
CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 1

Clusterfile:
A Parallel File System for Clusters

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

der Universität Karlsruhe (Technische Hochschule)

genehmigte

Dissertation

von

Florin Daniel Isaila

aus Constanta, Rumänien

Tag der mündlichen Prüfung: 15 Juli 2004

Erster Gutachter: Prof. Dr. Walter F. Tichy
Zweiter Gutachter: Prof. Dr. Roland Vollmar

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197565105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 FLORIN DANIEL ISAILA

Contents

1 Introduction 11

1.1 Clusterfile’s overview . 14

1.2 Contributions . 14

1.3 Roadmap . 16

2 Preliminaries and related work 17

2.1 Hardware considerations . 17

2.1.1 Magnetic disks . 17

2.1.2 Redundant Arrays of Inexpensive Disks (RAIDs) . . . 18

2.1.3 Networks . 18

2.2 Parallel file systems . 19

2.2.1 Non-contiguous I/O 21

2.2.2 Collective I/O . 24

2.2.3 Cooperative caching 26

2.3 I/O libraries . 29

2.3.1 Message Passing Interface(MPI) 29

2.3.2 High Performance Fortran 34

2.4 I/O access characterization of parallel applications 36

3 Parallel file system architecture 41

3.1 Clusterfile components . 42

3.1.1 Metadata manager . 42

3.1.2 I/O servers . 43

3.1.3 Cache managers and the global cache 44

3.1.4 I/O clients and I/O library 45

3.2 Parallelism considerations . 46

3.3 Summary . 48

3

4 FLORIN DANIEL ISAILA

4 File model 49

4.1 Data representation . 50

4.1.1 Line segment . 50

4.1.2 FAmily of Line Segments(FALLS) 50

4.1.3 Nested FALLS . 51

4.1.4 Simplifying FALLS . 51

4.1.5 PITFALLS . 52

4.1.6 Nested PITFALLS . 52

4.1.7 Size . 53

4.1.8 Contiguous set of FALLS 53

4.2 File model . 54

4.2.1 File partitioning . 54

4.2.2 Physical file partitioning 55

4.2.3 Logical file partitioning 56

4.3 Summary . 57

5 Data mapping and redistribution 59

5.1 Mapping functions . 60

5.1.1 Mapping a file on a subfile 60

5.1.2 Mapping a subfile on a file 62

5.1.3 Mapping between two partitions 62

5.2 Redistribution algorithm . 63

5.2.1 FALLS intersection algorithm 64

5.2.2 Cutting a FALLS . 65

5.2.3 Intersection of sets of nested FALLS 65

5.2.4 Projection of a set of FALLS 68

5.3 Summary . 69

6 Non-contiguous I/O 71

6.1 Motivation . 72

6.2 View I/O overview . 72

6.3 Implementation . 75

6.3.1 View declaration . 76

6.3.2 Scatter-gather operations 76

6.3.3 Access operations . 77

6.4 View I/O syntax . 78

6.4.1 Data types . 78

6.4.2 View declaration . 79

6.4.3 I/O Access . 79

6.4.4 Example . 79

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 5

6.4.5 Comparison with other I/O optimizations 81
6.4.6 View I/O and MPI-IO 81

6.5 Summary . 82

7 Collective I/O 83
7.1 Parallel I/O scheduling . 83
7.2 Collective I/O overview . 85

7.2.1 Two-phase or disk-directed? 85
7.3 Design issues . 87
7.4 Implementation details . 88

7.4.1 Collective open. 89
7.4.2 Collective view . 90
7.4.3 Collective access . 91
7.4.4 Collective close . 92

7.5 Summary . 92

8 Experimental results 93
8.1 Non-contiguous I/O performance and scalability 94

8.1.1 Performance of three access patterns 94
8.1.2 Matching logical and physical distributions 99
8.1.3 View overhead . 101

8.2 Collective I/O performance and scalability 102
8.2.1 ROMIO three dimensional block benchmark 102
8.2.2 Two dimensional matrix synthetic benchmark 107

8.3 Summary . 115

9 Summary and future work 117
9.1 Future work . 118

9.1.1 Correlation between access pattern and file layout . . 118
9.1.2 Zero-copy global cache 118
9.1.3 Collective buffers versus aggregate buffers 119

6 FLORIN DANIEL ISAILA

List of Figures

1.1 Software hierarchy . 11

1.2 Cluster . 12

1.3 Parallel file access in NFS and in a parallel file system 12

1.4 Roadmap . 16

2.1 Data sieving read example . 22
2.2 List I/O read example . 23

2.3 Two phase I/O read example 25

2.4 Disk-directed I/O read example 26

2.5 Global cache . 27

2.6 MPI file model . 31

2.7 MPI views . 32

2.8 Examples of HPF distributions 34

2.9 Parallel file access example 37

3.1 Node roles in a Clusterfile installation 42

3.2 The cache hierarchy of Clusterfile 45

3.3 The interfaces of Clusterfile 46

3.4 The parallelism potential of Clusterfile 47

4.1 FALLS example: (3, 5, 6, 5) 50

4.2 Nested FALLS example . 50

4.3 Tree representation of a nested FALLS 51
4.4 PITFALLS example: (2, 3, 6, 4, 2, 3) 52

4.5 Nested PITFALLS example 53

4.6 File Examples . 55

4.7 Subfile assignments on I/O nodes 56

5.1 FALLS intersection algorithm 64

5.2 Extending and aligning two partitioning patterns 66

5.3 Nested FALLS intersection algorithm 67

7

8 FLORIN DANIEL ISAILA

6.1 View example . 73
6.2 Write operation in Clusterfile. 74

7.1 Parallel I/O scheduling example 84
7.2 Clusterfile’s collective I/O read example 86
7.3 Collective open protocol . 89

8.1 Write aggregate throughput for (BLOCK, BLOCK), (*, BLOCK)
and (CYCLIC, CYCLIC) logical file distributions 95

8.2 Read aggregate throughput for (BLOCK, BLOCK), (*, BLOCK)
and (CYCLIC, CYCLIC) logical file distributions 96

8.3 Write aggregate throughput for similar logical and physical
file distributions . 97

8.4 Read aggregate throughput for similar logical and physical
file distributions . 98

8.5 Write speedup for (*, BLOCK) logical file distribution when
modifying physical layout from (BLOCK(65536), *) to (*,
BLOCK) . 99

8.6 Read speedup for (*, BLOCK) logical file distribution when
modifying physical layout from (BLOCK(65536), *) to (*,
BLOCK) . 100

8.7 View declaration overhead for write 101
8.8 View declaration overhead for read 102
8.9 ROMIO 3D benchmark aggregate throughput 103
8.10 Aggregate local caches write throughput for different access

granularities. 104
8.11 Aggregate local caches read throughput for different access

granularities. 105
8.12 Aggregate disk write throughput for different access granu-

larities. 106
8.13 Average speedup for different access granularities 107
8.14 Local caches write aggregate throughput variation with size. . 108
8.15 Local caches read aggregate throughput variation with size. . 109
8.16 Disk write aggregate throughput variation with size. 110
8.17 Average speedup for different matrix sizes 111
8.18 ROMIO breakdown times for 4 I/O servers 112
8.19 ROMIO breakdown times for 16 I/O servers 113
8.20 Cooperative caching speedup for (CYCLIC(k) ,CYCLIC(k)) . 114
8.21 Cooperative caching speedup for (* ,CYCLIC(k)) 114

List of Tables

6.1 Comparison of four I/O optimization techniques 80

8.1 Number of file system calls of ROMIO 94
8.2 Offset overhead of list I/O . 98
8.3 Unnecessary data read by data sieving for (CYCLIC, CYCLIC)

distribution . 99

9.1 Parallel matrix multiplication 120

9

10 FLORIN DANIEL ISAILA

Chapter 1

Introduction

The performance of applications accessing large data sets is often limited by
the speed of I/O subsystems. The reasons can be found at different levels
of a parallel system architecture. It seems that an efficient solution requires
an integrated approach at all levels, including architecture, system software
and applications [33].

Figure 1.1 shows a typical software hierarchy of an I/O subsystem. The
file system is a low-level manager of hardware resources. I/O libraries are
designed for user-specific needs (e.g. multidimensional array access, parti-
tion, distribution) and are implemented on top of file systems. Finally, the
applications use either a library or a file system in order to access the I/O
subsystem.

At the lowest level of the hierarchy, the hardware components of a com-
puting system such as processors, memories, networks and disks have dif-
ferent development rates. Particularly, the high improvements in processor
and memory technology cause the slower evolving magnetic disks to become
bottlenecks for the system performance. The impact is even more severe in

Applications

I/O library

File system

Hardware

Figure 1.1: Software hierarchy

11

12 FLORIN DANIEL ISAILA

Computers
without
disk

Computers with
locally attached
disks

Network−attached
disks

In
te

rc
on

ne
ct

Figure 1.2: Cluster

Compute node

Compute node

Compute node

Compute node

Compute node

Compute node

Compute node

I/O server I/O server I/O server I/O server

(b) Parallel file access in a PFS

NFS server

(a) Parallel file access in NFS

Compute node

Figure 1.3: Parallel file access in NFS and in a parallel file system

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 13

a highly parallel system with multiple processors, memories, networks and
disks. According to Amdahl’s law, a small fraction of serial execution can
significantly reduce the parallel program scalability. Even if a program is
well parallelized, system bottlenecks represent potential serialization points.
Therefore, it becomes critical that a distributed system offers the user flexi-
ble mechanisms for mapping a parallel application on the physical resources.

Figure 1.2 shows a simplified model of a parallel system composed of
several nodes interconnected through a network. Each node may be uni- or
multiprocessor, may or may not have a locally-attached disk. Some nodes
do not have any processors and they correspond to network-attached disks
[21, 1].

Applications consisting of one or several processes are running on the
processors and are accessing the disks either through on-chip buses (e.g.
PCI) or external networks (e.g. Fibre Channel, Myrinet, Infiniband, Eth-
ernet). The locally-attached disks may be directly accessed solely by the
locally running processes, while network-attached disks are typically shared
among processes system-wide [1].

The system from figure 1.2 may be further abstracted by considering
only the computing and disk Input/Output(I/O) duties. In the model from
figure 1.3, the computers on which the applications run are denoted compute
nodes. A compute node may be any of the uni- or multiprocessor node from
figure 1.2. The nodes with locally-attached disks are called I/O nodes. The
compute and I/O nodes are logical entities. They can correspond to the
same physical node, for instance to a node that has both processing power
and a locally-attached disk.

Each I/O node can be managed by a local file system or can be part of
a larger distributed or parallel file system. For instance, the architecture of
Network File System (NFS) [48], the most popular distributed file system,
consists of an NFS server running on an I/O node and NFS clients running
on compute nodes. The server exports the local file system of the I/O node to
the clients. If several clients access a file in parallel, as illustrated in the figure
1.3(a), the requests are serialized by the server, which represents a bottleneck
in the system. In contrast, in the parallel file systems (PFS) nCube PFS [17],
CM5 PFS [36], PIOUS [41], PPFS [25], Vesta [11], SPIFFI [19], ParFiSys [9],
Galley [42], Paradise [8], PVFS [26], GPFS [49], the files are typically striped
over several I/O nodes, managed by I/O servers. When compute nodes
access a file in parallel, as depicted figure 1.3(b), the requests may be directed
concurrently to different parallel running I/O nodes. Therefore, the I/O
subsystem may scale with the computation by increasing the number of I/O
nodes.

14 FLORIN DANIEL ISAILA

However, the data distribution over several I/O nodes in a manner that
does not match the access pattern of a parallel application has been found as
an important factor that affects performance and scalability [43, 53, 52, 15].
Throughout the thesis, we will call file physical partition a particular file lay-
out over several I/O nodes, and logical partition an in-memory distribution
of a file among several compute nodes.

1.1 Clusterfile’s overview

Clusterfile [29, 32, 31, 30, 28] is a parallel file system for clusters of commod-
ity computers. The architecture is based on the classical parallel file system
model mentioned above, in which the files are declustered over several I/O
nodes managed by I/O servers. Disks data layout is flexible, in that the user
can specify an arbitrary file distribution over several I/O nodes. The lay-
out is optimized for multidimensional arrays, known to be frequently used
by parallel scientific applications. The applications run on compute nodes
and access the file system through a proprietary interface, a classical UNIX
interface or MPI-IO, the Input/Output specification of Message Passing In-
terface(MPI) library. Each individual process may declare a file view, i.e. a
logical contiguous window on file data stored non-contiguously on disks.

Clusterfile’s cache hierarchy consists of applications’ local caches, a file
system global cache managed in cooperation by several nodes, local caches
of I/O nodes and local disks of I/O nodes.

1.2 Contributions

This thesis will prove the following claims:

Claim 1. The performance of a parallel file system is optimal when the
physical partitioning of a file over a cluster matches the access pattern of a
parallel application.

An improper physical distribution may cause non-contiguous disk access,
a large number of small messages over the network or an unbalanced use of
disks over the cluster [43, 53, 52, 15]. Therefore, parallel applications may
gain large benefits from a cluster file system that allows a flexible physical
partitioning.

This thesis shows how a compact data representation can be employed
for a flexible file distribution over the disks and how the optimal match
between access pattern and file layout can improve the performance of I/O
intensive parallel applications.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 15

Claim 2. File views relieve the programmer from the burden of com-
puting complex access indices. Additionally, views disclose potential future
access patterns that can be used as hints by various file system policies.

By using views, a compute node sets a contiguous window on an eventu-
ally non-contiguous subset of a file. At this point a view may be used as a
regular file and non-contiguous file regions may be accessed in a single call.

A view declares the interest of a compute node for a subset of the file.
The file system may use this information for several purposes: choosing a
proper physical partitioning, prefetching, optimizing the cache consistency
protocol, eliminating false sharing, improving the I/O scheduling strategy,
etc.

This thesis describes the design and implementation of the view mecha-
nism of Clusterfile, shows how the programmer’s task can be simplified and
how the view information can be used for choosing an efficient file layout.

Claim 3. Clusterfile’s data representation allows a flexible and compact
description of arbitrary data distributions.

It is widely accepted that multidimensional arrays are the data structures
that are most frequently used by the parallel scientific applications. Clus-
terfile’s data representation may compactly express regular distributions,
such as partitioning multidimensional arrays over compute nodes or disks.
On the other hand, it is also possible to represent any irregular pattern.
The data representation can be converted in accepted standards such as the
Message Passing Interface data types [38] and High Performance Fortran
distributions [35].

The compact and flexible representation of regular file patterns is demon-
strated in chapter 4.

Claim 4. The mapping functions and the redistribution algorithm of
Clusterfile can efficiently perform data mapping and repartitioning.

Data redistribution is associated with intensive index computation and
data communication. Clusterfile’s mapping functions exploit the regularity
of the partition for an efficient computation. In this thesis we generalized
a multidimensional array redistribution algorithm designed by Ramaswamy
and Banerjee [47].

Claim 5. The non-contiguous I/O operations of Clusterfile can be exe-
cuted efficiently and with low overhead.

Parallel applications frequently generate non-contiguous accesses. Clus-
terfile views allow an efficient implementation of non-contiguous operations
by access indices compaction and by amortizing index computations over
several data transfers.

Claim 6. The collective I/O technique of Clusterfile improves the aggre-

16 FLORIN DANIEL ISAILA

4. Data representation 5. Data mapping and redistribution

3. Architecture 6. Non−contiguous I/O

8. Collective I/O

Figure 1.4: Roadmap

gate I/O performance of parallel applications that concurrently issue small
non-contiguous disk requests.

Clusterfile integrates two well-known collective I/O techniques (to the
best of our knowledge for the first time), disk-directed [34] and two-phase
I/O [18], into a common design. This approach allows the direct comparison
such that applications can use the most appropriate method according to
their needs.

Claim 7. Cooperative caches improve the scalability and performance
of read operations in a parallel file system.

Cooperative caching has been shown to bring considerable benefits for
applications running in distributed environments. However, the interaction
between parallel workloads and cooperative caching has not been widely
investigated. We are aware of a single study (without any follow-up) that
addresses this issue [6]. This thesis demonstrates based on performance
measurements how a better cooperation of computers’ caches improves the
performance of read operations and facilitates the reduction of computation
and copying overhead of non-contiguous and collective I/O operations.

1.3 Roadmap

The next chapter presents preliminaries and discusses related work. The
principal dependencies across following chapters are outlined in figure 1.4.
The starting point is chapter 3, which describes the high-level architecture
of the file system. Chapter 4 presents the data representation used in file
distribution. The algorithms for mapping and data redistribution are sub-
ject of chapter 5. How the data redistribution is used by the non-contiguous
I/O operations can be read in chapter 6. Chapter 7 discusses the collective
I/O methods of Clusterfile. Evaluation results are reported in chapter 8.
Finally, chapter 9 contains a summary and future plans.

Chapter 2

Preliminaries and related
work

This chapter introduces basic concepts that are used throughout the thesis
and overviews related work. We present in a bottom up approach relevant
aspects of the four abstraction levels from figure 1.1: hardware (section
2.1), file systems (section 2.2) , I/O libraries (section 2.3) and applications
(section 2.4).

2.1 Hardware considerations

In this section we describe the state of the art of some hardware components,
which are involved in a parallel file system: storage (magnetic disks and disk
arrays) and networks.

2.1.1 Magnetic disks

The non-volatile storage market is dominated by magnetic disks. A magnetic
disk consists of a set of platters rotating on a common spindle. The disk
surface is divided into concentric tracks. Each track is divided into several
sectors, which represent the smallest access units. A movable arm containing
a read/write head is located on each surface.

The disk access time has three main components. The seek delay or
latency is the time to position the disk head on the requested track. The
rotational delay or latency is the time for the requested sector to rotate
under the head. The transfer time is the time to move a sector between the
magnetic disk and an external memory.

17

18 FLORIN DANIEL ISAILA

The main overhead in accessing a disk sector is represented by the seek
and rotational delays, whose average values are to-date (2004) in the or-
der of milliseconds. The transfer time depends on the rotation speed,
recording data density, block size, disk size, and the speed of the hardware
connecting the disk. In 2003, the maximum transfer reached 320 MB/sec
(http://www.ibm.com, http://www.hp.com).

Optimal disk throughput can be obtained for contiguous accesses, be-
cause seek and rotational delays are minimized. Therefore, disk data place-
ment plays an important role for performance.

2.1.2 Redundant Arrays of Inexpensive Disks (RAIDs)

The throughput of storage systems can be increased by disk arrays. In-
stead of using a single device, the data is split into equally-sized blocks and
spread over several disks. The method is called striping. Striping increases
throughput, but not necessarily latency. Another drawback is that data re-
liability decreases with the number of disks in the array. In order to address
this problem, Patterson et al. [46] introduced Redundant Arrays of Inex-
pensive Disks (RAIDs). The five levels use mirroring (RAID 1) , Hamming
codes(RAID 2) and parity bits (RAID 3-5) for improving the reliability and
availability of disk arrays. Simple striping without redundant information
is called RAID 0.

RAID can be found in both hardware and software implementations. For
the hardware case, a disk controller is responsible for computing the parity
and distributing the data over the array. The software solutions frequently
employ RAID 0 and RAID 1. For instance parallel file systems use RAID
0 for the default file distribution [49, 11, 26, 29]. The simple mirroring of
RAID 1 is suitable for reliability, availability, and load distribution purposes.
Parity computation is costly and therefore more appropriate for hardware
solutions. However, the Zebra [22], and xFS [2] file systems implement a
RAID 3 in software.

2.1.3 Networks

Networks have improved significantly during recent years and they are ex-
pected to improve faster than microprocessors [23]. Switches gradually re-
place buses for scalability, reliability and availability reasons.

The networks can be classified, according to proximity, size, and transfer
speed. Wide area networks (WAN) are distributed over large geographical
areas and are composed of many thousands of loosely interconnected com-

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 19

puters. Local area networks (LAN) are spread over a distance of kilometers
and contain hundreds of machines (e.g. Ethernet). Finally, storage or sys-
tem area networks (SAN) closely interconnect hundreds of machine inside
hundreds of meters (e.g. Myrinet, Infiniband, Fibre Channel).

There are two important metrics that are used for evaluating a network:
latency and bandwidth. Latency represents the time a message spends in the
network on its way from sender to receiver. Bandwidth usually indicates
the maximum available transfer rate. Effective bandwidth or throughput
gives the transfer rate delivered to the applications. Latency is important
for small messages, while bandwidth for large ones. The best throughput
can be obtained from large messages.

Cluster file systems typically assume a high bandwidth, low latency net-
work. For the rest of this thesis we assume that the machines in the system
are interconnected through a SAN.

2.2 Parallel file systems

A file system is a low-level manager of the storage resources of a single
machine, supercomputer, or cluster of off-the-shelf components. The most
important tasks of a file system are:

• Organize the disk in linear, non-overlapping files.

• Manage the pool of free disk blocks.

• Allow users to construct a logical name space.

• Move data efficiently between disk and memory.

• Coordinate access of multiple processes to the same file.

• Offer file protection mechanisms, as for instance access rights or capa-
bilities.

• Cache frequently used data.

• Prefetch data predicted to be used in the near future.

Several types of parallelism related to the file access may be identified
inside a supercomputer or a cluster of computers: processor, memory, net-
work and disk parallelism. The processor parallelism refers to the parallel
access to files by several processors. This parallellism includes both the ac-
cess of several processors to a single file and the access of several processors

20 FLORIN DANIEL ISAILA

to several files. Memory parallelism is achieved when the access to a file
is served from multiple caches. Network parallelism occurs when file access
uses parallel or switched network connections. Finally, disk parallelism refers
to storing the data over several disks in a manner similar to the previously
discussed RAID approach. Processor parallelism is called logical parallelism
when it refers to the access of several processors to a single file. For a paral-
lel application, the logical parallelism corresponds to the access pattern. We
call the disk parallelism for a single file physical parallelism. We will see in
the section 2.4 that a main performance problem is posed by the mismatch
between logical and physical parallelism. One of the goals of this thesis is
to address the relationship between these two parallelism types.

We define a file system to be “parallel” if the logical parallelism may
translate into physical parallelism. According to this definition, NFS is not
a parallel file system. NFS accesses can be logically parallel, because several
processors can access a file in parallel. But they can not be physically
parallel, because the NFS server serializes all parallel requests, acording to
picture 1.3. The access can still be parallel through memory parallelism if
the compute nodes have previously cached the data locally.

In Vesta Parallel File System [11, 12] a file can be physically partitioned
into multiple disjointed subfiles, which can be accessed in parallel. Vesta
also offers the possibility of declaring file views. Both partitioning schemes
are restricted to data sets that can be partitioned into two dimensional
rectangular arrays. We show in this work that Clusterfile allows arbitrary
file partitionings and arbitrary file views.

The nCube parallel I/O system [17] builds mapping functions between
processor’s views of a file and disks using address bit permutations. The
major shortcoming of this approach is that all sizes must be powers of two.
Our mapping functions are general and therefore a superset of nCube’s.

Files in the Galley Parallel File System [42] are composed of one or more
subfiles. Each subfile resides on a single disk and contains one or more forks
that are contiguous segments stored on the respective disk. The underlying
parallel structure of the file is hidden from the application. Galley offers
a particular interface that allows simple strided, nested-strided and nested-
batched operations. No file views are possible.

The Portable Parallel File System (PPFS) [25] allows applications to
control caching, pre-fetching, data distribution and file sharing policies. The
files are divided into variable size records, called segments. Each segment
is managed by a single I/O server. PPFS is implemented as a user level
library portable across several parallel file systems.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 21

PIOUS [41] is a parallel file system that provides process group access
to permanent storage in a network computing environment. The file is
composed of several disjoint distributed segments. Each segment resides at
a single I/O server. The Parallel Virtual File System(PVFS) [26] is a parallel
file system for Linux clusters. The PVFS files are striped in a round-robin
manner over the I/O nodes, with a user-specified stripe size.

Panda [58] and VIPIOS [20] are run-time I/O systems that allow pro-
grammers to specify the file physical layout. Both systems are adaptive, in
that they try to automatically find optimal physical distributions for parallel
access patterns at run-time. We believe that such systems can benefit from a
low-level implementation of a flexible physical distribution mechanism such
as the one of Clusterfile.

2.2.1 Non-contiguous I/O

As seen in section 2.1, the performance of hardware storing and sending
information is known to be optimal for compact, contiguous data transfers.
However, the applications show a larger variety of access patterns that are
frequently non-contiguous.

Consider a file that is striped over several disks of a cluster and that may
be accessed by several compute nodes. From the point of view of a compute
node, an access can be non-contiguous in memory, on the disks, or both in
memory and on the disks. The non-contiguity can be explicit, described by
the syntax of a programming interface such as POSIX [24] or MPI-IO [39],
or implicit, as resulting from a contiguous access to a non-contiguous data
layout.

It is important to note that some I/O optimizations, non-contiguous I/O
included, do not consider the physical data distribution over storage devices,
but only the higher level abstraction of a linear file.

However, depending on the file layout over several disks, a non-contiguous
file access may translate into a contiguous disk access. This is an important
point and we will show in the experimental chapter that an optimization
that does not consider the physical layout may fail to achieve its perfor-
mance potential.

Several methods have been proposed for improving the non-contiguous
access: buffering, data sieving [55], collective I/O [18, 34], more expressive
interfaces(list I/O [56], MPI-IO [39], nested-strided and nested-batched I/O
[44]).

22 FLORIN DANIEL ISAILA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I/O node

In
te

rc
on

ne
ct

2

1

3

(min offset,max offset)=(0,13)

Compute node

Figure 2.1: Data sieving read example

Data sieving

The main idea of data sieving [55] is accessing contiguous regions and filter-
ing the useful data out of them. Figure 2.1 shows an example, in which a
compute node reads from an I/O node four contiguous pieces (0, 1), (4, 5),
(8, 9) and (12, 13) . Whenever a non-contiguous read file access occurs, the
start offset and end offset of the interval are computed and sent to the I/O
node (step 1), the whole interval is read (step 2) and finally the data of
interest is sieved (step 3). For writing, the file has to be locked, the whole
interval read, modified, and written back.

The main advantage of data sieving is the reduction of the number of file
system and disk accesses. There are two main drawbacks: the transfer of
unnecessary data and the costly read-modify-write operations for writing.

Data sieving is worth using especially for reading, when the gaps between
contiguous portions of the file are small compared to the size of the requested
data.

Non-contiguous I/O interfaces

Many existing file systems’ interfaces are based on the Portable Operating
System Interface(POSIX) [24]. There are two main limitations of POSIX
related to non-contiguous I/O. First, there are no operations that perform
a non-contiguous access in a file with a single call. The operations readv()
and writev() allow non-contiguous access solely in memory. Second, the
eventual parallel structure of a file is hidden from the applications.

List I/O [56] is an interface for describing non contiguous accesses both
in file and in memory. Non-contiguous accesses are specified through a list

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I/O node

2

3

list of (offset,length):
(0,2),(4,2),(8,2),(12,2)

In
te

rc
on

ne
ct

Compute node

1

Figure 2.2: List I/O read example

of offsets of contiguous memory or file regions and a list of lengths.

A list I/O implementation can be found in the PVFS file system, illus-
trated in figure 2.2. The reading compute node sends the list of file offsets
and lengths to the I/O node (step 1). The I/O node gathers the data into
a network buffer (step 2) and sends it to the compute node (step 3). Note
that the access indices are sent at each access. In chapter 6, we show how
our method (view I/O) reduces the overhead of non-contiguous operations,
by amortizing the cost of transfering offsets over several accesses and by
compact representation of offsets.

Nieuwejaar and Kotz [44] proposed a nested-strided, nested-batched in-
terface. The main improvement over list I/O is the compact description of
regular access patterns both in memory and files. The user can describe
regular access patterns by specifying a stride. The strided patterns can
be batched into an array. Each batch or strided pattern can be nested by
making them a part of an outer strided pattern. This access pattern rep-
resentation is simmilar to a particular form of Clusterfile’s data representa-
tion, namely with nested FALLS, as described in subsection 4.1.3. However,
nested PITFALLS allow a shorter representation of distribution patterns
over several processors and disks (see subsection 4.1.6).

Finally, a frequently used non-contiguous parallel I/O interface is MPI-
IO [39]. We will overview MPI-IO in subsection 2.3.1.

24 FLORIN DANIEL ISAILA

2.2.2 Collective I/O

The processes of a parallel application frequently access a common data set
by issuing a large number of small non-contiguous I/O requests. Collective
I/O addresses this problem by merging small individual requests into larger
global requests in order to optimize the network and disk performance. De-
pending on the place where the request merging occurs, one can identify
two collective I/O methods. If the requests are merged at the I/O nodes
the method is called disk-directed I/O [34, 50]. If the merging occurs at in-
termediary nodes or at compute nodes the method is called two-phase I/O
[18, 7].

Two-phase I/O performs two steps as illustrated in the figure 2.3 for the
collective read case. Compute node 1 issues a read for the dark grey bytes,
while compute node 2 wants to read the light grey bytes. In the access
phase , the compute nodes divide the access interval into equal parts after
a negotiation (1) and each reads contiguously its share from the file system
into a local collective buffer (2 and 3). In the shuffle phase (4), the compute
nodes exchange the data according to the requested access pattern. The
access phase is always fast, as only contiguous requests are sent to the file
system. The scatter-gather operations take place at compute node, whereas
the data travels twice through the network.

The two phase-method was extended by Thakur and Choudhary [54]
by balancing the load on the processors that perform I/O and by reducing
the number of requests by data sieving. Extended two-phase I/O is an
optimization of ROMIO [55], an implementation of MPI-IO interface.

Figure 2.4 shows a collective read example for disk-directed I/O [34].
The compute nodes send the requests directly to the I/O nodes (1). I/O
nodes merge and sort the requests (2) and send them to disk (3). The data is
read from the disk (4), gathered in network buffers (4) and sent to compute
nodes (5).

A method related to disk-directed I/O is server-directed I/O as imple-
mented in the Panda library [50]. The compute nodes send to a master I/O
server a short high-level description of the in-memory and on-disk distribu-
tions. The master server then provides all the other I/O servers running
on I/O nodes with the distribution information and each server indepen-
dently plans how it will request or send its assigned disk data to or from
the relevant clients. The main difference between the two methods is that
server-directed I/O operates at a higher level of abstraction (files in the local
file system on the I/O nodes) than disk-directed I/O (which handles disk
blocks).

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Compute node 1 Compute node 2

Compute node 1 Compute node 2

Interconnect
3

In
te

rc
on

ne
ct

I/O node

1

2

3

2

4

M
PI

−
IO

Fi
le

 s
ys

te
m

M
PI

−
IO

Access phase

Shuffle phase

Figure 2.3: Two phase I/O read example

Disk-directed I/O has several advantages over two-phase I/O: data is sent
only once over the interconnect, communication overlaps with disk transfers
during the whole operation, no additional memory is needed at compute
nodes for permuting the data. The main drawback consists in the poten-
tial of generating many small messages for the transfer from the client to
server. Additionally, a large number of small messages may overwhelm the
file system and seriously hurt performance.

Both disk-directed I/O and two-phase I/O use strategies in which the
compute nodes send data to disks irrespective of their load. However, the
order and the timing of disk requests is important for performance. Moore
and Quinn [40] present a disk-directed implementation in which the compute
nodes gather small disk requests into larger ones. However, when a compute
node sends a large number of small messages to two disks, it may not be

26 FLORIN DANIEL ISAILA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(0,2),(4,2),(8,2),(12,2)
(2,2),(6,2),(10,2),(14,2)

(0,15)
2

I/O nodeCompute node 1

In
te

rc
on

ne
ct

Compute node 2

1

1

3

4

56

6

Figure 2.4: Disk-directed I/O read example

sufficient to merely gather all small messages into larger ones. If the size of
the gather buffer becomes large and the transfers to the two disks occur one
after another without interleaving, the second disk and its corresponding
network link may remain underutilized at the first transfer. The same may
be true for the first disk at the second transfer. Therefore, for better disk
utilization, efficient non-contiguous operations should be combined with a
parallel I/O scheduling algorithm. We will present our approach in chapter
7.

2.2.3 Cooperative caching

Each cluster node uses a part of its memory as a cache for storing file
blocks. The file cache is typically managed by the node’s file system. When
the cache becomes full, some blocks have to be replaced and, if previously
modified, written to disk. A slow disk access takes place even though there
may exist cluster nodes with underutilized memory and a remote memory
access over an actual high-performance network (in 2004) can take on two

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 27

I/O Server I/O Server Client(compute node) Client(compute node)

Exported
cache

interconnect

Local cache

Exported
cache

Local cache

Exported
cache

Exported
cache

Global cache

Figure 2.5: Global cache

to three orders of magnitude less than a disk access.

A first step in extending the file cache of a node beyond the size of
its physical memory was taken by NFS. As previously seen, an NFS server
exports a local file system and its file cache to NFS clients. The clients can
also cache file blocks in their local memory. Therefore, the file cache of the
server is extended with the clients’ file caches. However, the clients do not
cooperate among each other. Data cached by a client can not be retrieved
by another. If the server does not cache the block as well, it has to fetch it
from the disk.

Coordinating the file caches of connected machines in order to provide an
effective global cache is called cooperative caching. An example of a global
cache can be seen in figure 2.5. An I/O node partitions its file cache into
a portion that is managed locally and a portion that participates in the
global cache. An I/O node is home for all the blocks stored on its local
disks. A compute node can dedicate its whole cache to the global cache. A
cooperation protocol defines three main policies: a global lookup policy, a
global block replacement policy and a cache coherency protocol.

Dahlin et al. [16] describe several cooperative caching algorithms and
experimental results based on simulations. The algorithms concentrate on
read operations and, therefore, do not address cache coherency. The xFS [2]
distributed file system builds on Dahlin’s work and includes the implementa-

28 FLORIN DANIEL ISAILA

tion of the N-chance forwarding algorithm. A client looking for not locally
cached data asks a block’s home I/O server. The I/O server returns the
block if cached. Otherwise, the server consults a structure listing the clients
that are caching the block. If a client is found, it is instructed to send the
data to the original requester. The server issues a disk request only in the
case the block is not cached in the global cache. Each client adjusts dynam-
ically the size of local cache based on activity. For instance, an idle client
can dedicate its whole cache to the global coordinated cache. A disk block
can be replicated in several caches. The non-replicated disk blocks, called
singlets have priority over other blocks. If chosen for replacement, a singlet
is forwarded N times among clients before being evicted from the cache.

Hash-distributed caching is another algorithm presented by Dahlin et al.
Each block is assigned to a client cache by hashing its disk address. There-
fore, a client that does not find a block in its cache is able to contact directly
the potential holder, identified by hashing the block address. The server is
involved in the transfer only when neither the client nor the potential holder
cache the block. This algorithm reduces the server load, because each client
is able to bypass the server in the first lookup phase. The global cache of
Clusterfile, described in chapter 3, also distributes the blocks by hashing the
block addresses.

In the PAFS parallel file system [14, 13] the nodes are putting their
entire caches into a large global cache. The caching scheme avoids any kind
of replication. Therefore, no cache coherency mechanism is needed.

Bagrodia et al. [5] use PIO-SIM, a parallel simulation library for MPI-
IO programs, and PFS-SIM, a parallel file system simulator, for quantifying
the effect of cooperative caching algorithms on the performance of parallel
file systems in general, and of collective I/O operations in particular. The
structure and functionality of PFS-SIM is based on the Vesta parallel file
system. While Vesta implements caching only at the I/O nodes, PFS-SIM
supports both I/O node and client caching. The comparison of four caching
strategies for a synthetic benchmark and an out-of-core matrix multipli-
cation program shows promising results in favor of employing cooperative
caches in parallel file systems. This thesis presents an implementation of a
cooperative caching algorithm and evaluates on a real system the impact on
the performance of collective I/O operations.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 29

2.3 I/O libraries

Two basic programming paradigms for parallel computers have gained ac-
ceptance by the user community: message passing and data parallel. In
this section we shortly present representatives of each paradigm: Message
Passing Interface (MPI) and High Performance Fortran(HPF).

2.3.1 Message Passing Interface(MPI)

The Message Passing Interface (MPI) [38] is a standard specification for
message-passing libraries for parallel computations. MPI is widely used for
solving scientific and engineering problems on parallel computers.

Programming model

MPI is typically used as Single Program Multiple Data(SPMD) model. The
programmer writes a single program that is compiled to binary code by the
MPI compiler. The binary receives besides the user-defined parameters two
additional ones: n, the number of processes of the parallel application, and
i, the index of the current process, ranging from 0 to n − 1. The process
index i is the only parameter that is different for all the processes of a single
MPI program and typically determines the differences in the flow control
among individual processes.

The MPI model assumes that each process can access the local memory
and can communicate with the other processes through message passing.
The message passing routines are either point-to-point (e.g. send, receive)
or collective (e.g. broadcast, reduce).

MPI datatypes

MPI data-types are patterns of data access in memory or in a file. They
can express regular or irregular patterns with or without gaps. Therefore,
they are well suited for non-contiguous or even regular file access. The
basic datatypes are the same as those of traditional programming languages
such as C: character (MPI_CHAR), byte (MPI_BYTE), integer (MPI_INT), float
(MPI_FLOAT), etc. Derived data types are constructed from basic data types
or recursively from other derived data types. Examples of derived data types
are vectored and structured types.

In the language C, a vector data type can be constructed with the rou-
tine:

30 FLORIN DANIEL ISAILA

int MPI_Type_vector(int count, int n, int stride,

MPI_Datatype oldtype, MPI_Datatype *newtype);

The count parameter represents the number of blocks of n consecutive
elements of type oldtype. In the new type the distance between two con-
secutive blocks is given by stride. The old type can be a basic data type
or any derived data type.

A structure data type is built by using the function:

int MPI_Type_struct(int count, int *array_of_blocklength,

int* array_of_displacements,MPI_Datatype *array_of_types,

MPI_Datatype *newtype);

The count parameter represents the number of blocks in the structure,
array_of_blocklength[i] specifies the number of elements in block i,
array _of_displacements[i] contains the displacement of block i, rel-
ative to the first byte of the structure, while array _of_types[i] gives the
types of the elements from block i.

We restrict our description to these two types, because of their resem-
blemblance with our types. All the others can be found in the MPI specifi-
cation [38].

Groups and communicators

A group is an ordered set of process identifiers. Each process in a group
is associated with an integer rank. Groups can be dynamically built or de-
stroyed by using operation on sets such as union, intersection and difference.
A communicator is a group of communicating processes of a parallel appli-
cation. The communicators are used in the collective I/O operations for
defining the set of participating processes, as shown in Chapter 7.

MPI-IO

MPI-IO [39] is a standard interface for MPI-based parallel I/O. MPI-IO
uses basic MPI abstractions like communicators and data-types in order to
optimize I/O access. In the next part of this subsection we overview the basic
concepts of MPI-IO, which will serve two purposes. First, we use MPI-IO
as a basis of comparison with our system. Second, as we have implemented
an MPI-IO interface, we show how MPI-IO is implemented on our system.

A detailed description of this concepts can be found in chapter 9 of the
MPI-2 specification [39].

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 31

file
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

displacement=6
filetype filetype filetype

etype

filetype

holes

accessible data

Figure 2.6: MPI file model

MPI-IO file model

An MPI file is an ordered collection of typed data items. A file is opened
collectively by a group of processes represented by a communicator. All
collective I/O calls on a file are collective over this group.

A file displacement is an absolute byte position relative to the beginning
of a file. The displacement defines the location where a view begins.

An etype (elementary datatype) is the unit of data access and positioning.
It can be any MPI predefined or derived datatype. Data access is performed
in etype units, reading or writing whole data items of type etype. Offsets
are expressed as a count of etypes.

A filetype is the basis for partitioning a file among processes and defines a
template for accessing the file. A filetype is either a single etype or a derived
MPI datatype constructed from multiple instances of the same etype.

A view defines the current set of data visible and accessible from an open
file as an ordered set of etypes. Each process has its own view of the file,
defined by three quantities: a displacement, an etype, and a filetype. The
pattern described by a filetype is repeated, beginning at the displacement,
to define the view. The view from figure 2.6 starts at displacement 6, has
etype of 1 byte and a filetype of extent 5, out of which only 2 bytes are

32 FLORIN DANIEL ISAILA

file

displacement=6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

process 2 filetype

process 1 filetype

process 0 filetype

etype

...

Figure 2.7: MPI views

accessible. The default view is a linear byte stream (displacement is zero,
etype and filetype are equal to MPI_BYTE), i.e. the view maps one-to-one to
the file.

A group of processes can use complementary views in order to achieve a
global data distribution such as a scatter/gather pattern (see figure 2.7).

An offset is a view position, expressed as a count of etypes. Holes in the
view’s filetype are skipped when calculating this position. Offset 0 is the
location of the first etype visible in the view (after skipping the displacement
and any initial holes in the view). For example, an offset of 2 for process 1 in
figure 2.7 is the position of the 8th etype in the file after the displacement.

A file handle is created by MPI_File_open and cleared by MPI_File_

close. All operations on an open file reference the file through the file
handle.

File open

MPI_File_open opens the file identified by the file name filename on all
processes in the comm communicator group. MPI_File_open is a collective
routine, i.e. has to be called by all the processors in the comm communicator
group.

int MPI_File_open(MPI_Comm comm, char *filename, int amode,

MPI_Info info, MPI_File *fh);

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 33

File close

MPI_File_close closes the file associated with fh. MPI_File_close is a
collective routine.

int MPI_File_close(MPI_File *fh)

View declarations

The MPI_File_set_view routine changes the process’s view of the data in
the file. The start of the view is set to disp; the access unit type becomes
etype; the view is defined by filetype. MPI_File_set_view is a collective
function.

int MPI_File_set_view(MPI_File fh, MPI_Offset disp,

MPI_Datatype etype, MPI_Datatype filetype,

char *datarep, MPI_Info info)

Data access

MPI-IO provides several functions for file reading and writing. They can
be with explicit or implicit offset, blocking or non-blocking, individual or
collective, with individual or shared file pointer. Here we describe the indi-
vidual and collective functions for blocking read with implicit file pointer.
The only syntactic difference between the individual and collective versions
is the suffix “ all” of the collective version.

int MPI_File_read(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

The two functions read from the file identified by the file handle fh,
count items of type datatype into the buffer buf. Each access can be non-
contiguos both in memory and in file. A non-contiguous memory access in
the memory can be described by a derived datatype, as shown earlier. A
non-contiguous access in the file can be described by a view, which has to
be set on the file before the function is called. The MPI_File_read_all

is a collective function must be called by all the processes that collectively
opened the file.

34 FLORIN DANIEL ISAILA

����������������������	�	
�
��� �

!�!"#�#$%�%&'�'()�)*+�+,-�-./�/01�123�345�567�789�99�9:
:
;�;;�;<
<=�=>?�?@

ABC�CD�D EFG�GH�HIJ KLM�MN�NOOP
P
Q�QQ�QR�RR�R S
S
TTU�UU�UV�VV�VWXY�YZ�Z [\]�]^�^

�`�`

a�abc�cd�de�ef�fg�gh�hi�ij�jk�kl�lm�mn�no�op�p
q�qrs�st�tu�uv�vw�wx�xy�yz�z{�{|�|}�}~�~������ ���

������������� �
�
��������������

���
�
���
�
������������������������

���
�
���
�

������������ ���
���
������
���
�
��������������������������

¡�¡¡�¡¢
¢
£�££�£¤
¤
¥�¥¥�¥¦
¦

§�§§�§¨
¨ ©�©©�©ª

ª

«�««�«¬
¬
��®
®
¯�¯¯�¯°
°

±�±±�±²
²
³�³³�³´
´
µ�µµ�µ¶
¶
·�··�·¸
¸

¹�¹¹�¹º
º
»�»»�»¼
¼
½�½½�½¾
¾
¿�¿¿�¿À
À

(CYCLIC,*)

(BLOCK,*) (*,BLOCK) (BLOCK,BLOCK)

(CYCLIC,CYCLIC) (CYCLIC,BLOCK)

Figure 2.8: Examples of HPF distributions

2.3.2 High Performance Fortran

High-Performance Fortran(HPF) [35] in an extension of the Fortran pro-
gramming language that allows a programmer to instruct a parallelizing
compiler how to distribute data and parallelize loops. HPF assumes a single
thread of control and a single global memory. The execution of instructions
are not synchronous across the processors. However, operations on array
elements are executed simultaneously. For the purpose of this thesis we are
interested in the data distribution and redistribution of HPF.

Data distribution

In the message passing paradigm, the programmer explicitely distributes the
data across multiple processors. The data parallel languages typically offer
mechanisms that allow some control over data placement. HPF arrays may

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 35

be distributed in regular and irregular patterns across processors and disks
by using directives. The PROCESSOR directive declares a logical arrangement
of processors in a grid. For example, the next directive declares a 2×2 grid
of 4 processors.

!HPF$ PROCESSORS P(2,2)

A multidimensional array can be distributed over several dimension of a
processor grid by using the DISTRIBUTE directive. Each array dimension of
size N may be distributed over P processors in one of three ways.

* : no distribution

BLOCK(n) : block distribution (default n=N/P)

CYCLIC(n) : cyclic distribution (default n=1)

The parameter n is the size of the block in a block distribution or the
width of the stripes in a cyclic distribution and can be specified by the
programmer or assigned by the system by default.

Figure 2.8 illustrates the following six data distributions of a 8×8 ar-
ray of real numbers across the 2×2 processor grid from the above example:
(BLOCK, *), (*, BLOCK), (BLOCK, BLOCK), (CYCLIC, *), (CYCLIC, CYCLIC)

and (CYCLIC, BLOCK). The distribution on each dimension is performed ac-
cording to the rules for BLOCK and CYCLIC described above.

real A(8,8)

1) !HPF$ DISTRIBUTE A(BLOCK, *) onto P

2) !HPF$ DISTRIBUTE A(*, BLOCK) onto P

3) !HPF$ DISTRIBUTE A(BLOCK, BLOCK) onto P

4) !HPF$ DISTRIBUTE A(CYCLIC, *) onto P

5) !HPF$ DISTRIBUTE A(CYCLIC, CYCLIC) onto P

6) !HPF$ DISTRIBUTE A(CYCLIC, BLOCK) onto P

Dynamic data mapping can be achieved through the REDISTRIBUTE di-
rective. The initial distribution of the array must be declared DYNAMIC.
The following example performs the redistribution of an 8×8 array from
(BLOCK, *) to (*, BLOCK).

real A(8,8)

1) !HPF$ DISTRIBUTE A(BLOCK,*), DYNAMIC

2) !HPF$ REDISTRIBUTE A(*,BLOCK)

36 FLORIN DANIEL ISAILA

We will show in chapters 4 and 5, how Clusterfile data representations
can be used for implementing HPF distributions and redistributions across
both processors and disks.

2.4 I/O access characterization of parallel appli-

cations

The primary purpose of a parallel file system is to offer an efficient I/O
access to parallel applications that access a large amount of data. Several
studies of parallel I/O access patterns are available [43, 53, 52, 15].

Some of their results that guided our design are summarized below, il-
lustrated by the parallel access example in figure 2.9. The figure shows a
two-dimensional 4×4 matrix, physically partitioned over two disks of two
different I/O nodes, in two ways: (a) by striping the columns and (b) by
striping the rows. The matrix is logically partitioned row-wise among four
compute nodes. For instance, this kind of access can be used by a matrix
multiplication algorithm.

In the above mentioned studies, the researchers investigated several I/O
intensive parallel scientific applications in which the files were distributed
over several disks and made following observations.

• File sharing among several compute nodes is the norm, while con-
current sharing among parallel applications is rare [43, 53]. In the
example, it is obvious that the file is shared among the four compute
nodes. The accesses of the individual compute nodes do not overlap.

• The files are striped over several disks in order to increase the access
throughput. In figure 2.9(a) the matrix columns 0 and 2 reside on disk
0 and columns 1 and 3 on disk 1.

• Individual compute nodes often access files non-contiguously. For in-
stance, writing the first matrix line in figure 2.9(a) results in two non-
contiguous disk accesses: (0,0) and (0,2) at disk 0, and (0,1) and (0,3)
at disk 1. Non-contiguous accesses cause costly disk head movements,
and therefore have a negative influence on performance. However, with
the different physical partitioning from figure 2.9(b), the contiguous
access of each compute node translates into contiguous disk access.

• Compute nodes frequently access a file by using interleaved patterns.
However, the global access pattern, composed from the individual ac-
cesses of compute nodes, is contiguous. In figure 2.9(a), the logical

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 37

Disk 0

Disk 1

(0,0) (1,0) (2,0) (3,0) (0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (2,1) (3,1) (0,3) (1,3) (3,3)(2,3)

Disk 0

Disk 1

(a) Column striping

(1,0) (1,2) (1,3)

(2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,1)

(2,1)(2,0)

(b) Row striping

Compute node 3

Compute node 0

Compute node 1

Compute node 2

Compute node 0

Compute node 3

(1,2) (3,1)(1,0) (1,1) (3,0) (3,2) (3,3)

(3,1) (3,2) (3,3)(3,0)

(2,0) (2,1) (2,2) (2,3)

(1,3)(1,2)(1,1)(1,0)

(0,0) (0,1) (0,2) (0,3)

(2,3)(2,2)(2,1)(2,0)(0,3)(0,2)(0,1)(0,0)

(1,3)

Compute node 1

Compute node 2

Figure 2.9: Parallel file access example

38 FLORIN DANIEL ISAILA

accesses of the four compute nodes translate into interleaved physi-
cal accesses at disk 0 and 1. If they occur approximatively at the
same time (i.e. temporal locality), the global disk access pattern is
sequential, and therefore optimal. Otherwise, unnecessary seek times
may drastically affect the application performance. This problem is
addressed by different collective I/O operations designs and implemen-
tations [18, 34]. Our collective I/O operations are subject of chapter
7. For the disk layout in figure 2.9(b), the disk accesses of individual
processes are sequential.

• The investigated applications generated a high number of small I/O re-
quests [43]. To a large extent this was the result of the non-contiguous
and interleaved accesses, as described earlier. In figure 2.9(a), the
process 0 access results in sending four small requests, two to each
disk. However, for the layout in figure 2.9(b), each row access may be
performed with a single disk request.

• Parallel applications access may cause poor disk load balance. For
example, suppose that the four compute nodes in figure 2.9 show a
bursty access by repeatedly executing the following two steps: read-
ing one element from the file in the first step and performing some
computation in the second step. In case (a), the two disks are used
alternatingly, and therefore the parallel access of the compute nodes is
serialized at the disks, with a negative impact on the speedup. Never-
theless, in the second case, the maximum disk parallelism degree may
be achieved for each access, both disks being equally loaded.

• Some applications cause contention of compute nodes’ requests at the
disks. In the extreme case, each compute node sends requests to all
disks, due to an inproper file data distribution. The contention may
have a negative impact on both computing and I/O scalability. In
figure 2.9(a), in order to read the matrix, each of the four compute
nodes accesses both disks. However, with the physical partitioning in
figure 2.9(b), each compute node sends requests to a single disk.

• Parallel applications use nested strided access pattern. This access
type occurs with multidimensional arrays that are partitioned across
compute nodes [43]. Our data representation and mapping functions
target efficiently multidimensional arrays access as described in chap-
ters 4 and 5.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 39

The main cause of non-contiguous accesses and small messages is the
mismatch between access pattern and data layout. Therefore, the flexible
file distribution over the available disks is an important factor for the per-
formance of parallel applications.

40 FLORIN DANIEL ISAILA

Chapter 3

Parallel file system
architecture

Our parallel file system architecture builds on the traditional compute and
I/O nodes model as discussed at the beginning of chapter 2. This chapter
sets the stage for the description of the internal mechanisms and policies in
later chapters.

A classical trade-off encountered when designing a complex system is
between efficiency and ease of use. In a distributed environment the perfor-
mance is dictated by the global efficient usage of resources. On the other
hand, the simplicity can be achieved by a single system image, i.e. making
a collection of resources appear as one unified resource.

A main design goal is the integration and coordination of the parallelism
types defined in the chapter 2: logical, memory, network and physical par-
allelism. The goal is an efficient translation of the logical parallelism into
other types of parallelism, such that the available resources are efficiently
used. The potential for parallelism inside the file system is described in
section 3.2.

The design should also consider the individual resource requirements.
For instance, as discussed in chapter 2, disks offer the best performance
when accessed contiguously; the highest network throughput is obtained for
large messages. Chapters 6 and 7 show how Clusterfile’s non-contiguous I/O
and collective I/O optimizations address these issues.

The parallel file system is designed to improve the global usage of cluster-
wide resources. A global cache helps balance the load over the memory of
all machines in the cluster. The parallel scheduling strategy in chapter 7
distributes requests over nodes such that the network links and the inter-

41

42 FLORIN DANIEL ISAILA

Client

I/O
Server

Cache
Manager

I/O
Server

Cache
Manager

Cache
Manager

Metadata
ManagerClient

I/O
Server

Interconnect

Node 1 Node 2

Node 3 Node 4

Figure 3.1: Node roles in a Clusterfile installation

connected processors, memories and disks are efficiently used.

3.1 Clusterfile components

Clusterfile consists of four main architectural entities: a metadata manager,
I/O servers, cache managers and I/O clients. There may be any number of
I/O servers, cache managers or I/O clients running on a cluster, but only
one metadata manager. A physical node may play several roles. Figure 3.1
shows an example of a Clusterfile installation with one metadata manager,
three I/O servers, two clients and three cache managers.

3.1.1 Metadata manager

The metadata of a system is defined as the “the data about the data”, includ-
ing system-wide or object-specific attributes, data structures, statistics, etc.
The metadata manager is responsible for the file system metadata. Meta-
data management is separated from data management allowing the quick

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 43

access of large data quantities without involving the overhead of contacting
a file manager.

Each file is described by a cluster-wide unique metadata structure called
inode. An inode contains file attributes such as: file type (regular, direc-
tory, etc.), physical partitioning information (the partitioning into subfiles,
the I/O servers on which the subfiles are stored), file size, creation and
modification time, rights etc. The file system-wide attributes like directory
structure, number of I/O servers, I/O servers addresses, file system size, etc.
are also stored at the metadata manager.

The metadata manager gathers periodically or by request subfiles meta-
data from the I/O nodes and keeps these information in a consistent state.
It also offers services involving file metadata to the compute nodes.

Clusterfile uses one metadata manager. The manager may become a
bottleneck when accessing a high number of small files. Ongoing research
efforts are investigating ways to distribute/replicate metadata for better
performance as well as for an increased degree of availability. The focus of
this thesis is on large files, we do not address the potential bottleneck of the
metadata manager.

3.1.2 I/O servers

I/O servers are responsible for managing and storing file data. A file in
Clusterfile consists of one or several subfiles. The default file has one subfile
that is striped over all available I/O servers by hashing the file offsets. If
there are nIOS I/O servers in the system, the x-th file block is stored at the
I/O server number x mod nIOS. The partitioning of a file into subfiles is
described in detail in chapter 4.

The main duty of an I/O server is to serve data requests from compute
nodes or cache managers. The I/O server uses the file cache of the local
file system as a local cache. The read or write requests can be for contigu-
ously or non-contiguously stored data. Non-contiguous access of Clusterfile,
including the I/O server functionality is subject of chapter 6. Contiguous
access is an optimization of non-contiguous access, in which there is no need
for a copy for scatter-gather operations.

The I/O servers participate in the collective I/O protocol, when several
clients agree to merge their requests in order to improve global performance.
The collective I/O operations and the role of the I/O servers are described
in detail in chapter 7.

44 FLORIN DANIEL ISAILA

3.1.3 Cache managers and the global cache

A main advantage of a global cache is its potential to scale up to the whole
aggregate physical memory of a parallel computer. The underutilized mem-
ory of some nodes can be employed on behalf of other nodes. For instance,
in our collective I/O implementation the file blocks are moved from I/O
servers to cache managers in order to redistribute the scatter-gather costs.
A global cache management controls the block replication cluster-wide and,
therefore, increase the hit rate.

Cache managers are components that cooperate in order to implement
a global cache. Figure 3.2 shows the memory hierarchy of Clusterfile. As
discussed in the previous subsection, each I/O server uses a local file cache.
In the local cache the I/O server keeps blocks stored on the local disk. The
global cache is the next higher level and consists of memory distributed over
several computers and managed in cooperation by the cache managers.

A cache manager runs on each node exporting a part of its memory to
the global cache. A cache manager manages a pool of free blocks and a hash
table that contains the locally available file blocks.

Each file block is indexed inside the global cache by the triplet (ios,
inode, file offset), where the ios identifies the home I/O server, i.e., the
I/O node where the block is stored, and inode is the unique system-wide
inode number assigned by the metadata manager at file creation.

Global lookup policy. Given block x of a file (i.e the block at file offset
x×fileblocksize) , the cache manager x modulo nCM either caches the data
block or knows where the block resides. When a read request arrives and
the CM has the block, the CM delivers the requested data (not the whole
block). If the block is not present, the CM fetches the block from the I/O
server and then delivers the data. This approach is tailored to collective I/O
operations, known to show high spatial and temporal locality across parallel
processes [43, 52]. Spatial and temporal locality indicate that there is a
high probability that in the near future, the same block will be accessed by
another compute node and at that time the block will be already available
at the CM.

This lookup policy is a variant of Hash Distributed Caching (HDC) as
presented in subsection 2.2.3. In the original HDC the blocks are hashed
based on their disk address. In our case, because the spatial and temporal
locality refers to the file positions and not to the disk addresses, the blocks
are cached based on their file offset (file offsets are mapped onto disk ad-
dresses at I/O servers). Additionally, the likelihood of true parallel access is
increased by distributing consecutive file blocks (instead of consecutive disk

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 45

Node 1 Node 2 Node 3 Node 4

Exported
cache

Local cache

Global cache

interconnect

Local cache

Exported
cache

Local cache

Exported
cache

Cache managers

I/O Servers

Figure 3.2: The cache hierarchy of Clusterfile

blocks) to different cache managers.

Replacement policy. Each file block is associated with an access timer.
Each cache manager keeps a table containing information about the other
cache managers: the approximate load and the approximate time of least
access. The table is updated periodically. When a cache manager has no
free blocks, the locally least recently used block is sent to the least loaded
cache manager or to the manager that stores the least recently accessed
block. If the receiving manager has no free blocks, it evicts the locally least
recently accessed block to the home I/O server.

Cache coherency. In order to keep the protocol as simple as possible
and to avoid cache coherency problems we implemented a “single-replica”
global cache as in PACA [13]. At any time, there is at most one copy of the
block in the global cache. Replication could be implemented on top of this
global cache.

HDC is suitable for parallel workloads. The compute nodes can guess the
likely place of a block without asking a central server. This approach helps
in decongesting the disk nodes by lowering their I/O server load. Chapter
7 discusses the consequences for the collective operations.

3.1.4 I/O clients and I/O library

The I/O clients are the compute nodes that use the file system by means of
an I/O library. Clusterfile interfaces are represented in figure 3.3.

Clusterfile can be directly accessed through a kernel Virtual File Switch

46 FLORIN DANIEL ISAILA

UNIX
VFS

MPI−IOCLF
interface

CLF protocol

Figure 3.3: The interfaces of Clusterfile

(VFS) interface and a user-level proprietary interface. The user level inter-
face resembles the VFS, the only difference being the prefix “clf_” added
in front of the function names.

The interfaces consist of functions for operating on files: open, close,
delete, truncate, seek, synchronize (flush the file caches to disk), write, read,
attribute setting. The Clusterfile data types can be built with functions
resembling the MPI data types, which are described in chapter 6.

On top of the user-level interface, there is an MPI-IO interface, imple-
mented by mapping the MPI file model, the MPI data types and functions
on Clusterfile’s correspondents.

The interfaces offer the programmer a single-system image. The com-
munication protocol of Clusterfile is transparent for the applications.

3.2 Parallelism considerations

The parallel file access of compute nodes may result in several types of par-
allelism at different levels of the system memory hierarchy. We identify five
parallelism types: logical parallelism, network parallelism, memory paral-
lelism, local memory parallelism and disk physical parallelism. Figure 3.4
depicts the potential for parallelism inside Clusterfile. A parallel file access
(logical parallelism) may translate into a parallel global memory access over
parallel network links to several cache managers. Cache managers retrieve
their data from I/O servers through parallel network connections that access
parallel local caches, and, finally, parallel disks. Not all parallelism types
may occur during an access. If the requested data is found in the local cache,
the disk is not contacted. If the file blocks are cached in the global cache,
the local cache and the disks are not involved in the access.

It is important to note that a bottleneck at any level of the parallelism
hierarchy affects the global performance of the parallel accesses. For in-
stance, if a single cache manager is used for several clients the global access
performance can not be larger than the throughput of the cache manager.

The default file striping hashing (x modulo nIOS, as defined in the sub-

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 47

Client Client Client Client

Cache
Manager

Cache
Manager

I/O
Server

Local
memory

I/O
Server

Local
memory

I/O
Server

Local
memory

I/O
Server

Local
memory

Logical

Global memory

Local memory

Physical (disk)

PARALLELISM

Network

Network

Figure 3.4: The parallelism potential of Clusterfile

section 3.1.3) aim at maximizing local cache and disk parallelism, whereas
the global cache function (x modulo nCM) targets the maximal memory
parallelism. If nIOS = nCM = n, the hashing functions are the same (x
modulo n) and the global cache parallelism directly translates into local
memory and disk parallelism. If nIOS < nCM , the degree of parallelism is
increased with nCM − nIOS when the global cache is used. These types of
parallelism refer to the spatial characteristics of files, i.e. the data placement
for potential parallel access. The temporal order of requests service is given
by the parallel I/O scheduling heuristics optimizing the network parallelism,
described at the beginning of chapter 7.

In the experimental section, we will show the impact of the variation
of disk, local and global memory parallelism on the performance of the
collective I/O operations.

48 FLORIN DANIEL ISAILA

3.3 Summary

This chapter presents Clusterfile’s architecture consisting of a metadata
manager, cache managers collaborating in a global cache implementation,
I/O servers storing files and I/O clients accessing files. As performance
strongly depends on an efficient employment of parallelism, we discuss dif-
ferent types of parallelism encountered in Clusterfile’s cache hierarchy.

Chapter 4

File model

As shown in section 2.4, a large source of parallel I/O system inefficiencies
is the poor match between logical and physical distribution of a file, as well
as inefficient non-contiguous I/O handling. In section 2.2, we have outlined
several approaches to the file distribution problem. Our main goal is to in-
troduce a parallel file model that generalizes ideas presented in earlier work,
along with useful procedures for mapping between two different instances of
the model.

At the core of our file model is a representation for regular data distribu-
tions called Processor Indexed Tagged FAmily of Line Segments(PITFALLS)
[47]. PITFALLS are used for the first time in the PARADIGM compiler for
automatic generation of efficient array redistribution routines at University
of Illinois. In order to be able to express a larger number of access types,
we have extended the PITFALLS representation to nested PITFALLS.

A nested PITFALLS represents a data subset of a file as non-contiguous
segments. There are three main reasons for choosing nested PITFALLS as
the core of our data representation.

• PITFALLS can compactly represent regular distributions of data. Sup-
port for any High-Performance Fortran-style BLOCK and CYCLIC
based data distribution (described in section 2.3) on disk and in mem-
ory is a straightforward application of our approach.

• Their regularity is used for building efficient mapping functions and
redistribution algorithm, as shown in chapter 5.

• Nested PITFALLS can represent arbitrary data distributions. For
instance, MPI data types [38] can be built on top of them. We have
also implemented a conversion between nested PITFALLS and MPI

49

50 FLORIN DANIEL ISAILA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

l=3 r=5

 s=6

Figure 4.1: FALLS example: (3, 5, 6, 5)

data types. However, the MPI data types cannot be indexed by a
processor or disk number such as PITFALLS, which can be represented
in more compact way.

4.1 Data representation

4.1.1 Line segment

A line segment(LS) is a tuple (l, r) describing a contiguous portion of a file
starting at offset l and ending at r.

4.1.2 FAmily of Line Segments(FALLS)

A family of line segments(FALLS) f is a quadruple (lf , rf , sf , nf) represent-
ing a set of nf equally spaced, equally sized line segments. The left index
of the first LS is lf , the right index of the first LS is rf and the distance
between every two consecutive LS’s is called a stride and is denoted by sf .
A FALLS’s block is defined as the bytes contained between lf and rf . A line
segment (l, r) can be represented as the FALLS (l, r,−, 1). Figure 4.1 shows
an example of (3, 5, 6, 5).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Inner FALLS (0,0,2,2)

Outer FALLS (0,3,8,2)

Figure 4.2: Nested FALLS example

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 51

(a) Array form (b) Tree form

(8,9,4,2)

(0,15,32,2)

(0,0,4,2)

Figure 4.3: Tree representation of a nested FALLS

4.1.3 Nested FALLS

A nested FALLS f is a quintuple (lf , rf , sf , nf , If) representing a FALLS
together with a set of inner nested FALLS If . The inner FALLS’s If are
located between lf and rf and are relative to the left index of the outer
FALLS. In constructing a nested FALLS it is advisable to start from the
outer FALLS to inner FALLS.

Figure 4.2 shows an example of a nested FALLS (0, 3, 8, 2, {(0, 0, 2, 2,
∅)})). The outer FALLS are drawn with thick line.

A nested FALLS is through its definition a tree. Each tree node contains
a FALLS f , whereas a node’s children are the inner FALLS of f . Figure 4.3
represents the nested FALLS (0, 15, 32, 2, {(0, 0, 4, 2, ∅), (8, 9, 4, 2, ∅)}).

4.1.4 Simplifying FALLS

A FALLS tree can be simplified either by compacting contiguous line seg-
ments or by promoting children to their parents.

The first case may occur when two FALLS are leaves, belong to the same
set and represent contiguous line segments. For instance, {(0, 15, 32, 2, {(
1, 3, -, 1, ∅), (4, 6, -, 1, ∅)})} can be simplified to {(0, 15, 32, 2, {(1, 6, -, 1,
∅)})}.

Given a FALLS f = (lf , rf , sf , nf , If) such that f ∈ S, the promotion
of children to their parents can be performed in two sub-cases. First, given
a child c ∈ If such that nc = 1, c can be promoted to S. The FALLS c is

52 FLORIN DANIEL ISAILA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

l=2 r=3

 d=2

 s=6

Figure 4.4: PITFALLS example: (2, 3, 6, 4, 2, 3)

eliminated from If and a new FALLS (lf + lc, lf + rc, sf , nf , Ic) is inserted
into S. In the example above, the result of the first simplification can be
further simplified to {(1, 6, 32, 2, ∅)}. Second, if nf = 1, all children If can
be promoted to S. As a result of the simplification, f is removed from S
and for all c ∈ If and the FALLS (lf + lc, lf + rc, sc, nc, Ic) is inserted into
S. For example, the set of nested FALLS {(1, 16, 32, 1, {(0, 0, 4, 2, ∅), (8,
9, 4, 2, ∅)})} can be simplified to {(1, 1, 4, 2, ∅), (9, 10, 4, 2, ∅)})}.

4.1.5 PITFALLS

A set of FALLS can be shortly expressed by using the PITFALLS represen-
tation that is a parameterized FALLS, where the parameter is a processor
or I/O node index. The PITFALLS consists of a sextuple (l, r, s, n, d, p) that
represents a set of p equally spaced FALLS. The distance between two con-
secutive FALLS is d: (l+ id, r+ id, s, n), for i = 0, p−1. A FALLS (l, r, s, n)
can be expressed as the PITFALLS (l, r, s, n,−, 1) and a line segment (l, r)
as (l, r,−, 1,−, 1). The figure 4.4 shows the PITFALLS (2, 3, 6, 4, 2, 3) that
is the compact representation of p = 3 FALLS spaced at d = 2: (2, 3, 6, 4),
(4, 5, 6, 4) and (6, 7, 6, 4).

4.1.6 Nested PITFALLS

A nested PITFALLS is a septuple (l, r, s, n, d, p, S) representing a PITFALLS
(l, r, s, n, d, p, S), called outer PITFALLS together with a set of inner PIT-
FALLS S. The outer PITFALLS compactly represents p outer FALLS
(l + id, r + id, s, n), for i = 0, p − 1. Each outer FALLS contains a set
of inner PITFALLS between l + id and r + id, with indices relative to l + id.
In constructing a nested PITFALLS it is advisable to start from the outer
PITFALLS to inner PITFALLS.

Figure 4.5 shows an example of a nested PITFALLS that represents

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 53

of a CYCLIC, CYCLIC distribution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Inner PITFALLS (0,0,2,2,1,2)

Outer PITFALLS (0,3,8,2,4,2)

distribution
a) CYCLIC, CYCLIC b) Nested FALLS representation

Figure 4.5: Nested PITFALLS example

a 2 dimensional CYCLIC, CYCLIC distribution of a 4×4 matrix over 4
I/O nodes/ processors. The distribution is compactly expressed: {(0, 3, 8,
2, 4, 2, {((0, 0,2 , 2, 1, 2, ∅))})}. The outer PITFALLS is the compact
representation of two FALLS (0, 3, 8, 2) and (4, 7, 8, 2), each of them
containing an inner PITFALLS (0, 0, 2, 2, 1, 2).

4.1.7 Size

A nested FALLS is a segment set representing a file subset. The size of a
nested FALLS f is the number of bytes in the subset defined by f . The
size of a set of nested FALLS S is the sum of sizes of all its elements. The
following two mutual recursive equation express formally the previous two
definitions.

SIZEf =

{

nf (rf − lf + 1) if If = ∅
nfSIZEIf

otherwise

SIZES =
∑

f∈S

SIZEf

For instance, the size of the nested FALLS from figure 4.2 is 4.

4.1.8 Contiguous set of FALLS

A set of FALLS is called contiguous between l and r if it describes a region
without holes between l and r. For instance, the set containing the FALLS
from figure 4.1 is contiguous between 9 and 11, and non-contiguous between
5 and 11.

54 FLORIN DANIEL ISAILA

4.2 File model

Clusterfile uses a unitary file model based on PITFALLS for both physical
and logical partitioning of a file. Subsection 4.2.1 presents the general file
model. Subsections 4.2.2 and 4.2.3 describe the specific details of physical
and logical file partitioning. Throughout the paper, the physical partition
elements are called subfiles, and the logical partition elements views.

4.2.1 File partitioning

A file in our model is a linear addressable sequence of bytes, consisting of
a displacement and a partitioning pattern. The displacement is an absolute
byte position relative to the beginning of the file. The partitioning pattern
P consists of the union of file segments defined by n sets of nested FALLS
S0, S1, ..., Sn−1, each of which representing a linear addressable partition
element:

P =
n−1
⋃

i=0

Si

The sets must describe non-overlapping file regions.

∀i, j = 0, n− 1, i 6= j, Si

⋂

Sj = ∅

This condition insures that each file byte maps on at most one partition
element.

Additionally, P must describe a contiguous region, in order to insure
that each file byte maps on at least one partition element. The previous two
conditions insure that a partitioning pattern maps each byte of the file onto
a unique pair partition element - position within partition element. The
partitioning pattern is applied repeatedly throughout the linear space of the
file, starting at the displacement. Subsection 5.1 describes how the mapping
is performed.

We illustrate the file structure by three examples. In figure 4.6(a), the
file consists of three partition elements, created by using the PITFALLS (0,
1, -, 1, 2, 3, ∅), relative to the displacement 2. The three partition elements
are defined by the following nested FALLS: S1=(0, 1, -, 1), S2=(2, 3, -, 1)
and S3=(4, 5, -, 1). This represents a file laid out on partition elements in
a round-robin manner.

Figure 4.6(b) shows a file composed of four partition elements, built by
using the nested PITFALLS (0 , 3, -, 1, 4, 2, {((0, 0, 2, 2, 1, 2, ∅))}). This
represents a two dimensional CYCLIC, CYCLIC distribution of a file into

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 55

File

File displacement

File

File displacement

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(a) Round−robin layout

File

Subfile 0 Subfile 1 Subfile 2

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Mapping pattern Mapping pattern Mapping pattern Mapping patternMapping pattern

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Subfile 1 Subfile 2 Subfile 3Subfile 0

...

...

... ...

...

...

...

...

Mapping pattern Mapping pattern Mapping pattern Mapping pattern

(b) CYCLIC,CYCLIC layout

PITFALLS (0, 1, 6, 1, 2, 3, ∅)

Nested PITFALLS (0, 3, 8, 1, 4, 2, {((0, 0, 2, 2, 1, 2, ∅))})

Figure 4.6: File Examples

a grid of 2x2 partition elements, mapped onto dimensions according to the
HPF CYCLIC distribution, described in subsection 2.3.2.

If n is the number of I/O nodes assigned to a file and b, the size of a
file block, then round-robin distribution of file blocks over the I/O nodes is
represented by the PITFALLS (0, b-1, -, 1, b, n, ∅).

4.2.2 Physical file partitioning

By using the file model from previous subsection, a file can be physically
partitioned into linear addressable subfiles. Each subfile can be either stored
sequentially at a single I/O node or striped over the disks of several I/O
nodes. Striping means splitting a data region into equal-sized pieces, which
are distributed in a round-robin manner over several disks.

56 FLORIN DANIEL ISAILA

File File

I/O node 0

Subfile 0

Subfile 1

Subfile 2

Subfile 3

Subfile 0

Subfile 1

I/O node 0 I/O node 2 I/O node 3I/O node 1 I/O node 1

(a) 4 subfiles, 2 I/O nodes (b) 2 subfiles, 4 I/O nodes

Figure 4.7: Subfile assignments on I/O nodes

If the number of subfiles is larger than the number of I/O nodes, each
subfile is stored sequentially at a single I/O node. Subfiles are assigned to
I/O nodes in a round robin manner. Figure 4.7(a) shows a file composed of
four subfiles and stored at two I/O nodes. Subfiles 0 and 2 are assigned to
I/O node 0, whereas subfiles 1 and 3 to I/O node 1.

If the number of subfiles of a file is less than the number of I/O nodes,
the subfiles are by default striped over disjointed sets of I/O nodes. This
approach maximizes the parallelism within the file and allows the applica-
tions to take advantage of the aggregate bandwidth of all the I/O nodes.
For example, the data of a file consisting of a single subfile is striped in a
round-robin manner over all I/O nodes. Figure 4.7(b) illustrates a file com-
posed of two subfiles and stored at four I/O nodes. Each subfile is striped
in round-robin manner over two I/O nodes.

4.2.3 Logical file partitioning

Clusterfile allows applications to logically partition a file by setting views.
A view is a portion of a file that appears to have linear addresses. It can
thus be stored or loaded in one logical transfer. A view is similar to a

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 57

subfile, except that the file is not necessarily physically stored in that way.
When an application opens a file it has by default a view on the whole file.
Subsequently, it might change the view according to its own needs.

Views relieve the programmer from complex index computation. Once
the view is set the application has a logical sequential window on a non-
contiguous data set, which can be accessed as if it were an ordinary file.

A view declaration offers the opportunity of early computation of map-
pings between the logical and physical partitioning of the file. Chapter 6
describes in detail our approach.

Views can also be seen as hints to the operating system. They disclose
potential future access patterns and can be used by I/O scheduling, caching
and pre-fetching policies. For example, these hints can help in ordering disk
requests, laying out of file blocks on the disks, finding an optimal size of
network messages, choosing replacement policies of the file caches, etc.

4.3 Summary

This chapter presents a parallel file model, which allows a file to be parti-
tioned in several entities. The partitions may be physical or logical. The
file model is build on the nested PITFALLS data representation, which is
an extension of PITFALLS representation, previously used in a parallelizing
compiler.

58 FLORIN DANIEL ISAILA

Chapter 5

Data mapping and
redistribution

The previous chapter presented the data representation used for file parti-
tioning. This chapter goes into further details following two goals. First, we
show how a file is mapped onto its partition elements. Second, we describe
how to efficiently convert between two partitions of the same file.

Mapping functions, the subject of section 5.1, are used to map between
a file offset and a file partition element (subfile or view), and vice-versa.
Therefore, mapping function compositions may be used for mapping between
two elements of two different partitions, as we show in subsection 5.1.3.

However, a byte-to-byte mapping between two partitions is inefficient
for large data sets. The redistribution algorithm, described in section 5.2,
maps non-contiguous byte segments instead of singular bytes.

The mapping functions and data redistribution algorithm most impor-
tant benefits are:

• They can be used in parallel file systems or libraries. Chapter 6 shows
their integration into Clusterfile. We have also implemented the MPI-
IO library file model [39] by using our file model and mappings.

• They can be used for any combination of redistributions: disk-disk,
disk-memory, memory-disk, memory-memory.

• They relate the logical and physical partitions of the same file and
may be used to improve performance. For instance, the redistribution
algorithm can be used for implementing disk redistribution on the fly,
like in Panda [58], in order to better suit the file layout to a certain
access pattern.

59

60 FLORIN DANIEL ISAILA

• Multidimensional array redistribution is efficiently handled, by using
the regularity of the array partition.

• A high utilization of network bandwidth can be obtained for non-
contiguous access, as shown in the next chapter.

• Data redistribution partitions the data, in order to alleviate disk con-
tention and improve the load balance of several disks, and, therefore,
may increase the efficiency of programs performing parallel disk access.

5.1 Mapping functions

Given one file partition P, defined in previous chapter, this section shows
how to build a mapping function between a file offset and the offset of the
partition elements. Using the mapping function and its inverse, we then
show how to map between two different partitions of the same file. In this
section, we call an element of a file partition subfile. However, the discussion
applies also for views.

Given a set of nested FALLS S, describing a subfile, the functions
MAPS(x) and MAP−1

S (x) compute the mappings between the linear file
space and the linear subfile space. For instance, if the subfile is described
by the set of nested FALLS {(2, 3, -, 1, ∅)} and the partition size is 6, as in
figure 4.6(a), the byte at file offset 10 maps on the byte with subfile offset 2
(MAPS(10) = 2) and vice-versa(MAP−1

S (2) = 10).

5.1.1 Mapping a file on a subfile

MAPS(x) computes the mapping of a position x from the linear file space
on the linear subfile space defined by S, where S belongs to the partitioning
pattern P, starting at displacement displ. MAPS(x) is the sum of the map
value of the beginning of the current partitioning pattern and the map of
the position within the partitioning pattern.

MAPS (x)

1: return ((x− displ) div SIZEP)SIZES+ MAP-AUXS ((x− displ)
mod SIZEP)

MAP-AUXS(x) computes the file-subfile mapping for a set of nested
FALLS S. Line 1 of MAP-AUXS(x) identifies the nested FALLS j of S
onto which x maps. The return value (line 2) is the sum of total size of

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 61

previous FALLS and the mapping onto fj, relative to lfj
, the beginning of

fj.

MAP-AUXS (x)

1: j ← min{k|x ≥ lfk
}

2: if x− lfj
≥ sfj

cfj
then

3: return
∑j

i=0 SIZEfi

4: else
5: return

∑j−1
i=0 SIZEfi

+ MAP-AUXfj
((x− lfj

)
6: end if

MAP-AUXf (x) maps file offset x onto the linear space described by the
nested FALLS f . The return value is the sum of the sizes of the previous
blocks of f and the mapping on the set of inner FALLS, relative to the
current block begin.

MAP-AUXf (x)

1: if If = ∅ then
2: return (x div sf)(rf − lf + 1) + x mod sf

3: else
4: return (x div sf)SIZEIf

+MAP-AUXIf
(x mod sf)

5: end if

For instance, for the subfile described by the nested FALLS S=(0, 1, -, 1,
∅), partition size 6 and displacement 2, shown in figure 4.6(a), the file-subfile
mapping is computed by the function:

MAPS(x) = 2((x− 2)div 6) + (x− 2)mod 6

Notice that MAPS(x) computes the mapping of x onto the subfile de-
fined by S, only if x belongs to one of the line segments of S. For instance,
in figure 4.6, the byte at file offset 5 does not map on subfile 0. However, it
is possible to slightly modify MAP-AUXf , to compute the mapping of the
next or the previous file offset, which directly maps on a given subfile. The
idea is to detect when x lies outside any block of f and to update the value
of x to the end of the current stride (next byte mapping) or to the end of
the previous block (previous byte mapping), before executing the body of
MAP-AUXf . For figure 4.6, the previous of file offset x = 5 on subfile 0
is 1 and the next map is 2.

62 FLORIN DANIEL ISAILA

5.1.2 Mapping a subfile on a file

MAP−1
S computes the mapping from the linear space of a subfile described

by S and belonging to a partitioning pattern P, starting at displacement
displ, as the sum of the start position of the current partitioning pattern
and position within the current partitioning pattern.

MAP−1
S (x)

1: return displ+(x div SIZES)SIZEP+ MAP-AUX−1
S (x mod SIZES)

MAP-AUX−1
S (x) looks for the FALLS fj ∈ S, in which x is located.

The result is the sum of lfj
, the start position of fj, and the mapping within

fj of the remaining offset.

MAP-AUX−1
S (x)

1: j ← max{k|x <
∑k

i=0 SIZEfi
}

2: return lfj
+MAP-AUX−1

fj
(x−∑j−1

i=0 SIZEfi
)

MAP-AUX−1
f (x) maps the offset x of the linear space described by the

nested FALLS f on the file. The result is the sum of mapping the begin
of the inner FALLS of f and the mapping of the position remainder on the
inner FALLS.

MAP-AUX−1
f (x)

1: if If = ∅ then
2: return (x div LENf)sf + x mod LENf

3: else
4: return (x div SIZEIf

)sf+ MAP-AUX−1
If

(x mod SIZEIf
)

5: end if

For instance, for the subfile described by the nested FALLS S=(0, 1, -,
1, ∅) and partition size 6, shown in figure 4.6(b), the subfile-file mapping is
computed by the function:

MAP−1
S (x) = 2 + 6(xdiv 2) + xmod 2

5.1.3 Mapping between two partitions

Given two partition elements defined by S and V and belonging to two
different partitions of the same file, we compute the direct mapping of x
from V to S as MAPS(MAP−1

V (x)) . For instance, in the figure 5.3(b),

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 63

the mapping of the byte at offset 4 from partition element V on the partition
element S is MAPS(MAP−1

V (4)) = 4

If S and V are represented by exactly the same nested FALLS then
MAP−1

S represents the inverse of MAPS :

MAP−1
S (MAPS(x)) = x

MAPS(MAP−1
S (y)) = y

As a consequence, given a physical partition into subfiles and a logical
partition into views, described by the same parameters, each view maps
exactly on a subfile. Therefore, every contiguous access of the view translates
into a contiguous access of the subfile. This represents the optimal physical
distribution for a given logical distribution.

5.2 Redistribution algorithm

Based on PITFALLS representation, Ramaswamy and Banerjee present a
redistribution algorithm that is specific for multidimensional arrays. The
algorithm computes the intersection of distributions independently on each
array dimension. The multidimensional intersection result is the union of
these intersections. The independent computation is possible, because it is
performed for two distributions of the same array. For instance, the inde-
pendent computation will not work for the array resizing. Our redistribution
algorithm uses their intersection algorithm for one dimension and general-
izes the redistribution, such that array redistribution is efficiently performed
and the redistribution can be done between arbitrary patterns.

Given two partitions of the same file, the goal is to redistribute the file
data from one partition to the other. In order to achieve this goal, it is
necessary to copy all the data from each element of the first partition (a
partition element was defined in subsection 4.2.1) into the elements of the
second partition. One element of the first partition may contain data that
has to be copied in one or more elements of the second partition. Therefore,
each element of the first partition has to be intersected with all elements of
the second partition, in order to determine the transfer source and destina-
tion indices. In this section we will show how to compute the intersection
between two elements of two different file partitions.

The partition elements of a parallel file are represented by sets of nested
FALLS. The intersection algorithm described in subsection 5.2.3 computes
a set of nested FALLS, which can be used to represent data common to two

64 FLORIN DANIEL ISAILA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3

0 1 2 3

0 1 2 3

f1

f2

f1 ∩ f2

(a) Example 1

(b) Example 2

f1

f2

f1 ∩ f2

Figure 5.1: FALLS intersection algorithm

sets of nested FALLS, belonging to two given file partitions. The indices
of the sets of nested FALLS are given in linear file space. Subsection 5.2.4
shows how these sets of indices can be projected on the linear space of each
of the two intersected partition elements.

5.2.1 FALLS intersection algorithm

Our nested FALLS intersection algorithm from subsection 5.2.3 uses the
FALLS intersection algorithm from [47], INTERSECT-FALLS(f1, f2).
INTERSECT-FALLS efficiently computes the set of nested FALLS, rep-
resenting the indices of data common to both f1 and f2. In order to make
the computation efficient, the algorithm uses the period of the intersection
result (the smallest common multiplier of the strides of f1 and f2) and con-
siders only pairs of line segments of f1 and f2 that intersect.

Figure 5.1 shows two examples: (a) INTERSECT-FALLS ((0,7,16,2),
(0,3,8,4)) = (0,3,16,2) and (b) INTERSECT-FALLS ((0,1,4,1), (0,0,2,2))
= (0,0,4,1).

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 65

INTERSECT-FALLS is used in array redistributions [47]. The old
and new distributions of an n-dimensional array are represented as FALLS
on each dimension and the intersection is performed independently on each
dimension. Because our goal is providing arbitrary redistributions, we can
not employ the multidimensional array redistribution. We will describe an
algorithm, which allows arbitrary redistributions, while efficiently perform-
ing multidimensional array redistribution.

5.2.2 Cutting a FALLS

The following procedure computes the set of FALLS which results from
cutting a FALLS f between an inferior limit l and superior limit r. The
resulting FALLS are computed relative to l. We use this procedure in the
nested FALLS intersection algorithm.

CUT-FALLS (f ,l,r)

1: DEF g:FALLS
2: lg ← l; rg ← r; ng ← 1
3: S ← INTERSECT-FALLS(f, g)
4: for all h ∈ S do
5: lh ← lh − l
6: rh ← rh − l
7: end for
8: return S

For example, cutting the FALLS (3, 5, 6, 5) in figure 4.1 between l = 4
and r = 28 results in set {(0, 1, 2, 1), (5, 7, 6, 3), (23, 24, 2, 1)}, computed
relative to l = 4.

5.2.3 Intersection of sets of nested FALLS

We are ready now to describe the algorithm for intersecting sets of nested
FALLS S1 and S2, belonging to the partitioning patterns P1 and P2, starting
at displacements d1 and d2. The sets contain FALLS in the tree represen-
tation. The algorithm assumes, without loss of generality, that the trees
have the same height. If they do not, the height of the shorter tree can be
transformed by adding outer FALLS.

In the PREPROCESS phase of INTERSECT, P1 and P2, and im-
plicitly S1 and S2, are extended over a size equal to the lowest common
multiplier of the sizes of P1 and P2. In figure 5.2(b), two partitioning pat-
terns of sizes 3 and 4 and starting at displacements 5 and 3, from 5.2(a)

66 FLORIN DANIEL ISAILA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(a) Two partitioning patterns with different sizes (4 and 3) and different displacements (5 and 3)

(b) Extending the partitioning patterns to the size of the lowest common multiplicator of their sizes

(c) Aligning the partitioning patterns

Figure 5.2: Extending and aligning two partitioning patterns

are extended to a size of lcm(3, 4) = 12. Subsequently, they are aligned
at the maximum of the two displacements, by cutting and extending the
partitioning pattern starting at the lowest displacement (see also 5.2(b) and
(c)). After preprocessing, the two partitioning patterns have the same dis-
placements and the same sizes and can be intersected.

INTERSECT (S1, displ1,P1, S2, displ2,P2)

1: PREPROCESS(displ1,P1, displ2,P2)
2: return INTERSECT-AUX(S1, 0, SIZEP1

− 1, S2, 0, SIZEP2
− 1)

INTERSECT-AUX computes the intersection between two sets of
nested FALLS S1 and S2, by recursively traversing the FALLS trees (line
12), after intersecting the FALLS pairwise (line 8).

INTERSECT-AUX considers first all possible pairs (f1, f2) such that
f1 ∈ S1 and f2 ∈ S2. The FALLS f1 is cut between the left and right index
of intersection of outer FALLS of S1 and S2 (line 4), l1 and r1. The indices
l1 and r1 are computed relative to outer FALLS of S1. The same discussion

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Logical
partitioning

Physical
partitioning

Intersection
result

∩ =

(a) Logical and physical partitioning(array form)

(b) Logical and physical partitioning(file form)

(d) Projection of V ∩ S on
the view defined by V the subfile defined by S

S

V

V ∩ S

(c) Projection of V ∩ S on

Figure 5.3: Nested FALLS intersection algorithm

applies to f2 (line 5). CUT-FALLS is used for assuring the property of
inner FALLS of being relative to left index of outer FALLS. The FALLS
resulting from cutting f1 and f2, are subsequently pairwise intersected (line
8). The recursive call descends in the subtrees of f1 and f2 and computes
recursively the intersection of their inner FALLS (line 12).

INTERSECT-AUX (S1, l1, r1, S2, l2, r2)

1: S ← ∅
2: for all f1 ∈ S1 do
3: for all f2 ∈ S2 do
4: C1 ← CUT-FALLS(f1, l1, r1)

68 FLORIN DANIEL ISAILA

5: C2 ← CUT-FALLS(f2, l2, r2)
6: for all g1 ∈ C1 do
7: for all g2 ∈ C2 do
8: S ← S∪ INTERSECT-FALLS(g1, g2)
9: end for

10: end for
11: for all f ∈ S do
12: I ← INTERSECT-AUX(If1

, (lf − lf1
) mod sf1

, (rf − lf1
)

mod sf1
, If2

, (lf − lf2
) mod sf2

, (rf − lf2
) mod sf2

)
13: end for
14: end for
15: end for
16: return S

For instance, figure 5.3 shows the intersection of two sets of nested
FALLS, V = (0, 7, 16, 2, (0, 1,−, 1, ∅)) and S = (0, 3, 8, 4, (0, 0, 2, 2, ∅)), be-
longing to partitioning patterns of size 32. The outer and the inner FALLS
intersections were already shown in figure 5.1. The intersection result is
V ∩ S = (0, 3, 16, 2, (0, 0, 4, 1, ∅)), which can be simplified to (0, 0, 16, 2, ∅).

5.2.4 Projection of a set of FALLS

The algorithm in subsection 5.2.3 computes the intersection S of the two
sets of FALLS S1 and S2. Consequently, the data set represented by S is
a subset of both S1 and S2. The projection of S1 on S is defined as the
set of nested FALLS which represents the positions of the data segments
from S in the linear space of the S1. For instance, for the example in
figure 5.3, the intersection results of V and S computed in subsection 5.2.3
was (0, 0, 16, 2, ∅), representing 2 bytes in the linear space of the file. The
V = (0, 7, 16, 2, (0, 1,−, 1, ∅)) represents a partition element consisting of 8
bytes. The 2 bytes of V ∩S are a subset of the 8 bytes of V . The projection
PROJV (V ∩S) = (0, 0, 4, 2, ∅) (figure 5.3(c)) represents the relative position
of the 2 bytes of V ∩ S inside the 8 bytes of V . The projection PROJS

(V ∩ S) can be calculated with a similar argument as (0, 0, 4, 2, ∅) (figure
5.3(d)).

This subsection presents a procedure for projecting S on the linear space
(view or subfile) described by S1 and S2. We use this projection in scattering
and gathering data exchanged between a compute node and an I/O node,
as we will show in the next section.

PROJS(R) computes the projection of R on S by simply calling an
auxiliary procedure PROJ-AUX.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 69

PROJS (R)

1: PROJ-AUXS(R, 0)

PROJ-AUXS(R, offset) traverses the trees representing the FALLS of
R and it projects each FALLS on the subfile described by S. The argument
offset is needed because each set of inner FALLS is given relative to the
left index of the outer FALLS. Therefore, offset accumulates the absolute
displacement from the subfile beginning.

PROJ-AUXS (R, offset)

1: P ← ∅
2: for all f ∈ R do
3: p← PROJ-AUXS(f, offset)
4: if If 6= ∅ then
5: Ip ←PROJ-AUXS(If , offset + lf)
6: end if
7: P ← P ∪ {p}
8: end for
9: return P

PROJ-AUXS(f, offset) projects a FALLS f displaced with offset to
the subfile described by S.

PROJ-AUXS (f, offset)

1: DEF g:FALLS
2: lg ←MAPS(lf + offset)−MAPS(offset)
3: rg ←MAPS(rf + offset)−MAPS(offset)
4: sg ←MAPS(sf + offset)−MAPS(offset)
5: ng ← nf

6: return g

INTERSECT and PROJS can be compacted in a single algorithm, as
they are both traversing the same sets of trees. For the sake of clarity, we
have presented them separately.

5.3 Summary

This chapter introduces mapping functions and a data redistribution algo-
rithm, used for converting between two arbitrary file partitions. The parti-
tions, mapping functions and the redistribution algorithm are optimized for

70 FLORIN DANIEL ISAILA

multidimensional arrays. The data representation may use the regularity of
a multidimensional array partition for compact representation of complex
patterns. The regularity of the partition, expressed by the nested FALLS
representation, is also used for building efficient mapping functions and a
redistribution algorithm. The next chapter describes the integration of the
algorithms into Clusterfile.

Chapter 6

Non-contiguous I/O

As explained in chapter 2, workload characterization studies [43, 53, 52, 15]
have shown that there is an important class of scientific applications issuing
large numbers of small I/O requests. Researchers have identified two main
reasons for this behavior. First, files are accessed by using explicit non-
contiguous access. Second, the poor match between the access pattern and
data layout causes large contiguous accesses to be mapped non-contiguously
on several disks. The conclusion of these studies was that non-contiguous
access is an important factor that influences the performance of parallel
applications.

In this chapter we present view I/O, an optimization technique for re-
mote non-contiguous file access. Views (defined in chapter 4, subsection
4.2.3) can be seen as hints that disclose potential access patterns. Such
hints are only partially exploited by a library such as MPI-IO or by the
underlying file system. For example, the relationship between the probable
access pattern and the file layout over a cluster is not considered. MPI-IO
separates the view mechanism from the data placement information. Even
if a view maps contiguously on a disk, two unnecessary intermediate map-
pings view-file, file-disks are performed, because the view-file mapping is
implemented in the MPI-IO library and the file-disks mapping is performed
by the file system.

In order to improve the performance of non-contiguous I/O operations
a tighter cooperation between file system and high-level I/O libraries is
necessary. On the one hand, the lack of information about the underlying
file system might make library optimizations inefficient. On the other hand,
the application hints provided by libraries may be very important for file
system decisions.

71

72 FLORIN DANIEL ISAILA

6.1 Motivation

In this subsection we outline some goals that motivated our design decisions.

Consider the file physical layout. The relationship between access
pattern and data layout is very important for the performance [52]. Our goal
is to study optimizations that take parallel file structures into consideration.

Decrease the number of disk and network requests. An important
factor that affects the performance of parallel I/O is the number of messages.
One goal of a non-contiguous I/O optimization is to perform accesses to both
storage and networks in such a way that maximizes the performance.

Reduce overhead of sending file offsets. For an access pattern that
is used several times, the access indices can be transfered remotely once
and employed several times. The overhead of sending the indices can be
amortized over several accesses. In particular, it has been shown that multi-
dimensional arrays are frequently used by parallel scientific applications [43].
The access patterns of multidimensional arrays typically exhibit periodicity
that can be used for compacting the access indices before sending them.

Simplify access syntax. When performing non-contiguous access both
the addresses in memory and in file are computed. Our goal was to sim-
plify the file access by compacting non-contiguous regions into a contiguous
view. Non-contiguous file accesses are subsequently implicit, meaning that
a contiguous region of a view is mapped onto non-contiguous file regions by
the file system.

Suitability for emerging technologies. Non-contiguous I/O involves
a significant CPU overhead for memory scatter-gather operations. The ca-
pabilities of direct access transport protocols such as Virtual Interface Ar-
chitecture [3], Infiniband [4], Remote Direct Memory Access(RDMA) and
Remote Direct Data Placement (RDDP) [27] aim at minimizing the demands
placed on the CPU when copying data remotely from memory to memory.
In this context, a non-contiguous I/O optimization can reduce copying by
building direct mappings between local and remote memory.

6.2 View I/O overview

View I/O consists of two main phases: view declaration and I/O access.

View declaration In the first phase, the user declares a generic non-
contiguous file access through a view, which maps non-contiguous physical
file sections onto a contiguous address range.

Another mapping between the view and the file layout is then computed,

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 73

(0,0) (1,0) (2,0) (3,0) (0,0) (0,1) (3,0) (3,1)(1,0) (1,1) (2,0) (2,1)

(0,0) (2,0) (1,3) (3,3)(1,1) (3,1) (2,2)(0,2) (0,0) (0,1) (0,2) (0,3) (2,0) (2,1) (2,2) (2,3)

������������(0,0)����������
����������

(1,0) ������������(2,0)����������
������(3,0) 	�	�		�	�	

�
�

�
�

(0,0) ������������(1,0)����

������(2,0) ������������(3,0)

������������(0,0)�����
�����
����������

(1,0) ���
���
������(2,0)�����
�����
������(3,0) ����������

����������
(0,0) ���
���
������(1,0)�����
�����
������(2,0) ���
���
 � � (3,0)

!�!!�!"�""�"

#�#
#�#
$�$
$�$

%�%
%�%
&�&
&�&

'�'
'�'
(�(
(�(

)�)
)�)
�
� +�+�+

+�+�+
,�,�,
,�,�,

-�-�-
-�-�-
.�.�.
.�.�.

/�/�/
/�/�/
0�0�0
0�0�0

1�1�1
1�1�1
2�2�2
2�2�2

3�33�34�44�4
5�55�56�66�6
7�77�78�88�8

9�9�99�9�9
:�:�::�:�:;�;�;;�;�;
<�<�<<�<�<

=�=�==�=�=
>�>�>>�>�>

?�?�??�?�?
@�@�@@�@�@

(3,2)(0,2) (1,2) (2,2)Disk 0

View

(0,3)

(1,1)

(2,3)

(3,1) (3,3)

(0,2)

(1,2)

(2,2)

(3,2)

(0,0)

(3,0)

(1,0)

(3,0)

(1,0)

(2,0)

(0,1)

View

Disk 0

a. Contiguous in view b. Contiguous in view

c. Non−contiguous in view d. Non−contiguous in view

non−contiguous on diskcontiguous on disk

contiguous on disk non−contiguous on disk

(3,1) (3,2) (3,3)

(0,2)

(1,2)

(3,2)

(0,0)

(1,1) (1,2) (1,3)

(0,3)

(1,3)

(2,3)

(3,3)

(0,1) (0,2) (0,3)

(2,2)(2,1)

(3,0)

(2,0)

(1,0)

(0,0)

(1,1)

(2,1)

(3,1)

(0,0) (0,1) (0,2) (0,3)

(1,1)

(2,1)

(3,2) (3,3)(3,1)(3,0)

(2,3)

(1,3)

(2,1) (2,0)

(0,1)

(1,3)(1,2)

(2,3)(2,2)

(1,0)

(2,0)(2,2)

Figure 6.1: View example

74 FLORIN DANIEL ISAILA

0 1 2 3 4 5 6 7

3 4

1 2

5
10

 6

9

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1

0 1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

GATHER

File

I/O NODE

COMPUTE NODE

Network

V

S

rV

MAP−1

V (rV)

rSlS

lV

MAPS(MAP−1

V (lV)) MAPS(MAP−1

V (rV))

lS

lV rV

(lS , rS)

rS

PROJV ∩S
V

SEND netbuf

netbuf

netbuf

MAP−1

V (lV)

(a) Compute node maps lV and rV on the subfile

(b) Communication between compute node and I/O node

PROJV ∩S
S

SCATTER

Figure 6.2: Write operation in Clusterfile.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 75

as shown in detail in subsection 6.3.1. Four cases may occur, as depicted
in figure 6.1. Four compute nodes define views on different columns of a
two-dimensional matrix. The matrix is striped in four different ways over
two disks of two I/O nodes. The figure shows the view of the first processor
and the mapping on the first disk.

a. Contiguous in view - contiguous on disk. In the optimal case
the view maps contiguously on disks. Theoretically, this case provides the
opportunity to perform exactly one access per disk. Additionally, if the disks
are remote, RDMA can be employed for a zero-copy protocol between local
compute node and the remote buffer cache.

b. Contiguous in view - non-contiguous on disk. If the view maps
non-contiguously on disks, no copy operation is necessary at compute nodes,
whereas scatter/gather operations have to be used at the I/O nodes. The
mapping is sent to the I/O nodes and where is subsequently used at access
time.

c. Non-contiguous in view - contiguous on disk. If non-contiguous
view regions map contiguously on disks, there is no need for scattering at
the I/O nodes. The view-disk mapping is employed at the compute nodes
for assembling the non-contiguous view pieces into a buffer used for network
transfer.

d. Non-contiguous in view - non-contiguous on disk. If non-
contiguous view regions map non-contiguously on disks, the mapping is split
into a mapping between non-contiguous view regions and a network buffer
and a mapping between a network buffer and non-contiguous disk regions.
The second mapping is sent to the I/O server.

The first phase is performed only once. The overhead can subsequently
be amortized over several accesses.

I/O access In the second phase the defined view can be used for net-
work transfers. After the view is declared, it can be accessed in the same
manner as an ordinary file. The user is relieved from computing file offsets
for a non-contiguous access, because non-contiguous file regions are “seen”
contiguously through the view.

6.3 Implementation

This section describes the view I/O implementation, based on the redistri-
bution algorithm and mapping functions from chapter 5.

76 FLORIN DANIEL ISAILA

6.3.1 View declaration

Let us assume that a compute node declares a view described by a set
of nested falls V , starting at displacement displ1, where V ∈ P1. The file
layout is defined by partitioning pattern P2, starting at displacement displ2.
First, the intersection between V and each of the subfiles is computed by
the redistribution algorithm described in section 5.2.3 (line 2). Second, the
intersection projection onto V is computed by the routine described in 5.2.4
(line 3) and stored at the compute node. Third, the same routine computes
the intersection projection onto S (line 4), which is subsequently sent to the
I/O nodes (line 5).

1: for all S ∈ P do
2: V ∩ S ← INTERSECT (V, displ1,P1, S, displ2,P2)
3: PROJV ∩S

V ← PROJV (V ∩ S)
4: PROJV ∩S

S ← PROJS(V ∩ S)
5: Send PROJV ∩S

S to I/O node of subfile S
6: end for

Figure 6.2(b) shows the projections PROJV ∩S
V =(0, 0, 4, 2, ∅) and PROJV ∩S

S =(0,
0, 4, 2, ∅), for one view and one subfile, as computed in the example in sub-
section 5.2.4.

6.3.2 Scatter-gather operations

Given a set on nested FALLS S, a left and a right limit, l and r, respectively,
we have implemented two procedures for copying data between the non-
contiguous regions defined by S and a contiguous buffer (or a subfile):

• GATHER(dest, src, l, r, S) copies the non-contiguous data, as defined
by the nested FALLS S between l and r, from src buffer from to a
contiguous buffer (or to a subfile) dest. For instance, in figure 6.2(b),
the compute node gathers the data between l = 0 and r = 4 from a
view to the buffer netbuf , using the set of FALLS {(0, 0, 4, 2, ∅)}.
• SCATTER(dest, src, l, r, S) distributes the data from the contiguous

buffer (or subfile) src, non-contiguously, as defined by S between l
and r to the buffer dest. For instance, in figure 6.2(b), the I/O node
scatters the data from netbuf , to a subfile, between m = 0 and M = 4,
using the set of FALLS {(0, 0, 4, 2, ∅)}.

For the implementation, we use the tree representation of a nested FALLS.
The set of trees of S are recursively traversed one by one. Copying opera-
tions take place at the leaves.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 77

6.3.3 Access operations

As previously shown, the compute node stores PROJ V ∩S
V , and the I/O

node stores PROJV ∩S
S , for all S ∈ P. In this subsection we show the steps

involved in writing a view portion between lV and rV , from a buffer buf to
the file (see also the figure 6.2 and the following two pseudocode fragments).
The read operation performs the same operations with the only difference
that the data is transfered in the reverse direction.

For each subfile described by S (line 1) and intersecting V (line 2), the
compute node computes the mapping of lV and rV on the subfile, lS and rS,
respectively (lines 3 and 4) by using the mapping functions from section 5.1.
Subsequently, lS and rS are sent to the I/O servers (line 5). If PROJV ∩S

V is
contiguous between lV and rV , buf is sent directly to the I/O server storing
subfile S (line 7). Otherwise, the non-contiguous regions of buf are gathered
in the buffer netbuf (line 9) and sent to the I/O node (line 10).

1: for all S ∈ P do
2: if PROJV ∩S

V 6= ∅ then
3: lS ←MAPS(MAP−1

V (lV))
4: rS ←MAPS(MAP−1

V (rV))
5: Send (lS , rS) to the I/O server storing subfile S
6: if PROJV ∩S

V is contiguous between lV and rV then
7: Send buf to the I/O server
8: else
9: GATHER(netbuf, buf, lV , rV , PROJV ∩S

V)
10: Send netbuf to the I/O server
11: end if
12: end if
13: end for

The I/O server storing S receives lS , rS (line 1) and, in buffer netbuf ,
the data to be written (line 2). If PROJV ∩S

S is contiguous, netbuf is written
contiguously to the subfile (line 4). Otherwise, the data is scattered from
netbuf to the file (line 6).

1: Receive lS and rS from compute node
2: Receive the data in netbuf
3: if PROJV ∩S

S is contiguous between lS and rS then
4: Write netbuf to subfile at offset lS
5: else
6: SCATTER(subfile, netbuf, lS, rS , PROJV ∩S

S)
7: end if

78 FLORIN DANIEL ISAILA

6.4 View I/O syntax

This section describes the syntax of view I/O. There are three types of
routines: data type constructors, view declaration and I/O access.

6.4.1 Data types

View I/O uses the data types of the Clusterfile parallel file system, similar
in spirit to MPI-IO (see section 2.3.1). The prefix of the routines and data
types of Clusterfile is “CLF_”. Unlike MPI, Clusterfile’s data types can define
the file layout. Additionally, they are at a higher abstraction level as those
of MPI. There are no correspondents of programming language types. The
only basic type is CLF_BYTE. The derived types can be built by using solely
three functions.

CLF_Type_vector builds strided data types, corresponding to nested
FALLS. It declares count memory or file regions, located between offsets
left and right and spaced by stride bytes. The embedded data type
(i.e. oldtype) is located between left and right offsets. Note that using
this function one can build nested-strided access patterns as described by
Nieuwejaar and Kotz [44].

CLF_Datatype CLF_Type_vector(int left, int right, int stride,

int count, CLF_Datatype oldtype);

CLF_Type_pvector builds nested PITFALLS. It declares nr_proc FALLS
(left, right, stride, count) displaced from each other with the byte dis-
tance dist.

CLF_Datatype CLF_Type_pvector(int left, int right, int stride,

int count, int dist, int nr_proc, CLF_Datatype oldtype);

CLF_Type_struct compacts count non overlapping data types that are
identified by array_of_types. Each of them can be a strided data type.
By using CLF_Type_struct one can represent nested-batched access pattern
from [44] or the arguments of POSIX readv and writev operations [24].

CLF_Datatype CLF_Type_struct(int count,

CLF_Datatype *array_of_types);

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 79

6.4.2 View declaration

CLF_setview declares a view on an open file represented by a file descriptor
fd. The visible file region starts at offset displ and is divided into equally
regions of size period. In each period the accessible data is declared by using
data types, which are constructed with the routines described above. The
CLF_setview call can also be described with a POSIX fcntl, by packing
the last three arguments into a structure.

int CLF_setview(int fd, CLF_Datatype view, int displ,

int period);

6.4.3 I/O Access

A view allows non-contiguous file regions to be seen contiguously. This
approach compensates for the lack of POSIX functions that access non-
contiguous regions of the file in a single call. After setting a view, non-
contiguous file accesses are possible using POSIX syntax. First, the accesses
that are contiguous in memory and non-contiguous in a file can be described
with regular POSIX read/write calls. Second, POSIX readv/writev can
be used for non-contiguous accesses both in memory and in file.

6.4.4 Example

The pseudocode below shows how nr_of_proc compute nodes write a n×m
matrix of bytes into a file in a row-wise order by using the High Perfor-
mance Fortran distribution (*,BLOCK), i.e. blocks of columns. The my_id-
th compute node declares a view on its corresponding part of the matrix,
from the (my_id*m/nr_of_proc)-th to the ((my_id+1)*m/nr_of_proc-1)-
th column. Subsequently, the write can be performed contiguously.

byte MY_MATRIX_COLUMNS[n][m/nr_proc];

int fd=CLF_open(FILENAME,FLAGS);

CLF_Datatype view=CLF_Type_vector((my_id*m/nr_of_proc,

(my_id+1)*m/nr_of_proc-1,

m,n,BYTE);

CLF_setview(fd,view,0,n*m);

CLF_write(fd,MY_MATRIX_COLUMNS,n*m/nr_of_proc);

CLF_close(fd);

80 FLORIN DANIEL ISAILA

Data sieving Extended List I/O View I/O
two-phase
I/O

Transfer yes no, if global no no
unnecessary access
data pattern

contiguous

Data travels once:read twice once once
through twice:write
network

Compute access n times n times n times once, at
indices for n view
similar accesses declaration

Transfer access n times n times n times once, at
indices for n view
similar accesses declaration

Compact access no no no yes
indices

Access routine multi-offset multi-offset multi-offset one offset
syntax multi-length multi-length multi-length one length

Correlation not not not considered
physical- considered considered considered
logical
distribution

Copying at scatter/ scatter/ scatter/ scatter/
compute nodes gather gather gather gather

or not
necessary

Copying at not not scatter/ scatter/
disks necessary, necessary, gather gather or

contiguous contiguous or not
access access necessary

Collective I/O no yes no no

Implementation ROMIO ROMIO PVFS Clusterfile

Table 6.1: Comparison of four I/O optimization techniques

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 81

6.4.5 Comparison with other I/O optimizations

Table 6.1 presents a comparison of view I/O with three other I/O techniques:
data sieving, extended two-phase I/O and list I/O, already described in
section 2.2.

View I/O and list I/O transfer only the requested data, exactly once.
On the other hand, data sieving transfers always contiguous file regions and
then locally filters the useful data out of them. For write, data travels twice
through the network, as read-modify-write is performed. In the extended
two-phase I/O data is transmitted also twice, due to the separation of phys-
ical and logical access, as explained in the subsection 2.2.2. Unnecessary
data is accessed only when the global access pattern is not contiguous.

View I/O is the only method that compacts access indices for regular
accesses. Additionally, for repeated accesses the indices are transfered only
once, at view declaration, in contrast to list I/O and extended two-phase
I/O, that send them at each invocation. Data sieving sends only the start
and end offset of the interval.

With view I/O, after the view is declared, the file non-contiguity is im-
plicit. Therefore, the access syntax can be simplified to one offset and one
length. The other methods have to specify explicitely all lengths and file
offsets at each invocation.

View I/O is the only method that takes into consideration the relation-
ship between access pattern and physical layout. This approach can reduce
scatter/gather copying at compute nodes, at I/O nodes or at both of them.
Data sieving and extended two-phase I/O avoid copying at I/O nodes by
accessing contiguous regions.

View I/O is not a collective I/O technique. Chapter 7 shows how view
I/O is used by Clusterfile’s collective I/O operations.

6.4.6 View I/O and MPI-IO

MPI data types are used by MPI-IO for declaring views and for performing
non-contiguous accesses. The data types of Clusterfile are also used for view
setting and non-contiguous accesses. Additionally, they are employed for file
layout descriptions. The MPI data types are mapped on the Clusterfile data
types.

The view mechanism of MPI is based on the file abstraction, as imple-
mented by each file system. The MPI view has no knowledge about how
the file system distributes the file over its disks. In contrast, view I/O is
implemented inside the file system and, therefore, is able to evaluate the

82 FLORIN DANIEL ISAILA

relationship between view and file layout and to perform optimizations.
View I/O can be employed either through routines presented in this

section or through MPI-IO over Clusterfile implementation. A hint allows
switching between MPI-IO’s and Clusterfile’s view.

6.5 Summary

This chapter presents view I/O, a non-contiguous parallel I/O optimization.
View I/O is distinct from other methods in several ways. First, it uses classes
of access indices that are declared once and used several times. Secondly, the
access indices for regular patterns are compacted. Both these approaches
reduce the overhead of transferring offsets. Third, the access syntax is sim-
plified. After view declarations, all file accesses may be performed solely
by specifying the interval extremities. Forth, the view information is used
for optimizations inside the parallel file system. For instance, for an access
pattern matching the physical distribution, the non-contiguous access may
translate into a contiguous disk access.

Chapter 7

Collective I/O

This chapter presents Clusterfile’s collective I/O optimizations. The design
integrates two collective I/O methods (disk-directed I/O and two-phase I/O)
and uses the global cache for collective buffering.

The implementation combines the advantages of MPI-IO (portability,
SPMD programming model, flexible group mechanisms and collective com-
munication) with those of a particular parallel file system (integrated logical
and physical distribution mechanisms, flexible physical file distribution, ef-
ficient non-contiguous I/O transfers).

The collective I/O operations of Clusterfile can be used through the
SPMD programming model of MPI. The collective I/O operations are needed
in an SPMD model as hints for the underlying implementations. These hints
inform the file system that several processes will be accessing the file. As a
result, the file system may employ specific access optimizations such as not
freeing or releasing internal collective buffers too early.

The chapter is structured as follows. First, we present a novel decen-
tralized parallel I/O scheduling heuristic, which is used in the collective I/O
implementation. Section 7.2 overviews Clusterfile’s collective I/O methods.
Design and implementation details are described in sections 7.3 and 7.4.

7.1 Parallel I/O scheduling

Collective I/O operations may involve large data transfers between pairs of
resources, such as processors, memories and disks. File striping and parallel
caching offer data placement solutions that provide potential for parallelism.
However, the effective use of this parallelism can be given only by the order
in which these resources are involved, i.e. by a parallel I/O schedule.

83

84 FLORIN DANIEL ISAILA

Schedule 1

Schedule 2

0 1 2 3 time

R1 R2

IOS0

IOS1
R3

R2

R1
R0

CN1

CN0

0 1 2 3 time

R0 R3

R1

R0 R2 R3

Figure 7.1: Parallel I/O scheduling example

The parallel I/O scheduling problem is formulated as follows. Given np

compute nodes, nIOS I/O servers and a set of requests from compute nodes
to I/O servers such that a single request per time unit can be executed,
find a service order that minimizes the schedule length [33]. As the general
scheduling problem is shown to be NP-complete, Jain et al. [33] and Chen
and Majumdar [10] proposed several heuristics. Their heuristics are all
centralized. However, due to the complex interactions within a parallel
computer, it may be difficult or impractical to gather all the information at
a central point, choose the strategy, and then redistribute the decision. This
approach may introduce costly synchronization points and cause additional
network transfers.

Our new parallel scheduling heuristic specifically targets collective I/O
operations. We assume that, at a certain point in time, np compute nodes
simultaneously issue large data requests for nIOS I/O servers. We find this
to be a reasonable assumption for two reasons. First, collective I/O oper-
ations frequently involve all the compute nodes on which the application
runs. Second, files are typically distributed over all the available disks for
performance reasons.

For writing, large requests are split by each compute node into smaller
requests of size b. Then, at time step j, j= 0, 1, ..., compute node i sends
a block to the I/O server (i + j) modulo nIOS. For instance, in figure 7.1,
np = 2 compute nodes simultaneously issue 4 requests for nIOS = 2 I/O
servers. If both compute nodes decide to send the request to the IOS0 first,
and then to IOS1, a schedule of length 3 results (for instance “Schedule 1”).
On the other hand our heuristic produces a schedule of length 2 (“Schedule
2”): at time step j = 0, CN i = 0 sends a request to IOS (0+0) modulo 2

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 85

= 0 and CN i = 1 to IOS (1+0) modulo 2 = 1, while at time step j = 1,
CN i = 0 sends a request to IOS (0+1) modulo 2 = 1 and CN i = 1 to IOS
(1+1) modulo 2 = 0. The schedule length is reduced because the two I/O
servers run in parallel.

For reading, the compute nodes send all the requests to the I/O servers
which, in turn, split the data to be delivered into blocks of size b. Then, at
time step j, j= 0, 1, ..., the i-th I/O server sends a block to the compute
node (i + j) modulo np.

Notice that there is no central point of decision, as each process acts in-
dependently. The heuristic tries to involve all the I/O servers in the system,
at a given time t.

The heuristic can be used at two different cache hierarchy levels: com-
pute nodes, which send requests to cache managers or cache managers, which
send requests to I/O servers. In section 7.2 we will show how we use it for
collective I/O.

7.2 Collective I/O overview

Let us now assume that the processes of a parallel program (written for
instance in MPI) issue parallel write or read operations by using a cor-
responding collective call (MPI_File_read_all or MPI_File_write_all in
MPI-IO, as described in subsection 2.3.1).

Figure 7.2 shows an example of Clusterfile’s read collective operation,
which consists of the following steps. After setting a view on the file, each
compute node sends the requests to the cache managers (1). If the data is
not available, it is retrieved from the I/O servers (2 and 3) into a collective
buffer. The steps 2 and 3 are performed solely once at the arrival of the
first request from the collective I/O participants at the cache managers.
Subsequent requests either wait for the data to arrive or find the data already
cached. Finally, the data is sent to the compute nodes (4). The global
order of request service is guided by the parallel I/O scheduling heuristic
from section 7.1. The heuristic is used between compute nodes and cache
managers as well as between cache managers and I/O servers.

7.2.1 Two-phase or disk-directed?

Clusterfile’s collective I/O implementation integrates the disk-directed and
two-phase I/O methods, as described in section 2.2.2, in a single design.
The choice of the collective I/O method is achieved through a different
usage of Clusterfile’s architectural components, as described below. The

86 FLORIN DANIEL ISAILA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Interconnect

Interconnect

Compute node 1 Compute node 2

Cache manager

I/O node

11

23

44

M
PI

−
IO

Fi
le

 s
ys

te
m

Collective
buffer

Figure 7.2: Clusterfile’s collective I/O read example

starting point of the discussion is section 3.2, where we showed how the
system parallelism relates to the cache hierarchy.

If nIOS = nCM and the i-th cache manager runs on the same node as
the i-th I/O server , the collective buffering takes place at the I/O server’s
node, which stores the block. The remote data transfer between the cache
manager and I/O server is avoided. In figure 7.2, steps 2 and 3 do not occur.
The cache managers and the I/O servers share the collective buffers. The
data travels only once across the network. In this case, we can say that
Clusterfile’s collective I/O method is disk-directed.

The scatter/gather operations may become costly both in terms of com-
putations and copying. If no cache managers are used, this overhead is paid
at the I/O servers. On the other hand, if nIOS < nCM , the scatter/gather
operations corresponding to a file can be distributed over the nodes where
the data is cached, increasing the parallel execution degree by nCM −nIOS.
If the data is not cached at cache managers, the transfer from I/O servers
pays off if the gain obtained from additional parallelism is large enough to
outperform the case when all the requests are processed at I/O servers. In

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 87

this case, Clusterfile’s collective I/O is a two-phase method: the first phase
(I/O access) is the transfer from I/O nodes to the cache managers, while the
second phase (shuffle) is the data redistribution from cache managers to the
compute nodes. In the two-phase I/O method, data travels twice over the
network. However, collective accesses can benefit from a larger parallelism
degree at the cache managers.

In ROMIO’s two-phase I/O, as shown in subsection 2.2.2 and illustrated
in the figure 2.3, the collective buffer content is dropped after the collective
I/O operation is ended. A subsequent collective I/O operation accessing
the same data (as for pipelining or result redistribution) will have to read
again the data into the collective buffer. On the other hand, the collective
buffers of Clusterfile can be reused as long as they are in the global cache
(hot collective buffers).

Clusterfile’s design offers flexible choices. The collective buffers can
be managed at different places in a cluster. As seen before, the disk-
directed I/O approach avoids one network transfer. For two-phase I/O,
costly scatter-gather operations may be distributed over several nodes. RO-
MIO’s two phase I/O performs two network transfers in most cases, because
collective buffers reside always at compute nodes.

An important advantage of ROMIO is portability, as it can be used with
different file systems. ROMIO’s collective I/O and views are file system
independent, as can be seen in the right hand side of figure 2.3. ROMIO’s
method can also be used together with Clusterfile’s individual I/O opera-
tions. On the other hand Clusterfile’s collective I/O and views are imple-
mented inside the file system (see figure 7.2). This approach allows a tight
integration of file system policies with different parallelism types.

7.3 Design issues

Our collective I/O solution requires additional support, external to the file
system, in three directions: a group mechanism that helps identify the col-
lective I/O operation participants, a collective communication mechanism,
and a collective agreement mechanism. A previous collective I/O imple-
mentation [7] implemented these three mechanisms inside the file system.
However, the MPI standard defines interfaces for these mechanisms, as de-
scribed in subsection 2.3.1. Additionally, actual MPI implementations such
as MPICH offer modular and efficient implementations of these interfaces.
Clusterfile’s solution combines the advantages of portable implementations
of group, collective communications and collective agreement mechanisms

88 FLORIN DANIEL ISAILA

inside the library with an efficient implementation of collective buffering and
parallel I/O scheduling inside the file system. Furthermore, problem-specific
optimizations of the library mechanisms are possible without affecting the
parallel file system implementation.

Groups. From our file system point of view, simple group support is
sufficient. The processes must be able to join a group, to leave it and to be
uniquely identified within it. The groups must also be uniquely identifiable.
However, more complex group implementations may be used, although this
is not a requirement of the file system. For instance, with MPI, the user
can build groups using different process topologies taking advantage of the
network physical infrastructure or of the problem characteristics.

Collective communication. Second, direct collective communication
should be file-system-independent for portability and efficiency reasons. On
the one hand, an already defined collective communication group can be
directly reused for a new collective I/O operation. On the other hand, users
should be able to choose the optimal communication strategy for a given
problem. For instance, collective communication operations like broadcast
or reduce, which are frequently used by the parallel applications, can be built
on top of groups with topologies that match the physical characteristics of
the network.

Collective agreement. A collective operation assumes the cooperation
of several processes for a common goal. The involved processes need an
agreement mechanism in order to express their willingness to perform a
collective operation for a given collective communication structure (group).
From the point of view of the programmer, the agreement can be reached
either through an explicitly programmed dynamic communication protocol
(for instance by collective communication) or statically (for instance, by an
SPMD programming model like MPI). For simplicity reasons, we use an
SPMD model.

In summary, our collective I/O implementation contains a file system
part and external support. The external support consists of an SPMD
model, a group mechanism and a communication mechanism. All these
three features can be found in MPI and thus, we decided to use these MPI
mechanisms for the file system independent part.

7.4 Implementation details

In this section we describe five main collective operations that are imple-
mented using the SPMD syntax of MPI: open, view declaration, write and

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 89

attach to
Meta. server

attach to
IO−Server

attach to
Meta. server

attach to
IO−Server

IO−Server

Metadata
Server

Client0
(leader)

Client1

Client2

open

coll_fd

coll_fd

coll_fd

coll_fd
file layout

coll_fd

coll_fd

collective W/R

collective W/R

collective W/R
bcast(coll_fd)

file layout
coll_fd

attach to
IO−Server

coll_fd

FCNTL_COLL

Figure 7.3: Collective open protocol

read. Our goal is to outline the separation between MPI and the file system.

7.4.1 Collective open.

In order to be able to perform a collective I/O operation, processes need
to adhere to a group, in the name of which the access is performed. In
our implementation, each instance of an open file can be associated with at
most one group. It is possible for several groups to access the same file, in
that each one opens the file independently. Once a file is opened, we do not
address the issue of dynamically modifying the group structure. If a group
is modified, the file has to be re-opened in order to let the file system know
about the change.

The actions performed by a collective open are described by the following
pseudocode and in figure 7.3. The MPI_File_open(...) should be seen as
an SPMD routine, which is invoked by all compute nodes. The pseudocode
below represents a simplified description of the MPI-IO collective open im-
plementation (MPI_File_open). The group g is an MPI communicator, as
described in subsection 2.3.1.

1: MPI_File_open(char *filename,MPI_Comm g,...){

2: if (i_am_leader) {

3: fd = CLF_open(filename);

4: coll_fd = CLF_fcntl(fd, FCNTL_COLLECTIVE,g);

5: }

6: MPI_Bcast(&coll_fd,...,g); /* broadcast coll_fd */

7: if (NOT i_am_leader)

90 FLORIN DANIEL ISAILA

8: fd = CLF_fcntl(coll_fd, FCNTL_ATTACH, NULL);

9: }

A group file open is performed on behalf of the group by a representative
called leader. The leader has solely the role of initiating a collective opera-
tion. It performs a regular individual file open (line 3) by sending a message
to the metadata manager containing the file name, access rights and mode.
The metadata manager returns a system-wide unique file descriptor and the
file layout information. Subsequently, the leader identifies the I/O servers
storing the file and sends them a registration message containing the unique
file descriptor, the group identifier, group size and the leader’s group-wide
identifier (line 4). We say that a leader attached itself to an I/O server for
a collective operation. The opposite action is called detach. At this point,
the leader broadcasts the unique file descriptor to the other group members
(line 6).

All the other group members block waiting for the unique system-wide
file descriptor (line 6). As soon as the descriptor arrives, each group member
sends it to the metadata manager, which returns the file layout information
(line 8). Finally, each member contacts the I/O servers storing the file and
attach themselves by using the system-wide unique file descriptor and their
unique group-wide identifier.

At this moment, all the group members may be seen as peers with respect
to the collectively opened file, may define views and perform individual or
collective file accesses.

7.4.2 Collective view

The processes of a group may declare a view by using the MPI-IO collective
MPI_File_set_view that maps directly to the file system routine, after con-
verting the MPI data types used for MPI views to data types of the parallel
file system.

1: MPI_File_set_view(MPI_File fd, MPI_Offset disp,

MPI_Datatype etype, MPI_Datatype filetype, ...) {

2: convert (disp, etype, filetype) to (disp, period, CLFtype);

3: CLF_setview(fd, CLFtype, disp, period);

}

The view declaration was described in section 6.4.2. There is one main
difference regarding collectively open files. If the mapping between the data
seen through a view and the file portion stored at a particular I/O server

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 91

(computed by the compute node as shown in subsection 6.3.1) is void, then
the I/O server will not be involved in any access performed by the compute
node through the view. In this case the compute node detaches itself from
the I/O server by sending a corresponding message.

Detecting matching logical and physical distributions. Collective
I/O is not necessary if the views of all compute nodes map contiguously on
the disks of the I/O nodes. Clusterfile detects this optimal case. If the
intersection between a view and the data stored at a particular I/O server
is void, the compute node detaches itself from the I/O servers at the end of
the view declaration phase (subsection 6.3.1). In the optimal case, there is
exactly one compute node attached and all the subsequent access operations
are going to be performed individually.

7.4.3 Collective access

There is no difference between a collective and individual operation in terms
of file system access routine syntax. The type (collective or individual) of the
next access can be specified by using POSIX fcntl calls of type FCNTL_NEXT_
COLLECTIVE. A fcntl(int fd, int type) is a standard function call in
POSIX that performs miscellaneous operations determined by type on an
open file identified by a file descriptor fd.

Unlike the file system interface, the MPI-IO specification distinguishes
between collective and individual operations (for instance, MPI_File_ read_
all for collective and MPI_File_read for individual). The programmer
can syntactically enforce the type of the next operation. Given that fd

is the descriptor of a collectively opened file, a simplified collective read
implementation follows.

MPI_File_read_all(MPI_File fd, void *buf, int count,

MPI_Datatype datatype, ...) {

CLF_fcntl(fd, FCNTL_NEXT_COLLECTIVE, -);

CLF_read(fd, buf, count*sizeof(datatype)); /* COLLECTIVE */

}

The access routine implementation has been already presented in section
7.2. In the remainder of this subsection we present the semantics regarding
termination and data consistency.

Termination semantics. For each participant, a file system collective
read returns when all the requested data has reached the user buffers. The
participant may not make any assumption about the termination of other
group members.

92 FLORIN DANIEL ISAILA

A file system collective write returns when all data written by the calling
process has reached the buffer caches or the disks of all the I/O servers
involved. This approach is different from the one used by Bordawekar [7],
where a collective write returns as soon as the data is sent by the compute
node.

Data consistency. A consistency protocol defines the outcome of mul-
tiple concurrent accesses to a file. The role of a collective write is to si-
multaneously schedule a collection of writes. Therefore, a collective I/O
operation may not guarantee any order of its individual accesses. The user
is responsible for imposing such an order whenever necessary.

7.4.4 Collective close

The collective close maps directly to Clusterfile’s close operation.

MPI_File_close(...) {

CLF_close(fd);

}

All processes send close messages to the metadata manager and to the
I/O servers. The file is closed when all group members have sent a close
request.

7.5 Summary

This section presents the design and implementation of Clusterfile’s collec-
tive I/O method. The solution focuses on integrating disk parallelism with
other types of parallelism: memory (by buffering and caching on several
nodes), network (by parallel I/O scheduling strategies) and processors (by
redistributing the I/O related computation over several nodes). Clusterfile
approach integrates two well known collective I/O methods (disk-directed
I/O and two-phase I/O) into a common design. Further, unlike previous
approaches, the collective buffers reside in the global cache, so that they
can be reused across several operations.

Chapter 8

Experimental results

The goal of this chapter is an experimental evaluation of Clusterfile’s per-
formance and scalability and a quantitative comparison with other existing
available methods. The chapter is organized in two sections.

The first section presents the results of individual read and write file
accesses, which do not involve the global cache. There are three main as-
pects, which we are interested in. First, we make a performance comparison
with the methods presented in section 6.4.5 and table 6.1 (list I/O, data
sieving and extended two-phase I/O). Second, we evaluate the performance
sensitivity to the file physical layout. Third, we estimate the overhead of
Clusterfile’s view mechanism.

The second section reports the performance results of four collective I/O
methods, when varying different parameters: access granularity, access size,
number of I/O servers, number of cache managers. The goal is to investigate
the file system scalability when increasing the number of disks, local caches
and cache managers.

We performed our experiments on a cluster of 16 dual processor Pentium
III 800MHz, having 256kB L2 cache and 1024 MB RAM, interconnected by
Myrinet LANai 9 cards at 133 MHz, capable of sustaining a throughput of
2 Gb/s in each direction. The machines are equipped with IDE disks and
were running LINUX kernels version 2.4.19 with the ext2 local file system.
We used TCP/IP on top of the 2.0 version of the GM [57] communication
library. The ttcp benchmark delivered a TCP/IP node-to-node throughput
of 120 MB/sec.

We wrote a parallel MPI benchmark, that reads and writes a two-
dimensional matrix from or to a file. In each run, p compute nodes, ar-
ranged in a

√
p × √p grid declare a file view by using one of the following

93

94 FLORIN DANIEL ISAILA

High Performance Fortran [35] distributions : (BLOCK(k), BLOCK(k)),
(*, BLOCK(k)), (CYCLIC(k), CYCLIC(k)), (*, CYCLIC(k)). Clusterfile
may use the same distributions for the file layout. The file layout will be
indicated when describing each particular experiment.

For collective I/O operations we also report on the performance for the
ROMIO three dimensional block benchmark.

8.1 Non-contiguous I/O performance and scalabil-
ity

In this section we use three HPF logical distributions: (BLOCK, BLOCK),
(*, BLOCK), (CYCLIC(k), CYCLIC(k)) where the matrix size is n × n
and k = n/

√
p. The matrix sizes range from 128×128 bytes (16 Kbytes) to

4096×4096 bytes(16 Mbytes). We measured the file write and read aggregate
throughput. The x-axis of the graphs represents the matrix size. In all
experiments we used p = 16 compute nodes and 16 I/O nodes. For data
sieving and extended two-phase I/O, we used the default buffer size of 4
Mbytes. For view I/O, the measurements were performed by using ROMIO
over Clusterfile and for the other three ROMIO over PVFS. Because neither
Clusterfile nor PVFS support file locking mechanisms needed for a read-
modify-write implementation, we do not report on write measurements for
data sieving and extended two-phase I/O.

8.1.1 Performance of three access patterns

For this subsection we set the physical file distribution over I/O nodes to be
(BLOCK(65336), *), i.e. the file is striped round-robin over all I/O nodes
and the stripe length is 64 Kbytes. Figures 8.1 and 8.2 show the write and
read aggregate throughputs for the (BLOCK, BLOCK), (*, BLOCK) and
(CYCLIC(k), CYCLIC(k)) access patterns.

Matrix size Data Ext. 2 List View
(Mbytes) siev. ph. I/O I/O I/O

1 16 16 1504 16

4 16 16 2992 16

9 16 16 4480 16

16 16 16 5968 16

Table 8.1: Number of file system calls of ROMIO

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 95

Aggregate write throughput(MB/s)
Logical:(BLOCK,BLOCK), Physical: (BLOCK,*)

0

50

100

150

200

250

300

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size (Kbytes)

VIEW I/O LIST I/O

Aggregate write throughput(MB/s)
Logical:(*,BLOCK), Physical: (BLOCK,*)

0

20

40

60

80

100

120

140

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size(Kbytes)

VIEW I/O LIST I/O

Aggregate write throughput(MB/s)
Logical:(CYCLIC,CYCLIC), Physical: (BLOCK,*)

0

50

100

150

200

250

300

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size(Kbytes)

VIEW I/O LIST I/O

Figure 8.1: Write aggregate throughput for (BLOCK, BLOCK), (*,
BLOCK) and (CYCLIC, CYCLIC) logical file distributions

96 FLORIN DANIEL ISAILA

Aggregate read throughput(MB/s)
Logical:(BLOCK,BLOCK), Physical:(BLOCK,*)

0

50

100

150

200

250

300

350

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size(Kbytes)

VIEW I/O LIST I/O DATA SIEVING EXT. 2 PHASE I/O

Aggregate read throughput(MB/s)
Logical:(*,BLOCK), Physical:(BLOCK,*)

0

20

40

60

80

100

120

140

160

180

200

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size(Kbytes)

VIEW I/O LIST I/O DATA SIEVING EXT. 2 PHASE I/O

Aggregate read throughput(MB/s)
Logical:(CYCLIC,CYCLIC), Physical:(BLOCK,*)

0

50

100

150

200

250

300

350

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size(Kbytes)

VIEW I/O LIST I/O DATA SIEVING EXT. 2 PHASE I/O

Figure 8.2: Read aggregate throughput for (BLOCK, BLOCK), (*, BLOCK)
and (CYCLIC, CYCLIC) logical file distributions

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 97

Aggregate write throughput(MB/s)
Logical and physical: (*,BLOCK)

0

50

100

150

200

250

300

350

400

450

500

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size(Kbytes)

VIEW I/O LIST I/O

Figure 8.3: Write aggregate throughput for similar logical and physical file
distributions

We notice that view I/O significantly outperforms the other techniques
in most cases except for reading large matrices with extended two-phase
I/O. The performance of ROMIO using list I/O was surprisingly low. We
instrumented the library in order to count the PVFS list I/O calls performed
by ROMIO. Table 8.1 contains selected results for (CYCLIC, CYCLIC) dis-
tribution, for which the list I/O performance was extremely poor, especially
when writing. For instance, by accessing a matrix of 16 Mbytes, for a single
MPI-IO call, the list I/O routine of PVFS was invoked 5968 times by all
16 compute nodes. In comparison, view I/O, data sieving and extended
two-phase I/O used exactly one file system call per compute node.

Another source of overhead for list I/O is the file offset transfer. View
I/O compacts the offsets for regular accesses and transfers them to the
I/O servers at view declaration. Subsequently they can be used several
times without additional overhead. On the other hand, each list I/O call
transfers access metadata containing offsets and sizes of contiguous regions.
We define the offset overhead as the ratio of access metadata size to the
requested data size. The offset overhead may be significant, as shown in
table 8.2 for (CYCLIC, CYCLIC) distribution, for which the fragmentation
is the highest. For instance, for accessing a matrix of 1 Mbyte, list I/O sends
offset information that amounts to 196608 bytes for all 16 compute nodes.
This represents an offset overhead of 18.75%. For a matrix of 16 Mbytes
the offset overhead is 4.68%. On the other hand, view I/O and data sieving
send only the interval ends for each access, an overhead that is negligible.

98 FLORIN DANIEL ISAILA

Aggregate read throughput(MB/s)
Logical and physical: (*,BLOCK)

0

50

100

150

200

250

300

350

400

450

500

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0
11

66
4

13
45

6
15

37
6

Matrix size(Kbytes)

VIEW I/O LIST I/O DATA SIEVING EXT. 2 PHASE I/O

Figure 8.4: Read aggregate throughput for similar logical and physical file
distributions

Matrix size Transfered Overhead
(Mbytes) offsets (bytes) (%)

1 196608 18.75

4 393216 9.38

9 589824 6.25

16 786432 4.69

Table 8.2: Offset overhead of list I/O

The throughput of data sieving was limited by unnecessary data copying.
Table 8.3 contains the sizes of unnecessary data read by data sieving for
(CYCLIC, CYCLIC) distribution. For reading a matrix of 1 Mbyte, all
16 compute nodes transfered 13628416 bytes representing an overhead of
1200%. For a 16 MBytes matrix the overhead was 800%. This is due to the
fact that data sieving reads contiguous intervals, containing unnecessary
data.

Finally, extended two-phase I/O transfers data twice through the fabric,
if the data read in the first phase from the file system has to be redistributed
to other compute nodes. Extended two-phase I/O shows better results than
view I/O for (*, BLOCK) logical distribution and matrices larger than 5184
Kbytes in all cases except for one (5776 Kbytes), as illustrated in the middle
graph of figure 8.1. As the fragmentation decreases the cost of data redistri-
bution paid by two-phase I/O is lower than the view I/O cost of performing

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 99

Write speedup
for a matching physical layout

0

1

2

3

4

5

6

7

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size(Kbytes)

VIEW I/O LIST I/O

Figure 8.5: Write speedup for (*, BLOCK) logical file distribution when
modifying physical layout from (BLOCK(65536), *) to (*, BLOCK)

Matrix size Transfered Overhead
(Mbytes) data (bytes) (%)

1 13628416 1200

4 54519808 1200

9 114285568 1111

16 150982656 800

Table 8.3: Unnecessary data read by data sieving for (CYCLIC, CYCLIC)
distribution

scatter/gather operations at I/O nodes.

8.1.2 Matching logical and physical distributions

As discussed in subsection 6.4.6, the storage abstraction employed by list
I/O, data sieving and extended two-phase I/O is the linear file model. The
relationship between the potential access pattern, as given by a view dec-
laration, and the physical layout is not considered by any of these three
approaches. This subsection shows that this relationship can have a consid-
erable impact on performance.

We repeated the experiment from previous section for the (*, BLOCK)
logical distribution, displayed in the second rows of figures 8.1 and 8.2. We

100 FLORIN DANIEL ISAILA

Read speedup
for a matching physical layout

0

1

2

3

4

5

6

7

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0
11

66
4

13
45

6
15

37
6

Matrix size(Kbytes)

VIEW I/O LIST I/O DATA SIEVING EXT. 2 PHASE I/O

Figure 8.6: Read speedup for (*, BLOCK) logical file distribution when
modifying physical layout from (BLOCK(65536), *) to (*, BLOCK)

modified the physical file layout to be also (*, BLOCK) for both parallel file
systems Clusterfile and PVFS. The file read and write aggregate throughputs
are plotted in figures 8.3 and 8.4.

We computed the speedup for a given read or write access size as the ratio
of throughputs for two physical file layouts: (*, BLOCK) and (BLOCK(65536),
*). The second one is the default file striping of the file system.

S =
AggrThroughputfile layout=(∗,BLOCK)

AggrThroughputfile layout=(BLOCK(65536),∗)

Figures 8.5 and 8.6 show the write and read aggregate throughput mea-
surements. We notice that the performance of view I/O improves consider-
ably with a speedup up to 6 for writing and upto 4 for reading. The perfor-
mance of list I/O and data sieving does not change significantly. Two-phase
I/O shows a speedup for small matrix sizes, but is around 1 for larger sizes.
The reason is that view I/O detects two matching distributions. Each com-
pute node needs exactly one contiguous request to a contiguous region of
the file. No copy is necessary for performing scatter-gather operations.

In the list I/O case, the mapping view-file is separated from the mapping
file-disks by the linear file model. The first one is implemented in the MPI-
IO library and the second one inside the PVFS file system. Although the
composition of the two mappings results in an ideal contiguous disk access,
the opportunity is not used.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 101

0

2

4

6

8

10

12

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size(Kbytes)

V
ie

w
 o

ve
rh

ea
d

(%
)

LOG:(BLOCK,BLOCK) PH: (BLOCK,*) LOG:(*,BLOCK) PH: (BLOCK,*)
LOG:(CYCLYC,CYCLYC) PH: (BLOCK,*) LOG: (*,BLOCK) PH:(*,BLOCK)

Figure 8.7: View declaration overhead for write

Data sieving and extended two-phase I/O do not identify this optimal
case either, because they work with the linear file model and do not consider
the parallel file structure. Data sieving accesses the same amount of unnec-
essary data regardless of the physical disk layout. Extended two-phase I/O
separates the access into an access-pattern independent and a physical lay-
out independent part and does not consider the relationship between them.

8.1.3 View overhead

In this subsection we evaluate the view declaration overhead. The overhead
is computed as the ratio of view declaration time to read or write access
time. The view declaration times contains the time to compute the mapping
between the access pattern and the physical layout and the time to send the
mapping to I/O servers. Figures 8.7 and 8.8 show the results for all four
view I/O measurements presented in the previous two subsections.

The overhead is smaller than 12% for small writes and smaller than 10%
for small reads. As the matrix size increases, the overhead decreases and it
is around 1% for large accesses. The overhead is extremely low when the
access pattern and physical layout of the file are the same, (*,BLOCK). In
this case there is no need to send any mappings to the I/O nodes.

It is important to note that the reported overhead is related to a sin-
gle access. However, if a view is used several times, the overhead can be
amortized.

102 FLORIN DANIEL ISAILA

0

2

4

6

8

10

12

16 14
4

40
0

78
4

12
96

19
36

27
04

36
00

46
24

57
76

70
56

84
64

10
00

0

11
66

4

13
45

6

15
37

6

Matrix size(Kbytes)

V
ie

w
 o

ve
rh

ea
d

(%
)

LOG:(BLOCK,BLOCK) PH: (BLOCK,*) LOG:(*,BLOCK) PH: (BLOCK,*)
LOG:(CYCLYC,CYCLYC) PH: (BLOCK,*) LOG: (*,BLOCK) PH:(*,BLOCK)

Figure 8.8: View declaration overhead for read

8.2 Collective I/O performance and scalability

8.2.1 ROMIO three dimensional block benchmark

In this subsection we report on the aggregate file read and write through-
put of a collective I/O benchmark from the ROMIO test suite. A three-
dimensional array is distributed in three-dimensional blocks among proces-
sors. All processors simultaneously write and then read their corresponding
sub-arrays by using a collective call. We repeated the experiment for three
array sizes: 128×128×128, 256×256×256, 512×512×512. The size of each
array element was 16 bytes, amounting to matrix sizes of 32 MBytes, 256
MBytes and 2 GBytes.

In this test, Clusterfile used 16 compute nodes, 16 I/O nodes and 16
cache managers. The i-th cache manager ran at the same node as i-th I/O
server, i.e. the collective I/O method was disk-directed. ROMIO used the
PVFS parallel file system and employed 16 compute nodes for collective
buffering. PVFS files were striped over 16 I/O nodes. Figure 8.9 shows the
results.

We notice that Clusterfile’s disk-directed method significantly outper-
formed ROMIO’s two-phase I/O in all cases. Clusterfile performed a single
network transfer, while two-phase I/O two. Additionally, the scheduling I/O
strategy yielded a good network and disk utilization, while in ROMIO’s two
phase I/O the file system access did not overlap the shuffle phase as we will
show in subsection 8.2.2 and figures 8.18 and 8.19.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 103

Aggregate write throughput, when I/O servers write to their
local caches

0
100
200
300
400
500
600
700
800
900

128x128x128 256x256x256 512x512x512

Global array size

M
B

yt
es

/s
ec

CLF-DD

R-PVFS

Aggregate read throughput, when the I/O servers read from
their local caches

0
100
200
300
400
500
600
700
800
900

128x128x128 256x256x256 512x512x512

Global array size

M
B

yt
es

/s
ec

CLF-DD

R-PVFS

Aggregate write throughput, when the I/O servers write to
their disks

0

20

40

60

80

100

120

140

160

128x128x128 256x256x256 512x512x512

Global array size

M
B

yt
es

/s
ec

CLF-DD

R-PVFS

Figure 8.9: ROMIO 3D benchmark aggregate throughput

104 FLORIN DANIEL ISAILA

Aggregate BC write throughput for
4 I/O Servers

0

50

100

150

200

250

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for
8 I/O Servers

0

50

100

150

200

250

300

350

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for
16 I/O Servers

0
50

100
150
200
250
300
350
400
450
500

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD=2P

Figure 8.10: Aggregate local caches write throughput for different access
granularities.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 105

Aggregate BC read throughput for
4 I/O Servers

0

50

100

150

200

250

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC read throughput for
8 I/O Servers

0

50

100

150

200

250

300

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC read throughput for
16 I/O Servers

0

50

100

150

200

250

300

350

400

450

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD=2P

Figure 8.11: Aggregate local caches read throughput for different access
granularities.

106 FLORIN DANIEL ISAILA

Aggregate disk write throughput for
4 I/O Servers

0

10

20

30

40

50

60

70

80

90

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate disk write throughput for
8 I/O Servers

0

20

40

60

80

100

120

140

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate disk write throughput for
16 I/O Servers

0
20
40
60
80

100
120
140
160
180
200

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD=2P

Figure 8.12: Aggregate disk write throughput for different access granulari-
ties.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 107

0

0,5

1

1,5

2

2,5

3

3,5

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

R-PVFS R-CLF DD 2P

Buffer cache write Buffer cache read Disk write

Figure 8.13: Average speedup for different access granularities

8.2.2 Two dimensional matrix synthetic benchmark

In the next experiments we compare 4 collective I/O implementations: RO-
MIO over PVFS [26], denoted as “R-PVFS” in the graphs, and ROMIO,
disk-directed and two-phase I/O over Clusterfile, denoted as “R-CLF”, “DD”
and “2P”. For collective buffering, our two-phase I/O used 16 cache man-
agers while extended two-phase I/O used 16 compute nodes. For 16 I/O
servers and 16 cache managers, our two-phase I/O converges to disk-directed
I/O (steps 2 and 3 from figure 7.2 are not necessary) and, therefore, we re-
port only one value.

In the next two experiments, the global cache is cold, in order to be fair in
the comparison with the ROMIO implementation, which uses cold collective
buffers, as explained in section 7.2. These experiments show the impact of
the variation of the degree of local cache and disk parallelism from figure
3.4 on the performance, for different access granularities and sizes. Global
cache parallelism, i.e. the number of cache managers, is kept constant.

Our performance metrics are aggregate throughput (for file read and
write) and speedup. Computing the speedup is particular to each experi-
ment, as explained in the following subsections. In order to make sure that
the compute node accesses files simultaneously, the processes synchronized
before and after the file access by using MPI barriers. The reported results
include the barrier idle times.

108 FLORIN DANIEL ISAILA

Aggregate BC write throughput for
4 I/O Servers

0

50

100

150

200

250

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for
8 I/O Servers

0

50

100

150

200

250

300

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for
16 I/O Servers

0

50

100

150

200

250

300

350

400

450

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD=2P

Figure 8.14: Local caches write aggregate throughput variation with size.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 109

Aggregate BC read throughput for
4 I/O Servers

0

20

40

60

80

100

120

140

160

180

200

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC read throughput for
8 I/O Servers

0

50

100

150

200

250

300

350

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC read throughput for
16 I/O Servers

0

50

100

150

200

250

300

350

400

450

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD=2P

Figure 8.15: Local caches read aggregate throughput variation with size.

110 FLORIN DANIEL ISAILA

Aggregate BC write throughput for
4 I/O Servers

0

50

100

150

200

250

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for
8 I/O Servers

0

50

100

150

200

250

300

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for
16 I/O Servers

0

50

100

150

200

250

300

350

400

450

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD=2P

Figure 8.16: Disk write aggregate throughput variation with size.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 111

0
0,5

1
1,5

2
2,5

3
3,5

4

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

R-PVFS R-CLF DD 2P

Buffer cache write Buffer cache read Disk write

Figure 8.17: Average speedup for different matrix sizes

Different access granularities

The goal of this experiment is to investigate the influence of access granu-
larity on the performance of collective I/O. The compute nodes declare file
views, corresponding to the HPF (CYCLIC(k), CYCLIC(k)) distributions,
where k= 8, 16, 32, 64, 128, 256. Figure 8.10 shows the results, when the
I/O servers write to the local buffer caches (BC), figure 8.11, when they
read from their buffer caches and figure 8.12, when they write the data to
the disks. Each figure has three graph rows corresponding to the file strip-
ing over 4, 8 and 16 I/O servers. The size of the matrix was fixed to 256
MB. We define the speedup for a given granularity as the relative aggregate
throughput gain, when increasing the number of I/O servers from x to y.

S(x, y) =
AggrThroughputyIOS

AggrThroughputxIOS

The speedups plotted in figure 8.13 are means of speedups for all gran-
ularities from figures 8.10, 8.11 and 8.12, respectively. The speedup can
be interpreted as the performance gain, when the number of disks or local
caches is increased.

In terms of aggregate throughput, our two-phase I/O method performs
better than the others in most cases. Our two phase I/O uses all the cache
managers in order to compute the access indices and to perform the scatter-
gather operations. Compute nodes do not communicate among each other
and there is no explicit synchronization point. In this case, the scalability
depends on the I/O servers. In turn, ROMIO makes similar operations at

112 FLORIN DANIEL ISAILA

0

5

10

15

20

25

30

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

T
im

e
(s

ec
.)

Shuffle - 4 IOS
FS access - 4 IOS

Figure 8.18: ROMIO breakdown times for 4 I/O servers

the compute nodes that synchronize for exchanging metadata information.
Our measurements confirm that, when varying the number of I/O nodes, the
scalable execution part is the communication with the I/O servers. First of
all, disk-directed scales up when using 16 instead of 4 I/O servers by a factor
of 3.1 for buffer cache writing, 2.2 for reading and 3.3 for disk writing, while
ROMIO achieves 1.3, 1.3 and 1.9 respectively, for the same operations.

Different sizes

Furthermore, we assessed the impact of access size variation on the aggregate
throughput. We use the same (CYCLIC(k), CYCLIC(k)) distribution from
the previous subsection for k = 32. The matrix size is varied from 1K×1K
bytes (1 MB) to 16K×16K bytes (256 MB).

Figure 8.14 shows the results, when the I/O servers write to the local
buffer caches (BC), figure 8.15, when they read from their buffer caches and
figure 8.16, when they write the data to the disks. The X-axis represents
the matrix size in MB. Each figure has three graph rows corresponding to
the file striping over 4, 8 and 16 I/O servers. The speedup is defined as in
previous subsection. The speedups plotted in figure 8.17 are speedup means
for all the sizes reported in figures 8.14, 8.15 and 8.16.

Notice that our implementation outperforms the other ones except for
one case, namely when reading a 1MB matrix from the buffer cache. Again,

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 113

0

5

10

15

20

25

30

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

T
im

e
(s

ec
.)

Shuffle - 16 IOS

FS access - 16 IOS

Figure 8.19: ROMIO breakdown times for 16 I/O servers

our two-phase I/O implementation scales better with the number of I/O
servers than extended two-phase I/O for ROMIO.

Figures 8.18 and 8.19 give more insight about ROMIO two-phase I/O
implementation over our file system, by showing the breakdowns of the total
time spent in the shuffle and file system access phases, for both 4 and 16
I/O servers. As the I/O servers are not involved, the shuffle time does not
change significantly when increasing the number of I/O servers from 4 to
16. The increase in bandwidth is obtained from file system access. However,
for small granularities, the shuffle phase is computationally intensive due
to index computation and memory copy operations and, therefore, limits
scalability.

Global cache scalability

In this subsection we are interested in evaluating the collective I/O read
performance speedup, when increasing the global cache size. Two data
distributions are used: (CYCLIC(k), CYCLIC(k)) and (*, CYCLIC(k)),
for k=128. For each distribution we report results for our two-phase I/O
and four matrix sizes: 16, 64, 144 and 256 MB. We define the speedup for
a given size as the relative aggregate throughput gain, when increasing the
number of cache managers from x to y.

S(x, y) =
AggrThroughputyCM

AggrThroughputxCM

All accesses are performed from a warm global cache. This experiment

114 FLORIN DANIEL ISAILA

CYCLIC(k),CYCLIC(k)

0
1
2
3
4
5
6
7
8

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16M 64M 144M 256M

Figure 8.20: Cooperative caching speedup for (CYCLIC(k) ,CYCLIC(k))

*,CYCLIC(k)

0
1
2
3
4
5
6
7
8

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16M 64M 144M 256M

Figure 8.21: Cooperative caching speedup for (* ,CYCLIC(k))

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 115

shows how varying the degree of global cache parallelism (see figure 3.4)
impacts performance. The local cache and disk parallelism are not involved,
as the I/O servers are not contacted. Figures 8.20 and 8.21 show the results
for (CYCLIC(k), CYCLIC(k)) and (*, CYCLIC(k)).

When increasing the number of cache managers from 1 to 16 the speedup
is upto 6.8 for (CYCLIC(k), CYCLIC(k)) and upto 7.3 for (*, CYCLIC(k)).
The speedup is achieved from both the parallel access to several cache man-
agers and from the distribution of scatter/gather costs over several comput-
ers. This represents a significant performance improvement. There are two
main reasons for the difference between the potential speedup of 16 and the
measured speedup. First, the reported results include two global barriers in
order to assure true parallel accesses. Therefore, they include the idle times
of processes that arrive early at the barriers. Second, the parallel scheduling
I/O strategy assumes uniform service time, which is hardly achievable in
practice.

8.3 Summary

This chapter presented an experimental evaluation of Clusterfile parallel file
system. Section 8.1 justified Claim 1 according to which the performance of
I/O operation is maximal when the access pattern translates into contiguous
disk accesses. Optimizations that do not consider the data layout may fail
to exploit available performance potential. Clusterfile’s view, which regards
the relationship between access pattern and file layout, has a small overhead.
The view overhead can be amortized over several accesses. As the view is
the main mechanism employed by the non-contiguous I/O operations, the
experimental results from section 8.1 prove Claim 5.

The experimental section 8.2 addresses Claim 6 and 7. Clusterfile’s col-
lective I/O implementation brings a considerable performance improvement
over other existing methods. The implementation shows a good scalability
for a large range of access granularities and sizes. The global cache further
improves the performance of collective read operations.

116 FLORIN DANIEL ISAILA

Chapter 9

Summary and future work

This thesis presented Clusterfile, a parallel file system that offers a high
degree of control over file layout. Applications can declare views on files.
Regular access patterns and file layouts, representing n-dimensional array
distributions, can be compactly expressed. Clusterfile allows a convenient
and efficient conversion between layouts.

We show how the match between access patterns and file layout can
impact performance. Parallel applications may improve their I/O perfor-
mance, by using a file layout that adequately matches the access pattern.
This match translates into a better usage of the available system parallelism.
Therefore, the common internal data representation of physical and logical
partitions, as well as the flexible physical layout of Clusterfile may contribute
to the global efficiency of the I/O subsystem.

We argue that the linear file model may be unsuitable for non-contiguous
I/O methods. Non-contiguous I/O optimizations may fail to recognize op-
timal matchings of the access patterns to the physical devices. We believe
that a model that exposes the parallel file structure is a necessary basis.
The best approach is dual: both the linear and parallel file model should
be supported. A specific I/O technique should be allowed to choose the
file model best suited for its goal. The tradeoff is between the simplicity
of the linear file model and the performance gain achieved from an through
exploitation of parallelism .

In particular, MPI-IO’s linear file model facilitates the porting of new
file systems. We believe that the exposed parallel structure of a file (hints
that control the physical layout of a file, for instance number of I/O servers,
stripe size) has to be taken into consideration by any non-contiguous I/O
optimizations.

117

118 FLORIN DANIEL ISAILA

We integrate two collective I/O techniques into a common design. The
approach allows combining the advantages of disk-directed I/O (one network
transfer, reduced copy operations) with those of two-phase I/O (distribution
of I/O related computation over all compute nodes). Additionally, to the
best of our knowledge, we present the first implementation that integrates
collective I/O and cooperative caching. The performance results without
cooperative caching show substantial improvements over ROMIO two-phase
I/O. Cooperative caching further speeds up the file access when the collective
I/O buffers are reused.

9.1 Future work

9.1.1 Correlation between access pattern and file layout

In the future, we plan to use the parallel file model, the mapping functions
and the data redistribution algorithms to further investigate performance is-
sues related to the matching degree of two partitions of the same file. We are
interested in finding a quantitative description of the matching degree of two
partitions. Subsequently, we would like to investigate, how the performance
of parallel applications relates to this quantitative evaluation.

9.1.2 Zero-copy global cache

All experiments reported in this thesis use the TCP/IP transport protocol.
When copying from one I/O cache to another, four copies involving the
CPU occur along the way from the user-level buffers to the kernel ones.
Experiences with DAFS [37] have shown that OS bypass and RDMA (remote
direct memory access) may considerably reduce the per-I/O server CPU
overhead and increase the overall performance. On the other hand, Shivam
and Chase [51] have shown that protocol offload may not be beneficial in all
the cases.

In this context, we are working on a user-level implementation of a zero-
copy global cooperative cache using the VIA [3] communication library over
GM [57]. We plan to investigate the benefits of the I/O servers’ CPU offload
and the extent to which this approach may improve the performance of
a parallel file system in general and that of collective I/O operations in
particular.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 119

9.1.3 Collective buffers versus aggregate buffers

So far in this thesis, the processes of a parallel application shared the file
access through collective buffers that are globally cached. Each access of
an individual compute node has to redistribute the data from collective
buffers to local buffers, as defined by a view. If the same view is used by
several compute nodes at different times, as in our matrix multiplication
example below, the redistribution costs have to be paid each time the view
is redeclared.

An alternative is to use aggregate buffers, similar to the aggregate buffers
from IO-Lite [45], although for a different purpose. Aggregate buffers are
created at the first access so that data from the collective buffers is re-
distributed by using the view information and then stored in the global
cooperative cache. A second compute node can access the aggregate buffer
by acquiring the view from the first compute node. We call this process
view migration. Subsequently, data can be accessed from the global cache
without paying redistribution costs.

Our aggregate buffers extend the IO-Lite ones to multiple disks on mul-
tiple nodes as their fragments belong, from the local point of view, either
to virtual (remote) or to physically-attached disks. The mapping between
an aggregate buffer and its fragments is given by the per-file view informa-
tion. Therefore, there is no need for per-block metadata information such
as < pointer, length >.

Aggregate buffers are created at the collective view declaration. A con-
straint regarding the use of aggregate blocks is to avoid overlapping their
corresponding views. The aggregate buffers are stored on virtual disks whose
blocks reside in the globally coordinated cache, as any ordinary file block
would do.

For a better understanding of our use of aggregate buffers, take the sim-
ple parallel matrix multiplication algorithm from table 9.1 which multiplies
two matrices A and B stored row-wise on the disk and write the result into
C. Matrix A is partitioned into two chunks of rows A1,∗ and A2,∗ and matrix
B into two chunks of columns B∗,1 and B∗,2. After each phase the matrix B
has to be explicitly rotated among the compute nodes. If the matrices are
partitioned by using views, the disk image of B is redistributed in the first
phase into B∗,1 and B∗,2 consisting of aggregate blocks. The communication
phase consists of rotating the views and the data is implicitly transfered
through the global buffer cache.

The aggregate buffers help avoiding false sharing for individual accesses.
False sharing may occur when two or more compute nodes operate on the

120 FLORIN DANIEL ISAILA

Phase Process 1 Process 2

1. computation C1,1 = A1,∗ ×B∗,1 C2,2 = A2,∗ ×B∗,2

communication Send B∗,1 to 2 Send B∗,2 to 1

2. computation C1,2 = A1,∗ ×B∗,2 C2,1 = A2,∗ ×B∗,1

Table 9.1: Parallel matrix multiplication

same page or file block at non-overlapping regions. We use views in order to
detect non-overlapping regions of interest of compute nodes. If these regions
do not overlap, then we can avoid the false sharing problem by redistributing
the data into a local aggregate buffer. At the end of accesses the aggregate
buffers are redistributed into the initial locations.

Bibliography

[1] Marcos K. Aguilera, Burkhard Englert, and Eli Gafni. On using net-
work attached disks as shared memory. In Proceedings of the twenty-
second annual symposium on Principles of distributed computing, pages
315–324. ACM Press, 2003.

[2] T. Anderson, M. Dahlin, J. M. Neefe, D. Patterson, D. Rosseli, and
R. Y. Wang. Serverless Network File Systems. In The 15th Symposium
on Operating System Principles, December 1995.

[3] VIA: The Virtual Interface Architecture. http://www.viarch.org, 1998.

[4] InfiniBand Trade Association. Infiniband architecture specification,
1998.

[5] R. Bagrodia, S. Docy, and A. Kahn. Parallel Simulation of Parallel File
Systems and I/O Programs. In Proceedings of Supercomputing 97.

[6] Rajive Bagrodia, Stephen Docy, and Andy Kahn. Parallel simula-
tion of parallel file systems and i/o programs. In Proceedings of the
1997 ACM/IEEE conference on Supercomputing (CDROM), pages 1–
17. ACM Press, 1997.

[7] Rajesh Bordawekar. Implementation of Collective I/O in the Intel
Paragon Parallel File System: Initial Experiences. In Proc. 11th In-
ternational Conference on Supercomputing, July 1997. To appear.

[8] M. Brodowicz and O. Johnson. Paradise: An advanced featured parallel
file system. In ACM Press, editor, Proceedings of the International
Conference on Supercomputing, pages 220–226, July 1998.

[9] J. Carretero, F.P. Serez, P. Miguel, F. Garca, and L. Alonso. ParFiSys:
A Parallel File System for MPP. ACM SIGOPS, 30(2), 1996.

121

122 FLORIN DANIEL ISAILA

[10] F. Chen and S. Majumdar. Performance of parallel I/O scheduling
strategies on a network of workstations. In Proceedings of ICPADS
2001, pages 157–164, April 2001.

[11] P.F. Corbett and D.G. Feitelson. The Vesta Parallel File System. ACM
Transactions on Computer Systems, 1996.

[12] P.F. Corbett, D.G. Feitelson, J.-P. Prost, G.S. Almasi, S.J. Baylor, A.S.
Bolmaricich, Y. Hsu, J. Satran, M. Snir, R. Colao, B. Herr, J. Kavaky,
T.R. Morgen, and A. Zlotek. Parallel File Systems for IBM SP Com-
puters. IBM Systems Journal, 1995.

[13] T. Cortes, S. Girona, and L. Labarta. PACA: A Distributed File Sys-
tem Cache for Parallel Machines. Performance under Unix-like work-
load. Technical Report UPC-DAC-RR-95/20 or UPC-CEPBA-RR-
95/13, Departament d’Arquitectura de Computadors, Universitat Po-
litecnica de Catalunya, 1995.

[14] Toni Cortes, Sergi Girona, and Jesús Labarta. Avoiding the Cache-
Coherence Problem in a Parallel/Distributed File System. In Proceed-
ings of High-Performance Computing and Networking, pages 860–869,
April 1997.

[15] P.E. Crandall, R.A. Aydt, A.A. Chien, and D.A. Reed. Input/Output
Characteristics of Scalable Parallel Applications. In Proceedings of Su-
percomputing ’95, 1995.

[16] M. Dahlin, R. Yang, T. Anderson, and D. Patterson. Cooperative
Caching: Using Remote Client Memory to Improve File System Per-
formance. In The First Symp. on Operating Systems Design and Im-
plementation, November 1994.

[17] E. DeBenedictis and J.M. De Rosario. nCUBE Parallel I/O Software.
In Proceedings of 11th International Phoenix Conference on Computers
and Communication, 1992.

[18] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel
I/O via a two-phase run-time access strategy. In Proc. of IPPS Work-
shop on Input/Output in Parallel Computer Systems, 1993.

[19] C.S. Freedman, J. Burger, and D.J. DeWitt. SPIFFI-A Scalable Parallel
File System for the Intel Paragon. IEEE Transactions on Parallel and
Distributed Systems, October 1996.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 123

[20] T. Fuerle, O. Jorns, E. Schikuta, and H. Wanek. Meta-ViPIOS: Harness
Distributed I/O Resources with ViPIOS. Computation y Sistemas, 4(2),
December 2000.

[21] G.A. Gibson, D.F. Nagle, K. Amiri, F.W. Chang, H. Gobioff, E. Riedel,
D. Rochberg, and J. Zelenka. Filesystems for Network-Attached Secure
Disks. Technical Report CMU-CS-97-118, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213-3890, July 1997.

[22] J.H. Hartman and J.K. Ousterhout. The Zebra Striped Network File
System. ACM Transactions on Computer Systems, 1995.

[23] J.L. Hennessey and D.A. Patterson. Computer Architecture A Quanti-
tative Approach. Morgan Kaufmann Publishers, 2003.

[24] http://www.unix systems.org/. The Portable Operating System Inter-
face, 1995.

[25] J.V. Huber, C.L. Elford, D.A. Reed, A.A. Chien, and D.S. Blumenthal.
PPFS: A High Performance Portable File System. In Proceedings of the
9th ACM International Conference on Supercomputing, 1995.

[26] W.B. Ligon III and R.B. Ross. An Overview of the Parallel Virtual File
System. In Proceedings of the Extreme Linux Workshop, June 1999.

[27] http://www.ietf.org/home.html Internet Engineering Task Force. Re-
mote Direct Data Placement Charter, 2002.

[28] F. Isaila, G. Malpohl, V. Olaru, G. Szeder, and W. Tichy. Integrating
Collective I/O and Cooperative Caching into the “Clusterfile” Paral-
lel File System. In Proceedings of ACM International Conference on
Supercomputing (ICS), 2004.

[29] F. Isaila and W. Tichy. Clusterfile: A flexible physical layout parallel file
system. In First IEEE International Conference on Cluster Computing,
October 2001.

[30] F. Isaila and W. Tichy. Clusterfile: A flexible physical layout parallel
file system. Concurrency and Computation: Practice and Experience,
15(7–8):653–679, 2003.

[31] F. Isaila and W. Tichy. View I/O:improving the performance of non-
contiguous I/O. In Third IEEE International Conference on Cluster
Computing, pages 336–343, December 2003.

124 FLORIN DANIEL ISAILA

[32] F. Isaila and W.F. Tichy. Mapping functions and data redistribution
for parallel files. In Proceedings of IPDPS Workshop, page 0237, April
2002.

[33] Ravi Jain, Kiran Somalwar, John Werth, and J. C. Browne. Heuris-
tics for scheduling I/O operations. IEEE Transactions on Parallel and
Distributed Systems, 8(3):310–320, March 1997.

[34] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. In Proc. of the
First USENIX Symp. on Operating Systems Design and Implementa-
tion, 1994.

[35] D. B. Loveman. High Performance Fortran. IEEE Parallel and Dis-
tributed Technology, 1993.

[36] S.J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, E.D. Milne, and
R. Wheeler. sfs: A Parallel File System for the CM-5. In Proceedings
of the Summer 1993 USENIX Conference, pages 291–305.

[37] Kostas Magoutis, Salimah Addetia, Alexandra Fedorova, and Margo I.
Seltzer. Making the Most out of Direct Access Network-Attached Stor-
age. In Proceedings of Second USENIX Conference on File and Storage
Technologies (FAST’03), March 2003.

[38] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, 1995.

[39] Message Passing Interface Forum. MPI2: Extensions to the Message
Passing Interface, 1997.

[40] Jason A. Moore and Michael J. Quinn. Enhancing Disk-Directed I/O
for Fine-Grained Redistribution of File Data. Parallel Computing,
23(4):477–499, June 1997.

[41] S.A. Moyer and V.S. Sunderam. PIOUS: A Scalable Parallel I/O System
for Distributed Computing Environments. In Proceedings of the Scalable
High-Performance Computing Conference, 1994.

[42] N. Nieuwejaar and D. Kotz. The Galley Parallel File System. Parallel
Computing, 1997.

[43] N. Nieuwejaar, D. Kotz, A. Purakayastha, C.S. Ellis, and M.L. Best.
File Access Characteristics of Parallel Scientific Workloads. In IEEE
Transactions on Parallel and Distributed Systems, 7(10), October 1996.

CLUSTERFILE: A PARALLEL FILE SYSTEM FOR CLUSTERS 125

[44] Nils Nieuwejaar and David Kotz. Low-level interfaces for high-level
parallel I/O. In Proceedings of the IPPS ’95 Workshop on Input/Output
in Parallel and Distributed Systems, pages 47–62, April 1995.

[45] Vivek S. Pai, P. Druschel, and Willy Zwaenepoel. IO-Lite: a unified
I/O buffering and caching system. ACM Transactions on Computer
Systems, 18(1):37–66, 2000.

[46] D.A. Patterson, G.A. Gibson, and R.H. Katz. A Case for Redundant
Arrays of Inexpensivel Disks (RAID). In In Proceedings of SIGMOD
Conference, 1988.

[47] S. Ramaswamy and P. Banerjee. Automatic Generation of Efficient Ar-
ray Redistribution Routines for Distributed Memory Multicomputers.
In Proceedings of Frontiers ’95: The Fifth Symposium on the Frontiers
of Massively Parallel Computation. McLean, February 1995.

[48] R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh, and B. Lyon. Design
and implementation of the sun network filesystem. In Proc. of the
Summer USENIX Conference, 1985.

[49] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System for Large
Computing Clusters. In In Proceedings of FAST, 2002.

[50] K.E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-
directed collective I/O in Panda. In Proceedings of Supercomputing ’95.

[51] Piyush Shivam and Jeff Chase. On the Elusive Benefits of Protocol
Offload. In Proceedings of the Workshop on Network-I/O Convergence:
Experience, Lessons, Implications (NICELI), August 2003.

[52] H. Simitici and D.A. Reed. A Comparison of Logical and Physical
Parallel I/O Patterns. In International Journal of High Performance
Computing Applications, special issue (I/O in Parallel Applications),
12(3), 1998.

[53] E. Smirni and D.A. Reed. Workload Characterization of I/O Inten-
sive Parallel Applications. In Proceedings of the Conference on Mod-
elling Techniques and Tools for Computer Performance Evaluation,
June 1997.

[54] R. Thakur and A. Choudhary. An extended two-phase method for
accessing sections of out-of-core arrays. Technical Report CACR-103,
Center for Advanced Computing Research, Caltech, 1995.

126 FLORIN DANIEL ISAILA

[55] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Collective I/O in
ROMIO. In Proc. of the 7th Symposium on the Frontiers of Massively
Parallel Computation, pages 182–189, February 1999.

[56] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-IO Portably
and with High Performance. In Proc. of the Sixth Workshop on I/O in
Parallel and Distributed Systems, pages 23–32, May 1999.

[57] Myricom Inc. GM: the low-level message-passing system for
Myrinet networks. http://www.myri.com/scs/index.html.

[58] M. Winslett, K.E. Seamons, Y. Chen, Y. Cho, S. Kuo, and M. Subra-
maniam. The Panda library for parallel I/O of large multidimensional
arrays. In Proceedings of Scalable Parallel Libraries Conference III,
October 1996.

Index

compute nodes, 13

file, 19
file system, 19

I/O nodes, 13

Network File System, 13
network-attached disks, 13

parallel file systems, 13
parallelism, 19

disk parallelism, 20
logical parallelism, 20
memory parallelism, 20
network parallelism, 20
physical parallelism, 20
processor parallelism, 19

127

