
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)
von der Fakultaet fuer Wirtschaftswissenschaften
der Universitaet Fridericiana zu Karlsruhe
genehmigte Dissertation.

Methods and Tools for Ontology Evolution

M.Sc. Ljiljana Stojanovic

Referent:
Prof. Dr. Rudi Studer, Universitaet Karlsruhe (TH)

1. Korreferent:
Prof. Dr. Christof Weinhardt, Universitaet Karlsruhe (TH)

2. Korreferent:
Prof. Dr. Asuncion Gomez-Perez, Universidad Politecnica de Madrid

Tag der muendlichen Pruefung: 05. August 2004

Methods and Tools for Ontology Evolution

 2

Methods and Tools for Ontology Evolution

 3

To my parents

Methods and Tools for Ontology Evolution

 4

Acknowledgements

This thesis is the result of my work as a research assistant at the FZI – Research Center for
Information Technologies at the University of Karslruhe, Germany. Many people supported
me and made the successful completion of this thesis possible.

First of all, I would like to express my sincere thanks to Prof. Dr. Rudi Studer, my supervisor,
for his encouragement and support during my research. He created a balanced environment
that allowed me the necessary freedom to pursue my ideas, while at the same time offering
the right amount of guidance to keep me focused.

I would like to thank Prof. Dr. Christof Weinhardt (University of Karlsruhe) and Prof. Dr.
Asuncion Gomez-Perez (Universidad Politécnica de Madrid), who were willing to serve on
my dissertation committee as co-referents. Furthermore, I thank Prof. Dr. Wolffried Stucky
(University of Karlsruhe) and Prof. Dr. Siegfried Berninghaus (University of Karlsruhe), who
served on the examination committee.

A PhD thesis is to some degree the product of a synergetical environment. I had the luck to
work in a great team, the knowledge management group at the Research Center for
Information Technologies (FZI/WIM) at University of Karlsruhe and at the AIFB Institute at
the University of Kalrsruhe. Thanks to the all members for the many interesting discussions. I
am especially grateful to those members who read earlier drafts of this work and for the useful
comments they provided.

I especially thank Dr. Alexander Maedche who directed my initial ideas and thoughts to the
right research area. Without Boris Motik this thesis would not have the same degree of
profoundness. Our countless intensive discussions and his always very critical, but extremely
useful and constructive comments produced valuable ideas for the overall research
contribution of this thesis. He also provided the core technology for making the
implementation part of this work possible. Thanks to Dr. Andreas Abecker for providing a
very fruitful and stimulating working atmosphere. He deserves special gratitude for giving me
opportunities to promote my work and for teaching me how to write project proposals.

My parents and my brothers receive my deepest gratitude and love for complete support
throughout my life and especially for always believing in me. Last, but not least, I thank my
husband, Nenad for his love, support and understanding that strongly encouraged me and, in
the end, made this thesis possible.

August 2004, Karlsruhe

Ljiljana Stojanovic

Methods and Tools for Ontology Evolution

 5

Abstract

With the rising importance of knowledge interchange, many industrial and academic
applications have adopted ontologies as their conceptual backbone. Business dynamics and
changes in the operating environment often give rise to continuous changes in application
requirements that may be fulfilled only by changing the underlying ontologies. This is
especially true for Semantic Web applications, which are based on heterogeneous and highly
distributed information resources and therefore need efficient mechanisms to cope with
changes in the environment.

In the thesis we defined requirements for an efficient ontology evolution system and
introduced a process model that fulfils them. The ontology evolution process (i) enables
handling the required ontology changes; (ii) ensures the consistency of the underlying
ontology and all dependent artefacts; (iii) supports the user to manage changes more easily;
and (iv) offers advice to the user for continual ontology reengineering.

Our primary intention was to enable the customisation of the ontology-evolution process to
the current need (i.e. knowledge, preferences) of an ontology engineer. It is achieved by
allowing the declarative specification of a request for a change, as well as by providing means
(i.e. evolution strategies) for guiding the change resolution.

Another aspect we considered is the applicability of the proposed approach to the Semantic
Web. We developed a multi-dimensional approach for the ontology evolution that takes into
account the number of evolving ontologies and their physical distribution.

Our approach goes beyond a standard change management process; rather it is a continual
improvement process. To improve the usability of an ontology with respect to the needs of
end-users, we proposed methods for the discovery of the changes by analysing the end-users’
behaviours.

A substantial part of the results from the thesis is a system for realizing ontology evolution,
implemented in the KAON ontology engineering framework, as well as several case studies
that show benefits of the proposed approach.

Furthermore, the thesis identifies a number of promising areas for future work. Finally, it
gives a comprehensive overview of related, similar and subsumed approaches.

Methods and Tools for Ontology Evolution

 6

Table of Contents
1 Introduction ..13

1.1 Overview ..13

1.2 Ontology Evolution...15

1.2.1 Definition..15

1.2.2 Importance of ontology evolution..16

1.2.3 Problems in realizing ontology evolution...16

1.3 Contributions ..17

1.4 Thesis Overview ...18

1.5 Publications ..18

2 Basics of Ontology Evolution ...21
2.1 Ontology...21

2.1.1 Definition of Ontology ..21

2.1.2 Ontologies on the Semantic Web...22

2.1.3 Ontology Languages..24

2.2 KAON Ontology Language Definition..25

2.2.1 KAON vs. OWL..29

2.3 Ontology Consistency Model ..30

2.4 Ontology Changes...35

2.4.1 Taxonomy of Ontology Changes ...35

2.4.2 Semantics of Ontology Changes ..39

2.5 Related Work..44

2.5.1 Ontology evolution vs. database schema evolution ..44

2.5.2 Ontology evolution vs. XML schema evolution...47

2.5.3 Ontology evolution vs. maintenance of the knowledge-based systems48

2.6 Conclusion..50

3 Ontology Evolution Process..51
3.1 Requirements Capturing..51

3.2 Functional Requirement ..53

3.2.1 Change Representation..53

3.2.2 Semantics of Change ...59

3.2.3 Change Propagation ..61

3.2.4 Change Implementation...64

3.3 Guidance Requirement..69

3.4 Refinement Requirement...71

3.4.1 Structure-driven Change Discovery ...72

3.4.2 Data-driven Change Discovery..73

Methods and Tools for Ontology Evolution

 7

3.4.3 Usage-driven Change Discovery..75

3.5 Process..76

3.6 Related Work..77

3.6.1 Requirements ..77

3.6.2 Changes ..78

3.6.3 Process ..80

3.7 Conclusion..81

4 Semantics of Change ..83
4.1 Problem Definition..83

4.2 Procedural Approach for the Semantics of Change..87

4.2.1 Motivating Example ..88

4.2.2 Conceptual Description of the Procedural Approach......................................89

4.2.3 Evolution Strategies ..91

4.2.4 Advanced Evolution Strategies..104

4.2.5 Complexity..107

4.3 Declarative Approach for the Semantics of Change...110

4.3.1 Motivating Example ..111

4.3.2 Conceptual Description of the Declarative Approach...................................112

4.3.3 Semantics of Change as Reconfiguration-design Problem Solving Task113

4.3.4 Request Formalisation ...115

4.3.5 Change Resolution ..116

4.3.6 Complexity..123

4.4 Comparison of the Procedural and the Declarative Approaches...........................125

4.4.1 Efficiency of the Approaches for the Semantics of Change..........................125

4.5 Related Work..129

4.6 Conclusion..132

5 Change Propagation..134
5.1 Problem Description ...134

5.2 Ontology Reuse...136

5.2.1 Modularization ..136

5.2.2 Means for Ontology Reuse ..138

5.3 Evolution of Multiple Ontologies ..143

5.3.1 Dependent Ontology Evolution ...143

5.3.2 Distributed Ontology Evolution...151

5.4 Case Study ..163

5.4.1 Phase 1..165

Methods and Tools for Ontology Evolution

 8

5.4.2 Phase 2..168

5.4.3 Phase 3..170

5.5 Related Work..173

5.6 Conclusion..176

6 Change Discovery...178
6.1 Problem Definition..178

6.2 Conceptual Architecture..180

6.2.1 Semantic Log ..181

6.3 Usage-driven Change Discovery ...183

6.3.1 Query-driven Change Discovery..184

6.3.2 Browsing-driven Change Discovery ..189

6.4 Related Work..199

6.5 Conclusion..201

7 Implementation...204
7.1 Existing Support for the Ontology Evolution...204

7.1.1 Requirements for Ontology Editors ...204

7.1.2 Evaluation of Existing Ontology Editors..206

7.1.3 Conclusion ..207

7.2 KAON Ontology Evolution...208

7.2.1 KAON...208

7.2.2 Ontology Evolution in the KAON API ..213

7.2.3 Ontology Evolution in the KAON Applications...214

7.3 OntoGov Case Study...219

7.3.1 Introduction...219

7.3.2 Motivating Example ..220

7.3.3 Our Approach..223

7.3.4 Related Work ..232

7.3.5 Conclusion ..234

8 Conclusion..235
9 References ..239

Methods and Tools for Ontology Evolution

 9

List of Figures

Figure 1: The role of an ontology evolution in a business system 15
Figure 2: Layers of the Semantic Web Architecture 22
Figure 3: An ontology example 27
Figure 4: The ontology from Figure 3 and an instance pool associated with it 28

Figure 5: An example of multiple ontologies 29

Figure 6: A part of the lexical layer for the concept “Person” from the ontology
shown in Figure 3

38

Figure 7: Inconsistent ontology due to a cycle in the concept hierarchy 39
Figure 8: The application of an ontology change Ch 42
Figure 9: Four elementary phases of the ontology evolution process enabling the
resolving changes while keeping the consistency

53

Figure 10: Neighbourhood of a concept. (a) Concept‘s neighbourhood in general;
(b) the neighbourhood of the concept “Person“ from the ontology shown in
Figure 3

56

Figure 11: Some composite changes related to a concept hierarchy 58

Figure 12: Different layers of abstraction of ontology changes and their impact
on the ontology

60

Figure 13: Concept properties define its meaning 61
Figure 14: Consequences of an ontology change 62
Figure 15: Dependency between domain ontology, evolution ontology and
evolution log

65

Figure 16: A part of the evolution ontology 66
Figure 17: A part of the evolution log represented in XML/RDF format 69
Figure 18: Two types of ontology changes 72

Figure 19: The interpretation of the refactoring method from the ontology
evolution point of view

73

Figure 20: Ontology evolution process 76
Figure 21: Inconsistent ontology since undefined entity “Person” is used 84
Figure 22: The role of the semantics of change 85
Figure 23: The result of the semantics of change for the example shown in
Figure 21

86

Figure 24: Different ways of resolving a change. (a) The given ontology after
applying only the removal of the concept “Student”; (b) The updated ontology
where all subconcepts are deleted; (c) The updated ontology where all
subconcepts are reconnected to the parent concept; (d) The updated ontology
where all subconcepts are reconnected to the root concept.

88

Figure 25: The conceptual architecture of the procedural approach 90

Methods and Tools for Ontology Evolution

 10

Figure 26: An example of the resolution point PR3 98
Figure 27: The role of the evolution strategy in the semantics of change 100
Figure 28: The cause-effect dependencies between ontology changes as a
consequence of introducing evolution strategies

101

Figure 29: The semantics of change for the RemoveConcept change (first part) 103

Figure 30: The semantics of change for the RemoveConcept change (second part) 104
Figure 31: Impact of the order of resolving problems on the generated changes 105
Figure 32: A part of the dependency graph that shows causes and consequences
of a concept removal

108

Figure 33: The conceptual architecture of the declarative approach for the
semantics of change

113

Figure 34: A part of an ontology evolution graph indicating specificities of its
edges

119

Figure 35: Ontology evolution as a search problem 120

Figure 36: A part of the evolution graph for the removal of the concept “Student”
for the ontology shown in Figure 24

121

Figure 37: The basic ontology (BO) about projects and their participants 134
Figure 38: The project ontology (PO) 135
Figure 39: The staff ontology (SO) 135
Figure 40: The institute ontology (IO) 136
Figure 41: Inclusion relations between ontologies shown in Figure 40 138
Figure 42: Two ways for realising ontology reuse: (a) ontologies are within the
same ontology server; (b) ontologies are distributed across the Web or different
servers in companies

142

Figure 43: Levels of Ontology Evolution Problem 143

Figure 44: Generated Changes in BO 144
Figure 45: Generated Changes in IO 145
Figure 46: Dependent Ontology Evolution Process 146
Figure 47: Change propagation order for the ontologies shown in Figure 40 147
Figure 48: Change filtering for the ontologies shown in Figure 40 147
Figure 49: Change ordering for the ontologies shown in Figure 40 148
Figure 50: Dependent Ontology Evolution Algorithm 149
Figure 51: A very complex inclusion graph 150

Figure 52: Dependencies between ontologies shown in Figure 40 in a distributed
scenario

151

Figure 53: Distributed Ontology Evolution Process 155
Figure 54: Evolution log as a list of trees 157
Figure 55: A procedure for transforming a tree of changes into an ordered list of 158

Methods and Tools for Ontology Evolution

 11

changes

Figure 56: The order of visiting changes from Figure 45 159
Figure 57: Distributed Ontology Evolution Algorithm 162

Figure 58: An example of the MeSH descriptors 166

Figure 59: Representation of the MeSH and the Medline as KAON ontologies 166

Figure 60: The Meta-Ontology representing the conceptual model of the MeSH 167
Figure 61: Annotation refinement based on the analysis the ontology structure
and the existing annotations

171

Figure 62: The conceptual architecture of the ontology management system
according to the MAPE model

181

Figure 63: A part of the Log Ontology and the Semantic Log 182
Figure 64: Change discovery from querying 187
Figure 65: An example of the non-uniformity in the usage of the children. (a) the
problem; (b) the Pareto diagram of the problem; (c) the resulting ontology after
its extension and (d) the resulting ontology after its reduction.

190

Figure 66: Conceptual KAON Architecture with Respect to Ontology Evolution 209
Figure 67: An example of virtual ontologies 213
Figure 68: Ontology Evolution in KAON framework: User Interface in OI-
modeller

215

Figure 69: Ontology Evolution in KAON framework: Evolution Strategy Set-up 216
Figure 70: KAON Portal 217
Figure 71: E-Government Framework 221
Figure 72: Abstract model of the Meta Ontology 226

Figure 73: A part of a log of the Legal Ontology 230

Methods and Tools for Ontology Evolution

 12

List of Tables

Table 1: The taxonomy of ontology changes 36
Table 2: A posteriori verification vs. a priori verification 40
Table 3: Different types of “links” between ontology entities 55
Table 4: Composite ontology changes related to the concept-concept links 57
Table 5: The cause and effect relationship between ontology changes organised
as the Dependency matrix

95

Table 6: Resolution points and their elementary evolution strategies 97

Table 7: The result of the evaluation 127

Table 8: Two approaches for reusing distributed ontologies 141

Table 9: Push vs. pull synchronisation of ontologies 154
Table 10: The result of the analysis of the rate of the interest 189
Table 11: The interpretation of the extreme values of the proposed measures 194
Table 12: Dependency between the discovery of problems (columns) and the
generation of changes (rows)

197

Table 13: The result of the evaluation 198
Table 14: Evolution support within ontology editors 207
Table 15: The taxonomy of changes of the semantic web service ontology 227

Introduction

 13

1 Introduction

1.1 Overview

An important characteristic of today’s business systems is their ability to adapt themselves
efficiently to the changes in their environment, as well as to the changes in their internal
structures and processes. The continual reengineering of a business system, i.e. the need to be
better and better, is becoming a prerequisite for surviving in the highly changing business
world. Although changes encompass several dimensions of a business system (e.g. people,
processes, technologies), most of them are reflected on its IT infrastructure. For example, the
establishment of a new department in the organisational structure will require the
corresponding changes in the enterprise portal, underlying groupware system, skill
management system, etc. Therefore, the adaptability of the implemented IT solutions directly
defines the efficiency of a business system.

However, building and maintaining long-living applications that will be “open for changes” is
still a challenge for the entire software engineering community. Even though there are
ongoing attempts to address this problem by providing IT systems with powerful concepts for
self-management �[59], they focus only on changes caused by malfunctioning of a system.
Indeed, most of today’s management tasks are performed manually. This can be time-
consuming and error prone. Moreover, it requires a growing number of highly skilled
personnel, making the maintenance of applications costly.

It is clear that an ad hoc management of changes in applications might work only for
particular cases. Moreover, it can scale neither in space nor in time. Therefore, in order to
avoid drawbacks in the long run, the change management must be treated in a more
systematic way. It is especially important for the applications that are distributed over
different systems. Examples of such applications are knowledge management applications
that enable integration of various, physically distributed knowledge sources differing in the
structure and the level of formality.

In order to avoid unnecessary complexity and possible failures and/or even to ensure the
realisation of a request for a change, the change management should deal with the conceptual
model of such an application. For example, a more efficient retrieval of knowledge items in a
knowledge management system requires the establishment of the (hierarchical) relationships
between their conceptual descriptions.

Ontologies have recently become a key technology for semantics-driven modelling, especially
for the ever-increasing need for knowledge interchange and integration. Many industrial and
academic applications have adopted ontologies as their conceptual backbone. The usage of
ontologies has several advantages �[31], �[122], �[146]:

Methods and Tools for Ontology Evolution

 14

• Ontologies facilitate interoperability between applications by capturing a shared
understanding of a problem domain. They provide comfortable means for explicating
implicit design decisions and underlying assumptions at the system building time. This
makes it easier to reason about the intended meaning of the information interchanged
between two systems.

• Ontologies provide a formalization of a shared understanding which makes them
machine-processable. Machine processibility is the basis for the next generation of the
WWW, the so-called Semantic Web �[9], �[31], which is based on using ontologies for
enhancing (i.e. annotating) content with formal semantics.

• The explicit representation of the semantics of data through ontologies enables
applications to provide a qualitatively new level of services, such as verification,
justification, gap analysis, etc.

Ontology-based applications are subject to a continual change. Thus, to improve the speed
and to reduce costs of their modification, the changes have to be reflected on the underlying
ontology. Moreover, as ontologies grow in size, the complexity of change management
increases significantly. If the underlying ontology is not up-to-date, then the reliability,
accuracy and effectiveness of the system decrease significantly �[66]. For example, an obsolete
classification of knowledge items in an ontology-based knowledge management system
decreases the precision of the knowledge retrieval process. A typical example is the
MEDLINE system1, the largest medical knowledge base available over the Internet, which is
based on the MESH medical ontology. In order to stay in line with the state-of-the art in
medical research, MESH is frequently updated. However, the ontology is not only extended
with new terms (e.g. new diseases and medicaments); rather, the terms are often reclassified
according to the latest research results. Therefore, in case the MESH is obsolete, not only that
some relevant information will be missing, but also some wrong answers will be delivered.

Since an ontology has to be continually changed, the need for the ontology evolution2 is
inevitable. The task of the ontology evolution is to formally interpret all requests for changes
coming from different sources (e.g. users, internal processes, business environment) and to
perform them on the ontology and depending artefacts while keeping consistency of all of
them. �Figure 1 illustrates the role of the ontology evolution in a business system.

Although the importance of such a change management approach is demonstrated in the
industrial practice �[50], as known to the authors the corresponding methods and tools are still
missing. The primary reason has been the immaturity of the large-scale and long-living
ontology-based applications in the industry, so that the long run pay-off could not be easily
accounted. However, the explosive development in the research and implementation of the
second generation of the WWW, the so-called Semantic Web, in the last 5 years, has made the
idea of the large-scaled ontology-based applications in a business context real. It has opened
hundreds of opportunities to apply ontologies in real world contexts. Furthermore, it has
opened a dozen of challenges for the efficient development and the maintenance of ontologies
that underlie ontology-based applications, which is researched in a lot of research groups as a
part of various research and industry projects. This thesis is one of the results of such efforts
to make the Semantic Web real. Particularly, in this thesis, we make the theoretical
foundations for a systematic approach for the ontology evolution, and present its concrete
realisation in the KAON3 ontology management system.

1 http://www.nlm.nih.gov/pubs/factsheets/medline.html
2 The word "evolution" merely means "change through time". It implies neither a direction, nor, necessarily,

improvement, but merely a change.
3 kaon.semanticweb.org

Introduction

 15

Figure 1. The role of an ontology evolution in a business system

1.2 Ontology Evolution

1.2.1 Definition

Through this thesis, we will use the following definition of the term ontology evolution:
“Ontology Evolution is the timely adaptation of an ontology to the arisen changes and the
consistent propagation of these changes to dependent artefacts.” Since a change in the
ontology can cause inconsistencies in other parts of the ontology, as well as in the dependent
artefacts, the ontology evolution has to be considered as a process. It encompasses the set of
activities, both technical and managerial, that ensures that the ontology continues to meet
organizational objectives and users’ needs in an efficient and effective way.

The distinction between management, modification, evolution and versioning of the
ontologies has been, in some cases, confused. In the rest of the thesis, we use the following
characterization by adapting the terminology from the database community �[113]:

• Ontology management is the whole set of methods and techniques that is necessary
to efficiently use multiple variants of ontologies from possibly different sources for
different tasks. Therefore, an ontology management system should be a framework
for creating, modifying, versioning, querying, and storing ontologies. It should
allow an application to work with an ontology without worrying about how the
ontology is stored and accessed, how queries are processed, etc.;

• Ontology modification is accommodated when an ontology management system
allows changes to the ontology that is in the use, without considering the
consistency;

• Ontology evolution is accommodated when an ontology management system
facilitates the modification of an ontology by preserving its consistency;

Methods and Tools for Ontology Evolution

 16

• Ontology versioning is accommodated when an ontology system management
allows handling of ontology changes by creating and managing different versions
of it.

1.2.2 Importance of ontology evolution

Most of the work conducted so far in the field of ontologies has focused on ontology
construction issues. It is assumed that domain knowledge encapsulated in an ontology does
not evolve in time. However, in a more open and dynamic business environment, the domain
knowledge evolves continually �[34]. These changes include accounting the modification in
the application domain or in the business strategy; incorporating additional functionality
according to changes in the users’ needs; organizing information in a better way, etc. Figure 1
depicts three basic sources that can cause changes in a business system:

• The environment: The environment in which systems operate can change, thereby
invalidating assumptions made when the system was built. For example, acquiring
a new subsidiary in an enterprise adds new business areas and functionalities to the
existing system;

• Users4: Users’ requirements often change after the system has been built,
warranting system adaptation. For example, hiring new employees might lead to
new competencies and greater diversity in the enterprise, which the system must
reflect;

• Internal processes: The business applications are coupled around the business
processes that should be continually reengineered, in order to achieve better
performances.

Therefore, ontology development is a dynamic process starting with an initial rough ontology,
which is later revised, refined and filled in with the details �[95]. Further, the ontology must be
used, and, during its period of use, the knowledge on which it relies will change and develop.
An ontology that has not become rapidly obsolete must change and adapt to the changes in
environments, users’ needs, etc. Therefore, if an ontology aims at being useful, it is essential
that it is able to accommodate the changes that will inevitably occur. It this thesis, we address
this neglected area of the ontology evolution.

Ontology evolution is very important nowadays. The major reason for this is the increasing
number of ontologies in use and the increasing costs associated with adapting them to
changing requirements. Developing ontologies and their applications is expensive, but
evolving them is even more expensive. The experiences show that the traditional software
systems maintenance costs exceed the development costs by a factor of between two and four.
There is not a reason to assume this should be any different for ontologies, when they are used
during a longer period of time. The costs can be even higher, due to the collaborative
development of ontologies and their physical distribution.

1.2.3 Problems in realizing ontology evolution

Ontology evolution is not a trivial process, due to the variety of sources and consequences of
changes. It cannot be done manually by an ontology engineer, since she is not able to

4 We differ between two types of users: ontology engineers who develop an ontology and end-users who use an

ontology-based application.

Introduction

 17

comprehend all side-effects of a change. Therefore, a system that is responsible for
maintaining consistency is needed. Building such a system has proven to be a difficult task,
since there is almost a complete lack of suitable methodology, techniques and tools.

Particularly, there are three challenges for the efficient realisation of the ontology evolution:

• Complexity – an ontology model is rich and, therefore, an ontology has an interwoven
structure. Each change leads to a change specific workaround. Even when the effects
of a change are minor, the cumulative effect of all changes realizing a user’s request
can be enormous;

• Dependencies - ontologies often reuse and extend other ontologies. Changes in an
ontology may affect the ontologies that are based on it. Therefore, changes between
dependent ontologies are interrelated, and the immediate synchronisation between
dependent ontologies is required. Obviously, the complexity of the ontology evolution
increases with the number of dependent ontologies being evolved;

• Physical distribution - ontology development is a de-centralized and collaborative
process. Therefore, the physical distribution of the dependent ontologies has to be
taken into account. The ontology evolution requires tracking the changes applied to an
ontology and broadcasting the group of changes when an explicit request arises.

1.3 Contributions

In the thesis, we make several contributions:

1. Process-oriented ontology evolution: We define requirements for an efficient ontology
evolution system and introduce the process model that fulfils them. The ontology evolution
process (i) enables handling the required ontology changes; (ii) ensures the consistency of the
underlying ontology and all dependent artefacts; (iii) supports the user to manage changes
more easily; and (iv) offers advice to the user for continual ontology reengineering.

2. User-driven ontology evolution: Since there are many ways to resolve an ontology change,
we aim at allowing ontology engineers to control and customise this process. Evolution
strategies are developed as a method of “finding” the consistent ontology that meets the needs
of the ontology engineer. Moreover, to allow the resolution of the complex request for a
change, the ontology engineer is able to represent her request declaratively, and to choose the
way of the resolution that is the most suitable to her need.

3. Multi-dimensional ontology evolution: We identify two dimensions of the overall ontology
evolution problem. The first dimension defines the number of the ontologies that have to be
updated for a change request. The second dimension specifies the physical location of evolved
ontologies. We extend the ontology evolution of a single ontology in two ways: (i) we define
the solution for evolution problems incurred between dependent ontologies within one node;
and (ii) we extend this approach for the distributed environment.

4. Usage-driven ontology evolution: To improve the usability of an ontology with respect to
the needs of end-users (i.e. the users of the ontology-based applications), we investigate the
possibility of the continual ontology improvement. We propose methods for the discovery of
the changes by analysing the end-users’ behaviours. In order to anticipate the end-users’
needs, we define several measures that combine the usage-data and the information about the
ontology structure. The interpretation of these measures results in new ontology changes.

5. Ontology evolution framework: The proposed ontology evolution approach has been
implemented in the KAON framework. Since our goal has been to support the evolution of

Methods and Tools for Ontology Evolution

 18

the large ontologies on the Semantic Web, the special focus of the implementation was given
to the scalability issue. In several case studies realized in different research projects, we
evaluated the implemented system.

1.4 Thesis Overview

The remainder of the thesis proceeds as follows.

Chapter 2 provides the background information on ontologies, and defines notions needed for
understanding the ontology evolution. We introduce the KAON ontology language that is
used through the thesis. Further, we define the ontology consistency and present the
taxonomy of ontology changes. Finally, we survey the work from a number of related fields.

In Chapter 3, we define the requirements for the ontology evolution system and derive a six-
phase evolution process that satisfies them. The process systematically analyses the causes
and the consequences of the changes, and ensures the consistency of the ontology and
depending artefacts after resolving these changes. Further, we discuss the ontology changes at
different levels of abstractions, and introduce the evolution ontology that is used as a
backbone of the process.

Chapter 4 explores the complexity of the change resolution problem and defines two ways to
support the user-driven ontology evolution. We introduce a procedural and declarative
approach, and discuss its advantages and disadvantages regarding the needs of ontology
engineers who use an ontology evolution system.

In Chapter 5, we tackle the problem of the evolution of dependent ontologies. We define two
ways for the reuse of ontologies. We extend the single ontology evolution process by taking
into account the dependency between ontologies and their physical distribution. The
evaluation of the proposed approaches on the MEDLINE dataset is presented, as well.

Chapter 6 is dedicated to the usage-driven ontology evolution. We introduce the usage
ontology that is used to capture the end-users’ interactions with the ontology-based
application. We define several measures combining the frequency of usage of an ontology
entity and the structure of the ontology, in order to recommend changes. Two evaluation
studies show the usability of the proposed measures.

In Chapter 7, we present the conceptual architecture of the KAON ontology engineering
framework, focusing on the aspects relevant for the ontology evolution. We present the
application of the ontology evolution system in the EU-IST OntoGov project.

Chapter 8 contains some concluding remarks and the outlook for the future work.

1.5 Publications

Parts of the thesis have been published before:

Chapter 3 that defines a process model for the ontology evolution is based on several
publications. The discussion of the requirements for the ontology evolution and the process
itself is published in “A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Volz, Ontologies
for Enterprise Knowledge Management, IEEE Intelligent System, Volume 18, Number 2, pp.
26-34, March/April 2003”.

The phases of this process are further elaborated in:

Introduction

 19

• ”N. Stojanovic, L. Stojanovic, Evolution in the ontology-based knowledge
management system, In Proceedings of the Xth European Conference on Information
Systems - ECIS 2002, Gdañsk, Poland, 2002”;

• “A. Maedche, L. Stojanovic, R. Studer, R. Volz, Managing Multiple Ontologies and
Ontology Evolution in Ontologging, In Proceedings of the Conference on Intelligent
Information Processing (IIP-2002), Montreal, Canada, pp. 51-63, 2002”;

• ”L. Stojanovic, An approach for Continual Ontology Improvement, to appear in
Proceedings of the First International Conference on Knowledge Engineering and
Decision Support (ICKEDS'2004), Porto, Portugal, 2004”.

Two different ways of exploring the complexity of the “semantics of change” problem in
Chapter 4 are described in:

• “L. Stojanovic, A. Maedche, B. Motik, N. Stojanovic, User-driven Ontology Evolution
Management, In Proceedings of the 13th European Conference on Knowledge
Engineering and Knowledge Management (EKAW’02), Siguenza, Spain, LNCS 2473,
pp. 285-300, 2002” and

• “L. Stojanovic, A. Maedche, N. Stojanovic, R. Studer, Ontology Evolution as
Reconfiguration-design Problem Solving, In Proceedings of the international
conference on Knowledge capture (K-CAP’03), Sanibel Island, FL, USA, pp. 162-
171, 2003”.

Parts of Chapter 5 are partially published in:

• “A. Maedche, B. Motik, L. Stojanovic, Managing multiple and distributed ontologies
on the Semantic Web, theVLDB Journal (2003) - Special Issue on Semantic Web,
Volume 12, pp. 286-302, 2003” and

• “A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Volz, An Infrastructure for
Searching, Reusing and Evolving Distributed Ontologies, In Proceedings of the
Twelfth International World Wide Web Conference (WWW 2003), Budapest,
Hungary, ACM, pp. 439-448, 2003”.

Chapter 6 is dedicated to the usage-driven ontology evolution. It is published in:

• “L. Stojanovic, N. Stojanovic, A. Maedche, Change Discovery in Ontology-Based
Knowledge Management Systems, In Proceedings of 21st International Conference on
Conceptual Modelling (ER’2002), Workshop on Evolution and Change in Data
Management (ECDM’02), Tampere, Finland, 2002, Revised Papers, LNCS 2784,
ISBN 3-540-20255-2, pp. 51-62, 2003” and

• “L. Stojanovic, N. Stojanovic, J. Gonzalez, R. Studer, OntoManager - A System for
the Usage-Based Ontology Management, In Proceedings of the 2st International
Conference on Ontologies, Databases and Application of Semantics (ODBASE 2003),
Catania, Sicily, Italy, LNCS 2888, pp. 858-875, 2003”.

The tools and applications that are presented in Chapter 7 are also described in

• “L. Stojanovic, B. Motik, Ontology Evolution within Ontology Editors, In Proceedings
of the OntoWeb-SIG3 Workshop Evaluation of Ontology-based Tools (EON2002) at
the 13th International Conference on Knowledge Engineering and Knowledge
Management (EKAW 2002), Siguenza, Spain, CEUR-WS Volume 62, pp. 53-62,
2002” and

Methods and Tools for Ontology Evolution

 20

• “L. Stojanovic, J. Schneider, A. Maedche, S. Libischer, R. Studer, T. Lumpp, A.
Abecker, G. Breiter, J. Dinger The Role of Ontologies in Autonomic Computing
Systems, To appear in IBM Systems Journal, Volume 43, Number 3, 2004”.

Ontology Evolution Process

 21

2 Basics of Ontology Evolution

Before speaking about evolving ontologies, several notions have to be clarified. Since the
ontology evolution is the process of changing an ontology while maintaining its consistency,
in the rest of this chapter we define the notions of ontology (see section �2.1), of its
consistency (section �2.3) and its changes (section �2.4). The process itself is elaborated in
chapter �3. The approach we present throughout this thesis is based on the KAON ontology
model. We briefly review the key concepts of this model in section �2.2.

2.1 Ontology

2.1.1 Definition of Ontology

The term ontology is borrowed from philosophy, where an ontology is a systematic account
of existence. For computer science, what "exists" is that which can be represented. Thus, in
the context of computer science, the following definition is adopted �[48]:

Definition 1 An ontology is a formal, explicit specification of a shared conceptualisation of
a domain of interest.

Conceptualisation is an abstract, simplified view of the world that we wish to represent for
some purpose. Ontologies have set out to overcome the problem of implicit and hidden
knowledge by making the conceptualisation of a domain explicit. Ontology is used to make
assumptions about the meaning of a specific concept. It can also be seen as an explication of
the context for which the concept is normally used.

Moreover, everything (i.e., any knowledge-based system or any knowledge-level agent) is
liable to some conceptualisation, explicitly or implicitly. Therefore, since there is consensus
of terms, it is a shared conceptualisation.

Next, the purpose of an ontology is not to model the whole world, but rather a part of it - so-
called domain. A domain is just a specific subject area or area of knowledge, like medicine,
tool manufacturing, real estate, automobile repair, financial management, etc. Therefore, in
order to define a domain, it is important to know what an ontology is for.

Further, ontologies serve as a means for establishing a conceptually concise basis for
communicating knowledge for many purposes. In order to achieve this, an ontology has to be

Methods and Tools for Ontology Evolution

 22

a formal description of the meaning of concepts and relationships between them. Therefore,
the formal specification means that an ontology is specified by means of a formal language,
e.g. first order logic.

Finally, this formal model is readable, understandable and processable not only for the people,
but also for the machines. This is achieved through the explicit specification, while there is
formal semantics of all statements, i.e. the semantics of the used language is formally
specified as well. Therefore, ontologies have to be specified in a language that comes with
formal semantics. Only in this way can the detailed, accurate, consistent, sound, and
meaningful description be made.

The study of ontologies and their use is no longer just one of the fields in the computer
science literature. Ontologies are now ubiquitous in many enterprise-wide information-
systems: they are used in e-commerce, knowledge management and in various application
fields such as bioinformatics and medicine. Moreover, they constitute the backbone for the
Semantic Web, which is discussed in the next section.

2.1.2 Ontologies on the Semantic Web

The Semantic Web �[9], �[31] is the next generation of the WWW, which is based on using
ontologies for enhancing (i.e. annotating) content with formal semantics. “Expressing
meaning” of resources that can be found on the web is the main task of the Semantic Web. In
order to achieve that objective, several layers of representational structures are needed �[9].
They are presented in �Figure 2.

These layers have the following role:

• the XML layer represents the structure of data;

• the RDF layer represents the meaning of data;

• the Ontology layer represents the formal common agreement about meaning of data;

• the Logic layer enables intelligent reasoning with meaningful data;

• the Proof layer supports the exchange of “proofs” in an inter-agent communication
enabling the common understanding of how the desired information is derived;

• the Trust layer ranges from digital signatures and security to social network analysis.

XML

RDF + rdfschema

Ontology Vocabulary

Logic

Proof

Trust

Figure 2. Layers of the Semantic Web Architecture

Ontology Evolution Process

 23

It is worth noticing that the real power of the Semantic Web is realised when many systems
that collect Web content from diverse sources, integrate and process the information as well
as exchange the results with other human or machine agents are created. Thereby, the
effectiveness of the Semantic Web will increase drastically as more machine-readable Web
contents and automated services become available. This level of inter-agent communication
will require the exchange of "proofs". Furthermore, the Semantic Web will also be the basis
for the Web of Trust, which will provide mechanisms to handle authentication, permission,
and validation of attribution in a Web where, by design, anyone can contribute content, links,
and services.

Two important technologies for developing the Semantic Web are already in place: the
eXtensible Markup Language (XML) and the Resource Description Framework (RDF).

XML5 lets everyone create his own tags that annotate Web pages or sections of text on a page.
The systems can make use of these tags in sophisticated ways, but the programmer has to
know the pages, which the author uses each tag for. In short, XML allows users to add
arbitrary structure to their documents, but says nothing about what the structures mean. The
meaning of XML-documents is intuitively clear to humans since the “semantic” mark-up and
tags are domain-terms. However, computers do not have intuition. Tag-names per se do not
provide semantics.

Data Type Definitions (DTDs) are a possibility to structure the content of the documents.
However, structure and semantics are not always aligned, they can be orthogonal. Therefore, a
DTD is not an appropriate formalism to describe the semantics of an XML document �[29].
The same holds for XML-Schema6 – it only defines structure, though with a richer language.
In essence, XML lacks a semantic model: it has only a “surface model", a tree. So, XML is
not the solution for propagating semantics through the Semantic Web. It can only play the
role of a "transport mechanism", viz. as an easily machine-processable data format.

The Resource Description Framework7 (RDF) provides a means for adding semantics to a
document. RDF is an infrastructure that enables encoding, exchange and reuse of structured
metadata. Principally, information is stored in the form of RDF statements, which are
machine understandable. Search engines, intelligent agents, information brokers, browsers
and human users can understand and use that semantic information. RDF is implementation
independent and may be serialised in XML (i.e., its syntax is defined in XML). Adding
semantic information to web documents is called semantic annotation. RDF, in combination
with RDFS,8 offers modelling primitives that can be extended according to the needs at hand.
Basic class hierarchies and relations between classes and objects are expressible in RDFS.
Some parts of the RDF and RDFS vocabularies are not assigned any formal meaning, and in
some cases, notably the reification and container vocabularies, it assigns less meaning than
one might expect9. Therefore, interpretation of how to use RDF(S) properly is an error-prone
process.

A solution to this problem is provided by the third basic component of the Semantic Web, via
ontologies. In philosophy, an ontology is a theory about the nature of existence, about what
types of things exist; ontology as a discipline studies such theories. Artificial intelligence and
web researchers have co-opted the term for their own purposes, and for them an ontology
describes a formal, shared conceptualisation of a particular domain of interest, as defined in
the previous section.

5 http://www.w3.org/XML
6 http://www.w3.org/XML/Schema
7 http://www.w3.org/RDF/
8 http://www.w3.org/TR/PR-rdf-schema
9 http://www.w3.org/TR/rdf-mt/

Methods and Tools for Ontology Evolution

 24

Ontologies are well suited for describing heterogeneous, distributed and semi-structured
information sources (e.g. XML documents) that can be found on the web or in the intranets.
By defining shared and common domain theories, ontologies help both people and machines
to communicate concisely, by supporting the exchange of semantics, rather than only syntax.
It is therefore important that any semantics for the web is based on an explicitly specified
ontology. In this way consumer and producer agents can reach a shared understanding by
exploiting ontologies that provide the vocabulary needed for negotiation.

The Semantic Web needs ontologies with a significant degree of structure. This structure
consists of the following kinds of concepts:

• the concepts (general things) in a domain of interest;

• the relationships that can exist among things;

• the attributes that belong to things;

• the instances that correspond to the concrete individuals in the domain.

The ontologies, which already exist on the Semantic Web, range from simple taxonomies
(such as the Yahoo hierarchy), to metadata schemes (such as the Dublin Core), to logical
theories �[87]. Even though ontologies are often equated with taxonomic hierarchies of
concepts, ontologies need not be limited to these forms. Besides, ontologies are not limited to
the definitions in the traditional logic sense that only introduce terminology and do not add
any knowledge about the world. To specify a conceptualisation one needs to state axioms that
do constrain the possible interpretations of the defined terms.

2.1.3 Ontology Languages

To be useful, ontologies must be expressed in a concrete notation. An ontology language is a
formal language by which an ontology is built. There have been a number of languages for
ontologies (�[19], �[33], �[80], �[85]) both proprietary and standards-based. Based on their formal
semantics they can be split into two groups of languages �[51]:

• Frame-based ontology languages – They have a long history in artificial intelligence.
Their central modelling primitives are classes (known as frames) with properties
(known as slots). A frame provides a context for modelling a class, which is generally
defined as a subclass of one or more other classes, with slot-value pairs being used to
specify additional constraints on instances of the new class. Many frame-based
systems and languages with many additional refinements of these modelling
primitives have been developed �[26]. Moreover, adapted to the object-oriented
paradigm they have been very successfully applied in the software engineering. For
example, the KAON ontology language �[80], which is used in this thesis, incorporates
the essential modelling primitives of frame-based systems, being based on the notion
of a concept and the definition of its superclasses and slots. It also treats slots as first
class objects that can have their own properties (e.g. domain and range) and can be
arranged in a hierarchy;

• Description logic based ontology languages – They have been developed in
knowledge-representation research, and describe knowledge in terms of concepts
(comparable to classes, or frames) and roles (comparable to slots in frame systems).
An important aspect of these languages is that they have very well understood
theoretical properties. Description logic enables reasoning with concept descriptions
and the automatic derivation of classification taxonomies. There are now efficient

Ontology Evolution Process

 25

implementations of description logic reasoners able to perform these tasks. For
example, the Ontology Web Language - OWL �[103] inherits from description logic
both their formal semantics and efficient reasoning support.

In the rest of this thesis we focus on the KAON ontology language.

2.2 KAON Ontology Language Definition

When KAON10 development started, RDF and RDFS were the de-facto standard languages for
ontology modelling in the Semantic Web �[31]. Hence, these languages were chosen to be
implemented by the platform. However, as development progressed, certain features of these
languages were found to be inadequate for practice. Also, the languages in question have
undergone a transformation themselves. Hence, the currently implemented ontology language
is based on RDF(S), but contains many additions and changes to the standard �[80]. To avoid
the pitfalls of self-describing RDFS primitives11 such as subClassOf, the KAON ontology
language has the clean separation of modelling primitives from the ontology itself. Moreover,
it provides means for modelling metaclasses and incorporating several commonly used
modelling primitives, such as transitive, symmetric and inverse properties, or cardinalities.
These differences are justified by practical requirements and thus should be taken into account
when designing new versions of the standards. In the rest of this section we recapitulate these
differences and point out the lessons learned.

According to the KAON ontology language, all information is organised in so-called OI-
models12 (ontology-instance models), containing both ontology entities (concepts and
properties) as well as their instances. This allows grouping concepts with their well-known
instances into self-contained units. An OI -model may include another OI-model, thus making
all definitions from the included OI-model automatically available. The mathematical
definition of OI-model is given below.

Definition 2 An OI-model (ontology-instance model) is a tuple OIM := (E, INC), where:

• E is the set of entities of the OI-model;

• INC is the set of included OI-models.

An OI-model represents a self-contained unit of structured information that may be reused. It
consists of entities (the set E in previous definition) and may include other OI-models
(represented through the set INC). Different OI-models may talk about the same entity, so the
set of entities of these models need not to be disjoint.

Note that the set of ontology entities E contains the ontology entities and an instance pool
associated with it. Both of them are defined in the rest of this section.

10 http://kaon.semanticweb.org
11 RDF does not make a distinction among normal resources representing instances and resources used as

modeling primitives. Thus, a resource can be used as an instance and can have user-defined meta-data. At the
same time, a resource can be used also as a modeling primitive. Such situations in practice usually give models
with ambiguous semantics.

12 In the remainder of this thesis we use the terms OI-model and ontology interchangeable.

Methods and Tools for Ontology Evolution

 26

Definition 3 An ontology structure of an OI-model is an 11-tuple:

O(OIM) := (C, P, S, T, INV, HC, HP, domain, range, mincard, maxcard)
where:

• C⊆E is a set of concepts;

• P⊆E is a set of properties;

• R⊆P is a set of relational properties, i.e. relations;

• A=P\R is a set of attribute properties, i.e. attributes;

• S⊆R is a subset of symmetric properties;

• T⊆R is a subset of transitive properties;

• INV⊆R×R is a symmetric relation that relates inverse properties:

 if (p1, p2)∈INV, then p1 is an inverse property of p2;

• HC⊆C×C is an acyclic relation called concept hierarchy:

If (c1, c2)∈HC then c1 is subconcept (or child) of c2, c2 is superconcept (or
parent) of c1, HC

* is the reflexive, antisymmetric and transitive closure of HC;

• HP⊆P×P is an acyclic relation called property hierarchy:

If (p1, p2)∈HP then p1 is subproperty (or child property) of p2, p2 is a
superproperty (or parent property) of p1, HP

* is the reflexive, antisymmetric
and transitive closure of HP;

• function domain:P→2C gives the set of domain concepts for some property p∈P;

• function range: R→2C gives the set of range concepts for some property p∈R;

• function mincard: C×P→ N0 gives the minimum cardinality for each concept-property
pair;

• function maxcard: C×P→ (N0 ∪{∞}) gives the maximum cardinality for each
concept-property pair.

An ontology example, which will be used in the rest of this thesis, is shown in �Figure 3. The
ontology models the university domain. It contains the set of concepts such as “Professor”,
“Student”, “Project”, and a set of properties between them (e.g. “hasFirstName”, “includes”,
etc.). Note that concepts are interpreted as sets of elements whereas properties establish the
relations between these elements. Each property may have domain concepts as well as range
concepts. For example, the domain concept for the property “includes” is the concept
“Project” whereas the range concept is the concept “Person”. Property domain and property
range both constrain the types of instances to which the properties may be applied. Note that
the properties are first class citizens. This means that a property can exist without being
attached to any concept.

Some properties may be marked as symmetric and/or transitive, and it is possible to say that
two properties are inverse of each other. For each concept-property pair, it is possible to
specify the minimum (mincard) and maximum (maxcard) cardinalities, defining how many
times a property may be specified for instances of that concept. Concepts and properties can
be arranged in a hierarchy, as specified by Hc and Hp respectively. This relation relates
directly connected concepts (properties) whereas Hc* (Hp*) is the transitive closure of Hc
(Hp). In the example shown in �Figure 3, the concept “PhD Student” is a direct child of the

Ontology Evolution Process

 27

concept “Student”, and an indirect child of the concept “Person”. Therefore,
(“PhDStudent”,”Student”)∈HC and (“PhD Student”,”Person”)∈HC

*.

Definition 4 An instance pool associated with an OI-model is a 4-tuple:

IP(OIM) := (I, L, instconc, instprop)
where:

• I ⊆ E is a set of instances;

• L is a set of literal values, L ∩ E = ∅;

• function instconc: C → 2I relates a concept with a set of its instances;

• function instprop: P×I→2I∪L assigns to each property-instance pair a set of instances
related through given property.

Figure 3. An ontology example

�Figure 4 shows the extension of the ontology shown in �Figure 3 with an instance pool. It is
constructed by specifying the instances, which are instantiated by each concept, and by
establishing property instantiation between instances. Property instantiations must follow the
domain and range constraints, and must obey the cardinality constraints. For example,
”SteffenWezler” is an instance of the concept ”BSc Student”, ”OntoLogging” is an instance of
the concept ”Project”, and there is a property instance that relates these two instances through
the property ”includes” i.e. ”SteffenWezler”∈instprop(”includes”, ”OntoLogging”). This
information can be also represented as a triplet:
(”OntoLogging”,”includes”,”SteffenWezler”).

An OI-model represents a self-contained unit of structured information that may be reused. It
consists of entities and may include a set of other OI-models (represented through the set INC,
see �Definition 2). The entities defined in one OI-model are inherited in all OI-models that
include it. Different OI-models can talk about the same entity, so the sets of entities E of these
OI-models do not need to be disjoint. Therefore, the KAON ontologies build on or extend
other ontologies, forming a graph of dependent ontologies.

Methods and Tools for Ontology Evolution

 28

Definition 5 A root OI-model is defined as a particular, well-known OI-model with the
structure ROIM:=({KAON:ROOT}, ∅), where KAON:ROOT is the root concept and
every other concept must be either directly or indirectly a subconcept of the
KAON:ROOT.

Every other ontology must include ROIM and thus gain visibility to the root concept. Many
knowledge representation languages contain the Top concept that is a superconcept of all
other concepts.

Instance

instprop
instcon

literals

Figure 4. The ontology from �Figure 3 and an instance pool associated with it

An example of multiple OI-models is shown in �Figure 5. The basic ontology BO (see �Figure 3
and �Figure 4) modelling the university domain is open to be extended in other ontologies. To
create an ontology containing information about project, one should be able to reuse as many
definitions as possible from existing ontologies. Thus, the project ontology PO reuses all
definition from the BO ontology. Moreover, it contains its own entities. For example, both the
subconcepts of the concept ”Project”, namely the concepts ”Research Project” and
”Industrial Project”, are defined in the PO ontology.

It is worth mentioning that the KAON ontology language is defined in a way to adjust the
expressiveness of traditional logic-based languages and to sustain tractability. As a side effect,
this enables the realisation of ontology-based systems using existing and well-established
technologies such as relational databases.

The rest of this thesis is based on the KAON model. However, we emphasise that the
proposed approach is applicable to most of the existing ontology models. This is because our
model incorporates all the basic entities of the ontology models for which there is a wide
acceptance �[150]. Due to differences in ontology models, in the rest of this thesis we
concentrate on the “common” features of ontology models, namely concepts, properties,
instances, as well as concept inheritance. Beside the number of primitives of an ontology
model, the other difference lies in the diverse semantics of ontology models. This is mostly
reflected in the ontology consistency definition (see section �2.3).

Ontology Evolution Process

 29

BO

PO

Figure 5. An example of multiple ontologies. The PO ontology reuses the BO ontology

2.2.1 KAON vs. OWL

In this subsection we discuss the distinction between our ontology model and the OWL which
should be a standard ontology language. We focus only on the features which are relevant
from the ontology evolution point of view. The most important aspects are (i) semantics of
domains and ranges and (ii) cardinalities. Both of them are in the KAON interpreted as
constraints, and not as inference rules like in the OWL.

Domains and Ranges

The KAON definition of domains and ranges differs from that of RDFS and OWL. In these
languages, domain and range specifications are axioms specifying sufficient conditions for an
instance to be a member of some class. For example, although for an instance “instanceI” is
not explicitly stated to be an instance of a concept “conceptC”, because it has a property
“propertyP” instantiated and because “propertyP” has the concept “conceptC” as domain, it
can be inferred that the instance “instanceI” is an instance of the concept “conceptC”.

Regarding our experience, while such inferencing may sometimes be truly useful, it is not
often needed or even desired in closed environments, such as e.g. presented by most
knowledge management applications. Most users without a formal background in logic, but
with strong background in databases and object-oriented systems intuitively expect domains
and ranges to specify the constraints that must be fulfilled while populating ontology
instances. In other words, unless “instanceI” is known to be an instance of the concept
“conceptC”, the “propertyP” cannot be instantiated for the instance “instanceI” in the first
place or the ontology becomes inconsistent.

This approach has the following benefits:

• Treating domains and ranges as constraints makes it possible to guide the user in the
process of providing information about instances. It is easy to compute the set of

Methods and Tools for Ontology Evolution

 30

properties that can be applied to an instance, and then to ask the user to provide values
for them. On the other hand, if domains and ranges are treated as axioms, any property
can be applied to any instance, which makes it difficult to constrain user's input;

• Similar problems occur when evolving the ontology. For example, if the instance
“SteffenWezler” is removed from the extension of the concept “BSc Student”, it can be
computed that the “includes” property between “OntoLogging” and “SteffenWezler”
instances must be removed. On the other hand, if domains and ranges are axioms, then
it is not clear how to change the ontology so that it still makes sense;

• Treating domains and ranges as axioms introduces significant performance overhead
in query answering. For example, to compute the extension of some concept, it is not
sufficient to take the union of the extension of all subconcepts -- one must examine a
larger part of the instance pool to see which instances may be classified under the
concept according to the domain and range axioms. Therefore, if only the constraint
semantics is needed, the system will suffer from unnecessary performance overhead.

Cardinalities

In the KAON ontology language cardinalities are treated as constraints regulating the number
of property instances that may be specified for instances of each concept. This is different
from the OWL and other description logic languages, where cardinalities are axioms
specifying that for the instances with particular number of property instances can be inferred
to be instances of some concept. We find that constraining the number of property instances
that are allowed for some instance is extremely useful for guiding the user in providing
ontology instances. By knowing how many property instances can be provided for instances
of some concept, the user can be asked to provide the appropriate number of values. Similar
arguments as in the case of domain and range semantics apply here as well.

2.3 Ontology Consistency Model

According to the �[56], consistency is the degree of uniformity, standardisation, and freedom
from contradiction among the parts of a system or component. From the point of view of
logic, consistency is an attribute of a (logical) system that is so constituted that none of the
facts deducible from the model contradict one other. Therefore, the ontology consistency can
be considered as an agreement among ontology entities with the respect to the semantic of the
underlying ontology language.

In this section we define the ontology consistency constraints related to the single ontology13.
The fact that an ontology might include other ontologies puts additional constraints on the
ontology model. These constraints are defined in section �5.2.1 that is dedicated to the
evolution of multiple ontologies.

Definition 6 A single ontology OI is defined to be consistent with the respect to its model if
and only if it preserves the constraints defined for underlying ontology model.

Since the ontology consistency is defined for a particular ontology model, the set of
constraints heavily depends on the semantics of the underlying ontology model. Based on the

13 A single ontology OI is an ontology that includes only the root ontology ROIM and does not include other

ontologies, i.e. OI:=(E, {ROIM}) (see �Definition 5).

Ontology Evolution Process

 31

semantics of the KAON ontology language, we define the ontology consistency model M as:

M = IC ∪ SC ∪ UC,
IC={ICi}, 1≤i≤16, SC⊆{SCj}, 1≤j≤2, UC⊆{UCk}, 1≤k≤4,

where ICi are invariants of the model, SCj are soft-constraints and UCk are user-defined
constraints. We note that although an ontology must satisfy all invariants, it does not have to
satisfy either all soft or all user-defined constraints The methods enforcing the ontology
consistency constraints are elaborated in chapter �4.

Invariants are consistency rules that must hold for every ontology �[3]. Every change in an
ontology must maintain the correctness of the invariants. The following invariants are defined
for our ontology model:

- IC1: Distinct Identity Invariant: All entities (concepts, properties and instances) have a
distinct identity:

C∩P=φ ∧ C∩I=φ ∧ P∩I=φ
This consistency constraint enforces a strict separation of concepts, properties and instances,
i.e. disjointness of concepts, properties and instances is required. This means that, for
example, a concept cannot be at the same time an instance.

- IC2: Concept Hierarchy Invariant: The concept hierarchy is a directed acyclic graph:

¬∃ c∈C (c, c)∈ Hc*

Returning to the example in �Figure 3, it is not allowed to make the concept “PhD Student” a
superconcept of the concept “Person” since the concept “Person” is an indirect parent
(through the concept “Student”) of the concept “PhD Student”.

Note that this constraint does not say anything about multiple inheritance, i.e. in our ontology
model multiple inheritance is allowed.

- IC3: Rootedness Invariant: There is a single concept Root∈C that is the superconcept of all
concepts in C. This concept Root is called the root of the ontology:

∃Root∈C (∀c1∈C\{Root} (c1,Root)∈Hc*) ∧ (¬∃c2∈C (Root, c2)∈Hc*)

All concepts are either directly or indirectly subconcepts of the “Root” concept that must be
included in each ontology. The deletion of the concept “Root” in �Figure 3 would cause the
invalidation of the rootedness invariant.

- IC4: Concept-Closure Invariant: Every concept in C, excluding the root of the ontology, has
at least one superconcept in the set C, giving closure to C:

∀c1∈C\{Root} ∃c2∈C (c1,c2)∈Hc

This constraint prevents the existence of the orphaned concepts, i.e. concepts that do not have
any parent concept. For example, the removal of the subconcept relationship between the
concept “Person” and the concept “Root” (see �Figure 3) would cause no parent concept to be
defined for the concept “Person” any longer, which has to prevented or resolved.

- IC5: Concept-Hierarchy Closure Invariant: The parent concepts as well as the child ones
have to be elements of the set C:

∀c1 ∀c2 (c1,c2)∈Hc � c1,c2 ∈C

Methods and Tools for Ontology Evolution

 32

This constraint requires that the concept hierarchy can be established only between concepts.
For example, the addition of the subconcept relationship between concepts “Project” and
“Industrial Project” would also provoke an inconsistency since the “Industrial Project”
concept is not yet defined as a member of conceptual set C.

- IC6: Property-Closure Invariant: The domain relationship can be established between a
concept and a property. The range relationhip can be established between a concept and a
relation:

∀p ∀c c∈ domain(p) � c∈C ∧ p∈P

∀p ∀c c∈ range(p) � c∈C ∧ p∈R

For example, the addition of the domain relationship between the concept “Person” and the
entity “worksIn” would provoke inconsistency, in the case that the entity “worksIn” is not
defined as a property.

- IC7: Attribute Invariant: An attribute must not have a range concept:
∀p∈P\R ¬∃c∈C c∈range(p)

- IC8: Property-Hierarchy Closure Invariant: The parent properties as well as the child ones
have to be elements of the set P:

∀p1 ∀p2 (p1,p2)∈ Hp � p1,p2∈P

- IC9: Sub-Property Closure Invariant: A subproperty of some property may add additional
domain and range restrictions, but cannot remove existing ones:

∀p1 ∀p2 (p1,p2)∈Hp � domain(p2) ⊆ domain(p1)

∀p1 ∀p2 (p1,p2)∈Hp � range(p2) ⊆ range(p1)

- IC10: Instance Invariant: Every instance in I is associated to a concept in the set C:

∀i∈I ∃c∈C i∈instconc(c)

This constraint prevents the existence of the orphaned instances, i.e. instances that are not
attached to any concept. Returning to the example shown in �Figure 3, the removal of the
instanceOf relationship between the concept “BSc Student” and the instance “SteffenWezler”
would cause the instance “SteffenWezler” not to belong to any concept, which has to be either
prevented or resolved.

- IC11: Instance-Closure Invariant: Every instance is defined as an instance of a concept from
the set C. Property instantiations must follow the property and instance constraints:

∀c,i i∈instconc(c) � i∈I ∧ c∈C

∀i1,i2,p i2∈instprop(p,i1) � i1∈I ∧ i2∈I∪L ∧ p∈P

For example, it is not possible to define the concept “Student” as an instance of the concept
“Person” and the concept “Student” since the instanceOf relationship can be established only
between instances and concepts.

Ontology Evolution Process

 33

- IC12: Full Inheritance Invariant: Only properties defined for a concept associated to an
instance or for the parent concepts of that concept can be instantiated for the instance:

∀i1∈I ∀i2∈I∪L ∀p∈P i2∈instprop(p,i1) �

∃c1∈C i1∈instconc(c1) ∧ (c1∈domain(p) ∨

(∃c2∈C (c1,c2)∈ Hc* ∧ (c2∈domain(p)))

∀i1∈I ∀i2∈I∪L ∀p∈P i2∈instprop(p,i1) �

 (∃c1∈C i2∈instconc(c1) ∧ (c1∈range(p)∨

(∃c2∈C (c1,c2)∈Hc* ∧ (c2∈range(p)))) ∨ (i2∈ L)

- IC13: Property Instance Invariant: A property instantiated between instances must have a
range concept. A property instantiated between an instance and a literal value must not have a
range concept.

∀p∈P ∀i1∈I ∀ i2∈I i2∈instprop(p,i1) � ∃c∈C c∈range(p)

∀p∈P ∀i1∈I ∀ l∈L l∈instprop(p,i1) � ¬∃c∈C c∈range(p)

- IC14: Cardinality Invariant: Minimal cardinality has to be less than maximal cardinality:

∀c ∈C ∀p∈P 0≤mincard(c,p)≤maxcard(c,p)

- IC15: Cardinality Closure Invariant: Minimal and maximal cardinality must be specified for
concept-property pairs:

∀c,p mincard(c,p)� c∈C ∧ p∈P

∀c,p maxcard(c,p)� c∈C ∧ p∈P

- IC16: Property Specification Invariant: Property axioms must be defined for relations:

∀p p∈S � p∈R

∀p p∈T � p∈R

∀ p1, p2 (p1, p2)∈INV � p1, p2 ∈ R

This implies that the three property characteristics (i.e. symmetric, transitive and inverse of)
can never be specified for attributes.
We note that the set of invariants contains the set of consistency constraints (e.g. IC5) that are
directly derived from the KAON ontology model definition (see section �2.2). They represent
necessary but not sufficient conditions for establishing well-formed KAON ontologies.
Therefore, we define the additional consistency constraints (e.g. IC4) that put further
restrictions on the KAON ontologies, i.e. they restrict the use of ontology entities.
The previously introduced invariants are “hard” constraints since they must be satisfied in any
stable state of the ontology; that is before and after an ontology change. However, there are
so-called soft constraints that can be temporarily invalidated in order to make the ontology
evolution easier. We have introduced the following set of soft constraints:

Methods and Tools for Ontology Evolution

 34

- SC1:Min-cardinality Soft Constraint:

∀c∈C ∀p∈P mincard(c,p) is defined �

∀i∈I |instprop(p,i)|≥mincard(c,p)

- SC2: Max-cardinality Soft Constraint:

∀c∈C ∀p∈P maxcard(c,p) is defined �

∀i∈I |instprop(p,i)|≤maxcard(c,p)

To explain the importance of soft constraints, let’s consider that minimal cardinality 2 is
defined for the property “includes” and the concept “Project” that are shown in �Figure 3. An
ontology engineer cannot add any instance of the concept “Project” or of its subconcepts
since the SC1 can never be satisfied due to the fact that this ontology contains only one
instance “SteffenWezler” of the concept “Person”. The higher minimal cardinality implies
fewer chances to realise the request of an ontology engineer. Thus, we argue that it is better to
allow that SC1 and SC2 constraints are temporarily unsatisfied, but to inform the ontology
engineer about this inconsistency (e.g. by using a different colour to mark this part of the
ontology).
In addition to the invariants and soft constraints, we have introduced the so-called user-
defined constraints. They represent guidelines for building well-formed ontologies. The
following set of the user-defined constraints is defined:

- UC1: Domain/Range Property User-defined Constraint: A property with a domain/range
concept is considered as consistent:

∀p∈P ∃c∈C c∈domain(p)

∀p∈P ∃c∈C∪L c∈range(p)

At least one domain concept has to be specified for each property. Furthermore, a property
has to be defined as an attribute (i.e. its range is a literal) or a property has to have at least one
range concept. Returning to the example shown in �Figure 3, the removal of the concept
“Project” which is the only element of the domain set for the property “includes” results in
such an inconsistency.

- UC2: Domain/Range Property Repetition User-defined Constraint: A domain (range) of a
property cannot contain a concept that is at the same time a subconcept of some other domain
(range) concept:

∀p∈P ∀c1∈C c1∈domain(p) � ¬ (∃c2∈C (c2,c1)∈ Hc* ∧ c2∈domain(p))

∀p∈P ∀c1∈C c1∈range(p) � ¬ (∃c2∈C (c2,c1)∈ Hc* ∧ c2∈range(p))

For the ontology shown in �Figure 3, the concept “Student” cannot be a range concept of the
property “includes” since it is a subconcept of the concept “Person” and inherits all properties
from its parents including the property “includes”.

- UC3: Concept Hierarchy Shape User-defined Constraint: It is not allowed to have an
alternative path to the direct parent concept:

∀c1,c2∈C (c1,c2)∈Hc � ¬ (∃c3∈C (c1,c3)∈ Hc* ∧ (c3,c2)∈ Hc*)

Ontology Evolution Process

 35

Returning to the ontology shown in �Figure 3, the concept “PhD Student” cannot be a direct
child of the concept “Person” since there is a path between them through the concept
“Student”.

- UC4: One Leaf Concept User-defined Constraint: A concept cannot contain a single
subconcept:

∀c1,c2∈C (c1,c2)∈Hc � ∃c3∈C\{c1} (c3,c2)∈Hc

By assuming that the concept “PostDoc” in �Figure 3 is removed, the concept “Professor”
would be superfluous since classification with only one subclass beats the original purpose of
classification. Our experience shows that this constraint is very useful for improvement of an
existing ontology due to the fact that it points to the “weak” place in the ontology. However,
it should not be used for the ontology development since one leaf concept can be considered
as a point for the future extensions.

2.4 Ontology Changes

There are two major issues involved in the ontology evolution. The first issue is the
understanding how an ontology can be changed since the ontology evolution is realised by
means of applying ontology changes. The second issue involves deciding when and how to
modify an ontology to keep its consistency, which is elaborated in chapter �4.

To resolve the first issue a possible set of changes has to be defined. This set of ontology
changes heavily depends on the underlying ontology model and thus it varies from one
ontology system to another. Thereupon, one of the fundamental issues concerning the
introduction of changes in a data model is the semantics of a change. It refers to the effects of
the change on the ontology itself, and, in particular the checking and maintenance of the
ontology consistency after the change application. Only in this way can the correct use of
ontology changes be completely independent of the ontology engineer’s responsibility, with
automatic system aid and control.

In the rest of this section we first establish the taxonomy of changes under the KAON
ontology model (see section �2.4.1). Then in section �2.4.2 we define the semantics of these
changes, which is a prerequisite for preserving the ontology consistency.

2.4.1 Taxonomy of Ontology Changes

One of the first approaches for the object-oriented schema evolution was proposed in �[3]. The
given taxonomy of changes was adjusted in most other schema evolution research and
represents the most frequently used set of changes. In this section we adopt this approach by
taking into account the underlying ontology model. Namely, this taxonomy does not consider
all aspects of the ontology model. For example, the characteristics that can be defined for the
properties (e.g. symmetry) are specific for the ontology model and the changes related to them
are not defined in �[3]. Further, changes related to the property hierarchy, cardinality
constraints, included ontology models, etc., are specific for ontology models in general.
Therefore, we extend the taxonomy with the corresponding changes. On the other hand, we
use only a subset of this taxonomy by excluding changes related to the methods since they are
not a part of the ontology model.

Through the enrichment of the referent taxonomy �[3] with the additional changes related to
the ontology model and through the elimination of changes that are not relevant to the
ontology model, the “standard” set of schema changes is completely adjusted to the KAON

Methods and Tools for Ontology Evolution

 36

ontology model. Moreover, the semantics of all changes (including the changes existing in the
referent taxonomy) is defined on the basis of the underlying ontology model. For example, a
property is a first-class citizen and therefore, it can exist without being attached to any
concepts.

Each entity of the ontology model can be updated by one of the meta-change transformations:
add and remove �[55]. A full set of changes can thus be defined by the cross product of the set
of entities of the ontology model, which form meta schema, and the set of meta-changes. A
complete set of changes, determined by the KAON ontology language (see section �2.2), is
given in �Table 1. These changes represent the ontology modifications at the lowest level of
the complexity since they can add or remove one and only one entity in an ontology.
Therefore, they build the backbone of an ontology evolution system.

Table 1. The taxonomy of ontology changes

Meta Entities/Meta Changes Add Remove

Concept AddConcept RemoveConcept

Concept Hierarchy AddSubConcept RemoveSubConcept

Property AddProperty RemoveProperty

Property Hierarchy AddSubProperty RemoveSubProperty

Property Domain AddPropertyDomain RemovePropertyDomain

Property Range AddPropertyRange RemovePropertyRange

Property Symmetric AddPropertySymmetric RemovePropertySymmetric

Property Transitive AddPropertyTransitive RemovePropertyTransitive

Property Inverse AddPropertyInverse RemovePropertyInverse

Max Cardinality AddMaxCardinality RemoveMaxCardinality

Min Cardinality AddMinCardinality RemoveMinCardinality

Instance AddInstance RemoveInstance

InstanceOf AddInstanceOf RemoveInstanceOf

InstProp AddPropertyInstance RemovePropertyInstance

OI-model AddOI-model RemoveOI-model

�Table 1 shows that ontology changes can be thought of as additive and subtractive as is
illustrated through the second and the third column, respectively. The formal distinction of
these two types of changes, adopted from �[114], is given below.

Definition 7 An ontology change OntoCh is a total mapping14 between ontologies, i.e.
OIM2=OntoCh(OIM1), where OIM1 and OIM2 are ontologies.

We introduce the following function:

14 A mapping f between two sets A and B, f:A→B, is total if f is defined on every element of A.

Ontology Evolution Process

 37

• the function extractSet(OIM, i) that gives i-th set of elements for a given ontology
OIM, 1≤i≤15.

There are 15 meta entities in the KAON ontology model. They are derived from the KAON
ontology language definition (see �Definition 2, �Definition 3 and �Definition 4) and are shown
in �Table 1. For example, extractSet(OIM,1) returns a set of concepts C or extractSet(OIM,15)
returns a set of included ontologies INC.

Definition 8 An ontology change OntoCh is an additive (capacity augmenting) ontology
change, if OntoCh satisfies the following condition:

∃i i=1,..,15 Seti1 = extractSet(OIM1,i) ∧ Seti2= extractSet(OIM2,i) ∧

 (∃el1∈ Seti2 ∧ el1∉ Seti1) ∧ (¬∃el2∈ Seti2 \{el1} ∧ el2∉ Seti1) ∧ (∀el3∈ Seti1 ∧ el3∈ Seti2) ∧

∀k k≠i Setk1 = extractSet(OIM1,k) ∧ Setk2= extractSet(OIM2,k)

 ∀el∈ Setk1 ↔ el∈ Setk2

Definition 9 An ontology change OntoCh is an subtractive (capacity reducing) ontology
change if it satisfies the following condition:

∃i i=1,..,15 Seti1 = extractSet(OIM1,i) ∧ Seti2= extractSet(OIM2,i) ∧

 (∃el1∈ Seti1 ∧ el1∉ Seti2) ∧ (¬∃el2∈ Seti1 \{el1} ∧ el2∉ Seti2) ∧ (∀el3∈ Seti2 ∧ el3∈ Seti1) ∧

∀k k≠i Setk1 = extractSet(OIM1,k) ∧ Setk2= extractSet(OIM2,k)

 ∀el∈ Setk1 ↔ el∈ Setk2

We note that in �Definition 8 and �Definition 9 OIM1 is a given ontology and OIM2 is a changed
ontology, i.e. OIM2=OntoCh(OIM1).

An additive ontology change is an ontology change where new entities of the ontology model
(e.g. a concept), are added to an ontology without altering the existing ones. A subtractive
ontology change involves the removal of some piece of entities. Thus, more precisely, the
ontology evolution can be defined as the creation and removal of ontology entities. An
ontology is formed from a set of ontology entities and it evolves by adding or removing them.

The previously defined set of changes is complete and minimal. Completeness refers to the
possibility of transforming an arbitrary ontology in any other, i.e. all changes are required for
the evolution of the given ontology model. Minimality refers to the achievement of
completeness with a minimal set of changes.

The proposed taxonomy of changes does not include “modify” changes. We found that these
changes can be split into “rename” changes (e.g. “rename” a concept) or “set” changes (e.g.
“set” the subconcept relationship between two concepts), which depends on the ontology
entity the “modify” change should be applied to. These two interpretations of “modify”
changes imply two reasons for their elimination from the proposed taxonomy of ontology
changes.

The “rename” changes (such as rename a concept, rename a property, rename an instance)
would be superfluous since there is lexical information about ontology entities (e.g. labels in
different languages). In the KAON ontology language, lexical information is thought of as

Methods and Tools for Ontology Evolution

 38

meta-information about an ontology given that it talks about ontology entities. We defined
Lexical OI-model15 �[80] as a well-known OI-model that models various lexical properties of
ontology entities, such as labels, synonyms, stems or textual documentation. This Lexical OI-
model can be included in other OI-models, which allows associating lexical entries with the
ontology entities. Therefore, we consider ontology entities as URIs16 – unique resource
identifiers, which provide simple and extensible means for identifying a resource. Since a
URI referring an ontology entity is a generic name, it does not need to be changed.
Consequently, the “rename” changes can be kept out. The desired effect (e.g. renaming) is
achieved by removal followed by an addition of lexical entries.

�Figure 6 shows the lexical information17 defined for the concept “Person” from the ontology
shown in �Figure 3. Two types of lexical information are specified: (i) labels such as “Die
Person”, “Person” and (ii) synonyms such as “human being”, “individual”. Note that all
lexical information is multilingual. To rename a concept “Person” one has to create a new
label and to remove the old one. Since labels are defined using the property instances for the
property KAON:VALUE, the following two changes have to be applied: the
AddPropertyInstance change and the RemovePropertyInstance change.

Figure 6. A part of the lexical layer for the concept “Person” from the ontology shown
in �Figure 3

The second reason for excluding “modify” changes is related to the second interpretation of
these changes, i.e. “set” changes. We aim at a minimal set of changes, which means that no
change defined in the taxonomy subsumes the functionality of the other primitives defined in

15 Essentially an ontology can be thought of as a tuple (V,A), where V is the vocabulary and A is the set of

assertions governing the theory �[54]. Interpreting this from the point of view of the KAON ontology language,
the vocabulary V consists of a set of identifiers of ontology entities whereas all other elements from ontology
definition form the set A. For example, the fact that “Person” is a concept is represented as word “Person” in
the vocabulary and as a logical statement concept(Person) in A (i.e. “Person”∈C). We extended this approach
by defining the Lexical OI-model. Therefore, the vocabulary does not contain only identifiers, but also
synonyms, labels, etc.

16 Uniform Resource Identifier (URI) is a compact string of characters for identifying an abstract or physical
resource.

17 The value of the lexical entry is given by the property KAON:VALUE, whereas the language of the value is
specified through the KAON:INLANGUAGE property. The property KAON:REFERENCES establishes n : m
relationship between lexical entries and ontology entities. The lexical structure consists of the several
subconcepts, such as KAON:Label, KAON:Synonym, etc.

Ontology Evolution Process

 39

the taxonomy nor can it be specified by a sequence of the proposed changes. For example, the
set up of the inheritance relationship between two concepts (e.g. SetSubConcept change) can
be achieved trough two changes: the AddSubConcept change establishing the subconcept
relationship between two concepts and the RemoveSubConcept change removing the
subconcept relationship between concepts. Therefore, since the “set” changes can be realised
as an addition followed by a removal, they would be considered as redundant changes. Their
existence would cause the set of changes not to be minimal with respect to completeness.

On the other hand, these changes can improve the usability of an ontology evolution system
significantly since an ontology engineer does not need to select a set of changes in order to
realise her request for an update. We consider these changes as coarse-grained changes and
discuss them in section �3.2.1.

All valid changes to manipulate an ontology can be specified by one ontology change or by a
sequence of changes. Changes can be applied to an ontology in a consistent state, and once all
the changes are made, the ontology and dependent artefacts must pass into another consistent
state. It means that every change is guaranteed to maintain ontology consistency constraints.
This is elaborated in the next subsection.

2.4.2 Semantics of Ontology Changes

The goal of the ontology evolution is to ensure that the application of ontology changes
should result in an ontology conforming to the set of ontology consistency constraints
introduced in section �2.3.

Definition 10 An ontology change preserves the ontology consistency if and only if it
preserves all constraints of the underlying ontology model.

However, applying an ontology change alone will not always leave an ontology in a
consistent state. As shown in �Figure 7, making the concept “PhD Student” a parent concept of
the concept “Person” causes the inconsistency since the invariant IC2 - Concept Hierarchy
Invariant related to the cycle in a concept hierarchy would be violated. Namely, the concept
“Person” would be in the same time the parent concept of the concepts “PhD Student”
(through the concept “Student”) as well as its child concept.

Figure 7. Inconsistent ontology due to a cycle in the concept hierarchy

Methods and Tools for Ontology Evolution

 40

This example shows that the ontology consistency has to be examined. Since verification in
general concerns the correctness, the ontology verification is checking of the correctness of an
ontology with the respect to the ontology consistency definition. There are two approaches to
confirm ontology consistency �[55]:

1. a posteriori verification;

2. a priori verification.

The first approach first executes a change, and then validates the updated ontology to check
whether it satisfies the consistency constraints. The advantage is that all changes use a single
check for their verification. The disadvantage lies in the fact that the check is performed after
the change is completed. In the case that the check fails, the roll back of the ontology into the
initial state is needed. Furthermore, checking the entire ontology is costly, even more so when
the changes are small, local and mostly unnecessary. It is preferable to have an incremental
checking mechanism where only the modified part of an ontology is checked. Moreover,
when the validation is performed after a batch of changes and some inconsistency is detected,
it is impossible to find out which change caused the inconsistency.

The second approach defines a respective set of preconditions for each change. It must be
proven that, for each change, the consistency will be maintained if (1) an ontology is
consistent prior to an update and (2) the preconditions are satisfied. Since the preconditions
are specified for each change, checking the consistency can be limited to the local range
affected by the change. Moreover, no roll back mechanism needs to be supported since
inconsistencies are discovered prior to the modification. A disadvantage of using
preconditions is that they need to be formulated in addition to the consistency constraints.

A summary of pros and cons of both approaches is shown in �Table 2.

Table 2. A posteriori verification vs. a priori verification. “+” indicates positive aspect
whereas “-“ represents disadvantage.

 A posteriori verification A priori verification

Roll-back Necessary (-) Not necessary (+)

Explanation Impossible (-) Possible (+)

Additional effort No (+) Yes (preconditions) (-)

In order to avoid getting inconsistent ontologies and reverting them back into a consistent
state, we have decided to apply the second approach. Therefore, for each ontology change it is
required to specify the necessary preconditions to describe the applicability conditions of a
change. Moreover, both the approaches require the specification of sufficient postconditions
to describe the effect of a change.

Ontology Evolution Process

 41

Definition 11 Preconditions of an ontology change comprise a set of assertions that must be
true to be able to apply the change. If a precondition fails, and a change is nevertheless
performed, the resulting ontology will be in an inconsistent state. For example, the
precondition for the removal of a concept c is c∈C\{Root}18;

Definition 12 Postconditions of an ontology change comprise a set of assertions that must be
true after applying a change. They describe the result of a change. For example, the
removal of a concept c results in an assertion c∉C.

In the rest of this thesis we use the following formal definition of an ontology change:

Definition 13 An ontology change Ch is a 4-tuple:

Ch:=(name, args, preconditions, postconditions),

where:

• name is the identifier of the change - �Table 1 contains the all possible change
identifiers that are derived from the KAON ontology model;

• args∈(C∪P∪I∪L)n, 1≤n≤3, is a list of one or more change arguments. There are
changes with one, two or three arguments. For example, to remove the concept
“Person” from an ontology, the only argument of the change RemoveConcept has to
be “Person”. To remove the range “Person” of the property “includes”, the change
RemovePropertyRange(“includes”, “Person”) has to be applied. All changes related
to property instances have three arguments. For example, the change
AddPropertyInstance(“OntoLogging”, “includes”, “SteffenWezler”) is required to
specify that the instance “OntoLogging” has the value “SteffenWezler” for the property
“includes”;

• preconditions – see �Definition 11;

• postconditions – see �Definition 12.

In order to simplify the notation of changes, in the rest of this thesis we use the following
simplified syntax: name(args, preconditions, postconditions). Moreover, to specify the
request for a change the notation name (args) is used since the preconditions and the
postconditions are general and do not depend on the concrete application of a change.

The role of an ontology change in the evolution of an ontology is shown in �Figure 8. The
application of a change (cf. Ch in �Figure 8) to the ontology O (cf. O) results in an updated
ontology (cf. O’). We assume that the ontology that has to be changed (cf. O) is a consistent
ontology. A change will not be executed unless the corresponding preconditions are satisfied
and a change will not be committed unless the corresponding postconditions are
accomplished. Therefore, preconditions and postconditions are enforced on each ontology
change.

18 Note that C is a set of ontology concepts as introduced in the �Definition 3 whereas Root is a predefined

concept (Root∈C) that is, according to the IC3 - Rootedness Invariant, contained in all ontologies.

Methods and Tools for Ontology Evolution

 42

Ontology
O

Ontology
O’

Change Ch

preconditions
of Ch

postconditions
of Ch

Figure 8. The application of an ontology change Ch

In order to formalise this process we introduce the following definitions:

if an ontology O satisfies a set of
preconditions of a change Ch (see
�Definition 11) • the function

�
�

�

�
�

�

�

=

,false

,true

)Ch,O(onspreconditi

otherwise

if an ontology O satisfies a set of
postconditions of a change Ch (see
�Definition 12) • the function

�
�

�

�
�

�

�

=

,false

,true

)Ch,O(ionspostcondit

otherwise.

Definition 14 Given an ontology O and the request for a change Ch, the application of an
ontology change Ch to the ontology O results in an ontology O’:

O’ = Ch ° O = Ch(O)

where ° is an operator performing the application of changes from Ch on the ontology O,
under the following conditions:

preconditions(O,Ch)=true ∧ postconditions(O’,Ch)=true

Interpreting �Definition 14 on the �Figure 8, it can be concluded that the change Ch can be
applied if and only if the ontology O satisfies the preconditions of this change and there exists
at least one ontology O’ that satisfies the set of postconditions of this change. Therefore, the
preconditions of a change (cf. Ch in �Figure 8) indicate the initial state prior to its execution
(i.e. the ontology O) and the postconditions indicate the state after it is applied (i.e. the
ontology O’). Postconditions allow us to specify what the result of an update is. Indeed, the
postconditions represent a subset of the ontology consistency constraints that cannot be
invalidated after the change application.

Note that the postconditions do not include the effects on the ontology change on the other
parts of the ontology. Therefore, it may happen that the ontology O’ is not in a consistent
state. To resolve that problem, additional changes have to be generated in order to satisfy the
consistency of the ontology O’ (see chapter �4). These induced changes may introduce new
inconsistencies. However, after finishing the resolution of all changes (including all induced
changes) the consistency of an ontology must be true. In that sense, the consistency can be
viewed as universal postconditions for all changes.

Ontology Evolution Process

 43

In the rest of this section we define the precise syntax and semantics of two ontology changes,
namely AddSubConcept and RemoveSubConcept. A similar strategy is applied to all other
changes as well. The syntax defines the sentences in the language whereas semantics defines
the “meaning” of changes. Note that preconditions and postconditions contain only
constraints related to the invariants since they are mandatory consistency constraints. In the
case that the consistency definition includes the soft- and/or user-defined constraints, the
preconditions and the postconditions have to be extended.

Change: AddSubConcept

Syntax: AddSubConcept (c1, c2)

Semantics: Create a subconcept relationship between the child concept c1 and the
parent concept c2

Preconditions: c1∈C\{Root}

c2∈C\{c1}

(c1,c2)∉Hc

(c2,c1)∉Hc*

Postconditions: (c1,c2)∈Hc

Change: RemoveSubConcept

Syntax: RemoveSubConcept(c1,c2)

Semantics: Breaks the subconcept relationship between concepts c1 and c2

Preconditions: (c1,c2)∈Hc

 ∃c∈C/{c2} (c1,c)∈Hc

Postconditions: (c1,c2)∉Hc

As can be concluded from the definitions of ontology changes, they are strongly related to the
notion of the consistency since the preconditions as well as postconditions of each change
represent the subset of ontology consistency constraints. One of the challenges of the
ontology evolution framework is to ensure that all consistency constraints are fulfilled after
the application of a change. For example, the postcondition for the removal of a concept c is
that the concept is not in the ontology anymore (i.e. c∉C). However, for an ontology to be
consistent the following conditions have to be satisfied as well:

 ¬∃c1∈C (c,c1)∈Hc

¬∃c1∈C (c1,c)∈Hc

¬∃p∈P c∈domain(p)

¬∃p∈P c∈range(p)

¬∃i∈I i∈instconc(c)

The methods for guarantying that are discussed in chapter �4.

The definitions of ontology changes justify the distinctions of additive and subtractive
changes. As can be seen, the changes related to the addition and the removal of an ontology

Methods and Tools for Ontology Evolution

 44

entity have the opposite sets of conditions. Therefore, for each change we introduce its
inverse change.

Definition 15 Let Ch(args, preconditions1, postconditions1) be an ontology change. An
inverse change of a change, denoted as Ch-1 (args, postconditions2, preconditions2) is
an ontology change that satisfies the following condition:

preconditions(O, Ch)=true ∧ postconditions(O, Ch-1)=true ∧

postconditions(Ch(O), Ch)=true ∧ preconditions(Ch(O), Ch-1)=true

where O is an ontology.

For example, the concept removal and the concept addition are inverse changes. After the
removal of the concept “Student” the preconditions for the addition of the concept “Student”
are satisfied and vice versa.

It is important to note that the application of a change and then its inverse change (or vice
versa) to an ontology result in the same ontology, i.e. Ch-1 ° Ch(O) = O.

2.5 Related Work

Evolution in general is a research issue that has been thoroughly investigated. This objective
of this section is the presentation of the relevant state of the art for the ontology evolution.
Since an ontology is a conceptual model of a domain, we discuss the evolution of other
conceptual models. Indeed, we discuss the following areas:

• schema evolution in (relational and object-oriented) databases;

• XML schema evolution;

• maintenance of knowledge-based systems.

These areas come closest to the approach presented in this thesis. However, there are many
differences that will be pointed out. The comparison of our approach with the existing
approaches for the ontology management is given at the end of each section of this thesis
separately.

2.5.1 Ontology evolution vs. database schema evolution

Evolution in databases addresses the problem that the logical schema of a database is likely to
undergo changes, even if the database is already populated �[113]. The schema evolution in the
relational databases is the starting point for all evolution issues. In the case study related to
health management system �[117], the authors have shown that the modification of a database
schema happens quite often. The result of this study revealed that, during the lifetime of the
system based on this schema, the number of relations increased by 139%, the number of
attributes by 274% and that every relation has been modified.

We came to the similar results during the developing ontologies. For example, the ontology
that has been developed as a backbone of the portal of our institute in January 2001 is still a
subject of changes (see section �6.3.1). The initial version of this ontology contained concepts
such as “Person”, “Project”, “ResearchGroup”, the relations between them such as
“worksIn”, “manages”, attributes such as “hasName” etc. To fulfil the business requirements
(e.g. the information about research topics is relevant), the users’ needs (e.g. they would like

Ontology Evolution Process

 45

to be able to search for projects related to the particular research topic) or to organise the
information in a better way (e.g. research topics are not instances but rather concepts related
in a topic hierarchy), this ontology has been modified regularly, once in a month. The last
change that occurred in April 2004 was to extend the ontology with the information about
news. The actual version of this ontology contains only a small part of this initial ontology,
not to mention instances whose number has been increased drastically.

The schema evolution in the relational databases is only poorly supported. The standard SQL
DDL (Data Definition Language) allows for changes in the table definition (e.g. adding
attributes). However, the related consistency problems have not been considered so far. The
administrators are responsible for maintaining consistency. It means that the instance
adaptation has to be done manually, e.g. by using SQL UPDATE queries. On the contrary,
our intention was:

• to help an ontology engineer to modify an ontology by providing changes at the right
level of the abstraction;

• to automate the change resolution or at least to inform an ontology engineer about all
consequences of a change.

Since ontology management systems are mostly implemented on top of the relational database
management system, the ontology evolution could only profit from resolving the
aforementioned problems in the relational databases.

With the appearance of object-oriented database systems, the schema evolution became a
research issue. The object-oriented schema evolution is more relevant for the ontology
evolution due to two reasons:

• the object-oriented database models provide a semantically richer model than the
relational database model and, therefore, can be considered as an extension of the
relational database evolution;

• the object-oriented database models are more similar to the ontology models due to
the complex inheritance hierarchies.

There are many approaches dealing with the object-oriented schema evolution issue (�[3], �[36],
�[55], etc.). They address two main questions: the effects of a schema change on the schema
itself and the effects of the schema change on the underlying instances. The first problem is
resolved either by defining rules that must be followed to maintain the schema consistency
(�[3], �[154]) or by introducing axioms (with an inference mechanism) that guarantee the
consistency (�[104]). If the schema modification of populated database is allowed, the second
problem is how to propagate the changes to the instances. The proposed solutions include: (i)
the data migration for the immediate adaptation of the existing instances to the changed
schema; (ii) the mechanisms for the synchronisation between data and schema and (iii) the
combination of them. The synchronisation mechanisms are realised as: (a) delayed (lazy)
conversion, when instances are only converted on demand; (b) screening, when changes are
propagated via deferred object conversion; (c) versioning, when changes are never propagated
and objects are indeed assigned to different schemas.

Our goal is to build a general framework for the ontology evolution that resolves the
aforementioned problems. Regarding the first problem, in chapter �4 we propose the
combination of the two complementary approaches, which seems to be promising. As far as
the change propagation is concerned, we distinguish the centralised and distributed scenario
(see chapter �5) and apply the methods similar to the data migration and the delayed (lazy)
conversion, respectively. The decision is driven by the contradictory objectives (i.e. global
consistency vs. runtime performance) that favour one or other solution.

Methods and Tools for Ontology Evolution

 46

However, we do not have only to adapt the existing approaches to the ontology evolution, but
rather to extend them due to many reasons. They are a consequence of the different
knowledge model and different usage paradigm, which is elaborated in �[94]. Here we
summarise the main differences between ontologies and schemas that have direct implication
on the ontology evolution.

There are many differences between ontology engineering and object-oriented modelling. An
ontology reflects the structure of the world, it is often about the structure of concepts; besides,
the actual physical representation is not an issue. On the other hand, an object-oriented
structure reflects the structure of the data and code. It is usually about behaviour since the
integral part of an object-oriented model comprises methods. The physical representation of
data (int, char, etc) is also a part of a model.

The evolution is driven by the set of changes that have to preserve the consistency. Therefore,
each approach requires (i) the definition of the consistency and (ii) the explicit specification
of changes that can be applied. Both the consistency definition and the set of changes heavily
depend of the underlying model and, thus, they vary from one system to another. Since the
ontology model is richer than an object-oriented model �[94], (i) the consistency definition
includes more consistency constraints; and (ii) the number of possible changes is much richer
than in a typical (relational or object-oriented) database schema.

Regarding the consistency definition, we adjust of the object-oriented consistency definition,
which consists of the set of invariants of the object-oriented model, to the formal semantics of
the ontology model (see section �2.3). For example, a property is a first-class citizen and
therefore, it can exist without being attached to any concepts. Next, we extend the ontology
consistency definition with the soft constraints and the user-defined constraints since our goal
is to enable an ontology engineer to adapt an ontology to her needs in the easiest manner.

Moreover, the model is reflected in the set of changes. Each modelling primitive requires at
least two additional necessary changes – one for the addition of the entity and one for its
removal (see section �2.4.1). For example, changes related to the property hierarchy,
cardinality constraints, included ontology models, etc., are specific for ontology models and
are not contained in the taxonomy of the object-oriented schema changes. Further, it is not
sufficient to enumerate changes based on the underlying model. It is required to specify the
semantics of changes in the form of preconditions, postconditions and possible actions that
are necessary to preserve the consistency (see section �4.2). Due to the interwoven structure of
an ontology, the number of inconsistencies that a change may cause is larger than the number
of inconsistencies that arise during the database schema evolution. Therefore, the actions that
have to be specified for each change are much more complex.

Many ontology languages allow the ontology reuse. Therefore, there is a need for changes
that permit the including/excluding an ontology in/from other ontology. Consequently,
methods for propagating changes not only to ontology instances, but also to the ontologies
that reuse it are necessary. Moreover, the distributed environment such as the Semantic Web
has to be taken into account.

Further differences between ontologies and schemas stem from the explicit semantics that
ontologies provide �[94]. This allows for the usage of reasoning methods for checking the
consistency. Moreover, there is no clear difference between the conceptual level and the
instances. A concept may be treated as an instance and vice versa. This has serious
consequence on the ontology evolution. Further, all ontology entities and not only ontology
instances (which correspond to the database objects) may be used in the same way. For
example, the results of the ontology-based queries do not include only ontology instances.
Thus, the ontology evolution has to take into account the effect of an ontology change on
queries �[134].

Ontology Evolution Process

 47

2.5.2 Ontology evolution vs. XML schema evolution

XML as a data storage becomes more and more popular in recent years. It is used not only as
a Web interface to traditional databases but as standalone data storage as well. In both cases it
is appropriate to talk about XML database with structure defined by a collection of XML
Schemas (or DTDs). XML data is stored in a collection of valid XML documents with
structure regulated by corresponding XML Schemas.

Research and practical experience show that XML and XML Schema evolution are of critical
importance to the successful development and management of any complex XML-based
applications, especially content management systems. As XML schema is changing, the XML
schema evolution becomes an important area of research. However, there are only few
approaches that take this problem into consideration.

Many similarities between database schema and the XML schema allow for the building the
XML schema evolution on the extensive research in the database schema evolution. The first
step regarding schema evolution issues from a scientific viewpoint is to fix the meaning of
schemas and its changes. Thus, when investigating the XML schema evolution, the starting
point is a formal model of the XML Schema and the taxonomy of XML(S) changes. The first
attempt in this direction is given in �[136]. To manage the evolution of DTDs and XML
documents, the XML Evolution Manager (XEM) was developed. XEM provides a minimal
yet complete taxonomy of basic change primitives. For a change in the XML document, XEM
ensures that the modified XML document conforms to its DTD both in structure and
constraints. For a schema change, it ensures that the new DTD is well formed, and all existing
XML documents are also transformed to conform to the modified DTD. However, it does not
take into account that a DTD change can corrupt the DTDs that include it as well as
application programs running against the DTD or its XML documents. On the contrary, in
chapter �5 we propose an approach that brings automatically all dependent artefacts into a
consistent state after an ontology update has been performed.

In �[17] the author investigates the management of data changes on the Web in general. More
precisely, he focuses on semi-structured data such as XML. He distinguishes between changes
at a “microscopic” scale, such as an XML document as well as at a “macroscopic” scale, the
scale of the graph of the Web. The author proposes an algorithm to detect changes, and a
formalism to represent these changes. Similarly, we introduce three levels of ontology
changes: elementary, composite and complex changes (see section �3.2.1). Further, we allow
an ontology engineer to specify an arbitrary complex request for a change as a composition of
existing changes and propose an approach to resolving it. Finally, we propose an approach for
the continuous ontology improvement by semi-automatic discovery of changes based on the
analysis of the end-users’ behaviours.

A number of projects and tools have emerged to map XML and similar semi-structured data
formats to traditional database systems. In �[78] the authors investigate semi-structured data in
relational databases. The data managed in Lore is not confined to a schema, and it may be
irregular or incomplete. In general, Lore attempts to take advantages of structure where it
exists, but also handles irregular data as gracefully as possible. Since we agree that the global
consistency on the (Semantic) Web can never be achieved, we define the ontology
consistency on three different levels. Further, we propose methods for the synchronisation as
elaborated in chapter �5.

Oracle’s XML SQL Utility (XSU) and IBM’s DB2 XML Extender are well-known
commercial relational database products extended with XML support. They allow
implementing changes to XML schema by mapping the existing data to the new schema.
Instead of having to export and re-import all of the XML data, the user has to create the

Methods and Tools for Ontology Evolution

 48

XSLT (XSL Transformation) style sheet to transform old documents into the new schema,
and the database takes care of the rest. However, this only partially eases the management of
XML data since it requires users to be aware of the underlying storage system, its data model,
and the mapping mechanism between XML, XML Schema and the underlying storage model.
It prevents users from expressing desired changes independent of the underlying data
management system. On the contrary, we pay a special attention to the usability issue. We
take into account the users with the different background regarding the ontology management
and enable the customisation of the ontology evolution to the current need of the user.

The research regarding the XML schema evolution and the corresponding tool support are
still in early stages. Even though the full maturity is not achieved, the experiences from this
area are useful. XML schema evolution considers the schema changes as well as the data
changes and their impact on the consistency. Note that the database schema evolution mainly
focuses only on the schema changes. The main reason for this distinction is that a change in a
XML document may induce inconsistencies in the same document and in the XML Schema
this document is based on. Thus, it is critical to detect in advance whether an update is a valid
change that preserves the consistency, i.e. whether a required change will result in an XML
document still conforming to the given XML Schema. The similar strategy has to be applied
to the ontology evolution since the changes at the ontology instance level may provoke
inconsistencies to the conceptual level when the cardinality constraints are invalidated.

Further, for any change in the XML schema, an evolution support system would need to
verify that the suggested change leads to (i) a new well-formed XML schema and (ii)
corresponding changes are propagated to all old XML documents to conform to the changed
XML Schema. Similarly, an ontology evolution system must guarantee the consistency of an
ontology that a change is applied to as well as of all artefacts (e.g. dependent ontologies) that
reuse it. In both the scenarios the physical distribution of dependent elements (i.e. XML
documents or dependent ontologies) is very important. However, the XML evolution
considers only the change propagation between XML Schema and its document. Even though
an XML Schema may include other schemas, the problem of propagating changes from the
included schema to the including schema is not considered.

2.5.3 Ontology evolution vs. maintenance of the knowledge-based systems

The term “maintenance” refers to the process of keeping in working order or good repair
some object such as a building or vehicle. In computer systems terminology, this is translated
to the process of modifying a program and its documentation after it has been delivered and is
in use. It also includes the addition of new features, which the term maintenance in classical
sense does not cover.

Maintenance cannot be neglected in the development of conventional software systems, and
therefore, it cannot be ignored in knowledge-based systems. The knowledge-based systems
have developed from experts systems, which are software systems behaving like an expert in
some domain when solving a problem in that domain. The essential characteristic of
knowledge-based systems is that the knowledge representation and the means for
manipulating that knowledge are separated. Several paradigms for representing knowledge
have been suggested such as “if-then” production rules, propositional and predicate logic and
structured objects (e.g. originally frames, now objects in object-oriented programming sense).
The inference engine then contains methods for manipulating that knowledge. The inference
engine is usually written in procedural code, which can be maintained using traditional
methods for the software maintenance. Therefore, the maintenance of the knowledge-based
systems is focused on the maintenance of its knowledge base. More precisely, knowledge

Ontology Evolution Process

 49

base maintenance is the process of reflecting over some knowledge-based system in order to
handle a new situation �[81].

Since ontologies can be considered as enriched knowledge bases (due to richer set of
modelling primitives such as hierarchy, features defined for properties etc.), the experiences
from the knowledge-based system maintenance (in form of methodological as well as tools
support) should be taken into consideration �[69], �[83]. Therefore, another research area that is
relevant as state of the art for the ontology evolution is the maintenance of the knowledge-
based systems. An excellent overview of research problems related to the knowledge-based
maintenance is given in �[18].

Since the maintenance in general can be categorised into four groups �[56]: (i) adaptive
maintenance; (ii) perfective maintenance; (iii) corrective maintenance and (iv) preventive
maintenance, we comment upon each of them.

Adaptive maintenance results from the changes in the environment in which the knowledge-
based system operates or from the better understanding of a domain of a domain expert. Both
causes of changes are important for the ontology evolution as well. Regarding the first cause,
an ontology must be able to respond to the changes in the domain. Moreover, an ontology is
usually not developed automatically. Rather, it is extracted from the domain experts by
applying methodologies for the ontology development �[46]. Since all experts are continually
learning, the acquisition of new knowledge is required. Therefore, an ontology that represents
this knowledge formally and explicitly, needs to be maintained.

Perfective maintenance of knowledge-based systems results from changes in the users’
requirements. For example, it includes the amount and the organisation of the information
presented to the users. Since ontologies are developed incrementally and collaboratively, the
ontology evolution has to take into account the changes in the users’ needs. For example, to
gain the better understanding of an ontology concept, it would be better to organise its
subconcepts into a deeper concept hierarchy, and, consequently, to focus the user’s attention
on the important parts.

Corrective maintenance of the knowledge-based systems is maintenance that is not perfective
or adaptive. It is applied when the knowledge-based system is not behaving as it should. For
example, given a particular set of facts, a wrong conclusion may be drawn or a conclusion not
arrived at. These problems arise from the syntactic and semantic errors and errors in
identifying the knowledge stored in the knowledge base. The ontology evolution has to be
driven by the corrective actions as well. This can be achieved (i) by formalising the ontology
consistency, which assures the avoidance of the syntactic errors and (ii) by taking into
account the usability of an ontology as described in chapter �6.

Preventive maintenance combines all actions necessary for improvements to avoid future
problems. Indeed, the need for the knowledge-based maintenance is not only because of the
knowledge base is wrong in content. It may be possible that the knowledge base is wrong in
structure. This distinction is very important since the defects in the structure can be identified
or at least suggested by analysing the knowledge base alone. We adopted this idea to the
ontology evolution, which is described in section �3.4. Further, we extend this approach by
including the usage of an ontology in the domain, which it represents.

One knowledge-based system that has undergone extensive maintenance is the XCON
(originally referred as DEC R1/XEC) �[4]. This system has been built using production rules.
The experience of this system (as well as many others) shows that the addition of new rules is
not sufficient since a new rule may require the rewriting of many already existing rules.
Therefore, there is a need for a mechanism that is able to list automatically the rules (or the
frames) that will be affected. This also holds for the ontology evolution since a small change

Methods and Tools for Ontology Evolution

 50

in one part of an ontology may cause a lot of problems in other parts of this ontology.
However, the ontology evolution is much more complex not only because of the richer
knowledge model. The most important reason is that an ontology may include other
ontologies, some of them distributed over the Web. Therefore, often changes to some
ontologies have to be made if included ontology is updated. Such situations complicate the
ontology evolution and increase the overall complexity.

In �[12] the authors consider the possibilities to enable a domain expert to maintain her own
knowledge in a knowledge based system. They constructed a domain ontology and a task
model for the knowledge based system to be maintained. Further, they developed a
maintenance tool for the existing knowledge based system by separating domain and system
concepts. Similarly, we model ontology evolution problem (see chapter �4). By considering the
usability issue, we propose an approach for the usage-driven ontology evolution that supports
an inexperienced user, who does not need to be an ontology engineer, to develop/modify an
ontology. Moreover, we allow an ontology engineer (i) to specify her complex request for a
change declaratively without considering how it can be realised and (ii) to control the effects
of ontology changes.

In �[140] the authors propose the script-based knowledge acquisition tools that help users
follow typical modification procedures (i.e. KA scripts). Based on this work we define the
dependencies between ontology changes in form of rules that model side effects of a change
on the other related entities. However, we go a step further by introducing evolution strategies
as a means to “find” the consistent ontology that meets the needs of an ontology engineer. In
this way the ontology engineer is able to control the resolution of changes.

2.6 Conclusion

The goal of this thesis is to build a general framework for the ontology evolution. As the basis
of this framework, the KAON ontology model (with its consistency definition and its
changes) is used. However, the basic ideas are not strongly bound to this ontology model. The
main principles can be more or less easily adapted to other ontology models. Since the
evolution in general is driven by the set of changes and has to preserve the consistency, in this
section we define the ontology consistency and provide the complete taxonomy of the
consistency-preserving ontology changes for the KAON ontology model.

Ontology Evolution Process

 51

3 Ontology Evolution Process

Ontology evolution is the timely adaptation of an ontology to the changes in the business
requirements, to trends in the ontology instances and the patterns of the usage of the ontology-
based application, as well as the consistent management/propagation of these changes to
dependent artefacts. A modification in one part of the ontology may generate many
inconsistencies in other parts of the same ontology, in the ontology-based instances as well as
in depending ontologies and applications that are based on this ontology �[66]. This variety of
causes and consequences of the ontology changes makes the ontology evolution a very
complex operation that should be considered as both an organisational and a technical process
�[119]. It requires a careful analysis of the types of the ontology changes �[74] that can trigger
the ontology evolution as well as the environment in which the whole ontology evolution
process is realised �[133].

Based on the requirements for the ontology evolution system that is discussed in section �3.1,
we identify a possible six-phase evolution process and focus on providing the user with
capabilities to control and customise it.

3.1 Requirements Capturing

To develop a system, one has to start from the requirements for that system. Requirements’
gathering simply means “figuring out what to make before to make it”. Typically, there are
requirements that capture the intended behaviour of the system. This behaviour may be
expressed as services, tasks or functions the system is required to perform. In development of
any system (software, product, etc.), it is useful to distinguish between the baseline
capabilities necessary for any system to compete in its domain, and features that differentiate
the system from others. These features include the additional capabilities or they differ from
the basic capabilities along some quality attribute such as customisation.

Based on our experience19 in building ontologies and using them in several applications �[133],
we have formulated the following set of design requirements for an ontology evolution
system:

1. Mandatory requirement:

a. Functional requirement – Ontology evolution has to (i) enable the handling of
the given ontology changes �[37] and (ii) ensure the consistency of the
underlying ontology and all dependent artefacts �[127];

19 Since everyone's knowledge and experience is needed during the analysis of the requirements for the ontology

evolution, the key persons for this analysis are people familiar with the ontology development, who are aware
of the problems occurring during this process and whose know-how makes success of the analysis.

Methods and Tools for Ontology Evolution

 52

2. Supplementary requirements:

a. Guidance requirement - Ontology evolution should be supervised allowing the
user to manage changes more easily �[140];

b. Refinement requirement - Ontology evolution should offer advice to user for
continual ontology refinement �[39], �[95].

The functional requirement is the essential one for any ontology evolution system – after
applying a change to a consistent ontology, the ontology should remain in a consistent state.
The guidance requirement complements the first one by presenting the ontology engineers
with information needed to control changes. It also helps them make appropriate decisions
since it enables the assessment of the effectiveness of the change management activity, such
as the identification and the overcoming of undesired changes. The last one assists the
preparation for a change. It states that potential changes improving the ontology may be
discovered semi-automatically from the ontology-based data and through the analysis of the
user’s behaviour.

Whereas the first requirement is mandatory, the last two requirements help bridge the gap
between the functionality offered by an ontology evolution system and the needs of ontology
engineers who use this system to modify an ontology. Indeed, the supplementary
requirements significantly improve the usability20 of the ontology evolution system by
providing a qualitatively new level of services. On the other hand, the functional requirement
defines the extent to which, independent of the usability, an ontology evolution system
provides means for resolving a user's request for a change.

The proposed set of the requirements for the ontology evolution does not contain the non-
functional requirements21 such as efficiency, reliability, maintainability, etc. These
requirements are relevant for the implementation of a system since they constrain the design
of the system. For example, they restrict the freedom of software engineers as they make
design decisions because they limit the resources that can be used just as they set bounds on
aspects of the software’s quality. However, the non-functional requirements are not important
for defining the conceptual description of an ontology evolution system since they do not
describe services that this system has to provide.

A more careful analysis of the proposed requirements (e.g. the changes have to be captured,
analysed, applied and validated by the user) implies the necessity to consider the ontology
evolution problem as a composition of several subproblems realised in a determined
sequence. This sequence of activities, which resolve ontology changes in a composite way, is
called the ontology evolution process. Consequently, the system, i.e. software, which copes
up with the ontology evolution problem, has to be process-based, following currently the most
popular programming paradigm in the business software development.

In the remainder of this section, we analyse the above-mentioned requirements and derive the
ontology evolution process that fulfils them.

20 The usability in general is an important quality of a system that measures the extent to which a product or

process is learnable, enables users to be productive and avoid errors, and also subjectively satisfies them.
21 Non-functional requirements or system qualities capture required properties of a system, such as performance,

security, maintainability, etc.-in other words, how well some behavioral or structural aspect of the system
should be accomplished.

Ontology Evolution Process

 53

3.2 Functional Requirement

The functional requirement states that after applying and resolving changes in an ontology
already in a consistent state (see �Definition 6), the ontology, its distributed instances and
dependent ontologies/applications must remain in (another) consistent state. This requirement
encompasses two crucial aspects of the ontology evolution:

• enabling the resolution of changes, and,

• maintaining the system consistency.

The functional requirement may be realised through the following four phases as shown in
�Figure 9. These phases form a core ontology evolution process since they realise the
mandatory (i.e. functional) requirement.

The core ontology evolution process starts with representing a request for a change formally
and explicitly as one or more ontology changes (c.f. Representation in �Figure 9). Then, the
semantics of change phase prevents inconsistencies by computing additional changes that
guarantee the transition of the ontology into another consistent state. In the change
propagation phase all dependent artefacts (distributed ontology instances, dependent
ontologies and applications using the ontology that has to be changed) are updated. During
the change implementation phase required and derived changes are applied to the ontology in
a transactional manner. All phases of the core ontology evolution process are elaborated in the
rest of this section.

Semantics
of change

ImplementationRepresentation Propagation

Core ontology evolution process

Request for
a change

Required
change

Required
and

derived
changes

Modification of
dependent artefacts, i.e.
- distributed instances
- dependent ontologies
- dependent applications

Modified ontology

Figure 9. Four elementary phases of the ontology evolution process enabling the
resolving changes while keeping the consistency

3.2.1 Change Representation

To resolve changes, they have to be identified and represented in a suitable format (�[74],
�[101]). The ontology changes shown in �Table 1 are derived from our ontology model
definition described in section �2.2. They specify the fine-grained changes that can be
performed in the course of the ontology evolution. They are called elementary changes since
they cannot be decomposed into simpler changes.

Methods and Tools for Ontology Evolution

 54

Definition 16 An elementary ontology change is an ontology change that modifies (adds or
removes) only one entity of the ontology model.

However, this granularity of the ontology changes is not always appropriate. Often, the intent
of the changes may be expressed on a higher level. For example, an ontology engineer may
need to generate a common superconcept of two concepts. Let’s consider the application of
this request on the ontology shown in �Figure 3. The goal is to “group” the concept “PhD
Student” and “MSc Student” into a common concept “Working Student”. The ontology
engineer may bring the ontology into the desired state through successive application of a list
of elementary ontology changes:

1. AddConcept(“Working Student”) – creates a new concept “Working Student”;

2. AddSubConcept(“Working Student”, “Student”) – defines the concept “Working
Student” as a subconcept of the concept “Student”;

3. RemoveSubConcept(“PhD Student”, “Student”) – removes the inheritance relation
from “PhD Student” to its current parent “Student”;

4. AddSubConcept (“PhD Student”, “Working Student”) – defines the concept “PhD
Student” as a subconcept of the concept “Working Student”,

5. RemoveSubConcept(“MSc Student”, “Student”) – removes the inheritance relation
from “MSc Student” to its current parent “Student”;

6. AddSubConcept (“MSc Student”, “Working Student”) – defines the concept “MSc
Student” as a subconcept of the concept “Working Student”.

However, this has significant drawbacks:

• There is an impedance mismatch between the intent of the request and the way the
intent is achieved. It is required to create a superconcept of two concepts, but one
needs to translate this operation into six separate steps, making the whole process error
prone;

• A lot of unnecessary changes may be performed if each change is applied alone. For
example, removing the subconcept relation (e.g. between the concept “PhD Student”
and the concept “Student”) may introduce changes to property instantiations (i.e. the
deletion of all property instances for the properties that are inherited from the parent
concept). However, some of them (e.g. the “hasFirstName” property) should be
reversed when assigning the subconcept-of relation from “PhD Student” to “Working
Student”.

To avoid these drawbacks, it should be possible to express changes on a more coarse level,
with the intent of change directly visible. We introduce the composite ontology changes
representing a group of elementary changes applied together. Whereas an elementary change
can be seen as an isolated modification of an ontology, a composite change defines a
“context” of the evolution: It results from an analysis of entities that are close to each other
�[108]. Therefore, to define a set of composite changes the “closeness” of ontology entities
should be clarified.

Ontology Evolution Process

 55

Definition 17 The neighbourhood of an ontology entity is defined in the following way:

�
�

�
�

�

∈
∈
∈

=
Ie),e(IN

Pe),e(PN

Ce),e(CN

ood(e)Neighbourh

where CN represents the neighbourhood of an ontology concept, PN corresponds to the
neighbourhood of an ontology property and IN stands for the neighbourhood of an ontology
instance. They are calculated as:

)}e(instconcx)x(rangee)x(domaine)x,e(Hc)e,x(HcEx{)e(CN ∈∨∈∨∈∨∨∈=

)x,e(Hp)e,x(Hp)e(rangex)e(domainxEx{)e(PN ∨∨∈∨∈∈=

()})x,e(instpropi)i,e(instpropxIi ∈∨∈∈∃∨

()})e,x(instpropi)i,x(instpropeIi)x(instconceEx{)e(IN ∈∨∈∈∃∨∈∈=

The neighbourhood of a concept consists of its subconcept, superconcepts, properties, for
which it is specified as a domain or as a range concept, and instances defined for that concept.
The neighbourhood of a property contains its domain concepts, range concepts, subproperties,
superpropeties, instances it is defined for as well as instances it points to.The neighbourhood
of an instance includes its concepts, properties that are instantiated for it as well as properties
that point to it.

As can be noticed, we define the neighbourhood only for concepts, properties and instances.
Between these ontology entities it is possible to establish several types of relationships as
shown in �Table 3. By abstracting these relationships between entities, an ontology is
considered as a graph. The nodes correspond to the ontology entities and the edges represent
all “links” between them. Consequently, the “closeness” between two entities is defined as a
length of a path (i.e. a number of edges) between nodes that abstract the entities.

Table 3. Different types of “links” between ontology entities

 Concept Property Instance

Concept Concept hierarchy Property Domain/Range Instantiation

Property Property Domain/Range Property hierarchy Property instantiation

Instance Instantiation Property instantiation -

Two nodes that are linked through just one link are close together and they are called
neighbours. Therefore, the neighbourhood of an entity consists of all entities that are directly
linked to it by one link of one of the following types: (concept and property) inheritance,
property domain, property range, instantiation, property instantiation.

�Figure 10 shows the neighbourhood of a concept in general as well as the neighbourhood of
the concrete concept “Person” from the ontology depicted in �Figure 3. As can be seen, the
neighbours of a concept are (i) its parents or children (because of the ”subConcept” link), (ii)
properties whose domain or range is a considered concept (because of the
“propertyDomain”/”propertyRange” links) and (iii) its instances (because of the “instanceOf”
link). Therefore, the neighbourhood of the concept “Person” (see �Figure 3) contains the

Methods and Tools for Ontology Evolution

 56

following entities: the “Root”, “Academic Staff” and “Student” concepts due to the concept
hierarchy, the “hasFirstName” and “hasLastName” properties due to the property domain
relationship and the property “includes” due to the property range relationship.

Concept

Concept

Concept

subConcept

subConcept

domain

range
instanceOf

Property

Property

Instance

a) b)

Figure 10. Neighbourhood of a concept. (a) Concept‘s neighbourhood in general; (b) the
neighbourhood of the concept “Person“ from the ontology shown in �Figure 3

To clarify the property neighbourhood and the instance neighbourhood let’s consider the
ontology shown in �Figure 4. The neighbourhood of the property “includes” consists of the
concept “Project” (because of the “propertyDomain” link), the concept “Person” (because of
the “propertyRange” link), and the instances “OntoLogging” and “SteffenWezler” (because of
the “propertyInstantiation” link). On the other hand, the neighbourhood of the instance
“SteffenWezler” contains the concept “BSc Student” (because of the “instanceOf” link) and
the properties “hasFirstName”, “hasLastName” and “includes” (because of the
“propertyInstantiation” link).

Based on the definition of the neighbourhood of an ontology entity we define the composite
changes in the following way:

Definition 18 A composite change is an ontology change that modifies (creates, removes or
changes) the neighborhood of an ontology entity.

Similarly to �[108], the definition of composite changes is based on the notion of the “link”
between ontology entities. By observing a “neighbourhood” of entities it is possible to
discover more complex than elementary ontology changes shown in �Table 1. For example, by
considering the neighbourhood of the concept “Person” (see �Figure 10), one composite
change would be to extract its properties (i.e. “hasFirstName” and “hasLastName”) into a
new concept “Name” and to relate it to the original concept.

A part of the composite changes related to the inheritance link between concepts (i.e. to the
concept hierarchy) is shown in �Table 4. These changes coalesce several entities such as
merging or grouping of a set of concepts into one concept, or they produce different entities
through e.g. splitting of one concept into other concepts, etc. The graphical representation of
these changes is depicted in �Figure 11.

In addition to the changes related to the concept hierarchy (see �Figure 11), the composite
changes also include changes on the nature of the link (e.g. a subconcept relationship is
replaced with the property domain/range relationship), extracting or inlining properties (e.g.
the replacement of a property with the attributes of a referenced concept), the transformation

Ontology Evolution Process

 57

of a concept into an instance and vice versa, the movement/merging/grouping/splitting of
properties, instances, etc. Note that the set of composite changes is also model-dependent
since the definition of the neighbourhood depends on the underlying ontology model.
However, the most typical composite changes such as move, group, merge etc., are general
enough to be part of any ontology evolution system.

Table 4. Composite ontology changes related to the concept-concept links

Composite Change Syntax & Semantics
Pull concept up PullConceptUp(c)

Attach a concept c to the all parents of all its parents

Pull concept down PullConceptDown(c)

Attach a concept c to the children of all its parents excluding itself

Group concepts GroupConcepts(c1,c2, newC)

Create a common superconcept newC for the concepts c1 and c2 and
transfer common properties to it

Split concept SplitConcept(c, newC1, newC2)

Split a concept c into two concepts newC1 and newC2 and distribute
properties and instances among them

Merge concepts MergeConcepts(c1, c2, newC)

Replace concepts c1 and c2 with one concept newC and aggregate all
properties and instances

Concept copy CopyConcept (c, newC)

Duplicate a concept c with all its properties and directed instances by
creating a new concept newC and attaching it to the all parents of c

Concept
generalisation

AddConceptGeneralisation(c, newC)

Add a new concept newC between a given concept c and all its parents

Inheritance
extension

AddInteriorConcept(c1,c2, newC)

Add a new concept newC and attach it to a concept c1 as its parent and
to a concept c2 as its child

Concept
specialisation

AddConceptSpecialisation(c, newC)

Add a new concept newC between a given concept c and all its
children

Composite changes specify coarse-grained changes. They are more powerful since an
ontology engineer does not need to go through every step of the sequence of basic changes to
achieve the desired effect. For example, for an ontology engineer it may be more useful to
know that a concept was moved from one place in the hierarchy to another than to know that
it was detached from one concept and attached to another concept. Therefore, composite
changes make the ontology evolution much easier, faster and more efficient since they
correspond to the one “conceptual” operation that someone wants to apply without
understanding the details (i.e. a set of elementary changes) that an evolution system has to
perform.

Methods and Tools for Ontology Evolution

 58

Original Ontology

SupC

C

SubC1 SubC3SubC2

MergeConcepts(SubC1,SubC2,MergeC)

SupC

C

MergeC SubC3

PullConceptUp(SubC3)

SupC

C

SubC1 SubC3SubC2

GroupConcepts(SubC1,SubC2,Group)

C

Group

SupC

SubC1 SubC3SubC2

SplitConcept(C, C1,C2)

SupC

C1

SubC1 SubC3SubC2

C2

ConceptCopy (C,CopyC)

SupC

C

SubC1 SubC3SubC2

CopyC

Figure 11. Some composite changes related to a concept hierarchy

Furthermore, composite changes often have more meaningful semantics �[55]. For example,
the semantics of moving the concept from one parent concept to another is clearly different
from (i) the semantics of the removal and the addition of the subconcept relation as well as
from (ii) the semantics of the addition and the removal of the subconcept relation. The
“move” as a composite change maintains the identifiers of a subconcept relation and preserves
some properties and instances. On the other hand, the removal and the subsequent addition or
the addition followed by the removal create a new identifier for the subconcept relation.
Finally, the removal and the later addition cause the loss of much information (e.g. at the
instance level).

The previous example shows that a pure composition of the elementary changes is not
powerful enough to express a sufficiently large class of transformations. To achieve the
desired update, the glue “logic” (i.e. composite changes) has to be employed.

Note that the set of (elementary and composite) ontology changes does not include all the
transformations that might be desired in the future. The set of elementary changes is
exhaustive since it is derived from the underlying ontology model. However, it is not feasible
to specify the complete set of composite changes. There is always a possibility to define a
new composite change by combining existing ontology changes. For example, the grouping of
two subconcepts into one common parent may be extended into grouping of n subconcepts (n
≥2). Further, this change can be spread out in several ways. It can either be broadened into the
grouping of all subconcepts or narrowed down into grouping of subconcepts, which have
common properties or instances. Finally, some extensions may be domain-specific (e.g.
grouping of subconcepts, which are parents of the concrete instance). Thus, the set of
ontology changes covers only a fixed set of well known (i.e. most frequently used) ontology
changes.

Ontology Evolution Process

 59

Therefore, the next level of the abstraction of ontology changes includes complex changes. It
encompasses all “real-life” changes not included in the elementary and composite changes.
Complex changes are very important as they raise the level of abstraction as well as
reusability. They are a prerequisite for an effective evolution system �[108]. However, while a
set of complex changes may never be complete (there can always be some other combination
of changes that would constitute a meaningful single modification in some settings), it is not
possible to enumerate them. Rather, we identify some of them that are frequently used. For
example, the set of complex changes include changes such as:

• move concept, which is generalisation of the PullConceptUp (or PullConceptDown)
composite changes since it attaches one concept to another arbitrary concept not
necessary related to the first concept through the inheritance relationship;

• move a set of sibling concepts to a different location, which move two or more
concepts that are siblings in the concept hierarchy to the same new location in the
concept hierarchy (i.e. they remain siblings, but under different parent);

• deep concept copy, which recursively apply “shallow“ copy (i.e. the CopyConcept
composite change) to all subconcepts of a considered concept, etc.

Definition 19 A complex change is an ontology change that can be decomposed into any
combination of at least two elementary and composite ontology changes.

Ontology changes, independently of the level of their complexity (see �Figure 12), are the
force that triggers off the ontology evolution. A richer set of available ontology changes
makes it easier for an ontology engineer to formalise a request. As depicted in �Figure 9, the
role of the change representation phase of the ontology evolution process is to map a request
for a change into one or more ontology changes. Obviously, selecting only one change from a
predefined set of changes enables us to accomplish the change representation task efficiently.
On the contrary, a much greater effort is needed to formalise a request as a sequence of
changes since it requires deep knowledge about resolution of ontology changes (more details
are given in chapter �4).

Above mentioned changes are represented as instances of an evolution ontology – a special
ontology which explicitly represents semantic information about ontology entities, changes in
the ontology and mechanisms to discover and resolve changes. This formal, explicit
representation of ontology changes makes them machine-understandable, usable by other
ontology evolution systems as well as exploitable for supplementary functionality of an
ontology evolution system such as learnability. A detailed discussion of this ontology is given
in section �3.2.4.

3.2.2 Semantics of Change

Application of an elementary change to an ontology can induce inconsistencies in other parts
of the ontology. We distinguish structural and semantic inconsistency. Structural
inconsistency arises when the ontology model constraints (see section �2.3) are invalidated
(e.g. undefined entities at the ontology or instance level are used). Semantic inconsistency
arises when the meaning of an ontology entity is changed due to the changes performed in the
ontology �[142].

For example, let’s consider the case where an ontology engineer wants to delete the
subconcept relation between the concept “Person” and the concept “Student”. This change
will generate an inconsistency related to the concept “Student” since it does not have a parent

Methods and Tools for Ontology Evolution

 60

concept any more. Further, it will generate inconsistencies of instances of the concept
“Student” or its subconcepts since they inherit all the properties whose domain or range is the
concept “Person”. For example, after breaking the inheritance relationship between the
concept “Student” and the concept “Person”, the concept “BSc Student” will no longer be in
the domain of properties “hasFirstName”, “hasLastName” and in the range of the property
“includes”. Therefore, instances of the concept “BSc Student” may no longer have these
properties. As this example illustrates, the removal of a subconcept relation results in
structural inconsistency �[53].

Complex Changes

Composite Changes

Elementary Changes Single ontology
entity

Entities in the
neighbourhood

Layers of abstraction
of ontology changes

Applied on:

Arbitrary subset of
ontology entities

Figure 12. Different layers of abstraction of ontology changes and their impact on the
ontology

Resolving that problem is treated as a request for a new change in the ontology, which can
induce new problems that cause new changes and so on. Therefore, one change can
potentially trigger other changes and so on. If an ontology is large, it may be difficult to
comprehend fully the extent and meaning of each induced change. The task of the semantics
of change phase is to enable the resolution of induced changes in a systematic manner,
ensuring consistency of the whole ontology. To help a better understanding of the effects of
each change, this phase should contribute maximum transparency providing a detailed insight
into each change being performed. Some mechanisms used in this phase are described in
chapter �4.

In the course of evolution, the actual meaning of concepts often shifts to represent the
structure of the real world better. This causes semantic inconsistency. While some shifts of
the concept meaning are performed explicitly, a meaning of a concept can sometimes shift
implicitly through changes in other parts of the ontology. For example, consider an ontology
describing a relationship between jaguars and persons represented in �Figure 13.

In this ontology the meaning of the concept “Jaguar” is clear through the existence of the
property “eats” that links “Jaguar” and “Person” – it is obvious that the concept of “Jaguar”
stands for an animal from the feline family. For any reason one may delete the concept
“Person”, which may result in the removal of the property “eats” as well. After the change is
performed, the semantics of the concept of “Jaguar” is not clear any more – is it a Jaguar cat
or a Jaguar car? Note that since an ontology would still be well formed, there is no way to
automatically detect the problem. As a result, false conclusions may be drawn from this
ontology.

Ontology Evolution Process

 61

Figure 13. Concept properties define its meaning

These kinds of ambiguities can be eliminated in several ways. The simplest solution is by
introducing a superconcept “Animal” before the change is performed. However, if the
ontology is large, such issues may be easily overlooked because it is very hard to keep the
complete ontology structure in mind at once.

This problem can be avoided by using a richer description determining semantic role of
ontology entities. By attaching meta-information about e.g. essential properties of a concept
�[49], deeper knowledge about concept meaning is provided. For example, by specifying that
the property “eats” is the essential property for the concept “Jaguar” (since it defines the
meaning of the concept), its removal is not allowed. Consequently, the ontology engineer has
to be informed about all changes that will cause this deletion.

Moreover, semantic ambiguities of ontology entities may be resolved through additional
documentation, such as who the author of an entity is, what the purpose of introducing an
entity is, how frequently an entity may be changed �[142] etc. Contrary to meta-information
determining the semantic role of ontology entities, “documentation” meta-information cannot
be used for formal consistency checking. However, they may help ontology engineer to
comprehend how to perform the evolution.

In the rest of this thesis (see chapter �4) we focus on the structural inconsistency due to
possibilities to assist ontology engineers in detecting and resolving inconsistencies. On the
other hand, resolving semantic inconsistency heavily depends on the precise semantic
representation of ontology entities. Therefore, the standard ontology model has to be enriched
with the semantic information that exactly characterises the concept’s properties and expected
ambiguities, including the properties that are prototypical for a concept and that are
exceptional or essential as well as the behaviour of a properties over time and the degree of
applicability of properties to subconcepts �[49], �[142]. Since meta-information about ontology
entities are recognised to be the necessary and sufficient condition, i.e. the means for
obtaining a semantically consistent ontology, the semantic inconsistency problem is not of the
interest for further elaboration.

3.2.3 Change Propagation

The task of the change propagation phase of the ontology evolution process (see �Figure 9) is
to bring automatically all dependent artefacts into a consistent state after an ontology update
has been performed. As shown in �Figure 14, an ontology change might corrupt the dependent
ontologies, instances, as well as application programs running against the ontology �[66]. Note
that other aspects of the change propagation represented through the
“mightHaveConsequence” link in �Figure 14 are discussed in section �3.4.

Methods and Tools for Ontology Evolution

 62

Web clients
(Portals,…)
Web clients
(Portals,…)

OthersOthersJava
applications

Java
applications

AttributesAttributes
ConceptsConcepts

AxiomsAxioms

RelationsRelations
Is-a

hierarchy
Is-a

hierarchy

Instances
in Web-pages

Instances
in Web-pages

Instances
in KB

Instances
in KB

hasConsequence

mightHaveConsequence

Figure 14. Consequences of an ontology change

Effect of Changes on the Dependent Ontologies

Ontologies often reuse and extend other ontologies. Therefore, an ontology update might also
corrupt ontologies depending on the modified ontology (through the inclusion, mapping
integration, etc. �[72], �[107]) and consequently, all the artefacts based on these ontologies. This
problem can be solved by recursive applying the ontology evolution process to these
ontologies. However, it also requires the methods for the synchronisation between dependent
ontologies due to their independency. They are elaborated in section �5.3.

Further, in addition to the structural inconsistency, the semantic inconsistency can also arise
when, for example, the dependent ontology already contains a concept that is added in the
original ontology. Returning to the example shown in �Figure 5, the dependent ontology PO
(the project ontology) may include the concept “das Projekt”, although the concept with the
same meaning (the “Project” concept) is previously defined in the included basic ontology
BO. Since the resolution of that problem requires establishing equivalencies between the “das
Projekt” and “Project” concepts, it is more related to the meta modelling than to the ontology
evolution.

Effect of Changes on the Ontology Instances

When the ontology is modified, ontology instances need to be changed to preserve
consistency with the ontology �[53]. Two cases may be distinguished:

1. Metadata evolution - instances are distributed over the Web, e.g. web pages are
annotated with the ontology instances;

2. Knowledge base evolution – instances are organised in an instance pool.

The first case (i.e. the metadata evolution) requires means for the continuous adaptation of the
annotated information to the new semantic terminology and relationships. The resolution of
this case can be performed in three steps. Since the instances are on the Web, as for example
in the case of MEDLINE (see section �5.4), they have to be collected in a temporary ontology
�[28]. In order to speed up the whole acquisition process, only the instances that may depend
on a change have to be gathered �[28]. For example, if the concept “Student” is deleted, only

Ontology Evolution Process

 63

instances of that concept and its subconcepts should be assembled. The output of this step is a
list of instances together with the reference to the web documents containing them.

The next step is reduced to the evolution of dependent ontologies (see chapter �5) since the
temporary ontology is a dependent ontology consisting of only ontology instances. It must be
transformed to confirm to the modified ontology. This step provides an output in the form of a
list of modified instances with the reference to the corresponding web resource. Note that this
is the only step performed for the knowledge base evolution. In that case, the instances
already form an instance pool that is treated as a dependent ontology.

In the last step “out-of-date” instances on the Web are replaced with corresponding “up-to-
date” instances. Some updates can be done automatically, but for the instances that are “write-
protected” the notification has to be sent to the author of the annotation in order to inform her
about the changes and to suggest how to correct the instance �[127], �[130]. Therefore, the
metadata evolution does not resolve all the problems. However, it provides guidelines, such
as suggestions which resources’ metadata has to be checked and eventually changed to run
again the modified ontology.

Effect of Changes on the Applications

When an ontology is changed, applications based on the changed ontology may not work
correctly. An ontology evolution system has to recognise which change in the ontology can
affect the functionality of dependent applications and to react correspondingly �[55].

Most of the applications are written to be as generic as possible. However, there is a certain
number of “hard-coded” elements that should be treated specially in some way �[66]. In most
of the semantic web portals, there is a set of predefined queries. They are “hard-coded” into
the services that are invoked as a response to the specific action. When an entity from a query
is removed, the query rewriting process is needed �[36]. Since a query is a part of an internal
model that may become incompatible with the ontology, the portal (i.e. software) evolution is
needed.

Therefore, the first problem is how to find an application that uses the changed ontology since
there is a lack of the connection from the high level modelling methods to the lower level
implementation methods. An application can be semi-automatic maintained only if there is
metadata describing which ontology and/or which ontology entities that application uses.
Thus, the annotation of applications is necessary �[127]. By connecting applications back to
the model, it is possible to build up a fully traceable model from the broad process outline to
the software artefacts actually being constructed.

Secondly, in order to avoid overhead, which may heavily increase if the application
modification is performed every time an ontology is modified, the categorisation of the
ontology changes from the application point of view is required �[55]:

• ontology-extending changes – a new entity never has an impact on the existing
application;

• ontology-modifying changes which cover:

o compilation-safe changes – an application does not use a changed entity in its
code, and,

o compilation-unsafe changes – an application accesses a changed entity in its
code.

Methods and Tools for Ontology Evolution

 64

Therefore, ontology-extending and compilation-safe changes do not require any application
modification. On the contrary, the compilation-unsafe changes demand the application
modification and recompilation since the application becomes obsolete and may produce
incorrect results.

3.2.4 Change Implementation

The role of the change implementation phase of the ontology evolution process is (i) to
inform an ontology engineer about all consequences of a change request, (ii) to apply all the
(required and derived) changes and (iii) to keep track about performed changes. Subsequently,
we describe these functionalities in detail.

Notification of the Consequences of a Change

In order to avoid performing undesired changes, before applying a change to an ontology, a
list of all implications (i.e. required and derived changes) to the ontology and dependent
artefacts should be generated and presented to an ontology engineer who modifies this
ontology �[140]. Only if the ontology engineer is informed about all the changes that are going
to be performed on a request, can she make strategy decisions posed by the system. The
ontology engineer should however have possibilities to make such choices or even to abort
the entire ontology evolution process when she realises that it would have undesired
consequences for other parts of the ontology, for dependent ontologies, for distributed
instances or for existing applications. Consequently, she should be able to comprehend a list
of all the changes and approve or cancel them. When the changes are approved, they are
performed by successively resolving changes from the list. If changes are cancelled, the
ontology should remain intact. This is more elaborated in description of implementation in
chapter �7.

Change Application

In order to give an ontology engineer a chance to cancel a change after it has been completely
analysed, it is necessary to separate the analysis22 of the user’s request for the change from the
final execution of this request within the ontology evolution system. Therefore, the main task
of the change implementation phase of our ontology evolution process is the application of
changes. During this phase all changes (i.e. required and derived changes) are applied to a
consistent ontology and result into a new consistent state of this ontology.

Indeed, one of the main advantages of our ontology evolution process is the separation of the
phases where ontology evolution requests are analysed (i.e. the semantics of change and the
change propagation phases) from the final execution of the changes (i.e. the change
implementation phase). This separation was naturally driven by the need for the transaction23.
Only after a successful commitment of the hypothetical “reasoning” performed by the
semantics of change and the change propagation phases, the changes in effect took place on
the ontology itself. Once acknowledged by the ontology engineer for the implementation, all

22 The analysis of a change covers the semantics of change and the change propagation phases of the ontology

evolution process where the change is extended with the additional changes that ensure the consistency of the
ontology itself and the dependent artifacts.

23 A transaction represents a sequence of actions that is treated as a unit for the purposes of satisfying a request.
For a transaction to be completed, it has to be accomplished in its entirety.

Ontology Evolution Process

 65

the changes are considered as an atomic ontology “transaction” (i.e. they act like a
transaction), although the changes are executed step by step. Different optimisation methods
used for performing this task are discussed in chapter �7.

Change Logging

The last task of the change implementation phase is to keep track about the performed
changes. Information about changes can be represented in many different ways (e.g. �[91],
�[100]). To communicate about changes, we need a common understanding of a change model
and of a log model. Therefore, we introduce the evolution ontology and the evolution log
�[74]. The evolution ontology is a model of ontology changes enabling better management of
these changes. The evolution log tracks the history of applied ontology changes as an order
sequence of information (defined through the evolution ontology) about particular change.

�Figure 15 explains the dependencies between these ontologies and the ontology that is
changing (c.f. the domain ontology). There is a clear distinction between general knowledge
about the ontology evolution (i.e. the evolution ontology), the knowledge that is specific to a
particular domain (i.e. the domain ontology) and the knowledge about the
development/maintenance of a model of that domain (i.e. the evolution log).

Note that only a common understanding of the changes (achieved through the evolution
ontology) and of a log (achieved through the evolution log) enables the synchronisation
between the evolving domain ontology and the dependent artefacts (e.g. applications based on
this ontology) that have to incorporate or adapt to those changes. Further, the evolution log
based on the formal model of ontology changes (i.e. on the evolution ontology) enables the
recovery from “failure” since it makes possible to undo and redo applied changes as needed.

Subsequently, we describe these two introduced ontologies in detail.

Evolution
Ontology Domain

Ontology

Evolution Log

hasReference

Figure 15. Dependency between domain ontology, evolution ontology and evolution log

Evolution Ontology

In order to have the explicit representation of changes, we need an agreed-upon ontology of
changes. Therefore, we develop a special ontology, the so-called evolution ontology that
supports, alleviates and automates the ontology evolution process �[74], �[127]. It is about a
meta-ontology that is used as a backbone for creating evolution logs. This ontology is a
central part of our ontology evolution process, because different process phases must agree on
representing changes. Thus, to develop this common shared model of ontology changes, we
incorporate the requirements put by all the phases of the ontology evolution process.

Methods and Tools for Ontology Evolution

 66

The evolution ontology, shown in �Figure 16, models what changes, why, when, by whom and
how are performed in an ontology. Therefore, the most important concept is the “Change”
concept. The structure of the hierarchy of ontology changes reflects the underlying ontology
model by including all possible types of changes. For example, elementary changes are
decomposed into the changes causing the addition (the concept “AdditiveChange”) and the
changes provoking deletion (the concept “SubtractiveChange”). The additive changes are
further decomposed into e.g. “AddConcept”, “AddProperty”, etc. Indeed, each leaf concept in
the hierarchy of the concept “Change” represents a specific ontology change (see e.g. �Table 1
and �Table 4). For the composite changes the property “includes” and the set of its
subproperties are defined indicating that these changes are realised as a sequence of
elementary or composite changes. This sequence is represented in the evolution ontology
explicitly, enabling the declarative specification of the semantics of the composite changes.
This richer description of the changes, their causes, and consequences provide more scope to
resolve possible inconsistency.

Figure 16. A part of the evolution ontology

Representing the knowledge about ontology changes in a concept hierarchy enables us to
specify the common properties of ontology changes in an efficient way since the inheritance
mechanism may be exploited �[64]. For example, for each change the additional information,
such as the date and time of the change, the version number, as well as the identity of the
change initiator may be associated. This is modelled through appropriate properties defined

Ontology Evolution Process

 67

for the concept “Change” and can serve as a source for different knowledge discovery
methods, e.g. mining about change trends �[74].

Moreover, information supporting decision-making, such as cost, relevance, priority, textual
description of the reason for a change etc. may also be included �[91]. The cost of a change is
used to determine its validity especially for the deletion of some ontology entities. The
relevance of a change describes whether and how it can fulfil the requirements. For example,
the cost of the concept deletion is estimated based on the ontology structure (e.g. the number
of the subconcepts and the total number of the instances of these concepts). If the cost of a
change application is huge and the relevance of a change is low, then this change should be
cancelled. This information might be used to guide ontology engineers through the evolution
process �[140]. Further, in order to keep a memory of past decisions, it may be important to
record the decisions leading to updates �[67]. The “reason” property is used to explain the
motivation for making a change. For instance, an ontology engineer should give an
explanation or an example why a certain concept should be introduced or its definition was
changed, etc. This information may be used for learning about decision making process as
well as about the competencies of ontology engineers.

As described previously, elementary changes may cause new changes in order to keep the
ontology consistent. Such dependencies may be represented using the “causesChange”
property. Groups of changes of one request are maintained in a linked list using the
“hasPreviousChange” property. These two properties have completely different semantics.
The first one is used to model the “cause-effects” dependency between changes whereas the
second one models the order in which the changes are requested. However, both of them are
necessary for supporting the reversibility as well as the change propagation. The property
“causesChange” makes it possible to reverse all side effects of the required change. The
property “hasPreviousChange” allows reconstructing the sequence of required changes and is
specialised into two subproperties: “hasPreviousActualChange” and
“hasPreviousHistoryChange”. The “hasPreviousActualChange” property indicates the
current state of the ontology by excluding the effects of the inverse changes (i.e. reversibility).
In this way, it specifies only the necessary changes to achieve the resulting ontology. On the
contrary, the “hasPreviousHistoryChange” property takes into account the sequence of all the
changes that have actually taken place. Therefore, it models the actual evolution process in a
unique way (since it records all intermediate ontology versions as well). In the case that a log
of changes does not contain changes that undo other changes (e.g. AddConcept(“X”) followed
by RemoveConcept(“X”)), the “hasPreviousActualChange” and
“hasPreviousHistoryChange” properties for each change instance point to the same target
instance.

For properties establishing the relations between changes (i.e. “causesChange”,
“hasPreviousActualChange” and “hasPreviousHistoryChange”) the corresponding inverse
properties are defined enabling the usage of implicit knowledge for some purposes.

The above-introduced properties are universal in the sense that they can be recorded for all
ontology changes. However, there are additional properties depending on the change type.
These properties are used to represent the peculiarities of a particular type of a change, such
as its arguments. The change-specific properties are modelled by using a property hierarchy.
For example, entities from the ontology being changed are related to the instances of the
“Change” concept through the “hasReferenceEntity” property and its subproperties. The
number of properties referencing the domain entities defined for one ontology change and
their semantics are specific to that change. Therefore, the property “hasReferenceEntity” is
specialised into several subproperties indicating the type of entity that is considered. For
example, the “hasReferenceConcept” property is used to reference the changes related to the
concepts in the domain ontology or the “hasReferenceValue” designates the changes to the

Methods and Tools for Ontology Evolution

 68

values of property instances. This information is used for the verification of performed
ontology changes by checking the type of the entity that the change is applied to. Note that
these properties are shared between several concepts in the hierarchy of the concept
“Change”. For example, the property “hasReferenceInstance” is specified for changes
“AddInstance”, “RemoveInstance”, “AddInstanceOf”, etc. since all of them operate on
ontology instances.

We note that the “hasReferenceEntity” property (and its subproperties as well) is not defined
as a relation since it is also used to reference the entities from the domain ontology that do not
exist anymore (e.g. “RemoveConcept”). Therefore, it is an attribute whereas its value is the
unique identifier of the entity from the domain ontology that is changed. This is the reason
why the evolution log does not include the domain ontology, but rather refers to it as shown in
�Figure 15.

Note that the hierarchy of the concept “Change” invariably depends on the underlying
ontology model. Defining the standard set would be realistic when there is a common
ontology language. However, the set of properties defined for the concept “Change” and its
subconcepts are general enough to be considered as a standard for the change representation.

The evolution ontology enables the representation, the analysis, the reasoning about, the
realisation and the sharing of ontological changes in a more systematic and consistent way.
Benefits of the using the evolution ontology are manifold:

• Changes are represented formally and can be managed formally;

• A history of changes is stored and can be used for the recovery or the additional
analysis;

• Based on the formal representation and the history of changes the change propagation
problem (see chapter �5) may be approached (e.g. any software application that makes
use of an evolving ontology would be able to recognise applied changes and to
incorporate them easily);

• Using the same representation model for the domain ontology and ontology changes
simplifies storage and allows reuse of system components (e.g. searching for entities
from the domain ontology can be reused for the searching for the applied changes
since they are entities of the evolution ontology).

Evolution Log

While the structure of the evolution ontology aims at better characterisation and
understanding of the changes, an evolution log records an exact sequence of changes that
occurred when an ontology engineer updated an ontology. Therefore, it contains instances of
subconcepts of the concept “Change”, which include the elementary as well as the composite
ontology changes. Indeed, a request for a change and all its consequences are represented as
instances of the corresponding change concepts. Each instance contains a data about a
particular change. For example, for all changes a log includes a timestamp, author, version
etc. �Figure 17 shows a part of a possible log of changes. In this way the level of granularity at
which changes are specified is close to a single user-interface operation (cf.
AddConcept(“Person”)). However, an evolution log provides a complete and unambiguous
change specification at a very fine level of detail since for each change request all effects are
represented explicitly (cf. AddSubConcept(“Person”, “Root”)).

Ontology Evolution Process

 69

<a:AddConcept rdf:ID="i-1079525222689-178059496"
a:hasReferenceConcept="file:/C:/BasicOntology#Person“
...
a:version="1"/>

<a:AddSubConcept rdf:ID="i-1079525222689-973090869"
a:has_referenceSubConcept="file:/C:/BasicOntology#Person"
a:has_referenceSuperConcept=http://kaon.semanticweb.org/2001/11/kaon-lexical#Root
...
a:version="1">
<a:hasPreviousActualChange rdf:resource="#i-1079525222689-178059496"/>
<a:hasPreviousHistoryChange rdf:resource="#i-1079525222689-178059496"/>

</a:AddSubConcept>

Figure 17. A part of the evolution log represented in XML/RDF format

Keeping a record of changes is important. Introducing an ontology for representing them
gives additional advantages. The advantage of our evolution log is the formal, explicit
semantics that is provided through the evolution ontology. This enables easier synchronisation
between dependent ontologies. Namely, this problem can be approached by comparing the
evolution logs, which is not difficult due to the fact that logs reuse the same evolution
ontology. Further, if the formal model for representing changes is used, the developers of
applications depending on the ontologies will be well served since they will devote less time
and expense to understand and manage changes due to possibility to automate the update
�[101]. Finally, the meta knowledge provided by the evolution ontology can assist intelligent
search in the evolution log for some previously made changes. For example, if a query (e.g.
“Find all “RemoveConcept” changes”) sends back no result, then the evolution ontology can
be used to generalise automatically the query to find nearest partial matches (e.g. “Find all
“SubtractiveChange” changes”). Indeed, reasoning allows inferring implicitly represented
knowledge from the knowledge that is explicitly contained in the evolution ontology.

3.3 Guidance Requirement

The guidance requirement is related to the user’s management of changes. It considers the
needs of different groups of users since it ensures that the ontology evolution system is usable
for both beginners and experts in modifying an ontology.

As mentioned above, a change in one part of the ontology can have far reaching consequences
for other parts of the ontology and dependent artefacts. The semantics of changes phase (see
section �3.2.2) was introduced into the evolution process to help the ontology engineers
comprehend the effect of a change. This can help in reducing the number of accidental
ontology changes and can even guide the ontology refinement process. Still, there are
numerous circumstances where it may be desired to reverse the effects of the ontology
evolution, to name just a few:

• The ontology engineer may fail to understand the actual effect of the change and
approve the change that should not be performed;

• It may be desired to change the ontology for experimental purposes;

• When working on an ontology collaboratively, different ontology engineers may have
different ideas about how the ontology should be changed.

Methods and Tools for Ontology Evolution

 70

In order to enable recovering from these situations, we introduce the change validation phase
in the ontology evolution process (see section �3.5). It enables justification of performed
changes and undoing them at user’s request. Consequently, the usability of the ontology
evolution system is increased.

It is important to note that reversibility means undoing all effects of some change, which may
not be the same as simply requesting an inverse change manually. For example, if a concept is
deleted from a concept hierarchy, its subconcepts will need to be deleted as well, attached to
the root concept, or attached to the parent of the deleted concept. Reversing such a change is
not equal to recreating the deleted concept – one needs, also, to revert the concept hierarchy
into original state.

The problem of reversibility is typically solved by creating evolution logs (see �3.2.4). An
evolution log tracks information about each change in the system, allowing the reconstruction
of the sequence of changes leading to current state of the ontology. Therefore, supporting
traceability24 ensures that an ontology engineer can always get out, go back or undo a change.

Moreover, the change validation phase helps ontology engineers to find out whether they
have built the right ontology, i.e. whether the changed ontology represents a piece of reality
and the users' and/or application’s requirements correctly. One technique for the validation is
the generation of the explanation. Therefore, in contrast to the semantics of change phase that
concerns formal properties of a model such as consistency and syntactical correctness, the
change validation phase requires the "behaviour knowledge", because if we do not have some
expectation of the appropriate behaviour, we cannot assess if the runtime behaviour is
adequate. Indeed, the change validation phase provides answers to the following questions:
how, why, what, what-if etc. More information about the assessment of an ontology based on
the end-users’ behaviour is given in chapter �6.

Besides reversibility and explanation, the guidance requirement is also related to the usability
of an ontology evolution system. Indeed, the change validation phase realising the guidance
requirement also has to provide the following set of functionalities:

• ensuring that an ontology engineer always knows what she can and should do next,
and what will happen when she does it;

• making sure ontology engineers can move in a step by step manner as they perform
their tasks;

• guarantying that the sequences of changes to achieve a request are as simple as
possible;

• making sure that everything that appears on the screen should be easily understandable
to ontology engineers, organised effectively, without displaying too much
information;

• providing good feedback including effective error messages in the case that the
request cannot be applied;

• when something goes wrong, explaining the situation in adequate detail and help the
user resolve the problem;

• ensuring that ontology engineers always feel in control e.g. by informing them of the
progress of the changes and of their location as they navigate.

24 Traceability is the ability to determine the information that leads to a decision being made.

Ontology Evolution Process

 71

3.4 Refinement Requirement

Refinement requirement enables the continual improvement of an ontology. The refinement
patterns serve to direct the ontology engineers’ focus onto a set of issues that might be
insightful. It is realised through the change capturing phase of the ontology evolution process
(see section �3.5)

In the ontology evolution we may distinguish two types of changes: top-down changes and
bottom-up changes, whose generation is the task of the change capturing phase. The top-
down changes are explicit changes, driven, for example, by ontology engineers who want to
adapt the ontology to new requirements or by the end-users who provide the explicit feedback
about the usability of ontology entities. These changes cover the business strategy evolution,
the modification in the application domain, new user’s needs, additional functionality, etc.
and they are captured in a variety of ways such as the direct discussion or interviews, by
considering customer specifications, by conducting some surveys, etc.

However, the gathering of these changes is a time consuming, error-prone and difficult
activity due to many reasons: (i) ontology engineers may have difficulty grasping the
knowledge area; (ii) the end-users may have difficulty expressing their needs; (iii) some
relevant changes may be overlooked; (iv) some irrelevant changes may be required, etc.
Moreover, some changes in the domain are implicit, reflected in the behaviour of the system
and can be discovered only through the analysis of this behaviour. For example, if nobody is
interested in information covered by one ontology concept for a longer period of time, it
might indicate that this concept is not necessary and, consequently, it could be removed.
These changes mined from different datasets are called the bottom-up changes. The
application of these changes enables the continual improvement of the ontology. The different
sources of both the types of changes are shown in �Figure 18.

Note that these types of changes correspond to the two methods for the knowledge
acquisition25. The top-down (deductive) changes are the result of the knowledge elicitation
techniques that are used to acquire knowledge direct from human experts (domain experts or
end-users). On the other hand, the bottom-up (inductive) changes match the machine
learning26 techniques, which use the different methods to infer patterns from the sets of
examples.

One source of the bottom-up changes is the structure of the ontology itself �[95]. Indeed, the
previously described change validation phase results in an ontology which may be in a
consistent state, but contains some redundant entities or can be better structured with respect
to the domain. For example, multiple users may be working on different parts of an ontology
without enough communication. They may be deleting subconcepts of a common concept at
different points in time to fulfil their immediate needs. As a result, it may happen that only
one subconcept is left. Since classification with only one subclass beats the original purpose
of classification, we consider such ontology to have a suboptimal structure. To help users in
detecting such situations, we investigated the possibilities of applying the self-adaptive
systems principles �[59] and proactively make suggestions for ontology refinements – changes
to the ontology aimed at improving ontology structure, making the ontology easier to
understand and cheaper to modify. As known to the authors, none of the existing systems for
ontology development and maintenance offer support for (semi-) automatic ontology
improvement. However, this support is very important since one method for reducing the cost
of the evolution is to automate aspects of the evolutionary cycle when possible �[145].

25 Knowledge acquisition is a subfield of the Artificial Intelligence (AI) concerned with eliciting and

representing knowledge of human experts so that it can later be used in some application.
26 Machine learning provides techniques for extracting knowledge (e.g. concepts, rules) from data.

Methods and Tools for Ontology Evolution

 72

Figure 18. Two types of ontology changes

Based on heuristics knowledge and/or data mining algorithms, suggestions for changes that
refine the ontology structure may be induced by the analysis of the following data sources: (i)
the ontology structure itself, (ii) the ontology instances or (iii) the information describing
patterns of ontology usage. In the rest of this section we further elaborate on these variants.

3.4.1 Structure-driven Change Discovery

Structure-driven change discovery is based on the knowledge of ontology engineers that they
use in the decision making during the ontology evolution. It exploits a set of heuristics to
improve an ontology based on the analysis of its structure. We found the following heuristics:

• If all subconcepts have the same property, the property may be moved to the parent
concept;

• A concept with a single subconcept should be merged with its subconcept;

• If there are more than a dozen subconcepts for a concept, then an additional layer in
the concept hierarchy may be necessary;

• All the siblings in the concept hierarchy must be at the same level of generality;

• A concept without properties is a candidate for deletion;

• If a direct parent of a concept can be achieved through a non-direct path, then the
direct link should be deleted.

The proposed heuristics model the expertise and experience of the ontology engineers in order
to give advice on strategic matters such as the coherence of an ontology. Indeed, the structure-
driven change discovery stems from the idea to apply refactoring27 �[145]. Refactoring
interpreted from the point of view of the ontology evolution enables the evolution of an
ontology on an if-needed basis. In such a way it reduces unnecessary complexity and

27 Refactoring is a technique to restructure code in a disciplined way.

Ontology Evolution Process

 73

inefficiency. For example, the first heuristic is the consequence of the “Consolidate Duplicate
Conditional Fragments”28 refactoring method �[38], which states:

“When the same fragment of code is in all branches of a conditional expression, then it has to
be moved outside of the expression”.

If we consider a fragment of a code as a property and a branch of a conditional expression as a
subconcept, then the previous refactoring method can be translated into the request to move a
property outside the subconcepts, i.e. into a common parent concept. In other words, when
defining a domain or range for a property, then the most general concept or concepts should
be used. Indeed, we interpret this pattern in the following way:

• If all subconcepts of a concept have the same property, this property should be moved
to the superconcept;

• If a concept and its single superconcept have the same property, this property should
be moved to the superconcept;

• If most subconcepts of a concept have the same property, one has to consider moving
it to the superconcept.

The dependency between refactoring methods and the ontology evolution is shown in �Figure
19.

A

X

B

X

C

D

X

A B

X

C

D

a) Refactoring

b) Structure-driven Change Discovery

Figure 19. The interpretation of the refactoring method from the ontology evolution
point of view

3.4.2 Data-driven Change Discovery

The data-driven change discovery considers the ontology instances in order to refine the
ontology (including its instances as well).

28 http://www.refactoring.com/catalog/index.html

Methods and Tools for Ontology Evolution

 74

Note that this can not be realised in the ontology evolution systems based on the description
logic (DL) ontology languages such as OWL since DL systems naturally adhere to the open
world assumption. This assumes that the present instances are just an explicitly known subset
of valid instances, and more valid instances may be inferred by reasoning �[20]. Thus, if an
assertion implies a deduced fact that is consistent with all known assertions and instances,
then the fact is assumed to be true even if it is not present in the set of instances. Otherwise,
an insertion in DL is always treated as the insertion of incomplete information. On the other
hand, KAON as other frame-based ontology languages assumes the closed world. By the
closed world assumption, the absence of information is interpreted as negative information.
Therefore, it is assumed that the “complete information” about instances is available.

The difference between ontology-languages regarding the open or closed-world assumption
provokes significant consequences on the data-driven change discovery, which takes into
account ontology instances with the goal to improve the ontology. Namely, the lack of
information in the DL makes it useless for the instance-based learning since it makes no sense
to conclude something from incomplete information.

The data-driven change discovery29 explores different techniques such as data mining (DM),
formal concept analysis (FCA) or even with the heuristic knowledge on the ontology
instances in order to support the task of maintaining ontologies. In the following text, we
point out possible approaches.

DM is defined as the process of extracting hidden knowledge from large volumes of raw data
�[153]. If ontology instances are considered as raw data, then DM methods may be used to
analyse them from different perspectives and summarise them into useful information. For
example, clustering methods that group data items according to logical relationships may be
used to improve a concept hierarchy. In �[76] the authors propose an approach for clustering
ontology-based metadata based on the definition of a set of similarity measures for comparing
ontology-based metadata. Hierarchical clustering algorithms are preferable for the concept-
based learning since they produce hierarchies of cluster. Therefore, the matching between
these clusters and the existing concept hierarchy may result in a recommendation for the
improvement of the concept hierarchy. Other data-mining methods may be applied �[73], �[77].
For example, the application of the association rules on ontology instances may result into
new properties, the useful rules may be extracted by applying Inductive Logic Programming
(ILP) methods etc.

Moreover, Formal Concept Analysis (FCA) �[41] may be also used for adjusting the concept
hierarchy based on the context of the instance pool. FCA is mainly used for the analysis of
data, i.e. for investigating and processing explicitly given information. Such data are
structured into units that are formal abstractions of concepts of human thought, allowing
meaningful and comprehensible interpretation. These concepts are organised in the
(mathematic) lattice structure, which guaranties the minimality of the generated structure (e.g.
for each two concepts there is exactly one infinum and one supremum). FCA can be used for
learning hierarchies from a set of instances in a step by step manner. It means that not only
the most upper concept, but the whole hierarchy tree (i.e. a lattice) can be generated for a set
of instances. The root of such a lattice is the most general concept (parent) of the given

29 Ontology learning �[73] exploits a lot of existing resources, like text, thesauri, dictionaries, databases and so on

to develop an ontology in a semi-automatic way. It combines techniques of several research areas, e.g. from
machine learning, information retrieval or agents and applies them to discover the semantics in the data and to
make them explicit. Therefore, it starts from scratch.

 On the contrary, the data-driven change discovery assumes that an ontology, that needs to be improved,
already exists. This information is used to guide the learning process as background knowledge. Moreover, for
the data-driven change discovery it is not enough to induce knowledge. It is also important how to interpret
this knowledge with respect to the existing ontology. More information is given in chapter �6.

Ontology Evolution Process

 75

instances. In that way using FCA methods, one can learn the whole hierarchy and not only the
most upper concept like by using the most common subsumer operator in DL. However, the
structure of instances FCA is able to deal with is very limited, since FCA methods are not
suitable for instances with instantiated relations.

Besides the application of data-mining methods and FCA on ontology instances, some
recommendations for the ontology refinement may be generated by applying heuristic
knowledge. The following heuristics are identified:

• A concept with no (direct and indirect) instances may probably be deleted;

• If no instance of a concept C uses any of the properties defined for C, but only
properties inherited from the parent concept, then the concept C is not necessary;

• A concept with many instances is a candidate for being split into subconcepts and its
instances distributed among newly generated concepts;

• If all instances of a concept X are also instances of some other concept Y (which may
have additional instances as well), then the concept X should be a subconcept of the
concept Y.

Finally, the data-driven change discovery might be used as a verification tool since it helps in
finding “weak” parts in ontology instances. Since we assume that instances must be consistent
with the underlying ontology, the “quality” of instances �[131] can be assessed through the
existence of redundancy, inaccurate or incomplete information in an instance pool (see section
�5.4.3). To note that assessment is performed on the instance pool level and the ontology
structure is the basis for all measures. The assessment can help an ontology engineer refine
and improve the ontology instances. Therefore, the analysis of the instance pool results into a
set of recommendations for the improvement of the ontology instances. This approach is
applied to the MEDLINE system that is elaborated in section �5.4.3.

3.4.3 Usage-driven Change Discovery

One of the most difficult problems in ontology development is its evaluation since the
ontology development is subjective. What does it mean for an ontology to be correct
(objectively)? The best test is the application for which the ontology was designed, the
behaviour of the end-users of that application. The usage-driven change discovery tries to
support the ontology engineers in adapting an ontology with respect to the end-users’ needs.
For example, by tracking when the concept has last been retrieved by a query, it may be
possible to discover that some concepts are out of date and should be deleted or updated.
Chapter �6 presents our approach for the usage-driven change discovery based on the usage-
specific heuristic knowledge. We model information about the usage of ontology entities and
process heuristic knowledge in order to generate expert advice.

The broad scope of the supported changes (each of them related to one or more heuristics)
indicates that the change discovery might have a significant impact when applied to evolving
ontologies. This claim is validated with the real application (see chapter �6) in which many
hand-coded changes between two ontology versions are automated. Additionally, the set of
heuristics defined to support the discovery of changes guide the learnability, i.e. the speed
with which an inexperienced ontology engineer can become proficient with the ontology
evolution system. Further, the acceptability, defined as the extent to which ontology engineers
like a system, is also increased since they can easily find “weak spots” in the ontology and
they are provided with the solution for these problems.

Methods and Tools for Ontology Evolution

 76

3.5 Process

As ontologies grow in size, the complexity of change management increases, thus requiring a
well-structured ontology evolution process. A complete ontology evolution process derived
from our discussion on ontology evolution requirements (see section �3.1) is presented in
�Figure 20. It has a cyclic structure since validation of realised changes may (automatically)
induce new changes in order to obtain the model consistency or to satisfy users’ expectations.
The functional requirement for the ontology consistency results in the core component that
consists of four phases: the change representation, the semantics of change, the change
propagation and the change implementation phases. The second requirement for user
guidance results in the change validation phase and the third requirement for continual
ontology refinement results in the change capturing phase.

Figure 20. Ontology evolution process

In the rest of this thesis we focus only on the three phases:

• the semantics of change phase that helps to resolve a change (see chapter �4);

• the change propagation phase that ensures the consistency of the dependent artifacts
(see chapter �5);

• the change capturing phase that helps to discover changes (see chapter �6).

The whole process (including the phases that are not further elaborated) is automated and the
implementation details are given in chapter �7. This section also contains a short evaluation
study that compares our approach and its realisation with the existing systems for the
ontology development and evolution.

Implementation Implementation
- Notification
- Application
- Logging

Representation Representation
- Elementary
- Composite
- Complex

Propagation Propagation
- Ontologies
- Instances
- Applications

Validation Validation
- Reversibility
- Explanation
- Usability

Capturing Capturing
- Top - down
- Bottom - up

Refinement
requirement

Guidance
requirement

Functional
requirement

How to resolve a change?

How to discover a change?

How to ensure the consistency?

Semantics Semantics
of change of change
- Structural
consistency
- Semantic
consistency

Core component

Ontology Evolution Process

 77

3.6 Related Work

In the last decade there has been very active research in the area of ontology engineering. The
majority of research studies in this area are focused on construction issues. However, coping
with the changes and providing maintenance facilities require a different approach. We cannot
say that there exist commonly agreed methodologies and guidelines for the ontology
evolution. Thus, there are a very few approaches investigating the problems of inducing
changes in ontologies.

The discussion about the related work is split into three parts: (i) requirements for the
ontology evolution support, (ii) ontology changes and (iii) the ontology evolution process.

3.6.1 Requirements

In �[86] the author presents the guiding principles laid down in the fields of conceptual graphs,
description logic, general frame systems, object-oriented modelling, knowledge acquisition,
etc. for building consistent and principled ontologies. The goal is to alleviate their creation,
the usage and the maintenance in the distributed environments. The author analyses the
requirements for the tool environments that enforce consistency. These requirements include
naming convention, support for multiple ontologies, versioning, etc. They enable us to
identify problems, but not to resolve them. Therefore, the approach is not complete and
provides a rather informal basis for ontology management. Our work supplements this
approach because we have developed and realised the whole methodology for ontology
management. It covers the whole ontology lifecycle. Moreover, it incorporates the necessary
means such as keeping the consistency as well as the means that increase the usability of the
ontology evolution system by guiding the ontology engineers through the evolution and
making suggestions for the continual ontology improvement.

In �[109] the authors define two main problems in conceptual schema evolution: the
applicability problem (does the underlying system support the desired evolution and how to
realise it?) and the conformity problem (are the evolved schema, data and application
conformed to the required evolution?). In our approach these two problems are captured by
the functional requirement for an ontology evolution system. We go step further by taking
into account the usability (the guidance requirement) and learnability (the refinement
requirement) issues.

In �[47] the authors propose some design criteria and a set of principles that have shown to be
useful for the development of ontologies. For example, they propose the minimisation of the
semantic difference between sibling concepts. To improve ontology understanding, it would
be advisable for definitions that are children of the same parent to be defined according to the
same template. The same approach can be applied not only to the ontology development, but
also to the ontology evolution as well. We follow these design criteria and extend them for
example by taking into account the usage of an ontology. Further, we formalise them, which
results in a system, which is able to make recommendations for continual ontology
improvement.

More philosophical arguments concerning the need for ontology revision are made by Foo
�[39]. Based on this research, our approach for the handling of ontology evolution in dynamic
environments relies heavily on the usage of meta-primitives, also represented in the form of
ontologies.

�[142] presents an extended ontology knowledge model that represents semantic information
about concepts explicitly. This enriched semantic is not used for supporting evolution

Methods and Tools for Ontology Evolution

 78

problems, but for describing what is known by agents in a multi-agent system. However, it
could complement our approach for resolving the semantic inconsistency as mentioned in
section �3.2.2.

3.6.2 Changes

Regarding ontology changes, we discuss (i) the set of available changes and (ii) the
representation of these changes.

Set of Changes

Taxonomy of ontology changes can be found in �[63]. They deal with the creation, deletion or
modification of the “building blocks” of the OWL ontologies. Since there are many
differences between our ontology model and the OWL, the corresponding sets of changes are
diverse. Moreover, our set of elementary changes does not encompass the “modify” changes
due to the fact that they can be realised as the creation followed by the deletion.

A formal method for tracking changes in the RDF repository is proposed in �[98]. The RDF
statements are pieces of knowledge they operate on. The authors argue that during the
ontology evolution, the RDF statements can be only deleted or added, but not changed. Our
approach also does not distinguish “modify” changes. The number of changes supported in
our approach is significantly higher than in �[98] since our ontology language is an extension
of the RDF (S) ontology language and therefore richer than the RDF (S). Further, the higher
levels of abstraction of ontology changes such as composite and complex ontology changes
are not considered at all in that approach.

Elementary changes are mentioned in different works. The first systematic analysis of the
changes in the database systems is given in �[3]. These changes represent the typical schema
modification allowed in most systems today. Similar enumeration can be found in �[154]. We
have taken these approaches as foundation for our work and adopted them to the ontology
evolution.

A new categorisation of the different modifications in object oriented databases is proposed in
�[108]. The authors defined three categories of changes: primitive, composite and complex
changes. We have followed that approach and adapted it to the ontologies. Therefore, we have
quite a different set of elementary changes. Further, they are much more composite changes
due to the increased complexity of the ontology model and an interwoven ontology structure.
Finally, although the authors discussed the need for the complex changes, they provided
neither a catalogue of these changes nor a means to form and resolve them. On the contrary,
we allow an ontology engineer to specify an arbitrary complex request for a change as a
composition of elementary or composite ontology changes and propose an approach to
resolving it.

In �[93] the authors identify a set of common complex ontology changes that mainly affect a
concept hierarchy. However, this set of changes is not defined in a clear manner. For example,
the semantic of the “RemoveSubtree” change, which is a complex change, is equal to the
elementary change “RemoveConcept” since in most of the ontology evolution systems the
request for the concept removal causes the removal of all its subconcepts. In our approach, the
differences between elementary, composite and complex changes originate from their
definition. Elementary changes are determined by the ontology language itself. Composite
changes take into the consideration entities in the neighbourhood. Finally, complex changes

Ontology Evolution Process

 79

are changes consisting of several elementary and/or composite changes that, taken together,
constitute a single modification.

Change Representation

Information about change can be represented in many different ways. The approaches
encompass various tables and lists that store different kinds of data and text (e.g. mixtures of
structured and unstructured data). However, formal models for changes are lacking.

Based on our work on the evolution ontology, in �[63] the authors define an ontology for
representing ontology changes for the OWL knowledge. Although this ontology is similar to
our evolution ontology, it contains much more elementary changes due to expressivity of the
OWL ontology language. However, it has several disadvantages. Firstly, this ontology is not
minimal since it contains “modify” changes, which specify that an old value is replaced by a
new value. Even though the authors are aware that these changes can be formed by combing a
“delete” and an “add” change, they are included in the ontology. Secondly, the properties
defined for the concept “Change” do not allow us to derive the history of changes in the
unique way. Therefore, the reversibility is not supported. Next, there is no information about
cause and consequences of changes, which makes change propagation impossible. Finally, a
log contains a list of specific operations with references to the concepts or properties that they
operate on. In the case that a concept or a property is already deleted, this log would be
inconsistent. Therefore, references to the domain entities must be captured in a syntactic way
through their identifiers, not through themselves.

In �[64] the authors propose a method for finding complex ontology changes. It is based on a
set of rules and heuristics to generate a complex change from a set of elementary changes. On
the contrary, our approach provides information about changes at the level at which they
occurred. This information is stored in the evolution log. Therefore, there is no need to
discover these changes. On the other hand, our approach makes recommendations for some
changes that lead to further ontology improvement.

In �[101] the authors developed a principled approach for management of changes. It consists
of a set of changes (with their semantics) and a change-documentation model that may be
appropriate for controlled terminologies in health case. The authors propose the
CONCORDIA concept model to cope with the changes. The main aspects of CONCORDIA
are that all concepts have a permanent unique identifier. The concepts are given a retired
status instead of being physically deleted. Moreover, special links are maintained to track the
retired parents and children of each concept. In our approach, all the changes are physically
applied to ontology. However, it is always possible to revert to the previous state due to
capturing changes in an evolution log. Regarding the change representation, the
CONCORDIA approach requires to specify, for each performed change, the concept unique
identifier and the current concept name. Although the concept unique identifier is a
meaningless alphanumeric string, it identifies a concept unambiguously. Therefore, the
current concept name is superfluous.

Change representation can be also considered from the management point of view as
described in �[91]. Before a change is implemented in a system, it is necessary to understand
the change. The better a change is understood, the better it can be implemented and
maintained. Many questions need to be answered. What problem is being solved? How does
the change solve it? What are the side effects of making this change? What are the
implications of not making this change? Who is affected? How are they affected? What is the
reliability of this change? What is the best way to make the change? What is the scope of the
change? Who is experienced in this area, with this change? That is, who can help if an

Methods and Tools for Ontology Evolution

 80

unforeseen problem occurs during or after the change? All changes should be well thought out
beforehand. This process can be greatly facilitated by having a change control form which
brings these questions/issues, as well as others into consideration. Once a change has been
thought out it is tested on a system. We follow this work and incorporate the main points as
attributes defined for the concept “Change” in the evolution ontology. However, we extend
the change representation with the many aspects needed for undoing and propagating changes
as well as for learning from changes.

The advantage of our approach is that the change characteristics are formally and explicitly
represented. However, we do not take into account all of the characteristics (e.g. implications
of not making a change, reliability of changes, who has recently applied this change) since it
would require an additional effort for ontology engineers to specify them without possibility
to exploit them automatically.

3.6.3 Process

The methodology for the ontology development is given in �[137]. Since the ontology
development is necessarily an iterative and a dynamic process, the ontology evolution is
unavoidable. Therefore, the ontology development methodology includes the ontology
evolution as well. In this thesis we focus only upon this phase by discussing the requirements
to realise it and by introducing a process capable to cope with the changes in a more
systematic way.

In �[109] the authors define three major steps (request specification, identification of changes
and implementation) describing the evolution process whose actor is the schema manager.
This process does not fulfil all the requirements for an evolution system. The change
capturing phase and the change validation phase are not covered at all. Regarding the core
evolution process dealing with the consistency of a schema and its dependent artefacts, it does
not treat the semantics of change problem and requires writing the transformations to update
data if they do not have to be lost. Therefore, the proposed process is only a subset of our
ontology evolution process. However, regarding the implementation of changes it allows to
realise the evolution by view, by version or by the immediate update whereas our evolution
process considers only the application.

In �[106] the authors describe the activities that compose an ontology integration process and
present a methodology that provides support and guidance to perform those activities.
Ontology integration assumes that an ontology is not built from scratch, rather the integration
is the process of building an ontology in one subject reusing one or more ontologies in
different subjects ontology. Therefore, it is far more complex than the development of a single
ontology. However, since reused ontologies are subject to continual change, the integration
methodology has to take into account the consequences of the changed ontologies for the
dependent ontology. This activity is completely covered by our ontology evolution process
due to the fact that the ontologies are distributed over the Semantic Web.

A component-based framework for ontology evolution is given in �[64]. It is based on the
different representations of ontology changes. The approach proposes a framework that
integrates these representations. It covers the following tasks: (i) data transformation; (ii)
ontology update; (iii) consistent reasoning; (iv) verification and approval; and (v) data access.
Our system supports the first four tasks but not the last one since it is related to the ontology
versioning that was not our goal. In contrast, we provide a lot of means for the user-driven
evolution, allowing the ontology engineers to specify strategies for updating when changes in
an ontology occur. The users’ needs are not taken into account in �[64].

Ontology Evolution Process

 81

Methontology �[35] is a methodology for building ontologies either from scratch, reusing other
ontologies as they are, or by a process of re-engineering them. The framework consists of:
identification of the ontology development process where the main activities are identified
(evaluation, configuration, management, conceptualisation, integration implementation, etc.);
a lifecycle based on evolving prototypes; and the methodology itself, which specifies the steps
to be taken to perform each activity, the techniques used, the products to be output and how
they are to be evaluated. Even though Methontology already mentions evolving prototypes,
none of these (and similar others) methodologies responds to the requirements for distributed,
loosely controlled and dynamic ontology engineering. On the contrary, the evolution of
dependent and distributed ontologies in a systematic way is one of main advantages of our
methodology.

In the business community, the change management assumes the process, tools and
techniques to effectively manage people and the associated human resource issues that surface
when implementing business changes �[91]. Based on Prosci’s30 research of the most effective
and common applied change, most change management processes contain the following three
phases: (1) phase 1 – preparation, assessment and strategy development; (ii) phase 2 –
detailed planning and change management implementation; (iii) phase 3 – data gathering,
corrective action and recognition. This process is very similar to our ontology evolution
process. The preparation for change phase corresponds to our change representation phase;
the managing change phase should cover the semantics of change, the change propagation and
the change implementation; and the reinforcing change is a simplified version of the change
validation and capturing phases. However, whereas this process is focused on the
organisational aspect, our approach is "engineering" centric and problem solving in nature.

3.7 Conclusion

In this section we presented a novel approach for dealing with ontology changes. The
approach is based on a six-phase evolution process, which systematically analyses the causes
and the consequences of the changes and ensures the consistency of the ontology and
depending artefacts after resolving these changes. In order to enable the user to obtain the
ontology most suitable to her needs, we specifically focus on the possibilities to customise the
ontology evolution process. We identify several means to do that:

• by allowing an ontology engineer to represent an arbitrary request for a change in the
easiest manner;

• by enabling an ontology engineer to control the way of resolving a request;

• by suggesting an ontology engineer to generate a change, implied by the analysis of
the structure of the ontology, ontology instances or users’ behaviours in the underlying
ontology-based applications.

Ontology changes are dedicated to the ontology evolution regardless of the way the evolution
is done. Regarding the set of supported changes, we define three levels of abstractions. In
addition to elementary ontology changes that are an integral part of each ontology evolution
system, we propose composite ontology changes as more complex modifications that are very
relevant, realistic and important for the ontology evolution. Moreover, we explain the
importance of the composite changes even though they can not be controlled a priori. Finally,

30 http://www.change-management.com

Methods and Tools for Ontology Evolution

 82

we introduce the evolution ontology and the evolution log enabling the formal, explicit
representation of ontology changes.

Semantics of Change

 83

4 Semantics of Change

The semantics of change is one phase in the ontology evolution process that enables the
resolution of ontology changes in a systematic manner by ensuring the consistency of the
whole ontology. This chapter gives an overview of the problems occurring in this phase and
provides two ways for resolving them.

4.1 Problem Definition

Changes are force that drives the evolution. They can be applied to an ontology in a consistent
state, and after all the changes are performed, the ontology and dependent artefacts must pass
into another consistent state.

However, the application of a single ontology change might not always leave an ontology in a
consistent state. It means that the checking ontology consistency prior the execution of a
change (see section �2.4.2) does not resolve all problems. Even though the preconditions of an
ontology change are satisfied, after applying a change, an ontology may be in an inconsistent
state. For example, the precondition for a concept removal is that a concept is defined in an
ontology. However, deleting a concept will cause subconcepts, some properties and instances
to be inconsistent since the concept is referenced somewhere whereas it does not exist
anymore. Returning to the example shown in �Figure 3, the removal of the concept “Person”
causes the inconsistencies since the invariants related to the concept hierarchy (e.g. IC4:
Concept-Closure Invariant) and the user’s defined constraint (e.g. UC1: Domain/Range
Property User-defined Constraint) are violated. Indeed, the parent concept for the concepts
“Academic Staff” and “Student” and the child for the concept “Root” are not defined anymore.
Moreover, the domain concept for the properties “hasFirstName” and “hasLastName” as well
as the range concept for the property “includes” do not exist to any further extent. These
irregularities are depicted in �Figure 21.

Note that if an ontology engineer makes only the required change, i.e. the
RemoveConcept(“Person”) change, the ontology will be left in an inconsistent state that will
render it unusable. The searching for the ontology entities may result not just in the low
precision – missing some relevant answers, but more important in the incorrectness – the
delivery of wrong answers. That is the case with the query “Give me all concepts whose
parent concept is a domain of the “includes” property” for the situation presented in �Figure
21.

The role of an ontology evolution system is much more than finding these problems (i.e.
inconsistencies) in an ontology and alerting an ontology engineer about them. This is pretty
much the kind of support provided by conventional compilers. However, helping ontology
engineers notice the inconsistencies only partially addresses the issue. Ideally, an ontology

Methods and Tools for Ontology Evolution

 84

evolution system should be able to support ontology engineers in resolving the problems at
least by making suggestions how to do that.

XX

Figure 21. Inconsistent ontology since undefined entity “Person” is used

Therefore, when updating an ontology, it is not enough just to consider the entities figuring in
the request for a change, because the other entities in the same ontology may also be affected
by the updates. Since it is not sufficient to change only a part of the ontology that is related to
the request for a change while keeping all the other entities intact, we introduce the semantics
of change phase in the ontology evolution process. The task of this phase is to enable the
resolution of changes in a systematic manner by ensuring the consistency of the whole
ontology. This can be done by completing required changes with additional changes, which
guarantee the transfer of the initial consistent ontology into another consistent state. Indeed,
the updated ontology is not defined directly by applying a requested change. Instead, it is
indirectly characterised as an ontology that satisfies a user’s requirement for a change and it is
at the same time a consistent ontology.

The role of the semantics of change phase is presented in �Figure 22. It captures the knowledge
about ontology changes and supports ontology engineers in completing the modification they
already started. This modification may require several additional changes (cf. Ch1,…, Chn-1 in
�Figure 22) to various entities of the ontology, which need to be carefully co-ordinated to
prevent ontology engineers from leaving the ontology in an inconsistent state.

In order to formalise the semantics of change phase we introduce the following definition:

if an ontology O satisfies the set of
ontology consistency constraints M (see
the definition of the ontology consistency
model given in section �2.3)

• the function

�
�

�

�
�

�

�

=

,false

,true

)M,O(yconsistenc

otherwise

Semantics of Change

 85

Definition 20 Given an ontology O and a request for a change Ch, the semantics of change
phase of an ontology evolution process is defined as:

SemanticsOfChange(O,Ch)= (Ch1,…, Chi, Chi+1,…,Chn-1)

where:

• O is a given consistent ontology, i.e. consistency(O, M)=true;

• Ch is a requested change that can be applied to the ontology O, i.e.
preconditions31(O,Ch)=true;

• O1=Ch(O) is an ontology representing the result of the application of the required
change Ch to the ontology O, i.e. postconditions(O1,Ch)=true;

• Chi ,1≤i≤n-1, is a derived change that satisfies the following set of conditions:

o Oi+1 = Chi ° Oi = Ch i(Oi), which implies that preconditions(Oi, Chi)=true and
postconditions(Oi+1, Chi)=true;

o consistency(Oi, M)=false, 1≤i≤n-1 and consistency(On, M)=true.

Consequently, the result of applying the request for the change Ch to the ontology O is the
ontology O’ defined as:

O’ = On = Chn-1 °…° Chi+1 ° Chi °…° Ch1 ° Ch ° O =

Chn-1(…Chi+1(Chi(…Ch1(Ch (O)))))

Semantics Semantics
of changeof change

Requested
Change

Requested + Derived
Changes

O=O0 Oi+1O1 Oi O‘=On

Legend:
O – given consistent ontology
Oi,1≤i≤n-1- inconsistent ontologies
O’ – the resulting consistent ontology
Ch – requested change
Chi, 1≤i≤n-1 - derived changes

Ch Ch1 Ch i Ch i+1
On-1

Chn-1

…
Ch i-1

…
Chn-2

Figure 22. The role of the semantics of change

We note that the �Definition 20 is an extension of �Definition 14, due to the modification not
just to the entities in the request for a change, but also to the entire set of ontology entities. To
eliminate the drawbacks of the solution that only applies a change to the ontology O, the

31 See section �2.4.2 for the definition of the preconditions and postconditions functions.

Methods and Tools for Ontology Evolution

 86

semantics of change is introduced to ensure the consistency of resulting ontology O’. It is
done by extending a required change Ch with the additional set of changes (Chi ,1≤i≤n-1) that
guaranties the consistency of the ontology O’. It is also important to note that the set of
generated changes is minimal since the removal of any change from this set would result in an
inconsistent final ontology O’.

The challenge of the semantics of change problem is how to find the additional changes that
preserve the ontology consistency. Since a new change has to be induced when the result of
applying a previous change is a inconsistent ontology, it is required to bridge the gap between
the postconditions, that represent the result of an ontology change, and the consistency
constraints that define the ontology consistency (see section �2.3). It is up to an ontology
engineer or an ontology evolution system how to perform this mapping.

Returning to the example shown in �Figure 21, the semantics of change might generate a set of
changes32 depicted in �Figure 23. The request for the removal of the concept “Person” affects
other entities in the ontology: the concept “Student” and the concept “Academic Staff” since
they were children of the concept “Person”, the “includes” property whose range was that
concept, properties “hasFirstName” and “hasLastName”, whose domain was that concept,
and the concept “Root”, which was the parent of the concept “Person”. As a result, the
additional changes, denoted as 1-6 in �Figure 23, are generated. Furthermore, some of these
additional changes originate, in turn, the need for additional changes. For example, the change
for the deletion of the concept “Student” causes the deletion of the concepts “PhD Student”,
“BSc Student” and “MSc Student” as well as the removal of the inheritance relationship
between the concept “Student” and the concept “Person” (see a-d in �Figure 23). These
changes trigger new changes and so on.

1

2
3

4
5
6

a
b

c
d

Figure 23. The result of the semantics of change for the example shown in �Figure 21

The experiences from the knowledge-based systems modification �[140] shows that it is hard
for a knowledge engineer to track down and keep in mind all the changes that are pending.

32 To aid the understanding of why some changes are induced, related changes are grouped and organised in a
tree-like form.

Semantics of Change

 87

Since an ontology can be much more complex that a knowledge based system (e.g. due to
increasing complexity of the ontology model and physical distributed of an ontology), it is
even harder for an ontology engineer to follow up on all dependencies between ontology
entities. For example, it is difficult to recognise problems that are results of the inference
process (e.g. a concept hierarchy) because they are not directly observable to an ontology
engineer. Thus, the request for a change can almost always end up with an inconsistent
ontology. Since an ontology engineer can easily overlook some part of the overall
modification, it cannot be expected that the generation of additional changes needed to keep
the consistency can be done manually.

In the rest of this section we discuss methods for realising this task automatically. In
particular, two main approaches were adopted from the database community and followed to
ensure the consistency in pursuing this semantics of change problem �[37]:

1. Procedural approach - this approach is based on the constraints, which define the
consistency of a schema, and definite rules, which must be followed to maintain
constraints satisfied after each change;

2. Declarative approach - this approach is based on the sound and complete set of
axioms (provided with an inference mechanism) that formalises the dynamics of the
evolution.

We follow both approaches for the schema evolution and adapt them to the ontology
evolution problem. The adaptation is not just the consequence of the differences between an
ontology model and a schema model. The most important extension lies in the incorporating
means for guiding the selection of the most meaningful (from the ontology engineer point of
view) way for generating additional changes. In this way we introduce completely new
approaches (both the procedural and the declarative) for the semantics of change that focus on
providing the ontology engineers with capabilities to control and customise the ontology
evolution process.

The rest of this section is devoted to both approaches for the semantics of change problem.
Firstly, in section �4.2 we discuss our procedural approach for the semantics of change that
builds the ways for generating additional changes into the code. Secondly, in section �4.3 we
present the declarative approach that removes the how's (i.e. the control flow and sequencing)
from the solution. Finally, in section �4.4 we give an analysis of the advantages and
disadvantages of the proposed approaches.

4.2 Procedural Approach for the Semantics of Change

The precise meaning or semantics must be associated with each ontology change, so that we
know how to preserve the ontology consistency after applying a change. The procedural
approach for the semantics of change phase of the ontology evolution process is realised by a
procedural mechanism that incorporates the semantics of ontology changes. It is capable of
providing answer to a wide class of users’ requests for a change, i.e. to all the requests that
can be specified with one of the foreseen changes. Such an approach is given in this section.
We explore the complexity of the semantics of change problem and introduce the concept of
an evolution strategy encapsulating the policy for the evolution with respect to the
requirements of ontology engineers �[129]. We go a step further by introducing the so-called
advanced evolution strategies that support ontology engineers in resolving problems by
suggesting an evolution strategy that may be most appropriate in a particular situation.

Methods and Tools for Ontology Evolution

 88

4.2.1 Motivating Example

As mentioned, the essential role of the semantics of change phase in the ontology evolution
process is to figure out which elementary changes need to be performed for one change
request, e.g. deletion of a concept. If this were left to an ontology engineer, the evolution
process would be too error-prone and time consuming – it is unrealistic to expect that humans
will be able to comprehend entire ontology and interdependencies in it. This requirement is
especially hard to fulfil if the rationale behind domain conceptualisation is ambiguous or if
the ontology engineer does not have the experience.

However, there are many ways to achieve consistency after a change request. For example,
when a concept from the middle of the hierarchy is being deleted, all subconcepts may either
be deleted or reconnected to other concepts �[11]. If subconcepts are preserved, then properties
of the deleted concept may be propagated, its instances distributed, etc. Different ways for
resolving the request for the removal of the concept “Student” by considering only the
concept hierarchy are shown in �Figure 24. The first solution (cf. b in �Figure 24) does not
contain any subconcepts of the concept “Student”. In the second solution (cf. c �Figure 24) all
subconcepts are retained and connected to the concept “Person”, which is the parent concept
of the concept “Student”. The last solution (cf. d �Figure 24) also preserves all subconcepts
while reconnecting them to the root of the concept hierarchy.

XX

reconnect
to the parentdelete reconnect

to the root

a)

b) c) d)

Figure 24. Different ways of resolving a change. (a) The given ontology after applying
only the removal of the concept “Student”; (b) The updated ontology where all
subconcepts are deleted; (c) The updated ontology where all subconcepts are

reconnected to the parent concept; (d) The updated ontology where all subconcepts
are reconnected to the root concept.

Semantics of Change

 89

Each of these solutions is appropriate for some situation but not for all of them. For example,
the first solution is useful for keeping an ontology as minimal as possible since it removes
everything related to an entity that occurs in a request. The second solution is more suitable
for preserving as many as possible entities from the existing ontology, which will help an
ontology engineer to comprehend fully the effects of a request for a change. The last one
keeps only the rough information about (sub)concepts that may later inform an ontology
engineer about the decisions made in the past. We note that all existing systems for the
ontology development provide only one possibility for realising a change and this is usually
the simplest one. For example, in these systems the deletion of a concept always causes the
deletion of all its subconcepts.

The previous example shows that for some changes in an ontology, it is possible to generate
different sets of additional changes, leading to different final consistent states of the ontology.
Thus, the role of the semantics of change phase of an ontology evolution system should not
be only to help ontology engineers resolve all side effects of changes in order to complete the
modification that they started. Ideally, it should also accomplish a request for a change in a
way that is most suitable for an ontology engineer. Since only the ontology engineer has
enough knowledge to decide which solution is appropriate for a request she wants to perform,
she should be able to direct this process. To do so, we introduce the notion of evolution
strategies (see section �4.2.3), allowing an ontology engineer to customise the process of the
generation of additional changes according to her needs. In that way an ontology engineer has
the possibility to transfer an ontology in the desired consistent state.

4.2.2 Conceptual Description of the Procedural Approach

Since our approach for the ontology evolution enables ontology engineers to control the
semantics of changes phase of the ontology evolution process in order to tailor an ontology to
suit their needs, it requires a complex model behind it. The conceptual architecture of the
procedural approach is illustrated in �Figure 25. An ontology engineer makes a request for a
change. This request is formalised in the change representation phase of the ontology
evolution process (see section �3.2.1) and it consists of one or more changes that are supported
by the ontology evolution system. Therefore, a request (cf. 1 in �Figure 25) is represented as a
sequence of ontology changes.

This sequence is passed to the semantics of change phase shown in �Figure 25. Its role is:

i. to prevent illegal changes i.e. changes that would cause inconsistencies;

ii. to ensure the preservation of the consistency in the case that the request can be
applied.

This is done by processing one by one change from the given sequence until there are no
changes that can be employed.

Whereas the prohibition of illegal changes is settled by checking the preconditions33 of an
ontology change (cf. 2 in �Figure 25), the change generation module (cf. 3 in �Figure 25) is
responsible for keeping consistency. Since there are many ways to maintain the consistency,
an evolution strategy (cf. 5 in �Figure 25) is imposed to be in charge of directing how to do
that. This process is repeated until there is no change that should be handled. Finally, all the
changes that are dealt with are applied to the ontology (cf. 4 in �Figure 25). This is done by
adopting the postconditions of each change (see �Definition 12) since they specify the direct

33 Preconditions are applicability conditions, that is to say, the conditions under which ontology changes are

semantically correct (see �Definition 11).

Methods and Tools for Ontology Evolution

 90

impact of the change.

Checking
Preconditions

Change
Generation

Change
Application

Request

Semantics of change

1

3

4

Evolution
strategy

5

2

Figure 25. The conceptual architecture of the procedural approach

For example, the user’s request for the removal of the instanceOf relationship between the
instance “SteffenWezler” and the concept “BSc Student” from the ontology shown in �Figure 4,
would be processed in the following way: The input into the semantics of change phase, i.e.
the request, would be the RemoveInstanceOf(“SteffenWezler”, “BSc Student”) change. This
instanceOf relationship is still an entity of the given ontology, and therefore the preconditions
of the removal are fulfilled (see section �2.4.2). On the other hand, there is no other concept
that is specified for the instance “SteffenWezler”. Therefore, the instance “SteffenWezler”
would be an orphaned instance. Since it does not comply with the IC10 invariant (see section
�2.3), the change generation has to induce new changes. The resolution of the orphaned
instance “SteffenWezler” can be performed in two ways: by generating either the
RemoveInstance(“SteffenWezler”) change or the AddInstanceOf(“SteffenWezler”, “Student”)
change. Therefore, an evolution strategy is necessary for controlling how to abolish the arisen
inconsistency. As a result the initial list of changes that has contained only the required
change RemoveInstanceOf(“SteffenWezler”, “BSc Student”) would be extended with one of
the proposed changes. This extension depends on the needs of the ontology engineer who
modifies the ontology. Anyhow, the additional change has to be handled in the same manner.
Thus, the process iterates for the generated changes until all the changes in the list of changes
are processed. If there are no pending changes and the ontology is still inconsistent, the whole
evolution process is aborted. Otherwise, the process terminates by successively applying all
the changes from the list of changes (i.e. required and induced changes) to the ontology. This
is done in the change application module.

The main challenge of this approach is how to incorporate preferences of an ontology
engineer during the generation of the additional changes. Our approach amounts to facing
classical problems of schema change �[10]: specify the semantics of ontology changes (i.e.
preconditions and postconditions) and accordingly, specify rules to preserve the consistency
of the resulting ontology. We extend this approach by specifying the multiple set of rules (i.e.
the evolution strategies) for ensuring the consistency. Further, we define the so-called meta-
rules (i.e. the advanced evolution strategies) for controlling the set of consistency enforcing
rules that have to be used. This is elaborated in the next subsections. We start with the
introduction of rules (section �4.2.3) that specify different side effects of a change on other

Semantics of Change

 91

related entities. Then in section �4.2.4 we explain the meta-rules that prioritise and arbitrate
among different possible solutions.

4.2.3 Evolution Strategies

As mentioned in the motivating example (see section �4.2.1), one ontology change can be
resolved in several ways. It means that the different set of additional changes may be
generated. Each of these sets of changes leads to the different final consistent ontology. It
would be too restrictive to force ontology engineers to resolve a change in only one way.
Therefore, a mechanism is required for ontology engineers to manage changes resulting not in
an arbitrary consistent state, but in a consistent state fulfilling some constraints (e.g. minimal
number of changes).

This can be done by using evolution strategies. Evolution strategies are developed as a
method to “find” the consistent ontology that meets the needs of an ontology engineer.
Evolution strategies try to capture the diversity of evolution policies. All the existing ontology
evolution systems apply their own, single evolution policy. This straightforward approach is
inconvenient, as it does not offer ontology engineers any way of adapting an ontology to suit
individual applications. Therefore, we go a step further by providing a flexible choice of
entire strategy sets as well as of low-level decision concerning a single ontology change.

In order to generate additional changes, the ontology change definition has to be enriched in
the following way:

Definition 21 An ontology change Chi∈CH34, 1≤i≤�CH�, is a 5-tuple:

Chi:=(name, args, preconditions, postconditions, rules),

where the meaning of the first four parameters is given in �Definition 13, and rules specify the
side effects of a change on the other related entities.

To define the rules for each change, we started by finding out the cause-effect relationship
between the ontology changes. This kind of dependency between the ontology changes forms
the so-called change dependency graph.

Definition 22 A change dependency graph is a directed graph defined as:

CDG:=(CH,E)
where:

• CH={Chi}, 1≤i≤�CH�, is a set of nodes and each node represents an ontology change
Chi;

• E ={Ek}, 1≤k≤�E�, is a set of labelled edges and each edge represents the cause-effect
dependency between ontology changes (i.e. nodes). An edge is defined in the
following way:

Ek =(Chi,Conditionj,Chl), Chi,Chl∈CH, 1≤i,l≤�CH�, i≠l.

Conditionj is a prerequisite for the edge existence. It states when a change Chi may cause a
change Chl. It is represented as a logical formula that contains only ontology entities.

34 CH is a set of elementary ontology changes.

Methods and Tools for Ontology Evolution

 92

Therefore, Ek =(Chi,Conditionj,Chl) can be read:

IF Chi THEN Chl

WHEN Conditionj

For example, one has to interpret the edge:

(RemoveConcept(x), (((x,b)∈HC ∧ x≡a) ∨ ((a,x)∈HC ∧ x≡b)), RemoveSubConcept(a,b))

as: the change RemoveConcept will trigger the change RemoveSubConcept, i.e. the rule:

“IF RemoveConcept(x) THEN RemoveSubConcept(a,b)”

can be applied if the following condition is satisfied:

((x,b)∈HC ∧ x≡a) ∨ ((a,x)∈HC ∧ x≡b).

The applicability of a condition depends on the content of an ontology and the user’s request.
For example, for the request RemoveConcept(”Student”), the dependency between the change
RemoveConcept and the change RemoveSubConcept would be taken into account, since the
concept “Student” in the ontology shown in �Figure 24 has subconcepts. However, the request
for the removal of the concept “BSc Student” would not provoke the generation of changes
related to concept specializations since this concept is a leaf concept. In this way the change
dependency graph can be considered as a schema for generating additional changes.

Note that the change dependency graph is a directed graph. For the previous example, the
edge in the opposite direction:

(RemoveSubConcept(a,b), ((x,b)∈HC ∧ x≡a), RemoveConcept(x))

means: the rule “IF RemoveSubConcept(a,b) THEN RemoveConcept(x)”) is applicable if:

(x,b)∈HC ∧ x≡a.

The approach is based on a common technique for the maintenance of the knowledge-based
systems �[81], which states that dependencies between knowledge have to be represented
explicitly. However, while in these systems the dependency graph consists of knowledge
elements (e.g. rules in the expert systems), in an ontology evolution system the nodes of this
graph are ontology changes.

It is worth mentioning that the size of the graph is fixed since the number of changes is
predefined. Nevertheless, the change dependency graph has a very complex, interwoven
structure35. In order to improve the understanding, we represent this graph as a sparsely
populated matrix that is shown in �Table 5. We call it the dependency matrix. Note that it
represents a simplified view of the change dependency graph since the conditions are not
shown.

The rows and the columns of this matrix signify ontology changes. If an element of the matrix
Dependency[Chk][Chj] has the value 0, it means that a change Chk that is assigned to the row
k can never induce a change Chj denoting a column j. Otherwise, a change Chk could generate
a change Chj when the conditions are fulfilled. The corresponding element of the matrix
Dependency[Chk][Chj] contains these conditions36. Note that different changes may produce
the same effect (i.e. Chj) and this effect is followed up independently of its cause (i.e. the
original change Chk).

35 The richer the set of ontology changes, the more difficult it becomes to give a precise characterization of the

dependency between changes.
36 Due to the limit of the page size we use the symbol “x” as the replacement for all the conditions.

Semantics of Change

 93

Here we give the explanation of the content of �Table 5 by assuming the following set of
consistency constraints: M=IC∪SC∪UC, IC={ICi}, 1≤i≤16, SC={SCj}, 1≤j≤2, UC={UC1}.
The AddConcept change causes the AddSubConcept change due to IC4 consistency constraint.
The RemoveConcept change causes the removal of all “links” pointing to the corresponding
concept or from the concept. Consequently, the changes RemoveSubConcept,
RemovePropertyDomain, RemovePropertyRange, RemoveInstanceOf can be triggered. The
RemoveSubConcept change causes either the RemoveConcept change or the
RemovePropertyInstance change depending on the number of the parent concepts that are
defined for the subconcept. Since a property with a domain/range concept is considered as
consistent37, the AddProperty change causes the AddPropertyDomain and AddPropertyRange
changes. Similarly to the RemoveConcept change, the RemoveProperty change requires the
removal of all its “links”, i.e. it can trigger the following set of changes: RemoveSubProperty,
RemovePropertyDomain, RemovePropertyRange, RemovePropertySymmetric,
RemovePropertyTransitive, RemovePropertyInverse, and RemovePropertyInstance. The
RemovePropertyDomain and RemoveProperyRange changes may trigger the RemoveProperty
change due to the UC1 consistency constraint and the RemovePropertyInstance change due to
the IC12 consistency constraint. Moreover, the RemovePropertyDomain change may cause the
RemoveMinCardinality and the RemoveMaxCardinality changes, since cardinality constraints
must be defined for the concept-property pairs. Since three property characteristics
(symmetric, transitive and inverse of) can never be specified for attributes, the
RemovePropertyRange change may activate the RemovePropertySymmetric,
RemovePropertyTransitive and RemovePropertyInverse changes. The AddMaxCardinality
change may cause the RemovePropertyInstance change, when the number of the
corresponding instances exceeds the max-cardinality value. On the other hand, the
AddMinCardinality change may provoke the AddPropertyInstance change in order to create
the required number of property instances. The AddInstance change always causes the
AddInstanceOf change due to IC10 consistency constraint. The RemoveInstance change causes
the removal of all entities related to the instance, i.e. the RemoveInstanceOf and the
RemovePropertyInstance changes. Since an instance cannot exist without being attached to a
concept, the RemoveInstanceOf change may cause the RemoveInstance change. Moreover, it
may trigger the RemovePropertyInstance change, when the instance has additional concepts.
In case that the addition (removal) of a property instance corrupts the SC2 (SC1) cardinality
constant, the AddPropertyInstance (RemovePropertyInstance) change triggers the
RemoveMaxCardinality (RemoveMinCardinality) change. All other changes (e.g.
AddSubConcept change) do not initiate additional changes.

Therefore, each row of the dependency matrix represents a set of rules that are defined for a
change denoting a row. Consequently, an ontology change is a 5-tuple:

(name, args, preconditions, postconditions, Dependency[k]),

where k is a row in the dependency matrix that is assigned to the considered change.

Definition 23 The change generation38 is defined as:

ChangeGeneration: CH →2CH,

where each ChangeGeneration(Chk)={Chk1,…,Chki,…, Chkn} consists of the THEN part of
those rules, defined for a particular change Chk, that can be applied. We note that the
applicability of a rule is determined by the conditions (see �Definition 22).

37 Note that the set of consistency constraints M includes the user-defined consistency constraint UC1.
38 See Change Generation module shown in �Figure 25

Methods and Tools for Ontology Evolution

 94

This solution will satisfy the needs of some ontology engineers, but not all of them. For an
ontology evolution system, which claims to be “intelligent”, a flexible choice from the set of
potential solutions would be a powerful means for adapting an ontology to the specific
requirements. To the best of our knowledge, no existing ontology evolution system offers
such a strategy choice. The main reasons are the complexity of the mechanisms and
interdependencies which have to be taken into account already for realising one single
strategy (see �Table 5), not to talk about the coexistence of different strategies in the same
ontology evolution system.

To allow an ontology engineer to modify an ontology according to her preferences, the
following set of notions is introduced:

Definition 24 RP is a set of the resolution points, RP={RPi}, i=1,..,9 (see �Table 6), where
each resolution point represents one dilemma that might occur during the change
resolution.

Definition 25 Elementary evolution strategy EES a set of possible ways for resolving
resolution point, EES={EESj}, j=1,…,23 (see �Table 6).

For example, one resolution point is how to handle orphaned concepts, i.e. concepts which do
not have parent concepts anymore. One evolution strategy is to reconnect the orphaned
concepts to the root concept.

Definition 26 Resolution way RW is a set of the possible elementary evolution strategies for
resolving one particular resolution point:

RW: RP → 2EES.

For example, in the case of the previously mentioned resolution point about handling
orphaned subconcepts of a concept C, the possible options (i.e. elementary evolution
strategies) are:

• orphaned subconcepts of C may be deleted as well;

• orphaned subconcepts of C may be connected to the parent concept(s) of C;

• orphaned subconcepts of C may be connected to the root concept of the hierarchy.

Therefore, for the resolution point RP1 three elementary evolution strategies (EES1, EES2
and EES3) are defined: deleted, reconnected to the parent concept and reconnected to the root
concept. They form a resolution way. The different impact of these elementary evolution
strategies on the final ontology is illustrated in �Figure 24. Similarly, the elementary strategies
for all other resolution points may be elicited.

The resolution points that may occur during the change resolution and the set of elementary
evolution strategies associated to each resolution point are shown in �Table 6. Some resolution
points can be specific to a particular change; some of them can be used during the resolution
of multiple changes. Indeed, they represent the knowledge about the ontology evolution, i.e.
knowledge acquired during the analysis of an ontology evolution problem. By using
knowledge that is specific for the ontology evolution problem, an ontology evolution system
can provide a very strong support in modifying ontologies.

Semantics of Change

 95

Table 5. The cause and effect relationship between ontology changes organised as the Dependency matrix. The value x of an element, i.e.
Dependency[i][j]=x, indicates that the resolution of a change related to the row i might induce a change related to the column j.

A
dd

C
on

ce
pt

 R
em

ov
eC

on
ce

pt

 A
dd

Su
bC

on
ce

pt

R
em

ov
eS

ub
C

on
ce

pt

A
dd

Pr
op

er
ty

 R
em

ov
eP

ro
pe

rt
y

 A
dd

Su
bP

ro
pe

rt
y

 R
em

ov
eS

ub
Pr

op
er

ty

 A
dd

Pr
op

er
ty

D
om

ai
n

 R
em

ov
eP

ro
pe

rt
yD

om
ai

n

A
dd

Pr
op

er
ty

R
an

ge

 R
em

ov
eP

ro
pe

rt
yR

an
ge

 A
dd

Pr
op

er
ty

Sy
m

m
et

ri
c

 R
em

ov
eP

ro
pe

rt
yS

ym
m

et
ri

c

 A
dd

Pr
op

er
ty

T
ra

ns
iti

ve

 R
em

ov
eP

ro
pe

rt
yT

ra
ns

iti
ve

A
dd

Pr
op

er
ty

In
ve

rs
e

 R
em

ov
eP

ro
pe

rt
yI

nv
er

se

 A
dd

M
ax

C
ar

di
na

lit
y

 R
em

ov
eM

ax
C

ar
di

na
lit

y

 A
dd

M
in

C
ar

di
na

lit
y

 R
em

ov
eM

in
C

ar
di

na
lit

y

 A
dd

In
st

an
ce

 R
em

ov
eI

ns
ta

nc
e

 A
dd

In
st

an
ce

O
f

R
em

ov
eI

ns
ta

nc
eO

f

 A
dd

Pr
op

er
ty

In
st

an
ce

 R
em

ov
eP

ro
pe

rt
yI

ns
ta

nc
e

AddConcept 0 0 x 0

RemoveConcept 0 0 0 x 0 0 0 0 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0

AddSubConcept 0

RemoveSubConcept 0 X 0 x

AddProperty 0 0 0 0 0 0 0 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RemoveProperty 0 0 0 0 0 0 0 x 0 x 0 x 0 x 0 x 0 x 0 0 0 0 0 0 0 0 0 x

AddSubProperty 0

RemoveSubProperty 0

AddPropertyDomain 0

RemovePropertyDomain 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 x 0 0 0 0 0 x

AddPropertyRange 0

RemovePropertyRange 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 x 0 x 0 0 0 0 0 0 0 0 0 x

AddPropertySymmetric 0

RemovePropertySymmetric 0

AddPropertyTransitive 0

Methods and Tools for Ontology Evolution

 96

A
dd

C
on

ce
pt

 R
em

ov
eC

on
ce

pt

 A
dd

Su
bC

on
ce

pt

R
em

ov
eS

ub
C

on
ce

pt

A
dd

Pr
op

er
ty

 R
em

ov
eP

ro
pe

rt
y

 A
dd

Su
bP

ro
pe

rt
y

 R
em

ov
eS

ub
Pr

op
er

ty

 A
dd

Pr
op

er
ty

D
om

ai
n

 R
em

ov
eP

ro
pe

rt
yD

om
ai

n

A
dd

Pr
op

er
ty

R
an

ge

 R
em

ov
eP

ro
pe

rt
yR

an
ge

 A
dd

Pr
op

er
ty

Sy
m

m
et

ri
c

 R
em

ov
eP

ro
pe

rt
yS

ym
m

et
ri

c

 A
dd

Pr
op

er
ty

T
ra

ns
iti

ve

 R
em

ov
eP

ro
pe

rt
yT

ra
ns

iti
ve

A
dd

Pr
op

er
ty

In
ve

rs
e

 R
em

ov
eP

ro
pe

rt
yI

nv
er

se

 A
dd

M
ax

C
ar

di
na

lit
y

 R
em

ov
eM

ax
C

ar
di

na
lit

y

 A
dd

M
in

C
ar

di
na

lit
y

 R
em

ov
eM

in
C

ar
di

na
lit

y

 A
dd

In
st

an
ce

 R
em

ov
eI

ns
ta

nc
e

 A
dd

In
st

an
ce

O
f

R
em

ov
eI

ns
ta

nc
eO

f

 A
dd

Pr
op

er
ty

In
st

an
ce

 R
em

ov
eP

ro
pe

rt
yI

ns
ta

nc
e

RemovePropertyTransitive 0

AddPropertyInverse 0

RemovePropertyInverse 0

AddMaxCardinality 0 x

RemoveMaxCardinality 0

AddMinCardinality 0 x 0

RemoveMinCardinality 0

AddInstance 0 x 0 0 0

RemoveInstance 0 x 0 x

AddInstanceOf 0

RemoveInstanceOf 0 x 0 0 0 x

AddPropertyInstance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0

RemovePropertyInstance 0 x 0 0 0 0 0 0

Semantics of Change

 97

Table 6. Resolution points and their elementary evolution strategies

Resolution point Elementary Evolution Strategy

Number Description Number Description

RP1 Determines how to handle
orphaned concepts

EES1 Orphaned concepts are deleted

 EES2 Orphaned concepts are reconnected
to their parents

 EES3 Orphaned concepts are reconnected
to the root concept

RP2 Determines how to handle
orphaned properties

EES4 Orphaned properties are deleted

 EES5 Orphaned properties are
reconnected to parent

 EES6 Orphaned properties are left alone

RP3 Determines how to propagate
properties to the concept whose
parents are changed

EES7 Don't propagate any properties of
superconcepts

 EES8 Propagate all properties (including
the inherited properties) to the
concept whose parent changes

 EES9 Propagate only properties of the
parent concept to the concept
whose parent changes

RP4 Determines how to handle instances
whose concept is deleted

EES10 Instances are deleted

 EES11 Only unique instances39 are deleted

 EES12 Instances are reconnected to the
parents

RP5 Determines whether a domain
(range) of a property can contain a
concept that is at the same time a
subconcept of some other
domain(range) concept

EES13 Property domain (range) cannot
contain a concept whose
superconcept is also a
domain(range) concept

 EES14 Property domain (range) can
contain any concept

RP6 Determines what constitutes a valid
domain of some property

EES15 Property can exist without a
domain concept

 EES16 Property cannot exist without a
domain concept

39 Unique instance is an instance attached to only one concept.

Methods and Tools for Ontology Evolution

 98

RP7 Determines what constitutes a valid
range of some property

EES17 Property can exist without a range
concept

 EES18 Property cannot exist without a
range concept

RP8 Determines the allowed shape of
the concept hierarchy

EES19 There is no constraint for a concept
hierarchy shape

 EES20 Remove multiple paths to a
superconcept in the hierarchy

 EES21 Do not allow multiple paths to a
superconcept in the hierarchy

RP9 Determines how to handle property
instances whose property is deleted

EES22 Property instances should be
removed

 EES23 Property instances should be
defined for the parent properties

In order to clarify the meaning of the resolution points and their elementary evolution
strategies, here we discuss the resolution point RP3 in more details. This resolution point is
considered when the subconcept relationship between two concepts should be deleted. Such
an example is shown in �Figure 26. To resolve the removal of the subconcept relationship
between the concept “Child” and the concept “Parent” by assuming that the concept “Child”
has to be preserved, there is a need to decide what to do with the properties which are
inherited through this subconcept relationship. This set of properties includes the properties
whose domain is the concept “Parent” such as “pdC1”,…, “pdCn”, the properties whose
range is the concept “Parent” such as “prC1”,…, “prCm” as well as the properties that the
concept “Parent” inherits from all its parent concepts (cf. the concept “ParentOfParent” in
�Figure 26).

x

ParentOfParent

Parent

Child

pdC1

pdCn

prC1

prCm

pdP1

pdPk

prP1

prPl

Figure 26. An example of the resolution point PR3

There are three alternatives as represented by the elementary evolution strategies EES7, EES8
and EES9. The simplest solution achieved by the choice of the EES7 is the avoidance of the
property propagation. The elementary evolution strategy EES8 allows the propagation of all
properties (including the inherited properties) to the concept whose parent changes. By

Semantics of Change

 99

selecting this elementary evolution strategy the concept “Child” will be the domain concept
for the properties “pdC1”,…, “pdCn” inherited from the concept “Parent” as well as for the
properties “pdP1”,…, “pdPk” inherited from the concept “ParentOfParent”. Similarly, the
concept “Child” will be the range concept for all properties inherited directly from the
concept “Parent” (i.e. “prC1”,…, “prCm”) or indirectly from the concept “ParentOfParent”
(i.e. “prP1”,…, “prPl”). The third solution represented by the elementary evolution strategy
EES9 is to propagate only properties of the direct parent concept. By adopting this elementary
evolution strategy the concept “Child” will be attached to the properties “pdC1”,…, “pdCn”
as a domain concept and to the properties “prC1”,…, “prCm” as a range concept.

Definition 27 An evolution strategy ES is defined as:

ES={(x,y) � x∈RP ∧ y∈RW(x) }

 under the following conditions:

 Condition1: ∀(x,y)∈ES ¬∃z∈RW(x) \{y} (x,z)∈ES

 Condition2:�ES�=�RP�

An evolution strategy unambiguously defines the way in which elementary changes will be
resolved. It is a set of ordered pairs, where each pair consists of a resolution point and an
elementary evolution strategy defined for that resolution point. The condition1 requires that
for each resolution point one and only one elementary evolution strategy is specified whereas
the condition2 requires that all resolution points are taken into account.

Thus, to resolve a change, the evolution process needs to determine answers at many
resolution points – branch points during change resolution where taking a different path will
produce different results. Each possible answer at each resolution point is an elementary
evolution strategy. Common policy consisting of a set of elementary evolution strategies, each
giving an answer for one resolution point, is an evolution strategy. It is used to customise the
ontology evolution process. We call this process – the user-driven ontology evolution process,
where the user is an ontology engineer who is able to specify an evolution strategy in order to
tailor the ontology evolution to suit her needs. The relationship between all the previously
introduced notions is shown in �Figure 27. Resolution points and their elementary evolution
strategies cover all possible ways that an ontology engineer can follow in changing an
ontology, where an evolution strategy represents exactly one way to do that.

Typically a particular evolution strategy is chosen by an ontology engineer at the start of the
ontology evolution process. Another option is that an ontology engineer sets up a particular
evolution strategy during the request resolution, when a strategic decision has to be taken.
This requires that the ontology engineer should be informed about the situation and asked for
a decision. In both cases, the decision of the ontology engineer is reflected in the additional
changes.

To derive a set of resolution points within an evolution strategy, we started by considering
types of changes that may be applied to an ontology. Next we analysed what consequences
each change can have on the ontology with respect to its definition (see section �2.3) and
dependencies between ontology entities. We isolated changes that can provoke syntax
inconsistencies and, consequently, could not be applied (for example, AddSubConcept change
is not allowed if it causes an inheritance hierarchy cycles). Further, we identified that some
changes could generate the need for subsequent changes, some of them offering different
ways of resolution. For each particular resolution way we defined an elementary evolution
strategy. For each elementary change we defined a procedure containing resolution points

Methods and Tools for Ontology Evolution

 100

encountered during change resolution. Each resolution point represents a branching point, and
each elementary evolution strategy represents one possible branch. The choice of exactly one
elementary evolution strategy for each possible resolution point forms an evolution strategy.

Requested + Derived
Changes

Resolution
Point

Elementary
Evolution Strategies

Evolution
Strategy

Semantics of change

Requested
Changes

Figure 27. The role of the evolution strategy in the semantics of change

The introduction of evolution strategies entails the modification of the previously given
definition of the change generation module (cf. 3 in �Figure 25) that represents the key module
of semantics of change phase of the ontology evolution process. This adjustment is done in
the following way:

Definition 28 The change generation driven by the evolution strategy ESChangeGeneration
is defined as:

ESChangeGeneration: CH× ES →2CH,

where the second parameter of the ESChangeGeneration function is an evolution strategy that
supervises the way of generating additional changes.

The previous definition is the extension of �Definition 23. Only in this way does the evolution
of an ontology comply with the needs of an ontology engineer.

Since evolution strategies offer more flexibility during the change resolution, they make the
change generation process very complicated. Instead of two dimensional cause-effect
relationships between ontology changes as illustrated in �Table 5, dependencies between
ontology changes form now a cube, where the newly introduced third dimension is an
evolution strategy. This is shown in �Figure 28. Each slice corresponds to the one way for the
change generation. Moreover, there is one slice that is identical to the strategy for the change
generation that is shown in �Table 5.

For example, in the dependency table shown in �Table 5 the AddSubConcept change does not
cause any additional changes. However, if the evolution strategy for the resolution point RP8
that determines the allowed shape of a concept hierarchy uses the elementary evolution
strategy EES20, which removes multiple paths to a superconcept in the hierarchy, then the
AddSubConcept change might cause the RemoveSubConcept to change. Therefore, there is a

Semantics of Change

 101

dependency between these two changes, which results in the creation of a new slice in the
cause-effect cube. This slice represents the new version of the change dependency table.

The number of slices is equal to: 3888)RPi(RW
RPRPi

=∏
∈∀

. This number represents the total

number of possibilities for resolving ontology changes. Its high value explains why the user-
driven ontology evolution is very complex. The complexity is one of the reasons why an
evolution strategy is defined at the ontology level (i.e. it holds for all ontology entities) but
not at the entity level (i.e. for one particular entity). If it were a case, then the number of
possible combinations would increase drastically. The second reason is that an ontology
engineer would have to answer to the same questions as many times as ontology entities are
considered during the request resolution which can be considered as a tedious, troublesome
and time-consuming effort.

Change B causes change C
when the evolution strategy is A

C

A

B

Change - effect

Change - cause

Evolution strategy

Figure 28. The cause-effect dependencies between ontology changes as a consequence of
introducing evolution strategies

Evolution Strategy Example

Let us explain our approach through an example of deleting a concept C embedded in a
complex concept hierarchy. The neighbourhood of a concept (see �Figure 10) may be
corrupted after a concept removal. According to �Definition 17, the neighbours of a concept
are (i) its parents or children (due to the ”subConcept” link), (ii) properties whose domain or
range is a considered concept (due to the “propertyDomain”/”propertyRange” links) and (iii)
its instances (due to the “instanceOf” link). An ontology engineer has to decide how to
resolve these “links”. For some of them there are different resolution ways and therefore they
are related to one or more resolution points. A part of the algorithm for the concept deletion
with the corresponding resolution points and available elementary evolution strategies is
given in �Figure 29 and �Figure 30.

To keep an ontology in a consistent state after a concept removal, the following resolution
points should be observed:

• RP1: what to do with the subconcepts of C (cf. 6 in �Figure 29);

• RP3: what to do with all properties whose domain is C (cf. 17 in �Figure 29);

Methods and Tools for Ontology Evolution

 102

• RP3: what to do with the properties whose range is C (cf. 18 in �Figure 29);

• RP4: what to do with instances of C (cf. 22 in �Figure 29);

Note that for the RemoveConcept change the first resolution point always has to be taken into
consideration. The usage of the other resolution points is conditional and depends on the
elementary evolution strategy chosen for the resolution point RP1. For example, the
resolution point RP3 defining what to do with the properties that subconcepts inherit from
their parents is significant only if the subconcepts are preserved. Otherwise, there is no
resolution path that takes it into consideration and therefore it is irrelevant for the particular
change resolution.

Further, some resolution points are used indirectly. For example, the RemoveConcept change
may trigger additional changes at the instance level. The resolution of these changes (cf. 58 in
�Figure 30) requires the consideration of the RP4 resolution point. Moreover, although one
evolution strategy is defined by specifying elementary evolution strategies for all resolution
points, usually only a subset of resolution points is considered. This subset is determined by
the content of the evolving ontology and the request for a change.

Finally, the pseudo code of the RemoveConcept change shown in �Figure 29 and �Figure 30
illustrates that for the practical realisation of the semantics of change problem it is not
sufficient to know just the dependencies between changes since they cannot be resolved in
parallel. Indeed, the procedural approach controls the order in which additional changes are
generated. For each ontology change all dependent changes (defined through the change
dependency graph) have to be structured to a sequence of pending changes. In order to make
the job of an ontology engineer easier, it is preferable to place earlier in a procedure those
changes that could discard the need for other dependent changes. In this way the emergence
of many unnecessary changes is avoided.

In the resolution of the concept removal shown in �Figure 29 and �Figure 30, dependent
changes are ordered so that a problem related to the concept hierarchy is resolved primarily
since the resolution of other problems depends on this decision. However, if the property
propagation is resolved before the resolution of the concept hierarchy, then some concepts
become temporary domain/range concepts. At the end of the resolution process these
properties do not exist any more, and, consequently, there is no concept that is a domain of
them. Therefore, the AddPropertyDomain change is generated needlessly since its effect is
destroyed through the generation of its inverse change RemovePropertyDomain. In order not
to burden an ontology engineer with temporary changes, the order of generation of additional
changes has to be carefully determined. The dependencies between the generated changes and
the order in which change dependency graph is traversed are shown in �Figure 31.

This example shows that the dependency graph is an “unclean” and ambiguous description of
dependencies between ontology changes, and, therefore, the procedural approach for the
semantics of change strives to patch, interpret and clarify (in a code) many parts of the
dependency graph �[81].

Semantics of Change

 103

Figure 29. The semantics of change for the RemoveConcept change (first part)

Methods and Tools for Ontology Evolution

 104

Figure 30. The semantics of change for the RemoveConcept change (second part)

4.2.4 Advanced Evolution Strategies

In real business the choice of how a change (e.g. the deletion of a concept) should be resolved
may be based on characteristics of the final state of an ontology (e.g. the depth of hierarchy
should be as small as possible) or on characteristics of the process for resolving changes itself
(e.g. the minimal cost of changes should be incurred). In order to enable such customisation
of the ontology evolution process, an ontology engineer may choose an advanced evolution
strategy. It represents a mechanism to prioritise and arbitrate among different evolution

Semantics of Change

 105

strategies that are available in a particular situation, relieving the ontology engineer of
choosing elementary evolution strategies individually.

Figure 31. Impact of the order of resolving problems on the generated changes

Indeed, the advanced evolution strategies try to address the usability issue. Ontology
engineers have to be able to direct the semantics of change phase of the ontology evolution
process, but rather at the right level of generality in the control provided. A control such as
“orphaned concepts have to be deleted” is like to be less useful to an ontology engineer than
“keep the ontology as minimal as possible”. This does not mean that evolution strategies need
to be described without selecting elementary evolution strategies for some resolution points.
In fact, evolution strategies can be more understandable when they are described in an
abstract way. This leads to the advanced evolution strategies.

An advanced evolution strategy automatically combines available elementary evolution
strategies to satisfy the user’s criteria. We have identified the following set of advanced
evolution strategies that reduces the burden involved in modifying ontologies:

• structure-driven strategy – resolves changes according to criteria based on the
structure of the resulting ontology, e.g. the number of levels in a concept hierarchy.
This strategy follows the requirements of the real-word ontology-based applications,
such as MEDLINE (see section �5.4). MEDLINE requires a weekly update, usually
involving only supplementary concept records. However, the concept hierarchy is
updated annually. This kind of changes is performed by keeping the hierarchy
minimal, because it alleviates, according to the authors of MEDLINE, the
understanding of the conceptualisation;

• process-driven strategy – resolves changes according to the process of changes itself,
for example optimised per cost40 of the process or per a number of steps involved41.
Determining what has to be changed and how to change it requires a deep

40 Cost may be defined by the number of the removals.
41 The application of the process-driven evolution with the minimal number of the changes for the ontology

shown in �Figure 24a) results in the solution (c).

a) Very simple ontology

b) Resolution of a concept removal
by considering a concept hierarchy first

c) Resolution of a concept removal
by considering property propagation first

Methods and Tools for Ontology Evolution

 106

understanding of how the ontology entities interact with one another. We cannot
expect that an ontology engineer spends time explaining the reasons for all performed
changes and their ordering. One strategy enabling that an ontology engineer can easily
follow and understand sequences of the changes is to perform the minimal number of
the updates;

• frequency-driven strategy – applies the most often used or last recently used evolution
strategy.

The structure-driven advanced evolution strategy tries to minimise a concept hierarchy.
Setting up appropriate elementary evolution strategies for the resolution points that have
impact on the concept hierarchy does this. There are only two resolution points that influence
the hierarchy: the resolution point RP1 that determines how to handle orphaned concepts and
the resolution point RP8 that determines the allowed shape of the concept hierarchy. The
minimal hierarchy is achieved by choosing the elementary evolution strategy EES1 that
causes the deletion of the orphaned concepts for the resolution point RP1 and by opting for
the elementary strategy EES20 that removes multiple paths to a super-concept in the hierarchy
for the resolution point RP8. The choice of the elementary evolution strategies for all other
resolution points is not important for achieving the goal – the minimal concept hierarchy.

The process-driven advanced evolution strategy as well as the structure-driven advanced
evolution strategy attempt to reduce the number of the combinations for selecting an evolution
strategy. However, they are based on quite different heuristics. The process-driven advanced
evolution strategy tries to speed up the ontology evolution process by avoiding the subtractive
i.e. capacity reducing ontology changes (see �Definition 9) since they principally provoke the
additional changes. It means that when there is a possibility to resolve an inconsistency
problem by generating something in the ontology, this solution is always accepted. For
example, for the process-driven advanced evolution strategy the elementary evolution strategy
EES1 that causes the deletion of the orphaned concepts for the resolution point RP1 will never
be selected. The reason is that there are options for resolving the same problem (i.e. the
resolution point RP1) without causing the deletion (i.e. EES2 and EES3). Moreover, the
resolution point RP3 deciding what to do with properties whose parent changes, will always
be resolved through the choice of the EES8 since in this way the probability for the deletion
of the property instances is decreased.

This advanced strategy is convenient for improving the understanding of the ontology
evolution process because the number of additional changes that are needed to preserve the
consistency is significantly reduced. Moreover, the final ontology is more similar to the
source ontology �[75] which makes easier for an ontology engineer to comprehend all effect of
a required change.

The frequency-driven advanced evolution strategy tries to incorporate the needs of an
ontology engineer in the process of defining an evolution strategy. This strategy is based on
the assumption that the way an ontology engineer makes a change sheds some light on how
she may go about making other changes. Consequently, it is preferable to set up an evolution
strategy that is “similar” to the evolution strategies that guided the generation of additional
changes in the past.

In fact, the frequency-driven advanced evolution strategy approximates the choice of an
evolution strategy by keeping track on when an evolution strategy was last used. If an
evolution strategy has recently been used then it is likely that it will be used again in the near
future. Conversely, an evolution strategy that has not been used for some time is unlikely to
be used again in the future. There are two variants of the frequency-driven evolution strategy:

Semantics of Change

 107

• most often used frequency-driven advanced evolution strategy - it requires the analyses
of the history of the used evolution strategies in order to rank them according to their
usage. Indeed, an evolution strategy is created by selecting the most used elementary
evolution strategies for each resolution point;

• last recently used frequency-driven advanced evolution strategy – it sets up an
evolution strategy that is identical to the evolution strategy used during the previous
evolution of the same ontology.

The frequency-driven advanced evolution strategy requires the tracking of the used evolution
strategies. The new evolution strategies are inferred by an analysis of the history of the
evolution strategies taken in the past. Past histories are low-level syntactic knowledge that
captures the context of the ontology modification �[82].

4.2.5 Complexity

A standardised measure of the complexity of an algorithm is the number of operations it takes
to solve a problem in the worst case. Considering the complexity of the procedural approach
for the semantics of change, the number of the operation determining the complexity is the
number of additional changes that are generated during the resolution of a given change. It
depends on a given change. The worst case (from the complexity point of view) is a concept
removal, which, in its turn, causes the removal of all its subconcepts due to the number of
inconsistencies that may arise. We do not consider the RemoveOI-model change since it
causes inconsistency between ontologies, which is elaborated in more details in chapter �5.

A part of the change dependency graph42 related to the RemoveConcept change is shown in
�Figure 32. There is only one change (the RemoveSubConcept change) that can trigger the
concept removal. Moreover, there are four consequences of this change, namely the
RemoveSubConcept change, the RemovePropertyDomain change, the RemovePropertyRange
change and the RemoveInstanceOf change. These consequences form four paths in the change
dependency graph that has to be traversed in order to determine the complexity of the
approach.

The number of the operation that determines the complexity depends on the “size” of the
problem data. Removal of a concept that has 1 million instances is quite different from the
removal of a concept with 10 instances. Therefore, we express the number of the additional
changes (expected in the worst-case scenario, i.e. during the concept removal) as a function of
some characteristic numbers that suffice to capture the volume of the work to be done.

To find out these numbers we analysed all paths43 in the graph from the node that corresponds
to the concept removal to the nodes that do not have any output edges, which implies that the
changes assigned to these nodes do not provoke any inconsistency. As shown in �Figure 32,
there are several leaf nodes: RemoveSubProperty, RemoveMinCardinality,
RemoveMaxCardinality, RemovePropertySymmetric, RemovePropertyTransitive,
RemovePropertyInverse. We assign the numbers (measures) to each edge on each path
between the “concept removal” node and leaf nodes representing changes that do not cause
additional changes.

42 Note that this graph is a simplified view of the all dependencies since it does not include nodes representing all

changes (e.g. AddConcept change). Nodes stand for ontology changes and the edges correspond to the cause-
effect relationships between changes. We do not show the label of edges representing conditions for the
change invocation.

43 A path is a sequence of nodes traversed by following the edges between them.

Methods and Tools for Ontology Evolution

 108

Remove
SubConcept

Remove
Concept

Remove
InstanceOf

Remove
Instance

Remove
PropertyInstance

Remove
PropertyRange

Remove
Property

Remove
PropertyDomain

Remove
SubProperty

Remove
PropertySymmetric

Remove
PropertyTransitive

Remove
PropertyInverse

Remove
MinCardinality

Remove
MaxCardinality

Figure 32. A part of the dependency graph that shows causes and consequences of a
concept removal

There are paths that include the same node two or more times. All these cycles require a
special attention, because of the complexity they introduce. The most complicated path is
through the node related to the removal of the inheritance relationship. The RemoveConcept
change causes the RemoveSubConcept change, which further causes the RemoveConcept
change. However, the next call of the RemoveConcept change is not applied to the same
concept but, instead, to its subconcepts. This cycle in a graph is modelled through the “shape”
of a concept hierarchy. The number of the layers and the number of the concepts at one layer
determine the shape.

Other cycles exist between the RemoveProperty change and the changes
RemovePropertyDomain and RemovePropertyRange, respectively. On the contrary to the
previous cycle, that provokes a recursion, these cycles have the completely different
interpretation. It means that either the RemoveProperty change triggers the
RemovePropertyDomain/RemovePropertyRange change or vice versa. However, once
activated, the RemovePropertyDomain/RemovePropertyRange change, as a consequence of
the RemoveProperty change, will not cause the RemoveProperty change again since the
property does not exists anymore. Similarly, if the RemoveProperty change is a consequence
of the RemovePropertyDomain/RemovePropertyRange change, it does not generate its
inducement. The similar strategy can be applied to the cycle between the RemoveInstanceOf
change and the RemoveInstance change.

Therefore, to estimate the complexity of the RemoveConcept change the following numbers
are used:

• m - average depth of a concept hierarchy starting from the considering concept;

• n - average number of subconcepts;

Semantics of Change

 109

• d – average number of single-domain44 properties per concept;

• r – average number of single-range45 properties per concept;

• i - average number of instances per concept46;

• pii – average number of property instances per instance;

• ppi – average number of property instances per property;

• sp – average number of subproperty per property.

A property can be defined as being transitive/symmetric/inverse or not. Therefore, all
outgoing edges from the node that corresponds to the RemoveProperty change are associated
with the value 1. Similarly, for a pair property-domain either one or none minimum/maximum
cardinality constraints can be specified. Therefore, the value 1 is assigned to all input edges to
the nodes representing the RemoveMinCardinality and RemoveMaxCardinality changes.

We note that some edges are not explicitly taken into account since they are covered through
the longer path that represents the worse case. For example, the fact that the
RemovePropertyDomain can cause the RemovePropertyInstance change is comprised through
the node that represents the RemoveProperty change.

By taking into account these numbers, it can be calculated that the RemoveConcept change
resolves the semantics of change problem in at most:

)d)3spppi(*)rd(pii*i(*)n...nn1(1m32 +++++++++ −

operations. It means that the RemoveConcept change generates approximately this number of
additional changes. We are primarily interested in the rate of the growth of this function as the
defined numbers increase. Since we want to distinguish between mild and “exploding” growth
rates, the lower order numbers are discarded, i.e. n)n...nn1(m1m32 ≈++++ − . Moreover,
the number of singe domain/range properties related to one concept is low in general, so that
so the (d+r) factor is not important. The same holds for the subproperties defined for a
property. Consequently, their impact (i.e. the factor sp) can be neglected. Further, the number
of property instances per property ppi is subsumed by the number of property instances per
instance pii. Therefore, it does not determine the rate of growth. Finally, the number of
property instances for an instance pii is usually of a lower order that the number of instances.

The end result is that the complexity of the RemoveConcept change can be sufficiently
described by the function i*n)tmoveConcep(Reg m≈ , which means that the resolution of

this change takes time)i*n(O m .

Therefore, the total number of additional changes for the concept removal is)i*n(O m .
Ontologies usually contain maximum 10 layers (i.e. m≤10) and not more that 10 subconcepts
for one concept (i.e. n≤10). On the other hand, the number of instances can be very large (e.g.
1.000.000). However, the complexity depends on the number of instances in a linear way.

The calculation does not include the choice of an evolution strategy due to several reasons.
Firstly, we analysed the worst case, which is covered through one evolution strategy.

44 A single-domain property is a property that has only one domain concept. If more than one concept is a

domain of a property, then the removal of a concept does not trigger the removal of a property.
45 The similar explanation as for the single-domain property.
46 It covers the path of the RemoveConcept change to the RemoveInstance change (through the

RemoveInstanceOf change) since an instance cannot exist without being attached to a concept.

Methods and Tools for Ontology Evolution

 110

Secondly, an evolution strategy is selected before the evolution process is started. Finally, and
more importantly, the choice of other evolution strategies can only further restrict the number
of generated changes.

4.3 Declarative Approach for the Semantics of Change

The effectiveness of an ontology-based application heavily depends on the possibility of the
underlying ontology to model the given domain. Due to the changes in the application’s
domain or in the user’s requirements an ontology evolves over time. Since an ontology is a
complex, interwoven structure, an ontology change can be resolved in several ways (see
section �4.2). For example, after a concept removal, its subconcepts can be preserved or
deleted as well. If they are preserved, they have to be reconnected either to the parent
concepts of the deleted concept or to the root concept. Further, it may happen that a user
wants to retain some subconcepts and to remove the rest of them. Thus, for a more complex
change the number of possible solutions increases dramatically. Each solution meets the
requirements of some of ontology engineers, but not of all of them. Since the needs of an
ontology engineer cannot be anticipated, it is also difficult to determine exactly which way of
resolving a request should be built into a system. Thus, for an ontology evolution system to be
useful, effective and efficient, it has to address two issues �[125]:

1. how an ontology engineer can specify her request for a change;

2. how this request can be realised.

The first problem requires a method for expressing a need of an ontology engineer in an
easier, more exact and declarative manner. It is in contrast to all existing approaches, where
the ontology engineer can only select a change from a predefined set of ontology changes,
which does not cover all the needs of ontology engineers.

Regarding the second problem, most of the existing approaches provide only one way of
resolving a change; this is usually the simplest one. Even though evolution strategies offer
more flexibility by enabling an ontology engineer to control and customise the way of
resolving a change, they do not cover all possibilities. To achieve the completeness of the
system, the solution is not to specify in advance the possible ways of resolving a change, but
to enable the system to calculate on its own all the ways that satisfy the needs of ontology
engineers.

In the rest of this section we present an approach for the ontology evolution that addresses
two key issues: the specification of a change request and the resolution of a change. It
considers the ontology evolution as a reconfiguration-design problem solving task �[152] and
adapts the graph searching method to the ontology evolution problem. By modelling the
ontology evolution as reconfiguration-design problem solving task, the problem is reduced to
a graph search where the nodes are evolving ontologies and the edges represent the changes
that transform the source node into a target one. The search is guided by the constraints
provided partially by an ontology engineer and partially by a set of rules defining the ontology
consistency. In this way we allow an ontology engineer to specify an arbitrary request
declaratively and ensure its resolving. One of the benefits of this approach is that it allows the
ontology engineer to specify declaratively what she wants to do and not how to do that.

The rest of this subsection is organised as follows: In section �4.3.1 we give a short example
explaining the requirements for an ontology evolution system. The conceptual architecture of
the declarative approach for the semantics of change is given in section �4.3.2. In section �4.3.3
we model the semantics of change as reconfiguration-design problem solving task. The
possibilities for the request formalisation are discussed in �4.3.4. The adaptation of a graph

Semantics of Change

 111

search to the ontology evolution is elaborated in section �4.3.5. Finally, we discuss the
complexity of the proposed approach in section �4.3.6.

4.3.1 Motivating Example

To illustrate the process of resolving a user’s request for an ontology change we use as an
example a very simple ontology shown in �Figure 24(a). Let's assume that the information
about students is not needed any more, but the information regarding PhD students and MSc
students has to be retained. In most of the existing approaches this need can be realised
through successive applications of a sequence of ontology changes:

• AddSubConcept(“PhD Student”, “Person”) - defines the concept “PhD Student” as a
subconcept of the concept “Person”;

• AddSubConcept(“MSc Student”, “Person”) - defines the concept “MSc Student” as
subconcept of the concept “Person”;

• RemoveConcept(Student) – removes the concept “Student”. (1)

Identification of the corresponding sequence of changes that realise a request is complex,
because it supposes the correctness of the sequence. Other orders of these changes may not
satisfy the request of an ontology engineer, e.g. the removal of the concept “Student” in the
first step will cause the removal of the concepts “PhD Student” and “MSc Student” as well,
which does not meet the user’s request. Moreover, the ontology engineer has to understand
the semantic of changes. For example, she has to be able to understand that the removal of the
concept “Student” causes the removal of the subconcept “BSc Student” as well.

However, we cannot expect that an ontology engineer spends time finding, grouping and
ordering the ontology changes to perform the desired update. In order to do that, the ontology
engineer should be aware of the way of resolving a change, she should find out the right
changes, foresee and solve the intermediate conflicts that might appear and order changes in a
right way �[10]. This activity is time consuming and error prone. The need of the ontology
engineer is especially hard to fulfil if an ontology is large (e.g. thousand concepts) or complex
(e.g. multiple concept hierarchy).

Further, it is not sufficient that the sequence of changes should carry out exactly the desired
modification. This sequence has to be created in a way that its resolution has acceptable
performance considering time and memory. Therefore, it must not contain the changes whose
side-effects will be subsumed or destroyed by effects of other changes.

A more user-oriented approach can be obtained by introducing evolution strategies that are
described in the previous section. For example, one strategy for the concept removal may be
to reconnect the subconcepts to the parent concept. By selecting this evolution strategy at the
start of the ontology evolution process, the ontology engineer can realise the previously
mentioned request using only two changes independently of their order:

• RemoveConcept(“Student”) – remove the concept “Student”;

• RemoveConcept(“BSc Student”) – remove the concept “BSc Student”. (2)

Although the needed sequence of changes in the KAON system (see section �7.2) might be
significantly shorter than in other systems (e.g. for a more complex request and/or a large
ontology), the disadvantage is that the ontology engineer has to specify an evolution strategy.
However, determining the right evolution strategy that meets the need of the ontology
engineer requires a deep understanding of what an evolution strategy is. Advanced evolution
strategies (see section �4.2.4) are introduced to gain the better understanding.

Methods and Tools for Ontology Evolution

 112

Two crucial problems arise from the previous discussion:

1. How to specify a request for a change without having deeper knowledge about the
ontology and the evolution process? The ontology engineers should be able to specify
their complex goals without considering how they can be realised;

2. How to ensure that an arbitrary request for an ontology change can be satisfied in a
very large space of resolving changes? The system has to be flexible enough to cope
with complex, unpredictable needs of ontology engineers. However, since it is
impossible to predict with certainty what future requirements will emerge (e.g. a set of
changes with several conditions), it is difficult to determine exactly what flexibility
(i.e. changes) to build into a system. Further, it is necessary to relieve the ontology
engineers of selecting and ordering changes. Finally, it would be useful to help them
choose evolution strategies.

Our goal was to develop an ontology evolution system, which fulfils these two requirements.
Considering the first requirement, the request of an ontology engineer for changes from the
previous example should be specified declaratively like:

RemoveConcept(“Student”) and

not RemoveConcept(“PhD Student”) and not RemoveConcept(“MSc Student”) (3)

which is identical to the given need of the ontology engineer. This is in contrast to the
previous two specifications ((1) and (2)), which do not specify the needs of the ontology
engineer (what has to be done), but the realisation of it (how it has to be done). Note that this
specification does not contain anything related to the concept “BSc Student” since this was not
a part of the request.

Secondly, the more complex a change is, the more difficult it becomes to predict all ways of
resolution to be desired in the future. For example, none of the existing system considers that
the merging of two source concepts into one single merged concept can be performed as a
union, an intersection or a difference of the properties of the two input concepts �[15]. Thus,
the only solution is not to specify how to resolve a change, but to let the system alone to find
all possibilities to perform a change47 and to order them appropriately. It is analogous to the
problem of reconfiguring a system under the given set of constraints, in which a possible
solution is found using straightforward graph searching �[110]. Such an approach for the
ontology evolution is elaborated in the rest of this section.

4.3.2 Conceptual Description of the Declarative Approach

Since our approach for the ontology evolution enables the specification of complex requests
for the changes and in the same time gives all possible ways to resolve such a request, it
requires a complex model behind it. In order to make the presentation of the approach more
understandable, in this section we give the conceptual description of our declarative approach
for the semantics of change whereas the particular modules are presented in next sections in
more details. The conceptual architecture is shown in �Figure 33.

An ontology engineer expresses her request for a change in a declarative manner, as a
collection of ontology changes that are supported by a system (e.g.
RemoveConcept(“Student”) and not RemoveConcept(“PhD Student”) and not
RemoveConcept(“MSc Student”)) (cf. 1 in �Figure 33). In the request formalisation module
(cf. 2) this request is split into two sets of changes. The first one contains changes that must

47 For example, the concept “BSc Student” can or cannot be a part of the resulting ontology.

Semantics of Change

 113

be performed (cf. 3) whereas the second one consists of changes that must not be performed
(cf. 4). Returning to the previous example, the request is represented internally as:

• posCH={RemoveConcept(“Student”)}

• negCH ={RemoveConcept(“PhD Student”),RemoveConcept(“MSc Student”)}

Meta
information

Change Resolution

Request
Formalization

Change
Application

Inconsistency
Detection

Change
Generation

posCH

negCH

Request

Semantics of change

Solutions
Ordering

1 2 3

4

5

6

7

8

9
10

Figure 33. The conceptual architecture of the declarative approach for the semantics of
change

Both the sets are inputs for the change resolution module (cf. 5). This module has to apply all
changes (see section �2.4.1) from the set posCH and to ensure the consistency (see section �2.3)
of the resulting ontology. Since the application of a single change (cf. 6) can imply
inconsistencies, they have to be found (cf. 7) and resolved (cf. 8). The resolution of each
inconsistency is treated as a generation of all possible changes that eliminate this problem. It
is realised as searching in the change resolution space (see section �4.3.5) using the forward
searching method. Since the searching space can be huge, we introduce several heuristics to
constrain it (see section �4.3.5). The changes from the set negCH are also considered as a
constraint (cf. 4). The process is repeated until ontology consistency is achieved.

As a result, the ontology engineer obtains all possible consistent successive states of the initial
ontology satisfying her request. In the solutions ordering module (cf. 9) these resulting
ontologies are ranked according to some meta information (cf. 10) given by the ontology
engineer (e.g. the minimal number of changes which have to be done) as described in section
�4.3.5.

4.3.3 Semantics of Change as Reconfiguration-design Problem Solving Task

Problem solving methods are methods that can be employed to solve a problem of a particular
type (such as design, diagnosis, monitoring, etc.) �[152]. They refine the generic inference
engines to allow a more direct control of the reasoning process and provide abstract model of

Methods and Tools for Ontology Evolution

 114

reasoning process. Since the control knowledge is specified independently of the application
domain, the reuse of this strategically knowledge is enabled for different domains and
applications. In addition, problem-solving methods are abstracted from specific representation
formalisms, in contrast to general inference engines that rely on a specific representation of
the knowledge. As such, problem solving methods are special types of software architectures:
software architectures for describing the reasoning part of knowledge-based systems �[14],
�[52], �[111].

Configuration can be informally defined as a special case of design activity, with the key
feature that the artefact being designed is assembled from a fixed set of predefined
components that can only be connected in predefined ways. Selecting and arranging
combinations of parts, which satisfy given specifications, is the core of a configuration task.
The specification of configuration tasks, in general, involves two distinct phases, the
description of the domain knowledge and the specification of the desired product. The domain
knowledge describes the objects of the application and the relations among them. The
specifications for an actual product describe the requirements that must be satisfied by the
product and, possibly, optimising criteria that should be used to guide the search for a
solution. The solution has to produce a list of selected components and, as important, the
structure and topology of the product.

More formally, a configuration task can be defined as �[143]:

Definition 29 Given: (A) a fixed, pre-defined set of components, where each component is
described by a set of properties, ports connecting it to other components, constraints at
each port that describe the components that can be connected at that port, and other
structural constraints; (B) some description of the desired configuration; (C) some
possible criteria for making optimal selections, a configuration task has (1) to build
one or more configuration that satisfy all the requirements, where a configuration is a
set of components and a description of the connection between the components in the
set, or (2) to detect inconsistency in the requirements.

Therefore, the configuration design is the task of searching for an assembly of predefined
components as a solution, which satisfies a set of requirements and obeys a set of constraints.
The reconfiguration-design �[135] can, but need not start from a complete requirement
specification. It is quite possible that the only information that exists apart from the system
that is to be reconfigured is the information about the desired properties, which the system
does not provide, i.e. why the reconfiguration is supposed to happen in the first place.
Therefore, the reconfiguration-design task can be defined as:

Definition 30 Given that the user‘s requirements have changed, the goal of the
reconfiguration-design task is to compute a new configuration, where most parts of the
existing configuration can be preserved. A reconfiguration-design problem solving
task (RDPS) is defined as:

)S,E,M(RDPSGS =
where M is a model of a system, E is an existing system (that satisfies the constraints
of the model M), S is a set of required constraints and }GS{GS i= is a set of possible
solutions for the reconfiguration task, each of them containing a set of actions that
have to be applied to the system E in order to satisfy the constraints S.

Semantics of Change

 115

Since the ontology engineers’ requirements for a change are applied to an existing ontology
resulting in modification of this ontology, the semantics of change problem can be treated as a
reconfiguration-design problem solving task in which a model of the system is defined
through an ontology consistency model, the existing system is the given ontology and the
user’s requirements, expressed as ontology changes, correspond to the required constraints.

Definition 31 The declarative approach for the semantics of change phase
DeclarativeSemanticsOfChange is defined as:

)questReUser,O,M(OfChangeeSemanticsDeclarativGCH = , where:

• M is the ontology consistency model defined through the set of constraints (see section
�2.3) that each ontology has to satisfy;

• O is a concrete ontology that has to be changed;

• UserRequest is a user’s request for a change that is defined in section �4.3.4;

• mi1},GCH{GCH i ≤≤= , CHGCHi ⊆ , where GCH is a set of the possible
solutions for the evolution problem, m is the number of solutions and each solution
GCHi is represented as a set of changes.

Since each result of the semantics of change is a set of changes GCHi needed to be applied in
order to keep the consistency (M) of the ontology (O), the modified ontology can be obtained
as:

MO= GCHi ° O = GCHi(O)

where MO is a modified ontology and ° is an operator performing the application of changes
from GCHi on the ontology O.

4.3.4 Request Formalisation

Our approach requires an extension in the request specification. Contrary to all the existing
ontology evolution systems, where an ontology engineer specifies her request as a collection
of ontology changes that have to be performed, we express a request in the following way:

Definition 32 The user’s request for a change UserRequest is defined as:

UserRequest = (posExtCH, negExtCH),

where:

• posExtCH is a set of “extended” ontology changes that must be performed;

• negExtCH is a set of “extended” ontology changes that must not be performed.

An “extended” ontology change is an elementary or composite ontology change in which one
argument or more arguments can be the symbol “*”. The “*” is a wild card for all valid
interpretations of an ontology entity on this position in that ontology change. “Extended”
changes make the specification of the ontology engineer’s request more compact since an
“extended” change represents a set of ontology changes.

Methods and Tools for Ontology Evolution

 116

Returning to the example from �Figure 24, the “extended” ontology change
RemoveSubConcept(“*”,“Student”) represents the following set of changes:
RemoveSubConcept(“PhD Student”, “Student”), RemoveSubConcept(“MSc Student”,
“Student”) and RemoveSubConcept(“BSc Student”, “Student”) since the concept “Student”
has three subconcepts: “PhD Student”, “MSc Student” and “BSc Student”.

To interpret an extended ontology change in terms of elementary or composite ontology
changes we define the following function:

• the function substitution: ECH→2CH, where ECH is a set of extended ontology
changes and CH is a set of ontology changes.

Consequently, the user’s request for a change can be represented as:

UserRequest = (posCH, negCH),

where:

• �
posExtCHc

)c(onsubstitutiposCH
∈∀

= , is a set of ontology changes that must be

performed;

• �
negExtCHc

)c(onsubstitutinegCH
∈∀

= , is a set of ontology changes that must not be

performed.

As can be noticed, the ontology engineer’s request contains two sets of conditions48 that
specify what has to be done during the resolution. However, these two sets of changes have
different semantics. The posCH differs from the negCH in that the changes from the posCH
must be satisfied, while negCH must not be violated.

By taking into account extended ontology changes, the role of the request formalisation
module shown in �Figure 33 has to be extended. It has to decompose a request into a set of
ontology changes. The optimisation of a sequence is not required since the declarative
approach can cope with any arbitrary request. However, in order to speed up the resolution
process, some assistance is included e.g. through the ranking of changes based on the number
of inconsistencies they may produce.

By specifying a request for a change with a set of conditions that have to be fulfilled and
without specifying the way to resolve it, we consider the semantics of change phase of the
ontology evolution process as a reconfiguration-design problem solving task explained in the
next section.

4.3.5 Change Resolution

For resolving a reconfiguration-design problem problem-independent search methods are used
�[152]. In order to solve a problem, one needs to explicate the underlying search space and to
apply a search algorithm within that space. Since this problem is not tractable in general,
heuristic knowledge that guides the searching process to the desired solutions has to be
exploited.

Since the semantics of change phase of the ontology evolution process is considered as a
reconfiguration problem (see section �4.3.3), we reuse the forward searching method �[110].

48 The request for a change cannot be satisfied in the case when these two sets are contradictory.

Semantics of Change

 117

We configure this method by defining an evolution graph that is used for searching and by
using heuristics that are necessary for an effective search.

Evolution Graph

Definition 33 An evolution graph is defined as:

)questReUser,O,EC,NO(:EG =

where:

• ni1},O{NO i ≤≤= 49, is a set of nodes and each node represents an ontology Oi;

• mk1},EC{EC k ≤≤= 50, is a set of labelled edges, which are defined as:

ECk=(Oi,Chj,Ol), Ol=Chj°Oi=Chj(Oi),

Chj∈CH, Oi,Ol∈NO, 1≤i,l≤n, i≠l

which means that an edge between two nodes Oi and Ol exists, only if there is a single
ontology change Chj which transforms the ontology Oi into the ontology Ol;

• O∈NO representing the given ontology is a start node of a graph;

• UserRequest is a user’s request for a change (see section �4.3.4).

By defining an evolution graph we represent the semantics of change problem as a state-space
graph, in which a node represents a state of a world (i.e. an evolving ontology), and an edge
represents changing from one state of the world to another (i.e. an edge is a change that
transforms a source ontology into a target one).

In order to explain how the evolution graph is used to solve semantics of change problem, we
introduce the following definitions:

• a path PATH(Oi,Ol) from the node Oi to the node Ol is an alternating sequence of
nodes NO}O{ j ⊆ and edges EC}EC{ j ⊆ with

PATH=O0,EC1,O1, EC2,...,ECp,Op

such that O0=Oi and Op=Ol, where ECj=(Oj-1, Chj, Oj) joins nodes Oj-1 and Oj, j=1,p;

• a set of all possible paths between two nodes51 Oi and Ol denoted as PathNodes(Oi,Ol);

• a set of all possible paths PathAll= �
NOl,i1,NO OlOi, ≤≤∈∀

PathNodes(Oi,Ol);

• the function changesOnPath: PathAll→2CH, that returns the set of changes that are on
the path;

• the set of goal nodes GOAL as:

GOAL = {GOALk � GOALk ∈ NO},

where a node Ol is a goal node (i.e. GOALk=Ol) if:

49 n is the total number of nodes in an evolution graph.
50 m is the total number of edges in an evolution graph.
51 There might be many paths between the two nodes.

Methods and Tools for Ontology Evolution

 118

consistency52(Ol,M)=true ∧ ∀p ∈ PathNodes(O,Ol)

 (posCH⊆ changesOnPath(p) ∧

¬(∃Chj ∈ negCH ∧ Chj ∈ changesOnPath(p)))

where O is a given ontology, posCH and negCH are elements of a users’ request for a
change UserRequest(posCH, negCH). posCH contains changes that must be done and
negCH contains all changes that must not be done.

Since the semantics of change problem can be transformed into the problem of finding all
paths from the start node O to the goal nodes GOAL in an evolution graph, the result of the
semantics of change is specified as:

 ath(p)changesOnP{GCH = } GOALGOAL)GOALO,PathNodes(p kk ∈∀∧∈∀

Therefore, the solution to the semantics of change problem consists of a set of ontology
changes between a start node and a goal node.

In general, to carry out a search in a graph, the following aspects have to be considered �[110]:

1. a method for generating the potential solutions;

2. a definition of a potential solution;

3. a way of checking whether a potential solution is a solution.

We adapt these general aspects of searching to the evolution graph since it defines the search
space. They are resolved in the following way:

1. The generation of a potential solution is realised as a node expansion. A node is
expanded with an ontology change only if the preconditions of the change are
satisfied. Therefore, the preconditions of an ontology change describe the conditions
that make this change relevant to the situation;

2. A potential solution is obtained by applying an ontology change. Therefore, a next
node satisfies the postconditions of a change that is represented as an input edge into
this node;

3. A potential solution is a solution if:

o the corresponding ontology is a consistent ontology (i.e. it satisfies the set of
ontology constraints) and

o all the user’s defined conditions (e.g. changes that must be done) are satisfied.

Therefore, the peculiarities of the ontology evolution problem are built into the definition of
edges and in the definition of the goal nodes. Since the preconditions of a change Chj indicate
the initial state prior to the execution of a change and the postconditions indicate the state
after a change is applied, then an edge ECk=(Oi,Chj,Ol) exists if the ontology Oi satisfies the
preconditions of the Chj and the ontology Ol satisfies the postconditions of the Chj. This is
shown in �Figure 34 by assuming that a change Chj is a request for the removal of the concept
“Student” (i.e. RemoveConcept(“Student”)).

On the other hand, a leaf node of an evolution graph is a goal node GOALk, if the ontology
GOALk is a consistent ontology (i.e. if it satisfies the set of ontology constraints M), and all
the user’s defined conditions (i.e. changes that must or must not be done) are satisfied. Since
it holds:

52 The consistency function is defined in section �4.1.

Semantics of Change

 119

GOALk= Chkp° Chkp-1° ... ° Chk1° O = Chkp(Chkp-1(...(Chk1(O))...)),

where O is the given ontology and kGCHp = , the kth solution is defined as:

}CH{GCH kik = , i=1,...p,

and GOALk would be the resulting ontology.

RemoveConcept(„Student“)

Preconditions of
RemoveConcept(“Student”)

are satisfied

Postconditions of
RemoveConcept(“Student”)

are satisfied

Figure 34. A part of an ontology evolution graph indicating specificities of its edges

Heuristics for the Search Improvement

The configuration/reconfiguration task can be considered as a search problem using the above
mentioned types of inputs and outputs (see �Definition 29). This search space is restricted to
several steps using the various types of inputs �[143]. A set of possible components and
possible connections between these components are fixed and given beforehand. This restricts
the search space to a possible re-configuration space. The constraints restrict the possible re-
configuration space to the valid re-configuration space. The user-requirements restrict this
valid re-configuration space to the suitable re-configuration space.

In this section we adapt this strategy to the ontology evolution problem and introduce several
heuristics to restrict or divide this space further (see �Figure 35). Heuristics are principles used
in making decisions when all possibilities cannot be fully explored. They are used in order to
avoid expensive reasoning about the impact of changes. Therefore, they guide the search
process to the goal. In this way, the main disadvantage of the approach, i.e. using a search
space that is exponential in the path length is significantly softened.

An evolution graph consists of the nodes that are generated when all possible changes are
iteratively applied to the current node that represents a current state of an ontology. The issue
is how to manage the expansion and the search through the search space so that the solution
can be found efficiently. Indeed, a node is expanded with an edge only if this change satisfies
the heuristics.

Let’s define the set }true)Ch,O(onspreconditiCh{PCH jij == as a set of possible changes
that might be applied to the ontology Oi, i.e. the ontology Oi satisfies the preconditions of all
changes Chj(argsj,precj,postj). We define the set of changes that are reasonable to be applied

Methods and Tools for Ontology Evolution

 120

to Oi as PCH}Ch{ACH j ⊆= , where each change Chj(argsj,precj,postj)53 has to fulfil the
following set of constraints:

Search
space

restricted by:
given ontology

further restricted by:
ontology consistency definition

further restricted by:
user’s request

suitable
search
space

further restricted by:
evolution heuristics

valid
search
space

possible
search
space

adequate
search
space

Figure 35. Ontology evolution as a search problem

- Locality heuristics:

∀p∈PathNodes(O,Oi)

 (createSet(argsj) ∩

 {x� x∈ createSet(argsk) ∧ Chk(argsk,preck,postk)∈changesOnPath(p) }≠∅)

where createSet is a function that transform a tuple into a set. By applying this function to the
arguments argsk of an ontology change Chk(argsk,preck,postk), the set containing elements of
the argument is obtained (e.g. createSet((“Student”, ” Person”)) = { “Student”, ”Person” }).
Further, argsj are arguments of the change Chj(argsj,precj,postj) that is considered and argsk
represents arguments of each change Chk(argsk,preck,postk) on a path p from the start node O
to the node Oi.

This heuristics is based on the assumption that a change should be applied only if at least one
of its arguments is already visited during the resolving of a change request. Without the usage
of this heuristics many undesired solutions would be generated such as the removal of all
entities except for the root concept for any of the requests of ontology engineers since the
precondition for a removal is that an entity exists in an ontology.

Returning to the example from �Figure 24, after the deletion of the concept “Student”,
invariants IC4 and IC5 (see section �2.3) are invalidated. As a consequence of that, several
problems arise:

• undefined child concept for the concept “Person”;

• undefined parent concept for the concepts “PhD Student”, “MSc Student” and “BSC
Student”.

Only changes “related” to these problems should be generated. These problems can be
resolved by the removal of the subconcept relationship between the concept “Student” and all

53 Note that the parameters of the change Chj(argsj,precj,postj) are used in all formal definitions of the heuristics.

Semantics of Change

 121

its parents and children. Thus, the application of the following set of changes is needed (see
�Figure 36):

RemoveSubConcept(“Student”, ” Person”), RemoveSubConcept(“PhD Student”, “Student”),
RemoveSubConcept(“MSc Student”, ” Student”), RemoveSubConcept(“BSc Student”,
“Student”).

RemoveSubConcept(“BSc Student“,“Student“)

RemoveSubConcept(“Student“,“Person“)

RemoveSubConcept(“PhD Student“,“Student“)

RemoveSubConcept(“MSc Student“,“Student“)

RemoveConcept(“Student“)

Figure 36. A part of the evolution graph for the removal of the concept “Student” for the
ontology shown in �Figure 24

The common characteristic of all induced changes is that they contain the concept “Student”
as one of arguments as required by the locality heuristics. There are many other changes
whose preconditions are satisfied such as RemoveConcept(“Project”),
RemoveSubConcept(“Professor”, “Academic Staff”), AddConcept(“Industrial Project”), etc.
However, they cannot be applied since the intersection of the arguments of these changes and
the arguments of the already applied change RemoveConcept(“Student”) is an empty set.

- Cycle detection heuristics:
∀p∈PathNodes(O,Oi)

¬ (∃Chk(argsk,preck,postk)∈ changesOnPath (p) ∧

 inverseChange(Chj(argsj,precj,postj), Chk(argsk,preck,postk)) = true)

where the function inverseChange:CH×CH→{true, false} returns true, if its arguments (i.e.
Chj(argsj,precj,postj) and Chk(argsk,preck,postk)) are inverse changes (see �Definition 15),
otherwise it returns false.

This heuristic enables the avoidance of the expanding any branch that would result in the
generation of the previous version of the same ontology. Since it prevents that the paths in an

Methods and Tools for Ontology Evolution

 122

evolution graph should contain inverse changes (see �Definition 15), it relieves us from
worrying about interminable searching, i.e. solutions that comprise the infinite set of changes.
For example, none of the paths can contain RemoveConcept(“Student”) and
AddConcept(“Student”) changes since they are inverse changes. After the removal of the
concept “Student” the preconditions for the addition of the concept “Student” are satisfied and
vice versa.

- User-defined heuristics:
Chj(argsj,precj,postj)∉ negCH,

where negCH is an element of a users’ request for a change UserRequest(posCH, negCH).

This heuristics is used to quickly inform the search about the direction to the goal. It is
focused on the more complex needs of an ontology engineer specified with negCH - a set of
changes that must not be performed (see section �4.3.4). Regarding the example depicted in
�Figure 24 it means that there is no edge that corresponds to the RemoveConcept(“PhD
Student”) or RemoveConcept(“MSc Student”) changes.

Beside heuristics used for constraining the search space, we have introduced several heuristics
to define ordering upon possible solutions. Let’s consider two solutions GCHi and GCHj of
the given semantics of the change problem. We define the partial ordering relation ≤ between
GCHi={Chik} and GCHj={Chjl} in one of the following ways:

1. jiji GCHGCHGCHGCH <↔≤ ;

2. ↔≤ ji GCHGCH

 }RmCHChGCHChCh{ ikiikik ∈∧∈ }RmCHChGCHChCh{ jljjljl ∈∧∈<

where RmCH⊂CH is a set of changes causing the removal such as RemoveConcept,
RemoveSubConcept, RemoveProperty, etc.;

3. 	<	↔≤
l

jl
k

ikji)Ch(tcos)Ch(tcosGCHGCH , where the cost function is defined as

→CH:tcos R+, CH is a set of ontology changes, R+ is a set of positive real
numbers;

4. jiji EEGCHGCH <↔≤ , where Ei=Ci∪Pi∪Ii (Ej=Cj∪Pj∪Ij) is a set of entities of
the ontology Oi (Oj), Oi=GCHi(O) and Oj=GCHj(O), respectively.

The previously defined heuristics enable the ordering of solutions according to the (1) number
of needed changes, (2) number of removals, (3) cost of changes, or (4) size of the resulting
ontology. Consequently, they facilitate the choice of the solution that is more appropriate to
the need of an ontology engineer.

Indeed, through the definition of the ranking heuristics, our approach associates a qualitative
assessment with each solution indicating the complexity of the resolution way. An ontology
engineer can use these assessments to set thresholds on the comparison algorithms or to focus
attention on less complex solutions or those with less impact on the ontology.

Whereas the locality, the cycle detection and the user-defined heuristics are necessary to
reduce the search space, the ranking heuristics are mutually exclusive. Typically a particular
ranking heuristics is chosen by an ontology engineer at the start of the ontology evolution
process. Moreover, the selected ranking heuristics is used during the search through the graph,
which leads to a more effective and efficient search. Let’s assume that the minimal number of
removal is selected as the ranking heuristic. This heuristic can be applied after one solution is

Semantics of Change

 123

found. The solution is represented as a goal node in an evolution graph. Each node in the
evolution graph that might be a part of another solution is compared to the goal nodes. The
comparison is done by checking the number of removals on the path to the root node. If this
number is greater than the number of removals to the goal nodes, this node cannot be taken
into the consideration anymore. Otherwise, if this number is smaller and the considered node
is the goal node, then it becomes the new solution and the previously found solution is
rejected.

There is a trade-off between the amount of work it takes to derive all solutions and how
accurately found solutions realise a request of an ontology engineer. The price that has to be
paid is the time required to perform the request. The heuristic knowledge guiding the
searching process to the desired solutions has to be exploited. Whereas the mandatory
heuristics prevent the generation of an exponential number of the solutions, the ranking
heuristics improve the performance in the general case. The application of the ranking
heuristics on the results obtained through the mandatory heuristics may be inefficient when
the number of chosen solutions is much smaller than the number of the produced solutions.
Thus, we combine the mandatory and the ranking heuristics during the request resolution,
which leads to more efficient searching. Indeed, the defined heuristics are sufficient to make
the approach usable in practice.

The benefits of the presented approach are manifold: an easier extension of the ontology
evolution system with new composite changes, a more efficient maintenance of the ontology
evolution system providing several ranking heuristics in order to choose the most suitable
solution, to name but a few.

4.3.6 Complexity

An ontology change is an extremely expensive process both in terms of time as well as system
resources. A simple change such as a concept removal for a large number of instances of that
concept can take long for processing. Hence a complex change as specified by the declarative
request specification can take even longer. Further on, we present a short discussion about the
complexity of the declarative approach for the semantics of change.

The declarative approach is based on the graph search method. Search methods generally fall
into the class of NP-hard problems since they require examination of large search spaces.
Therefore, they are usually used when the problems cannot be solved directly (i.e. without
searching) by simply applying the appropriate algorithms. Knowing such limitations of the
search methods and the fact that the ontology evolution is a very practical problem, we tried
to define the tractable solution. Indeed, we introduce a set of heuristics (see section �4.3.5)
used to guide the search to the goal.

The complexity of the approach depends on two factors:

• how many steps it takes to find a solution (i.e. the number of nodes
generated/expanded);

• how many nodes it takes to solve a problem in all possible ways (i.e. maximum
number of nodes in a graph).

The first factor represents the number of the generated changes needed to achieve the
consistency whereas the second factor determines the number of the possible solutions. A
more careful analysis of these factors indicates that the complexity can be measured in terms
of:

• md – maximum depth of an evolution graph, i.e. the length of a path between a source
node and a goal node (i.e. a solution),

Methods and Tools for Ontology Evolution

 124

• b – maximum branching factor of the evolution graph.

Therefore, the complexity is O(bmd). The worst-case for md is the concept removal, which
causes the removal of all subconcepts. It means that the value for md is equal to the worst-
case for the procedural approach for the semantics of change (see section �4.2.5). The
branching factor indicates the number of ways for resolving an inconsistency. The worst-case
for b is 3 since the inconsistency related to the orphaned concepts (see invariant IC4: Concept-
Closure Invariant) may be resolved in three ways (see the resolution point RP1 and its
resolution ways in section �4.2.3). For other inconsistencies there is either one or two
resolution ways.

Although the approach is very complex, a good heuristics can lead to dramatic improvements.
In previous section we mentioned some heuristics used for restricting the search space. They
are based on the idea to model meaningful solutions. Here we introduce the additional
heuristic information concerning the nodes that are most promising to pursue and the way in
which this is to be done. This information, which guided the implementation of the system
(see section �7.2), is in the form of a heuristic function:

h: NO→N+,

where NO is a set of nodes in the evolution graph and N+ is a set of positive integers. The
heuristic value is simply derived from the properties of a node n in the following way:

	=
in

)n,in(fulfilment*)in(weight)n(h , INin0 ≤≤ ,

where:

• IN is a set of all possible inconsistencies that can be derived from the ontology
consistency definition (see section �2.3);

• weight: IN→N+ and weight(in) indicates the number of possible resolution ways for
the inconsistency in;

• fulfilment: IN× NO→{0,1}, where NO is a set of nodes of an evolution graph. The
value 1 of the function fulfilment(in, n) points out that the ontology in the node n has
the inconsistency in. The value 0 is used when the inconsistency in does not exist in
the node n.

This heuristic function is used to inform the search about the direction to a goal. A search
algorithm to define the order of a node expansion and the way in which a node is expanded
uses it. Our search algorithm selects a node with the minimum value for the heuristic function
h since it appears to be closest to the goal. In this way, the search algorithm can find the
solution with fewest edges (i.e. additional changes) first.

Further, the number of the nodes in the evolution graph varies tremendously of the order in
which the inconsistencies are resolved. Therefore, the node is expanded with an edge (i.e. a
change) that resolves an inconsistency with the minimum weight. Namely, the complexity of
the evolution graph is exponential in the branching factor. By defining the ranking between
inconsistencies and selecting the inconsistency with the minimum weight, the smallest
breadth of an evolution graph is achieved.

Practically, we adopted the A* search algorithm �[110] that can find optimal path as the first
path. The definition of the optimality is specific for the ontology evolution problem. This
problem-specific information is built into the node selection and the node expansion. The
specificities of the node selection are included in the definition of heuristic function h. The
node expansion is realized through the ranking of inconsistencies based on the function
weight.

Semantics of Change

 125

The evaluation of this system on the real-world examples (see section �4.4) showed that these
heuristics are helpful enough to solve the problem in practical situations. It is worth pointing
out that the analysis of the complexity has given an insight to the designer of procedure with a
clear indication of the problems that are difficult to deal with as well as general methods to
cope with them. It led directly to practical implementation by the search method of better
control strategies (i.e. the heuristic function h) and optimisation techniques (i.e. the ranking of
inconsistencies through the function weight).

4.4 Comparison of the Procedural and the Declarative Approaches

In this section we provide the comparison of the two proposed methods for the semantics of
change phase of the ontology evolution process. The assessment is based on the following
assumptions:

• both systems are able to perform the same set of changes (see �Table 1 and �Table 4);

• they offer the same possibilities for controlling and customizing the change resolution
(see evolution strategies in section �4.2.3 and meta-information in section �4.3.5).

To compare the proposed approaches for the semantics of change we define the following
subjective criterion:

• efficiency - the degree to which a system performs the desired request for a change
with minimum consumption of resources (e.g. time, space, etc.).

This criterion is chosen to assess how an ontology evolution system meets the needs of
ontology engineers that use an ontology evolution system to modify an ontology. They are
end-users for the ontology evolution system. By taking into account ontology engineers we
are able to measure the benefits at the run-time, i.e. benefits from the usage point of view.

4.4.1 Efficiency of the Approaches for the Semantics of Change

The efficiency of a system is its ability to do a task within certain time and space constraints.
It is related to the bottlenecks that may arise in a system when doing certain tasks. Since the
ontology evolution is a practical problem, the semantics of change must be guaranteed within
run-time. The time needed to perform a request consists of the time for the request
specification and the time for the request resolution. Therefore, we split this comparison
criterion into two specialised measures:

• the request specification efficiency – it estimates how easily and inexpensively a
request might be specified;

• the request resolution efficiency – it estimates the ability of a system to realise a
request without wasting time and effort.

We performed an experiment to compare both the proposed approaches for the semantics of
change with respect to these two types of efficiency.

Experiment Setup

For the experiment we presented the subjects with an ontology and asked them to modify it in
a specific way. The task required them to iterate through a set of requirements for the update,

Methods and Tools for Ontology Evolution

 126

understanding what they were by representing them as ontology changes and to use ontology
editors to apply these changes.

Source Ontology: We have used the VISION ontology that consists of more than 100
concepts, 50 properties and about 900 information resources (the web page of concrete
persons, projects, etc.). Each of the information resources is related to a concrete instance in
the ontology (e.g. to the project “OntoLogging”). This ontology was developed in the scope of
the EU-funded VISION54 project, which should provide a strategic roadmap towards the next-
generation organisational knowledge management.

Since the acquisition of the information related to the domain was an ongoing process, it
happened that new information could not be represented in the existing ontology. For
example, one request was to include industrial projects. We had to split the concept “Project”
into the concepts “Research Project” and “Industrial Project” and to move all existing
instances of the concept “Project” to the concept “Research Project”.

Tools: We have used three different versions of the KAON tool suit (see chapter �7 for more
information about implementation details):

• KAON-Basic – the version of the KAON system that provides only one way for
resolving changes, as all the other ontology evolution systems;

• KAON-Procedural - the version of the KAON system that incorporates evolution
strategies allowing the users to customise an ontology evolution process;

• KAON-Declarative – the version of the KAON system that allows the declarative
specification of a request.

Users: There were 9 users in the experiment. They were split into three groups: 3 subjects
used the KAON-basic, 3 subjects used the KAON-Procedural and 3 subjects used the KAON-
Declarative. Approximately half of the users had experience with the KAON tool suit. We
gave the other half a brief tutorial on using the KAON system, focusing on the tasks that they
will need for the experiment.

Training: Prior to the experiment we gave users a small ontology as an example and asked
them to spend a short time (not more than 10 minutes) familiarizing themselves with the
corresponding tool. We did not explain to them what all implemented changes and/or
evolution strategies and/or meta-knowledge meant. We left it to them to figure it out during
the training. We assumed that the user interface and the naming convention were intuitive
enough to be able to understand what they meant.

Task: We gave all groups the same ontology and a set of requests specified in a natural
language they had to perform. For example, one task was to move all instances of the concept
“Company”55 to its sibling concept “Public sector”. Another task was to delete the concept
“Research Organisation” so that all its instances56 were attached to its super concept
“Organisation”.

We measured the time it took them (i) to specify the request, (ii) to realise the request and (iii)
to complete the task. Afterwards we calculated the average number of changes for the request
formalisation and the number of undoing changes.

54 www.km-vision.org
55 There are 121 instances of the concept “Company”.
56 There are 67 instances of the concept “Research Organisation”.

Semantics of Change

 127

Results and Discussion

�Table 7 shows the summary of the results. The declarative approach saves time by specifying
changes declaratively but it requires more time to calculate possible solutions. On the other
hand, for a complex change, the non-declarative specification of a request is a time-
consuming and an error-prone task. It took the group using the KAON-Procedural more time
on average to specify and, consequently, to complete the task than the KAON-Declarative
group.

Regarding the request resolution, it should be noted that the KAON-Declarative is much less
efficient than the KAON-Procedural. This is because the KAON-Declarative tool is purposely
general and thus applicable to a wide variety of changes. On the contrary, the KAON-
Procedural is designed for a specific problem (i.e. ontology changes). This pre-defined set of
ontology changes is “compiled” into the procedures, resulting in highly efficient performance.
In addition, the meta-level control (i.e. evolution strategies) ensures that the system performs
only computations that increase utility.

Finally, even though the computational complexity of the declarative approach is greater, its
usage leads to the faster realisation of the user's request. The above-mentioned tasks, for
example, heavily depend on the number of instances. The KAON-Procedural requires the
specification of a separate change for each instance, which can take more time for a large
number of instances. For example, the first previously mentioned task about moving all
instances of the concept “Company” to its sibling concept “Public sector” requires the 121
applications of MoveInstance change, since the concept ”Company” has 121 instances. The
evolution strategies built in the KAON-Procedural enables to shorten the number of requested
changes. For example, the second task related to the deletion of the concept “Research
Organisation” while attaching its instances to the concept “Organisation” can be specified
with only RemoveConcept(“Research Organisation”) change by selecting the elementary
evolution strategy EES12. This strategy enables the reconnection of instances of a concept
that has to be deleted to its parent concept. However, the choice of the right evolution strategy
is not a trivial task.

Table 7. The result of the evaluation. The first column shows the time needed to perform a
task. It includes the time for specifying all necessary changes as well as the time for
resolving them. The second column indicates the number of the changes needed to

realise a request. The last column demonstrates whether the requests were fulfilled or
not.

Average time per task in sec57

a) b) c)

Average number of
steps per task

Average number
of undoing changes

per task

KAON-Basic 47,3 8,4 55,7 15,8 1,5

KAON-
Procedural

18,6 6,4 25 10,4 0

KAON-
Declarative

5,1 15,2 20,3 1,7 0

57 a) and b) denote time which is required for the request specification and the request resolution, respectively.

Total time is denoted by c).

Methods and Tools for Ontology Evolution

 128

On the contrary, the declarative approach enables the grouping of requests through the usage
of the extended changes. For example, the first previously mentioned task can be solved by
the application of only one change MoveInstance(”*”,”Company”, “Public sector”), which
will be automatically translated into a set of changes for the concrete instances.

The worst result was shown by the KAON-Basic tool. The average time per task in the
KAON-Basic group was twice as long as in the other groups. This tool simulates how the
ontology evolution is realised in all existing ontology evolution systems. The result indicates
that both proposed ways for resolving the semantics of change problem (i.e. the procedural
approach and the declarative approach) are better that the existing systems.

The evaluation study showed that the complexity built into the ontology change resolution
improves users' abilities to fulfil an ontology evolution task. The declarative approach is
especially useful in the case of more complex users’ requests. Such requests are easier (i.e.
faster) to specify declaratively without considering how to realise them. However, if a request
can be fulfilled with only one elementary or composite change, it would be better to use the
programmatic approach since all solutions will be found in a shorter time.

Additionally, we analysed the time variance for the members of the same group. It showed
that most measurements for the KAON-Declarative and the KAON-Procedural are very close
to one another, while the distribution of measurements is much greater for the KAON-Basic
tool. This observation indicates that the KAON-Declarative and the KAON-Procedural
stimulate people to work in a very mechanical manner. The larger distribution for the KAON-
Basic tool could also be an indicator that people try more to understand the semantics of
changes. Further, the experiment also showed that users of the KAON-Procedural changed the
evolution strategies often. This points out that the meaning of the evolution strategies was
understandable to most of the users.

The main advantage of the declarative approach is its reduction of the user's involvement in
an ontology evolution task. The user has to specify only the request for a change and,
eventually, to select the solution in the case that many equally ranked solutions for a given
user's request exist. Consequently, the declarative approach can be considered as an automatic
one. On the contrary, other approaches require user's interventions, which make them more
complex from the user's point of view. For example, in these approaches, an additional
change has to be specified for each instance that has to be moved.

Regarding the undoing the requests for a change, only the users of the KAON-Basic tool had
to perform the same requests multiple times since the order of changes and the semantics of
changes were not intuitive to them.

Conclusion

Based on the experimental results related to efficiency here we discuss the advantages and
disadvantages of the procedural and the declarative approaches for the semantics of change.

The procedural approach can be considered as a command-based approach since an ontology
engineer has to understand the semantics of ontology changes (e.g. the difference between the
RemoveProperty and AddProperty change and the MoveProperty change – the first request
causes all the property instances to be lost whereas the second one preserves some property
instances). Therefore, she needs to be careful in choosing which changes to use. The problem
is that this approach focuses on the editing process rather than the editing result. For that
reason, the efficiency of the request specification depends on the complexity of a request. If a
request can be fulfilled with one (elementary or composite) change, then the efficiency of the
request specification is high. However, for more complex requests this kind of efficiency is

Semantics of Change

 129

very poor. On the other hand, the efficiency of the request resolution is satisfactory. Due to
the direct connection of a resolution procedure to a change, the procedural approach for the
semantics of change is highly efficient in terms of computation. Neither the number of
changes nor evolution strategies introduce an appreciable decline in this efficiency.

Another alternative, which is realised through the declarative approach, is to allow an
ontology engineer to modify an ontology as necessary and then to calculate all the additional
changes, thereby focusing on the editing result rather than the editing process. The advantage
is that the ontology engineer can specify her request declaratively, focusing on producing the
correct new entity definitions without worrying about the exact process used to create those
new definitions. Therefore, the efficiency of the request specification is always high. In
comparison with the procedural approach, the declarative approach is more efficient (with the
respect to the request specification) since it has smaller variance.

The disadvantage is that the system must now infer how the entities have changed instead of
being explicitly told. The inference processes heavily depend upon the number of rules
necessary to characterise the desired behaviour of the system. The more rules exist, the slower
the system becomes due to seek and match time. We have developed algorithms to perform
these inferences by searching in the evolution graph search space to identify the additional
changes, needed to preserve the consistency. The evolution graph search algorithm uses the
ontology consistency definition and a set of heuristic knowledge to infer the needed changes.
The search over any problem space is combinatorily explosive. Improved efficiency is
achieved by the heuristics, which decrease the range of the overall search. Although,
experimentation with the proposed algorithms has demonstrated that they can identify a wide
variety of changes successfully, the resolution efficiency is still critical. It is limited by the
time required for the reasoning procedure to terminate. Consequently, the declarative
approach for the semantics of change requires more time for the request resolution that it is
needed for the procedural approach (see also �Table 7).

Therefore, each approach has its own advantages and disadvantages. The choice of the most
suitable approach primary depends on the problem that has to be resolved.

4.5 Related Work

Heflin �[53] points out that ontologies on the Web will need to evolve and he provides a new
formal definition of ontologies for the use in dynamic, distributed environments. He presents
SHOE, a web-based knowledge representation language. He maps it to the first order logical
theory. Moreover, the author defines features of the SHOW language that address the problem
of evolving ontologies. He discusses the relevance of each type of revision (i.e. the addition or
the removal of components) to data sources (i.e. instances) and queries, but not on the
ontology itself. Although the author is aware of the fact that, e.g., the concept removal may
provoke that some query cannot be asked or will return fewer results, he does not propose
how to resolve that problem. Moreover, the author claims that any entities can be safely added
to an ontology since the addition results in new clauses to the logical program and the first-
order logic is monotonic. However, for instance, experiences from the knowledge-based
systems show that (i) a rule can cause a cycle in the reasoning; (ii) two rules might be
identical or contradictory, and, (iii) one rule might subsume other rule, etc. Therefore, the
monotonicity of the first-order logic does not mean that the consistency constraints cannot be
corrupted. It only indicates that the results derived from querying a new version of a model,
which can be an inconsistent model as well may be different from the results of querying the
original model. These results may contain additional answers that were not originally intended
but also the wrong answers due to the inconsustency of a model. However, this problem is not

Methods and Tools for Ontology Evolution

 130

treated in the work of Heflin. Moreover, the ontology consistency constraints are not defined
at all and consequently there is no approach to forcing them after applying a change. Further,
the author formalises neither changes nor the way of their resolution.

In contrast to the ontology evolution that allows access to all data (i.e. to ontology itself and to
dependent artefacts) only through the newest ontology, the ontology versioning allows access
to data through different versions of the ontology. Thus, the ontology evolution can be treated
as a part of the ontology versioning mechanism. The ontology versioning is analysed in �[66].
The authors provide a survey of causes and consequences of the changes in an ontology.
However, the most important flaw is the lack of a detailed analysis of the effect of specific
changes on the interpretation of data, which is a constituent part of our work.

In �[65] the authors describe an ontology versioning system that is based on the comparison of
two ontology versions in order to detect changes. Even though there are many ways to
transfer an ontology into a new version, this system generates only one solution based on the
set of heuristics. In contrast to that approach, we may find all ways of resolving changes since
the first version can be represented as the start node in the evolution graph whereas the new
version is a node in the set of the goal nodes.

Other research communities also have influenced our work. The problem of the schema
evolution and of the schema versioning support has been extensively studied in relational and
database papers. �[113] provides an excellent survey of the main issues concerned. We took
these approaches as a foundation for our work just as we investigated the ways in which the
techniques and approaches from database schema evolution could be adapted to the
ontologies.

A semantic approach to the specification and management of database with evolving
schemata in introduced in �[37]. The authors formalise a generic object-oriented model for the
schema versioning and evolution, define the semantics of schema changes and show how
interesting reasoning tasks can be supported. This approach is very similar to our declarative
approach for the semantics of change since both of them can deal with arbitrary complex
changes and allow the formal checking of the evolution. While our approach is based on the
usage of the problem-solving methods, this approach is based on the description logic
reasoning. Consequently, the expensive reasoning about impact of changes cannot be avoided.
Further, the authors do not address the effects of schema changes on the underlying data
instances, otherwise covered by our approach.

A sound and complete axiomatic model for dynamic schema evolution in object-based
systems is described in �[104]. This is the first effort in developing a formal basis for the
schema evolution research. The approach takes into account the key features of types and
inheritance. The model can infer all schema relationships from two sets associated with each
type. These sets are the known as the essential supertypes and the essential properties.
Essential supertypes are those supertypes in the class hierarchy that must be included in the
definition of a type while the essential properties are those properties that cannot be dropped
as schema changes are made. This work also describes various dynamic schema policies used
by the TIGUKAT to support evolution and how these policies can be defined using axioms.
The axiomatic model has been demonstrated to provide a method to support dynamic schema
evolution in the object based system by serving as a common, formal underlying foundation
for describing evolution in existing systems. We follow this suggestion and apply the similar
strategy to ontologies since ontology models exhibit similar characteristics. The formal model
is not achieved only through the formal definition of the ontology consistency, preconditions
and postconditions of ontology changes. Instead, we model the change resolution as well by
definition the evolution graph and by applying the forward search method to it.

Semantics of Change

 131

An approach to removing a class in object-oriented databases is proposed in �[11]. The authors
suggest a declarative primitive, Remove, that guides the update by the designers’ requests. We
extend this idea in several ways. Firstly, ontology engineers should be able to control all
changes, not only the concept removal. Therefore, we analyse all possible ways for realising
all ontology changes and derive the knowledge that allows ontology engineers to set how to
do a particular change. Secondly, we abstract the level of the control by introducing resolution
points and grouping them into evolution strategies. Finally, the advanced evolution strategies
offer means for choosing the most suitable evolution strategy for a given request for a change.

Most of the existing evolution systems provide a fixed taxonomy of possibly complex
changes to users, instead of giving them flexibility, extensibility and customisation. This is
offered by the SERF approach �[16]. The SERF framework allows users to perform a wide
range of complex user-defined schema transformations. It combines existing schema
evolution changes using OQL (object query language) as the glue logic. However, it requires
that the user should specify the actions that have to be done in order to resolve a request,
which is an error-prone process providing no guarantees for consistency of the database. Our
approach lets the system itself to find solutions based on the preconditions of the changes and
the user-defined conditions. In this way we separate the specification from the realisation of a
request for a change.

The tool ICC �[25] automatically checks consistency in the O2 system. As input parameters of
the tool, the authors define a set of generic modifications called “high level updates”. To
capture their semantics, the “parameterised updates” are introduced. The user uses them as a
syntactic way to communicate with the tool. All the parameterised updates are not primitive
changes. The internal purpose of a tool is to decompose the parameterised updates into
elementary changes for which the tool knows how to perform the consistency checking
procedures. However, this mechanism is not explicit and reusable by the schema manager in
order to apply the user-defined modifications. Our declarative approach for semantics of
change performs exactly that.

Moreover, research in the ontology evolution can also benefit from the many years of research
in knowledge-based system evolution �[82]. There are a vast number of techniques (e.g.
knowledge refinement, theory revision, validation and verification, etc.) for assisting the
development of knowledge-based systems. They follow the paradigm of detecting problems
in a knowledge-based system and suggesting repairs. Most of them attempt to correct errors
when a knowledge-based system is being developed. In contrast, the purpose of our
approach(es) for the semantics of change is to guide an ontology engineer in modifying an
ontology that is initially correct. The inconsistencies to be corrected were introduced during
the evolution process. Hence, our approach relies on knowledge about this process in
correcting the inconsistencies.

A common technique for the knowledge maintenance is to reflect over dependencies between
knowledge elements. The question is how to represent the dependencies between them. There
are three different approaches: (i) procedural approach, (ii) logical approach, and (iii) network
approach. All of them are based on the dependency graph analysis. The differences between
these approaches are discussed in �[81]. The open issues are how to create a graph and how to
use it. We propose two methods for the ontology maintenance that are based on different
dependency graphs, i.e. the change dependency graph and the evolution graph. Furthermore,
due to trade-off between the request specification and the request resolution, we suggest a
hybrid solution that combines the procedural and the declarative approaches. The procedural
approach should be applied in the case that there is a change that represents a request. On the
other hand, we propose the declarative solution that does not restrict the changes that can be
done. The trade-off for this gain in flexibility is the time needed for the request resolution.

Methods and Tools for Ontology Evolution

 132

However, the evaluation study (see section �4.4) showed that for an ontology engineer it took
more time to specify a complex request than to resolve it.

One example of the procedural approach for the evolution of the knowledge-based systems is
given in �[43]. A knowledge-based system includes a domain model as well as problem-
solving methods for achieving goal in that domain. The domain model describes concepts,
relations and their instances. A problem-solving method consists of a capability description
that indicates the goal that the method is able to achieve, and a body that describes a
procedure for achieving those goals. The ETM (EXPECT’s Transaction Manager) system
identifies typical sequences of changes to knowledge base and represents them in the form of
scripts. These scripts capture the way in which the related portions of a knowledge-based
system can be changed co-ordinately. Therefore, the system is similar to our procedural
approach for the semantics of change. However, unlike the knowledge-scripts that assist users
in performing all of the required changes, we go step further by allowing the user to control
the way of completing the overall modification as well as by suggesting him the changes that
could improve the ontology.

In �[140] the authors propose a library of knowledge acquisition (KA) scripts. The scripts
capture typical modification sequence that users follow when they modify knowledge bases.
The authors identified a good number of KA scripts and found a set of useful attributes to
describe and organise them. To find the right level of the generality of scripts, the authors
carried on three steps. The first analysis resulted in the KA scripts for each possible syntactic
modification. This level was too general to provide useful guidance to users. The second
analysis produced KA scripts for typical modification performed by the users. However, this
level did not cover a complete set of KA scripts. The third analysis tried to combine the
results of the previous two analyses by improving the user support as well as coverage.

We came to similar conclusions during the development of the ontology evolution support.
We start by defining ontology changes that ontology engineers can get when modifying an
ontology. Further, we found that providing only one way for resolving an ontology change is
not satisfactory for most of ontology engineers since they are not able to represent their needs.
Therefore, we introduce evolution strategies that allow ontology engineers to choose how to
follow up a change. Since this solution is not applicable for an arbitrary request for a change,
we define the declarative approach that allows ontology engineers to specify their request at a
more conceptual level and guaranties their resolution in the way most suitable for them. In
this way both the requirements, i.e. the coverage, which is represented as a set of changes that
are supported, and the users’ support, which is achieved by providing meta-information to
control change resolution, are fulfilled.

4.6 Conclusion

Since modifying an ontology requires a coherent sequence of ontology changes, there is a
need for methods that support ontology engineers in co-ordinating these changes and carrying
out them correctly. In this section we propose two approaches for dealing with this problem:

1. the procedural approach that allows an ontology engineer to adapt an ontology
according to her needs in an effective and efficient way;

2. the declarative approach that addresses the two most important causes of inefficiency
of existing ontology evolution systems, namely: (i) how to specify a request for a
change in a declarative way and (ii) how to resolve a change to satisfy an arbitrary
need of an ontology engineer.

Semantics of Change

 133

The first solution extends the simple fixed-semantic ontology changes with the predefined set
of possibilities to resolve them in the fastest way. This kind of approach has also been shown
to be useful for developing an intelligent assistant for common tasks. The second solution
represents an effort to formalise the ontology evolution problem. Moreover, we compare the
proposed approaches in terms of efficiency.

Methods and Tools for Ontology Evolution

 134

5 Change Propagation

Ontology development is difficult and time-consuming, and this is even worsened by the fact
that ontologies are mostly created from scratch, resulting in the “Babel of Ontologies”
problem. This leads to many ontologies modelling the same thing. In order to speed up the
engineering and to enable interoperability, ontologies should be built by reusing smaller, well-
defined components. However, there is a lack of methods and tools supporting and facilitating
ontology reuse.

Although through the reuse the cost of creating ontologies is decreased, the ontology reuse
has led researchers to confront problems of local modification. Ontologies are rarely static,
but are being adapted to changing requirements. Hence, an infrastructure for management of
ontology changes, taking into account dependencies between ontologies is needed.

In this chapter we first describe a typical scenario with multiple ontologies (section �5.1). Then
we address both the aforementioned problems. In section �5.2 we tackle the first problem by
discussing means for reusing ontologies. Section �5.3 is dedicated to the second problem i.e. it
considers different aspects of the evolution of multiple and distributed ontologies. Finally, the
MeSH case study (see section �5.4) shows the benefits of the proposed approach.

5.1 Problem Description

To understand better the overall problem of managing multiple and distributed ontologies on
the Web �[70], we consider the following integration scenario through the whole section. Let's
assume that the European Union (abbr. EU) wants to publish on-line all information about
projects that it has funded, as well as information about participants in these projects. To
enable other players in the market place (such as the Defence Advanced Research Projects
Agency – DARPA, the education and science ministry of different countries (e.g. BMBF),
research institutes etc.), to semantically process this information, it creates a basic ontology
(BO) and bases its portal on it. The simplified version of this ontology is shown in �Figure 37.

Figure 37. The basic ontology (BO) about projects and their participants

Change Propagation

 135

Let's assume that some institute specialises in industrial projects and also wants to publish its
information on-line. To achieve that, it will create the project ontology (PO) (shown in �Figure
38) for the description of its projects. In doing so, it should reuse as many definitions as
possible from existing ontologies to speed up the engineering and to enable interoperability.
However, it is not clear how to reuse the definition from BO within PO.

BO

Figure 38. The project ontology (PO)

Assuming that this problem is solved, after reusing BO as the basis for PO, a further problem
arises when BO needs to be adapted due to a change in business requirements. Thus, the
fundamental question of how to evolve dependent ontologies58 arises. This problem is
worsened by the fact that ontologies are distributed in the Web.

To demonstrate the complexity of the problem, let's assume that the same institute also creates
the staff ontology (SO) based on BO. This ontology models the information that is important
from human resource management point of view. It is shown in �Figure 39.

BOBO

.

Figure 39. The staff ontology (SO)

Finally, in order to get an integrated view of one research institute it not sufficient to model
only projects and staff. Rather, it is necessary to model other activities of employees such as
lectures they offer, topics they research, etc. Further, the modelling of the organisation of an
institute in the form of research groups can also be useful to discover possibility for synergy
between groups or a gap between them. Therefore, it is necessary to combine all available
ontologies into an integrated institute ontology (IO) based on both PO and SO. However, the
dependencies now form a directed acyclic graph, which significantly complicates the
synchronisation between dependent and distributed ontologies.

58 A dependent ontology is an ontology that includes ontologies located at the same node on the network. A

distributed ontology is an ontology that includes ontologies located at different nodes on the network.

Methods and Tools for Ontology Evolution

 136

From this scenario we derive two important ontology infrastructure components: first, means
for reusing distributed ontologies are required. Second, we consider methods supporting the
consistent evolution of distributed ontologies as crucial for the success of the distributed
system in the long run. The rest of this section describes an integrated approach for managing
multiple and distributed ontologies. The approach has been implemented within the KAON
ontology management framework as described in chapter �7.

BOSO

IO

PO

Figure 40. The institute ontology (IO)

5.2 Ontology Reuse

It is inefficient and error-prone to build ontology always from scratch. Rather, these models
should be built by reusing smaller, well-defined components. An ontology can reuse concept
and instance definitions from other ontologies through modularization. In this section we first
define the ontology modularization. Then we discuss means for reusing existing ontologies
while building new ontologies.

5.2.1 Modularization

Modularization is simply a process of reorganising software into modules. Modularization
implies that the software is divided into separate parts that can be treated individually. Typical
criteria used for the modularization process are cohesion and coupling �[2]. Whereas cohesion
tries to maximise the logical similarity of the entities that belong to the same module,
coupling tries to establish the relationship between modules.

The same criteria have to be applied to the ontology modularization. As already mentioned in
section �2.2, the KAON ontology language provides support for the modularization since one
of the prerequisites for our ontology model was to support multiple, dependent ontologies. In
this language, the request for the cohesion is interpreted as the self-containment of included
ontologies. In order to facilitate the reuse of individual ontologies, we have to make sure that

Change Propagation

 137

the modules are self-contained. This results in the set of additional constraints that the
modularization puts on the ontology model.

Definition 34 Self-Containment Constraints: If OI-model OIM reuse some other OI-model
OIM1 (with elements denoted by subscript 1), that is, if OIM1∈INC59(OIM), then the
following modularization constraints must be satisfied:

• E1⊆ E, C1⊆C, P1⊆ P, R1⊆ R, T1⊆ T, INV1⊆ INV, HC1⊆HC, HP1⊆HP

• ∀p⊆P1 domain1(p) ⊆domain(p)

• ∀p⊆P1 range1(p) ⊆range(p)

• ∀p⊆P1, ∀c ⊆C1 mincard1(c, p) = mincard(c, p)

• ∀p⊆P1, ∀c⊆C1 maxcard1(c, p) = maxcard(c, p)

• I1⊆I, L1⊆L

• ∀c⊆C1, instconc1(c)⊆instconc(c)

• ∀p⊆P1, i⊆I1 instprop1(p, i) ⊆instprop(p, i)

From this definition it can be derived that (i) an including ontology OIM may only extend the
included ontologies (e.g. OIM1) and (ii) the entire including ontologies (e.g. OIM1) are
included. Therefore, it is not possible to include a part of an ontology.

The second request for modularization, which is related to the coupling, puts some constraints
on the possibilities to realise the reuse between ontologies.

Definition 35 Multi-Ontology Constraint: The ontology inclusion graph is a directed acyclic
graph:

¬∃ OIM∈INC*(OIM), where INC* is the transitive closure of INC, and OIM is an OI-
model (see �Definition 2).

The multi-ontology constraint defines that the cyclical inclusions of ontology models are not
allowed, which means that a graph whose nodes are OI-models and whose edges point from
including to included models must not contain a cycle. The inclusion graph for the IO
ontology depicted in �Figure 40 is shown in �Figure 41. The root node of the inclusion graph is
the ontology IO, since it is not reused. The set of leaf nodes contains only the ontology BO,
since only this ontology does not include other ontologies.

The role of the ontology modularization is to encourage ontology engineers to re-use and
integrate already developed ontologies during the creation of their own conceptualisation. It
allows the creation of a library of ontologies. The library should contain ontologies that are
well separated and coherent with respect to their functionality. An ontology engineer can thus
develop her own ontology by taking advantage of the predefined ontologies from the library
without having to develop the underlying model manually. A library of reusable ontologies
reduces the time and costs of developing an ontology. Moreover, it increases the quality of

59 The function INC returns a set of included OI-models for a given OI-model. If OIM2∈INC(OIM1) then OIM1 is

including OI-model of the OI-model OIM2 and OIM2 is included OI-model of the OI-model OIM1.

Methods and Tools for Ontology Evolution

 138

ontologies as well since general well-known ontologies, evaluated from many ontology
engineers and applied in different applications, are used as foundation for building more
specific ontologies. For example, the IEEE Standard Upper Ontology (SUO) Working Group60
has invested tremendous effort, working with a large number of ontology engineers, to create
standard top-level ontologies to enable various applications, such as data interoperability,
information search and retrieval, automated inferencing, and natural language processing.
Their ontology library system contains a group of classified ontologies, such as ontologies in
SUO-KIF, formal ontologies and linguistic ontologies/lexicons. Among other ontologies, this
library contains the Enterprise Ontology61 that has content areas for organisation, agents,
activity, time, etc.

IO

includes includes

SO
includes

BO

PO
includes

Figure 41. Inclusion relations between ontologies shown in �Figure 40

Another example is the Foundational Ontology Library that has been developed within the
European WonderWeb62 project. The role of this library is to serve as a starting point for
building new ontologies and to create a foundational framework for analyzing, harmonizing
and integrating existing ontologies and metadata standards. The first module of this library is
DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) that aims at
capturing the ontological categories underlying natural language and human commonsense. It
is designed to be minimal in that it includes only the most reusable and widely applicable
upper-level categories (e.g. it treats time as a fundamental category), rigorous in terms of
axiomatization and extensively researched and documented.

5.2.2 Means for Ontology Reuse

In our approach we have identified two basic building blocks for realising reuse. First,
ontology inclusion allows reusing ontologies available within the same node. Second,
ontology replication enables inclusion in the case when ontologies are distributed on different
ontology servers (nodes). These approaches are discussed below.

60 http://suo.ieee.org/
61 http://www.aiai.ed.ac.uk/project/enterprise/
62 http://wonderweb.semanticweb.org

Change Propagation

 139

Ontology Inclusion

In the traditional software systems significant attention is devoted to keeping modules well
separated and coherent with respect to functionality, thus making sure that changes in the
system are localised to a handful of modules. Reuse is seen as the key method in reaching that
goal. One of the main focuses of all existing reuse mechanisms is to eliminate completely the
copy-and-paste reuse, which is seen as the prominent source of problems in software projects.
The ontology-based systems in the Web are just a special class of software systems so that the
same principles apply. If reuse is performed through duplication, problems arise when the
reused ontology changes, as these changes must be applied to various multiple copies.
Paraphrasing the open-closed reuse principle �[84], each ontology should be a closed,
consistent and a self-contained entity, but open to extensions in other ontologies.

These goals can be achieved by incorporating an explicit mechanism for including ontologies
by reference to ontology languages and tools. Our approach is based on the KAON ontology
language that is introduced in section �2.2.

Inclusion is supported by allowing an OI-model to include other OI-models, thus obtaining
the union of the definitions from all included models. All definitions from included ontology
are automatically available in the including ontology. Due to the multi-ontology constraint
(see �Definition 35), cyclical inclusions are not allowed because evolution of cyclically
dependent OI-model would be too difficult (see section �5.3.1). Inclusion is performed by-
reference. It means that models are virtually merged, which is formally defined as:

Definition 36 A dependent ontology OIM is an extension of the union of the definitions of all
its included ontologies OIMi, i.e.

�
i

iOIMOIM ⊇ , OIMi∈INC(OIM),1≤ i≤INC(OIM).

The set of entities in a dependent ontology can be split into internally defined entities
INT(OIM) and externally defined entities EXT(OIM). It holds:

 OIM=INT(OIM)∪EXT(OIM), INT(OIM)∩EXT(OIM)=∅

where EXT(OIM) is a set of included entities and INT(OIM) is a set of entities defined in the
ontology OIM. This separation enables representing the information about the origin of each
entity explicitly. In practice it is achieved by introducing the following extensions of the
ontology definition:

• each ontology has an identifier attached to it that identifies this ontology in a unique
way;

• each ontology entity has its own identifier, which is a unique within this ontology (see
the invariant IC1: Distinct Identity Invariant defined in section �2.3).

Therefore, the name of an entity is written in the form:

ns:local_name

where ns is shorthand for a namespace prefix and represents the ontology identifier. The
local_name is the entity identifier within the ontology with the identifier ns. By including this
prefix to the entity name, accidental name clashes are easier to avoid. Indeed, even when two
ontologies use the same identifier to define (either similar or different) things, the references

Methods and Tools for Ontology Evolution

 140

to the entities are guaranteed to be unambiguous. For example, it might happen that two
ontologies contain the same concepts (e.g. “Project”). Due to the unique ontology identity,
they would be considered as completely independent concepts. If the identifier of the first
ontology is ONTO1 and the second one ONTO2, then the including ontology would comprise
two different concepts namely “ONTO1:Project” and “ONTO2:Project”.

Currently we do not support resolving semantic heterogeneities between included models (e.g.
establishing equivalencies between the “Project” and the “das Projekt” concepts).

Returning to the scenario from section �5.1, �Figure 41 presents four example OI-models (BO --
basic ontology, PO -- project ontology, SO -- staff ontology and IO -- institute ontology). PO
and SO each include BO, thus gaining an immediate access to all of its definitions. However,
the information about the origin of ontology entities should be retained. Thus, the following
distinctions exist:

• In BO and SO the concept “Project” concept does not have any sub- or superconcepts
(excluding the root concept). However, in PO it has two subconcepts “Research
Project” and “Industrial Project”. These subconcepts are visible in IO as well.

• Similarly, only SO and (through the ontology inclusion) IO ontologies contain the
”Technical Staff” concept.

• IO ontology has its own entities (e.g. concepts “Lecture”, “Institute”, “Research
Group”, properties “offers”, “works_in”, “consistsOf”, etc.) that are not accessible for
other ontologies.

• In BO the property “includes” has only the concept “Project” as domain concept
whereas in IO it has an additional domain concept, i.e. the ”Lecture” concept.

• Relationships between concepts also belong to appropriate OI-models. Hence, it is
possible to establish that the subconcept relationship should be set up in IO, although
the concepts themselves might be defined in separate included ontologies. This same
strategy can be applied to any ontology primitive that relates two or more entities (e.g.
property domains, property ranges, instantiation, property instances etc.).

A direct acyclic inclusion graph between OI-models is shown �Figure 41. BO is indirectly
included in IO twice (once through PO and once through SO). However, IO will contain all
BO elements only once (in IO there will be only one “Project” concept). The possibility of
including an ontology through multiple paths has significant consequences on the ontology
evolution, as discussed in subsection �5.3.

This example demonstrates the open-closed principle. Each OI-model keeps track of its own
information and is a consistent, self-contained and closed unit. On the other hand, each OI-
model is open to reuse. In that case, any part of its structure can be extended as long as the
original model itself is not changed.

Our approach is currently limited to including entire models rather than including subsets.
Also, when a model is reused, information can only be added, and not retracted, and we
currently do not deal with semantic inconsistencies between included ontologies. Although
such advanced features may sometimes be useful, we deliberately limit our approach. By
allowing inclusion of a part of a model it would be much more difficult to ensure the
consistency of the including model since it is not clear which additional elements from the
original model must be included. For example, if the “includes” property is not included in
IO, it is not clear how to treat instances having this property instantiated. Further, changing
ontologies becomes more complex because it is not clear how to propagate changes from the
included ontology (e.g. BO) to the including one (e.g. IO).

Change Propagation

 141

Reusing Distributed Ontologies

Ontology inclusion allows reusing ontologies available within one node in the system.
However, we envisage the Semantic Web where ontologies are spread across many different
nodes (servers), so the inclusion mechanisms cannot be used directly. There are two possible
solutions how to achieve reuse in this case: dynamic reuse and reuse through replication.
�Table 8 summarises advantages and disadvantages of both solutions.

The first solution is to make all ontologies accessible through an ontology server63, which
could integrate the information from included ontologies virtually (on-the-fly) by accessing
the servers of these ontologies. Such solution has the benefit that all changes in the included
ontologies are immediately visible in the including ontologies. While this desirable feature
increases the consistency, it has several serious drawbacks:

• Servers are tightly coupled. Therefore, a failure of one system will cause failure of all
servers that include the ontology;

• Standard top-level ontologies will be reused in many ontologies. Servers hosting them
will therefore be overloaded because they will be often contacted by many other
servers;

• Because answering every query requires distributed processing, the performance of the
system using today's infrastructure would be unacceptable.

Table 8. Two approaches for reusing distributed ontologies

Dynamic Reuse Reuse through Replication

Query the included server on demand Included ontology copied once to the
including server

Data always up-to-date Data not always up-to-date (distributed
evolution is needed)

Tight coupling (no server may fail) Weak coupling – autonomy of ontologies
preserved

Huge communication overhead Low communication overhead

Complex approach - the performance would
be unacceptable

A more practical solution

Therefore, a more practical solution to the problem in the WWW context is to replicate
distributed ontologies locally and to include them in other ontologies. Replication eliminates
above-mentioned problems but introduces significant evolution and consistency problems,
which we further discuss in section �5.3.2. The most important constraint is that replicated
ontologies should never be modified directly. Instead, the ontology should be modified at the
source and changes should be propagated to replicas using the distributed evolution process.

�Figure 42 summarises the differences in realising ontology reuse in the centralised and
decentralised systems. When ontologies are within the same node (server), the reuse is done
by the reference. When ontologies are distributed across the Web, the reuse is achieved
through the replication. In this way, the trade-off between performance and maintainability is
significantly shortened. The left part of �Figure 42 corresponds to the centralised systems. The

63 The task of an ontology server is to store and maintain ontologies and to provide data interchange facilities.

Methods and Tools for Ontology Evolution

 142

right part of �Figure 42 shows the distributed system with two nodes. The first node contains
only the ontology O1. The second node contains the replica of the ontology O1, i.e. the
ontology O1’, and the ontology O2 that includes this replica.

It is very important that the ontology replication should not be understood as simple copying
of the original ontology. If this operation is performed in an ad-hoc way, evolving replicated
ontologies will be impossible. Distributed evolution process requires associating meta-data
with each ontology, which must be maintained during the replication process. This is
described in further detail in subsection �5.3.2. In order to replicate an ontology, it must be
physically accessed. Ontologies on the Web are typically known under a well-known
identifier, i.e. URI, which can be used to access the ontology through appropriate protocol
(e.g. HTTP). However, this introduces problems when the ontology is replicated since the
URI used to access the ontology and the URI under which the ontology is originally known
become different. To handle this consistently, we establish two different URIs for each
ontology:

• The logical URI is unique for each ontology and is always the same, regardless of the
ontology's location. The uniqueness of the URI is typically achieved by incorporating
into it the Internet name of the organization that created the ontology;

• The physical URI unambiguously identifies the location of the ontology and contains
all information necessary to access the ontology, such as the protocol to be used or
relevant connection parameters.

O1

O2

O1

O1‘
O2

a) b)

Figure 42. Two ways for realising ontology reuse: (a) ontologies are within the same
ontology server; (b) ontologies are distributed across the Web or different servers

in companies

For example, the BO from our example may have the logical URI http://europa.eu.int/bo. No
other ontology with that URI exists anywhere in the world. However, the ontology may be
replicated to the file system, and the physical URI will be file:/c:/bo.kaon. If the ontology is
stored in the database, then its physical URI may be
jboss://wim.fzi.de:1099?http://europa.eu.int/bo.

Therefore, each ontology has to two different URIs attached to it. We define the following
functions to distinguish them:

• the function logicalURI(OIM) that gives the logical URI of a given ontology OIM;

• the function physicalURI(OIM) that returns the physical URI of a given ontology
OIM.

To locate an ontology by the logical URI, this URI must be resolved to a physical URI. This
can be done through the ontology registry described in �[71]. After replication, the ontology

Change Propagation

 143

registry is not needed any more, so the registry does not represent a single point of failure of
the proposed system.

5.3 Evolution of Multiple Ontologies

As we have already defined, the ontology evolution can be defined as the timely adaptation of
an ontology as well as the consistent propagation of changes to the dependent artefacts (e.g.
ontology instances on the Web, dependent ontologies and application programs using the
changed ontology). In this section we investigate the effects that changes in an ontology might
have for dependent ontologies. Indeed, we extend the single ontology evolution approach
(described in chapter �4) to take into account the multiple ontologies.

It is worth mentioning that there is no mature tool support for tracking changes in ontologies
and thereby for controlling consistency and effects on dependent ontologies. Human
investigation is by now the only way to control evolution between dependent ontologies
correctly.

To automate this process, we started by identifying two dimensions of the overall ontology
evolution problem. This is summarized in �Figure 43. The first dimension defines the number
of the ontologies being evolved whereas the second dimension specifies the physical location
of evolved ontologies. Since it is not possible to fragment �[102] one ontology across many
nodes, ontology evolution can be discussed at three levels. For evolution of single ontologies
the essential phase is the semantics of change phase whose task is to maintain ontology
consistency. This was elaborated in chapter �4. Here we focus on maintenance of multiple,
dependent ontologies. In subsection �5.3.1 we extend the change propagation and capture
phases of the ontology evolution process (see chapter �3) to cover the evolution of multiple
dependent ontologies within a single node. Finally, in subsection �5.3.2 we extend the change
capturing and change implementation phases of the dependent evolution process to support
evolution of distributed ontologies.

Single
Ontology Evolution

Dependent
Ontology Evolution

Distributed
Ontology Evolution

Nodes/Servers

Ontologies
one multiple

one

multiplex

Figure 43. Levels of Ontology Evolution Problem

5.3.1 Dependent Ontology Evolution

In this subsection we extend the single ontology evolution approach to take into account the
inclusion relationships between ontologies within one node. An ontology that depends on

Methods and Tools for Ontology Evolution

 144

(includes) ontologies residing at the same node on the network is called the dependent
ontology. As the included ontology is changed, the consistency of the dependent ontology
may be invalidated.

Returning to the example of �Figure 40, let's assume that the “Project“ concept in the BO
ontology should be deleted. Further, let’s consider only the BO ontology independently of the
ontologies that reuse it. To prevent inconsistencies, before deleting it, the “Project” concept
must be removed from the domain of the “includes” property. Since the ontology consistency
definition might specify64 that properties without domain concepts are not allowed, the
property must be deleted as well. To do that, the “Person” concept must be removed from the
range. Finally, the “Project” concept has to be detached from the root concept in the concept
hierarchy. The complete list of necessary changes obtained in the semantics of change phase
of the ontology evolution process is presented in �Figure 44.

However, if the “Project” concept from BO is deleted, the ontology PO, and through
transitivity of inclusion the IO as well, will be inconsistent. The “Research Project” and
“Industrial Project” concepts will have a parent concept that is not defined. Moreover, the
property for the domain concept “Lecture” does not exist anymore. The same holds for the
range concept for the “works_in” property.

Figure 44. Generated Changes in BO

In the previous example, a request for a change is applied to the ontology (i.e. BO) where the
entity taken into consideration (the concept “Person”) is defined. Moreover, the additional
changes are generated by considering the BO ontology in isolation without any context in
which it is reused.

Let’s now consider the application of the same change (i.e. the deletion of the “Project”
concept) in an ontology that reuses BO, i.e. IO. It is important to notice that applying this
change to IO only is not sufficient. In IO the “includes” property has two domain concepts, so
removing one of them will not trigger the removal of the property. Therefore, if BO is
considered independently, it is inconsistent since the “includes” property will not have a
domain concept in this ontology. The list of changes generated in this case65 is shown in
�Figure 45, which is quite different from the changes shown in �Figure 44.

The previous example shows that maintaining consistency of a single ontology is not
sufficient; dependency between ontologies must be taken into account as well. We define the
consistency of the dependent ontology in the following way:

64 It depends on whether the user-defined constraint UC1: Domain/Range Property User-defined Constraint (see

section �2.3) is an element of the ontology consistency definition or not. It is up to ontology engineers to
specify which soft- and user-defined constraints must be fulfilled. However, invariants are hard-constraints
and they must not be invalidated.

65 The list of changes depends on the selected evolution strategy. In this case the evolution strategy contains the
elementary evolution strategy EES1 for the resolution point RP1 and the elementary evolution strategy EES17
for the resolution point RP7.

Change Propagation

 145

Figure 45. Generated Changes in IO

Definition 37 Dependent Ontology Consistency - A dependent ontology OIM is consistent if
the ontology itself and all its included ontologies (∀i OIMi∈INC(OIM)), observed
alone and independently of the ontologies in which they are reused, are single
ontology consistent. Formally, it is defined as:

dependentConsistency(OIM)↔

consistency66(OIM) ∧ ∀OIMi∈INC(OIM) dependentConsistency(OIMi)

The synchronisation between dependent ontologies can be achieved by propagating changes
from the changed ontology to all ontologies that include it. There are two ways of doing that
�[7]:

• Push-based approach: Changes from the changed ontology are propagated to
dependent ontologies as they happen;

• Pull-based approach: Changes from the changed ontology are propagated to
dependent ontologies only at their explicit request.

The pull-based approach is better suited for less stringent consistency requirements. Using
this approach the dependent ontologies may be temporarily inconsistent. This makes
recovering of the consistency of dependent ontologies difficult as the information about the
original state of the changed ontology is lost. For example, when the concept “Project” is
deleted, its position in the concept hierarchy is lost and is not available for resolution of
inconsistencies of the “Industrial Project” concept in PO.

The push-based approach is suitable when strict dependent ontology consistency is required
since the information about the original state of the changed ontology is available for the
evolution of the dependent ontology. For example, the removal of the concept “Project”,
among other additional changes, requires previous resolution of the consistency of the
“Industrial Project” concept in PO as shown in �Figure 45. We choose to take this approach
since the permanent consistency of ontologies within one node is of paramount importance.

By adopting the push-based approach, there are three different strategies for choosing the
moment when changes are propagated �[105]. Using the periodic delivery, changes are
propagated at regular intervals. Using ad-hoc delivery, changes are not propagated according
to a previously defined plan. Both of these strategies are unacceptable for dependent ontology
evolution since they cause temporary inconsistencies of dependent ontologies. Therefore, we
propagate changes immediately, as they occur.

66 This function is defined in chapter �4.

Methods and Tools for Ontology Evolution

 146

We incorporate the push-based approach by extending the change propagation and change
capturing phases of the single ontology evolution process as shown in �Figure 46. The role of
the Ontology Propagation Order component is to determine to which dependent ontologies
the changes should be propagated and in which order this should be done. The role of the
Change Filtering component is to determine which changes must be propagated to which
ontologies. The Change Ordering component determines the order in which changes must be
handled by each ontology.

Semantics
of changeRepresentation ValidationImplementation

PropagationPropagation
Ontology Propagation Order

Change Filtering

CapturingCapturing

Change Ordering

Figure 46. Dependent Ontology Evolution Process

Ontology Propagation Order

When propagating changes to dependent ontologies on a single node, the following three
aspects relating to the ontology propagation order must be considered:

• As changes occur in an ontology, they must be pushed to all ontologies that either
directly or indirectly (through other ontologies) include the changed ontology;

• In order to propagate a change to an ontology, the change must previously be
processed by all ontologies on the path between the source and target ontology.
Therefore, all the ontologies on a single node are topologically67 sorted according to
their inclusion relationship. The topological order organises the dependent ontologies
in such a way that for each O1 and O2, if O1 includes O2 directly or indirectly, then O2
occurs before O1 in a linear ordering;

• Since all ontologies at a node are topologically ordered, when changes are propagated
to dependent ontologies, only those ontologies that include the changed ontology and
that follow the changed ontology in the topological order must be visited. Note that if
cyclical inclusions of OI-models were allowed, the propagation order would contain
cycles and would be extremely hard to manage.

Returning to the example shown in �Figure 40, changes in BO must be propagated to PO, SO
and IO (since IO includes BO indirectly though PO and SO). Further, several different
topological orders may exist (e.g. BO, PO, SO, IO or BO, SO, PO, IO) since some ontologies
are independent on each other (e.g. PO and SO). The propagation of changes must be
performed in either one of these orders. On the other hand, assuming the first topological
order (BO, PO, SO and IO), that is shown in �Figure 47, a change in PO is propagated only to
IO. Although SO is after PO in the topological sort, it does not include PO so it does not
receive PO's changes.

67 The topological order of a directed graph is an ordering of graph's nodes where each node occurs after all of its

predecessors.

Change Propagation

 147

Change Filtering

As a change from the source ontology S is propagated to a dependent ontology D, in order to
maintain the consistency of D, additional changes will be generated as explained in chapter �4.
These changes must also be propagated further up the ontology inclusion topological order.
However, only induced changes should be forwarded. If original changes were propagated as
well, then ontologies that include D would receive the same change multiple times: directly
from S and indirectly from all ontologies on any inclusion path between D and S. This would
result in an invalid ontology evolution process since the same change cannot be processed
twice. In order to prevent that, propagated changes are filtered.

SO BO CO ICOBO PO SO IO

Inclusion graph

PO

BO

IO

SO

includes

includesincludes

includes

Topological graph

Figure 47. Change propagation order for the ontologies shown in �Figure 40

As shown in �Figure 45, deletion of the “Project” concept in BO is propagated to PO resulting
in a set of new changes such as the removal of the “Industrial Project” concept as the
subconcept of the “Project” concept. That change is propagated to IO. Removal of the
concept “Project” is propagated to IO from BO directly and must not be propagated from PO.
This is shown in �Figure 48. Notice that change filtering is not done for the sake of
performance: if the request for the deletion of the “Project“ concept were propagated to IO
from PO as well, then IO would receive the same change twice, and the second change would
fail since the concept has already been deleted.

SO BO CO ICO

Remove „Project“

Remove „Industrial Project“

BO PO SO IO

Figure 48. Change filtering for the ontologies shown in �Figure 40

Change Ordering

The order of processing changes in each ontology is important. Let's assume that S is the
ontology being changed, I is some ontology that directly includes S and D is some ontology
that directly includes I. It is important that D processes changes generated by I before changes

Methods and Tools for Ontology Evolution

 148

generated by S. Otherwise, if D receives changes from S before changes from I, S's changes
will generate additional changes in D that include those that will later be received from I. This
in turn will also lead to processing the same change twice. This approach is recursively
applied when D and S are connected with paths of length greater than two.

Returning to the example shown in �Figure 40, IO should process the removal of the “Project”
concept after processing the removal of the subconcept “Industrial Project” from PO. This is
shown in �Figure 49. If this were not the case, processing removal of “Project” in IO would
generate removal of the subconcept “Industrial Project” in IO, which will then be later
received from PO.

SO BO CO ICO

Remove „Project“

Remove „Industrial Project“
1

2

BO PO SO IO

Figure 49. Change ordering for the ontologies shown in �Figure 40

Algorithm for the Dependent Ontology Evolution

The algorithm for the evolution between dependent ontologies within one node is presented in
�Figure 50. It processes all changes that are requested by the user through the procedure
processChange (cf. 2--4). This procedure resolves a change by generating the additional
changes needed to keep the consistency of the ontology o for which the method was called
(cf. 7--9). Only changes generated in o are propagated (cf. 11) to the all ontologies including o
according to the topological order of all the ontologies within the node (cf. 13--14). The
recursive call (cf. 16) of the processChange procedure for the filtered change and topological
order of dependent ontologies guarantees that the receiving ontologies will process the
changes from the directly included ontologies before changes from the indirectly included
ontologies. Finally, the change is applied to the ontology o (cf. 21).

The complexity of this algorithm depends on the number of the ontologies that follow the
ontology that is changed in a topological sort. It increases in a linear way, i.e. O(N), where N
is the number of all ontologies including the ontology that is changed. The time complexity of
the creation of the topological sort based on the inclusion graph is O(V + E), where V is the
number of nodes (i.e. ontologies) in the inclusion graph and E is the number of inclusion
relationships between these ontologies. However, although it could influence the performance
of the dependent evolution algorithm, it is not critical for the change propagation since it is
not done every time a change is propagated. Rather, the topological sort has to be updated
only when an ontology is needed to be included or excluded from any other ontology. Further,
this can be sped up by attaching a separate topological sort for each ontology.

As can be noticed, our algorithm does not propagate changes in a layer-by-layer manner.
Instead of propagating changes only to the ontologies that directly include the ontology that is
changed, the changes are propagated to all dependent ontologies by considering the
topological graph. The main reason is that the inclusion graph might be of arbitrary
complexity as shown in �Figure 51:

Change Propagation

 149

- one ontology (O2) may be included directly and indirectly (through O5) in the same
dependent ontology (O6);

- it may be several different paths between two dependent ontologies. For example,
there are two paths between ontologies O1 and O6;

- diverse paths between the same ontologies may be of different length, where the
length is determined by the number of the intermediate ontologies. For example, one
path between ontologies O1 and O6 contains, besides these two ontologies, the
ontology O5 as well. The second path is of the length of 4 since it includes the
ontologies O3 and O4.

Figure 50. Dependent Ontology Evolution Algorithm

There are two additional constraints: (i) each change can be applied once and only once (see
change filtering activity); (ii) each change has to be performed after all its consequences (see
change order activity). If the changes are broadcasted only to direct parents, it would be
impossible to control the order of performing changes since it is never known whether all the
changes are received or not due to differences in the path lengths.

In order to prevent these problems, all dependent ontologies receive the change immediately.
However, the recursive realisation of the dependent ontology evolution algorithm guaranties
that induced changes are propagated, and therefore processed, firstly (cf. 8 in �Figure 50).
Moreover, the recursion assures the ontologies more close to the ontology broadcasting a
change will process this change before remoted ontologies (cf. 16 in �Figure 50). For example,
assuming the topological order O1, O2, O3, O4, O5, O6 for the inclusion graph shown in �Figure
51, O3 will receive changes from O1 before these changes will be received by ontologies O4

Methods and Tools for Ontology Evolution

 150

and O6 that include O3. Note that closeness between two ontologies Oi and Oj is measured in
the number of nodes (i.e. ontologies) between them, where a node is considered only if it
includes the ontology Oi and is included in the ontology Oj.

O3

O4

O1

O6

O5

O2

Figure 51. A very complex inclusion graph

Discussion

It is not always possible to propagate changes. For example, in a dependent ontology O2 an
included ontology O1 might be extended with the subconcept relationship between the
concepts “X” and “Y” defined in the ontology O1. If O1 is changed with the subconcept
relationship in other direction (the concept “Y” is a subconcept of the concept “X”), then the
propagation of this change from O1 to O2 would provoke a cycle in the concept hierarchy.
This example shows that the change propagation phase of the ontology evolution process
cannot be fully automated since some changes would provoke inconsistencies that cannot be
resolved.

Therefore, the change propagation is a partially automated activity �[100]. However, the
ontology evolution system has to provide support for avoiding the problems such as
previously mentioned cycle in a concept hierarchy. For example, an ontology engineer should
be able to accept or to reject changes. There are several options �[138] which clarify the
resolution:

- break the dependency between ontologies O1 and O2, i.e. the ontology O2 is an
autonomous ontology which is extended with the “copy” of all entities from the
ontology O1;

- try to compensate the requested change (e.g. AddSubConcept(“Y”,“X”)) by
generating the inverse change (e.g. RemoveSubConcept(“X”,“Y”)) in the dependent
ontologies before applying the requested change;

- make a replica of the ontology O1 and include this replica into the ontology O2 instead
of the original. In this way the dependent ontology O2 stays compliant with the last
version of the modified ontology.

Note that there is no problem with the usage of the same identifier for the entities in different
ontologies due to different URIs of the ontologies they belong to.

Change Propagation

 151

5.3.2 Distributed Ontology Evolution

A distributed dependent ontology is an ontology that depends on an ontology residing at a
different node on the network. The physical distribution of ontologies is very important since
it creates additional problems that are not encountered when the ontologies are collocated.
This additional complexity stems from the fact that reusing distributed ontologies is achieved
through replication (see section �5.2.2). Since the original ontology is updated autonomously
and independently of replicas, this in turn introduces an additional type of ontology
consistency, so-called the replication ontology consistency.

To explain the notion of replication ontology consistency we assume a distributed system of
replicated ontologies as shown in �Figure 52. Service provider A uses its ontology server to
develop a basic ontology (BO). Service provider B may find this ontology appropriate to be
used as a foundation for PO. To reuse BO, B replicates it from the A's ontology server into its
ontology server (cf. BO’). Replication is done to decouple ontology servers. To develop PO,
B uses the modularization facilities of its ontology server, making all definitions from the BO’
available in PO. Similarly, for the creation of the SO, the server provider C creates its own
copy of the BO ontology (cf. BO’’). Finally, in order to reuse the BO and SO ontologies, the
service provider D creates the copies of these ontologies (cf. PO’ and SO’). Even though the
ontologies PO’ and SO’ contain its own replicas of the original BO (i.e. BO’ and BO’’) the
ontology IO contains only one copy of BO (i.e. BO’’’), which implies that the replicas BO’
and BO’’ have to be equivalent.

IO includes

SO’ PO’

BO

PO

BO’BO’’

SO

BO’’’

replicates

Server provider A

Server provider C

Server provider D

Server provider B

Figure 52. Dependencies between ontologies shown in �Figure 40 in a distributed scenario

As the business requirements change, A will change the BO. For example, A may refine the
hierarchy of the concept “Project” by distinguishing EU and national projects. At this stage
the entire system is inconsistent – B(C) has not updated yet PO (SO) or its local copy of BO.
In the WWW context such situations simply cannot be avoided, due to numerous factors, such
as the number, geographical distribution and technological heterogeneity of subjects involved,
independence of their business cycles, etc. Therefore, we must simply accept the fact that the
service provider B(C) works with an outdated version of the ontology - a request directed to
B(C) must be formulated using concepts from the version of BO that B(C) currently

Methods and Tools for Ontology Evolution

 152

understands or the system will produce incorrect results. Although inconsistencies are
inevitable, the infrastructure should provide means for their easier detection and management.
In our case this means that B(C) may check for newer ontology versions at leisure. When
ready, B (C) needs to determine which included ontologies have been updated and to apply
the distributed ontology evolution algorithms to bring both the PO (SO) and the local copy of
BO up-to-date.

Therefore, after a change in the ontology BO, the ontology BO’ (BO’’) at service provider
B(C) is replication inconsistent if it has not been updated according to changes in its original
at the service provider A. This implies the replication inconsistency of PO (SO) at service
provider B(C) (since PO (SO) includes BO’ (BO’’) which is replication inconsistent). Finally,
this implies the replication inconsistency of IO at the service provider C in the same way.

We already introduced the idea of the replication ontology consistency, here we define it
formally. Further, we define formally the additional consistency requirements arising from the
distributed scenario.

Definition 38 Replication Ontology Consistency - An ontology is replication consistent if it
is equivalent to its original and all its (directly and indirectly) included ontologies are
replication consistent. Formally, it is defined as:

replicationConsistency(OIM)↔

equivalent68(OIM, original69(OIM)) ∧

∀OIMi OIMi∈INC(OIM) replicationConsistency(OIMi)

The further complexity related to the evolution of the distributed, dependent ontologies lies in
the fact that an ontology O1 might include the same ontology O2 through the several different
ontologies Oi, where each of these ontologies Oi has its own replica of the original ontology
O2. These replicas might reflect the different state of the original ontology O2. However, in
order to achieve the compatibility and to make ontology evolution feasible, these replicas
must be equivalent.

The possibility of including the replica of the same ontology through multiple paths has
significant consequences on the ontology evolution. We define the version70 of an ontology,
which means that each ontology has a version number attached to it. It is incremented each
time that an ontology is changed. Thus, checking the equivalence of the replica and the
original can be done by simple comparison of these numbers. Therefore, the equivalency
between two arbitrary ontologies is defined as:

equivalent (OIM1, OIM2)↔

version(OIM1)=version(OIM2) ∧

logicalURI(OIM1)= logicalURI(OIM2)

68 The function equivalent(O1,O2) returns true if all entities of the first ontology O1 are contained in the second

ontology O2 and vice versa. Otherwise it returns false.
69 The function original(O) returns the original ontology for a given ontology O. If the given ontology O is the

original, then this ontology is retrieved. Note that this function is performed by mapping the logical URI of an
ontology into its physical URI (see section �5.2.2) since an ontology and all its replicas must have the same
logical URI whereas the physical URI depends on their location.

70 The function version(O) gives a version number of a given ontology O.

Change Propagation

 153

where the function logicalURI is defined in section �5.2.2.

To avoid problem that included ontologies might contain different versions of the same
original, we define the additional ontology consistency constraint:

Definition 39 Replication Constraint - An ontology OIM must contain only one version of
each included ontology.

∀ OIM1∈INC*(OIM) ∀OIM2∈INC*(OIM) \{ OIM1}

logicalURI(OIM1)= logicalURI(OIM2) → version(OIM1)= version(OIM2)

The previous constraint does not prevent the same ontology to be included several times. The
efficient management of changes in such a system (in terms of space and time) requires the
further condition:

Definition 40 Uniqueness Condition - An ontology OIM must contain one and only one
copy of each included ontologies.

∀OIM1∈INC(OIM) ¬∃OIM2∈INC*(OIM) \{OIM1}

logicalURI(OIM1)= logicalURI(OIM2)

�Definition 39 and �Definition 40 are not contradictory. The first one is used as a precondition
for the “AddOI-model” change to avoid dealing with different versions of the same ontology
in one model. It considers the whole inclusion graph between ontologies. The second
condition requires that included ontologies are virtually merged. It means that the distributed,
dependent ontology has to include only one replica of any ontology independently of the
number of paths between these ontologies. This condition can be satisfied only if the first one
is fulfilled. Further, it is more related to the practical realisation of an ontology evolution
system. Therefore, it is not an ontology consistency constraint since for the consistency only
the “equivalence” between the replicas of an ontology is important (and not the number of
these replicas). Rather, this condition assures an efficient management of changes in the
system.

The previously mentioned problems do not exist in a centralised environment (see section
�5.2.2) since the reuse is achieved through inclusion. This means that the original entities from
the included ontology are referenced instead of their replicated entities.

In a distributed environment the problem is even made worse by the fact that a distributed,
dependent ontology can extend its replicas independently of the original. For the distributed,
dependent ontologies there is a trade-off between having autonomy over the extension of the
replica and conforming to the original to enjoy benefits of interoperation (since the original
can be considered as a shared ontology) �[100]. If the distributed ontology is motivated to
conform, then the burden lies on the distributed ontology which must manage its own changes
and incorporate the changes of the included ontology at periodic intervals or at an explicit
request. This proceeding is called the distributed ontology evolution. It includes the resolution
of two problems:

1. replication ontology consistency (see �Definition 38), i.e. the propagation of changes
from an original to its replica;

2. dependent ontology consistency (see �Definition 37), the propagation of changes from
a replica to an ontology that includes it.

Methods and Tools for Ontology Evolution

 154

To resolve replication inconsistencies between ontologies, first a way of synchronising
distributed ontologies is needed. �Table 9 discusses the pros and cons of two well-known
approaches �[7] for synchronising distributed systems. Although seemingly similar, there is a
significant difference in the approaches described in subsection �5.3.1 since we are here
dealing with a distributed system.

Table 9. Push vs. pull synchronisation of ontologies

Push Pull

Dependency Information centralised local

Complexity of Management high medium

Type of Consistency strict loose

Communication Overhead high optimised

Under push synchronisation the changes of originals are propagated to ontologies including
replicas immediately. We identify several drawbacks of using this approach for realistic
scenarios on the Web. First, to propagate changes, the information about ontologies that reuse
each ontology should be available. Thus, an additional centralised component managing
inclusion dependencies between ontologies is needed. Second, with the increase in the
number of ontologies and of subjects reusing them, the number of dependencies will grow
dramatically. Managing them centrally will be too expensive and impractical as the problem
of evolving dependencies is raised. Third, forcing all ontologies to be “strictly” consistent at
all times reduces the possibility to express diversities in a huge space such as the Web.
Subjects on the Web may not be ready to update their dependent ontologies immediately and
may opt to keep the older version deliberately. Finally, the changes are propagated one-by-
one, thus introducing significant communication overhead. Grouping changes and sending
them on demand will perform better.

Therefore, in the distributed environment we advocate the use of the pull synchronisation.
Under this approach information about included ontologies is stored in the dependent
ontology, thus eliminating the need for central dependency management. Original ontologies
are checked periodically to detect changes and collect deltas. During this process, it may be
possible to analyse changes and to reject them if they do not match the current needs. Thus,
we propose a “loosely” consistent system since replication consistencies are enforced at
request. Permitting temporary inconsistencies is a common method of increasing performance
in distributed systems �[102]. Hence, we use the pull approach for synchronising originals and
replicas whereas we use the push approach for maintaining consistency of ontologies within
one node. Thus, our solution employs a hybrid synchronisation strategy combining their
favourable features while avoiding their disadvantages.

Regardless of the synchronisation approach, a question about how to resolve replication
inconsistencies remains open. We note that replication inconsistencies cannot be resolved by
simply replacing the replica with the new version of the original. This will cause
inconsistencies of the dependent ontologies, as discussed in subsection �5.3.1. Instead,
replication and dependency inconsistency must be resolved together in one step.

Change Propagation

 155

Definition 41 Distributed Ontology Consistency – A distributed, dependent ontology OIM is
a consistent ontology if it is dependent ontology consistent and replication ontology
consistent.

distributedConsistency(OIM)↔

replicationConsistency(OIM) ∧ dependentConsistency(OIM)

The replication ontology consistency ensures that only up-to-date replicas are included. On
the other hand, the dependent ontology consistency guaranties that each ontology, considered
independently of either ontologies that it includes or ontologies that are included in it, satisfies
the set of ontology constraints (see �Definition 6). Therefore, an ontology is distributed
consistent if it included the latest, consistent version of included ontologies as well as it is a
consistent dependent ontology.

The distributed ontology consistency can be achieved by applying dependent evolution
algorithms on deltas. Deltas are changes that have been applied to the original since the last
synchronisation of the replica. By using the pull synchronisation strategy and by applying the
dependent evolution process (see �Figure 46) to deltas, we derive the distributed ontology
evolution process through three extensions. This process, shown in �Figure 53, is responsible
for propagating changes from originals to replicas. We extend the implementation phase by
introducing the evolution log for keeping information about performed changes. Further, we
extend the change capturing phase by three components. During identification of changed
originals we identify which original ontologies have changed. In extraction of deltas we
identify the changes performed at the original and not at the replica by reading the evolution
log. Finally, during merging of deltas we generate a cumulative list of changes that must be
performed at the replica.

Logging Changes

In order to resolve replication inconsistencies, two known ways of identifying deltas between
originals and replicas are known �[102]:

1. the full content of the original ontology may be compared to the replica;

2. the history of changes to the original may be kept explicit.

Semantics
of change ImplementationRepresentation Validation

CapturingCapturing

Identification of Changed Originals

Propagation

Evolution
Log

Extraction of Deltas

Merging Deltas

Figure 53. Distributed Ontology Evolution Process

The first solution requires extracting changes from differences between the original and the
replica, which is a complicated and time-consuming process. An algorithm for comparing two
versions of ontologies is given in �[65]. It is based on a set of heuristics that take into account
syntactical differences. However, for the evolution of dependent ontologies it is not sufficient
only to detect the differences between original and its replica. It is essential to discover the

Methods and Tools for Ontology Evolution

 156

order in which these changes are applied to the original since different order of changes might
have completely different consequences on the ontologies that include the replicas.

Further, to compare ontologies the current version of the original must be copied temporarily
to the replica's node. This may incur unnecessary communication overhead. For example, the
WordNet ontology described in �[71] is very large. If a concept is added to it, it is better to
transfer only the information about this addition, instead of transferring the whole ontology.

To avoid these drawbacks, we follow the second option. For each distributed ontology, a
specialisation of the evolution ontology (see section �3.2.4) is created. This is the so-called
evolution log71 that tracks the history of changes to the ontology. The utility of these formal
models (i.e. the evolution ontology and the evolution log) is demonstrated by their usage in
the distributed synchronisation. They enable an ontology engineer to synchronise the local
versions of an ontology (i.e. replicas) with the shared version (i.e. the original) from which
they were derived. In �[100] the authors defined essential factors for such a data interchange
format. We adopted this approach in the following way:

(i) the format must be agreed on, which is attained through the evolution ontology;

(ii) the format must faithfully follow the accepted data model, which is achieved by
defining the hierarchy of the concept “Change” in the evolution ontology;

(iii)the data must be structured consistently in the ways that are readily computer
processable, which is accomplished by introducing the properties
“hasPreviousChange” and “causesChange” (see section �3.2.4) enabling to reconstruct
a sequences of performed changes and the concept “LOG” that is the end of a list of
performed changes and indicates the last one with the property “lastChange”.

Apart from the distributed evolution, the evolution log is also used to provide undo-redo
capabilities. Therefore, it is necessary to distinguish reverted changes. Namely, it might
happen that after synchronisation between an original and its replica, the changes in the
original are cancelled. Although the current state of the original is equivalent to the state
before applying this change, the information about reverting a change (and all its
consequences) has to be explicitly stored in a log in order to inform replicas about this
modification since the changes that are reverted might be already applied to some of replicas.

The evolution log is used to discover changes performed on the original but not applied on the
replica. Note that replicas cannot be changed. Rather, they could be only extended in the
ontologies that include them, as can be concluded from the ontology modularization definition
(see �Definition 34).

The kernel of the synchronisation between original O and its replica O’ is to find deltas, i.e.
changes that are necessary and sufficient to transform O’ into an updated version of O such
that ontologies O and O’ are equivalent ontologies72. This puts an additional requirement on
the evolution ontology. Each required ontology change has a version number associated with
it, indicating the current ontology version. Moreover, as a result of the ontology
modularization, for each ontology change it is needed to define a model it is applied to.
Therefore, for each ontology change two additional attributes are defined: the version attribute
“versionChange” and the ontology attribute “OI-model”.

All changes in an ontology are stored in the evolution log of this ontology as instances of
subconcepts of the concept “Change” defined in the evolution ontology as well as the

71 The evolution ontology specifies allowable changes together with their inputs, effects, and constraints. The

evolution log specifies data that are tracked regarding changes made to the domain ontology that is changing.
72 The function equivalent is defined at the beginning of this section.

Change Propagation

 157

corresponding property instances as shown in �Figure 17. However, since one change might
provoke many additional changes, the evolution log does not have a linear structure. It is
organised as a list of performed changes where the order of changes in a list is defined
through the “hasPreviousHistoryChange” property. Each element of a list is represented as a
tree of all its consequences (i.e. generated changes) where the property “causesChange”
represents the cause-consequence relationship between performed changes. This is shown in
�Figure 54. There is one and only one instance of the concept “LOG” (cf. InstLog) that
indicates the end of the list, i.e. the lastly required change. We note that each InstChi denotes
a performed change. Further, both relationships (cf. “hasPreviousHistoryChange” and
“causesChange”) are required for the realisation of the distributed ontology evolution. The
first one enables the navigation through the evolution log whereas the second one enables the
reconstruction of the request and all its consequences. More information about these
properties is given in section �3.2.4.

InstLog

InstChn-1InstCh1

hasPreviousHistoryChange

InstChn-1,12InstChn-1,11 InstChn-1,13

causesChange

lastChange

InstChn

InstChn,21

InstChn,11 InstChn,12

requested change

consequence of a change

final consequence of a change

Figure 54. Evolution log as a list of trees

The fact that one change is explicitly requested (and therefore is not a consequence of other
changes) is represented explicitly through the “requestedChange” attribute defined in the
evolution ontology. This information can be considered as redundant since it can be always
derived from an evolution log based on the rule that each change that is not caused by any
other change is a requested change. However, it is tracked in the evolution log in order to
optimise the performance on the procedure for the traversing the evolution log. The main
reason is that the evolution log might contain a huge number of instances. Therefore,
reasoning on them is a time-consuming activity. There is no optimisation technique that can
help due to the need for negation in a particular query73 for the requested changes, which
implies that all instances have to be taken into account for each evaluation of this query.

For the evolution log we define a procedure for the logging of changes. We assume that a
requested change and all its consequence (i.e. induced changes) are organised in a tree-like
structure. Since these changes have to be applied (and tracked) in a sequence determined by
the cause-consequence relations between them, there is a need to transform a tree into an

73 By adopting the F-Logic syntax for queries, all the required changes can be found by the following query:
 FORALL X <- X:Change AND NOT EXISTS Y Y:Change AND Y[causesChange->X].

Methods and Tools for Ontology Evolution

 158

ordered list. We apply the depth-first74 traversal method in order to create the list i.e. to
instantiate the “hasPreviousHistoryChange” property between changes. This procedure is
shown in �Figure 55.

Figure 55. A procedure for transforming a tree of changes into an ordered list of
changes

As can be noticed we applied a preorder75 traversal �[110] that consists of first visiting the root,
and then executing a preorder traversal on each of the root's children (if any).

�Figure 56 illustrates the depth-first traversal of the tree shown in �Figure 45. The procedure
starts from the RemoveConcept(“Project”) change and progresses by expanding the first child
node of the search tree that appears, i.e. the RemoveConcept(“Industrial Project”). It goes
deeper and deeper until it hits a node that has no children, i.e. RemoveSubConcept
(“Industrial Project”,”Project”). Then the search backtracks and starts off on the next node,
i.e. RemoveConcept(“Research Project”). The procedure continues until it reaches a point at
which there is no node in a tree that has not already been visited.

The given procedure defines how to transform a request for a change and all its consequences
from a tree-like structure into an ordered list. The first element of the list is the required
change. The last element of a list is called the final consequence76. The property
“hasPreviousHistoryChange” is instantiated between successive elements of the list. The
next step would be to connect the list with the already performed changes that are stored in an
evolution log. To do that, the last performed change (referenced by InstLog in �Figure 54)
becomes the previous change for the final consequence and the requested change turns into
the last performed change.

Resolving Replication Inconsistencies

As shown in �Figure 53, resolving replication inconsistencies is performed through three
additional components. It is initiated by specifying an original whose included replicas should
be updated. Subsequently, we describe how it is performed.

74 It is a graph search algorithm that extends the current path as far as possible before backtracking to the last
choice point and trying the next alternative path.
75 The term preorder refers to the fact that a node is visited before any of its descendents.
76 It is indicated by the instantiation of the attribute “finalConsequence” that is defined in the Evolution

Ontology.

Change Propagation

 159

InstLog

Delete concept Project

Delete concept Industrial Project

Remove concept Project from subconcept of kaon:Root

Remove concept Industrial Project from subconcepts of Project

Delete concept Research Project

Remove concept Research Project from subconcepts of Project

Delete concept Project from the range of property works_in

Delete concept Project from the domain of property includes

hasPreviousHistoryChange

causesChange

lastChange

Figure 56. The order of visiting changes from �Figure 45

Identification of Changed Originals

This step first checks whether the resolution of the replication inconsistency can be performed
at all. If for some directly included replica the original has the replication inconsistency, then
the process is aborted. Otherwise, a list of directly included replicas having the pending
replication inconsistency (but whose original is replication consistent) is determined. Since
the dependent ontology consistency for the ontologies on the same node is required, this
approach is recursively applied on the all ontologies that include the ontology whose
replication inconsistency is resolved.

More formally, the distributed ontology evolution of an ontology OIM can be performed if the
following condition is satisfied:

∀OIMi∈INC(OIM) replicationConsistency(OIMi).

Let's assume that the service provider D from �Figure 52 wants to resolve the replication
inconsistency of IO. Its directly included replicas, namely PO and SO are examined. For each
of them the replication consistency of the original is checked. If PO at the service provider B
has the replication inconsistency (due to changes from the service provider A in BO which
have not been applied at B's replica of BO, i.e. BO’), then the process is aborted. If PO at the
service provider B is replication consistent, but PO at service provider D is not (since PO at B
has been changed), then PO is scheduled for further analysis. The consistency of the PO's
original is required since IO will obtain changes from BO through PO's and SO's evolution
log.

In order to optimise this step, the set of directly included ontologies to be taken into account
may be reduced by eliminating all the directly included ontologies that are available through
some other paths. In the case that the ontology IO directly includes the ontology BO, the
ontology BO would be eliminated from further consideration since it can be obtained through
PO and SO.

Methods and Tools for Ontology Evolution

 160

The replication consistency is performed by determining the equivalence of the ontology with
its original and by recursively determining the replication consistency of included ontologies.
The following information is needed to perform that:

• Each ontology contains a physical URI of its original;

• Each ontology contains a physical URI of its evolution log;

• The version number of the replica and the original are used for checking the
equivalence. It can be done by a simple comparison of their version number.

Extraction of Deltas

After determining directly included replicas to be updated, the evolution log for these
ontologies is accessed. The location of the evolution log is specified within each ontology and
is copied to replicas. For each log the extracted deltas contain all changes that have been
applied to the original after the last update of the replica as determined by the version
numbers.

Here we define the synchronisation between an original and its replica formally:

Definition 42 Synchronisation Set: Given an ontology O, its replica R, the evolution log
ELO of the ontology O and the evolution log ELR of the ontology R, a synchronisation
set Deltas(O,R) is a set of changes that applied to O results in R.

Deltas(O,R)={Chi � Chi∈ELO ∧ Chi∉ELR}

A set of changes Deltas satisfies the additional constraints:

∀ Chi∈Deltas(O,R) ∃N (Chi, “versionChange”, N)∈ELO ∧ N>version(R) ∧

 ∃OIM (Chi, “OI-model”, logicalURI(OIM))∈ELO ∧ OIM∈O∪INC*(O),

where “versionChange” and “OI-model” are properties of the concept “Change” defined in
the evolution ontology (see section �3.2.4). The triplet (Chi, “versionChange”, N) specifies
that the instance “Chi” has the value “N” for the property “versionChange”. The property “OI-
model” indicates the ontology the change is applied to. The logical URI of the ontology (i.e.
logicalURI(OIM)) is used as a target value of the property instance.

Therefore, the synchronisation set Deltas contains only changes Chi (i) whose version number
N is greater than the version number of the replica R (i.e. version(R)) and (ii) which are
applied to either to the original O or to the ontologies that it includes (i.e. INC*(O)). This
formal definition enables the formal verification whether the distributed evolution can be
performed since it might happen that evolution logs are corrupted (e.g. manually changed). In
this way it is possible to guide an ontology engineer through the evolution by providing
additional information such as why the evolution did not succeed or what else she has to do in
order to finish it.

We note that the synchronisation set delta might not be minimal77 since it may be a result of
undo-redo modifications. However, the minimal synchronisation set would not reflect the
history of modifications of an ontology (e.g. undo/redo operations), which is necessary for the
distributed evolution.

77 It means that the removal of some changes from this set might result in the set that is also the synchronisation

set from O to R.

Change Propagation

 161

Further, it is not sufficient only to extract deltas from an evolution log. The changes forming
delta have to be organised in the same way as they are performed. More formally:

R = Chn
 °…° Chi+1

 ° Chi
 °…° Ch2 ° Ch1 ° O =

Chn(…(Chi+1(Chi(…(Ch2(Ch1(O))))))),

where:

Chi∈Deltas ∧ Deltas⊆ELO ∧ Deltas∩ELR=∅

The order of changes forming delta is defined by the property “hasPreviousHistoryChange”
in the following way:

• Chn is the last change applied to the original as indicated by the unique instance
“instLog” of the concept “LOG” (see �Figure 54), i.e.

 (instLog, “lastChange”, Chn)∈ELO,

 where “lastChange“ is a property defined in the evolution ontology,
instLOG∈instconc(“Log”) and “LOG“ is a concept defined in the evolution ontology;

• Chi , 1≤i<n, is calculated in the following way:

 (Ch i+1, “hasPreviousHistoryChange”, Chi)∈ELO

 where the Ch1 has to satisfy addition conditions:

 ∃N (Ch1, “versionChange”, N)∈ELO ∧ N=version(R)+1 ∧

 (Ch1, “finalConsequence”, “true”)∈ELO.

Therefore, changes Chi from the synchronisation set Deltas are ordered in a sequence
according to the “hasPreviousHistoryChange” property. The sequence of changes starts with
the change Ch1 that was the first change applied to the original after the last synchronisation
as indicated by the version number N and the attribute “finalConsequence”. The sequence of
changes terminates with the lastly applied changes Chn that is referenced by InstLog.

Merging Deltas

Deltas extracted from evolution logs in the previous step are merged into a unified list of
changes. Since an ontology can be included in many other ontologies, its changes will be
included into evolution logs of all of these ontologies. Hence, the merging process must
eliminate duplicates. Also, changes from different deltas caused by the same change from a
common included ontology should be grouped together.

For example, if the ontology BO is changed, the evolution logs of the PO and SO will contain
these changes as well as their own extensions. Hence, when changes from PO's and SO's logs
are merged in order to update IO, the changes to BO will be mentioned twice. Thus, only one
change to BO should be kept while discarding all others. However, changes in PO and SO
caused by the same change in BO must be grouped together.

We note that it would not make more sense to update the evolution log only with changes
local to the current ontology and follow evolution log pointers for imported ontologies to see
"the complete changes". This solution would require the access to the evolution logs of all
replicas included either directly or indirectly. There are several disadvantages of this
approach. The inclusion relationship may be complex which leads to the reading of the huge
number of the evolution logs. Further, the evolution logs may be also distributed since the

Methods and Tools for Ontology Evolution

 162

included ontologies may be on different nodes. Thus, the access to the several nodes on the
network is needed. Finally, the extraction of the changes requires one query per each
evolution log. Consequently, the proposed solution may be a time-consuming activity. On the
contrary, the proposed approach can accelerate this process significantly since it extracts
changes only from the evolution logs of the first level replicas. The price that has to be paid is
the elimination of duplicates. However, the merging changes into one common list can be
performed very fast since the lists of changes that have to be merged are already sorted.

Algorithm for the Distributed Ontology Evolution

The algorithm of our approach for the evolution between distributed ontologies is presented in
�Figure 57. It starts with the identification of changed originals (cf. 2). This includes the
checking whether the evolution can be performed at all and returns all included replicas that
are out-of-date (cf. 11--19). For each of these replicas, the evolution log is accessed in order
to extracts deltas (cf. 5--6). These changes are merged with the changes from the other
evolution logs (cf. 8). Finally, this integrated list of deltas from all out-of-date replicas is
processed using the dependent ontology evolution algorithm (cf. 10) shown in �Figure 50.

The complexity of this algorithm is not critical at all. The complexity of the identification of
changed original is O(N), where N is the number of directly included ontologies. The module
for extracting deltas depends on the number of changes in a linear way. The complexity of the
merging of two sorted list of size M1 and M2 is O(M1+M2) since we consider each element of
each list exactly once. Therefore, the processing time is directly proportional to the combined
number of elements in the two lists.

Figure 57. Distributed Ontology Evolution Algorithm

Change Propagation

 163

Discussion

Similarly to the dependent ontology evolution (see section �5.3.1), in the distributed case also
it is not always possible to propagate changes from an original to its replica. For example, it
may happen that the original and the replica (i.e. an ontology that includes the replica) are
independently changed in the same way. Let’s consider that the developer of the original
found out that it should be extended with the subconcept relationship between two concepts.
The developer of the dependent distributed ontology, which includes the replica, came to the
same conclusion. They also established the subconcept relationship between the same
concepts without knowing that the original is updated as well. Note that the extensions in the
original and in the dependent ontologies are different due to the fact that the identifier of each
ontology element consists of the identifier of the ontology it belongs to and of its own
identifier. Since the subconcept relationships are added in the different ontologies (i.e. in the
original and in the dependent distributed ontology) they are considered as independent.

In the case that the developer of the dependent distributed ontology wants to actualise her
copy of the original, the synchronisation cannot be performed. The preconditions for the
addition of the subconcept relations include, among others, the condition that this relation is
not in a model. There, the attempt to apply “AddSubConcept“ change that is performed on the
original and therefore is tacked in the evolution log, would fail since the subconcept relation
is already defined in the dependent distributed ontology. In order to resolve this problem, an
ontology evolution system has to offer several alternatives:

- to break dependencies between the original and its replica;

- to initiate the inverse change (e.g. “RemoveSubConcept“), which would prepare
conditions for synchronisation;

- to leave the ontologies as they are, which means staying compliant with the last
version of the original.

The most frequent problem is related to the cardinality constraints, which define how many
times a property may be specified for instances of a concept. Namely since the included
ontology and the including ontology might instantiate instances independently, it might
happen that synchronisation between them is not possible due to an exaggerated number of
property instances. By introducing different levels of the ontology consistency (see section
�2.3), the resolution point can be deferred. Moreover, an ontology engineer is informed about
temporary inconsistency and possible ways of dealing with this problem.

5.4 Case Study

To demonstrate the usefulness of our approach for the evolution between dependent
ontologies, we applied it to the MeSH78 (MEdical Subject Headings). MeSH is a controlled
vocabulary used for indexing medical documents. The goal of the MeSH is to provide a
reproducible partition of concepts relevant to biomedicine for the purpose of organising
knowledge and information. In biomedicine and related areas, new concepts are constantly
emerging, old concepts are in a state of flux and terminology and usage are modified
accordingly. To accommodate these changes, the MeSH has to be updated as well as the
articles indexed by the MeSH. Indeed, the main reason for using the MeSH as a case study is
that the National Library of Medicine (NLM) produces the MeSH with an annual update

78 http://www.nlm.nih.gov/mesh/

Methods and Tools for Ontology Evolution

 164

cycle. Since the MeSH is used in real medical systems, management of its change is a critical
issue.

The NLM has produced the MEDLINE79 database since 1966. The MEDLINE database
includes over 10 million literature quotations of articles written in 41 languages. Each article
is indexed with the MeSH descriptors assigned by an individual who reads the article in its
original language and assigns the descriptors to indicate what the article is about. About
400.000 articles are indexed per year. The MeSH is now in its 40th year of production and is
added to and otherwise modified on an annual basis. Beginning in 2002, over 2.000
completed references are added daily each Tuesday through Saturday, January through
October (over 460,000 added last year). These modifications are then applied to the
MEDLINE database; articles are not re-indexed, but the database is kept current with the
current version of the MeSH. This is a time-consuming activity since two months (November
and December) are needed to make the transition of the NLM to a new year of the MeSH
vocabulary used to index the articles.

According to the official MeSH web site80, the following changes are applied on the MeSH
version from 2003:

• 666 descriptors were added representing topics with no directly corresponding
descriptors in the MeSH version used in 2003. The most recent examples of such
additions are "Severe Acute Respiratory Syndrome" and "SARS Virus";

• 109 descriptors were replaced with more up-to-date terminology;

• 20 descriptors were deleted;

• 484 terms were added.

The practical experiences with the MEDLINE show that it is easy to add something (either a
descriptor to the MeSH or an indexed article to the MEDLINE), but it is hard to modify data
that are already in the system. The authors of the MEDLINE system found out that meaning
of change is important and that there is a need for an update model �[90].

The goal of the MeSH/MEDLINE case study was to show that:

• our ontology evolution system is able to work with large ontologies such as the
MeSH. The newest version of the MeSH (MeSH 2004) contains 22.568 descriptors,
83 qualifiers and 137.557 supplementary concept records. The meaning of the MeSH
entities is described in section �5.4.1;

• the dependent/distributed ontology evolution might be applied on the MEDLINE since
the MeSH itself consists of several independent parts and the medical articles are only
annotated by the MeSH;

• formal semantics provided by an ontology might be useful to improve the indexing in
the existing MEDLINE system.

Our work regarding the MeSH can be split into three phases:

• Phase 1 – the representation of the MeSH in the form of the KAON ontologies;

• Phase 2 – the evaluation of the applicability of the ontology evolution support on the
MeSH/Medline;

• Phase 3 – the suggestions for the continual improvement of the MEDLINE.

79 http://www.nlm.nih.gov/pubs/factsheets/medline.html
80 http://www.nlm.nih.gov/pubs/techbull/nd03/nd03_mesh.html

Change Propagation

 165

These phases are subsequently described.

5.4.1 Phase 1

Our first task was to transfer all information available in the MeSH repository into the KAON
system (see section �7.2) in order to verify whether our ontology evolution system can be used
at all. This required (i) the understanding the MeSH and (ii) the creation of the KAON
ontologies that mimic the MeSH.

Understanding the MeSH requires an understanding of its structure. There are three major
components to the MeSH:

• descriptors;

• subheadings (also known as Qualifiers);

• supplementary concepts.

Descriptors (e.g. “Headache”) are the main headings. Qualifiers (e.g. “Therapy”,
“Diagnosis”, etc.) are used with descriptors and afford a means of grouping together the
documents concerned with a particular aspect of a subject. Indeed, qualifiers are used to
modify (refine) descriptors by indicating particular aspects. They are used in indexing,
cataloguing, and online searching to qualify the MeSH descriptors by pinpointing some
specific aspect of the concept represented by the descriptor. For example, "LIVER/drug
effects" indicates that the article or book is not about the liver in general but about the effect
of drugs on the liver. Supplemental (e.g. “Ametohepazone”) is added daily and is largely
chemicals.

The MeSH structure is centred on descriptors, concepts, and terms �[89]. A descriptor is
viewed as a class of concepts, and a concept as a class of synonymous terms within a
descriptor class. Indeed, a descriptor class consists of one or more concepts closely related to
each other in meaning. For example, for the “Headache” descriptor the concepts “Headache”
and “Sharp Headache” are defined. For the purposes of indexing, retrieval, and organisation
of the literature, these concepts are best lumped together in one class. Each descriptor has a
preferred concept. Further, one of the terms naming that concept is the preferred term of the
preferred concept, and takes on the role of naming the descriptor. Each of the subordinate
concepts also has a preferred term, as well as a labelled (broader, narrower, related)
relationship to the preferred concept. Terms meaning the same are grouped in the same
concept. For the previously mentioned descriptor “Headache” following terms among others
are defined “Head Pains”, “Head-Pain”, “Cephalgias”.

An example is shown in �Figure 58. It can be seen that concept classes II and III are
respectively, narrower and related to concept class I (the preferred concept), but are not
equivalent to each other. Each concept class could be given its own definition if desired. It
can also be seen that “HIV Encephalopathy” and “AIDS Encephalopathy” are synonymous
terms within the same concept class.

Relationships among concepts can be represented explicitly in the thesaurus, most notably as
relationships within the descriptor class. Hierarchical relationships are represented as broader
or narrower (parent-child) relationships between concepts within descriptors. Other types of
relationships include associative relationships such as the Pharmacological Actions or see-
related cross-references as well as forbidden combination expressions such as the Entry
Combination. For example, the MeSH concept “Headache“ is broader than the MeSH concept
“Bilateral Headache“, the MeSH concept “Sharp Headache” is narrower than the MeSH
concept “Head Pains” or the MeSH concepts “Headache” and “Head Pains” are related.

Methods and Tools for Ontology Evolution

 166

Figure 58. An example of the MeSH descriptors

Three kinds of informative references may be found in descriptor records: “see related”,
“consider also”, and “main heading/subheading combination” references. “See related”
references indicate the presence of other descriptors that are conceptually related to the topic.
The “consider also” notation is primarily used on anatomical descriptors. The “main
heading/subheading combination” notations refer an invalid (and prevented) combination of
descriptors.

Based on the analysis of the MeSH structure, we develop several ontologies. They are shown
in �Figure 59. The goal was to model all information that exists in the MeSH model including
the implicit knowledge. Therefore, the approach can be summarised as follows:

• the model of the MeSH is transformed into the MeSH ontologies;

• “hidden” (hard-coded) knowledge embedded in the MeSH is translated into a set of
rules in the corresponding ontologies and is used in typical inferencing tasks.

Meta-Ontology

Qualifier
Ontology Descriptor

Ontology Supplemental
Ontology

Document
Ontology

MeSH MEDLINE

Figure 59. Representation of the MeSH and the Medline as KAON ontologies

Change Propagation

 167

The Meta-Ontology shown in �Figure 60 represents the conceptual model of the MeSH. It
contains concepts such as “Descriptor”, “Qualifier”, “Supplemental”, “Concept”, “Term”, etc.
The relationships between them are defined according to the MeSH model. We extend this
model by representing explicit all information that was implicit in the MeSH model. The
semantic of the MeSH model is implicit, hidden in the XML files and difficult to discover. By
providing explicit semantics of the MeSH relationships, it is possible to perform the formal
verification of a model. Such an approach is described in section �5.4.3.

Figure 60. The Meta-Ontology representing the conceptual model of the MeSH

Actually, in an ontology there are two types of implicit knowledge: the axioms and general
rules. Axioms are the standard set of rules such as rules for symmetric, transitive and inverse
properties. For example, if A “is related to” B, B “is related to” C, and “is related to” is a
transitive property, then the ontology system can infer that A “is related to” C as well. Thus,
we do not need to express this information explicitly. General rules are domain specific rules
that are needed to combine and to adapt information available in the ontology. They are used
to specify the relationship between ontology entities in the form of rules. For example, if C “is
preferred concept for” D and T “is preferred term for” C, then it can be concluded that T “is
preferred term for” D.

In general, axioms and rules are used to infer new knowledge. The possibility to derive in-
formation makes the model of a domain more concise, more accurate, and easier for mainte-
nance. Obtaining and formalising the non-explicit but available knowledge about the
knowledge model of the MeSH ensures the advantages over other medical systems.

The implicit knowledge of the MeSH is explicitly modelled through rules. For example, for
the “see related” relationship, the symmetry axiom may be exploited when searching for
information. Without the definition of this axiom, searching for related descriptors might

Methods and Tools for Ontology Evolution

 168

depend on the way metadata was provided for them. If one defines that some descriptor
named “X” has the “see related” relationship with some other descriptor named “Y”, there is
no possibility (without programming or explicit specification) to find out that the descriptor
“Y” also has the “see related” relationship with the descriptor “X”. Further, it is impossible to
conclude that the descriptors “X” and “Y” cannot be in the “main heading/subheading
combination” relationship to each other.

The Qualifier ontology is based on the Meta-Ontology since it defines the structure of the
MeSH/MEDLINE system. It contains all the MeSH qualifiers that are represented as
subconcepts of a concept “Qualifier” that is defined in the Meta-Ontology.

The Descriptor ontology contains information about the concrete MeSH descriptors.
Therefore, it also reuses the Meta-Ontology. Further since one descriptor may reference to the
qualifier concepts, the Descriptor ontology includes the Qualifier ontology as well. For
example, the descriptor “Calcimycin” has a reference to the qualifier “abnormalities”.

The Supplemental ontology reuses the Qualifier and the Descriptor ontologies directly and
indirectly the Meta-Ontology through both of the directly included ontologies. It specialises
the concept “Supplemental” defined in the Meta-Ontology according to the MeSH context.
Moreover, it establishes the reference between qualifiers, descriptors and supplemental
concepts.

The MeSH is used for indexing biomedical articles. This information is stored in the
MEDLINE. Each index (or annotation in the Semantic Web terminology) consists of the
MeSH headings and chemicals. Each MeSH heading contains one pair or more pairs of
descriptors and qualifiers. Each pair defines a main topic of the article and is considered as a
whole. On the other hand, chemical contains a supplemental concept that describes more
specific topics of an article. To model this information we have developed the so-called
Document ontology. It contains only the metadata about biomedical articles and not the
articles themselves. It includes all the previously mentioned ontologies. We note that we
transfer all information about the MeSH but only about 100.000 indexed documents. The
reasons for selected the MEDLINE subdomain are discussed later.

5.4.2 Phase 2

In the second phase we evaluate the possibility to apply our ontology evolution system to the
set of the ontologies generated from the MeSH/MEDLINE system. It is worth noting that we
cannot compare our system with the existing MEDLINE system due to two reasons:

1. There is no MEDLINE maintenance system that enables keeping consistency. For
example, after removal of some descriptor from the MeSH, it might be possible that
some articles are still indexed with the descriptor that does not exist any more. All
changes are performed manually. Thus, any modification is a time-consuming and
error-prone activity;

2. The MeSH is available on the Internet NLM home page at
http://www.nlm.nih.gov/mesh/filelist.html. However, the MEDLINE81 can be searched
free of charge but access to the MEDLINE services is provided by organisations that
lease the database from NLM. Therefore, we were not able to work with the full
content of the MEDLINE. We manually downloaded about 100.000 articles and their
annotation by making query about “Headache” and parsing the XML output. Even
though this restriction is made, the evaluation results are applicable.

81 http://www.nlm.nih.gov

Change Propagation

 169

As already mentioned, the goal of this phase is to demonstrate that the evolution of medical
vocabulary can be automated. The first application of our ontology evolution system was
during the creation of the KAON version of MeSH/MEDLINE ontologies. We found several
anomalies (such as redundancies, inconsistencies and undefined entities) in the existing
MeSH/MEDLINE data. For example, several descriptors were defined twice. Moreover, in
the XML file each reference is stored through two elements: entity ID and entity names. Since
one entity is referenced in several entities, different names are used for the same entity. Note
that synonyms are represented as terms. Finally, we found references to the undefined entities.
This problem may be a consequence of a syntax error in the XML file or may be a
consequence of the manual change propagation procedure since the people might not find all
effects of a change.

Since the ontology evolution system was applied during the creation of the MeSH/MEDLINE
ontologies, all these anomalies were prevented. Here we show how the consistency can be
enforced when the initial consistent ontologies already exist.

Therefore, the result of the first application of the ontology evolution system is a set of
consistent MeSH/MEDLINE ontologies. Then, we try to modify these ontologies using our
ontology evolution system. We decide to modify the Descriptor ontology since descriptors are
created for the purpose of indexing the medical literature. Since the worst case is the concept
deletion, we measured time needed to perform this change and the number of generated
changes. Note that there is no goal system that can be used for comparison. In the MEDLINE
system the semantics of change as well as the change propagation are performed manually.
Therefore, we only wanted to show that the removal could be performed in acceptable time,
which is much faster and more accurate than in the existing system. Since we selected the
subdomain of “Headache” diseases and included articles about this topic and their annotation
into the Document ontology, the descriptor “Headache” is chosen for removal. It is
represented as the concept “Headache” in the Descriptor ontology. It is visible in all the
ontologies that reuse the Descriptor ontology. Thus, the request for the removal of the concept
“Headache” might have consequences on the Supplemental ontology and the Document
ontology as well (see �Figure 59). Consequently, the ontology evolution between dependent
ontologies has to be applied since the synchronisation between the Descriptor ontology and
the ontologies that include it is necessary for a consistent and, therefore, efficient, effective
and accurate system.

Note that the Meta, the Qualifier, the Descriptor and the Supplemental ontologies are stored
within one ontology server and the Document ontology is stored on a separate ontology
server. Thus, by changing the Descriptor ontology, we were able to apply all ontology
evolution “types”. The single ontology evolution is applied to the Descriptor ontology, the
dependent ontology evolution is applied to the Supplemental ontology since it reuses the
Descriptor ontology through the inclusion while the distributed ontology evolution is applied
to the Document ontology since it reuses the Supplemental ontology through the replication.
Consequently, the results that are obtained for the Descriptor ontology and the Supplemental
ontology are completely correct whereas the results obtained for the Document ontology are
only the approximation since this ontology contains only a part of all MEDLINE articles.

Even though the Descriptor ontology contains 2.417.584 entities, our ontology evolution
system was able to perform the deletion of the concept “Headache” in this ontology in 218
seconds. The removal of that concept in the Supplemental ontology (that includes the
Descriptor ontology as well) lasted about 50 seconds longer since there are not so many
entities in the Supplemental ontology that have reference to the concept “Headache” from the
Descriptor ontology. The removal in the Document ontology took 1.583 seconds since almost
all documents are annotated. Note that the complexity of the dependent ontology evolution

Methods and Tools for Ontology Evolution

 170

depends on the number of instances in a linear way. Therefore, the existence of more
instances (i.e. annotated articles) will linearly increase the time needed to perform a change.

The following set of additional changes was generated:

• 58 changes in the Descriptor ontology;

• 13 changes in the Supplemental ontology

• more than 100.000 changes in the Document ontology.

The changes in the Descriptor ontology cover the removal of properties defined for the
concept “Headache” and their consequences. Moreover, there are several subconcepts of the
“Entry Combination” concept that establish the reference between the descriptor headache
and corresponding qualifiers. All of them have to be removed as well. In the Supplemental
ontology the descriptors are referenced through the property “hasReferencedDescriptor” and
its specialisation. Therefore, the request for the removal of the concept “Headache” in the
Descriptor ontology requires the removal of this concept from the range of all these
properties. Finally, all the annotated articles were about headache. Therefore, the annotation
of all of them must be updated.

We believe that the usability of the MEDLINE management system might be significantly
improved by incorporating the approach presented in this thesis. It does not only guarantee
consistency. Rather, it improves the usability of the system by informing the responsible
persons about all the consequences of a change since only in that way would they be able to
comprehend the impact of a change and undo the unnecessary changes. In the next section we
discuss the way in which the formal semantics provided by an ontology can be further
exploited.

5.4.3 Phase 3

The assignment of MeSH topics to articles of the MEDLINE system represents the state-of-
the-art in human indexing. The professional indexers who perform this task have been trained
for at least 1 year. Ten to twelve topics in the form Descriptor/Qualifier are associated to each
article. Although such annotations help in searching for articles, the MEDLINE suffers from
information overloading. For example, searching the MEDLINE using the MeSH topic
"common cold"82 yields over 1,400 articles written in the last 30 years. Finding a relevant
article might take 20-30 minutes.

We applied the data-driven change discovery (see section �3.4.2) to improve annotations in the
MEDLINE, since they are made manually. Since we assume that an annotation must be
consistent with the underlying MeSH system, the “quality” of the annotation is assessed
through the existence of redundancy, inaccurate or incomplete information. Note that we
assume that the annotations are valid, i.e. all the metadata in the annotation is consistent with
the MeSH ontologies. This is guaranteed by applying the dependent ontology evolution as
described in the previous section, which provides support for finding inconsistencies and
resolving them.

Three quality criteria are defined in the following way:

o Compactness – A semantic annotation83 is not compact or it is redundant if it contains
more metadata than it is needed and desired to express the same “idea”. In order to

82 The example is taken from http://www.ovid.com.
83 An annotation consists of a set of ontology instances. We use term metadata as a synonym for an ontology

instance.

Change Propagation

 171

achieve compactness (and thus to avoid redundancy), the annotation has to comprise the
minimal set84 of the metadata without exceeding what is necessary or useful. The
repetition of the metadata or the usage of several metadata with the same meaning only
complicates maintenance and decreases the system performance;

o Completeness – An annotation is incomplete if it is possible to extend the annotation only
by analysing the existing metadata in the annotation in order to clarify its semantics. It
means that the annotation is not finished yet and requires that some additional metadata
have to be filled in;

o Aggregation – An annotation is aggregative if it contains a set of metadata that can be
replaced with semantically related metadata in order to achieve a shortened annotation,
but without producing any retrieval other than the original annotation.

Note that assessment is performed on the annotation level and that the MeSH structure (i.e. a
set of the MeSH ontologies) is the basis for all measures. This assessment can help refine and
improve the annotation in the MEDLINE.

In order to clarify the meaning of the criteria here we give a short example that simulates the
real MEDLINE system. It is shown in �Figure 61.

<ns:Document rdf:about="&a;123"
ns:name=„BMC Pharmacol 2002 Apr 9;2(1):10“
ns:date=„22/05/02">

<ns:about rdf:resource="&ons;Person"/>
<ns:about rdf:resource="&ons;Female"/>

...
</ns:Document>
<ns:Document rdf:about="&a;124"

<ns:about rdf:resource="&ons;Therapy"/>
<ns:about rdf:resource="&ons;Disease"/>

...
</ns:Document>
<ns:Document rdf:about="&a;125"

<ns:about rdf:resource="&ons;Female"/>
<ns:about rdf:resource="&ons;Male"/>
...

</ns:Document>

...
<rdfs:Class rdf:about="&ons;Medicine"/>
< rdfs:Class rdf:about="&ons;Aspirin">

<rdfs:subClassOf
rdf:resource="&ons;Medicine"/>
</rdfs:Class>
<rdfs:Class rdf:about="&ons;Complication"/>
...
<rdfs:Class rdf:about="&ons;Therapy"/>
<rdfs:Class rdf:about="&ons;Disease"/>
<rdf:Property rdf:about="&ons;cures">

<rdfs:domain rdf:resource="&ons;Therapy"/>
<rdfs:range rdf:resource="&ons;Disease"/>

</rdf:Property>
<rdf:Property rdf:about="&ons;causes">

<rdfs:domain rdf:resource="&ons;Therapy"/>
<rdfs:domain rdf:resource="&ons;Disease"/>
<rdfs:range rdf:resource="&ons;Disease"/>

</rdf:Property>
...
<rdfs:Class rdf:about="&ons;Person"/>
<rdfs:Class rdf:about="&ons;Male">

<rdfs:subClassOf rdf:resource="&ons;Person"/>
</rdfs:Class>
<rdfs:Class rdf:about="&ons;Female">

<rdfs:subClassOf rdf:resource="&ons;Person"/>
</rdfs:Class>
...

<ns:Document rdf:about="&a;123"
ns:name=„BMC Pharmacol 2002 Apr 9;2(1):10"
ns:date =„220502">

<ns:about rdf:resource="&ons;Female"/>
...
</ns:Document>
<ns:Document rdf:about="&a;124"

<ns:about rdf:resource="&ons;Therapy"/>
<ns:about rdf:resource="&ons;Disease"/>
<ns:about rdf:resource="&ons;causes"/>

...
</ns:Document>
<ns:Document rdf:about="&a;125"

<ns:about rdf:resource="&ons;Person"/>
...
</ns:Document>MeSH Ontology

Initial
A

nnotation
Im

proved
A

nnotation
A

rticle

First
example

Second
example

Third
example

First
example

Second
example

Third
example

MEDLINE Ontology

Figure 61. Annotation refinement based on the analysis the ontology structure and the
existing annotations. The ontology is depicted in the left part. The right part shows

downward the initial annotation, corresponding articles and the improved
semantic annotation

84 An annotation is not minimal if excluding metadata results in the same retrieval for the same query, i.e. if

precision and recall remain the same.

Methods and Tools for Ontology Evolution

 172

Compactness
The concept hierarchy and the property hierarchy from the domain ontology are used to check
this criterion. The first example in �Figure 61 represents the incompact annotation because the
article is annotated, after all, with the concept “Person” and its subconcept “Female”. When
someone searches for all articles about “Person”, she searches for the articles about all its
subconcepts (including “Female”) as well. Consequently, she gets this article (minimum)
twice. Moreover, such annotation introduces an ambiguity in the understanding of the content
of an article, which implies problems in knowledge sharing. Let us examine the meaning of
the annotation of a medical document using the set of metadata “Person”, “Female”,
“Aspirin” and “Complications”. Does it mean that the article is about complications in using
aspirin only in females, or in all persons? When the second answer is the right one, then this
article is also relevant for the treatment of male persons with aspirin. This implies new
questions: is the annotation using metadata “Female” an error, or the metadata “Male” is
missing? Anyway, there is an ambiguity in annotations, which can be detected and resolved
by using our approach.

In order to prevent this, an article should be annotated using as special metadata as possible
(i.e. more specialised sub-concepts). In this way, the mentioned ambiguities are avoided.
Moreover, the maintenance of the annotations is also alleviated because the annotation is
more concise and because only the changes linked to the concept “Female” (first example in
�Figure 61) can provoke changes in the annotation.

Completeness
This criterion is computed based on the structure of the ontology. For example, one criterion
is the existence of a dependency in the domain ontology between the domain entities, which
are already used in the annotation. The second example in �Figure 61 contains concepts with
many relationships between them (e.g. properties “cures” and “causes” exist between
concepts “Therapy” and “Disease”). The interpretation is ambiguous since it is a question
whether the articles are about how a disease (i) can be cured by a therapy, or (ii) caused by a
therapy. In order to constrain the set of possible interpretations, the annotation has to be
extended with one of these properties.

This problem is especially important when the repository of articles contains a lot of articles
annotated with the same concepts because the search for knowledge retrieves irrelevant
articles that use certain concepts in a different context. Consequently, the precision of the
system is decreased.

Aggregation

This pattern for the annotation refinement occurs when an article is described with all
subconcepts of one concept (e.g. concepts “Female” and “Male” as shown in the third
example �Figure 61). From the searching for articles point of view, it is the same whether an
article is annotated using the combination of the concepts (e.g. “Female” and “Male”) or
using only the parent concept (e.g. “Person”). It is obvious that the second case of annotation
makes the management much easier. Moreover, since the standard approaches to the ranking
results of querying �[133] exploit conceptual hierarchies, for example in a querying for persons
an article annotated using “Female” and “Male” will be placed at the same level as an article
annotated using only one of these concepts. However, it has to be ranked on the top level
(level of the concept “Person”) because it covers all subtypes of the concept “Person”.

Change Propagation

 173

5.5 Related Work

Reusing ontologies in the Semantic Web context is hindered by the fact that the primary
Semantic Web language – RDF(S) – does not provide any means for including elements from
other ontologies. Within RDF(S) there is no notion of the model representing a subset of the
statement on the Web. Instead, each RDF fragment can freely refer to any resource defined
anywhere on the Web. This presents serious problems to tool implementers since it is not
possible to reason over the entire Web. Recognising this shortcoming, many ontology
languages, including but not limited to OIL �[99], DAML+OIL �[23], and OWL �[103], provide
means for declarative inclusion of other models.

However, most tools simply use these declarations for reading several files at the beginning
and then create an integrated model. OilEd – a tool for editing OIL, DAML+OIL and OWL
ontologies developed at the University of Manchester – does exactly that: importing an
ontology actually inserts a copy of the original ontology into the current one. As mentioned
above, this has drawbacks related to ontology evolution. On the other hand, tools such as
Ontolingua �[30] offer support even for cyclical ontology inclusion. However, to the best of
our knowledge, these tools do not provide evolution of included ontologies. Protege-2000
�[96] – a widely used tool for ontology editing developed at Stanford – provides the best
support for ontology inclusion so far. In Protégé, it is possible to reuse definitions from a
project by including an entire project. However, the implemented inclusion mechanism is too
crude as it does not allow extension of included entities. For example, it is not possible to
reclassify or add a slot to a class in the including model. Further, only the outermost model
may be changed, thus making the evolution of dependent ontologies impossible.

Regarding the evolution between dependent ontologies there are only a few approaches. In
�[138] the authors define the management of the dependency between so-called component
ontologies in an ontology as a whole. The dependency is investigated to see how many types
exist and how to manage each of them. They found only two dependency types: (1) super-sub
relation where there are at least two concepts in a subconcept relationship and each of them
belongs to a different ontology, and (2) referring-to relation where a concept in one ontology
refers to a concept in other ontology as a class constraint. This approach has several
disadvantages. Firstly, two proposed types of dependency do not cover all possibilities that
might arise on the Web. Here we give several examples for ontology dependency that can not
be realised by using the proposed approach: (a) an ontology may extend the included ontology
only by defining instances of the concepts from included ontology; (b) an ontology may
specialise and generalise the concepts from included ontology at the same time; (c) an
ontology may define domains, ranges, or property instances for a property in other ontology;
etc.

The second drawback is related to the way of realising the reuse. The reuse is achieved
through the copy of only included entities in the dependent ontology. Therefore, a dependent
ontology does not know anything about other entities from the dependent ontology, which
implies that any reasoning task (e.g. a query) requires a distributed query processing which is
a time-consuming activity. It is even made worse by the fact that an included ontology might
include other ontologies and so on, which results in a need for reasoning over the entire Web.
Therefore, the reuse is achieved in only a syntactical way resulting in the same problem as
mentioned for the RDF language at the beginning of this section.

The advantage of this approach is the provision of several ways to resolve inconsistency
between dependent ontologies. They include the prohibition of changes that influences other
ontologies as well as the modification of the influenced ontologies by accepting or rejecting

Methods and Tools for Ontology Evolution

 174

changes. However, the authors do not consider changes that cannot be applied due to the
contradictions that they cause in the dependent ontology.

The problem of ontology revision, which is necessary in a dynamic environment such as the
Web, is discussed in �[53]. The authors describe the versioning mechanism that copes with
this. They present SHOE, a web-based knowledge representation language that supports
multiple versions of ontologies. Ontology reuse in SHOE is accomplished by extending
general ontologies to create more specific ontologies. SHOE focuses on impact of an ontology
change on the results of a query and on the instances. It maintains each version of the
ontology and an instance must state which version it is referencing. However, the problem of
the change propagation is not treated in this work. Therefore, an ontology engineer has to (i)
discover that an ontology, that is referenced, is modified and (ii) check whether the instances
are compatible with the new version or not. On the contrary, our approach provides means for
helping an ontology engineer to perform these tasks in a semi-automatic way. The approach is
not fully automated since some changes cannot be propagated due the independencies (in the
modification) of the included and including ontologies. However, in this case our system
offers several possibilities for resolving a particular problem.

In �[134] the authors address the problem of guaranteeing the integrity of a modular ontology
in the presence of a local change. They propose a strategy for analysing changes and guiding
the process of updating compiled information. Ontology modules are connected by
conjunctive queries. In order to make local reasoning independent of other modules, the
authors use a knowledge compilation approach. The result of each mapping query is
computed off-line and added as axiom to the ontology module using that result. Once a query
has been compiled, the correctness of reasoning can only be guaranteed as long as the concept
hierarchy of the queried ontology module does not change. The authors propose a heuristic
change detection mechanism that analyses changes with respect to their impact on the concept
hierarchy. The set of changes they consider is not complete while they focus only on changes
regarding the concept hierarchy. Since their work is based on the description logic and the
ontology module contains a set of objects (i.e. instances) as well, a change regarding an
instance might provoke its reclassification, which might result into non-monotonic queries.
The main problem is that the definition of the monotonicity given in this paper does not take
into account instances. Further, the specification of effects of changes is not complete in the
sense that it describes the “worst case” scenario’s and that for some changes the effect is
“unknown” (i.e. unpredictable).

In �[147] the problem of reuse of ontologies is considered and a handcrafted adaptation of an
ontology is presented. This work applies one time transformation of the ontology to fit the
requirements of the target application. The notion of maintenance is not considered in this
work as changes to the specific source ontology are infrequent.

An approach for the engineering distributed, loosely controlled and evolving ontologies is
presented in �[106]. The authors propose a process template for the harmonisation of the
ontologies expanding the same core ontology. It consists of five main activities: build, local
adaptation, analysis, revision and local update. The result of the build activity is the initial
ontology. However, the whole process is already realised in our ontology evolution system.
The result of the build phase is the initial ontology. Since the creation of an ontology from
scratch can be considered as the evolution of an empty ontology, it can be performed by
applying the single evolution approach. During the local adaptation activity a new ontology as
the extension of the initial ontology is created. This phase is covered by replicating the core
ontology in the local repository and by extending this replica. While the analysis activity in
this process is performed manually, our approach enables a semi-automatic detection of the
potential changes that might be introduced in the next version of the core ontology. This is
discussed in the next section in details. The revision activity corresponds to the evolution of

Change Propagation

 175

the single ontology since in this phase the changes, which are identified in the analysis
activity, are applied to the core ontology. The last phase is wrapped by the distributed
ontology evolution. Even though the proposed approach gives an excellent methodology for
distributed, loosely-controlled and evolving engineering of ontologies, the main disadvantages
is that is considers a pretty simple ontology inclusion graph, which consists of one shared
ontology and many ontologies that include it. On the contrary, our approach is applicable for
an inclusion graph of arbitrary complexity.

In �[93] the authors define the transformation set that is used to find a minimal set of changes
between two ontology versions. The definition of this set is different from the definition of
synchronisation set delta (see section �5.3.2). There are two differences. Firstly, the authors
assume that a log does not exist and therefore they try to discover changes by comparing
ontologies. Secondly, the authors claim that change can be performed in any order, with one
exception: all changes that create new concepts, properties, and instances are performed first.
On the other hand, our work is based on the assumption that an evolution log exists and the
order in which changes are performed can be discovered by following corresponding
properties.

In �[100] the authors analysed the ability to make copied (and possibly changed) versions of
ontologies up to date with a remotely changed ontology. This might be desirable when an
ontology is copied and the original is consecutively changed but it is still necessary to work
with the original one, too. This requires that all consecutive changes in the original ontology
are carried out in the local copy. This process is called synchronisation. Since the goal of this
process is to “update the local vocabulary to obtain the benefits of shared-vocabulary updates,
while maintaining local changes that serve local needs”, it can be considered as a distributed
ontology evolution process. This process is very common in the health-care domain where
local hospitals use adapted versions of national or international terminology standards.
Keeping the local versions up-to-date with the evolving global version is necessary to stay up-
to-date with new insights and in order to be able to exchange information with other users of
the vocabulary. The main difference in comparison to our model is that (i) the underlying
model is very simple, which results in few changes; (ii) the inclusion graph has low
complexity which significantly reduces the problem; (iii) there are no differences in the
synchronisation in the centralised systems and in the decentralised systems, etc.

Moreover, research in distributed ontology evolution can also benefit from the research in
distributed systems �[102]. In �[7] the authors describe the techniques that combine push and
pull synchronisation in an intelligent and adaptive manner while offering good resiliency and
scalability. We extend this approach by taking into account not only the coherency
maintenance of the cached data but the maintenance of the dependent and replication
consistency as well.

The local update problem in the UMLS Metathesaurus85 is analysed in �[144]. The authors
described what they called “the local dilemma”, pointing out the problems that developers
would face if they enhanced the Metathesaurus locally. They recognised that local
enhancements would increase the burden of maintenance when new versions of the
Metathesaurus were released, and predicted that the effort required to integrate local
enhancements with Metathesaurus updates could easily exceed the effort required to add the

85 http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
 The UMLS Metathesaurus is one of three knowledge sources developed and distributed by the National

Library of Medicine as part of the Unified Medical Language System (UMLS) project. The Metathesaurus
contains information about biomedical concepts and terms from many controlled vocabularies and
classifications used in patient records, administrative health data, bibliographic and full-text databases and
expert systems.

Methods and Tools for Ontology Evolution

 176

local enhancements in the first place. In this section we presented an approach for the
propagation of changes from the included ontology to all ontologies that include it. This
process can be triggered by applying the local enhancement to the included ontology as well.
It is possible to extend this approach by discovering useful changes from multiple extensions
of the included ontology.

The change propagation problem exists in the evolution of database schema. Although it only
considers how schema changes are reflected in the instances, we can compare this work with
ours by assuming that dependent or distributed ontologies consist only of instances of entities
from included ontology. In order to keep the instances meaningful, either the relevant
instances must be coerced into the new definition of the schema or a new version of the
schema must be created leaving the old version intact. Three main approaches have been
identified and employed in the past �[104]. Immediate (conversion) and deferred (lazy,
screening) propagate changes to the instances only at different times. Filtering is a solution for
versioning that attempts to maintain the semantic differences between versions of schema.
Our approach combines the above three methods into a hybrid model. For the evolution
between dependent ontologies within the same node we apply the push-based synchronisation
which is a variant of immediated change propagation. In the distributed environment, the
changes are propagated at explicit request, which implies a deferred approach. Further, by
attaching a version number for each ontology and by tracking information about performed
changes in an evolution log, the versioning is partially supported.

It is possible to view the dependent distributed ontologies as a collection of autonomous
databases �[102]. From this perspective, evolution in distributed databases is important. Three
types of distributed database systems may be identified. Firstly, distributed database systems
with a global schema are produced by selecting the independently developed schemas,
resolving semantics and syntactic conflicts among them and creating an integrated schema.
The addition of a new schema into the system and/or the modification of the existing schema
cause problems since a global schema has to be updated as well. In federated database
systems heterogeneous databases interoperable without using a global schema. There is a
single distinguished component named federal dictionary. Dependencies between schemas are
unknown. Consequently, the update of one schema requires discovery of all schema
depending on it. Finally, in multiple databases systems, heterogeneous databases interoperable
without using a global schema and a centralised structure. Dependencies between schemas are
known and stored in dependencies schemas. The addition or removal of a database schema
from a multiple database system as well as the update of any included schema requires the
maintenance of a centralised structure.

Regarding the multiple ontology evolution, there is neither global schema nor federal
dictionary nor a centralised structure since ontologies aim to be used in the distributed
environment such as the Web �[102]. The dependencies are explicitly represented on the
depending side. The inclusion of a new ontology or the breaking dependencies between
ontologies is resolved in a systematic way by taking into account distributed ontology
consistency definition. Modification of any included ontologies is resolved by broadcasting
changes either automatically after their occurrence (which happens in a centralised
environment) or at an explicit request for synchronisation (which takes place in a distributed
environment).

5.6 Conclusion

Evolving ontologies that reuse other ontologies is a complex problem. We first considered
evolving dependent ontologies within one node, where we focus on ontology inclusion going

Change Propagation

 177

beyond the simple cut-and-paste inclusion. We focus on various problems arising from the
dependent ontology consistency definition and the push-based synchronisation. Further, we
extended this solution to the distributed case. Distributed ontology reuse is supported through
controlled ontology replication, which is necessary under present technological constraints,
such as available bandwidth. We advocate the pull synchronisation mechanism in order to
keep the autonomy of each node in the system. We present an approach for evolution of
distributed ontologies, which is based on keeping change information available in the form of
evolution logs. The overall approach has been implemented within the KAON framework.
The MeSH/MEDLINE evaluation study shows the applicability of the proposed approach.

The future work can be directed towards providing more ways for working with multiple
ontologies by taking into account other dependency forms such as ontology mapping,
ontology merging, ontology alignment and ontology integration. For example, ontology
mapping relates similar (according to some metric) concepts and relations from different
sources to each other or ontology merging creates a new ontology from two or more existing
ontologies with overlapping parts. Each of these dependency forms puts different
requirements on the evolution between dependent ontologies. Some of them can be resolved
by introducing a special meta ontology that captures relationships between entities from
different ontologies. For example, to set up mapping between ontologies, the mapping
ontology might be defined. This ontology should contain the “equal” property that can be
used for establishing equivalence between concepts from different ontologies. However, other
dependency forms require the extension of our approach by relaxing the constraint that only
entire ontologies may be reused. Lifting these constraints will have a significant impact on the
evolution of dependent ontologies.

Methods and Tools for Ontology Evolution

 178

6 Change Discovery

Human knowledge rarely stabilises. New experience always gives new insights, which
significantly change old knowledge. More experiences means fewer errors but larger models.
This is consistent with the situated cognition phenomena, which can be summarised as
follows: using knowledge changes knowledge �[81].

This holds for ontologies as well. While a good design may prevent many ontological errors,
some problems will not be pop out before an ontology is in use. Therefore, the relationship
with the users of an ontology-based system is paramount when trying to develop a useful
ontology. Adapting an ontology according to the user’s preferences is the unavoidable
commitment that ontology engineers must face with and when doing so, preferences and goals
of the users behind cannot be neglected.

However, the existing ontology evolution systems completely ignore the possibilities to
obtain and to examine the non-explicit but available knowledge about the needs of the end-
users. In this section we propose such an approach by analysing various data sources related
to the end-users’ behaviour which include the information about her likes, dislikes,
preferences or the way she behaves. Based on the analysis of this information, an ontology
engineer can be suggested to make some changes in the ontology that may yield this ontology
better suited for the needs of end-users. In this way we discuss the possibility of continuous
ontology improvement by semi-automatic discovery of such changes.

We begin this chapter by introducing the problem. Then we present the conceptual
architecture of a system for the usage-driven change discovery. Two scenarios arising from
typical interactions of the end-users with the ontology-based portals are discussed. We
distinguish between querying and browsing. For each of them we propose a set of measures
for identifying problems in an ontology (the so-called problem discovery) as well as a set of
rules for resolving these problems (the so-called change generation).

6.1 Problem Definition

An application has to be modified in order to reflect changes in the real world, changes in the
user’s requirements and drawbacks in the initial design, to incorporate additional functionality
or to allow for incremental improvement �[72]. Some requests for the adaptation might be
specified explicitly such as the need for a new type of a customer due to a change in the
business strategy. Other changes are implicit and might be discovered from the usage of this
application. For example, if none of users was interested in the information about a product in
an on-line catalogue in a longer period of time, then, probably, this product should be
excluded from the list of products offered by that application. These “discovered” changes are
very important for optimising performance of an application, e.g. by reducing the hierarchy of

Change Discovery

 179

the products that has to be browsed. Moreover, they enable the continual adaptation of the
application to the implicit changes in the business environment.

However, the usage analysis that leads to the change discovery is a very complex activity, as
all methods for learning from data �[153]. Firstly, it is difficult to find meaningful usage
patterns. For example, is it useful for an application to discover that much more users are
interested86 in the topic “industrial project” than in the topic “research”? Secondly, when a
meaningful usage pattern is found, the open issue is how to translate it into a change that leads
to the improvement of the application. For example, how to interpret the information that a lot
of users are interested in “industrial-“ and “basic-research projects”, but none of them are
interested in the third type of the projects – “applied-research projects”?

Since in an ontology-based application an ontology serves as a conceptual model of the
domain �[133], the interpretation of these usage patterns on the level of the ontology alleviates
the process of discovering useful changes in the application. For example, the above-
mentioned pattern can be treated firstly as useless for discovering changes if there is no
relation between the concepts87 “industrial project” and “research” in the underlying
ontology. Moreover, the structure of an ontology can be used as the background knowledge
for generating useful changes. For example, in the case that the “industrial-“, “basic-
research” and “applied-research project” are three subconcepts of the concept “Project” in
the domain ontology, in order to tailor the concepts to the users’ needs, secondly mentioned
pattern could lead to either deleting the “unused” concept “applied-research project” or its
merging with one of two other concepts (i.e. “industrial-research“ or “basic-research”).

However, such an interpretation requires familiarity with the ontology model definition, the
ontology itself as well as the experience in modifying the ontologies. Moreover, increasing
the complexity of ontologies demands a correspondingly larger human effort for its
management. It is clear that the manual effort can be time consuming and error-prone. Finally,
this process requires highly skilled personal, which makes it costly.

In this section we present an approach for efficient management of an ontology-based
application based on the usage of the underlying ontology-based data. The focal point of the
approach is the continual adaptation of the model of the application (i.e. the ontology) to the
users’ needs. As illustrated above, by analysing the usage data with respect to the ontology,
more meaningful changes can be discovered. Moreover, since the content and layout
(structure) of an ontology-based application are based on the underlying ontology �[133], by
changing the ontology according to suit the users’ needs, the application itself is tailored to
the users’ needs.

The basic requirement for such a management system is that it has to be simple, correct and
usable for ontology managers88. Thus, it must provide capabilities for automatic identification
of problems in the usage of the ontology in the underlying application and ranking them
according to the importance for a user. When such problems arise, a management system
must assist the ontology manager in identifying the sources of the problem, as well as in
analysing and defining solutions for resolving them. Finally, the system should help
determine the ways for applying the proposed solutions.

This approach is realised as the usage-driven change discovery phase of the ontology
evolution process (see section �3.4.3). It concerns the truthfulness of an ontology with respect
to its problem domain - does the ontology represent a piece of reality and the users'

86 The interest in a topic might be measured by the number of queries about the corresponding topic.
87 A topic is treated as a concept.
88 An ontology manager is a person responsible for administrating an ontology-based application and does not

need to be an experienced ontology engineer.

Methods and Tools for Ontology Evolution

 180

requirements correctly? Indeed, it helps to find the “weak places” in the ontology regarding to
the users’ needs, ensures that generated recommendations reflect the users' needs and
promotes accountability of managers. In this way the ontology evolution system provides an
easy-to-use management system for ontology engineers, domain experts, and business
analysts since they are able to use it productively, with minimal training. We present two
evaluation studies, which demonstrate the benefits of such a system. As known to the authors,
none of the existing ontology management systems offers support for (semi-)automatic
ontology improvement in response to the users’ needs analysis.

6.2 Conceptual Architecture

IBM’s Autonomic Computing initiative �[59] attempts to address management tasks by
providing IT systems with powerful concepts for self-management including new capabilities
for self-healing, self-protecting, self-optimising, and self-configuring. The goal is to reduce
the burden associated with the management and the operation of IT systems. Autonomic
Computing systems just work, repairing and tuning themselves as needed �[122].

Similarly, our goal is to free ontology managers from many of today’s evolution tasks. We
need a system that is not people-intensive anymore, which would result in decreasing of
related management costs. Since autonomic computing systems allow people to concentrate
on what they want to accomplish rather than figuring out how to rig the computer systems to
get them there, we use the analogy with autonomic computing systems and try to apply their
principles to the management of an ontology.

Therefore, our management system is realised according to the MAPE (Monitor Analyse Plan
Execute) model �[59], which abstracts the management architecture into four common
functions: collect data, analyse data, create a plan of action, and execute the plan. Indeed, our
architecture decomposes the control loop into four parts:

• Monitor – mechanism that collects, organises and filters the data about users’
interactions with an ontology-based application;

• Analyse – mechanism that aggregates, transforms, correlates, visualises the collected
data, and makes proposals for changes in an ontology;

• Plan – mechanism to structure actions needed to apply the discovered changes by
keeping the consistency of the ontology. The planning mechanism uses evolution
strategies (see section �4.2.3) to guide its work;

• Execute – mechanism to update the underlying ontology-based application according
to the changes applied to the ontology.

By monitoring (M) the behaviour of the users and analysing (A) this data, by planning (P)
which actions should be taken, and executing (E) them, a kind of a “usage loop” is created.

�Figure 62 depicts this “usage loop” in an information portal scenario. A user is searching for
information by querying and/or navigating through a portal (cf. 1 in �Figure 62). The structure
and the content of the portal are based on the domain ontology (cf. 2). All activities the user
performed are acquired in the Semantic Log (cf. 3), which is structured according to the Log
Ontology (cf. 4), and contains meta-information about the content of visited pages. This log
data is aggregated and visualised in the Usage-Driven Change Discovery module (cf. 5).
Moreover, it helps ontology managers discover changes in the ontology, which are mostly
important for enhancing the usability of the application. Since the application of a single
ontology change can cause inconsistency in the other part of this ontology and on all the
artefacts that depend on it, we applied the ontology evolution process (cf. 6) that guaranties

Change Discovery

 181

the transfer of the ontology (cf. 2) and dependent artefacts into another consistent state (see
chapter �3). Moreover, the ontology manager can select several evolution strategies (see
section �4.2.3) in order to adapt the ontology according to some specificities in her need.
Finally, since the underlying application is ontology-based, all changes in the ontology (cf. 2)
are reflected in the structure of the portal (cf. 1), thus tailoring the portal to the users’ needs,
which implicitly arose. For example, if none of users were interested in a topic, then our
system would recommend the ontology manager to remove the corresponding concept from
the topic hierarchy. Consequently, new users will be not “bored” by browsing topics, which
are useless for the domain shown in the portal. In that way, our management system tends to
be a user-friendly platform that integrates the results from the analysis of the usage data with
the tools that guide the process of modifying the ontology.

Request Response

Ontology
Evolution

Usage-driven
Change Discovery

MM

AA PP

EE

Semantic
Log 3

5

6

1

Domain
ontology

Log Ontology

Ontology Manager

End-Users

2

4

Figure 62. The conceptual architecture of the ontology management system according to
the MAPE model

6.2.1 Semantic Log

Traditionally, all the activities of users of an information portal are captured in the standard
web server log. However, this log file contains only the information about the address of
visited pages, which was not enough for the sophisticated analyses we intended to perform.
For example, it is not possible to get information about which query is posted and how many
and which results are retrieved. It means that we need the information about the semantics of
the visited pages. Moreover, the standard web server log fails in the case of reloading pages
from cash and spider’s crawling, which cause missing, redundant or incomplete data �[132].

In order to resolve these problems we have developed the Log Ontology as the backbone for
structuring information in a Semantic Log �[126]. Each user’s activity is captured in a Semantic
Log in the form of instances of concepts of the Log Ontology. The Log Ontology provides a
formal definition of a usage data. It takes into account the semantics of the performed actions.
This formal definition of structure and syntax of a log provide more scope for analysis since
the prerequisite for the meaningful analysis is that this log information is properly organised
and interpreted. Indeed, the structure of the Log Ontology is determined in order to enable
reasoning about accessibility and usability of the domain knowledge. The additional

Methods and Tools for Ontology Evolution

 182

advantage is that the existing mechanism for storage and query ontologies can be used for the
log as well.

A part of the Log Ontology, that is relevant for the rest of this section, is presented in �Figure
63a. This ontology models what happens in an application (e.g. in a portal) and why, when, by
whom, how it is performed. Each user’s activity s represented as an instance of one of the
subconcepts of the “Event” concept. The structure of the hierarchy of event types reflects the
users’ activities in an ontology-based application by including all possible types of
interactions (e.g. “Query”, “Browse”, “Read”, etc.). Additional information, such as the
“date” and “time” of activity, as well as the identity of the user may be associated through
appropriate relations. Information, which provides support for the users’ profiling, such as
“sessionID”, “clientIP” etc., may also be included. Entities from the domain ontology are
related to instances of the “Event” concept through the “relatedTo” relation. The dependency
between events is represented using the “previousEvent” relation.

For each type of event specific properties are defined. For example, an information portal
should offer the user an opportunity to find easily relevant information for the topics, which
are important for the problem she solves. In other words, the list of retrieved information for a
user query should not be empty and should also contain only highly relevant sources. It
implies that the semantic log should track the interests of users, as well as the number of
answers for the posted queries. Therefore, for the concept “Query” two additional properties
are defined: “queryString” and “numberOfResults”. Whereas the first property helps in
knowing what is preferred by end-users, the second property reflects the total number of
related entities. Note that these entities, which represent the query result, are modelled
through the property “relatedTo”.

We note that the presented log file tracks only the interaction, which is related to the user’s
activity. We assume that only an ontology engineer (manager) has privileges to modify the
domain ontology and that the end-users search for information or browse them. Thus, the Log
Ontology does not contain events regarding the development/evolution of the domain
ontology.

a)

 b)

Figure 63. A part of the Log Ontology and the Semantic Log. The conceptual structure
of the Log Ontology is represented in the left part. The right part shows several log

entries in the form of relation instances.

Change Discovery

 183

�Figure 63b shows several users’ activities stored in the Semantic Log. They are the result of
user‘s request for “Projekt”89 and successively browsing activities through the concept
“Project” and its subconcept “EUProject”. The instance “Query100” captures all-important
information regarding the query activity whereas the instances “Broswe123” and
“Browse456” correspond to the navigation activities through the hierarchy of the concept
“Project”. Note that “dom#” denotes the namespace of the domain ontology.

The Semantic Log as all log files might be very large. Although the process of generating is
quite simple and straightforward, a log analysis could be a tremendous task that requires
enormous computational resources, long time and sophisticated procedures. This often leads
to a common situation, when logs are continuously generated and occupy valuable space on
storage devices, but nobody uses them and utilises enclosed information. In the rest of this
section we elaborate only on the analysis we carried out. The technical realisation of a system
is described in section �7.2.3.

6.3 Usage-driven Change Discovery

In this section, we present a novel approach to the ontology evolution that supports the
ontology managers in managing and optimising the ontology according to the end-users’
needs. The approach incorporates mechanisms for assessing the ontology (and by extension
an application based on it) performance with respect to different criteria as well as those
enabling us to take actions to optimise it.

One of the key tasks is to check how the ontology fulfils the perceived needs of the end-users.
In that way, we obtain an in-depth view of the end-users’ perspective on the ontology and the
ontology-based application since on the top of this ontology the application is going to be
conducted. The technique that can be used to evaluate/estimate the needs of the end-users
depends on the information source. By tracking end-users’ interactions with the application in
a log file, it is possible to collect useful information that can be used to assess what the main
interests of the end-users are. In this way, we avoid asking the end-users explicitly since they
tend to be reluctant to provide the feedback via filling questionnaires or forms.

Indeed, the approach is based on the analysis of the end-user’s interaction with an ontology-
based portal. The following assumptions are made:

• a backbone of a portal is a domain ontology (DO) (cf. 2 in �Figure 62);

• all users’ interactions are stored in a semantic log (SO) (cf. 3 in �Figure 62);

• a semantic log is based on the log ontology (LO) (cf. 4 in �Figure 62).

We focus on two types of users’ activities: querying and browsing. Each query about entities
from a domain ontology (DO) made by an end-user is stored in a semantic log (SO) as an
instance of the concept “Query” and its property instances. The semantics of this concept is
defined in the log ontology (LO). Similarly, the end-users’ browsing activities through a
domain ontology (DO) result in an extension of the semantic log (SO) with new instances of
the concept “Browse” defined in the log ontology (LO). It is worth mentioning that all
instances in a semantic log (SO) refer to the domain ontology entities since the end-users were
searching for them or browsing. Therefore, a semantic log (SO) is a dependent ontology that
includes the log ontology (LO) as well as the domain ontology (DO).

89 A user can specify a query using German terms (e.g. das Projekt).

Methods and Tools for Ontology Evolution

 184

The usage-driven change discovery task90 is split into two subtasks �[124]:

• Discovery of problems – It focuses on discovering anomalies in the design of an
ontology, whose repairing improves the usability of this ontology;

• Generation of changes – It focuses on tailoring an ontology to the needs of its users by
giving concrete clues on how the ontology should be improved. By making
recommendations for the continual improvement of the ontology, the portal based on it
is improved as well.

Therefore, the goal of the “discovery of problems” task is to find the “weak places” in the
ontology, namely those that do not meet the needs of the end-users. To do that, we define
several measures, which assess the usability of ontology entities with the respect to the end-
users. Thus, these assessment criteria are used to estimate the user’s needs.

By later performing the analysis of an ontology by applying the proposed measures on its
usage log, it is possible to identify the relevant factors that contribute the success of the
ontology from the end-users’ point of view. Indeed, the goal of the “generation of changes”
task is to map the problem, which is found during the “discovery of problems” task, into a set
of ontology changes that resolve this problem. This is achieved by defining the interpretations
of the extreme values91 of proposed measures in the form of ontology changes. These changes
give hints on how the usability of the ontology should be improved.

Indeed, we define the “usable” ontology as an ontology with a structure that conforms to the
intuition of end-users accessing this ontology. The intuition of end-users is indirectly reflected
in the queries posted by them as well as in the navigation behaviour, as represented in their
querying and browsing patterns. By comparing the typical patterns with the ontology itself
(which means with the patterns expected by the ontology engineer), it is possible to examine
the usability of the ontology and to give concrete suggestions for its improvement.

When we designed this support, we assumed that an ontology update would be only a
partially automated process rather than a fully automated process. That is, while certain tasks
could be automated, other tasks would have to be supported but not fully automated. For
example, we do not want to update an ontology automatically, but rather to make suggestions
to an ontology engineer about changes that might be useful. Our experience suggests that this
assumption is reasonable. The system generates the recommendations for an update. It is up to
an ontology manager to accept or to reject it.

In the rest of this section we elaborate both the types of users’ activities in an information
portal scenario, namely querying and browsing.

6.3.1 Query-driven Change Discovery

Problem Discovery

A query shows what a user wants and expects to find. Therefore, a query is particularly suited
for understanding the user’s interests. We define the rate of interest RateOfInterest(e) of users
for an ontology entity e as:

RateOfInterest(e)= Frequency(e)*Clarity(e) (1)

90 It is realized in the Usage-driven Change Discovery module of the MAPE model shown in �Figure 62.
91 The extreme values are values that are greater (smaller) than the given maximum (minimum) threshold value.

Change Discovery

 185

Frequency(e) represents the users’ interest in an ontology entity e, and it is calculated as a
ratio between the numbers of the users’ interactions with the system related to the ontology
entity e and the total number of the interactions. Indeed, we use the formula:

Q
)e(Q

)e(Frequency = , Frequency≥0,

whereas Q(e) is the number of queries that contains an entity e, and Q is the total number of
queries. Q and Q(e) are calculated as:

Q(e)= ∧∈)"Query("instconcii{| 11

|))}e(instconci)i,"relatedTo("instpropi()i,"relatedTo("instprope(2121 ∈∧∈∨∈

Q=�instconc(“Query”) �.

 “Query” and ”relatedTo” are entities from the Log Ontology (see section �6.2.1) and the
functions instconc and instprop are already defined in section �2.2 (see �Definition 4). Note that
the frequency factor is obtained by considering a semantic log (SO).

To estimate the interest of the end-user it is not sufficient to consider only her activities. The
structure of an ontology has to be taken into account as well. We model this through the
clarity factor. The clarity factor represents the uncertainty to determine the user’s interest in a
posted query. For example, when a user makes a query using a concept “Person”, which
contains two subconcepts “AcademicStaff” and “Student”, it could be a matter of discussion:
whether she is interested in the concept “Person” or in its subconcepts, but she failed to
express it in a clear manner. Our experiences show that users who are not familiar with the
given ontology used to use a more general concept in searching for information, instead of
using more specific concepts. In other words, the clarity factor makes the calculation of the
users’ interest more sensitive to the structure of the ontology by accounting possible “errors”
in the query formulation.

The formula for the clarity factor depends on the entity type:

�
�
�

��
�

�

∈
+

∈
+=

Pe,
)e(numDomains

1
*

1)e(opertiesPrnumSub
1

*)e(k

Ce,
1)e(eptsnumSubConc

1
*)e(k

)e(Clarity ,Clarity>0,

whereas numSubConcepts(e) is the number of subconcepts of a concept e (e∈C),
numSubProperties(e) is the number of subproperties of a property e (e∈P) and
numDomains(e) is the number of domains defined for the property e. The following formulas
are used:

{ }Hc)e,x(x)e(eptsnumSubConc ∈=

{ }Hp)e,x(x)e(opertiesPrnumSub ∈=

{ })e(domainxx)e(numDomains ∈=

We note that for the estimation of the clarity factor only a domain ontology (DO) is
considered.

The coefficient k is introduced in order to favour the frequency of the usage. It is calculated
using the following formula:

Methods and Tools for Ontology Evolution

 186

1)e(numLevel)e(k +=

where numLevel(e) is the depth of the hierarchy of the entity e.

Our primary goal is to decrease the impact of the non-leaf concepts since they represent the
common view of the set of their subconcepts, as described above. A similar strategy is applied
to the properties and their hierarchy. However, the unclearness of reasons for a property usage
can also arise when multiple domains for a property are defined. Thus, in order to clarify the
context of a property usage, we require the explicit specification of the domain of that
property, or otherwise we decrease its clarity factor.

The previous formulas take into consideration only one entity. The recent analyses show that
web users typically submit very short queries to search engines and the average length of web
queries is less than two “terms” �[151]. For an enterprise portal we suppose making of queries
that contain 3-4 searching topics. Therefore, it is required to extend the calculation of the
RateOfInterest factor. For the simultaneous analysis of the set of entities, the modifications of
the frequency of interest Frequency(e1,...,en) is straightforward. However, the calculation of
the clarity factor requires further analysis. Here we mention the most frequently occurring
cases:

��

�
�

� ≥
+=

otherwise,1

1)2c,1c(opertiesPrnum,
1)2c,1c(opertiesPrnum
)2c(Clarity*)1c(Clarity

)2c,1c(Clarity

∏
≤≤

=
Cj,i1

)cj,ci(Clarity)cn,...,2c,1c(Clarity

�
�
� ∈

=
otherwise,1

)p(domainc),p(numDomains*)p(Clarity*)c(Clarity
)p,c(Clarity

where c1,c2,…,cn are concepts (i.e. c1,c2,…,cn∈C) and p is a property (p∈P). The number of
properties between two concepts c1 and c2 denoted by numProperties is calculated using the
following formula:

{ })p(range2c)p(domain1cp)2c,1c(opertiesPrnum ∈∧∈=

Note that the values of all clarity factors are between 0 and 1.

Change Generation

The value for the RateOfInterest is calculated for all entities, and two extreme cases are
analysed: the frequently used and unused entities. The first extreme corresponds to the entities
with the highest rates that should be considered for changes. The formula (1) expresses our
experience that the frequent usage of an entity in queries can be a consequence of the bad
modelling of the hierarchy of that entity, i.e. in modelling that entity, the hierarchy is not
explored in details. For example, in the project domain it may happen that the concept
“Project” is not split into concepts “Research Project” and “Industrial Project”, although
there are a lot of differences between them (e.g. goals, payment, etc.). Consequently, any time
the user wants to find information related to either the research or industrial projects, she has
to make a query with the concept “Project”, which results in the huge number of answers.
Therefore, our analysis can suggest that the concept “Project” should be divided into several
subconcepts. An ontology engineer decides whether and how to do that. If the considered
concept already has a hierarchy, then its suitability (probability) for a change is decreased by

Change Discovery

 187

the clarity factor. This is shown in �Figure 64. Even though the frequencies of querying for the
concept “Person” and the concept “Project” are the same, our system suggests only splitting
of the concept “Project” into a concept hierarchy since the hierarchy for the concept “Person”
is already defined. A similar strategy can be applied to the properties as well.

In the case that nobody is interested in an entity, i.e. the rate of interest for that entity is equal
0, then the entity should be considered for deleting from the ontology and consequently from
annotations. However, the problem arises when there are a lot of resources annotated with that
entity. It can be interpreted in various ways, including that the topic is interesting for the
community, but not used in past projects, or that employees are very familiar with this topic,
etc.

Returning to the example shown in the left part of �Figure 64, the usage-driven change
discovery would propose the following changes based on the analysis of extreme values of the
rate of the interest factor that is shown in the right part:

• since the rate of the interest of the concept “Project” is high, it would be useful to split
it into subconcepts;

• since the rate of the interest of the concept “PostDoc” is low, it would be useful to
remove it.

Taking into consideration a set of entities can extend the previous analysis. Again, we
interpret the extreme values. The high value of the rate of interest for the set of entities
indicates the following changes. If two concepts frequently occur in queries, it means that the
users are very interested in the relationship between them. If a property between them does
not exist, then the system makes recommendation to create a new property and to set one of
the concepts as a domain and the other concept as a range of this property. This
recommendation is highly ranked since the clarity factor is 1. In case that such property
already exists, it is possible that it is too general, i.e. defined for the concepts on the higher
level in the concept hierarchy. This is a frequently occurring example of the inadequate
ontology modelling. The problem can be resolved in two ways. One recommendation would
be to specialise this property by creating a subproperty and by defining considered concepts
as the domain/range concepts of the newly introduced property. Other solution is to adapt the
domain and the range of the existing property to the right level of abstraction by taking into
account the instantiation of this property.

0
10
20
30
40
50
60
70
80
90

100

Project Person PostDoc

The rate of
interest

Frequency=100
Clarity=1

Frequency=100
Clarity=1/3

Frequency=0
Clarity=1

Figure 64. Change discovery from querying

Methods and Tools for Ontology Evolution

 188

Similar to the previous discussion, the frequent occurrence of n ontology entities
simultaneously indicates that these concepts are related. However, since the ontology
properties are binary, a set of recommendations is delivered. First, a new concept should be
created. Second, this concept should be related to each of the n frequently occurring concepts
through the newly created properties. At the end, the annotations (see section �5.4.3) should be
extended in order to satisfy the “quality” criteria mentioned in the section �3.4.2.

A high number of queries related to a concept and a property indicate the importance of the
concept for that property. Consequently, if the concept is neither a domain nor a range of that
property, it will be recommended to attach the property to the concept. Otherwise, we
consider the possibility to specialise the property.

Evaluation

The Semantic Portal (SEAL) �[133] is an ontology-based application, which provides a
“single-click” access to almost all information related to the organisation, people, research
studies and projects of an institute. It is widely used by our research and administrative staff
as well as by our students. One of the most usable features is the possibility to search for
people, research areas and projects on the semantic basis, i.e. by using the corresponding
Institute Ontology. The portal provides a very user-friendly interface, which enables
formation of arbitrary queries using entities from the underlying ontology. The search is
performed as an inference through metadata, which is crawled from the portal pages.

Since the installation of the new version of the portal, the information about users’ activities,
regarding querying and browsing the portal, are logged in a file. The primary goal was to test
the stability of the used version of inference engine. However, we reused the log file in order
to evaluate our methods for discovering changes in the ontology. We set up a “what-if”
experiment concerning this log file as follows:

1. We rewrote 1000 randomly selected queries under the following hypothetical
conditions:

(a) The hierarchy of the concept “Person” that originally had five levels is shortened
to only one level including the subconcepts “Researcher” and “Student”;

(b) The hierarchy of the concept “Project” that originally had two levels is deleted;

(c) The hierarchy of the concept “Research Area” is shortened to the first level only.
Consequently, we use 20 subconcepts (e.g. “Knowledge Based Systems”, “E-
Commerce”, etc.) instead of 80 subconcepts in the original hierarchy.

The hypothetical conditions given above are used for query rewriting. For example,
from the original query in the form of (“Professor”, “pastProject”, “Knowledge
Acquisition”), meaning that a user is interested in information about professors whose
past project was related to the knowledge acquisition, one gets the rewritten query in
the form (“Researcher”, “Project”, “Knowledge Based Systems”)92.

2. We started searching (i.e. inferencing) using these queries.

3. We calculated the RateOfInterest factor for concepts “Person”, “Researcher”,
“Project” and research areas “Knowledge Based System” (KBS) and “E-Commerce”.
In order to simplify the analysis, for the coefficient k we used the value 1.

92 It means that in the original hierarchy the concept “Professor” is the subconcept of the concept “Researcher”

and the set of all subconcepts of the concept “Knowledge Based System” includes the concept “Knowledge
Acquisition”.

Change Discovery

 189

�Table 10 shows the result of our analysis.

Discussion:
We made a hypothetical situation in which the ontology is badly modelled and some
hierarchies are not explored at all. A user can select only some restricted, higher-level
concepts and for each specialisation she has to use one of higher-level concepts (e.g. for the
query about professors she has to use the concept “Researcher”). In such a way we modelled
the situation in which the underlying ontology did not correspond to the users’ needs. The
task of our method was to recognise which of badly modelled hierarchies do not reflect users’
needs. We discuss several results:

• The concept “Researcher” has the highest RateOfInterest - it should be considered
firstly.

This is the right decision while a lot of queries contain the concept “Researcher” and it
has no hierarchy in the hypothetical situation. It means that we could conclude that the
concept “Researcher” is used as a replacement for the users’ need to search for some
specialisations of researchers.

• The concept “Knowledge Based Systems” should be considered before the concept “E-
Commerce”.

In our experiment both hierarchies are shortened. However, in the original ontology
the first one was larger and therefore should be firstly considered for a change. The
number of queries, which contain topic “knowledge-based system”, reflects users’
needs for more specialised areas of the knowledge-based system.

• The concept “Person” has the lowest RateOfInterest.

This is the right estimation, since the concept “Person” has one level of the hierarchy,
which satisfies the users’ needs regarding this concept.

Table 10. The result of the analysis of the rate of the interest

Measure/Concept Researcher Project KBS E-Commerce Person

Frequency 202/1000 100/1000 10/1000 2/1000 6/1000

Clarity 1 1 1 1 1/3

RateOfInterest 0,202 0,1 0,01 0,002 0,002

6.3.2 Browsing-driven Change Discovery

Problem Discovery

The main problem we faced in developing ontologies is the creation of a hierarchy of
concepts since a hierarchy, depending on the users’ needs, can be defined from various points
of view and on the different levels of the granularity. For example, by considering gender of a
person, the concept “Person” can be split into two subconcepts: “Male” and “Female”.
However, by considering the person’s occupations, the right decision in the university domain
would be to specialise the concept “Person” into concepts “Academic Staff” and “Student”.
Further, the concept “Student” can be further decomposed into concepts “BSc Student”, “MSc
Student” and “PhD Student”. Each of these subconcepts can be in turn split into new
subconcepts and so on. For some purposes the coarse hierarchy is useful, for others more

Methods and Tools for Ontology Evolution

 190

details are needed. For example, one might group the concepts “MSc Student” and “PhD
Student” into the concept “Graduated Student”.

It is clear that the initial hierarchy has to be pruned in order to fulfil the user’s needs.
Moreover, the users’ needs can change over time, and the hierarchy should reflect such a
migration. The usage of the hierarchy is the best way to estimate how a hierarchy corresponds
to the needs of the users. Consider the example shown in �Figure 65.

X

40% 32%

5%

c2 c3 c4 c5c1 c7 c8 c9 c10c6
23%

Reduction

c2 c3c1

X‘X

c1

Expansion

c2 c3

c4 c5 c7 c8 c9 c10c6

g

1.0

0.5

c1 c2

concept

frequency

c3 c4 c5 c6 c7 c8 c9 c10
a)

c) d)

b)

Figure 65. An example of the non-uniformity in the usage of the children. (a) the
problem; (b) the Pareto diagram of the problem; (c) the resulting ontology after its

extension and (d) the resulting ontology after its reduction.

Let us assume that in the initial hierarchy, the concept “X” has ten subconcepts (c1, c2,...,c10),
i.e. an ontology manager has found that these ten concepts correspond to the users’ needs in
the best way. However, the usage of this hierarchy in a longer period of time showed that
about 95% of the users are interested in just three subconcepts (i.e. 95=40+32+23) out of
these ten. It means that 95% of the users obtain 70% (i.e. 7 of 10 subconcepts) useless
information via browsing this hierarchy since they find seven subconcepts irrelevant.
Consequently, these 95% of the users invest more time in performing a task than needed since
irrelevant information can draw their attention away. Moreover, there is a bigger chance to
make an accidental error (e.g. an accidental click on the wrong link) since the probability of
selecting irrelevant information is greater.

In order to make this hierarchy more suitable to the users’ needs, two ways of “restructuring”
the initial hierarchy would be useful:

• expansion – to put down in the hierarchy all seven “irrelevant” subconcepts, while
grouping them into a new subconcept g (see in �Figure 65c);

• reduction – to remove all seven “irrelevant” concepts, while redistributing their
instances into remaining subconcepts or the parent concept (see in �Figure 65d).

Through the expansion, the needs of the 5% of the users are preserved by the newly
introduced concept and the remaining 95% of the users benefit from the more compact
structure. By the reduction, the new structure corresponds completely to the needs of 95% of
the users. The needs of 5% of the users are implicitly satisfied. Moreover, the usability of the
ontology increased since the instances which were hidden in the „irrelevant“ subconcepts are

Change Discovery

 191

now visible for additional 95% of the users. Consequently, these users might find them useful,
although in the initial classification they are a priori considered as irrelevant (i.e. these
instances were not considered at all). Note that the Pareto diagram93 shown in �Figure 65b
enables the automatic discovery of the minimal subset of the subconcepts which covers the
needs of most of the users.

The problem of post-pruning a hierarchy in order to increase its usability is explored in the
research related to modelling the user interface. The past work �[8] showed the importance of a
balanced hierarchy for the efficient search through hierarchies of menus. Indeed, even though
the generally accepted guidelines for the menu design favour breadth over depth �[60], the
problem with the breadth hierarchy in large-scale systems is that the number of items at each
level may be overwhelming. Hence, a depth hierarchy that limits the number of items at each
level may be more effective. This is the so-called breadth/depth trade-off �[92].

Moreover, organising unstructured business data in useful hierarchies has recently got more
attention in the industry. Although there are some methods for an automatic hierarchy
generation, such a hierarchy has to be manually pruned in order to ensure the usability of the
hierarchy. The main criterion is the “coherence” of the hierarchy �[112], which represents
some kind of the uniform distribution of resources (e.g. documents) in all parts of the
hierarchy. It ensures that the hierarchy is closely tailored to the needs of the intended users.

In the rest of this subsection, we describe how to fine-tune a hierarchy according to the users’
needs. Since we consider the concept hierarchy as a graph, we use the terms “node” and
“link” as synonyms for a concept and a direct hierarchy94 relation (see HC in �Definition 3),
respectively. Moreover, the parent (i.e. superconcept) and the child (i.e. subconcept) of a
direct hierarchy relation correspond to the source and the destination node of a link in a
graph.

From the structural point of view, there are four basic anomalies that can be accounted in a
hierarchy:

(i) a node is missing;

(ii) a node is not necessary;

(iii) a link is missing;

(iv) a link is not necessary.

All other anomalies (e.g. a wrong position of a node in a hierarchy) can be described as a
composition of four basic ones. These anomalies correspond to the four basic changes, which
an ontology manager can perform on a hierarchy: (1) adding a concept, (2) deleting an
existing concept, (3) adding a direct hierarchy relation and (4) deleting a direct hierarchy
relation.

From a user’s point of view, two problems can arise while using a hierarchy:

• Problem1: too many outgoing links from a node;

• Problem2: too few outgoing links from a node.

Regarding the first problem, the user has to check/consider too many irrelevant links for her
information needs in order to find the most relevant link she should follow. For the
explanation about possibilities to resolve this problem see �Figure 65. Regarding the second

93 According to the Pareto principle, by analysing 20% of most frequently used data, 80% of the problems in the

ontology can be eliminated.
94 A set of the direct hierarchy relations is obtained by excluding the transitive closure from a concept hierarchy.

It means that only HC is considered, but not HC
*.

Methods and Tools for Ontology Evolution

 192

problem, the user misses some relevant links required to fulfil her information need.
Consequently, some new links, which correspond to the users’ need, have to be added.
Another solution for resolving that problem can be the addition of some new nodes and their
linkage to the given node.

However, the discovery of places in the hierarchy, which correspond to the Problem1 or the
Problem2, is difficult since we do not expect the explicit feedback from users about the
usefulness/relevance of some links. On the other hand, it is difficult to define automatically an
“optimal” number of outgoing links for a node since from the user’s point of view it is
possible that two nodes in a hierarchy have quite different “optimal” number of outgoing links
(e.g. 3 vs. 10). A criterion to define this optimality is the usage of these links. Our approach
tries to discover such links’ usefulness by analysing the users’ behaviours on these links, i.e.
by using the so-called users’ implicit relevance feedback �[115]. Additionally, the usage of a
link has to be considered in the context of the neighbouring links (i.e. the links which have a
common node with the given link). Indeed, the consideration of a link in isolation (from the
neighbouring links) can lead to the discovery of “wrong” changes. For example, based on the
information that a link is visited 1000 times (which is more than the average visiting), one can
imply the need to split the information conveyed through this link, i.e. to split the destination
node of that link into several nodes. However, in the case that all of its sibling-links (links
which have the same source node) are uniformly visited, the “right” change would be to split
the source node by introducing an additional layer of nodes between it and all the existing
destination nodes. The interpretation is that the source node models too many users’ needs
and has to be refined through more levels of granularity. The process of analysing the usage
of a link in the context of its neighbouring’ links is called the discovery of problems, (see
section �6.3).

Another difficulty is the mapping of the resolutions of the Problem1 and the Problem2 into
the set of elementary changes (1)-(4) since a problem in a hierarchy can be resolved in
different ways. This process is called the generation of changes. It depends on the specificity
of the discovered problem and the intention of the ontology manager. She can always choose
between the possibilities to reduce or to expand the hierarchy, based on her need, as described
in the previous section (see �Figure 65).

To cope with these two issues (the discovery of problems and the generation of changes), we
use two basic measures obtained from the Semantic Log (see section �6.2.1):

• Usage(p, c) - the number of browsing the link between nodes (concepts) p and c,
where the concept c is a subconcept of a concept p i.e. (c,p)∈HC.

• Querying(n) - the number of querying for the node n.

Note that in order to avoid the division with 0, we set up the default values for Usage(p,c) and
Querying(n) to 1.

Additionally, we define four measures for estimating the uniformity (balance) of the usage of
a link regarding the link’s neighbourhood:

•
	

=

∈∀ Hc)p,x(x
)x,p(Usage

)c,p(Usage
)c,p(formitySiblingUni

•
	

	

=

∈∀

∈∀

Hc)x,p(x

Hc)p,x(x

)p,x(Usage

)x,p(Usage

)p(iformityChildrenUn

Change Discovery

 193

•
	

=

∈∀ Hc)x,c(x
)c,x(Usage

)c,p(Usage
)c,p(ormityParentUnif

•
)p,c(Usage
)c,p(Usage

)c,p(ormityUpDownUnif =

0<SiblingUniformity, ChildrenUniformity, ParentUniformity≤1, UpDownUniformity>0,
(c,p)∈HC and Hc is a set of direct hierarchy relations (see �Definition 3).

SiblingUniformity represents the ratio between the usage of a link and the usage of all links,
which have the common source node with that link (the so-called sibling links).
ChildrenUniformity stands for the ratio between the sum of the usage of all the links whose
source node is the given node and the sum of the usage of a node through all incoming links
into this node95. The ratio between the usage of a link and the usage of all links which have the
common destination node with that link is called ParentUniformity. Finally,
UpDownUniformity characterises the ratio between the usage of a link in two opposite
directions, i.e. in browsing down and browsing up through a hierarchy.

Returning to the example shown in �Figure 65, the SiblingUniformity between the concepts x
and the concept c1 is SiblingUniformity(x,c1)=40%.

Change Generation

The measures defined in previous section are used to assess balance in the usage of a concept
hierarchy. The extreme values of these measures indicate the existence of a problem in the
hierarchy, i.e. they are used for the discovery of problems. The interpretation of these
extremes with respects to the users’ needs and according to the intention of an ontology
manager (to expand or to reduce the hierarchy) leads to the generation of changes. �Table 11
shows the summary of typical problems in using a hierarchy, discovered and resolved by our
approach. The threshold values for all parameters are set either automatically (i.e. statistically)
or manually by the ontology manager.

We here give the interpretation of the first case shown in �Table 11 only, i.e.
SiblingUniformity. The reduction is done by deleting a link that is very rarely browsed since
we assume that the frequency of usage is related to the relevance of that link for the users. By
deleting such a link, we enable the users to focus upon relevant links only. Note that the
removal of a link does not necessary cause the removal of the destination node. It is up to the
ontology evolution system to decide about it with respect to the consistency of the ontology
(see chapter �4). On the other hand, if the ontology manager wants to make this hierarchy more
suitable for users by keeping the rarely browsed links, then she has to expand the hierarchy by
introducing a new node that groups all less relevant links. In that way, all links are kept, but
the users have the focus on the most important ones only. However, this expansion (as all
others) requires more efforts of ontology managers since they have to define the meaning of
the new node and to select nodes to be grouped. Similar interpretations can be done for all
other cases. Note that 0<ChildrenUniformity(p)≤1, where the value 1 corresponds to the
“ideal” browsing down a node (i.e. all arrivals in a node are continued down the hierarchy).
Therefore, the maximal value of the ChildrenUniformity is not considered for the problem
discovery.

95 Note that multiple inheritance is allowed. Consequently, a concept can have more than one parent.

Methods and Tools for Ontology Evolution

 194

Table 11. The interpretation of the extreme values of the proposed measures

1. SiblingUniformity (SU)

Discovery of problems

Problem96 Value Interpretation

Problem1 below the threshold If the SU(p,x) is low then the link p-x
might be irrelevant.

Generation of changes

Example Reduction Extension

p

c1 cn xc2 ...

p

c1 cnc2 ...

g

xci+1 ...

p

c1 cic2 ...

Users, who browse down the
node p, use the link p–x very
rarely.

The link p-x is deleted. The set of destination nodes
with low SU, ci+1, ...,x, is
grouped in newly added node
g.

2. SiblingUniformity (SU)

Discovery of problems

Problem Value Interpretation

Problem2 above the threshold If the SU(p,x) is huge then the link p-x
might cover many different users’ needs.

Generation of changes

Example Reduction Extension

p

c1 cn xc2 ...

- p

c1 cn x1c2 ... xk...
Users, who browse down the
node p, use the link p–x very
often.

Since this link conveys much
relevant information, it has to
be kept.

The destination node x is split
in several new nodes. The
special case is when it is split
into so many nodes as it has
child-nodes. In that case the
node is replaced with its
child-nodes.

3. ChildrenUniformity (CU)

Discovery of problems

Problem Value Interpretation

Problem1 below the threshold If the CU(x) is low then all outgoing links

96 This column corresponds to the type of problems in using a hierarchy from the user’s point of view (i.e.

Problem1 and Problem2).

Change Discovery

 195

from the node x might be irrelevant.

Generation of changes

Example Reduction Extension

x

c1 cnc2 ...

x
g1

c1 ci...

x

g2 ... gk

cj cn...

Users, who “visit” the node x,
browse down the node x very
rarely.

All outgoing links from x are
deleted.

The new layer of nodes is
introduced by grouping the
child-nodes according to a
criterion defined by the
ontology manager.

4. ChildrenUniformity (CU)

Discovery of problems

Problem Value Interpretation

Problem2 below the threshold If the CU(x) is low then it seems that
some relevant outgoing links from x are
missing.

Generation of changes

Example Reduction Extension

x

c1 cnc2 ...

- x

c1 cn nc2 ...

A lot of users stop the
browsing in the node x.
Probably they miss some
relevant links to browse
further.

- A new node n is introduced
and connected to the node x.

5. ParentUniformity (PU)

Discovery of problems

Problem Value Interpretation

Problem1 below the threshold If the PU(x,c) is low then the link x-c
might be irrelevant.

Generation of changes

Example Reduction Extension

c

p1 pn xp2 ...

c

p1 pnp2 ...

c

p1 pi gp2 ...

xpi+1 ...

Methods and Tools for Ontology Evolution

 196

The link x-c is used very
rarely.

The link x-c is deleted. The set of source nodes with
low PU, pi+1, ..., x, is grouped
in a newly added node g.

6. ParentUniformity (PU)

Discovery of problems

Problem Value Interpretation

Problem2 above the threshold If the PU(x, c) is huge then the link x-c
might cover many different users’ needs.

Generation of changes

Example Reduction Extension

c

p1 pn xp2 ...

-

c

p1 pn x1p2 xk... ...

The link x-p is used very
often.

Since this link conveys much
relevant information, it has to
be kept.

The source node is split into
several new nodes.

7. UpDownUniformity (UD)

Discovery of problems

Problem Value Interpretation

Problem1 above the threshold If the UD(p, x) is huge then the node x
might be inappropriate since almost all
visits to x finish by browsing back to p.

Generation of changes

Example Reduction Extension

p

c1 cn xc2 ...

p

c1 cnc2 ...

-

Almost every user who
browsed down the link p-x,
browsed afterwards back (up)
that link.

The link p-x is deleted. It is possible that the node x is
proper, but its child-nodes are
inappropriate – that is the
reason to browse back. It is up
to ontology manager to
perform such an analysis.

8. Querying(Q)

Discovery of problems

Problem Value Interpretation

Problem1 above the threshold If the Q(x) is huge then the node x might
be very relevant as a starting point in
browsing.

Change Discovery

 197

Generation of changes

Example Reduction Extension

root

p ...

x...

- root

p ...

x...

A lot of users made the query
about the content of the node
x.

- A link between the root of the
hierarchy and the node x is
added.

The process of discovering changes can be performed in two ways: either the system
recommends the “problematic” parts of the hierarchy automatically, or the ontology manager
selects a part of the ontology, which she wants to update, and interprets the presented
parameters on her own. In the automatic discovery, the threshold value can be tuned
according to the needs of the ontology manager.

�Table 12 shows the dependencies between elementary ontology changes related to a hierarchy
with the extreme values of the proposed measures used for the discovery of changes. Note
that grouping or the splitting of a node or a link represents a composite ontology change that
is realised as a sequence of elementary ontology changes, i.e. (1)-(4). We show only the
requested changes. However, the ontology evolution system can induce additional changes in
order to keep the consistency of the ontology.

Table 12. Dependency between the discovery of problems (columns) and the generation of
changes (rows)

 min SU max SU min CU min PU max PU max UD max Q

 R97 E98 R E R E R E R E R E R E

AddConcept x x x x x

RemoveConcept x

AddSubConcept x x x x x x

RemoveSubConcept x x X x

The proposed measures (SiblingUniformity, ChildrenUniformity, ParentUniformity,
UpDownUniformity) can be seen as an extension of the measures defined in the previous
section. These measures consider only the querying activities, i.e. they are based on the
frequency of the querying for the ontology entities. They take into account the usage of each
ontology entity in isolation, i.e. independently of the usage of other ontology concepts. The
information about the ontology structure (e.g. whether a concept is a leaf in a concept
hierarchy or has subconcepts) is captured very roughly through the clarity factor. Here, we
take into account the browsing activities as well. Since the browsing is related to a concept
hierarchy, the proposed measures consider the concept in the context that is defined through
its neighbourhood (i.e. its parents, children and siblings).

97 R stands for reduction
98 E stands for expansion

Methods and Tools for Ontology Evolution

 198

Evaluation

As a test bed for the presented research, we use the VISION portal (see section �4.4.1), a
semantics-driven portal that allows browsing and querying of the state-of-the-art information
(people, projects, software etc.) related to the knowledge management. The backbone of the
system is the Vision Ontology. All users’ interactions with the portal are tracked into its
Semantic Log. We analysed the log data captured in the period from December 2002 to May
2003.

In the Vision Ontology there are several direct hierarchies (the hierarchy of organisations,
projects, etc.), as well as a non-taxonomic hierarchy “hasTopic”, expressing the hierarchy of
research areas. Since this “hasTopic” hierarchy is huge (the number of the concepts: 139, the
average depth: 5, the average number of direct hierarchy of a concept: 3) and very often
browsed, it is very suitable for the evaluation of our approach.

We made some changes in the “hasTopic” hierarchy, which corrupt the uniformity of its
usage, expecting from users to reverse them by using the proposed approach. Indeed, we
induced 35 changes in the hierarchy, as follows:

C1. the addition of five new concepts and their linkage into the hierarchy with a low
usage;
C2. the addition of five “hasTopic” relations, with a low usage, between existing concepts;
C3. the extension of three leaf concepts (i.e. concepts without children) with three new
subconcepts for each leaf concept;
C4. the merging of two children into a concept at three different positions in the concept
hierarchy;
C5. the deletion of five “hasTopic” relations.

Four subjects who had little experience in ontology editing by using traditional ontology
editors participated in the experiment. The task was to improve the “corrupted” ontology by
using our system, i.e. to refine the given ontology by balancing its usage.

We measured the correctness of the final hierarchy and the time spent in the modification
process. The “gold standard” was the initial ontology, i.e. they should discover all the
corruption we made in the ontology. Since there are no available tools for the usage-based
ontology management, we evaluate only the usability of our tool, without comparing it to
other methods. Moreover, the manual discovery and resolving of the implied changes was
impossible, due to a huge number of entries in the Semantic Log of the portal and the
complexity of the “hasTopic” hierarchy. The results of the evaluation are presented in the
�Table 13. Note that the correctness is defined as the ratio between the number of discovered
changes and the number of corruptions in the initial hierarchy.

Table 13. The result of the evaluation

Corruption Useful parameter for the
change discovery

Correctness
(total for all four

users)

Time
(average time for a

recovery)
C1 min SiblingUniformity 15/20 120 sec

C2 min ParentUniformity 18/20 90 sec

C3 min ChildrenUniformity 11/12 50 sec

C4 max SiblingUniformity 8/12 180 sec

C5 min ChildrenUniformity 6/20 420 sec

Change Discovery

 199

Discussion:
1. The discovery of irrelevant concepts is well supported in our approach. However, the
discovery depends on the “uniformity” of the usage of the neighbourhood concepts. For
example, in the case C1 there is a corruption, which was not found by any user. That
corruption corresponds to the case that a low-used concept was introduced in the low-used
neighbourhood and, therefore, could not be discovered as a problem.

2. Our approach enables a very efficient discovery of the irrelevant links since it compares the
usage of a link with three types of neighbours: parents, child-nodes and siblings. It seems to
be sufficient information for the discovery of irrelevancies.

3. The irrelevant sub-hierarchies can be found easily by considering the CU parameter.

4. The discovery of links, which can be split into several links, is well supported in our
approach. If these links convey much more information than sibling-nodes, then they can be
recognised in the very easily. However, just like in the case C1, for C4 there is a corruption,
which was not found by any user since it was “hidden” in the huge usage of the sibling links.

5. The discovery of missing links/concepts is the most challenging problem. As we explained
in �Figure 65, it requires much more effort of an ontology manager to prove possible
hypotheses about adding a new concept. However, the suggestions made by our system, based
on the parameter ChildrenUniformity, seem to be useful.

Since there is no gold standard for the time, we do not discuss these values in detail. The
duration of tasks corresponds to the level of the difficulty of the corresponding task.
Moreover, all participants denoted them as a huge improvement with respect to the manual
change discovery.

6.4 Related Work

Most enterprises invest a great amount of money into establishing mechanisms for detecting
the user’s behaviour. Many tools, algorithms, and systems have been developed to provide
web site administrators with information and knowledge useful to understand users’
behaviour and, consequently, to improve web site performance. Most of these approaches are
based on using data mining techniques. They track and analyse click-stream data in order to
obtain the most frequent paths. The results of the data mining analysis lead to the
improvement of the site design and navigation opportunities or to the development of
marketing strategies including recommender systems. This knowledge can be also exploited
to improve the ontology that underlies the web-based system. None of the existing semantic-
based approaches offers these means. Regarding this aspect, our approach can be considered
as unique.

Our work presented in this section is related to semantic web usage mining. The web usage
mining is the application of data mining techniques to discover usage patterns from Web data,
in order to understand and better serve the needs of Web-based applications �[118]. The
semantic web usage mining is the web usage mining that uses ontologies in order to improve
the learning. Our approach is more than the semantic web usage mining since it does not only
discover usage patterns of an ontology. It rather analyses these usage patterns in order to
make recommendations for ontology changes that would lead to an increase of the usability of
this ontology.

Other approaches based on ontologies (e.g. �[5]) have been proposed in order to take site
semantics into account. In particular, in �[22] is presented a framework for web personalisation

Methods and Tools for Ontology Evolution

 200

that integrates domain ontologies and usage patterns. However, none of them analyses the
usage patterns with the goal to improve the ontology.

An approach for discovering of the interesting navigation patterns is proposed in �[6]. It is
based on the construction of the conceptual hierarchies that reflect query capabilities used in
producing dynamic web pages. These hierarchies can be considered as simplified ontologies.
Further, the authors define the “quality” of a web site as the conformance of its structure to
the users’ browsing patterns and propose suggestions for the web site improvement. On the
contrary, we define the “quality” of an ontology, which is used as a backbone for an
information portal (i.e. web site), based on its usability for end-users and we propose a
suggestion for the ontology improvement. However, since the content and the layout of a
portal are generated dynamically based on the underlying ontology, the portal itself is
improved.

In �[97] the authors present a framework for enhancing Web usage records with formal
semantics based on an ontology underlying the site. The approach exploits the RDF
annotation of static sites to map a URL into ontology entities it deals with. The dynamically
generated pages are mapped to semantics by analysing their query strings. The result of a
mapping is a semantic log file that contains, for each request, the time stamp, the URL or the
query string, and a feature vector, which consists of ontology entities. Our semantic log file is
based on a richer knowledge model. Indeed, the log ontology distinguishes between several
types of the users’ interaction with the portal so that, besides querying, browsing, reading etc.,
are supported and modelled as well. Further, semantics is not extracted from the content of a
web page, but from the ontology this page is based on. Finally, we do not use a feature vector
since we aim to deal with large ontologies. Rather, we organise the semantic log as an
ontology (and not as an extension of a standard web log) and, consequently, reuse all the
functionalities already provided by our ontology management system.

In �[128] we made a comprehensive evaluation of most frequently used tools99 for editing
ontologies, Protege, OilEd and OntoEdit, by comparing them regarding several criteria,
including their support for the continual ontology improvement. None of them provides
support neither for the integration of the usage data into the ontology evolution process nor
for the discovery of changes in an ontology, which are crucial facilities of our system.
Therefore, these capabilities are novel in comparison with the existing ontology editors.

In �[27] the authors present the usefulness of the ontology tools with respect to the knowledge
level of the ontology engineers and the stage of development of the ontology. They conclude
that for less experienced ontology engineers, the better suited tools are those that (i) require
little knowledge of the underlying knowledge representation language and (ii) are easy to
learn. However, even though current ontology tools do not require ontology engineers that are
experts in knowledge representation and modelling, they are not yet ready for direct use by
domain experts. We propose an approach for the usage-driven ontology evolution that
supports an inexperienced user, who does not need to be an ontology engineer, to
develop/modify an ontology.

Regarding the creation of a hierarchy, there are three approaches: top-down, bottom-up and
middle-out, which start the creation of a hierarchy from the top, bottom, or middle of the
hierarchy, respectively �[146]. These approaches have different strengths and weaknesses. The
top-down approach is better at producing crisp top-level distinctions but it can miss important
low-level topics. Conversely, the bottom-up approach is better at defining all the significant
low-level topics but it can produce obscure high-level topics. The middle-out approach
enables the development of the hierarchy in both directions (i.e. top-down and bottom-up).

99 http://protege.stanford.edu/; http://oiled.man.ac.uk/; http://www.ontoprise.de/com/co_produ_tool3.htm

Change Discovery

 201

The problem is how to find the right level of the granularity. Our approach supports the
middle-out approach by determining the granularity of the hierarchy based on its usage.

The generic log file analysis process is proposed in �[148]. It consists of four steps: (i) cleaning
and filtration phase that removes all irrelevant information, (ii) data-cube construction that
creates a cube using all relevant information, (iii) on-line analytic processing (OLAP) that is
performed on cube data, and (iv) data mining technique that is put to use with the data cube to
dig out the desired information. We followed this generic procedure in developing our system.
However, we go a step further in two ways. Firstly, the role of our system is to combine the
information about usage of ontology entities with the ontology structure itself in order to
focus attention of ontology engineers on the part of the ontology that needs to be updated.
Secondly, our system suggests ontology managers how to do that. Finally, we propose a
formal model for a usage log, which provides explicit semantic information and consequently
more scope for analysis.

Observing that in practice the meanings of relationships between concepts evolve over time,
in �[24] the authors define the ontology-based knowledge sharing system OntoShare that
supports a degree of ontology evolution based on usage of the system. When a user shares
some information, the system will match the content being shared against each concept (i.e.
its keywords and phrases) in the community’s ontology. The user is then able to accept the
system recommendation or to modify it by suggesting alternative concept(s) to which the
document should be assigned. The modification of a set of terms attached to a concept is
called the usage-based ontology evolution. In this way the characterisation of a given concept
evolves over time based on the inputs from the community of users. We agree that this ability
to change as users’ own conceptualisation of the given domain changes is a powerful feature,
which allows the system to better model the consensual ontology of the community. However,
this level of evolution is limited to changing the semantic characterisation of ontology
concepts and does not support, for example, the automatic suggestion of new concepts to be
added to the ontology.

Moreover, our approach can be used for a comprehensive management of the ontology-based
applications, which incorporates the collection, the integration and the analysis of the data
needed for the management. In that way, it is a unique tool. However, there are management
systems for other types of the applications, which can be related to our work. For example, an
approach for managing changes in a knowledge management (KM) system is given in �[50].
The authors consider two types of changes: (i) functional changes that are about new KM-
systems in the organisation, new versions of a KM-system and new features in one KM-
system and (ii) structural changes that deal with new business models, new subsidiaries and
new competencies in the organisation. The results of that study have shown that the
management of the evolving KM-systems on an ad-hoc basis can lead to unnecessary
complexity and failures. Both types of changes can be treated as the explicit changes, which
can be very efficiently resolved in our system. However, contrary to our approach, this
approach does not consider implicit changes, which can be derived from the usage of the
system.

6.5 Conclusion

The possibility to cope with the implicit changes discovered from the users’ behaviour seems
to be the most important characteristic of an application, which aspires to be useful. Indeed, it
enables the continual adaptation of an application to the changes in the users’ needs, without
demanding the users to provide an explicit feedback about the usability of the application. The

Methods and Tools for Ontology Evolution

 202

most common attribute for discovering changes is the usage of some structures (buttons,
options in the menu, etc.), whose analysis enables their fine-tuning to the users’ needs.

In an ontology-based application, the domain ontology is used as a conceptual backbone for
structuring the domain information provided in the application. Consequently, the data about
the usage of the application can be analysed using the ontology as the background knowledge,
which alleviates the process of discovering useful changes in the application. The discovered
changes lead to the improvement of the ontology, but in the end effect since the content and
layout (structure) of an ontology-based application are based on the underlying ontology, by
changing the ontology according to the users’ needs, the application itself is tailored to the
users’ needs.

In this section, we presented an integrated approach for the usage-based management of the
ontology-based applications, which covers capturing and structuring the users’ activities with
the application and the automatic discovery of changes and their systematic resolution by
ensuring the consistency of the resulting ontology. The special focus was on the measures to
discover some anomalies in modelling an ontology (e.g. the hierarchies of concepts) and the
methods to tune this ontology to the real users’ needs. The approach is based on the MAPE
model. It integrates the results from the analysis of the usage data with the tools that guide the
process of modifying the ontology. Since the hierarchy-based organisation of (business-) data
is a very efficient solution for the improvement of the searching for information, and is more
and more applied in the e-business environment, our approach seems to be a very useful
method for tailoring these manually or semi-automatically produced classifications like
UNSPSC100 to the real needs of their end-users.

The evaluation experiments show that our approach can be used in the real-world applications
successfully. We find that it represents a very important step in the achievement of a self-
adaptive management system �[121], which can discover some changes from the user’s
interactions with the system automatically and evolves its structure correspondingly. The
benefits of the proposed approach are manifold: dynamic adaptation of an ontology (and its
application) to the changes in the business environment, dynamic analysis of the user’s needs
and the usefulness of particular ontology to fulfil these needs, to name but a few.

Besides implicit feedback of end-users captured in the usage log, re-occurring extensions of
an included ontology in many including ontologies are another force driving usage-driven
ontology updates. Therefore, our approach for the usage-driven ontology evolution can be
expanded by taking into account the usage of an ontology in other ontologies that reuse it.
Since extensions of an ontology are driven by different ontology engineers, dependent,
distributed ontologies evolve in different directions. It is necessary to analyse the evolution
logs of these ontologies and to infer changes from these logs.

Recommender systems are based on the idea to guide a user through a buying process by
recommending to him/her the products that are bought by users with the similar profiles. By
making analogy between the user’s profile and the evolution log of an ontology, the similar
approach can be applied on the dependent distributed ontologies. Given a set of existing
changes stored in the evolution logs of dependent ontologies, it is possible to infer rules that
(i) prevent changes in the dependent ontologies by incorporating them in the included
ontology, (ii) suggest and predict changes in the dependent ontologies and (iii) show up
coupling between dependent ontologies that is undetectable by manual analysis.

For example, if many dependent ontologies extend the included ontology in the same or
similar way, it would be better to incorporate these changes in the included ontology.

100 http://eccma.org/unspsc/

Change Discovery

 203

Therefore, one possibility for the usage-driven change discovery would be to decide which
changes from the dependent ontologies should be introduced into the next version of the
included ontology. In this way it would be possible to guide the developer of the included
ontology on how to improve its completeness and usefulness. Consequently, all the ontologies
that reuse an included one will be automatically informed about changes in the included
ontology since these changes have to be undone in the dependent ontologies. In this way, the
possibility for the integration between dependent ontologies increase since the level of their
overlap is maximised.

Moreover, such a system would be able to suggest further changes in a dependent ontology, as
inferred from the other extension of the same included ontology. The re-occurrence of the
extensions would increase the usability of the including ontology since the changes with the
highest confidence would be suggested.

Finally, this system could compare two different extensions of the same ontology. By
detecting the subsumption, the right decision would be to include the subsumed dependent
ontology in the subsuming dependent ontology. On the other hand, the equivalence between
two ontologies that include the same ontology would signalise that one of them is not
necessary.

Methods and Tools for Ontology Evolution

 204

7 Implementation

The ontology evolution addresses an issue with important theoretical and practical
implications. It helps manage the complexity and keep an ontology and dependent artefact up-
to-date. However, it is costly and hard to find the skilled ontology engineers to deal with the
evolution process in a quick, accurate and reliable way. Moreover, ontologies are growing
beyond the human ability to manage them. It would not be possible to change them manually
when the ontologies are hundreds of times more complex than the existing ones. Therefore,
appropriate organisational and technical means for supporting the ontology evolution are
required.

Since the methodological approach for the ontology evolution is elaborated in previous
chapters, in this chapter we focus on tools. Firstly, based on the requirements for the tool
support, we compare the existing evolution systems. Secondly, we reveal how to build a tool
for the ontology evolution so that ontologies are more flexible to a changing environment.
Finally, the benefits of our KAON system are elaborated on one case study.

7.1 Existing Support for the Ontology Evolution

Although there are several approaches for the semi-automatic ontology development (�[73],
�[126]), most of the existing ontologies are created manually using ontology editors. Ontology
editors are tools that enable inspecting, browsing, codifying, and modifying ontologies and
support in this way the ontology development and maintenance task �[137]. In this section we
first define the requirements for an ontology editor regarding ontology evolution. Then we
discuss how existing ontology editors fulfil these requirements.

7.1.1 Requirements for Ontology Editors

Available ontology editors vary in the complexity of the underlying ontology model,
usability, scalability, etc. Nevertheless, all of them can be used for building a new ontology
from scratch or for extending existing ontologies. Usually ontology editors provide a
graphical user interface for building ontologies, which allows ontology engineers to create
ontologies without using directly a specific ontology language. A survey on ontology building
tools is given in �[45]. However, providing support for the initial ontology development is not
sufficient since ontology development is necessarily an iterative and a dynamic process �[21].
Very seldom is an ontology perfect the first time it is made, and then continues, without
change, to be as useful over time as it was when it was first deployed �[54].

Since an ontology is usually developed using an ontology editor, many requirements for the
ontology evolution have to be part of the ontology editors. An ontology editor must provide

Implementation

 205

an interface that allows ontology engineers to modify the underlying ontology. The interface
has to be based on a set of available ontology changes. Moreover, there are many additional
features, which can significantly improve the usability of an ontology editor and enhance its
functionality regarding the ontology evolution. In this section, we discuss the most critical
requirements for ontology editors in order to be more robust to a changing environment.

Indeed, we specified a number of relevant criteria and applied them to evaluate the different
ontology editors. We claim that ontology editors fulfilling these requirements help an
inexperienced ontology engineer modify an ontology in the easiest way. The following
requirements are derived from the ontology evolution process that is introduced in chapter �3:

• Functionality requirement - Functionality requirement comes out from the change
representation phase of the ontology evolution process. It specifies which functionality
must be provided for the ontology development and evolution. Therefore, it covers a
set of changes that are supported by a system. They are split into elementary and
composite ontology changes. This functionality heavily depends on the underlying
ontology model. A more powerful and expressive model requires a richer set of
modelling primitives;

• Customisation requirement - The ontology evolution is a process of changing an
ontology while maintaining its consistency. The goal of the ontology evolution is thus
to evolve an ontology from one consistent state to the next. Since there are several
different final consistent states, a mechanism is required for ontology engineers to
manage changes resulting not in an arbitrary consistent state, but in a consistent state
fulfilling the preferences of an ontology engineer. In order to enable an ontology
engineer to obtain the ontology most suitable to her needs, an ontology editor should
allow the customisation or control of the ontology evolution;

• Transparency requirement - To improve understanding of effects of each change, an
ontology editor should provide maximum transparency into details of each change
being performed. Transparency should provide a human-computer interaction for
evolution by presenting change information in an orderly way, allowing easy spotting
of potential problems and alleviating the understanding of the scope of the change;

• Reversibility requirement - The reversibility requirement states that an ontology editor
has to allow undoing changes at the ontology engineer’s request. Consequently, an
ontology engineer can control changes and make appropriate decisions;

• Auditing requirement - As business applications of ontologies proliferate, so do the
needs for auditing ontology evolution. Changes to business information are often
accompanied with responsibility for their effects on the business. Auditing is therefore
a typical component of business systems, and must be reflected in the ontology editor
as well;

• Refinement requirement - This requirement states that potential changes improving the
ontology may be discovered semi-automatically from the ontology-based data and
through the analysis of the user’s behaviour. An ontology editor should make
recommendations for the ontology improvement;

• Usability requirement - An ontology editor addresses the issue of presenting
ontologies and allowing the ontology engineers to operate on ontologies in a
consistent way. It also addresses how different functions are integrated into the system
in a way natural to the user. An ontology editor has to have an interface that enables
ontology engineers to create and maintain ontologies, one that is easily understood and
allows them to work efficiently with all the complexities inherent in an ontology
editor.

Methods and Tools for Ontology Evolution

 206

The comparison of ontology editors against the evaluation framework is given subsequently.

7.1.2 Evaluation of Existing Ontology Editors

Ontology editors are tools that allow users to visually manipulate ontologies. The number of
tools for building ontologies developed in the last years is high101. In this section, we evaluate
ontology editors in terms of the requirements for the ontology evolution that are given in
previous section. We select three ontology editors that are most frequently used in the
Semantic Web community:

• Protégé102 - It is a graphical and interactive ontology-design and knowledge-acquisition
environment that is being developed by the Stanford Medical Informatics group (SMI)
at Stanford University. Its knowledge model is OKBC compatible. Its component-
based architecture enables system builders to add new functionality by creating
appropriate plug-ins. The Protege-OWL plugin extends the Protégé platform into an
ontology editor for the OWL;

• OntoEdit103 – It is an ontology engineering environment supporting the development
and maintenance of ontologies by using graphical means. OntoEdit is built on top of a
powerful internal ontology model. This paradigm supports representation-language
neutral modelling as much as possible for concepts, relations and axioms. Several
graphical views onto the structures contained in the ontology support modelling the
different phases of the ontology engineering cycle. It has an interface to the
OntoBroker, which is a F-Logic Inference Engine;

• OilED104 – It has been developed by the University of Manchester. It is a simple
freeware ontology editor, which allows the user to build ontologies using OIL and
OWL, and it is not intended as a full ontology development environment. Consistency
checking and automatic classification of the ontologies written with it can be
performed using the FaCT reasoner.

�Table 14 shows the result of comparison of these editors on previously defined dimensions.

The basic functionality of each ontology editor is specified as a set of elementary ontology
changes. Thus, all editors allow such modifications. Even though composite changes allow an
ontology engineer to update an ontology without having to find the right sequence of
elementary modifications, most of the existing ontology editors do not include composite
changes. Only OntoEdit provides support for some composite changes (e.g. copy).

Most of the existing systems for the ontology development provide only one possibility for
realising a change, and this is usually the simplest one. For example, the deletion of a concept
always causes the deletion of all its subconcepts. It means that users are not able to control the
way the changes are performed. Consequently, the customisation is not supported at all.

Moreover, the users do not obtain explanations why a particular change is necessary
(transparency). In OntoEdit, the user only obtains the information about numbers of induced
changes but without providing more details. None of existing editors warns ontology
engineers about changes in the included ontologies.

101 http://www.ontoweb.org/download/deliverables/D13_v1-0.zip
102 http://protege.stanford.edu/
103 http://www.ontoprise.de/com/co_produ_tool3.htm
104 http://oiled.man.ac.uk/

Implementation

 207

Furthermore, there is no possibility to undo effects of changes (reversibility). Protégé and
OntoEdit have Edit menu with the Undo/Redo options. However, the performed changes are
kept in the memory so that they are lost when the ontology/editor is closed.

Table 14. Evolution support within ontology editors. Description: “-“ means that there is no
support, “∼” states that support is partial and “+” corresponds to the full support.

Editors/
Requirements

Protege OntoEdit OilEd

Functionality
elementary + + +
composite - ∼ -

Customisation - - -
Transparency - ∼ -
Reversibility ∼ ∼ -
Auditing ∼ - ∼
Refinement - - -
Usability

user-friendly + + +
verification ∼ ∼ ∼

validation - - -

Regarding the auditing requirement, OilEd has the activity log. However, it records
connections to the reasoner, not all ontology modifications. Protégé also has the command
history option but in the version we were dealing with it was useless since it was disabled.

As known to the authors, none of the existing systems for ontology development and
maintenance offer support for (semi-)automatic ontology improvement, even though it would
make the ontology easier to understand and cheaper to modify. Therefore, the refinement
requirement is not supported at all.

Concerning the usability of ontology editors, most of the existing ontology editors have a very
similar layout. They are ergonomically correct to minimise human errors. They enable
operating “quickly” enough, as this is often considered being one of the most important easy-
for-use issues. However, more features are required in existing editors to ensure the successful
collaborative building of ontologies. Moreover, all editors can detect logical conflicts
(verification) but they do not provide enough information to analyse the sources of conflicts.
However, none of the existing editors provide the means for answering questions such as
how, why, what if, etc. (validation).

This analysis shows that the current versions of ontology editors offer enough functionalities
to allow ontology engineers to build ontologies. However, their support for the ontology
evolution can be improved significantly. Consequently, they do not provide a full ontology
development environment. Further, they cannot actively support the development of large-
scale ontologies, the reuse of ontologies, versioning, and many other activities that are
involved in the ontology life cycle process.

7.1.3 Conclusion

In order to enable an ontology engineer to obtain an ontology most suitable to her needs, we
investigate the requirements for an ontology editor. We identify several means to do that: (i)

Methods and Tools for Ontology Evolution

 208

to enrich the list of possible changes; (ii) to enable an ontology engineer to control a way of
resolving the changes; (iii) to inform her about all effects of a change; (iv) to allow undoing
changes; (v) to allow inspecting the performed changes; (vi) to suggest an ontology engineer
to generate a change; (vii) to identify inconsistencies and to provide answers to the questions
such as how, why, what if, etc. We believe that an ontology editor that fulfils these
requirements will enable maintaining an ontology more easily and according to the user’s
preferences. In the rest of this section we discuss the KAON system that is designed and built
according to these requirements.

7.2 KAON Ontology Evolution

Since the ontology evolution is a very complex task, methods and tools for its support are
needed. We developed an ontology evolution system within the KAON framework (see next
section) that does not only enable automating the ontology evolution, but also helps ontology
engineers realise a request in a most suitable way by providing additional information (e.g.
the explanation) as well as by making reasonable suggestions for the continual ontology
improvement. From the engineering's point of view, the advantage is in getting a system,
which improves the reliability and the decision making process by reducing at the same time
the complexity, staffing and other expenses (e.g. redoing modification, performance problem,
etc.). Our goal was to minimise the impact of problems and to direct the resolution of the
problems by controlling and managing changes. Therefore, our system is also able to modify
an ontology in several ways by enabling ontology engineers to customise the modification
process. Moreover, the system offers meta-level resolution capabilities by taking into account
the time needed to perform changes, the number of additional changes, the structure of the
final ontology, etc. Finally, the system helps in adapting the ontology towards needs of end-
users that are discovered from the usage of this ontology.

In the rest of this section we elaborate on the KAON ontology evolution support.

7.2.1 KAON

Karlsruhe Ontology and Semantic Web framework (KAON105) has been developed at FZI106
and AIFB107 at the University of Karlsruhe and used to realise several ontology-enabled
projects. Its primary goal is to establish a platform needed to apply Semantic Web
technologies (�[9], �[31]) to E-commerce and B2B scenarios, knowledge management,
automatic generation of Web portals, E-Learning, E-Government etc. An important focus of
the KAON framework is on integrating traditional technologies for the ontology management
and application with those typically used in business applications such as relational databases.
In this section we describe how the ontology evolution has been realised within the KAON
framework.

The simplified conceptual architecture of the KAON system emphasising points of interest
related to the ontology evolution is presented in �Figure 66. Roughly, the KAON components
can be divided into three layers:

• Applications and Services Layer realises UI applications and provides interfaces to
non-human agents. Among many applications realised, OI-modeller provides ontology
and metadata engineering capabilities. It realises many requirements related to the

105 http://kaon.semanticweb.org
106 http://www.fzi.de/wim
107 http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/WBS/

Implementation

 209

ontology evolution. The KAON Portal is a tool for building ontology-based Web sites.
Regarding the ontology evolution, it provides support for the tracking of the end-
users‘ interactions with the portal;

• KAON API as part of the Middleware Layer is the focal point of the KAON
architecture since it realises the model of ontology-based applications108. It consists of
a set of interfaces for access to ontology entities. For example, there are Concept,
Property, and Instance interfaces containing methods for accessing ontology concepts,
properties, and instances, respectively. Client can access the API through a sublayer
providing different types of interfaces (local, remote or Web service interface). The
bulk of requirements related to the ontology evolution is realised in this layer and is
described in the rest of this section;

• Data and Remote Services Layer provides data storage facilities, currently offering
file- and J2EE-based storage. This layer also realises security and transactional
atomicity of updates. Security deals with access rights to an ontology by ensuring that
only trustable transactions are performed. Transactions are used to ensure that a
sequence of changes is treated as a unit.

Persistence, Security , Transactions

OIModeler - Ontology and
Metadata Engineering Tool

KAON Portal and other User
Interface Applications and Services

Middleware

Applications
& Services

KAON API

KAON Access Interface

Usage
Logging

Change
Discovery

Change
Reversibilty

Evolution
Logging

Distributed
Evolution

Dependent
Evolution

Data and
Remote Services

Evolution
Graph

Evolution
Strategy

RDF API Engineering Server

Change
Model

Virtual
Ontology

RDF Server

Figure 66. Conceptual KAON Architecture with Respect to Ontology Evolution

KAON API

The KAON API is a set of interfaces offering programmatic access to the KAON ontologies.
It contains classes such as Concept, Property and Instance. The API reflects the capabilities of
the KAON language (see section �2.2). The API decouples the ontology user from actual
ontology persistence mechanisms. There are different implementations for accessing RDF-

108 The term model refers to the model component of the Model-View-Controller architectural pattern.

Methods and Tools for Ontology Evolution

 210

based ontologies accessible through the RDF API109 or ontologies stored in relational
databases using the engineering server.

One implementation of the KAON API is based on the RDF API and thus allows access to
RDF repositories. Although it offers capabilities for accessing remote RDF repositories, such
as RDF Server, it is primarily used for management of local RDF ontologies stored as files.

Engineering Server is an implementation of the API directly based on relational databases and
is targeted for cases where concurrent access is needed. The name Engineering Server stems
from the fact that the database schema is optimised for the ontology engineering during which
adding and deleting concepts are frequent operations that must be done transactionally �[80].
Therefore, the engineering server uses a fixed number of tables, rather than a table per
concept. The server has been heavily optimised and tested on an ontology consisting of
100,000 concepts, 66,000 properties, and 1,000,000 instances, where loading related
information about 20 ontology entities takes under 3 seconds, while deleting a concept in the
middle of the concept hierarchy takes under 5 seconds. This informal test has been conducted
on a usual single processor desktop computer running Windows XP with 256MB of RAM.

The KAON API incorporates important elements required for the ontology management:

• Evolution logging is responsible for keeping track of the ontology changes in an
evolution log in order to be able to reverse them at the user’s request. Further, the
evolution log is also used by the distributed ontology evolution;

• Change reversibility enables undoing and redoing changes made in an ontology.
Consequently, changes can be executed in reverse order thus forcing the ontology to
return to the conditions prior to the change execution;

• Evolution strategy is responsible for ensuring that all changes applied to the ontology
leave the ontology in a consistent state and for preventing illegal changes. Also, the
evolution strategy allows the user to customise the evolution process;

• Evolution graph enables ontology engineers to enhance a set of changes with their
own changes and to resolve them;

• Ontology inclusion facilities, together with the dependent evolution, are responsible
for managing multiple ontologies within one node;

• Ontology replication facilities, together with the distributed evolution, are responsible
for enabling the reuse and the management of distributed ontologies;

• Change discovery includes the means for the discovery of problems in an ontology
and for making recommendation for their resolution;

• Usage logging is responsible for keeping track of the end-users’ interactions with
ontology-based applications in order to adapt ontologies to the users’ needs.

Other aspects such as the change model and virtual ontologies that are important from the
implementation point of view and are not directly visible to the ontology engineers are
described in the rest of this section.

Additionally, the KAON API provides support for optimisation and concurrency. The
optimised-loading component is responsible for the bulk loading of ontology entities. To
improve performance, entities are cached at the client. Concurrency conflict detection is
responsible for detecting and resolving conflicts resulting in concurrent updates of different
ontology engineers. For example, if one ontology engineer updates the ontology, then other

109 http://www-db.stanford.edu/~melnik/rdf/api.html

Implementation

 211

active ontology engineers must be notified of this update. Alternatively, if an ontology
engineer attempts to update the ontology using stale information, the conflict must be
detected.

Change Model

We realised that the change procedures have to be short and simple and not complicated with
the provision for handling all possible consequences of a change. It is better to attend these
consequences in separate procedures. The rationale behind this decision was also that a
change can have very different consequences depending on the situation and it is impractical
to include provisions for handling all of them in every procedure. In addition, shorter
procedures are easier for a user to understand and follow.

To achieve that, the KAON API objects do not contain methods for performing changes.
Creating a list of change events modifies a model. The list of change events is then applied on
the actual model. Furthermore, several changes may be collected in a list, which can then be
passed to the model. Lists of changes are passed to the model in a transactional manner. This
means, that all changes are either applied together or no changes are applied at all. Further,
our system attends a consequence of a change as soon as it occurs. This recursive realisation
may produce a high degree of nesting. However, it allows to clear separation between
ontology changes.

There are several reasons for using the change event design rather than following the more
standard design of having methods that change the model:

• A set of changes to be applied to the model presents a unit of work. Either all changes
are applied, or none at all – the list of requested changes is a natural transaction
boundary;

• In many cases the KAON API is used to access remote servers. Packing many requests
in a list and sending them to the server all at once reduces network communication
overhead;

• In order to implement evolution strategies, elementary changes needed to be
represented as objects. It would impossible to implement evolution strategies if
changes are performed through method calls;

• Event-based design further enables evolution strategies that optimise updates. For
example, elements are often moved in the ontology and attached to another place. If
implemented strictly sequential, the move operation would first remove an element
together with all ancillary data, and add the elements afterwards at the new location.
By representing all requested changes as objects, the evolution strategy knows in
advance what all changes need to be performed, and can prevent unnecessary deletion
and later adding of information.

Virtual Ontology

Ontology evolution covers two main requirements: (i) preventing illegal changes and (ii)
keeping consistency. The first requirement states that some users’ request for a change cannot
be applied since the consistency constraints cannot be satisfied. For example, the root concept
must not be deleted. The second requirement is related to the fact that a single change will
often leave an ontology in an inconsistent state. Additional changes are necessary to fix other
parts of the model. For example, the user may request deleting a concept. To perform this

Methods and Tools for Ontology Evolution

 212

change, the respective concept must first be detached from its parents and children; children
need to be reconnected to some other node, etc. Thus, a single user-initiated change may be
rejected or may cause additional changes to be executed.

To fulfil these requirements as optimal as possible we have developed the so-called virtual
ontologies. Virtual ontologies as separate implementation of the KAON API are developed to
yield better performance. Indeed, virtual ontologies ensure that the KAON API has been
heavily optimised for the performance. The idea is to minimise the number of ontology
entities being considered. A virtual ontology represents a view on an ontology that is being
changed. It contains a copy only of a part of the ontology that is relevant for a change. In this
way the largest part of the ontology can be kept intact and only a part related to the current
request for a change need to be loaded in the virtual ontology. Therefore, virtual ontologies
offer facilities for the partial replication.

In the rest of this section we discuss how previously mentioned requirements are satisfied.
Regarding the first requirement, in the case that the request fails, the roll back of the ontology
into the initial state is needed. However, since changes are applied on the virtual ontology, the
original remains unchanged.

Furthermore, checking the entire ontology is costly, and when changes are small and local,
unnecessary for the most part. If an ontology has many concepts, then considering all of them
will take a lot of time and will require plenty of memory. Therefore, it will result in horrible
performance. To overcome that and, consequently to fulfil the second requirements, our
optimisation strategy exploits two principles:

• to minimise the number of ontology entities that are considered for one change
request;

• to optimise the loading of relevant entities by applying bulk-loading.

The first principle is based on taking into consideration only a part of the ontology that is
pertinent for a request. Since the time taken to perform an ontology change is inconsequential
compared to the time taken to check all entities, it is essential to be focused only on a relevant
part. Therefore, virtual ontologies are preferable, while they enable incremental checking.

Note that virtual ontologies are created dynamically. �Figure 67 shows two virtual ontologies
that are created for the same request for the removal of the subconcept relationship between
concepts “Student” and “BSc Student”. As shown in �Figure 67, the content of the virtual
ontology is not defined in advance. It depends on the request for a change, on the original
ontology as well as on the selected evolution strategies. The virtual ontology VO1 (cf. b in
�Figure 67) is the result of the evolution strategy that removes orphaned concepts and all its
instances whereas the evolution strategy of the virtual ontology VO2 (cf. c in �Figure 67)
preserves instances of the orphaned concepts that are deleted. Both virtual ontologies contain
the concepts “Student” and “BSc Student” since both of them occur in the request for a change
(i.e. RemoveSubConcept(“BSc Student”,”Student”)). After the application of this change, the
concept “BSc Student” does not have parent concepts (i.e. it is an orphaned concept) and,
therefore, it has to be deleted as well. This request causes the removal of all its instances.
Consequently, both virtual ontologies contain the instance “SteffenWezler”. Since the first
virtual ontology is associated with the evolution strategy that requires the removal of
instances, it contains all property instances of this instance. On the contrary, the evolution
strategy of the second virtual ontology demands the preservation of instances. Since there is
no property defined for the concept “BSc Student”, this virtual ontology does not require any
additional entities from the original ontology. Note that �Figure 67b) and �Figure 67c) show the
entities that occur in virtual ontologies VO1 and VO2 respectively during the change
application, and it does not mean that all of them are available at the same time.

Implementation

 213

Moreover, the time for performing a change is largely determined by the time taken to fetch
and then later to flush the entities from the memory. Apart from the usage of only relevant
entities from the original ontology, a key to the ontology evolution is to access as many
relevant data as possible in one request, rather than accessing data one at time. Our experience
showed that the bulk-loading offers significantly better performance.

Subsequently we discuss how ontology evolution is realised within the KAON API and
within various applications that have been realised on top of the KAON API.

a) Original ontology

b) Virtual ontology VO1 c) Virtual ontology VO2

Figure 67. An example of virtual ontologies

7.2.2 Ontology Evolution in the KAON API

Management of ontology changes is realised through pluggable evolution strategies (see
chapter �4) so that an ontology engineer can adapt the behaviour of various change operations
according to her needs. For example, when deleting a concept from the ontology, it is possible
to direct the API to remove its children as well, or to preserve them. For each change, the
ontology engineer is provided with detailed insight into the consequences of a change before
the change is actually applied to the ontology. In order to guarantee that updates will leave an
ontology in a consistent state, requested changes should always be passed to the evolution
strategy first. Therefore, the general pattern for changing an ontology is as follows:

Step 1. Build the list of requested changes;

Step 2. Pass this list to the evolution strategy to compute all necessary changes;

Step 3. Pass the expanded list of changes to the ontology.

Methods and Tools for Ontology Evolution

 214

The evolution strategies may be configured with different parameters that affect how the
strategy calculates pending changes. An example for alternative evolution behaviour is the
situation when a concept is to be deleted. Then one may alternatively delete the subconcepts
as well, connect them to the parent or connect them to the root concept.

Therefore, before the ontology evolution process is started, a particular evolution strategy
must be configured. Changes to the ontology are performed by assembling elementary and
composite changes into a sequence (step 1). However, before the ontology is actually updated,
this sequence is passed to the present evolution strategy to perform steps described in chapter
�4 on the semantics of change phase of the ontology evolution process, resulting in an
extended sequence of changes (step 2).

To ensure atomicity of updates, either all or no change from the extended sequence of
changes should succeed, so that the validity of the change sequence is checked before any
updates are actually performed. If the request for a change will result in an ontology that does
not obey the constraints of the ontology model, i.e. if the resulting ontology is not consistent
ontology, the request for a change is rejected with an explanation of the violated constraints.

Transparency is realised by presenting the extended sequence of changes to the ontology
engineer for the approval. To further aid the understanding of why some changes are
performed, the evolution strategy may group related elementary changes and provide
explanations why a particular change is necessary, thus greatly increasing the chances that all
side effects of changes will be properly understood.

After the ontology engineer reviews the changes, they are passed to the ontology and
executed, performing steps from the change implementation phase (step 3).

It is obvious that for each elementary change there is exactly one inverse change that, when
applied, reverses the effect of the original change. With such infrastructure in place, it is not
hard to realise the reversibility requirement: to reverse the effect of some extended sequence
of changes, a new sequence of inverse changes in reverse order needs to be created and
applied.

As mentioned in section �3.2.4, the evolution log is needed to track information about
performed changes and to associate additional information with each change. Effectively, the
log is treated as an instance of the evolution ontology (see section �3.2.4) consisting of
concepts for each change, making it is easy to add meta-information to log entries. Structure
of the log may be easily customised by editing the evolution ontology. Further, available
services for persisting ontology data may be used to persist the log, removing the need to
devise yet another type of persistent storage.

Evolution logging and reversibility services are provided as special services of the KAON
API, allowing different applications reuse these powerful features. For example, actions
performed in one application may be easily reverted in another.

7.2.3 Ontology Evolution in the KAON Applications

Building on top of the KAON API, various tools have been realised within the Application &
Services layer, such as OI-modeller for the ontology and meta-data engineering and the
KAON Portal for (semi-)automatic generation of Web portals based on the conceptual
description. These tools are responsible for providing the user interface. In this section we
discuss the support they provide regarding the ontology evolution.

Implementation

 215

Ontology Evolution in the OI-modeller

As mentioned in the previous section, the ontology evolution is primarily realised through the
KAON API. However, UI applications provide human-computer interaction for the evolution,
whose primary role is to present the change information in an orderly way, allowing easy
spotting of potential problems. Also, any application that changes the ontology must realise
the reversibility requirement in its user interface as well.

Within the KAON framework we have developed OI-modeller, the ontology and metadata
engineering tool. It is an end-user application that realises a graph-based user interface for
single, dependent and distributed ontology development. OI-modeller supports ontology
evolution at the user level. �Figure 68 shows a modelling session where an ontology engineer
attempted to remove the concept “BSc Student”.

Figure 68. Ontology Evolution in KAON framework: User Interface in OI-modeller

Currently evolution requirements are realised within the OI-modeller, as follows:

• As shown in �Figure 69, an ontology engineer may set up the desired evolution
strategy. It can be seen that an evolution strategy consisting of several resolution
points. For each resolution point the ontology engineer must choose appropriate
elementary evolution strategy;

• Before changes are performed, the system computes the set of additional changes that
must be applied. The impact of a change is reported to the ontology engineer.
Presentation of changes follows the progressive disclosure principle: related changes

Methods and Tools for Ontology Evolution

 216

are grouped together and organised in a tree-like form. The ontology engineer initially
sees only the general description of changes. If she is interested in details, she can
expand the tree and view complete information. Only when the ontology engineer
agrees will the changes be applied to the ontology. The ontology engineer may cancel
the operation before it is actually performed. This is depicted in the bottom-right part
of �Figure 68 and further elaborated in an example;

• An unlimited undo-redo function is provided. Although this function is by large the
responsibility of the KAON API, the user interface is responsible for restoring the
visual context after an undo operation. For example, if a concept in hierarchy was
selected and then deleted, when operation is undone, the same concept must be
selected. If the hierarchy was scrolled in the meanwhile, the original scroll position
must be restored. These features are necessary for the ontology engineer to quickly
recognise a familiar state and proceed with her work. If not done properly, although an
action is undone, the ontology engineer may not realise this and may mistakenly
request another undo operation.

Figure 69. Ontology Evolution in KAON framework: Evolution Strategy Set-up

A sample screenshot of the evolution support in OI-modeller is given in the bottom-right part
of �Figure 68. In this scenario, the ontology engineer requested to remove concept “BSc
Student”. The evolution strategy decided to push instances of that concept to its parent. By
opening a node in the tree, the ontology engineer can see what changes will actually be
performed. Hence, the change information can be viewed at different levels of granularity.

We consider reusing existing ontologies as an integral part of ontology engineering.
Therefore, OI-modeller also supports working with multiple ontologies at the same time. The

Implementation

 217

upper right-hand corner of �Figure 68 shows the inclusion graph among all open ontologies.
By selecting a particular ontology, the ontology engineer signals that a new entity should be
created within this ontology. The evolution subsystem takes care of maintaining of
consistencies in all open models. The modularization facilities have been implemented within
the KAON API.

Ontology Evolution in the KAON-Portal

The KAON Portal is the tool for the building ontology-based Web sites. It is used for
presentation and browsing of ontologies in the Web as shown in �Figure 70 . In the central part
of �Figure 70, the initial information about the concept hierarchy is presented. On the left-hand
side, there are controls for easy navigation to some part of the ontology (marked as shortcuts),
followed by the controls for changing current language and by the control for searching the
ontology.

Figure 70. KAON Portal

The KAON Portal keeps track about all users’ interactions with the system in the form of the
semantic log (see section �6.2.1). On the other hand, the KAON API incorporates mechanisms
for assessing the ontology (and by extension an application based on it) with respect to
different criteria as well as mechanisms enabling us to take actions to optimise it. To prepare
data for the analysis, which is performed in the KAON API, we developed means to
aggregate, transform and correlate the usage data, which is produced in the KAON Portal.
Here we want to emphasise some implementation details.

Regarding the ontology evolution there are three main functionalities:

(i) to collect data from different, possibly distributed logs in case an ontology-based
application is deployed on several web servers;

(ii) to pre-process data by transforming disparate data into meaningful information.
This phase also covers the cleaning and validation of the data for achieving the
required quality;

(iii) to organise them in a way that enables a fast and efficient access to the data.

Methods and Tools for Ontology Evolution

 218

In order to integrate data from various servers, we replicate the Semantic Logs of all these
servers into a “common” log, so called the OntoLog. Since all logs are based on the Log
Ontology (see section �6.2.1) and they reference the same domain ontology, the semantic
heterogeneity problem does not occur. Another possibility for the integration was to integrate
the logs virtually (on-the-fly) by accessing them at the processing time. Such a solution would
enable the immediate visibility (actuality) of log data, but it requires extensive distribute
processing and, thus, it is slow and expensive. Since the analyses we want to perform are
statistic-based, the actuality of the data is not so critical. However, the update of the OntoLog
is performed periodically (currently once per week).

Moreover, during this phase, the data is also pre-processed, in order to make it better suited
for further analysis. We perform two types of data pre-processing:

1. Data abstraction - Since the interaction of the users with the portal is mainly done on
the level of ontology instances, the semantic logs (and consequently the OntoLog)
mainly contain the information about the usage of ontology instances. For example, if
a user has seen more details about the project “OntoLogging”, the log file recorded
this information explicitly. However, the goal of our system is to improve the ontology
and not its knowledge base. Thus, all log entries regarding ontology instances have to
be transformed into corresponding ontology concepts. Regarding the previous
example, all the appearances of the instance “OntoLogging” in the OntoLog have to be
replaced with the concept “Project”;

2. Extracting links - the most important information for the analyses we want to perform
is the frequency of browsing110 relations between two concepts (see section �6.3.2).
Since the OntoLog does not contain explicit information about the source and the
target of a browsing event111, we extract it in the pre-processing phase by analysing
successive events. For example, regarding the part of the log presented in �Figure 63b,
from two successive browsing events (“Browsing123” and “Browsing456”) our
system concludes that the link between concepts “Project” and “EUProject” was
browsed since the first event is related to the concept “Project”, and the second one to
the concept “EUProject”.

Finally, the integrated and pre-processed data has to be analysed in order to enable the
ontology engineers to manage the ontology efficiently. However, with increasing frequency of
the application usage, the log might contain a large quantity of data. Thus, it has to be
reengineered, to enable ontology engineers to perform sophisticated data analysis through a
fast access to a variety of possible views of the underlying information. Further, in order to
get a fast response, it is useful to pre-calculate at least some of the information that will be
needed for analysis. Since OLAP techniques �[62] typically handle huge volumes of data that
is interrelated in complex ways, and enable the pre-calculation of everything that may be
needed, we decided to transfer the log into an OLAP cube �[124].

The OLAP cube consists of four dimensions: time, visitor, event and entity indicating when,
by whom, how (querying or browsing) and what is visited. Since the entity dimension, which
represents ontology entities, cannot be normalized, the OLAP cube has the snowflake
structure. The fact table contains the foreign keys to the dimension tables as well as the
numeric facts relevant for the usage-driven change discovery. The lowest level of data in the
fact table is at a much higher level than in the OntoLog, since the log data is aggregated to a
level where patterns and trends can emerge and analysis is meaningful. In this way, the

110 Browsing is treated as a click on the hyperlink between two concepts that are in a direct hierarchy relation.
111 The Log Ontology models the dependency between events through the relation “previousEvent” (see �Figure

63a).

Implementation

 219

OntoLog only contains the pre-processed information about the users’ interactions, which is
needed to improve the ontology whereas the OLAP cube enables the analysis of this
information at an aggregate level.

Indeed, the OLAP cube as a part of the ontology evolution support performs various in-
advance analyses in order to speed up the decision making process. The most important data
(see sections �6.3.1 and �6.3.2) is the number of browsing the direct hierarchy relation between
two concepts c1 and c2 (denoted as Usage(c1,c2)) and the number of querying112 for a concept
c (denoted as Querying(c)). By processing the OntoLog, these values increase. For example,
by processing the part of the semantic log presented in �Figure 63b, the value of
Usage(“Project”, “EU Project”) and the value of Querying(“Project”) will be incremented.
More information about the analyses we perform is given in section �6.3.

In the current implementation, the OLAP cube is queried via a web service. An advantage of
using web service is that it enables having a thin client that can access the OLAP data in a
remote server without threatening the security of the server.

7.3 OntoGov Case Study

In this section we discuss the experiences from applying ontology evolution in one real-world
scenario. The ontology evolution is essential part of the ontoGov113 project which aims at
developing a self-managing system in the E-Government domain. The increasing complexity
of E-Government services demands a correspondingly larger effort for management. Today,
many system management tasks such as service re-configuration due to changes in the law are
often performed manually. This can be time consuming and error-prone. Moreover, it requires
a growing number of highly skilled personnel, making E-Government systems costly. In this
section we show how the usage of semantic technologies for describing E-Government
services can improve the management of changes. We have extended our work in ontology
evolution in order to take into account the specificities of ontologies that are used for
description of semantic web services. Even though we use the E-Government domain as an
example, the approach is general enough to be applied in other domains.

7.3.1 Introduction

E-government is a way for governments to use the new technologies to provide people with a
more convenient access to government information and services, to improve the quality of the
services and to provide greater opportunities to participate in the democratic institutions and
processes �[120]. In addition to providing new ways of working with citizens, enterprises, or
other administrations, E-Government is also concerned with creating an integrated
environment for the development, deployment and maintenance of online services �[141]. In a
fast changing world this last requirement is especially important. Moreover, in the current
economic situation budgets are reduced and opportunities for gaining efficiency seem to be
inevitable: the costs of control and maintenance have become the prime concern of public
management. The emphasis in E-Government is thus shifting from implementation to cost
efficient operations of service or data centres �[68]. This effort includes the development of
shared service centres that provide common services to local government organisations
without affecting the autonomy of organisations and providing the flexibility to enhance and

112 The number of queries related to a concept.
113 OntoGov - Ontology enabled E-Gov Service Configuration, http://www.ontogov.org

Methods and Tools for Ontology Evolution

 220

include additional functionality �[57]. In such a distributed environment, the problem of
efficient management of changes in E-Government has become even more critical.

The main focus of the current change management activities is the resolution of the so-called
dynamic modification. It refers to the problem of managing running processes when
unanticipated exceptions arise during a task execution, such as the appearance of some
hazards in a system, or obtaining some unexpected results �[42]. These approaches ensure the
consistent operation of a legacy system under unpredictable problems. However, in a
dynamically changing political and economic environment, the regulations themselves have to
be continually improved in order to enable the efficient function of a modern society. Taking
into account an enormous number of public services and dependencies between them �[1] as
well as the complexity of interpreting and implementing changes in government regulations,
the process of reconfiguring the existing legacy systems (the so-called static modification)
seems to be quite complex. Indeed, an efficient management system must provide primitives
to allow for the progressive refinement without rewriting it from scratch and must guarantee
that the new version of the service is syntactically and semantically correct �[13]. However, an
efficient management system for resolving static changes in an E-Government domain does
not exist. In this section we present such an approach.

The approach is based on enriching current mechanisms for implementing E-Government
processes, i.e. web services, with semantic technologies in order to support a more efficient
management of changes. Indeed, the current languages for describing web service, WSDL114
and their composition on the level of business processes (BPEL4WS115) lack semantic
expressivity that is crucial for capturing service capabilities at abstract levels. We argue that
business process flow specifications should be defined at abstract task levels leaving open the
details of specific service bindings and execution flows. This abstract level enables the
definition of domain specific constraints that have to be taken into account during the
(re)configuration of a process flow. In order to model this abstract representation of web
services, we base our work on the OWL-S116 ontology and on the WSMO117 ontology, which
support the rich description of web services for the Semantic Web. These ontologies lay the
foundation for semantic web services �[32], �[79]. We extend these efforts, in order to support
the efficient maintenance of semantic web services.

Since the descriptions of semantic web services are ontologies themselves, we base the web
services change management on our work in the distributed and dependent ontology evolution
(see chapter �5). It enables us to develop a formal framework for coping with changes which
includes the consistency of the service descriptions, possible changes as well as their
resolution. Consequently, we can reason about the change management process, making it
very flexible and efficient.

Due to our tasks in the ontoGov project, we have applied our approach for the change
management in the E-Government domain. However, it is general enough to be applied in an
arbitrary application domain that uses (semantic) web services.

7.3.2 Motivating Example

In order to make the description of the approach more understandable, here we define the
basic structure of an E-Government system and give a motivating example that will be used

114 http://www.w3.org/TR/wsdl
115 http://www-106.ibm.com/developerworks/library/ws-bpel/
116 http://www.daml.org/services/owl-s/1.0/
117 http://www.wsmo.org/

Implementation

 221

through the whole section.

There are four basic roles played by actors in an E-Government system as shown in �Figure
71:

• politicians who define a law;

• public administrators who define processes for realizing a law;

• programmers who implement these processes, and,

• end-users (applicants) who use E-Government services.

Public administrators have the key role. They possess a very good knowledge about the E-
Government domain. This knowledge is needed for the design of a public service. It includes
the legislation that a service is based on, the respective law, related directives, prerequisites
etc. Based on the interpretation of a law, a public administrator describes a service as a
sequence of activities that have to be done, which represents a business process. For example,
the generic schema118 for the public service for issuing (renewal) a driving licence is realised
through the following five activities: (i) application, (ii) verification/qualification, (iii)
credential issuance, (iv) record management and (v) revenue collection.

Politicians define the law

Programmers write the
code

Managers decide how to implement the
law

Process1 Process2 Process3Start End

End-users use a
portal

E-Government
Services

Customers

Suppliers

Process1 Process2 Process3Start End

Figure 71. E-Government Framework

In the application activity all the necessary application data/documents are provided by an
applicant. In the next activity, the provided information/documents are verified (e.g. validity
and liquidity of a credit card) and are qualified by testing whether the applicant meets the
qualification requirements. In the credential issuance activity either a permanent or temporary
credential document (i.e. driving licence) is issued. The record management activity ensures
the ongoing integrity of the driving licensing and control record. Finally, the required fee is
charged from the applicant’s bank account. Each activity requires some inputs, produces some
outputs. It can be executed only when its preconditions are fulfilled and it has postconditions
that define the next activity in a conditional manner. In the case of the application activity of
the driving licence service, inputs include a birthday certificate, the output is an application

118 Any process that accepts/enrolls applicants for a fee and then issues some sort of credential has the same

generic structure - http://www.aamva.org/Documents/idsSeptember2003StatusReport2Attachment9.pdf

Methods and Tools for Ontology Evolution

 222

form, the precondition is that the applicant is older than 16 years and the postcondition is that
all fields in the application form are filled. Further, each activity can also be decomposed into
several subactivities or can be specialised.

The crucial activity is the verification/qualification since it reflects the constraints contained
in the law. For example, it implements a rule that a person younger than 16 cannot apply for
issuing the driving licence whereas for motor cars (category B) the minimal age is 18. From
the business process management point of view, the law can be treated as the business rule
required to achieve goals of an organisation (defined by its business policy).

Due to the changes in the political goals of a government, changes in the environment, and
changes in the needs of the people or due to the possibility to organise regulations in a better
way, the politicians might (i) make the revision of a law by accepting an amendment, (ii)
enact a new law or (iii) even repeal a law. In the case of a new amendment, the public
administrator must understand the changes in the law caused by the amendment; locate
activities/services in which this law has to be implemented and translate changes into the
corresponding reconfiguration of the business process. Let us continue the example with the
driving licence. Recently the German law that regulates issuing driving licences has been
changed so that foreigners from non-EU countries must have the German driving licence,
although they have a domestic licence. Let us analyse which changes in the existing business
process for the issuing driving licence will be caused by this legal change. For each change
we discuss the role that an efficient change management system should play.

First of all, the public administrator should locate a business process and the corresponding
activities that should be modified due to this change in a law. This is a time-consuming action
if it is performed in a non-systematic way. Therefore, an efficient change management
approach should inform the public administrator on these activities automatically. It means
that each business activity must contain a reference to a
chapter/section/paragraph/article/amendment of a law it implements. For example, the activity
verification/qualification of the driving licence service is based on the Section 2, Paragraph
“Mindestalter”119 in the Law “Bundesgesetz ueber den Fuehrerschein”.

After finding the service that has to be modified, the public administrator has to decide how to
do that. She can specialise this service in the new one or she can adapt it to include new
requirements. Let’s assume that the public administrator made a decision to generate a
specific driving licence service for foreigners. This service should not be generated from
scratch. Rather, it should be a specialisation of an already existing driving licence service. The
public administrator has to change the preconditions of this new service since it is only for
foreigners from non-EU countries. This automatically causes a change in the preconditions of
the original service120 since the preconditions of two different services that provide the same
functionality must be disjoint. Only in this way will the run-time system know which service
to execute. It is clear that when the preconditions are semantically defined, the judgement
about the inclusion relation among them can be done automatically.

Further, the verification/qualification activity of the new service requires checking whether a
foreigner already has a domestic licence. Therefore, a new input for that activity is necessary.
Since each input has to be supplied, this change is propagated to the previous activity, i.e. the
application activity, which is responsible for the interaction with an applicant. It means that
that activity has to deliver (as its output) the information about the domestic licence, the

119 Since in the scope of the project the German laws were considered as examples, we mention here the original

titles in German.
120 The precondition of the original service was that a person is older than 18 years. Now, this precondition is

extended by the condition that a person must be from EU.

Implementation

 223

validity of which should be tested in the verification activity. Consequently, the application
activity of the new service needs an additional input compared to the original service.

Obviously, different changes in a law have different consequences in the existing services.
We briefly discuss one more example. Recently the German law that regulates issuing driving
licences has been changed, so that teenagers older than 17 years can obtain a (temporary)
licence for motor cars if they pass the exams and if they drive with a person who is older than
25, has the driving licence for more than five years and has scored less than 20 negative
points121 in the last five years. In that case, the older person must have a licence for co-driving.
This change in the law requires changes in the postconditions of the verification/qualification
activity: instead of approval and non-approval of the licence, it can be temporarily approved.
Further, the credential issuance activity has to generate an additional output since the new co-
driving licence should be printable as well. An efficient change management system should
enable the public administrator to perform all these changes efficiently (e.g. to make a
minimal set of additional changes) and to ensure the overall consistency of the reconfigured
service automatically (e.g. to prohibit that an activity has two contradictory preconditions).

In the rest of this section we present a change management system that fulfils the above
mentioned requirements.

7.3.3 Our Approach

Given the requirements described in the section �7.3.2, we have developed an approach for the
change management of semantic web services. Note that even though we use the E-
Government domain as an example, the approach is general enough to be applied in other
domains. In order to emphasise this generality in this section we substitute the E-Government
vocabulary, used in the previous section, with the commonly used business process
management terminology �[116]. Therefore, instead of the term law we use a business rule, a
public E-Government service is treated as a business process and a manager plays the role of
a public administrator.

Since we assume that services are described using ontologies, the management of changes
requires the management of these semantic descriptions. Therefore, our approach can be
based on our work in ontology evolution. Moreover, we have extended the work in order to
take into account the specificity of semantic web services. We firstly define these extensions
of our ontology evolution approach. Then we discuss the way of bridging the gap between
business rules122 and semantic web services implementing these rules. Finally, we define the
procedures for the change propagation in semantic web services by defining the semantics of
the required changes.

Evolution of the Semantic Web Service Ontology

In this section, we extend our approach for the ontology evolution to the handling the
evolution of semantic web service ontologies. Since the evolution is driven by the set of
changes that have to preserve the consistency, the approach requires (i) the explicit
specification of changes that can be applied and (ii) the consistency definition. Both of them
heavily depend on the underlying model and thus they vary from application to application.
Therefore, we firstly introduce an ontology that is used for describing semantic web services.

121 Negative points are collected by participating in some traffic accidents.
122 Note that in the E-Government domain business rules represent the laws since the laws define how to realize

the E-Government services.

Methods and Tools for Ontology Evolution

 224

Secondly, we define more complex changes that can be applied to these descriptions. Finally,
we specify the consistency constraints that are derived from the semantics of this ontology.

Ontologies used for modelling semantic web services

The first step that has to be clarified is the description of web services. We distinguish among
the following ontologies:

• Meta Ontology that contains entities needed to describe services;
• Domain Ontology that contains domain specific knowledge;
• Service Ontologies that describe concrete services.

For each service, a Service Ontology that includes the Meta Ontology and the Domain
Ontology is defined, and it might include (reuse) other Service Ontologies. For example, the
service ontology for the driving licence issuance E-Government service (see section �7.3.2)
describes that it is a composite service that is realized through the application,
verification/qualification etc., which can be considered as atomic services (i.e. an activity).
Therefore, it includes Meta Ontology, since the Meta Ontology defines the building blocks for
the service description. Each of these services (application, verification/qualification etc.) is
related to the Domain Ontology. For example, the application service requires the birth
certificate that is the domain knowledge.

We do not consider dynamic web services whose process flow can be composed on the fly.
However, we allow the dynamic binding of web services during the execution. Therefore, we
focus on the static web services, whose composition is explicitly predefined by the business
rules (i.e. a law). In order to model the dependency between a business rule and the service
implementing it and to take into account the other specificities of the E-Government services
we introduce the Meta Ontology. We note that it is not possible to reuse OWL-S or WSMO
that are the most salient initiatives to describe semantic web services. Whereas the WSMO
ontology does not contain the process model, the OWL-S ontology does not allow123 using the
domain ontology entities as inputs/outputs of an activity in the process model. Moreover, the
formalism for expressing conditions is not defined.

Similarly to the OWL-S ontology, the Meta Ontology consists of two parts: the profile that is
used for the service discovery and the process model that is used to describe the process flow.
To define the profile we extend the OWL-S service profile ontology in several ways. First, we
define the property “hasReferencedBusinessRule” that establishes a reference between the
service description and the business knowledge that is represented in the form of an ontology.
This ontology is called Business Rule ontology and depends on the application domain. In the
E-Government domain, this ontology contains the knowledge about laws, and is called the
Legal Ontology. It is important mentioning that this ontology may be used as a well-defined
vocabulary (semantics) for describing (annotating) both the content and the structure of legal
documents �[40]. However, for the problem we are aiming to resolve, it is necessary to model
only the structure of legal documents, not their content. The description of the Legal Ontology
is given in �[123].

The second extension of the service profile ontology comes from the business process
modelling point of view. Indeed, in order to model the resources involved in a business
process, we introduce additional entities such as the property “requires” and the concept
“Resource” which can be either a person who is involved in the executing a service or an
equipment (i.e. hardware or software) that performs a service automatically. In that way, we

123 In OWL Lite and OWL DL classes and individuals form disjoint domains. Even though OWL Full allows the

freedom of RDF Schema: a class may act as an instance of another (meta)class, it cannot be used, since it is
not decidable.

Implementation

 225

establish a bridge between the common language used by business people – in order to
describe the business processes (i.e. web services) - and the ontology language used for
describing web services.

Finally, the last extension of the OWL-S service profile ontology is achieved by taking into the
consideration the standard metadata defined for the particular domain, since ontologies may
advance metadata solutions. Our goal was to model all information that exists in the standard
including the implicit knowledge. Even though we use the CEN Application Profile v.1.0
metadata standard124, which is used as a standard in the E-Government domain, we note that
similar strategies can be applied for other standards as well. The approach can be summarized
as follows: (i) the metadata standard is transformed into a set of the ontology properties that
are explicitly included in the Meta Ontology; (ii) the Meta Ontology is extended with several
concepts (e.g. the concept “Topic”) representing ranges of these properties with the goal to
improve service discovery; (iii) “hidden” (hard-coded) knowledge embedded in the standard
is translated into a set of rules in the Meta Ontology and is used in typical inferencing tasks.

To describe the process flow we combine the results of the OWL-S process ontology with the
experiences from the business process modelling by taking into the consideration the
specificities of the E-Government domain. Similarly to the OWL-S process ontology, we
distinguish between the services and the control constructs. Services can be either atomic or
composite services. For each service we define the standard set of attributes such a name, a
description, etc. However, there are specific requirements concerning retraceability,
realisation, security, cost etc. Therefore, we introduce the E-Government specific properties:

• each service is associated to the law it is based upon (“hasReferencedBusinessRule”).
We note that it is very important to document the laws and regulations not only for the
whole process but also for specific activities;

• each service is associated to the software component that implements it
(“hasReferencedSoftware”). However, it is possible that the same description of the
service is related to the different implementations. To inform the workflow engine
about the software component that has to be invoked, it is necessary to model the
decision attribute (“hasDecisionAttribute”);

• it is necessary to assign security levels to each service (“hasSecurityLevel”);

• information about cost and time restrictions can be also specified (“hasCost”,
“hasTimeRestriction”, etc.).

Similarly to the OWL-S process ontology, services have the inputs (“hasInput”) and output
(“hasOutput”). The concepts “Input” and “Output” are defined as subconcepts of the concept
“Parameter”. Since some inputs have to be provided by the end-user the concept “User-
defined Input” is defined as a specialisation of the concept “Input”. To establish the equality
between two parameters we introduce the symmetric property “isEqualTo”.

Since it is required that inputs/outputs are defined in the domain ontology, we introduce the
additional concept “Reference” due to two reasons: (i) a property may be attached to several
domain concepts; (ii) a concept defined in the domain ontology may have many properties
and only a subset of them is used as an input. In order to specify the context of the usage of a
property and to select a subset of them, we introduce the properties “hasConcept” and
“hasProperty” respectively. The range of these properties is the Root concept that is included
in each KAON ontology. By using the meta-modelling facilities provided by the KAON
management system, it is possible to reference any entity (i.e. a concept, a property or an

124 http://www.cenorm.be/sh/mmi-dc

Methods and Tools for Ontology Evolution

 226

instance) defined in the domain ontology. Furthermore, to name a parameter we define the
attribute “hasName”.

The description of all entities of the Meta Ontology (and their semantics) is given in �[123].

Changes

For the ontology evolution we defined the set of ontology changes that includes all
elementary changes (e.g. AddConcept, see �Table 1) and some more complex changes, the so-
called composite changes (e.g. MoveConcept, see �Table 4). However, this granularity level
should be extended in order to enable a better management of changes in a service
description. For example, to make the service s1 a predecessor of the service s2, the manager
needs to apply a list of ontology changes that connects outputs of s1 to the corresponding
inputs of s2. We cannot expect that she spends time finding, grouping and ordering the
ontology changes to perform the desired update. In order to do that, she should be aware of
the way of resolving a change; she should find out the right changes and order them in a right
way. This activity is time consuming and error prone.

Therefore, managers require a method for expressing their needs in an easier, more exact and
declarative manner. For them it would be more useful to know that they can connect two
services rather than to know how it is realised. To resolve the above-mentioned problem, the
intent of the changes has to be expressed on a more coarse level, with the intent of the change
directly visible. Only in this way can managers focus on what has to be done, and not on how
to do that.

To identify this new level of changes, we start from the Meta Ontology. The abstract,
simplified model of this ontology is shown in �Figure 72. For each service one can specify
inputs, outputs, preconditions, postconditions, resources and business rules, other services that
it either specialises or is connected with. Each of these entities can be updated by one of the
meta-change transformations: add and remove (see section �2.4.1). A full set of changes can
thus be defined by the cross product of the set of entities of the Meta Ontology and the set of
meta-changes. A part of them125 is shown in �Table 15.

Figure 72. Abstract model of the Meta Ontology

125 We focus here only on the entities that are important for the management. Other aspects, such as properties

defined in the service profile, are ignored. Due to this abstraction of the Meta Ontology, only the most typical
and most frequently occurring changes are shown, since they are relevant from the management point of view

Implementation

 227

Changes shown in �Table 15 build the backbone of a semantic web service management
system. They make the evolution of the semantic description of web services much easier,
faster, more efficient, since they correspond to the “conceptual” operation that someone wants
to apply without understanding the details (i.e. a set of ontology changes) that the
management system has to perform.

Table 15. The taxonomy of changes of the semantic web service ontology

 Additive Changes Subtractive Changes

Service AddService RemoveService

Input AddServiceInput RemoveServiceInput

Output AddServiceOutput RemoveServiceOutput

Precondition AddServicePrecondition RemoveServicePrecondition

Postcondition AddServicePostcondition RemoveServicePostcondition

Service Specialisation AddServiceSpecialisation RemoveServiceSpecialisation

Next Connection AddServiceNextService RemoveServiceNextService

Previous Connection AddServicePreviousService RemoveServicePreviousService

Business Rule AddServiceBusinessRule RemoveServiceBusinessRule

Software Component AddServiceSoftware RemoveServiceSoftware

Resource AddServiceResource RemoveServiceResource

Consistency

To define the consistency of the semantic web service ontologies we start from the ontology
consistency definition that is given in section �2.3. Since ontologies that are used to describe
semantic web services include other ontologies, we have to use the dependent and distributed
ontology consistency definition (see �Definition 41).

Furthermore, the Meta Ontology can be considered as the meta-level for the semantic web
service description. Since the set of consistency constraints heavily depends on the underlying
model, the semantics of the Meta Ontology defines a set of constraints that all service
ontologies have to fulfil. In this section we discuss how the existing dependent ontology
consistency definition has to be enriched in order to take into account the specificities of the
Meta Ontology.

We introduce the following additional constraints:

- Service profile specific constraints:

o Business knowledge specific constraints
C1: Each service has to have a reference to at least one business rule.

o Tracebility
C2: Each service has to have at least one resource that controls its execution.

o Applicability
C3: Each service has to have at least one software component attached to it that
implements it.

- Service process specific constraints:

Methods and Tools for Ontology Evolution

 228

o Completeness
C4: Each service has to have at least one input.

C5: Each service has to have at least one output.

C6: Each service input has to be either output of some other service or is specified by
the end-user.

o Satisfyability
C7: If the input of a service is the output of another service, then it has to be subsumed
by this output.

C8: If the input of a service subsumes the input of the next service, then its
preconditions have to subsume the preconditions of the next one.

C9: If two services are subsumed by the same service, then their preconditions have to
be disjoint.

o Uniqueness
C10: If a service specialises another service, one of its parameters (i.e. inputs, outputs,
preconditions or postconditions) has to be different. The difference can be achieved
either through the subsumption relation with the corresponding counterpart or by
introducing a new one.

o Well-formedness
C11: Inputs, outputs, preconditions and postconditions have to be from the domain
ontology.

- Domain specific constraints:

o Structural dependency
C12: Any specialisation of the service S1 must always be a predecessor of any
specialisation of the service S2, where S1 and S2 are two activities defined in the Meta
Ontology and their order is given in advance (i.e. S1 precedes S2).

It is worth mentioning that only consistency constraints C1 and C12 are domain-dependent.
Whereas C1 has a reference to the Business Rules Ontology, C12 is related to the generic
schema for the services and specifies the obligatory sequence among activities. In the E-
Government domain, C1 requires that each service is related to a law and each law is
referenced, respectively. C12 states that the structure of Service Ontologies must follow
predefined rules, so that a service specialising an application service has to precede
specialisation of a verification service.

We give short interpretations of some constraints from the change management point of view:

• C1 enables to find the corresponding service if a law is changed;

• C6 ensures that a change in an output of an activity is propagated to the inputs of
successor activities and vice versa;

• C8 prohibits the changes, which lead to non-optimal service reconfiguration. For
example, if the preconditions for an activity include a constraint that a person has to be
older than 18, the preconditions of the next activity cannot be that a person has to be
older than 16.

Note that each of these constraints is formally defined and is automatically verified against
service descriptions. For example, the first constraint C1 is formalised as:

Implementation

 229

)"essRulesinferencedBuRehas("rangey

)"essRulesinferencedBuRehas("domainx

)"essRulesinBu",y()"Service",x(yx HH *
c

*
c

∈
∧∈

∧∈∧∈∃∀

where Hc*, P, domain, range are defined in �Definition 3. The property
“hasReferencedBusinessRule”, the concept “Service” and the concept “Business Rule” are
entities of the Meta Ontology.

Finally, we define the consistency of the semantic web services in the following way:

Definition 43 Semantic Web Service Consistency: A semantic web service is a consistent
service if its description is dependent ontology consistent and the additional
constraints (C1-C12) are fulfilled.

Note that a change in the business logic does not cause any ontology inconsistency. Regarding
the E-Government domain, after the removal of a single input of an activity, the ontology
consistency is still fulfilled. However, this change provokes the semantic web service
inconsistency, since the consistency constraint C4 is not satisfied. Therefore, the extension of
the consistency definition is a prerequisite for the management of the semantic web services.

Since semantic web services must be compliant with the set of semantic web service
consistency constraints, in the rest of this section we discuss how to preserve the consistency.
We firstly define a procedure that informs managers about changes in the business rules that
provoke some inconsistencies. Thereafter we introduce the procedures for ensuring the
semantic web service consistency.

Propagating Changes from Business Rules to Services

The basic requirement for a management system is that it has to be simple, correct and usable
for managers. Note that they are responsible for keeping semantic web services up-to-date and
do not need to be experienced ontology engineers. Thus, a management system must provide
capabilities for the automatic identification of problems in the (description of the) semantic
web services. Moreover, it must assist the managers in defining solutions for resolving them.

In this section we define the procedure for finding the “weak places” in the description of the
semantic web services by considering the changes in the business rules and their impact on
the consistency. The procedure is focused on discovering inconsistencies in a semantic web
service description whose repairing improves the agreement of this ontology with the business
rules.

When we designed this support, we assumed that the update would be only a partially
automated process rather than a fully automated process. We do not want to update web
services automatically, but rather to notify the managers about problems. For example, the
manager should be informed about a new amendment. However, the realisation of this
amendment must not be automated since it requires a lot of domain knowledge that cannot be
formally represented in the Legal Ontology and is a result of experiences. Therefore, our
system only makes recommendations about a potential resolution of a problem. For example,
a new amendment might be realised through the specialisation of a web service that
implements the law for which this amendment is defined.

Obviously, the information about the business rule that is implemented by a service is very
important for the change management. It means that the consistency can be achieved only by
referring to this knowledge. This was one of the reasons for defining the Meta Ontology.

Methods and Tools for Ontology Evolution

 230

The procedure for propagating changes from business rules to web services is based on the
evolution between dependent and distributed ontologies since we assume that the Business
Rule Ontology is reused in the Meta Ontology through the replication (see section �5.3.2). In
the E-Government domain the physical distribution is very important since E-Government
services must follow federal, state and local laws that are defined externally. Note that a
Service Ontology might reuse the Meta Ontology either through inclusion or replication,
which depends whether they are within the same system or not.

The procedure consists of four steps:

1. Checking actuality of the Business Rules Ontology – Since each ontology has a version
number associated with it that is incremented each time when the ontology is changed,
checking the equivalence of the original of the Business Rules Ontology and the replica
can be done by a simple comparison of the number.

2. Extracting Deltas – After determining that the included Business Rules Ontology needs to
be updated, the evolution log (see section �3.2.4) of this ontology is accessed and deltas are
extracted (see section �5.3.2). For example, after the addition of the new amendment A7 in
the Legal Ontology as the adaptation of the paragraph P2, the delta will contain changes
shown in �Figure 73.

<a:AddInstanceOf rdf:ID="i-1079962974979-1202219624"
a:has_referenceConcept="Legal#Amendment"
a:has_referenceInstance="Legal#A7"
a:inOIModel="file:/C:/ontoGov/Legal"
a:version="10">

...
</a:AddInstanceOf>
<a:AddPropertyInstance rdf:ID="i-1079962991620-1904187797"

a:has_referenceProperty="Legal#modifies"
a:has_referenceSourceInstance="Legal#A7"
a:has_referenceTargetInstance="Legal#P2"

...
<a:has_previousChange rdf:resource="#i-1079962974979-1202219624"/>
</a:AddPropertyInstance>

Figure 73. A part of a log of the Legal Ontology

3. Analysis of changes – Each performed change is analysed, in order to find semantic web
services that have to be updated. We distinguish between the addition and the deletion of
an entity from the Business Rule Ontology. Removals can be resolved directly by applying
the existing ontology evolution system since it ensures the consistency by generating
addition changes (see chapter �4). However, the addition requires an additional effort that
depends on the structure of the Business Rules Ontology. Here we describe how this
problem is resolved in the E-Government domain by considering the Legal Ontology. We
analyse the addition of a new amendment. The goal is to find services that realise the law
related to this amendment and to order them in an appropriate way. Since each service is
referred to a law/chapter/paragraph/article, the corresponding service can be easily found.
In case there are several services referring to the given law (e.g. through a paragraph or an
amendment), they are ranked according to the semantic similarity that is based on
calculating the distance between two entities in the hierarchy, we proposed in �[133].
Currently, we are developing a search module that uses NLP-methods to calculate
similarity between two texts, no matter the text is the description of an amendment or
paragraph.

4. Making recommendation: In order to make recommendations how to adapt the up-to-date
semantic web services we define the Lifecycle Ontology �[123]. It describes design

Implementation

 231

decisions and their relationship to affected parts of the service as well as to the
requirements that motivate the decisions �[67]. Since the Lifecycle Ontology is a
description of the service design process, which clarifies which design decisions were
taken for which reasons, it proves to be valuable for further development and
maintenance. During ongoing development, it helps the managers to avoid pursuing
unpromising design alternatives repeatedly, but it also facilitates maintenance by
improving the understandability of the service design.

Propagating Changes Within Services

The key process in the change management is the resolution of the changes triggered by the
procedure described in the previous section. It has to guarantee that a change is correctly
propagated and that no inconsistency is left in the system. If this was left to the managers, the
management process would be too error-prone and time consuming – it is unrealistic to expect
that humans will be able to comprehend all the existing services and interdependencies
between them. For example, in the E-Government domain an unforeseen and uncorrected
inconsistency is one of the most common problems.

Therefore, the change management has to be supported by a tool that improves the efficiency
and the quality of this process. In order to develop such a tool, the problem has to be
formulated in terms of a formal model. Since our approach is based on the semantic
description of services, the formal model requires the specification of the semantics of
changes that can be applied to the semantic web services.

For each change shown in �Table 15 it is required to specify (see section �4.2):

(i) necessary preconditions;
(ii) sufficient postconditions;
(iii) possible actions.

The preconditions of a change are a set of assertions that must be true to be able to apply the
change. For example, the preconditions for the change AddServiceSpecialisation(S1,S2),
which results in the specialisation of the service S1 in the service S2, are: (i) S1 and S2 are
different services; (ii) S2 is not an indirect parent (through the inheritance hierarchy) of S1;
(iii) S2 is not already defined as a specialisation of S1; (iv) for each
input/output/preconditions/postconditions of S1 there is a corresponding element in S2 that is
subsumed by the original126.

The postconditions of a change are a set of assertions that must be true after applying the
change and it describes the result of the change. For example, the removal of a service results
in the fact that this service is not in this service ontology anymore.

The actions are additional changes that have to be generated in order to resolve the side
effects of a change on other related entities. It means that each inconsistency problem is
treated as a request for a new change, which can induce new problems that cause new changes
and so on. An inconsistency arises when one of the semantic web service consistency
constraints (see �Definition 43) is corrupted. For example, the addition of a service will trigger
the addition of an input for this service (i.e. AddServiceInput change) since the consistency
constraint C4 requires that each service has to have at least one input. To define the necessary
actions for each change, we reuse the approach described in section �4.2.

Here we define the procedure for the AddServiceInput(service, input) change:

126 Note that the first three preconditions are inherited from the AddSubConcept ontology change whereas the last

one is specific for this particular change.

Methods and Tools for Ontology Evolution

 232

• Preconditions –)service(Inputsinput ∉ , where Inputs is a set of all inputs already
defined for a service. This is in agreement with the single ontology consistency
constraints that ensure the uniqueness of the definition.

• Postconditions –)service(Inputsinput ∈ , which means that this input is defined for
this service.

• Actions – AddEqualsTo(input, x), where:

H*
C)x,input()1s(Outputsx)1s(hasNextservice1s ∈∧∈∧∈∃ , where hasNext127 is

a property defined in the Meta Ontology for connecting services, Inputs/Outputs
represent a set of inputs/outputs defined for a service and Hc

* is already defined in
section �2.2.

A new input might corrupt the C6 consistency constraint, since the inputs provided by the
end-users are usually defined for the first service in the process flow. To resolve this
problem, one has to specify that this input is provided by the output of the previous
service. This can be realized as a request for a new change AddEqualsTo, which
establishes the “IsEqualsTo” property between corresponding input/output parameters.

For example, according to the changes in a law, the driving licence verification activity
requires fingerprint. This change causes the inconsistency since the new input hangs. The
problem can be resolved by generating the additional change AddEqualsTo between the
verification activity and its predecessor. This further induces a new output of the predecessor,
i.e. application activity, which can potentially trigger other changes and so on.

Finally, it is important to note that any change in the domain ontology is resolved
automatically by using the existing ontology evolution system. For example, let’s consider
that the domain ontology contains the concept “Person” and two of its specialisations:
“Child” and “Adult”. Since there is a special procedure for the passport issuance for the
children (see section �7.3.2), this service is a specialisation of the standard service passport
issuance service. The application service of the service for children requires an additional
input (i.e. parent authorisation). The precondition for this application service is that it is
required for a child. Let’s now consider that the concept “Child” needs to be removed. The
ontology evolution system will propagate this change to all ontologies that included the
changing ontology. Therefore, the ontology describing the passport issuance procedure for
children will also be informed about changes. Since, according to the ontology consistency
definition (see section �2.3), undefined entities are not allowed, the request for the removal of
the corresponding application service will be generated.

This example shows that the management of semantic web service descriptions heavily
depends on the management support for the domain ontologies. We showed how our ontology
evolution approach can be reused and extended to take into account the specificities of
semantic web service description.

7.3.4 Related Work

Although the research related to Web Services has drastically increased recently, there are
very few approaches that cope with the changes in the process flow of a web service. The
management approaches are mainly focused on the composition of a web service from scratch
and neglect the problem of the continual improvement of the service. The change

127 s2∈hasNext(s1) means that s2 is one of the services that s1 precedes through one control construct.

Implementation

 233

management approaches are mainly focused on re-implementing some software modules �[57].
We found two reasons for such behaviour:

1. Since the technology is rather new, the real challenges for the change management are
still to come. Indeed, in the workflow community, from which web services are
transferring a lot of experiences, the workflow maintenance is a well-researched topic;

2. The description of web services lacks a conceptual level on which the reasoning about
a compositional model, including the reasons and the methods for its reconfiguration,
will be possible. As we have already mentioned, the emerging semantic web services
approaches introduce such a level and we give here a short overview of their
achievement in the (re)composition.

Workflow
The workflow community has recently paid attention to configurable or extensible workflow
systems, which present some overlaps with our ideas. For example, the work on flexible
workflows has focused on the dynamic process modification �[58]. In this publication,
workflow changes are specified by transformation rules composed of a source schema, a
destination schema and of conditions. The workflow system checks for parts of the process
that are isomorphic with the source schema and replaces them with the destination schema for
all instances for which the conditions are satisfied. However, the workflow schema contains
fewer primitives than an ontology so that this approach is much less comprehensive then ours.
Moreover, the change in the business policy is not treated at all.

The most similar to our approach is the work related to the workflow evolution �[13]. This
paper defines a minimal, complete and consistent set of modification primitives that allow
modifications of workflow schemata. The authors introduce the taxonomy of policies to
manage the evolution of running instances when the corresponding workflow schema is
modified. However, the authors are focused on the dynamic workflow evolution, which is not
the focus of our work, as we have mentioned in the section �7.3.1.

Semantic Web Services
Recently, the approaches for the composition of semantic web services have emerged
drastically. We discuss only the most relevant to our approach.

In �[61] a framework for the interactive service composition is presented, where the system
assists users in constructing a computational pathway by exploiting the semantic description
of services. Given the computational pathway and the user’s task description (i.e. a set of
initial inputs and expected results), the system performs a set of checks (e.g. are all the
expected results produced, are all the needed input data provided) in order to ensure the
consistency of the resulted model. The checks used in this approach can be seen as a subset of
the constraints we defined for ensuring the consistency. Moreover, since we derive the
constraints from the ontology model behind the semantic web services, we can guarantee the
completeness and the consistent propagation of the changes.

In �[149] the authors present a prototype for dynamic binding of Web Services for the abstract
specification of business integration flows using a constraint-based semantic-discovery
mechanism. They provide a way of modelling and accommodating scoped constraints and
inter-service dependencies within a process flow while dynamically binding services. The
result is a system that allows people to focus on creating appropriate high-level flows, while
providing a robust and adaptable runtime. Similarly to our approach they contend that the
selection of Web services for a step in a process flow is, often, not a stand-alone operation, as
there may be dependencies on the previously chosen services for the process. They introduce

Methods and Tools for Ontology Evolution

 234

two types of dependencies: description-based and domain constraints whereas both of them
can be easily mapped into our business-knowledge specific constraints that ensure the
meaningful order between services in a flow. Additionally we provide process specific
constraints that ensure the consistency of the process flow.

Next, there are several approaches for the automatic composition of semantic web services
�[44], �[88] that drive the design at a conceptual level in order to guarantee its correctness and
to avoid inconsistencies among its internal components. In that context, our approach can be
seen as an automatic re-composition of a service driven by the constraints derived from the
business environment, domain knowledge and internal structure of a service.

Finally, the main difference between our approach and all the related researches is that we
base our management framework on the systematic evolution of the model that underlines
semantic web services (i.e. several dependent and distributed ontologies). It enables us to be
predictive in the management (i.e. we can reason about the consequences of changes in the
system) and to expand the framework whereas the consistency of the managed system is
ensured, easily.

7.3.5 Conclusion

In this section we presented an approach for the management of changes in semantic web
services. The approach is based on our work on the ontology evolution that is elaborated in
this thesis. As a case study we considered the E-Government domain since E-Government
services are under the continual adaptation to the political goals of a government and to the
needs of the people. Up to now, the changes have been initiated and propagated manually,
which causes a lot of errors and redundant steps in the change management process. Our
approach enables the automation of the change propagation process and ensures its consistent
execution since it is based on a formal framework for coping with changes. Consequently, we
can reason about the change management process, making it very flexible and efficient.

The proposed approach can be extended by suggesting the changes that can improve services.
This can be done (i) by monitoring the execution of E-Government services (e.g. the activity
that causes the delay is a candidate for optimisation) and/or (ii) by taking into account the
end-users’ complaints (e.g. end-users might not be satisfied with the quality of services since
they have to supply the same information several times).

Conclusion

 235

.

8 Conclusion

Due to the ever increasing complexity, heterogeneity and physical distribution of the business,
the importance of ontologies for the conceptualisation of the business applications becomes
inevitable. It is especially important for the recently increased research in the Semantic Web
and Web Services that enable publishing business processes on the Web.

However, the frequently changing business context implies the need to cope with changes in
ontology-based business applications in a more systematic way. Firstly, different causes of
changes (e.g. changes in the business environment, user’s preferences, internal processes, etc.)
have to be uniformly represented, in order to enable their efficient processing. Secondly, the
changes have to be consistently resolved in the application, and their effects have to be
propagated to all dependent business systems. Moreover, in order to control the resolution of
the changes (e.g. the identification and overcoming of undesired changes), the responsible
persons have to be able to make appropriate decisions. Finally, the continual business
reengineering requires an automatic discovery of new changes by analysing the manner in
which the application is used (e.g. the detection of trends in the users’ behaviour). In order to
fulfil these requirements efficiently, the managing of the changes in the ontology-based
application has to be performed on the level of ontologies themselves. Therefore, the need for
an efficient approach to the management of the changes in an ontology (e.g. ontology
evolution) is obvious. In this thesis, we presented such an approach.

By analysing typical problems that arise during the ontology development, we formulated the
following set of design requirements for an ontology evolution system:

3. Ontology evolution has to (i) enable the handling of the given ontology changes and
(ii) ensure the consistency of the underlying ontology and all dependent artefacts;

4. Ontology evolution should be supervised allowing the user to manage changes more
easily;

5. Ontology evolution should offer advice to the user for a continual ontology
refinement.

Based on the analysis of these requirements, we defined a process-oriented ontology evolution
approach that manages changes in six steps:

(i) The process starts with capturing changes either from explicit requirements or from
the result of change discovery methods;

(ii) Next, the changes are represented formally and explicitly;

Methods and Tools for Ontology Evolution

 236

(iii)The semantics of the change phase prevents inconsistencies by computing the
additional changes that guarantee the transition of the ontology into a consistent state;

(iv) In the change propagation phase, all dependent artefacts (ontology instances on the
Web, dependent ontologies and application programmes using the changed ontology)
are updated;

(v) During the change implementation phase, the required and induced changes are
applied to the ontology in a transactional manner;

(vi) In the change validation phase, the user evaluates the results and restarts the cycle if
necessary.

A special attention in developing and implementing the proposed process-oriented ontology
evolution approach was paid to the usability issue, by taking into account the users with the
different background regarding the ontology management. Indeed, the recent, widespread
expansion of the ontology-based research leads to the involvement of the users with various
experiences, skills and requirements in the usage/development of ontologies. Since getting up-
to-date ontologies is one of the crucial bottlenecks in the management of the ontology-based
applications, our primary intention was and remains to enable the customisation of the
ontology-evolution process to the current need (i.e. knowledge, preferences) of the user. In
that way, not only do we enable an inexperienced user to understand and apply the main
concepts of the approach easily, but we also allow an advanced user to satisfy a very
complicated request for a change as much comfortable as possible. For example, we
categorized ontology changes into elementary, composite and complex changes, in order to
enable the users to process their different requests efficiently. A novice will be focused only
on elementary and composite changes that are built in the system. However, an expert can
benefit from the possibility to define a complex request for a change declaratively, without
defining how it has to be realized. Another example are the evolution strategies that enable an
expert to control the effects of ontology changes. Moreover, the advanced evolution strategies
are suitable for the novices, since they can customise the change resolution at a higher level of
abstraction (e.g. the minimal number of induced changes) without considering each particular
resolution point.

Another aspect we considered is the applicability of the proposed approach on the Semantic
Web, which, as a semantic extension of the current Web, opens the possibility to develop
large and distributed ontology-based applications. The vision of the Semantic Web can only
be realized through the proliferation of well-known ontologies describing different domains.
To enable the interoperability in the Semantic Web, it will be necessary to break these
ontologies down into smaller, well-focused units that may be reused. In doing so, the ontology
engineer should reuse as many definitions as possible from the existing ontologies to speed up
the engineering and to enable the interoperability. Since ontologies are rarely static, an
infrastructure for the management of ontology changes, taking into account dependencies
between ontologies, is needed. As an answer to this challenge, in this thesis, we developed a
multi-dimensional approach for the ontology evolution that takes into account the number of
evolving ontologies and their physical distribution.

Another issue we found important for the widespread acceptance of the approach is its cyclic
nature that provides a platform for the continual learning. In today’s business, an enormous
quantity of data is produced, partially consumed and forgotten in corporate databases. In the
ontology-based applications, all this data can be integrated on the semantic (ontology) level
and applied for the improvement of the ontology. In that way, an ontology is not a passive
model that structures a domain, but an active component that automatically reflects changes in
the domain it models. We defined a comprehensive framework for the change discovery
centred around the Log Ontology, which tracks the users’ behaviour, and we proposed several

Conclusion

 237

heuristics for the discovery of changes. In that way, our approach goes beyond a standard
change management process; rather it is a continual improvement process.

A substantial part of the results from this thesis is a system for the ontology evolution,
implemented in the well known128 KAON ontology engineering framework. Although the
system reflects our intention to highly increase the usability, its primary design decision was
related to the possibility to work with large datasets. Indeed, moving ontologies into a large
real-world context requires the scalability of the platforms they are dealing with. This is
probably the most critical issue in the whole research related to ontologies. Can the
approaches scale when their application data increases drastically? In the Semantic Web
environment, such a data explosion is inevitable. We did our best in tackling the complexity
problem in the presented research. The evaluation studies showed that we moved in the right
direction. We performed several evaluations on the large datasets, including the 600MB large
MEDLINE datasets.

Although a lot of the research has been successfully performed in the thesis, there are still
open issues that can be resolved in the area of the ontology evolution. We would like to
mention the most important topics from our perspective:

• Language-independent ontology evolution: Our ontology evolution approach is developed
as much as possible independently of the underlying ontology language. However, the set
of consistency constraints and the set of elementary ontology changes heavily depend on
the KAON ontology language. Since the OWL ontology language is going to be a
standard language for representing ontologies on the Semantic Web, the adaptation of the
ontology evolution approach to the semantics of the OWL ontology language would be
useful. It requires the adjustment of the ontology consistency definition to the formal
semantics of the OWL ontology model, new ontology changes, since the OWL ontology
language is richer than the KAON ontology language, as well as the explicit specification
of semantics of ontology changes.

Moreover, in order to achieve the interoperability (i.e. the reuse) between the evolving
ontologies developed in different ontology languages, the ontology evolution should be
specified with enough generality that the other ontology evolution systems working with
different ontology languages can benefit from our work. One way to accomplish this is to
model all aspects of the ontology evolution declaratively. This abstraction may assist in
the design of a language independent ontology evolution system;

• Request specification: In the future, our approach for the specification of a request for a
change can be extended by defining a declarative language for this specification. It will
allow expressing the ontology changes and constraints in a single framework, and, thus,
will allow to reason about interactions between the two. This language will differ from the
existing ontology query languages, which are only used for the retrieval of the data from
an ontology. It will extend these languages by incorporating the modifications, as well;

• Partial reuse: Our approach for the ontology reuse is currently limited to including entire
models rather than including subsets. By allowing the inclusion of a part of a model, it
will be much more difficult to ensure the consistency of the including ontology, since it is
not clear which additional elements from the included ontology must be included.
Moreover, lifting these constraints will have a significant impact on the evolution of
dependent ontologies, since it will be difficult to conclude which changes have to be
broadcast to which dependent ontology;

128 Till June 2004, there was 11.649 downloads.

Methods and Tools for Ontology Evolution

 238

• Ontology dependency: The future work can be directed towards providing more ways for
working with multiple ontologies. Currently, we consider only the ontology reuse.
However, there are also other dependency forms, such as ontology mapping, ontology
merging, ontology alignment and ontology integration. For example, the ontology
mapping relates similar (according to some metric) concepts and relations from different
sources to each other; the ontology merging creates a new ontology from two or more
existing ontologies with overlapping parts. Each of these dependency forms puts different
requirements on the evolution between dependent ontologies. Some of them can be
resolved by introducing a special meta-ontology that captures relationships between
entities from different ontologies. For example, to set up the mapping between ontologies,
the mapping ontology might be defined. This ontology should contain the “equal”
property that can be used for establishing equivalence between concepts from different
ontologies. To support the evolution of the instantiation of this ontology, the ontology
evolution approach has to be extended in two ways. Firstly, the set of consistency
constraints has to be extended by taking into account the semantics of the mapping
ontology. Secondly, the set of changes has to be extended with the more complex changes
that can be applied to these mappings. Finally, the evolution support has to take into
account that concepts and properties from the ontologies between which the mapping is
established are considered as instances in the ontology that describes these mappings;

• Change discovery from dependent ontologies: Besides the implicit feedback of end-users
captured in the usage log, re-occurring extensions of an included ontology in many
including ontologies are another force driving the usage-driven ontology updates.
Therefore, our approach for the usage-driven ontology evolution can be extended by
taking into account the usage of an ontology in other ontologies that reuse it. Since the
extensions of an ontology are driven by different ontology engineers, dependent,
distributed ontologies evolve in different directions. It is necessary to analyse the
evolution logs of these ontologies, and to discover changes that can be applied to the
included ontology.

Ontology evolution is a promising research area since evolution over time is an essential
requirement for successful application of ontologies. New methods and tools to support this
complex task can help for easy and consistent modification and thus can enable the
widespread use of ontologies in industrial and academic applications. This thesis is a step
towards achieving aforementioned goal.

 239

9 References

[1] N. Adam, F. Artigas, V. Atluri, S. Chun, S. Colbert, M. Degeratu, A. Ebeid, V.
Hatzivassiloglou, R. Holowczak, O. Marcopolus, P. Mazzoleni, W. Rayner, E-
government: Human centered systems for business services, In Proceedings of the 1st
National Conference on Digital Government, Los Angeles, CA, pp. 48–55, 2001.

[2] E. Allen, T. Khoshgoftaar, Y. Chen, Measuring coupling and cohesion of software
modules: an information - theory approach, In Proceedings of the Seventh International
Software Metrics Symposium (METRICS 2001), London, pp. 124-134, 2001.

[3] J. Banerjee, W. Kim, H.J. Kim, H. Korth, Semantics and implementation of schema
evolution in object-oriented databases, In Proceedings of the Annual Conference on
Management of Data (ACM SIGMOD 16(3)), San Francisco, pp. 311-322, 1987.

[4] V. Barker, D. O'Connor, J. Bachant, E. Soloway, Expert Systems for Configuration at
Digital: XCON and Beyond, Communications of the ACM, Volume 32, Number 3, pp.
298-312, 1989.

[5] B. Berendt, A. Hotho, G. Stumme, Towards semantic web mining, In Proceedings of the
1st International Semantic Web Conference (ISWC 2002), Sardinia, Italia, LNCS 2342,
pp. 264-278, 2002.

[6] B. Berendt, M. Spiliopoulou, Analysis of navigation behaviour in web sites integrating
multiple information systems, The VLDB Journal, Volume 9, pp. 56-75, 2000.

[7] M. Bhide, P. Deoasee, A. Katkar, A. Panchbudhe, and K. Ramamritham, Adaptive push-
pull: disseminating dynamic Web data, IEEE Transaction on Computers, Volume 51,
Number 6, pp. 652-668, June 2002.

[8] R. Botafogo, E. Rivlin, B. Shneiderman, Structural analysis of hypertexts: identifying
hierarchies and useful metrics, ACM Transactions on Office Information Systems,
Volume 10, Number 2, pp. 142-180, 1992.

[9] T. Berners-Lee, XML 2000 – Semantic Web talk, http//www.w3.org/2000/Talks/1206-
xml2k-tbl/slide10-0.html, 2000.

[10] P. Breche, Advanced principles for changing schemas of object databases, In
Proceedings of the 8th Conference on Advanced Information Systems Engineering
(CAiSE'96), Heraklion, Crete, Greece, LNCS 1080, pp. 476-495, 1996.

[11] P. Breche, M. Woerner, How to remove a class in an ODBS, In Proceedings of the 2nd
International Conference on Applications of Databases (ADBS’95), San Jose, California,
pp. 235-246, 1995.

 240

[12] A. Bultmann, J. Kuipers, F. van Harmelem, Maintenance of KBS's by Domain
Experts: The Holy Grail in Practice, In Proceedings of the 13th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems
(IEA/AIE 2000), New Orleans, Louisiana, USA, LNCS 1821, pp. 139-148, 2000.

[13] F. Casati, S. Ceri, B. Pernici, G. Pozzi, Workflow evolution, In Proceedings of 15 th
International Conference on Conceptual Modelling (ER'96), Cottbus, Germany, pp. 438-
455, 1996.

[14] W. J.Clancey, Heuristic classification, Artificial Intelligence, Volume 27, Number 3,
pp. 289-50, 1985.

[15] K. Claypool, Managing schema change in a heterogeneous environment, PhD Thesis,
URN ETD-0617102-213436, Science Department, Worcester Polytechnic Institute, 2002.

[16] K. Claypool, E. Rundensteiner, SERF: transforming your database, IEEE Bulletin -
Special Issue on Database Transformation Technology, pp. 19-24, Mart 1999.

[17] G. Cobena, Change management of semi-structured data on the Web, Inria, TU-0789,
PhD Thesis, 2003.

[18] F. Coenen, T. Bench-Capon, Maintenance of knowledge-based systems, Academic
Press, the A.P.I.C. Series, Number 40, ISBN: 0-12-178120-8, 1993.

[19] D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein, DAML+OIL reference description, http://www.w3.org/TR/daml+oil-
reference, 2001.

[20] N. Cullot, C. Parent, S. Spaccapietra, C. Vangenot, Ontologies: A contribution to the
DL/DB debate, In Proceedings of the 1st International Workshop on the Semantic Web
and Databases (SWDB 2003), 29th International Conference on Very Large Data Bases,
Berlin Germany, pp. 109-129, 2003.

[21] A. Das, W. Wu, D. McGuinness, Industrial strength ontology management, The
Emerging Semantic Web, Selected papers from the 1st Semantic web working
symposium, Stanford University, California, USA, Frontiers in Artificial Intelligence and
Applications, Volume 75, IOS press, ISBN 1-58603-255-0, 2002.

[22] H. Dai , B. Mobasher, A road map to more effective web personalization: Integrating
domain knowledge with web usage mining, In Proceedings of the International Conference
on Internet Computing 2003 (IC’03), Las Vegas, Nevada, pp. 58-64, 2003.

[23] DAML + OIL - http://www.daml.org/2001/03/reference.html

[24] J. Davies, A. Duke, Y. Sure, OntoShare – A knowledge management environment for
virtual communities of practice, In Proceedings of the 2nd International Conference on
Knowledge Capture (K-CAP2003), Florida, USA, pp. 20-27, 2003.

[25] C. Delcourt, R. Zicari, The design of an integrity consistency checker (ICC) for an
object-oriented database system, In Proceedings of European Conference for Object-
Oriented Programming (ECOOP’91), Geneva, Switzerland, LNCS 512, pp. 97-117, 1991.

[26] S. Decker, M. Erdmann, D. Fensel, R. Studer, Ontobroker: Ontology based access to
distributed and semi-structured information, Meersman, R. et al. (Eds.), Database
Semantics: Semantic Issues in Multimedia Systems, Kluwer Academic Publisher, pp. 351-
369, 1999.

[27] A. J. Duineveld, R. Stoter, M.R. Weiden, B. Kenepa, V.R. Benjamins, Wondertools?
A comparative study of ontological engineering tools, International Journal of Human-
Computer Studies, Volume 52, Number 6, pp. 1111-1133, 2000.

 241

[28] M. Ehrig, A. Maedche, Ontology-focused crawling of Web documents, In Proceedings
of the Symposium on Applied Computing 2003 (SAC 2003), Melbourne, Florida, USA,
ACM, pp. 1174-1178, 2003.

[29] M. Erdmann, Ontologien zur konzeptuellen modellierung der semantik von XML, PhD
Thesis, University of Karlsruhe, Hamburg: Books on Demand, ISBN 3-8311-2635-6,
2001.

[30] A. Farquhar, R. Fikes, and J. Rice, The ontolingua server: Tools for collaborative
ontology construction, Technical Report, Stanford KSL 96-26, September 1996.

[31] D. Fensel, J.A. Hendler, H. Lieberman, W. Wahlster (Eds.), Spinning the Semantic
Web: Bringing the World Wide Web to its full potential, MIT Press 2003, ISBN 0-262-
06232-1, 2003.

[32] D Fensel, C. Bussler, The Web Service Modelling Framework WSMF, In Electronic
Commerce Research and Application, Volume 1, Number 2, pp. 113-137, 2002.

[33] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, M. Klein, OIL in a
nutshell, In Proceedings of 12th International Conference on Knowledge Engineering and
Knowledge Management (EKAW 2000), Juan-les-Pins, France, LNCS 1937, pp. 1-16,
2000.

[34] D. Fensel, Ontologies: dynamics networks of meaning, In Proceedings of the 1st
Semantic web working symposium, Stanford, CA, USA, 2001.

[35] M. Fernandez-Lopez, A. Gomez-Perez, J.P. Sierra, A.P. Sierra, Building a chemical
ontology using methontology and the ontology design environment, IEEE Intelligent
Systems, Volume 14, Number 1, pp.37-46, 1999.

[36] F. Ferrandina, S.E. Lautemann, An integrated approach to schema evolution for object
databases, In Proceedings of the Internation Conference on Object Oriented Information
Systems (OOIS 1996), London, UK, pp. 280-294, 1996.

[37] E. Franconi, F. Grandi, and F. Mandreoli, A semantic approach for schema evolution
and versioning in object-oriented databases, Computational Logic 2000, pp. 1048-1062,
2000.

[38] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: improving the
design of existing code, Addison-Wesley, ISBN: 0201485672, 1999.

[39] N. Foo, Ontology revision, In Proceedings of the 3rd International Conference on
Conceptual Structures (ICCS’95), Santa Cruz, CA, USA , LNCS 54, pp. 1-14, 1995.

[40] A. Gangemi, A. Prisco, M.T. Sagri, G. Steve, D. Tiscornia, Some ontological tools to
support legal regulatory compliance, with a case study, Workshop on Regulatory
Ontologies and the Modelling of Complaint Regulations, Part of the International
Federated Conferences (OTM'03), Catania, Sicily, Italy, LNCS, Volume 2889, pp. 607-
620, 2003.

[41] B. Ganter, R. Wille, Formal concept analysis - mathematical foundations, Springer
Verlag, ISBN: 3540627715, 1999.

[42] D. Georgakopoulos, H. Schuster, D. Baker, A. Cichocki, Managing escalation of
collaboration processes in crisis mitigation situations, In Proceedings of 16th
International Conference on Data Engineering (ICDE 2000), San Diego, CA, USA, pp.
45-56, 2000.

 242

[43] Y. Gil, M. Tallis, A Script-Based Approach to Modifying Knowledge Bases, In
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97),
Providence, RI, pp. 377-383, 1997.

[44] A. Gomez-Perez, R. Gonzalez-Cabero, M. Lama, A framework for design and
composition of Semantic Web services, First International Semantic Web Services
Symposium, 2004 AAAI Spring Symposium Series, ISBN 1-57735-198-3, pp. 113-120,
2004.

[45] A. Gomez-Perez, M. Fernandez-Lopez, O. Corcho, Ontological engineering: with
examples from the areas of knowledge management, e-commerce and the Semantic Web,
Springer Verlag London Ltd., ISBN: 1-85233-551-3, 2003.

[46] A. Gomez-Perez, Ontological engineering: A state of the art, Expert Update, Volume
2, Number 3, pp. 33-43, 1999.

[47] A.Gomez-Perez, V. Richard Benjamins, Applications of ontologies and poblem-
solving methods, AI Magazine, Volume 20, Number 1, pp. 119-122, 1999.

[48] T. Gruber, A translation approach to portable ontology specifications, Knowledge
Acquisition, An International Journal of Knowledge Acquisition for Knowledge-Based
Systems, Volume 5, Number 2, pp.199-220, 1993.

[49] N. Guarino, C. Welty, Identity, unity and individuality: Towards a formal toolkit for
ontological analysis, In Proceedings of the 14th European Conference on Artificial
Intelligence (ECAI 2000), Amsterdam, IOS Press, pp. 219-223, 2000.

[50] C. Hardless, R. Lindgren, U. Nulden, K., Pessi, The evolution of knowledge
management system need to be managed, Journal of Knowledge Management Practice,
Volume 3, 2000.

[51] F. van Harmelen, I. Horrocks, FAQs on OIL: the Ontology Inference Layer, IEEE
Intelligent Systems, Trends and Controversies, Volume 15, Number 6, pp. 69-72,
November/December 2000.

[52] F. Hayes-Roth, D.A. Waterman, D. B. Lenat, Building expert systems, Addison-
Wesley, ISBN: 0-201-10686-8, 1983.

[53] J. Heflin, Towards the Semantic Web: Knowledge representation in a dynamic,
distributed environment, Ph.D. Thesis, University of Maryland, College Park,
http://www.cse.lehigh.edu/~heflin/pubs/heflin-thesis-orig.ps.gz, 2001.

[54] J. Heflin, J. Hendler, Dynamic ontologies on the Web, In Proceedings of Seventeenth
National Conference on Artificial Intelligence (AAAI-2000), Menlo Park, CA,
AAAI/MIT Press, Cambridge, MA, pp. 443-449, 2000.

[55] W. Huersch, Maintaining consistency and behaviour of object-oriented systems during
evolution, In Proceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA '97), ACM SIGPLAN Notices, Volume
32, Number 10, pp. 1-21, 1997.

[56] IEEE 90, Institute of Electrical and Electronics Engineers, IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY, 1990.

[57] M. Janssen, R. Wagenaar, An analysis of a shared services centre in e-government,
system sciences, In Proceedings of the 37th Annual Hawaii International Conference, Big
Island, HI, USA, pp.124-133, 2004.

 243

[58] G. Joeris, O. Herzog, Managing evolving workflow specifications, In Proceedings of
the 3rd IFCIS International Conference on Cooperative Information Systems (CoopIS'98),
New York, pp. 310-319, 1998.

[59] J. Kephart, D. Chess, The Vision of Autonomic Computing, IEEE Computer, pp. 41-50,
January 2003.

[60] J. I. Kiger, The Depth/Breadth Trade-Off in the Design of Menu-Driven User
Interfaces, International Journal of Man-Machine Studies, Volume 20, Number 2, pp.
201-213, 1984.

[61] J. Kim, Y. Gil, Towards Interactive Composition of Semantic Web Services, First
International Semantic Web Services Symposium, 2004 AAAI Spring Symposium Series,
ISBN 1-57735-198-3, pp. 100-107, 2004.

[62] R. Kimball, R. Merz, The data webhouse toolkit: building the web-enabled data
warehouse, John Wiley & Sons, ISBN: 0471376809, 2000.

[63] M. Klein, Versioning of distributed ontologies, available as Deliverable D20 V1.1,
EU/IST Project WonderWeb, http://wonderweb.semanticweb.org/deliverables/
documents/D20-1.1.pdf, 2002.

[64] M. Klein, N.F. Noy, A component-based framework for ontology evolution, In
Proceedings of Workshop on Ontologies and Distributed Systems at 18th International
Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, CEUR-WS
Volume 71, available as Technical Report IR-504, Vrije Universiteit Amsterdam, 2003.

[65] M. Klein, A. Kiryakov, D. Ognyanov, D. Fensel, Ontology versioning and change
detection on the Web, In Proceedings of the 13th Europian Conference on knowledge
engineering and knowledge management (EKAW 2002), Siguenza, Spain, LNCS 2473,
pp. 197-212, 2002.

[66] M. Klein, D. Fensel, Ontology versioning for the Semantic Web, In Proceedings of the
1st International Semantic Web Working Symposium (SWWS), Stanford University,
California, USA, pp. 75-91, 2001.

[67] D. Landes, Design KARL – A language for the design of knowledge-based systems, In
Proceedings of the 6th International conference on Software Engineering and Knowledge
Engineering (SEKE’94), Jurmala, Lettland, pp. 78-85, 1994.

[68] G. Leganza, IT Trends 2003, Midyear Update: Enterprise Architecture, Report Giga
Group, 2003.

[69] J.A. Leite, Evolving knowledge bases: specification and semantics, IOS Press, ISSN:
0922-6389, 2003.

[70] A. Maedche, B. Motik, L. Stojanovic, Managing multiple and distributed ontologies
on the Semantic Web, the VLDB Journal - Special Issue on Semantic Web, Volume 12,
pp. 286-302, 2003.

[71] A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Volz, An infrastructure for
searching, reusing and evolving distributed ontologies, In Proceedings of the Twelfth
International World Wide Web Conference (WWW 2003), Budapest, Hungary, ACM, pp.
439-448, 2003.

[72] A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Volz, Ontologies for enterprise
knowledge management, IEEE Intelligent System, Volume 18, Number 2, pp. 26-34,
March/April 2003.

 244

[73] A. Maedche, Ontology learning for the Semantic Web, Kluwer, ISBN: 0792376560,
2002.

[74] A. Maedche, L. Stojanovic, R. Studer, R. Volz, Managing multiple ontologies and
ontology evolution in OntoLogging, In Proceedings of the Conference on Intelligent
Information Processing (IIP-2002), Montreal, Canada, pp. 51-63, 2002.

[75] A. Maedche, S. Staab, Measuring similarity between ontologies, In Proceedings of the
13th European Conference on Knowledge Engineering and Knowledge Management
(EKAW 2002), Siguenza, Spain, LNCS 2473, pp. 251-263, 2002.

[76] A. Maedche, V. Zacharias, Clustering ontology-based metadata in the Semantic Web,
In Proceeding of the 6th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD 2002), Helsinki, Finland, pp. 348-360, 2002.

[77] A. Maedche, S. Staab, Ontology learning for the Semantic Web, IEEE Intelligent
Systems, Special Issue on Semantic Web, Volume 16, Number 2, pp. 72-79, March/April
2001.

[78] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, Lore: A database
management system for semistructured data, In SIGMOD Record, Volume 26, Number 3,
pp. 54–66, September 1997.

[79] S. McIlraith, T. Son, H. Zeng, Semantic Web Services, IEEE Intelligent Systems,
Special Issue on the Semantic Web, Special Issue on Semantic Web, Volume 16, Number
2, pp. 46-53, March/April 2001.

[80] B. Motik, A. Maedche, R. Volz, A conceptual modelling approach for building
semantics-driven enterprise applications, In Proceedings of the First International
Conference on Ontologies, Databases and Application of Semantics (ODBASE-2002),
Springer, California, USA, LNCS 2519, pp. 1082-1099, 2002.

[81] T. Menzies, J. Debenham, Expert system maintenance, Encyclopaedia of Computer
Science and Technology, editor A. Kent and J.G. Williams, Volume 47, Number 27, pp.
35-54, 2000.

[82] T. Menzies, Knowledge maintenance: The state of the art, The Knowledge
Engineering Review, Volume 14, Number 1, pp. 1-46, 1999.

[83] T. Menzies, Object-oriented patterns: lessons from expert systems, Software –
Practice and Experience (SPE), Volume 27, Number 12, pp. 1457-1478, 1997.

[84] B. Meyer, Object-oriented software construction, 2nd edition, Prentice-Hall, Upper
Saddle River, NJ,�ISBN: 0136291554, 2000.

[85] D. McGuinness, F. van Harmelen, OWL Web Ontology Language overview, W3C
Recommendation, http://www.w3.org/TR/2004/REC-owl-features-20040210, 2004.

[86] D. McGuinness, Conceptual modeling for distributed ontology environments, In
Proceedings of the International Conference on Conceptual Structures (ICCS 2000),
Darmstadt, Germany, pp. 100-112, 2000.

[87] D. McGuinness, R. Fikes, J. Rice, S. Wilder, An environment for merging and testing
large ontologies, In Proceedings of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR-2000), Breckenridge, Colorado, USA,
Morgan-Kaufman, pp. 483-493, 2000.

[88] S. Narayanan, S. McIlraith, Simulation, Verification and automated composition of
web services, In Proceedings of the Eleventh International World Wide Web Conference
(WWW-2002), Hawaii, USA, ACM, pp. 77-88, 2002.

 245

[89] S. Nelson, W. Johnston Douglas, B. Humphreys, Relationships in Medical Subject
Headings, Relationships in the organization of knowledge, edited by C.Bean and R.
Green, Kluwer Academic Publishers, ISBN 0-7923-6813-4, pp.171-184, 2001.

[90] S. Nelson, MeSH, UMLS, and the Semantic Web, Presentations at the Medical
Information Society of Taiwan (MIST), Taoyuan, Taiwan,
http://www.nlm.nih.gov/mesh/presentations/taiwan2001/semanticweb/index.htm, 2001.

[91] F. Nickols, Change management 101: A primer,
http://home.att.net/~nickols/change.htm

[92] K. Norman, The psychology of menu selection: designing cognitive control of the
human/computer interface, Ablex Publishing Corporation, ISBN: 089391553X, 1991.

[93] N. F. Noy, M. Klein, Visualizing changes during ontology evolution, In Proceedings of
the International Conference on Intelligent User Interfaces (IUI 2004), Madeira, Portugal,
2004.

[94] N. F. Noy, M. Klein, Ontology evolution: not the same as schema evolution, to apper
in Knowledge and Information Systems, Volume 6, Number 4, July 2004, available as
SMI technical report SMI-2002-0926, http://smi-web.stanford.edu/
pubs/SMI_Abstracts/SMI-2002-0926.html, 2002.

[95] N. F. Noy, D. McGuinness, Ontology development 101: a guide to creating your first
ontology, Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and
Stanford Medical Informatics Technical Report SMI-2001-0880, 2001.

[96] N. F. Noy, R. W. Fergerson, M. A. Musen, The knowledge model of Protege-2000:
combining interoperability and flexibility, In Proceedings of the 12th International
Conference On Knowledge Engineering and Knowledge Management (EKAW 2000),
Juan-les-Pins, France, pp. 17-32, 2000.

[97] D. Oberle, B. Berendt, A. Hotho, J. Gonzales, Conceptual user tracking, In
Proceedings of the 1st International Atlantic Web Intelligence Conference (AWIC 2003),
Madrid, Spain, LNAI 2663, pp. 155-164, 2003.

[98] D. Ognyanov, A. Kiryakov, Tracking changes in rdf(s) repositories, in Proceedings of
13th International Conference on Knowledge Engineering and Knowledge Management
(EKAW 2002), Siguenza, Spain, LNCS 2473, pp. 373-378, 2002.

[99] OIL - http://www.ontoknowledge.org/oil/

[100] D. E. Oliver, Change management and synchronization of local and shared versions
of a controlled vocabulary, PhD thesis, Stanford University, available as SMI Report
Number: SMI-2000-0849, 2000.

[101] D. E. Oliver, Y. Shahar, M. A. Musen, E. H. Shortliffe, Representation of change in
controlled medical terminologies, Artificial Intelligence in Medicine, Volume 15, Number
1, pp. 53–76, 1999.

[102] M. T. Oezsu, P. Valduriez, Principles of distributed database systems, Prentice Hall
International, Inc., ISBN: 0136597076, 1999.

[103] OWL - http://www.w3.org/2001/sw/WebOnt/

[104] R. J. Peters, M. Oezsu, An axiomatic model of dynamic schema evolution in object-
base management systems, ACM Transactions on Database Systems, Volume 22, Number
1, pp. 75-114, 1997.

 246

[105] G. Pierre, M. van Steen, Dynamically selecting optimal distribution strategies on web
documents, IEEE Transaction on Computers, Volume 51, Number 6, pp. 637-651, June
2002.

[106] H.S. Pinto, S. Staab, Y. Sure, C. Tempich, OntoEdit empowering SWAP: A case study
in supporting DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies
(DILIGENT), In Proceedings of the 1st European Semantic Web Symposium, Heraklion,
Greece, Springer, LNCS 3053, pp. 16-30, 2004.

[107] H.S. Pinto, J. Martins, A methodology for ontology integration, In Proceedings of the
international conference on Knowledge capture (K-CAP 2001), Victoria, British
Columbia, Canada, pp. 131-138, 2001.

[108] A. Pons, R. K. Keller, Schema evolution in object databases by catalogs, In
Proceedings of International Database Engineering and Applications Symposium
(IDEAS’97), Montreal, Canada, pp. 368-376, 1997.

[109] A. Pons, R. Keller, Evolving object database schema by a catalog of primitive
modifications, In Proceedings of the Eight International Conference on Software
Engineering and its Applications, Paris, France, pp. 439-452, 1995.

[110] D. Poole, A. Mackworth, R. Gobel, Computational intelligence: A logical approach,
Oxford University Press, New York, ISBN 0-19-510270-3, 1998.

[111] F. Puppe, Systematic introduction to expert systems - knowledge representations and
problem solving methods, Springer, ISBN 0387562559, 1993.

[112] V. Ramana, The importance of hierarchy building in managing unstructured data,
Special Supplement to KM World, March 2002.

[113] J.F. Roddick, A survey of schema versioning issues for database systems, Information
and Software Technology, Volume 37, Number 7, pp. 383-393, 1996.

[114] E. Rundensteiner, A. Leem, Y. Ra, Capacity-augmenting schema changes on object-
oriented databases: towards increased interoperability, In Proceedings of International
Conference on Object-Oriented Information Systems (OOIS’98), Paris, France, pp. 349-
368, 1998.

[115] G. Salton, C. Buckley, Improving retrieval performance by relevance feedback,
Journal of the American Society for Information Science, Volume 41, Number 4, pp. 288-
297, 1990.

[116] W. Scacchi, A. Valente, Developing a knowledge web for business process redesign,
In Proceedings of the Twelfth Workshop on Knowledge Acquisition, Modeling and
Management (KAW'99), Voyager Inn, Banff, Alberta, Canada, 1999.

[117] D. Sjoberg, Quantifying schema evolution, Information and Software Technology
Journal, Volume 35, Number 1, pp. 35–54, 1993.

[118] J. Srivastava, R. Cooley, M. Deshpande, P.N. Tan, Web usage mining: discovery and
application of usage patterns from web data, in SIGKDD Explorations, Volume 1,
Number 2, pp.12-23, 2000.

[119] S. Staab, H.-P. Schnurr, R. Studer, Y. Sure, Knowledge processes and ontologies,
IEEE Intelligent Systems, Special Issue on Knowledge Management, Volume 16, Number
1, January/February 2001.

[120] J.E. Stiglitz, P.R. Orszag, J.M. Orszag, The role of government in a digital age,
http://www.ccianet.org/digital_age/report.pdf, 2000.

 247

[121] L. Stojanovic, An approach for continual ontology improvement, to appear in
Proceedings of the First International Conference on Knowledge Engineering and
Decision Support (ICKEDS'2004), Porto, Portugal, 2004.

[122] L. Stojanovic, J. Schneider, A. Maedche, S. Libischer, R. Studer, T. Lumpp, A.
Abecker, G. Breiter, J. Dinger The role of ontologies in autonomic computing systems, To
appear in IBM Systems Journal, Volume 43, Number 3, 2004.

[123] L. Stojanovic, G. Kavadias, D. Apostolou, F. Probst, K. Hinkelmann, E-Gov Lifecycle
Ontology, available as Deliverable D2, EU/IST Project OntoGov,
http://www.ontogov.org, 2004.

[124] L. Stojanovic, N. Stojanovic, J. Gonzalez, R. Studer, OntoManager - a system for the
usage-based ontology management, In Proceedings of the 2st International Conference on
Ontologies, Databases and Application of Semantics (ODBASE 2003), Catania, Sicily,
Italy, LNCS 2888, pp. 858-875, 2003.

[125] L. Stojanovic, A. Maedche, N. Stojanovic, R. Studer, Ontology evolution as
reconfiguration-design problem solving, In Proceedings of the international conference on
Knowledge capture (K-CAP’03), Sanibel Island, FL, USA, pp. 162-171, 2003.

[126] L. Stojanovic, N. Stojanovic, A. Maedche, Change discovery in ontology-based
knowledge management systems, In Proceedings of 21st International Conference on
Conceptual Modelling (ER’2002), Workshop on Evolution and Change in Data
Management (ECDM’02), Tampere, Finland, 2002, Revised Papers, LNCS 2784, ISBN 3-
540-20255-2, pp. 51-62, 2003.

[127] L. Stojanovic, N. Stojanovic, S. Handschuh, Evolution of the metadata in the
ontology-based knowledge management systems, In Proceedings of the 1st German
Workshop on Experience Management, Berlin, Germany, LNI 10 GI 2002, pp. 65-77,
2002.

[128] L. Stojanovic, B. Motik, Ontology evolution within ontology editors, In Proceedings of
the OntoWeb-SIG3 Workshop Evaluation of Ontology-based Tools (EON2002) at the
13th International Conference on Knowledge Engineering and Knowledge Management
(EKAW 2002), Siguenza, Spain, CEUR-WS Volume 62, pp. 53-62, 2002.

[129] L. Stojanovic, A. Maedche, B. Motik, N. Stojanovic, User-driven ontology evolution
management, In Proceedings of the 13th European Conference on Knowledge
Engineering and Knowledge Management (EKAW’02), Siguenza, Spain, LNCS 2473, pp.
285-300, 2002.

[130] N. Stojanovic, L. Stojanovic, Evolution in the ontology-based knowledge management
system, In Proceedings of the Xth European Conference on Information Systems - ECIS
2002, Gdañsk, Poland, 2002.

[131] N. Stojanovic, L. Stojanovic, Usage-oriented evolution of ontology-based knowledge
management systems, In Proceedings of the 1st International Conference on Ontologies,
Databases and Application of Semantics (ODBASE 2002), Irvine, CA, pp. 1186-1204,
2002.

[132] N. Stojanovic, L. Stojanovic, J. Gonzalez, On enhancing searching for information in
an information portal by tracking users’ activities, In Proceedings of the First
International Workshop on Mining for Enhanced Web Search (MEWS 2002), held in
conjunction with 3rd International Conference on Web Information Systems Engineering
(WISE 2002), Singapore, IEEE Computer Society 2002, pp. 246-256, 2002.

 248

[133] N. Stojanovic, A. Maedche, S. Staab, R. Studer, Y. Sure, SEAL - a framework for
developing SEmantic portALs, In Proceedings of the international Conference on
Knowledge Capture (K-CAP’01), Victoria, British Columbia, Canada , pp. 155-162, 2001.

[134] H. Stuckenschmidt, M. Klein, Integrity and change in modular ontologies, In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI'03),
Acapulco, Mexico, pp. 900-908, 2003.

[135] M. Stumptner, F. Wotawa, Model-based reconfiguration, In Proceedings of 5th
International Conference on Artificial Intelligence in Design (AID 98), Lisbon, Portugal,
1998.

[136] H. Su, D. Kramer, E. Rundensteiner, XEM: XML Evolutin Manager, Computer
Science Technical Report Series, WORCESTER POLYTECHNIC INSTITUTE, WPI-CS-
TR-02-09, 2002.

[137] Y. Sure, On-To-Knowledge - ontology based knowledge management tools and their
application, In German Journal Kuenstliche Intelligenz, Special Issue on Knowledge
Management (1/02), pp. 35-37, 2002.

[138] E. Sunagawa, K. Kozaki, Y. Kitamura, R. Mizoguchi, An environment for distributed
ontology development based on dependency management, In Proceedings of the Second
International Semantic Web Conference (ISWC2003), Sanibel Island, FL, USA, pp.453-
468, 2003.

[139] E. Sunagawa, K. Kozaki, Y. Kitamura, R. Mizoguchi, Management of dependency
between two or more ontologies in an environment for distributed development, In
Proceedings of the International Workshop on Semantic Web Foundations and
Application Technologies (SWAFT), Nara, Japan, http://www-kasm.nii.ac.jp/
SWFAT/PAPERS/SWFAT17R.PDF, 2003.

[140] M. Tallis, Y. Gil, Designing scripts to guide users in modifying knowledge-based
systems, In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI/IAAI 1999), Orlando, Florida, USA, pp. 242-249, 1999.

[141] E. Tambouris, An integrated platform for realising online one-stop government: the
eGOV project, In Proceedings of the DEXA International Workshop "On th Way to
Electronic Government", IEEE Computer Society Press, Los Alamitos, CA, ISBN 0-7695-
1230-5, pp. 359-363, 2001.

[142] V.A.M. Tamma, T.J.M Bench-Capon, A conceptual model to facilitate knowledge
sharing in multi-agent systems, In Proceedings of the Autonomous Agents Workshop on
Ontologies in Agent Systems (OAS 2001), Montreal, Canada, pp. 69-76, 2001.

[143] A. ten Teije, F. van Harmelen, A. Th. Schreiber, B. J. Wielinga, Construction of
problem-solving methods as parametric design, International Journal of Human-Computer
Studies, Special issue on problem-solving methods, Vol. 49, Number 4, pp. 363-389,
1998.

[144] M.S. Tuttle, D. Sherertz D, M. Erlbaum, Adding your terms and relationships to the
UMLS Metathesaurus, In Proceedings of the Fifteenth Annual Symposium on Computer
Applications in Medical Care, New York, USA, pp. 219-223, 1991.

[145] L. Tokuda, D. Batory, Automating three modes of evolution for object-oriented
software architecture, In Proceedings of the 5th Conference on Object Oriented
Technologies and Systems (COOTS'99), San Diego, CA, 1999.

[146] M. Uschold, M. Gruninger, Ontologies: principles, methods, and applications,
Knowledge Engineering Review, Volume 11, Number 2, pp. 93-155, 1996.

 249

[147] M. Ushold, M. Healy, K. Williamson, P. Clark, S. Woods, Ontology reuse and
application, In Proceedings of the International Conference on Formal Ontology and
Information Systems (FOIS'98), IOS Press, pp. 179-192, 1998.

[148] J. Valdman, Log file analysis, available as Technical Report DCSE/TR-2001-04,
Department of Computer Science and Engineering (FAV UWB), http://www.kiv.zcu.cz/
publications/2001/tr-2001-04.pdf, 2001.

[149] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, J. Lee, On accommodating inter
service dependencies in web process flow composition, First International Semantic Web
Services Symposium, 2004 AAAI Spring Symposium Series, ISBN 1-57735-198-3, pp.
37-43, 2004.

[150] R. Volz, Web Ontology Reasoning With Logic Databases, PhD Thesis, University at
Fridericiana zu Karlsruhe (TH), Germany, 2004.

[151] J.R. Wen, J.Y. Nie, H.J. Zhang, Clustering user queries of a search engine, In
Proceedings of the 10th International World Wide Web Conference (WWW10), Hong
Kong, pp. 162-168, 2001.

[152] B. Wielinga, G. Schreiber, Configuration design problem solving, IEEE Intelligent
Systems, Volume 12, Number 1, pp. 49-56, March-April 1997.

[153] I. Witten, E. Frank, Data mining: practical machine learning tools and techniques
with java implementations, Morgan Kaufmann, ISBN: 1558605525, 1999.

[154] R. Zicari, A framework for schema updates in an object-oriented database system, In
Proceedings of the Seventh International Conference on Data Engineering (ICDE’91),
Kobe, Japan, pp. 2-13, 1991.

