugate Cyclic Au-
tocorrelation Estimators

It is easily seen that R%,.(v) is an unbiased estimate of R%,. (v). Hence, the
estimation error A2, . (v) vanishes as Ty — oo. In his work, Dandawate has
shown that it is also a consistent estimate and the quantity /T, R%, . (v) is
asymptotically complex normal distributed, provided that x(t) fullfils a so
called mizing condition (See appendix A for details). The complex normality
has been proven by showing that cumulants of orders > 3 of /T,R%,.(v)
vanish asymptotically, i.e. as T, — oo, which is a direct result of the abo-
vementioned mixing condition [50]. Furthermore, in the same paper, he has
demonstrated that its covariance can be expressed in terms of the conju-
gate and nonconjugate cross spectral correlation density functions of the lag
products f,[i] = z[i|x[i + v].

lim TOCO’U(Rgx* (’U), Rgm* (p)) = S?U+f€ (ﬂ)

To—00
Jim Tocou(RE,. (v), (RY, (0)7) = S (=5) (5.99)

Where the cross spectral density functions are defined as:

To—1 oo
ST ST cov(fulil, foli + €)e 272t (5.100)

i=0 ¢=—o0

« 3 1
Shg; () = lim 2
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and

To—00

To—1 oo
5,5, (f) = lim TLOZ S cov(fli), £l + €)e 22t (5.101)

1=0 £{=—o0

From these results, it can be concluded that the distribution of the estimation
error vector converges asymptotically to a normal distribution:

Hm /7oA 2 N (0, S+ ) (5.102)

To—00

where £ denotes the convergence in distribution and N (0, Xyxx-) is a multi-
variate normal distribution with mean 0 and covariance matrix 3yx«, which
depends on the particular signal. Using (5.99), the covariance matrix can be
expressed as:

Q

Re —Q(*;JFQ Im Q(*;f ( |
Pogxr = ) - 5.103
7 | pm{esal gefa-g

The (1, m)th entries of the complex covariance matrices Q*) and Q are given
as

Q™ (l,m) = SJQ‘ZOf (ap)

Q(l,m) = S?ylf% (—ayp) (5.104)

Since the asymptotic statistics of the estimation error is known, the gene-
ralized likelihood principle can be employed to generate a suitable decision
statistics for the binary hypothesis test.

5.4.2 The Generalized Likelihood Principle

One of the most celebrated methods in the statistics is the so called likelihood
ratio test. It provides a powerful tool, which is used in many applications
in communication theory, especially in hypothesis testing problems, such
as detection. Consider the binary hypothesis testing problem, where the
hypotheses Hy and H; have the a-priori probabilities P(H,) = 1 — P(Hy),
and a decision has to be made based on the observation . The maximum a
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posteriori decision rule leads to a decision for H; if
P(Hy|r) > P(Ho|r) (5.105)

and for Hy otherwise. The conditional probability density functions of the
random variable r are called the likelihood functions and are defined as:

p(r[Ho) = po(r)

p(r|H1) = pi(r) (5.106)

and using Bayes’ rule, the maximum a posteriori decision can be rexpressed
as

p(r) (1= P(H))
po(r) P(H,)

(5.107)

The ratio A(r) = 5‘;—5:; is referred to as the likelihood ratio, and a test based
on A(r) is called a likelihood ratio test. Generally, it is more convenient to use
the natural logarithm of the likelihood ratio, which is referred to as the log
likelihood ratio In(A(r)), which is a permissible approach, since the natural
logarithm is a monotonic increasing function [51]. The likelihood ratio is also
encountered in detection problems with different optimality criteria, in which
cases only the term on the right-hand side of the inequality changes. If the
both hypotheses are equiprobable, we get the so called maximum likelihood
detection. For known signals under AWGN, this test leads to the well known
matched filter receiver.

For detecting signals with unkown or random parameters, an a-priori
probability density function for these parameters can be assumed, and an
averaged likelihood ratio can be generated using these probability density
functions. i.e.

B f{e} p1(r|0)w(0)do

M) = T el Io (@)

(5.108)

where 6 and ¢ are the unknown random parameters, and w(f)and v(¢) are
the probability density functions of these parameters (known or assumed).
If no knowledge about the distribution of the parameters exits and it is
not appropriate to assume any such distribution, the so called generalized
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likelihood principle can be applied [51].

maz{g}pl(r|9)

Ar) = maﬂ?{qs}PO(TW)

(5.109)

That is, the values of # and ¢ are used, which maximize the likelihood func-
tions. It should be noted that this is an inituitive solution to this problem,
and may not necessarily lead to optimum detection in the sense of maxi-
mizing the detection probabilities or minimizing the error rates, however,
it provides a useful tool for certain detection problems. The values of
and ¢, that maximize p1(r|f) and po(r|¢) are the so caled maximum likeli-
hood estimates of these parameters, and are denoted as 6 and ¢. Thus, the
generalized likelihood principle can be summarized as follows:

e From the received data, form the maximum likelihood estimates of the
unknown parameters.

e Use these estimates in the likelihood ratio, as if they were the true
values of the parameters.

Actually, this detector is the same as the maximum likelihood receiver for
completely known signals, the only difference being that the estimated values
of the parameters are used instead of the true but unknown parameters.

In the following, the detection problem of unknown but nonrandom si-
gnals under noise in the context of generalized likelihood ratio test is inves-
tigated. Consider the binary hypothesis testing problem:

Hi:r Hs+n

Hy:r =n (5.110)

where n is a zero mean multivariate Gaussian distribution and s is a non-
random but unknown signal. The probability density functions of r under
both hypotheses differ only in mean, hence the likelihood functions for this
hypothesis test can be expressed as:

1 —rTE_lr)

po(r) = (2@”/2'2'1/2@:@( 5 (5.111)
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and

1 (—(r —Hs)TS 1(r - Hs)) (5.112)

pl(r|s) = (27r)n/2|2|1/26xp 2

where X is the covariance matrix of n. If s were completely known, the log
likelihood ratio would be calculated as:

In(A(r)) = ln(pl—(r)) =Ty 1Hs - %STHTE_IHS (5.113)

Po(r)

In this case, the first term would be used as decision statistic, since the second
term does not depend on r. Since s is an unknown nonrandom signal, we
can use the generalized likelihood principle from (5.109), substituting s with
its maximum likelihood estimate §, which is given as [51]:

§=HTZ'H)'HTZ 1y, (5.114)

provided that (HTX~1H) is not singular. Hence, the generalized likelihood
decision statistics for this binary Hypothesis testing problem is

Z=rTETHHTE'H)'HTZ r =TZ 'r (5.115)

The decision statistic Z has a quadratic form and can be viewed as a weighted
energy detector. In the special case, where n is uncorrelated, Z would be
proportional to rTr = 3" r? which is the energy of the received signal r.

5.4.3 The Decision Statistics

Because of the asymptotic normality of /7T,Axx+, the test statistics from
(5.115) can be directly applied to the binary hypothesis test at hand, with
H=1I

Zpge = Ty S PL.. (5.116)

where 3,4~ is the estimated covariance matrix.

It can be shown that, under Hj, the distribution of Z,,~ converges
asymptotically to a central x? distribution with 2N degrees of freedom,
irrespective of the distribution of the input data (see [50], also Appendix A
). Hence, for a given threshold, the false alarm probabilities can be analy-
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tically calculated for sufficiently large observation lengths T, , regardless of
the particular signal, leading to an asymptotically constant false alarm rate
(CFAR) test. One can write, under Hy:

Hm Zoor 2 x3n (5.117)

T,— 00

where the pdf of the X3, distribution is given as

_ 1 N-1_-y/2
py (y) = 721\7(]\[ — 1)!y e (5.118)

On the other hand, under Hi, the distribution of the test statistics Z,;«
converges approximately to a normal distribution [50], :

lim Zyp ~ N (Do Botr . AT 1 S2hrT ) (5.119)

xx* Laex* ) xx* xex*
To—00

The test from (5.116) allows the detection of the cyclic signature of signals
exhibiting conjugate cyclostationarity, such as the GSM and DECT signals.
To be able to recognize signals exhibiting nonconjugate cyclostationarity,
such as the CDMA and OFDM signals, this test has to be modified. Follo-
wing the same line of reasoning as in [50], using the mixing condition of (A.4),
a similar test can be derived for the presence of nonconjugate cyclostationa-
rity, which has the same asymptotic characteristics as (5.116). Defining the
discrete time estimate of the nonconjugate cyclic autocorrelation function as

T,—1
1

RS, (v) = T > afilatfi + v]le P = R, (v) + AL, (v)
° =0

and the vectors rxx, xx, Axx similar to (5.95), the decision statistics for
this case can be given as:

Zpw = Tofxx SLET, (5.120)
The calculation of the entries of the covariance matrix Sy is performed
in a similar fashion as in the previous case (see (5.104)), this time using
the cross spectral correlation density functions of the conjugate lag products
foli] = z[i]x*[i + v] instead of f,[i] .
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Fig. 5.15 The histograms of Z,, under H

As discussed above, the variance normalization which is carried out in
the generation of the test statistics makes the thresholding required for a
certain false alarm rate Py independent from the particular signal at hand,
since the distribution of the decision statistics approaches a X3, distribution
for sufficiently large observation intervals. Figure 5.15 displays the histogram
of the simulation results for the decision statistic Z,, for various values of N
under H, with 3000 detection runs. The decision statistics is generated by
searching for nonconjugate cyclostationarity in an OFDM signal with symbol
rate fs at a cycle frequency o = 1.3125fs. The signal is further contaminated
by AWGN with SNR=10dB. As seen in Fig. 5.15, the simulation results and
the theoretical X3, distributions agree very well, supporting the theoretical
results.

In our investigations, we have observed that using N > 1 decreases the
detection performance, which can be attributed to two main reasons

e The mean and variance of the decision statistics under H( increases
linearly with NV, requiring a higher threshold for the same false alarm
rate [14].

e Ag long as one of the v’s is chosen such that Rgz*(v) corresponds to
the maximum value of the cyclic autocorrelation function under Hj,
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Fig. 5.16 The histogram of Z,, under H;, QPSK signal plus 3dB Noise

using additional estimates at other values of the lag parameter ob-
viously contributes more measurement noise to the detection statistic,
increasing the variance and decreasing the detection performance.

In light of the discussion above, in all the following simulations, N is cho-
sen as N = 1 and the lag parameter v is chosen such that it samples the
corresponding cyclic Autocorrelation function at its maximum. Fig. 5.16
compares the histogram of the simulation results for the detection statistics
under H; for a QPSK signal with rectangular pulse shape under AWGN with
SNR=3dB and 6000 detection runs with the theoretical asymptotic distribu-
tion from (5.119). The theoretical and simulated curves agree for the most
part, except at the tails.

5.4.4 Implementation Issues

The test statistics from (5.116) and (5.120) can be generated in practice
by using computationally efficient FFT based algortihms, since entries of
the fxx and fxx- are basically the Fourier transforms of the lag products
fo[i] and f,[i] respectively, at a fixed frequency «p. Sample rate coversion
techniques may be required to place g exactly at the center of an FFT bin,
since using an ADC with a fixed master clock rate is more practicable [52].
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In the estimation of the entries of the covariance matrices Sy and Syx-
FFT based frequency smoothing methods can be used[50]. In the following
simulations, a frequency smoothing technique with a Kaiser Window of pa-
rameter G = 10 has been employed.

5.4.5 Simulation Results

This section provides simulation results for the performance of the statisti-
cal tests from (5.116) and (5.120) in detecting the cyclic signatures of four
different air interface signals described in previous sections, under realistic
multipath conditions.

The GSM Signal

For the GSM signal described in the previous sections, Z,.- is used as the
detection statistic, in order to detect the presence of the conjugate cyclosta-
tionarity in the received signal for ay = fs/2 and 7 = 0. Fig 5.17 displays
the detection probability P; vs. SN R for several values of T, and Py = 0.05,
both for AWGN and multipath cases. The effects of multipath propagation
are modeled using the typical urban channel model [53] with user speeds of
15m/s. As seen in Fig. 5.17 frequency selective multipath fading channel
decreases the detection performance greatly. However, satisfactory detec-
tion results can be achieved for moderate detection intervals and SNR >
6dB. Fig. 5.18 displays the receiver operation characteristics (i.e. P vs.
Py) of the detector for a fixed SNR of 3dB. Figures 5.17 and 5.18 indicate
that increasing the observation length T, improves the detection perfomance,
however, a saturation effect takes place as T, grows.

The DECT Signal

For the DECT signal, Z,,~ is used as the detection statistic, in order to
detect the presence of the conjugate cyclostationarity in the received signal
with ag = f5/2 and 7 = 0. The Indoor B model [54] with user speeds of
5m/s is used for modelling the radio propagation channel. Fig 5.19 displays
P; vs. SN R for several values of T, and Py = 0.05. Comparing the AWGN
curves from Figs. 5.19 and 5.17, we see that the detection performance for
the DECT signal is significanty better than for GSM, which comes from the
fact that the DECT signal, with a BT product of 0.5, has a wider pulse
spectrum than the GSM signal with BT, = 0.3. Fig. 5.20 displays the
receiver operation characteristics (ROC) of the detector for a fixed SNR of
3dB.
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Fig. 5.18 The Receiver Operating Characteristics for the GSM Signal
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Fig. 5.22 The Receiver Operating Characteristics for the OFDM Signal

The OFDM Signal

For the OFDM Signal described in section 5.3.3, Z,,. is used as the detection
statistic, in order to detect the presence of the nonconjugate cyclostationarity
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Fig. 5.23 P; vs SNR for Py = 0.05 for the CDMA system.

in the received signal with ag = 1/T and 7 = 1/Af. The detection results
for Py = 0.05 and the ROC for SNR= 0dB are displayed in Figs. 5.21
and 5.22 respectively. Once again, the IndoorB channel model is used for
simulating the effects of the wireless channel, with user speeds of 5 m/s.

The CDMA Signal

For the CDMA Signal described in section 5.3.4, Z,, is used as the detection
statistic, in order to detect the presence of the nonconjugate cyclostationarity
in the received signal with oy = 1/7,. and 7 = 0. The detection results for
Py = 0.05 and the ROC for SNR=3dB are displayed in Figs. 5.23 and 5.24
respectively. Typical Urban channel model with 15m/s user speeds is used
for simulating the effects of the mobile propagation channel.

5.4.6 Summary

The simulation results indicate that the statistical test for the presence of
cyclostationarity introduced in this section is indeed a powerful tool for de-
tecting the cyclic signature of signals. This test has the advantage of being
a CFAR test in the sense that the threshold guaranteeing a particular Py
does not depend on the particular received signal, and can be calculated
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analytically or by using look-up tables for x? distributions. This property
makes it possible to dispense with the use of confusion matrices as a mea-
sure of performace of the air interface identification system, since the false
alarm rate for every type of input signal is the same due to the variance nor-
malization. The results show that a satisfactory detection performance can
be attained for moderate observation interval lengths 7, and relatively low
SNR values, for SNR>6dB in the case of GSM, DECT and CDMA signals,
and for SNR>3dB for the OFDM signal, allowing the recognition of signals,
which are received with enough power to permit communication with accep-
table bit error rates. Parts of the results presented in this section have been
published in [55] and in [56].

5.5 Effects of the Carrier Frequency Estima-
tion Errors

The air interface recognition technique presented in this chapter is based on
the assumption that the baseband signal from the air interface to be reco-
gnized is available at the Software Radio receiver. This, however, requires a
perfect knowledge of the carrier frequency of the signal of interest, which, in
practice, is estimated by the channel segmentation stage prior to the iden-
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tification. The estimated carrier frequency, obviously, may be contaminated
by estimation errors. This section investigates the effects of this estimation
errors on the proposed method. Denoting the carrier frequency estimation
error as d¢,, we can write the contaminated baseband signal of interest as:

B(t) = a(t)e 92 ost (5.121)
The nonconjugate cyclic autocorrelation function of Z(¢) can be written as:

53(7) = e T TRY (7) (5.122)
Thus, the carrier offset has no effect on the nonconjugate cyclic autocor-
relation function, other than a linear phase term, and does not have any
influence on the cycle frequencies of the signal of interest, which makes the
proposed method very robust against this kind of estimation error, if the
signal of interest exhibits nonconjugate cyclostationarity.

However, things look differently for the conjugate cyclic autocorrelation
function, which can be calculated as:

R%:.(7) = RO2% (1) (5.123)
In this case, the carrier offset leads to a shift in the conjugate cyclic autocor-
relation function in the « direction. Thus, every cycle frequency is shifted by
an amount of 207, which, at the first sight, seems to make the recognition
impossible, unless dy, is precisely known.

Nevertheless, it can be easily shown that the conjugate cycle spectrum of
communication signals shows a symmetry, that is, if aq is a cycle frequency,
then —ay is also a cycle frequency of the signal (see Fig. 5.7 ). Since
the whole conjugate cyclic autocorrelation function is shifted by the same
amount, the distance between two cyclic autocorrelation surfaces remains
the same, i.e. 2ag. Hence, the recognition can be carried out by conducting
a search for the presence of two cycle frequencies in the conjugate cyclic
autocorrelation function of Z(¢) which have a frequency separation of 2«y,
eliminating the need of knowing the offset d7,. The detection of such a cycle
frequency pair in Z(¢) is a clear indication for the presence of conjugate
cyclostationarity in z(t) with a frequency of «yp.

Thus, in case of a carrier frequency estimation error for signals exhibi-
ting conjugate cyclostationarity (such as GSM or DECT), the CFAR test
proposed in section 5.4 has to be applied multiple times for different pairs of
«, which results in a considerable increase in the computational complexity
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of the recognition algorithm. However, if the order of magnitude of the fre-
quency offset relative to the cycle frequency «g is approximately known a
priori, (i.e. the error statistics of the segmentation algorithm) the search can
be limited on a small frequency interval, making the use of this approach
computationally feasible.
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6 Conclusion

In this work, a method for air interface identification in a Software Radio
system has been developed and investigated. Air interface identification is
a key function supporting the environmental awareness of a SR, which is
required for an adaptive and efficient use of the spectral resources and to
make an optimum use of the multi standard capability, which is a crucial
part of the Software Radio concept. Air interface identification allows a
Software Radio terminal to classify the different air interface standards in
its environment and to connect to the particular air interface, which can
deliver the required service in the most efficient manner. Additionally, it
provides the SR with an alternative mode monitoring capability, allowing
the SR to perform interstandard handovers if necessary.

The proposed air interface identification method is based on three fun-
damental assumptions:

1. The air interface identification has to be performed in an environment
with a fully dynamic frequency allocation scheme, i.e. each transmis-
sion standard can be operated on any frequency band, according to
the user demands and traffic considerations. Although today’s mobile
communication networks are usually based on fixed frequency allo-
cation schemes, there have been tremendous research efforts in the
area of dynamic, demand oriented frequency allocation methods in the
last decade, indicating a clear global trend towards more efficient and
flexible resource allocation methods and more interoperability between
different standards, making the above assumption quite reasonable for
a future Software Radio system.

2. The air interface identification has to be performed blindly, i.e. without
help from the network.

3. The Software Radio terminal has knowledge about all the relevant
parameters of every air interface standard it is capable of using in its
database, which reduces the identification problem to a recognition
problem, i.e. the identification stage has to recognize the signal of
interest as one of the known air interface standards, or reject it as
unknown.
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The first assumption implies that information about the bandwidths and
carrier frequencies of the air interface signals of interest are not available to
the Software Radio terminal prior to the identification. Therefore, an au-
tomatic channel segmentation stage has to precede the identification stage,
locating and isolating the individual signals in the environment. A channel
segmentation method based on cluster analysis has been developed in chap-
ter four, which, as the simulation results indicate, is capable of detecting
and isolating even signals only a couple of dB above the noise level, in chan-
nels occupied by multiple users with different bandwidths and transmission
powers.

The air interface identification stage presented in the fifth chapter of this
work is based on cyclostationary signal analysis, and presents a unified ap-
proach to the air interface identification problem for all major signal types
encountered in today’s mobile communication environment. This approach
exploits the uniqueness of the cyclostationary signature of different air in-
terface signals as a feature for recognition, providing a simple and efficient
identification strategy, which is applicable to various different signal struc-
tures. It has been shown, by means of simulations, that the proposed method
is able to provide an excellent detection performance, even under realistic
frequency selective multipath fading conditions, and for relatively low SNR
values, wich makes it superior to its counterparts based on a modulation
type classification approach, which has been widely used in the literature.
Additionally, this approach is capable of identifying OFDM and CDMA type
signals, which can not be identified using conventional modulation type clas-
sification methods due to their complicated signal structures. Other possible
applications of the proposed cyclostationary method have been discussed in
[57], [58] and [59].
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The mixing conditions

The time varying k’th order moment myg, (¢, v) of a complex random process

x[i] with v = [v1,va,...,v;], v1 = 0 is given as

M (1, v) = E{zi]z[i + v1] ... z[i + vie—1]} (A1)
let v; be some nonempty subset of the set of indices v = {0, 1, ..., k}, define
the order of the subset n; = |v;| and my,.(i,v,;) is the moment of n;

variables with corresponding subscripts in the subset,i.e. {[i + vm]}mey,;

The k’th order time varying cumulant ¢, (¢, v)of z[i] can be expressed
in terms of the moment functions as

ke (i,v) = > _(=1)P" (p = D! [ ] 1m0, v4y) (A.2)

Py, j=1

where the summation on is carried out over the distinct partitions Py of the
index set {v = 1,...,k}, which is defined as the collection of p subsets of
v,{vi}}_;, having the following properties:

p
v = Ul/l
=1
vi[Jve = 0 for j#k. (A.3)

Note that the more general time variant cumulant, accomodating every
combination of complex conjugated and nonjugated signal terms

Ckms (l’ V) = czsl Ty (l’ V)
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with x,, € {z[i],2*[i]}, ¢ = 1,...,k can be expressed similarly, using the
moment functions with appropriate conjugate-nonconjugate combinations.

The mixing condition used in [50] to derive the asymptotic properties
of the cyclic autocorrelation estimates (i.e consistency and asymptotically
complex normal distribution) can be given as

oo

Z sup |vicks, (t, V)| < 00 (A4)
t

V=—00

This assumption requires the absolute summability of the cumulants of z[i],
which, inituitively, implies that samples of z[i] which are well separated in
time are approximately independent [60], which is obviously fulfilled by all
communication signals.

The asymptotic distribution of Z,,-

The asymptotic distribution of Z,,~ under Hy can be shown by applying the
following theorem, which has been proven in [61]:

THEOREM:

1. If the 1 x M vector ¥ is an asymptotically Gaussian estimator of ¥
using T, data samples,i.e.

lim /T,(¥ — &) 2 N(0,Zg) (A.5)

To—00

and ¥ # 0, then

lim /T,(#&H — $¥H) 2 A(0, 4T3 4 TH) (A.6)

T,— o0

but if ¥ =0 and g =1, then

lim /T,(#%H — w@H) 2,2, (A7)

T,— o0

2. T limy, .oo(¥) = ¥ and limr, .o (G) ™=° G, which is an M x M
matrix, then

lim /T,(¥G) 2 oG (A.8)

To—00
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Choosing W = .y~ 2;,:*/ 2and M =2N , realizing that 2;;/ ? is a consistent
estimate and using theorem 2, ¥ can be shown to be asymptotically normal,
since lim, 0o/ ToFxx+ is asymptotically normal, as shown in [50]. Therefore
using theorems 2 and 1, the asymptotic distribution of Z, .« under Hy is given

as

Hm Zoo 2 x2y (A.9)

To—00

and under H;

lim Zype ~ N Ty SohrT . AT 1 ShrT, ) (A.10)

o000
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Acronyms, Notations and Symbols

Acronyms

ADC Analog to digital converter

AWGN Additive white Gaussian noise

BPSK Binary phase shift keying

CAF Cyclic autocorrelation function

CCAF Conjugate cyclic autocorrelation function
CDMA Code division multiple access

DAB Digital audio broadcasting

DFT Discrete Fourier transform

DVB-T Digital Video Broadcasting-Terrestrial
FE Front end

FFT Fast Fourier transform

DECT Digital European Cordless Telephony
DS/SS Direct sequence spread-spectrum

1595 Interim Standard 95

GSM Global System for Mobile Communications
GMSK Gaussian minimum shift keying

LAN Local area network

LSB Least significant bit

ML Maximum-likelihood

MSK Minimum shift keying

NL Noise level

OFDM Orthogonal frequency division multiplex
PSD Power spectral density

PSK Phase shift keying

SSCL Self splitting competitive learning

SDR Software Defined Radio

SR Software Radio

SNR Signal to noise ratio

TDMA Time division multiple access

UMTS Universal Mobile Telecommunication System
UTRA UMTS Terrestrial Radio Access

WLAN

Wireless local area network
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WSSUS Wide-sense stationary uncorrelated scattering

Notations

x Variable

T Estimation

T Average

x(t) Continuous time signal

x[n] Discrete time signal

X(f) Fourier Transform of z(t)

X (2) Z-Transform of x[n]

x Vector (general)

X Vector (in the feature space)

X Matrix

(1%l Norm

Re{z} Real part

Im{z} Imaginary part

E{z} Expectation

cov(x,y) Covariance

Tl (t) Linear part of z(t)

x(t) Low pass equivalent signal to x(t)

RS .(7) Nonconjugate cyclic autocorrelation
function of x(t)

R .. (T) Conjugate cyclic autocorrelation
function of x(t)

Se.(f) Nonconjugate spectral correlation density
function of x(t)

Se L (f) Conjugate spectral correlation density

function of x(t)

Symbols
Ay Cycle spectrum of x(t)
Ay Conjugate cycle spectrum of z(t)

ffk Asymptotic property vector
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Bandwidth
Fourier Coefficient at frequency fo

Speed of light

Spreading code sequence of the k’th user (CDMA)
Elementary Impulse functions in the

linear approximation of GMSK

Center property vector

Dynamic Range

Information sequence

n’th information symbol modulated on the

k’th carrier(OFDM),

n’th information symbol of the i’th user (CDMA)

Quantization error
Energy of a symbol

Frequency

Chip rate

Carrier frequency

Doppler Shift

Maximum Doppler Shift
Distribution of the fading coefficient
Maximum freqency component contained in a signal
Symbol rate

Sampling rate

Lag product

Conjugate lag product

Impulse Shape

Shape of the frequency pulse (GMSK)
Raised cosine pulse

Root raised cosine pulse

Rectangular pulse

Fourier Transform of g(t)

Raised cosine pulse spectrum

Root raised cosine pulse spectrum

Time varying channel impulse response
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JKfmeans
JEA

Rgm* (T)

Saa(f)
S (f)

Time varying channel coefficient
Hypothesis k

Modified Bessel function of order zero
Identity Matrix

K-means cost function
Edge adaptive K-means cost function

Number of clusters (clustering)
Number of users (CDMA)

AWGN
Winning counter of «
Number of carriers

Noise power
ADC Resolution

Gaussian impulse function

Cluster prototype

Probability of detection

False alarm rate

Likelihood function for the hypothesis &

Spreading code length
Number of quantization levels
Scrambling code length

Received signal

Nonconjugate cylic autocorrelation vector
Conjugate cyclic autocorrelation vector
Nonconjugate cyclic autocorrelation
function of z(t)

Conjugate cyclic autocorrelation

function of z(t)

Distant property vector

PSD of z(t)
Nonconjugate spectral correlation
density function of x(t)



S;lx* (f)

SNRg

SSS8S

~

sample

t.f)

N5

Agy-(v)

Acronyms, Notations and Symbols

Conjugate spectral correlation
density function of z(t)
Signal to noise ratio due to the quantization error

Chip duration

Delay parameter

Guard time

Length of the observation interval
Symbol duration

Sampling interval

Useful time

Time varying channel transfer function

Discrete lag parameter
Maximum Quantization level

Signal
Low pass equivalent signal to x(t)
Input pattern vector

Indicator function

Cycle frequency
Fundamental cycle frequency

Kaiser window parameter
Angle of arrival of the incident wave

Dirac delta function

Kroenecker delta function

Learning rate for Ay,

Least significant bit

Estimation error in the nonconjugate
cyclic autocorrelation function
Estimation error in the conjugate
cyclic autocorrelation function
Estimation error vector

Carrier separation

147
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Rk

=
=

Q.9 9 N

)

Q
oo wa@ NN N
.

S
o

-y
=
o

&

Q
SN
o

XX

2xx*

ATO

€k

Symbol timing error
Learning rate for By,

Adaptive learning rate of P,
The SSCL threshold parameter

Variance

Variance of z(t)

Variance of the aperture jitter noise
Variance of the bandwidth estimate
Quantization error variance

In band quantization noise power
Variance of the carrier frequency estimate
Covariance matrix of the nonconjugate
cyclic autocorrelation estimate
Covariance matrix of the conjugate
cyclic autocorrelation estimate

Time delay between the shortest and longest multipath
Bias factor

Lag parameter

RMS aperture jitter

Local Maximum of the CAF

Neighborhood indication function

Chi suqare distribution with 2N degrees of freedom
Doppler spectrum

Gradient operator

Data domain
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