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Abstract

This report summarizes operational approaches to the formal semantics of
programming languages and shows that they can be interpreted inductively
by least fixed points as well as coinductively by greatest fixed points. While
the inductive interpretation gives semantics to all terminating programs, the
coinductive one defines moreover also a semantics for all non-terminating pro-
grams. This is especially important in areas where programs do not terminate
in general, e.g. data bases, operating systems, or control software in embed-
ded systems. The semantic foundations described in this report can be used
to verify that transformations (e.g. in compilers) of such software systems are
correct.
In the course of this report, coalgebras and coinduction are introduced, start-

ing with a gentle intuitive motivation and ending with a detailed mathematical
description within the notions of category theory.
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1 Formal Semantics of Programming
Languages

In mathematical logic, semantics is used to assign a formal meaning, a semantics, to syntac-
tical elements. As a simple example, consider propositional logic. Propositional formulae are
built from the logical constants True and False, from propositions denoted by capital letters
A,B, . . ., and from the logical connectives ¬,∧,∨. One example for a propositional formula is
A ∨ B. Propositional semantics assigns meaning to such a formula by considering all possible
assignments of truth values 0 and 1 to the propositions contained in that formula, typically by
stating a truth table. For our simple example A ∨B, this truth table would be as follows:

A ∨B A = 0 A = 1
B = 0 0 1
B = 1 1 1

This same principle underlies the formal semantics of programming languages. The term
formal semantics indicates that this is a semantics in the mathematical way. Consider as
example the following simple program from an imperative programming language:

x := 1; while x < 3 do x := x + 1;

In principle, there are two possibilities to define the meaning of such a program. First, we
can concentrate on its result and define its semantics as the value of x upon termination (the
brackets “[[ ]]” are commonly used to denote the semantics of a syntactic construct):

[[x := 1; while x < 3 do x := x + 1; ]] = (x = 3).

Secondly, we could consider the complete state transition sequence

[[x := 1; while x < 3 do x := x + 1; ]] = (x =?, x = 1, x = 2, x = 3)

as program semantics. And, of course, there are many nuances between these two general pos-
sibilities. It depends on the intended purpose which semantics is to be chosen. For functional
programming languages, the first choice seems to be well-suited while for imperative languages
with their inherent concept of states, the second choice is better. In the context of this report,
we apply the second possibility which understands programs as state transition systems. This
is adequate for the verification of compilers because many programs in practice do not termi-
nate (and are not designed to terminate, e.g. operating systems, control software, data base
systems, etc.) and need to be compiled correctly by preserving their state transition behavior.
This method of defining semantics of programming languages is called operational semantics.

Semantics is generally compositional. The semantics of a formula or a program is derived
from the semantics of its direct subformulae or subprograms. In our example of the truth table
for A ∨ B, it does not matter if A and B are themselves formulae or if they are primitive
propositions. This same principle is used in the semantics of programming languages but with
one important extension: The semantics of a program is defined from the semantics of its direct
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1 Formal Semantics of Programming Languages

subprograms and, in recursive computations, also from its own semantics. Consider as example
the syntactic construct of a while loop: “while b do S;”. Its semantics is derived from the
semantics of the conditioning expression b, from the semantics of the statements S in the loop
body and, moreover, from its own semantics since it is executed again after the loop body has
terminated. This is expressed with the following definition:

[[while b do S; ]] = if [[b]] then ([[S]]; [[while b do S; ]]) else ;

It is a difficult question if such a definition is well-founded because the definiens on the left-
hand side appears also as definiendum on the right-hand side. If the computation terminates,
then there exists a well-ordering, giving us an inductive definition. If the computation does
not terminate, then there is no longer a well-ordering and, in turn, no inductive definition. In
the course of this report, we show that for non-terminating programs, this is still a well-defined
semantics, namely a coinductive or greatest fixed point semantics.

To develop coinductive semantics, we start in this chapter by reviewing characteristics in
the definition of programming languages in Section 1.1 and by summarizing commonly used
approaches for the operational semantics of programming languages, namely abstract state ma-
chines (ASMs) in Section 1.2 and inference rule-based specifications in the remaining sections
by first giving an overview in Section 1.3 and by summarizing structural operational semantics
(SOS) in Section 1.4 and natural semantics in Section 1.5. In Chapter 6, we use these foun-
dations to develop a coalgebraic or greatest fixed point semantics which can be used to verify
non-refining transformations even on non-terminating programs.

1.1 Characteristics in the Definition of Programming Languages

Programming languages are highly context-sensitive languages consisting of an infinite set of
programs each of which is a sequence of characters. To obtain finite and easily comprehensible
definitions of programming languages as well as efficient membership tests, programming lan-
guages are described by a two-stage process: A deterministic context-free grammar specifies a
superset of the programming language. For each program, this context-free grammar defines a
deriviation tree (the concrete syntax). These derivation trees and the corresponding context-free
grammar can be simplified in many cases, e.g. by eliminating chain productions. The resulting
grammar is called abstract syntax and is used in all subsequent semantic definitions. It defines
an abstract syntax tree (AST) for each program. In the remainder of this report, we do not
distinguish between a program and its abstract syntax tree. In the second stage of language
definition, this superset of syntactically correct programs is restricted by context-sensitive con-
ditions. Attributes are associated with the nodes in the abstract syntax tree, e.g. by specifying
an attribute grammar. These attributes define the context-sensitive properties of programs. In
general, these attributes cannot be computed locally within the scope of one production but
need more sophisticated strategies which traverse the abstract syntax tree in special orders.
The programming language itself is described as the set of programs whose attributes fulfill
certain conditions defined within the context of one production of the abstract syntax, i.e.,
the conditions describe a relation between the attributes of a node and the attributes of its
successors.

In general, the semantics of programs, i.e. their dynamic behaviour, is compositional. This
means that the semantics of a node in an abstract syntax tree can be defined directly given its
immediate successors. The principle of compositionality is necessary due to two reasons: Even
if a programming language contains infinitely many programs, we need a finite description of
their semantics. Using the principle of compositionality and the construction mechanism of
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1.2 Abstract State Machines (ASMs)

programs described in the concrete and abstract syntax, we can attach meaning to programs by
specifying for each production how the semantics of the entire subtree, i.e. the left-hand side of
the production, is defined given the semantics of the subtree’s direct subtrees, i.e. the elements
on the right-hand side of the production. Moreover, the principle of compositionality is essential
since humans want to use programming languages. They would not be able to understand the
meaning of their programs if their semantics was not compositional.

No rule without exception: Certain constructs in programming languages exhibit a semantics
which is inherently not compositional. For example, goto-statements may leave a program part
and go to some other place which cannot be described via the predecessor or successor relation
in abstract syntax trees. To be able to define the semantics of such non-compositional program
constructs, we need the concept of continuations. A continuation tells us where to proceed
with the computation. If we are dealing with the standard case of compositional program
constructs, the continuation specifies simply a child node or the parent node. In general, the
continuation denotes an arbitrary program node. Already at compiling time, the continuations
can be computed. Therefore, additional attributes are specified defining where to continue the
computation. If the control flow branches at a node, then it is necessary to define several such
continuations, each describing the succeeding computation depending on the branch direction.
Typically, there are two ways of defining continuations, either as a pointer to the node at which
the computation continues or as the subtree of the program where the computation proceeds.
Both possibilities are equivalent.

1.2 Abstract State Machines (ASMs)

Abstract state machines (ASMs) [Gur95, ASM] have been used extensively in the definition of
the semantics of programming languages, e.g. in the definition of C [GH93], of Java [SSB01]
and of SDL [EGGP00]. Moreover, ASMs have been used successfully in proving the correctness
of compilations, e.g. the correctness of the compilation of Prolog to the WAM [BR94], the cor-
rectness of the translation of Occam to transputer code [BD96] and in the Verifix project which
deals with the construction of provably correct compilers [ZG97, GZ99]. During these projects,
a remarkable engineering knowledge has emerged concerning the way in which specifications
should be written to be useful for the purpose of semantics specification and translation verifi-
cation. In this section, we summarize this particular use of ASMs. Our presentation generalizes
the description in [GZ99].

Remark: Very few ASM semantics (e.g. [SSB01]) modify the AST during program execution.
We do not consider this here as it is not the typical case.

Abstract state machines (ASMs) are used to describe the semantics of programming languages
operationally as state transition systems based on the abstract syntax trees. Part of the current
state is the current task, a pointer to the node in the abstract syntax tree which is currently
executed. During program execution, states are transformed into new states, thereby also
updating the pointer to the current task. States are regarded as algebras over a given signature.
During a state transition, the interpretation I of some of the function symbols may change.
For example, if a function symbol S specifies the state of memory, then a variable assignment
x:=v changes the interpretation I(S) of the function symbol S for argument x: I(S(x)) := I(v)
holds in the new state. Each n-ary function symbol is interpreted with an n-ary mapping.
For each state transition, the interpretation of some function values might change. In general,
an ASM consists of four components (Σ ∪ ∆,A, Init ,Trans): The signature is composed of
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1 Formal Semantics of Programming Languages

two disjoint sorted signatures, the signature of the static functions Σ and the signature of the
dynamic functions ∆. A is the static algebra, an order-sorted Σ-algebra interpreting the function
symbols in Σ. Init is a set of equations over A which defines the initial states of A. Finally,
Trans is a set of transition rules for specifying the state transitions by defining or updating,
resp., the interpretations of certain function values of functions in ∆. A (Σ ∪ ∆)-algebra is
a state of the ASM iff its restriction to Σ is the static algebra A. If q is a state, f ∈ ∆ is
a function symbol, and ti are terms over Σ ∪ ∆ with interpretations xi in q, then the update
f(t1, . . . , tn) := t0 defines the new interpretation of f in the succeeding state q′ as

q′ |= f(x1, . . . , xn) =
{

x0 if for all i, 0 ≤ i ≤ n, q |= ti = xi

fq(x1, . . . , xn) otherwise

A transition rule defines a set of updates which are executed in parallel:

if Cond then Update1 . . .Updaten fi

If q |= Cond = true in state q, then Update1 . . .Updaten are executed in q.

When defining the semantics of programming languages, we use the abstract syntax tree as
basis and attach meaning to it, cf. Section 1.1. Thereby, we assume that the abstract syntax
tree contains attributes defining all continuations, especially for the non-compositional changes
of the control flow. The definition of the ASM models the program counter during program
execution, thereby using the continuation attributes which might be split up according to the
value of conditions (true case and false case). Here is the example of a transition rule defining
the semantics of the while-loop, as stated in [GZ99]. CT (CT = current task) is the abstract
program counter, CT.TT (true task) is the true-continuation attribute of CT and CT.FT (false
task) is the false-continuation attribute of CT.

if CT ∈ While then
if value(CT .cond) = true then

CT := CT .TT
else CT := CT .FT fi fi

The semantics of each program node is described by a finite set of transition rules. Typically
the condition of such a transition rule specifies the nodes in the abstract syntax tree (While-
nodes in our example) for which the transition rule is applicable. The transition rules define
updates, thereby employing child nodes (in our example CT .cond) as well as statically computed
continuations (CT .TT and CT .FT in our above example). In the remainder of this report, we
assume that in an ASM definition which specifies the semantics of a programming language,
each transition rule is of the following general form:

if CT ∈ X then
if applicability conditions then

CT := new CT ; further updates
else CT := new CT ′; further updates ′ fi fi

1.3 Inference Rule-Based Specifications in the Semantics of
Programming Languages

Inference rule-based specifications have a long tradition in computer science for the specification
of the formal semantics of programming languages. As a classical example, consider the rules of
the simply-typed λ-calculus [Mit90] which specifies the definition and application of functions:
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1.3 Inference Rule-Based Specifications in the Semantics of Programming Languages

(Ax) {x : τ} ` x : τ (λI)
Γ ∪ {x : τ} ` t : σ

Γ ` λx : τ.t : τ → σ

(λE)
Γ ` t : τ → σ Γ ` t′ : τ

Γ ` (t t′) : σ
(CI)

Γ ` t : σ

Γ ∪ {x : τ} ` t : σ

The first rule (Ax) says that if the typing x : τ is contained in the context Γ, then we can
conclude that x : τ holds. The second rule (λI) specifies how to build functions while (λE)
defines the evaluation of functions. Finally, the fourth rule (CI) specifies that the assumptions
in the context can be extended.

It is well-known that the structure of proofs for the well-typedness of a program corresponds
directly with the structure of the program itself, cf. Figure 1.1. More exactly, the proof structure
is already passed on by the program structure. To prove that a λ-term t is well-typed, it suffices
to find a proof for the statement ∅ ` t : τ . Figure 1.1 shows such a proof and its correspondence
with the program structure for the example program λx.λy.(yx).

{x : σ, y : σ → τ} ` x : σ

(Ax)

{x : σ, y : σ → τ} ` y : σ → τ

(Ax)

���
���

HHH
HHH

{x : σ, y : σ → τ} ` (yx) : τ

(λE)

{x : σ} ` λy : σ → τ .(yx) : (σ → τ) → τ

(λI)

` λx : σ.λy : σ → τ .(yx) : σ → (σ → τ) → τ

(λI)

Proof Tree Syntax Tree

x y
�

�
�

@
@

@

(· ·)

λy

λx

Figure 1.1: Proof of the Well-Typing of a λ-Term

Types are static semantic information which can be regarded as abstractions of dynamic
behavior. In particular, recursions in the dynamic behavior do not show up in the proofs
for well-typedness. Otherwise, there could be no strict correspondence between the program
and the proof structure. In contrast, the full dynamic behavior is not related in a one-to-
one correspondence with the program tree because recursion requires the program tree to be
“unfolded” in the dynamic semantics. We define this process of unfolding formally in Chapters
4 and 6. For now we carry on by noticing that the dynamic behavior, i.e. the semantics, can
be described by trees which are defined on top of the syntactic program structure by specifying
axioms and inference rules.

Such specifications have been used extensively in the definition of the semantics of program-
ming languages. Axioms and inference rules are used to specify semantic properties with respect
to the abstract syntax. A prominent example is the complete specification of Standard-ML
[MTH90]. Its revision [MTHM97] demonstrates that rule-based specifications are very stable.
Most of the modifications changed the semantics of ML itself rather than correcting errors in the
original specification. Further examples for language specifications are the dynamic semantics of
Eiffel [Att96], Eiffel// (Eiffel Parallel) [ACEL96], Esterel [Ber90], and in general imperative and
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1 Formal Semantics of Programming Languages

object-oriented programming languages [GZ98, Gle99a, Gle99b, GZ04]. Inference-rule based se-
mantics have also been used successfully to prove properties of programs: The investigations in
[DE99, Sym99, vON99] prove the static type safety of subsets of the Java programming language
whereby specifications based on natural and structural operational semantics are used.

There are two main variants of specifications based on inference rules, big-step or natural
semantics and small-step or structural operational semantics (SOS). While big-step semantics
can only describe strictly compositional programming languages, small-step semantics is also
able to handle non-compositional program constructs. We investigate both variants separately
as they differ significantly on that score as well as in the way they treat the program during the
formalized execution. In the following two sections, we describe both of them, for more details
consult e.g. [NN99].

Remark: The terminology is not consistent throughout the literature. Sometimes natural
semantics refers only to big-step semantics, sometimes it comprises big-step as well as small-
step semantics. In this report, we use the terms natural and big-step semantics equivalently.
The confusion in the use of these terms comes from the fact that in many specifications, small-
step and big-step semantics are used together, big-step typically for the evaluation of expressions
and small-step for the execution of control-flow sensitive parts such as statements.

1.4 Structural Operational Semantics (SOS)

Structural operational semantics (SOS), also called small-step semantics, concentrate on in-
dividual steps of program execution and how these single steps are integrated in the overall
execution. Assumptions of inference rules formalize smaller steps while their embedding into
the larger program context is defined in the conclusion. Individual steps are described in the
axioms. Such an individual step is either termination of execution < p, σ > → σ′ in the final
state σ′ or it is a state transition < p, σ > → < p′, σ′ > denoting that the execution of p in
state σ yields a new program p′ to be executed in the succeeding state σ′. p′ is often called
continuation. In this report, we call it continuation program to distinguish it from the stati-
cally computable continuation attributes described in Section 1.1. In most cases, p′ is a direct
subtree of p or composed from direct subtrees of p. The conclusions of inference rules define
the embedding of such program parts into their larger context. In the case of compositional
semantics, this context is simply the parent node in the abstract syntax tree. In general, ar-
bitrary continuations are possible, allowing for the description of non-compositional semantics.
As typical examples for small-step definitions, consider these inference rules:

<S1,σ> → <S′
1,σ

′>
<S1;S2,σ> → <S′

1;S2,σ′>
Eval(cond)=true

<if cond then S1 else S2,σ> → <S1,σ>

<S1,σ> → σ′

<S1;S2,σ> → <S2,σ′>
Eval(cond)=false

<if cond then S1 else S2,σ> → <S2,σ>

< skip, σ > → σ

< while cond do S, σ > → < if cond then (S;while cond do S) else skip, σ >

The first two inference rules in the left column describe how the execution of a sequence of
statements S1 is integrated into a larger context, namely the sequence of statements S1;S2.
The first two rules on the right-hand side specify the execution of the if-statement. The first
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1.5 Natural Semantics

axiom defines the effect of the skip-statement. Finally the last axiom describes the while-loop
by reducing its semantics to the semantics of the if-statement. These rules describe execution in
a bottom-up style: execution of smaller program parts is integrated into the execution of larger
parts of the program, without paying attention to the overall state transition performed by the
entire program. The structure of the inference rules does not need to reflect the structure of
the program. For example, the semantics of the while-statement is not defined in terms of its
sub-statements but by a new program which has been built from the sub-statements. (Note
that the if-statement in the last axiom is not part of the original program but created upon
application of this axiom.) In general, also statically computed continuation attributes (cf.
Section 1.1) can be used. As an example, consider the semantics of the goto-statement:

< goto L;σ > → < L.continuation, σ′ >

This axiom defines a non-compositional semantics since the control-flow of the program branches
to another arbitrary part of the program, denoted by the continuation of L, L.continuation.

The general form of a small-step inference rule is as follows: Let X0 ::= X1 · · ·Xn be a
production of the abstract syntax, Xlr ∈ {X1, . . . , Xn}, 1 ≤ r ≤ m, m a natural number,
X ′

i is an arbitrary program built from Xi or its direct subprograms, i.e. direct subtrees of its
abstract syntax tree, 1 ≤ i ≤ n, X ′

0 is an arbitrary program built from X0, from its subprograms
X1 · · ·Xn, from X ′

i and from the continuations of X0, . . . , Xn.

Eval(Xl1 , σ) = value1, . . . ,Eval(Xlm , σ) = valuem,
< Xi, σ > → < X ′

i, σ
′ >

< X0, σ > → < X ′
0, σ

′ >

In its evaluation part, Eval(Xl1 , σ) = value1, . . . ,Eval(Xlm , σ) = valuem, the inference rule
describes conditions for which the rule is applicable. The state transition < Xi, σ > → <
X ′

i, σ
′ > defines the execution of Xi in state σ and gives us a new continuation program X ′

i to
be executed in state σ′. The conclusion of the inference rule specifies how this single transition
< Xi, σ > → < X ′

i, σ
′ > can be integrated into the larger context X0 whose execution in state

σ yields the new continuation program X ′
0 to be executed in the new state σ′.

Data structures are needed to define the values of the evaluation conditions and the states
reached during program execution. These data structures are typically defined inductively
by a term algebra over a fixed set of constructor functions. Additional (defined) functions are
specified by equations defining recursively the effect of these functions on the constructor terms.

In a small-step semantics, the program to be executed is an explicit part of the state. Each
state < p, σ > contains a continuation program p. In the initial state, p is the original program
while in the final state, p is simply the empty program. The axioms and inference rules of a
small-step semantics define how to rewrite this program during each state transition.

1.5 Natural Semantics

Natural semantics [Kah87] is a deductive method to define the semantics of programming lan-
guages. Axioms and inference rules specify semantic properties wrt. the abstract syntax. The
semantics of an abstract syntax tree is defined as a state transition from the initial state into
the final state. This state transition is defined compositionally in terms of the state transitions
of the direct subtrees of the abstract syntax tree. Consider e.g. the rules for the while-loop:

Eval(cond , σ) = false
< while cond do S end, σ > → σ

Eval(cond , σ) = true, < S , σ > → σ′,
< while cond do S end, σ′ > → σ′′

< while cond do S end, σ > → σ′′

11



1 Formal Semantics of Programming Languages

These two rules express that the body S of the loop is executed depending on the value of
the condition cond . If it is executed, then the entire loop is executed recursively again. In
the traditional setting, which we revise in this report (cf. Chapter 4), this kind of semantic
description is only used for terminating computations. In this case, the second rule says that
there exists a state transition from σ to σ′′ if the condition cond evaluates to true, if the body
S is executed by a state transition from σ to σ′ and if there is a state transition from σ′ to σ′′

describing the recursive execution of the loop.
We can regard a natural semantics as a recursive procedure defined by inference rules. Each

inference rule belongs to a production X0 ::= X1 · · · Xn of the abstract syntax. It has the
following general form, whereby Xlk ∈ {X1, . . . , Xn}, 1 ≤ k ≤ m and Xij ∈ {X0, X1, . . . , Xn},
1 ≤ j ≤ r:

Eval(Xl1 , σ0) = value1, . . . ,Eval(Xlm , σ0) = valuem,
< Xi1 , σ0 > → σ1, · · · , < Xir , σr−1 > → σr

< X0, σ0 > → σr

The assumptions of an inference rule consist of two main parts, the evaluation conditions
Eval(Xlk , σ0) and the “procedure calls” on direct successors of X0, i.e. the state transitions
of the direct subprograms < Xij , σj−1 >→ σj . The evaluation conditions decide about the
applicability of the rule in a given state σ0. In the while-loop example, they express the value
Eval(cond , σ0) of the condition cond . The state transitions in the assumptions describe the
semantics of the subprograms. If the evaluation conditions are fulfilled, then the procedures,
i.e. inference rules, for Xi1 , . . . , Xir are called in this order, each with the corresponding initial
state σ0, . . . , σr−1 as input value and with the corresponding final state σ1, . . . , σr as result.
The Xij , 1 ≤ j ≤ r, are either X0 or the roots of direct subtrees of X0. A particular Xij might
be called several times with possibly different initial values or might not be called at all. Since
we assume a strictly compositional programming language to be described with such inference
rules, the semantics of the abstract syntax tree can be concluded solely from the semantics of
its direct subtrees (in recursive cases also from its own semantics). The entire state transition
for the loop is expressed in the conclusion. An axiom is an inference rule with only evaluation
conditions in its assumptions but no state transitions, i.e. r = 0.

The data structures necessary to define the values of the evaluation conditions and the states
reached during program execution are defined in the same way as in small-step semantics
definitions, cf. Section 1.4.

Natural semantics specifications describe derivation trees. Their root nodes are marked with
the program to be executed and with the initial and final state of computation. The successors
of the root are marked either with direct subtrees of the program or the program itself (in
recursive definitions). Furthermore, the successors are marked with state transitions as defined
by the inference rules: The entire state transition from the initial state σ into the final state σ′

of the root node is split up into a sequence σ = σ0 → σ1 → · · · → σr = σ′ of state transitions.
Each individual state transition σi−1 → σi, 1 ≤ i ≤ r, is described by exactly one of the subtrees
of the derivation tree. The order on these subtrees is specified implicitly by the linear order of
the states σ0 → σ1 · · · → σr.

Traditionally, natural semantics specifications are interpreted with finite derivation trees be-
cause only then, a unique final state exists. This traditional view corresponds to an inductive
or least fixed point interpretation. In this report, we show that a greatest fixed point or coin-
ductive interpretation is more appropriate. In particular, it also allows for a semantics for
non-terminating programs while not changing the usual inductive semantics for terminating
programs, cf. Chapter 4.
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2 (Co)Algebras and (Co)Induction: A
Motivation

In recent years, coalgebraic methods, in particular coinduction, have gained increased interest
and importance in the specification of and reasoning about state-based systems. The semantics
of imperative programming languages also models state-based computations because the execu-
tion of a given programs triggers a potentially infinite sequence of state transitions. Tradition-
ally, approaches to the formal semantics of programming languages have mainly concentrated
on the formalization of the computation of final results (as for example denotational semantics)
but not on the state transition aspect. Nevertheless, this aspect is at least as important. Many
programs as for example operating systems, data bases, or control software in reactive and
embedded systems are not intended to terminate while still having a very special semantics.
To compile such programs correctly, it is necessary to preserve their state transition behavior.
Hence, if we want to verify the correctness of compilers, it is of utmost importance to model
non-terminating program behavior appropriately. In this report, we show that semantics of
programming languages needs to be defined based on greatest fixed points and that the theory
of coalgebras is the method of choice for this purpose.

Most of the existing literature concerning coalgebras and coinduction (cf. [JR97] for an
overview) is formulated in terms of category theory. While category-theoretical notions are
well-appreciated among theorists, they are not equally respected by computer scientists work-
ing in practice. We believe that in the context of coalgebraic theory, the category-theoretical
notation offers many advantages, ranging from better readable and much more elegant notation
to better possibilities to express the inherent duality of induction and coinduction. It is the aim
of our exposition of the topic here to demonstrate these points.

Therefore, in this Chapter, we first motivate in Section 2.1 why formal semantics of program-
ming languages needs to model the potentially infinite state transition behavior of programs.
Then, in Section 2.2, we start with an intuitive and gentle motivation of induction and coinduc-
tion. In Chapter 3 we define these informally introduced concepts in pure set-theoretical terms
and apply them by interpreting natural semantics coinductively in Chapter 4. After that, in
Chapter 5, we formulate coalgebraic theory in category-theoretical terms. In doing so, we hope
to bridge the gap between the intuition behind coalgebras and coinduction and its clear and
crisp notions within category theory.

Subsequently, in Chapter 6, we use the introduced notions of coalgebras and coinduction
to develop a coalgebraic interpretation of the operational approaches to the semantics of pro-
gramming languages. Furthermore, we use their coinductive interpretations to compare them
with respect to two criteria, namely with respect to the structure of imperative programming
languages whose semantics can be defined with them and with respect to the way programs
are treated during the evaluation that is specified by the operational semantics. Our results in
this comparison are very interesting as they are in contrast to the common understanding that
natural semantics can only describe terminating programs. Moreover, we show that structural
operational semantics and ASMs are equally expressive because each ASM semantics can be
transformed into an equivalent structural operational semantics and vice versa. Parts of the
results presented in this report have been published in [Gle03, Gle04a, Gle04b].
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2 (Co)Algebras and (Co)Induction: A Motivation

2.1 The Need for Greatest Fixed Point Semantics

The execution of a program triggers a potentially infinite state transition sequence. A formalism
for the semantics of programming languages should model this aspect appropriately. This
requirement is essential in practical applications. Many programs (e.g. operating systems, data
bases, control software in embedded systems or reactive systems) are not intended to terminate
while still having a very special semantics. Most of the existing methods for the formal semantics
of programming languages are based on inductive definition and proof principles. In this section,
we show that this approach is not able to model the state-based transition character of program
execution appropriately. Afterwards, we introduce the theory of coalgebras and coinduction and
show that the state transition behavior of programs can suitably be defined by coinduction, i.e.
based on greatest fixed points.

The Insufficiency of Induction Proofs

Let us start with a motivation why induction is not the appropriate proof principle for infi-
nite computations. Consider one of the well-known proof rules of the Hoare calculus [Hoa69].

{P}
proc p

· · ·
{P}
p
{Q}

· · ·
endproc
{Q}

If one wants to prove that a recursive procedure p is correct with respect to a
precondition P and a postcondition Q , then one assumes that for all recursive
calls of p within the body of p, precondition P and postcondition Q hold. If
p always terminates, then this is an induction proof. The recursion depth of
the inner calls is always smaller than the recursion depth of p itself. If the
procedure p does not terminate, it is no longer a valid induction proof. The
state transition sequence in the inner procedure’s body is infinitely long as
well as the state transition sequence of the outer procedure. Hence, we do not
have an induction premise about a strictly smaller state transition sequence.
Both state transition sequences have the same set-theoretic size. Nevertheless,
it is still a valid coinductive proof showing that at each procedure entry, the

precondition is fulfilled. Thereby we assume that the precondition holds in the initial state and
prove that it also holds when entering the inner procedure. In this case, we cannot say anything
about the postcondition because the program point at which it should hold is never reached.

The proof for the validity of the Hoare calculus rule in the non-terminating case uses induction
to show that no contradiction can be observed. This reasoning is the basis for coinduction. An
inductive argument shows that, for all finite prefixes of the potentially infinite state transition
sequence, the precondition P is valid at each entry of procedure p. Then it concludes that this
property (P valid at each entry of p) holds also for the infinite state transition sequence. If this
were not the case, then there would be a finite prefix not fulfilling P , hence contradicting the
result of the induction proof.

The Hoare calculus rule for procedures is essentially an overlay of two rules. The first considers
the terminating case with a postcondition. The second models the non-terminating case where
the precondition holds at each procedure entry. We will see the same overlay of rules for natural
semantics in Section 4.4.

The following section and succeeding chapters provide an introduction to the theory of coal-
gebras and coinduction and also show in the case study in Chapter 4 how this kind of reasoning
in the Hoare calculus can be used to interpret natural semantics (also called big-step semantics)
[Kah87] coinductively.
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2.2 A Gentle Motivation for Coalgebras and Coinduction

m=17

and proof 
direction

inductive

m=7 m=3 m=2 m=5

m=7m=10 definition 

Figure 2.1: Abstract Data Types: A Simple Example

2.2 A Gentle Motivation for Coalgebras and Coinduction

Induction is a very well-known method in computer science to define abstract data types
(ADTs). In general, ADTs are finite trees whose nodes and leaves are annotated with markings
m, cf. Figure 2.1. Trees as the one in Figure 2.1 can be defined inductively:

1 

1m m

m  + m 2

2

• Each leaf marked with a natural number n ∈ IN is a tree.

• If b1 and b2 are trees whose root nodes are marked with m1 and m2,
then the tree consisting of the two subtrees b1 and b2 whose root node is
marked with m1 + m2 (cf. figure next to this paragraph) is also a tree.

With this definition, we specify how leaves should look like and how we can construct larger
trees from smaller trees. In the same sense we can prove properties of such trees by using the
induction proof principle. For example, we could prove by induction that the marking of each
inner node is the sum of the markings of its direct successor nodes. In an inductive proof, we
would show this property in the base case for leaves (for which it holds trivially in this example)
and then, in the induction step, we would show it for inner nodes.

Coinductive definitions are exactly the other way round: Starting from the markings
of a given parent node, we define the markings of its children nodes. A typical example are
the languages defined by context-free grammars G = (σ, P,N, T ) where σ is the start symbol,
P is the set of production rules, N is the set of nonterminal symbols, and T is the set of
terminal symbols, cf. also Figure 2.2. Assuming that P contains a production σ −→ X1 · · ·Xn,

... n

coinductive
definition 
and 
proof 
direction

... ...

X 1

σ

X

Figure 2.2: Context-free Grammars Coinductively

we could expand the node marked with σ as shown in Figure 2.2. Then we can continue this
expansion process by letting X1, . . . , Xn take the role of σ and by using appropriate productions
Xi −→ · · · , 1 ≤ i ≤ n. The definition of context-free languages requires this expansion process
to be finite. In the world of coalgebraic specifications, this expansion process is allowed to be
infinite.

In essence, coalgebraic structures are potentially infinite trees whose nodes are annotated with
markings (the nonterminals and terminals). Coalgebraic structures are well-suited to define the
observable behavior of processes and to reason about it. In this view, σ takes the role of the
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2 (Co)Algebras and (Co)Induction: A Motivation

initial state. Successor nodes are possible successor states. If there is more than one successor
node, then such structures can be used to model non-deterministic processes. (Note that this is
not the only choice to interpret multiple successor nodes. In the coinductive interpretation of
natural semantics, we use the existence of several successor nodes and, hence, of several direct
subtrees to denote sequential composition of programs and their execution, cf. also Chapter 4.)
There is no need to reach a leaf in a coinductive tree. If a process does not terminate, then no
final state (=leaf) is reached.

Now let us assume that two coinductive structures t1 and t2 are given, cf. Figure 2.3.
Coinduction can be used to show the equality of the trees t1 and t2 by using this proof rule:

C
oinduction

1 σ1 σ2

n 2

σ1 σ2=

...

...

...

...

n 1
they must be equal

...

...

...

...

t 2

if they are equal

then

and

they must be equal

t

Figure 2.3: The Coinduction Principle Gently

Coinduction Proof Rule Gently: t1 = t2 if

• σt1 = σt2 and

• for arbitrary nodes n1 ∈ t1 and n2 ∈ t2, if marking(n1) = marking(n2), then n1 and n2

have the same number of successor nodes and the markings of corresponding successor
nodes are also equal. �

In contrast to induction, we argue starting from the root node in direction to potential leaves
(which do not need to exist in case the tree is infinite). With that we do not have a well-ordering
any more as we have had it in the case of induction. If the depth of the entire tree is infinite,
then the depth of at least one subtree is infinite as well. Nevertheless, one can use induction to
verify that the coinduction principle is correct.

To see the correctness of the coinduction principle, let us sketch the following proof by
contradiction. Assume that t1 and t2 are not equal, t1 6= t2. Then one can show easily by
induction that all finite prefixes of t1 and t2 are equal and that t1 6= t2 cannot be observed in
finite depth. Hence, one can conclude that t1 and t2 must be equal because otherwise, there
would be nodes n1 ∈ t1 and n2 ∈ t2 in finite depth whose markings are identical but whose
successor markings are different. Coinduction is the basis for bisimulation.

One can also use coinduction to show that the nodes in a given potentially infinite tree t
fulfill a certain property P , cf. Figure 2.4. Therefore one needs to show that P (σ) holds for
the root node σ of t and that whenever P (n) for n ∈ t holds, then P (m) also holds for all
direct successor nodes m of n. In the coalgebraic literature [JR97], this principle is known as
reasoning with greatest invariants. Greatest invariants define final subcoalgebras in which P
holds.
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Figure 2.4: Reasoning with Greatest Invariants

To sum up, coinduction is – as also induction – a structural definition and proof principle.
One argues about potentially infinite trees. In contrast to induction, one does not start at the
leaves but at the root node. For readers being familiar with attribute grammars, this analogy
might illustrate the difference: Inductive definitions correspond to synthesized attributes in
attribute grammars while coinductively defined markings correspond to inherited attributes.

Now that we have given an intuitive introduction to coalgebras and coinduction, let us turn
to the theory behind and motivate its use when reasoning about program and system behavior.

With induction, one defines abstract data types which are also called initial algebras. An
initial algebra A is characterized by the fact that for each other algebra A′ of the same signature,
there is a unique homomorphism h : A −→ A′. (This homomorphism is for example used in
completeness proofs for logical calculi when using Herbrand structures as most general models.)

Formally an initial algebra is defined as follows: Using the constructor symbols (which might
also contain constant functions as 0 or “empty-list” [ ]) we build variable-free terms. The
universe of the initial algebra is the smallest set which is closed under this construction pro-
cess. In case of the constructor symbols 0 and s, we get exactly the set of natural numbers:
0, s(0), s(s(0)), . . .. For lists, we have the constructor functions

[ ] : List (empty list) and append : List×A −→ List

A is the sort of list elements. It is interesting to note the mapping characteristics of the
constructor functions. For example, append has several arguments on the “left-hand side”
(List×A) but only one on its “right-hand side” (List).

In coalgebras, this mapping characteristic is exactly opposite. A coalgebra is a function that
takes a single state and transforms it into a compound result consisting of possibly several states
and observations. Let us consider a finite automaton FA as typical example for a coalgebra:

FA : State −→ State×Observation

In comparison to the append function on lists, we have here a mapping characteristic that is
exactly opposite. The coalgebra FA maps a given state into a compound result consisting of the
successor state and of an observation. In case of non-deterministic automata, we would have
several such compound results. In general, one would define a finite automaton as a coalgebra
FA with this signature:

FA : State −→ State×Observation + {∗}
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2 (Co)Algebras and (Co)Induction: A Motivation

The tuple State × Observation denotes the mapping of a state into a successor state and an
observation. “+” denotes disjoint union and the possible result “∗” denotes the arrival in the
final state. In other words, a state transition in the finite automaton FA gives either a new state
together with an observation or the final state where computation ends. Hence, the coalgebra
FA is like a black-box yielding the new state and possibly an observation. It defines potentially
infinite lists whose elements are observations.

As in the case of algebras and initial algebras, there are also special coalgebras, namely
final coalgebras. They are characterized by the fact that for each coalgebra A′ of the same
signature, there exists a unique homomorphism h : A′ −→ A into the final coalgebra A. As
initial algebras, final coalgebras are unique up to isomorphism. Final coalgebras represent the
essence of specifications. We can think of the elements in a final coalgebra as finite and infinite
trees which are set up according to the functions in the signature. Formally, final coalgebras
are the greatest fixed points of signatures.

There is a large amount of theoretical results concerning coalgebras and coinduction, see
[JR97] for an overview. Most of this work is formulated in terms of category theory and is,
in spite of the intuitively clear results, not easily accessible. For practical applications, the
signatures described by so-called polynomial functors are sufficient. These are basically
those signatures whose functions have only finitely many arguments so that the nodes in the
thereby defined finite and infinite trees have only finitely many successor nodes. In these cases,
the final coalgebra exists (which is not the case in general).

We are interested in coalgebraic theory due to the following reasons:

• We can specify the semantics of potentially non-terminating state transition systems ad-
equately with coalgebras. In particular, we can define the semantics of programming
languages by assigning each program an element of a suitable final coalgebra. In doing
so, we can reason not only about the final results of program computation but also about
the state transition sequences which describe the behavior of programs in a more detailed
fashion.

• Based on our coalgebraic program semantics, we are able to verify optimizing transfor-
mations, even when the transformed programs do not terminate.

• Coinductive definition and proof principles have a longstanding tradition in computer
science, only that they are normally called differently. Just think of finite automata
and classical proofs for their equivalence. These are pure coinductive proofs. Sometimes
coinductive proofs are erroneously mixed up with induction proofs but the distinction
between them becomes clear as soon as such proofs are formalized in theorem provers, cf.
our discussion of related work in Section 4.5.

In the following Chapter 3, we derive the dual notions of induction and coinduction and in
particular the basic principles of coalgebraic reasoning, namely coinduction and reasoning with
greatest invariants, based on an easily comprehensible set-theoretic development. In Chapter 4,
we use this development to derive a proof calculus for natural semantics analogously to the
Hoare calculus rule for recursive procedures introduced in Section 2.1. In Chapter 5 we go one
step further and show how the notions of (co)algebras and (co)induction can be defined in terms
of category theory. Finally, in Chapter 6, we demonstrate that the operational semantics of
programming languages can be interpreted coinductively.
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3 A Set-Theoretic Formulation of Coalgebras
and Coinduction

3.1 Abstract Data Types

Let D be an arbitrary but fixed abstract data type recursively defined as follows: Let S be some
fixed set, dl ∈ D for l ∈ {1, . . . rj}, j ∈ {1, . . . , q} and sk ∈ S for k ∈ {1, . . . , wj}, j ∈ {1, . . . , q}
or k ∈ {1, . . . , ti}, i ∈ {1, . . . , p}. Then d ∈ D iff

d ::= Base1 (s1, . . . st1) | · · · | Basep(s1, . . . stp) |
Con1 (d1, . . . , dr1 , s1, . . . sw1) | · · · | Conq(d1, . . . , drq , s1, . . . swq)

This definition specifies a universe D of trees whose nodes are marked with one of the base or
constructor symbols Basei , i ∈ {1, . . . , p} or Conj , j ∈ {1, . . . , q} and with the corresponding
sequence of values s1, . . . sti or s1, . . . swj . Formally, this set D of marked trees is defined by two
recursive conditions: d ∈ D iff:

• If d = Basei(s1, . . . sti), 1 ≤ i ≤ p, then root(d) has no successor nodes. In this case, the
marking of root(d) is defined as mark(root(d)) = (Basei , s1, . . . sti).

• If d = Conj (d1, . . . , drj , s1, . . . swj ), 1 ≤ j ≤ q, then root(d) has rj direct subtrees
d1, . . . , drj such that d1, . . . , drj ∈ D. In this case, the marking of root(d) is defined
as mark(root(d)) = (Conj , s1, . . . swj ).

This definition does not only specify trees of finite height but also trees of infinite height. For
space reasons, we do not prove that the set D exists. Such a proof can be found e.g. in [CC92],
showing that the closure ordinal of D is ω. For sake of readability, as an abbreviation, we write
mark(d) for a given tree d instead of mark(root(d)), where root(d) denotes the root node of
tree d.1 The universe D of marked trees induces the complete lattice (P(D),⊆) where P(D)
denotes the powerset of D and ⊆ the inclusion relation on sets.

Definition 3.1 (Specification Spec) A specification Spec defines a unary predicate Spec on
the universe of an abstract data type D by stating exactly one equation for each base Basei ,
1 ≤ i ≤ p, and each constructor Conj , 1 ≤ j ≤ q:

Spec(Basei(s1, . . . , sti
)) ≡ true ∧ okBasei

(s1, . . . , sti
)

Spec(Conj (d1, . . . , drj
, s1, . . . swj

) ≡ Spec(d1) ∧ · · · ∧ Spec(drj
)

· · · ∧ okConj
(s1, . . . , swj

,mark(d1), . . . ,mark(drj
))

Thereby, the predicates okBasei and okConj , 1 ≤ i ≤ p and 1 ≤ j ≤ q, define restrictions
on the allowed combinations of markings of neighbored nodes in the elements of D. The exact
definitions of okBasei and okConj depend on the concrete specification. E.g. in the context of
natural semantics, they are implicitly specified by the axioms and inference rules of the natural
semantics, cf. also Section 4.1 where we state the corresponding details. For now, we only

1Note that mark(d) is not a recursive function denoting the markings of all nodes in tree d. mark(d) only
specifies the marking of the root node of d.
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3 A Set-Theoretic Formulation of Coalgebras and Coinduction

require them to be decidable. The predicate Spec defines implicitly a function spec : P(D) →
P(D):

spec(X) = {x ∈ D | ∃i ∈ {1, . . . , p}.x = Basei(s1, . . . sti
) ∧ okBasei

(s1, . . . , sti
) ∨

∃j ∈ {1, . . . , q}.x = Conj (d1, . . . , drj , s1, . . . , swj ) ∧ d1 ∈ X ∧ · · · ∧ drj ∈ X ∧
okConj

(s1, . . . , swj
,mark(d1), . . . ,mark(drj

)} �

Theorem 3.1 (Monotonicity of spec) The specification function spec: P(D) → P(D) is
monotone on lattice (P(D),⊆): if X ⊆ Y for X, Y ∈ P(D), then spec(X) ⊆ spec(Y ). �

Proof: By contradiction: Assume there exists z ∈ spec(X), z 6∈ spec(Y ). Then there exists
x ∈ X such that spec({x}) = {z}. Since X ⊆ Y , it follows that x ∈ Y and spec({x}) = {z} ⊆
spec(Y ), contradicting the assumption. �

Tarski’s fixed point theorem states that each monotone function f on a complete lattice has a
least and a greatest fixed point, denoted by lfp(f) and gfp(f). Hence, we conclude that lfp(spec)
and gfp(spec) exist. The least fixed point is called initial algebra, the greatest fixed point
final coalgebra.

A specification Spec restricts the valid markings of the nodes of the trees in the universe D of
an abstract data type. The least fixed point lfp(spec) is the set of all finite trees whose markings
are valid with respect to the specification. (Short outline of a proof: It is obviously a fixed point.
Consider a set strictly smaller: Then the “missing element” can always be constructed by a
finite construction sequence.) The greatest fixed point gfp(spec) is the set of all trees with finite
and infinite height whose markings are valid with respect to the specification. (Short outline
of a proof: Each tree in D not contained in this set has at least two neighbored nodes whose
markings are not valid with respect to the markings of its predecessor or successor nodes.)

3.2 Induction and Coinduction
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Figure 3.1: Induction versus Coinduction

A priori there is no direction in the
specification. It is not determined if
a marking is defined in terms of the
markings of its successors or of its pre-
decessor. In principle, two definition
schemata are possible: In the induc-
tive definition schema, we specify valid
markings for the bases. Then we state
how they are propagated through the
entire tree by defining how the mark-
ings of a node are derived from the
markings of its child nodes. The re-
verse direction is also possible and gives

us the coinductive definition principle. Starting at the root node of a tree, we specify how its
marking is propagated through the tree. Therefore we define how the marking of a node is
derived from the marking of its predecessor. The first principle is structural induction and
defines unique markings on finite trees. The second principle works also for infinite trees. Even
though a tree might not be finite, the coinductive definition specifies a possibly infinite marking
process well-defined at each step.

The inductive definition principle corresponds directly with the inductive proof principle. It
states that some predicate Q holds for all elements in the least fixed point lfp(spec). An inductive

20



3.2 Induction and Coinduction

proof is entirely constructive. Q can only be verified for elements which can be constructed.
There is also a coinductive proof principle which corresponds directly with the coinductive

definition principle. It can be used to prove properties of elements in the greatest fixed point.
We need these two versions:

Theorem 3.2 (Unary Coinduction Principle) Let d ∈ gfp(spec), Q a predicate on the
markings of the nodes of d. Q(mark(k)) holds for all nodes k ∈ d if

• Q(mark(root(d))) and

• if ∀j ∈ {1, . . . , q} . ∀d′ ∈ gfp(spec) . (d′ = Conj (d1, . . . , drj , s1, . . . , swj ) ⇒
(Q(mark(Conj (d1, . . . , drj , s1, . . . , swj ))) ⇒ Q(mark(d1)) ∧ · · · ∧Q(mark(drj )))). �

The two conditions in Theorem 3.2 provide us with a proof principle to verify that all markings
in a tree d ∈ gfp(spec) fulfill a given predicate Q. Therefore we need to prove that Q holds for
the marking of the root node of d (first condition) as well as for all nodes which can possibly
be reached from this root node (second condition). This is achieved by proving that whenever
Q holds for the marking of an inner node, then it also holds for the markings of its direct
successor nodes. In contrast to Definition 3.1, there are no recursive proof obligations like
Spec(Conj (· · · )) ≡ Spec(d1) ∧ · · · ∧ Spec(drj ) . . .. Here we only need to prove a non-recursive
statement about the finitely many constructors Con1 , . . . ,Conj of D and their possible direct
successors. As a consequence of Theorem 3.2, we then get a statement about the infinitely
many trees in the greatest fixed point gfp(spec) (many of which are of infinite height) and their
markings. In practical applications, we verify the two conditions of Theorem 3.2 by utilizing
the specification spec and its definitions of the predicates okBasei for 1 ≤ i ≤ p and okConj for
1 ≤ j ≤ q, cf. also Chapter 4.

Proof: Proof of Theorem 3.2. By contradiction: Assume there exists a node k ∈ d such that
¬Q(mark(k)). W.l.o.g. let k be a node with minimal distance to the root node of d such that
¬Q(mark(k)). Let pos be the position of this node k, i.e. k = d |pos . (Each node in a tree can
be specified by a list of navigation numbers denoting the path from the root on which it can
be reached.) Since we assume that Q(mark(root(d))) holds, the list pos contains at least one
element: pos = [l | pos ′]. Since we assume that k is a smallest node such that ¬Q(mark(k)),
Q(mark(d |pos′)) follows. But d |pos′= Conj(d1, . . . , drj , s1, . . . , swj ) for some j ∈ {1, . . . , q} and
d |pos∈ {d1, . . . , drj}. From the second assumption in Theorem 3.2 we infer that Q(mark(dl)) for
all l ∈ {1, . . . , rj}, in particular Q(mark(k)) in contradiction to the assumption ¬Q(mark(k)).
Hence, Q(mark(k)) for all k ∈ d. �

Theorem 3.3 (Binary Coinduction Principle) Let d, d′ ∈ gfp(spec). d = d′ if

• for some i ∈ {1, . . . , p}: d = Basei(s1, . . . , sti) and d′ = Basei(s1, . . . , sti) or if for some
j ∈ {1, . . . , q}: d = Conj (d1, . . . , drj , s1, . . . , swj ) and d′ = Conj (d′1, . . . , d

′
rj

, s1, . . . , swj )
and

• if for all terms t1, t2 ∈ gfp(spec) and for all j ∈ {1, . . . , q}:
if t1 = Conj (d1, . . . , drj , s1, . . . , swj ) and t2 = Conj (d′1, . . . , d

′
rj

, s1, . . . , swj ) implies that
for all l ∈ {1, . . . , rj}: mark(dl) = mark(d′l). �

Proof: Analogous to the proof of Theorem 3.2: By contradiction: Assume that d 6= d′. Then
there exists a position pos = [l | pos ′] of minimal length such that mark(d |pos) 6= mark(d′ |pos)
and mark(d |pos′) = mark(d′ |pos′). But then the second condition in Theorem 3.3 implies that
mark(d |pos) = mark(d′ |pos)contradicting the assumption d 6= d′. Hence d = d′. �
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3 A Set-Theoretic Formulation of Coalgebras and Coinduction

As Theorem 3.2, Theorem 3.3 states two non-recursive conditions which allow us to reason
about recursive, possibly infinite structures. When reasoning about the semantics of program-
ming languages, we use the unary coinduction principle to prove statements about possibly
infinite state transition sequences of program executions. Moreover, we use the binary coinduc-
tion principle to compare programs by comparing their state transition sequences.

3.3 Related Work

We have based our development of (co)induction in this chapter on a simple exploitation of finite
and infinite abstract data types. The set-theoretic basis for this straightforward development
can be found e.g. in [CC92] which shows that coinductive interpretations of rule systems capture
the behavior of finite and infinite state transition sequences. Most of the existing literature on
algebras and coalgebras and their corresponding definition and proof principles induction and
coinduction chooses a categorical setting, cp. e.g. [BCG02, JR97]. Nevertheless, in most
situations one needs only polynomial functors going from the category of sets and functions
to itself. The theory of algebras and coalgebras for polynomial functors can be stated in set
theory, as we have demonstrated here. Then, the difference between an initial algebra and
a final coalgebra is reduced to the distinction between finite and infinite data structures, i.e.
least and greatest fixed points. We believe that this set-theoretical setting allows for a more
intuitive understanding and in turn for better applicability in practical situations. Our notation
in Section 3.1 is based on the exposition in Appendix B titled “Induction and Coinduction”
in [NNH99]. While the explanations therein give a good understanding of least and greatest
fixed points of specifications, they do not state proof rules like the unary or binary coinduction
principle. Rather they state a proof rule that the elements of each post fixed point fulfill the
specification. In the context of functional programming languages, coinduction and bisimulation
(which corresponds to the binary coinduction principle stated in section 3.2) have been used to
deal with non-terminating computations, cf. e.g. [Gor95].

3.4 Conclusions

In this chapter, we have shown that induction and coinduction and their respective definition
and proof principles can be defined based on purely set-theoretic notions. Based on the definition
of an abstract data type, we have introduced specifications which might put further restrictions
on the valid structures. In a least fixed point setting, we consider only finite data structures.
In a greatest fixed point setting, also infinite data structures are included. Induction proves
that only correct structures can be constructed. Coinduction proves that no contradiction can
be observed. We think that such an easily comprehensible description helps in bridging the gap
between theoretical developments in the field of formal semantics of programming languages on
one side and practical applications in reasoning about properties of programs and programming
languages on the other side.

In the following chapter, we show how coinduction can be used to derive a greatest fixed
point interpretation of natural semantics which is able to model terminating as well as non-
terminating computations. With this development, we contradict the common understanding
that natural semantics can only describe the semantics of terminating programs.
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4 Case Study: A Coinductive Interpretation of
Natural Semantics

Programming language semantics incorporates two dual aspects: The execution of a program
triggers a potentially infinite state transition sequence. If this transition sequence terminates,
then it defines the final result of program execution. A formalism for the semantics of pro-
gramming languages should model both aspects simultaneously. If the execution of a program
terminates, then its final result should be defined based on the finite state transition sequence.
Moreover, a semantics formalism should specify a more meaningful semantics than just “un-
defined” for non-terminating programs. As already mentioned, this requirement is essential in
practical applications since many programs (e.g. operating systems, data bases, control soft-
ware in embedded systems or reactive systems) are not intended to terminate while still having
a very special semantics.

In this chapter, we show that a greatest fixed point or, equivalently, coinductive interpretation
of natural semantics is able to model both aspects simultaneously. This greatest fixed point
interpretation gives rise to a proof calculus consisting of inductive and coinductive proof rules
analogous to the Hoare calculus rule for recursive procedures discussed in Section 2.1. This proof
calculus can be used in the formal reasoning about programming languages. As examples, we
consider two applications. The first concerns the correctness proofs of translations, e.g. in
compilers. Thereby one needs to prove that the observable behavior of the translated programs
is preserved. This is a stronger requirement than just preserving their final results. The second
example regards proofs for properties of programming languages, e.g. type safety, which need
to consider terminating as well as non-terminating programs.

We start with the observation that each natural semantics defines an abstract data type.
Then we show that each natural semantics is a specification in the sense of Definition 3.1. We
prove that the least fixed point of such a specification describes the execution of all terminat-
ing programs while the greatest fixed point defines also a semantics for all non-terminating
computations. Finally we show that the greatest fixed point interpretation gives rise to two
simple proof rules which can be used to verify the correctness of translations as well as to verify
properties of programming languages (e.g. type safety).

4.1 Derivation Trees of Natural Semantics

A natural (or big-step) semantics defines execution of programs in a top-down fashion: the
state transitions of an entire abstract syntax tree are composed from the state transitions of its
direct subtrees and, in recursive definitions, also from its own state transitions. It is important
to observe that a big-step semantics defines individual state transitions only at the leaves of an
abstract syntax tree. For all inner nodes, the inference rules specify how to compose the overall
state transition sequence in the conclusion from the state transitions of the assumptions. Hence,
we can regard each inference rule as a recursive procedure that is applicable if its evaluation
conditions are fulfilled and that calls recursively further axioms or inference rules. The execution
of a program defines a possibly infinite derivation tree. Its inner nodes correspond to the
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4 Case Study: A Coinductive Interpretation of Natural Semantics

application of inference rules and its leaves represent the application of axioms. We define this
idea formally:

First we define the markings of the nodes in a derivation tree. Let Prog be all abstract
syntax trees. Let Prog = {prog | ∃ prog ′ ∈ Prog . prog = prog ′ ∨ prog is a subtree of prog ′}
be all abstract syntax trees and their subtrees. Let S be the data structures used in a natural
semantics to represent the states (cf. Section 1.5). In a derivation tree, each node is marked
with (P, prog , s, s′) where P is its base or constructor, prog ∈ Prog is a program, s ∈ S is the
initial state, and s′ ∈ S the final state.

Let A1, . . . , Ap be the axioms and R1, . . . , Rq be the inference rules of a natural semantics
specification, each belonging uniquely to one production X0 ::= X1 · · ·Xn of the abstract syntax
and each of the form

Eval(Xl1 , σ0) = value1, . . . ,
Eval(Xlmi

, σ0) = valuemi

< X0, σ0 > → σ1
or

Eval(Xl1 , σ0) = value1, . . . ,Eval(Xlmj
, σ0) = valuemj ,

< Xi1 , σ0 > → σ1, · · · , < Xirj
, σrj−1 > → σrj

< X0, σ0 > → σrj

resp.

The abstract data type D of derivation trees is defined as follows whereby prog ∈ Prog and
s, s′ ∈ S: d ∈ D iff

d ::= A1(prog , s, s′) | · · · | Ap(prog , s, s′) |
R1(d1, . . . , dr1 , prog , s, s′) | · · · | Rq(d1, . . . , drq , prog , s, s′)

The predicate Spec is defined by stating one equation for each axiom and for each inference
rule. This is the version for axioms Ai, 1 ≤ i ≤ p:

Spec(Ai(prog , s, s′)) ≡
root(prog) = X0 ∧ root(prog |[1]) = X1 ∧ · · · ∧ root(prog |[n]) = Xn ∧
∃ substitution τ . (τ(σ0) = s ∧ τ(σ1) = s′∧
Eval(prog |[l1], τ(σ0)) = value1 ∧ · · · ∧ Eval(prog |[lmi ]

, τ(σ0)) = valuemi)

The first line specifies that axiom Ai belongs to production X0 ::= X1 · · ·Xn and can only be
applied to programs of that form. prog |[i] denotes the i-th direct subtree of prog . The second
line describes that the general states σ0 and σ1 which may contain variables as placeholders can
be mapped to the concrete states s and s′ by applying a substitution τ . The last line specifies
that the evaluation conditions must be fulfilled in the state s = τ(σ0).

The version of Spec for inference rules Rj , 1 ≤ j ≤ q needs additional conditions for the
recursive correctness requirements. The first line is the recursive constraint requiring that all
subtrees fulfill the specification. The last three lines require that each direct subtree is marked
either with the same program or a direct subtree of the program. Furthermore, it is specified
that the final state of the k-th subtree is the initial state of the k + 1-st subtree, 1 ≤ k ≤ j − 1.
The remaining requirements are the same as for an axiom:

Spec(Rj(d1, . . . , drj , prog , s, s′)) ≡ Spec(d1) ∧ · · · ∧ Spec(drj ) ∧
root(prog) = X0 ∧ root(prog |[1]) = X1 ∧ · · · ∧ root(prog |[n]) = Xn ∧
∃ substitution τ . (τ(σ0) = s ∧ τ(σrj ) = s′∧
Eval(prog |[l1], τ(σ0)) = value1 ∧ · · · ∧ Eval(prog |[lmi ]

, τ(σ0)) = valuemi ∧
∀l ∈ {1, . . . , rj} . (mark(dl) = (prog ′, s1, s2) ⇒
(il = 0 ⇒ prog = prog ′ ∧ il > 0 ⇒ prog |[il]= prog ′) ∧
root(prog ′) = Xil ∧ τ(σl−1) = s1 ∧ τ(σl) = s2))

Spec is a specification with respect to Definition 3.1. Hence, there exists a monotone speci-
fication function spec with least and greatest fixed point, lfp(spec) and gfp(spec), on the set D of
marked derivation trees. If d ∈ D is marked with (P, prog , s, s′) for P ∈ {A1, . . . , Ap, R1, . . . , Rq},
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4.2 Classical Inductive Interpretation

<prog,[ ],[i=5]>

i:=1 i:=5 while i<2 do

prog

<while i<2 do
   i:=i+1 od,[i=1],[i=2]>

<i:=5,[i=2],[i=5]>
  i:=i+1 od

<i:=i+1,[i=1],[i=2]> <while i<2 do
   i:=i+1 od,[i=2],[i=2]>

<i:=1,[ ],[i=1]>

  

Figure 4.1: Semantics of a Terminating Program

then we say that d is a derivation tree for prog and s and that s is the initial and s′ the final
state of d.

A priori, there is no direction in the definition of the markings. Nevertheless, in all existing
natural semantics specifications, such a direction exists. For each marking (P, prog , s, s′) of
a derivation tree, P ∈ {A1, . . . , Ap, R1, . . . , Rq}, the program prog and the initial state s are
defined coinductively while the final state s′ is defined inductively. Even if the execution does
not terminate and the final state is not uniquely defined, the state transitions performed during
execution are still uniquely determined.

Definition 4.1 (Deterministic Natural Semantics Specification) A natural semantics
specification is deterministic if

• for all prog ∈ Prog, s ∈ S, there exists exactly one axiom or inference rule whose
evaluation conditions are fulfilled in state s and which is applicable to prog (i.e. if the
axiom or inference rule belongs to the production X0 ::= X1 · · ·Xn, then root(prog) = X0

and for l ∈ {1, . . . , n}, root(prog |[l]) = Xl).

• For each axiom and inference rule, if prog and initial state s are known, then all evaluation
conditions can be computed by a terminating computation.

• For each axiom, if prog and the initial state s are given, then the final state s′ can be
computed uniquely, also by a terminating computation. �

One can also consider the case that there are specifications such that no final state can be com-
puted because, e.g., there might be no applicable rule. Such a case is called a stuck computation.
To keep the presentation simple, we do not discuss such situations here.

4.2 Classical Inductive Interpretation

The classical interpretation of natural semantics defines semantics only for terminating pro-
grams. In this section, we give first an example for a terminating computation. Then we prove
that for all terminating programs, the final state is unique.

Example 4.1 (Terminating Execution) Assume that a state during execution is a list of
pairs of variables with their current values. Assume further that the program prog as given on
the left-hand side in Figure 4.1 is to be executed in state [ ], i.e., no variable has been assigned
a value yet. Then the semantics of the program is represented by the derivation tree d on the
right-hand side in Figure 4.1. This example demonstrates the two-level hierarchy of coinductive
and inductive structures in program semantics: The program prog and the initial state s are
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4 Case Study: A Coinductive Interpretation of Natural Semantics

defined coinductively. Their definition starts at the root of the derivation tree and is propagated
through the tree until its leaves are reached. At the leaves, the coinductive part of semantics, i.e.
the state transition behavior, is connected with the inductive part, i.e. the computation of the
final state. The definition of the final state is inductive since it starts at the leaves and proceeds
along the derivation tree structure up to the root. �

Theorem 4.1 Let Spec be a deterministic natural semantics, spec the corresponding specifica-
tion function and lfp(spec) its least fixed point on the set D of marked derivation trees. Let S be
the set of states and Prog the set of abstract syntax trees or subtrees thereof. For each program
prog ∈ Prog, s0 ∈ S, if the execution of prog starting in s0 terminates, then there exists exactly
one derivation tree d ∈ D for prog and s0. The final state of d is uniquely determined. �

Proof: By Induction on the (finite) structure of d:

Induction Base: If there is an axiom Ai such that its evaluation conditions are fulfilled in
s0 and which is applicable to prog , then there exists a unique final state s′ ∈ S such that
< prog , s0 >→ s′. Because Spec is deterministic, no other axiom or inference rule is applicable,
hence d is uniquely determined.

Induction Step: Let Rj , 1 ≤ j ≤ q, be the unique inference rule applicable to prog whose
evaluation conditions are fulfilled. If this rule has rj assumptions, then the derivation tree d
for prog and s0 has rj direct subtrees. The first subtree is uniquely determined because it is
a derivation tree for some program prog ′ and s0 where either prog ′ = prog or prog ′ is a direct
subtree of prog , as specified by Rj . Due to the induction hypothesis, there exists a unique
state s1 which is the final state of the first direct subtree of d, < Xl1 , s0 >→ s1. s1 is also
the initial state for the second subtree of d. By repeating this reasoning, we conclude that all
direct subtrees of d have unique initial and unique final states. The unique final state of the
last subtree of d also serves as the final state of d. Hence, the derivation tree d for prog and s0

is uniquely determined. �

4.3 Coinductive Interpretation

If a program prog does not terminate when started in an initial state s0, then the derivation
tree for prog and s0 has infinite height. This means that the coinductive and the inductive
definition flow of the semantics cannot be connected since there are no leaves. In consequence,
there is no unique derivation tree for prog and s0. As an illustration, consider this example:

Example 4.2 (Non-Terminating Execution) As in Example 4.1, each state is a list of
pairs of variables and their current value. The semantics of the program with the non-terminating
while-loop on the left-hand side is represented by the infinite derivation tree on the right-hand
side. The annotation “...” means that the value of the respective initial or final state is not
uniquely determined. Thus, there are several derivation trees for prog and s0 = [ ], all for
which the relation between the markings of parent and children nodes is valid with respect to
the specification. Even though not all states are uniquely defined, these derivation trees define
a unique infinite state transition sequence, as we prove below. �

Definition 4.2 (State Transition Sequence) Let Spec be a deterministic natural semantics
specification, spec the corresponding specification function, prog be a program, and s0 the initial
state of computation. Let d ∈ gfp(spec) be a derivation tree of prog and s0. Then the state
transition sequence of d, prog and s0 is defined as follows:
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4.3 Coinductive Interpretation

undefined initial and 

i:=1 i:=5 

prog

  i:=i+1 od
<i:=1,[ ],[i=1]>while true do

<i:=i+1,[i=1],[i=2]>

<while true do

<while true do

  

<while true do

  

  

<i:=i+1,[i=2],[i=3]>

<i:=i+1,[i=3],[i=4]>

non−terminating 
computation leads to 

<prog,[ ], ...>

<i:=5, ... , ...>
   i:=i+1 od,[i=1], ...>

   i:=i+1 od,[i=2], ...>

   i:=i+1 od,[i=3], ...>

final states 

state sequence(Rj(d1, . . . , drj , prog , s0, s)) =
append([s0], state sequence(d1), . . . , state sequence(dn))

state sequence(Ai(prog , s0, s)) = [s0, s] where s is the uniquely determined
final state (cf. third case in Definition 4.1). �

Lemma 4.1 Let Spec be a deterministic natural semantics specification, spec the correspond-
ing specification function, prog be a program, and s0 the initial state of computation. Let d ∈
gfp(spec) be a derivation tree of prog and s0. Then the state transition sequence state sequence(d,
prog, s0) of d, prog and s0 is uniquely defined. �

Proof: If d has finite height, then the statement of Lemma 4.1 follows from Theorem 4.1. If d
has infinite height and direct subtrees d1, . . . , dr, then let di, 1 ≤ i ≤ r be the first subtree of
infinite height. All subtrees d1, . . . , di−1 have finite height and unique initial and final states. di

has a unique initial state. By using the unary coinduction principle (In Theorem 3.2, let Q be
the property that the roots of all finite subtrees as well as the first subtree with infinite height
have uniquely determined initial states), we conclude that di has a unique state transition se-
quence. Since this sequence is infinite, its concatenation with the state transition sequences of
the subtrees di+1, . . . , dr does not have any effect. (The concatenation of an infinite list l with
any other list l′ is again the list l.) Hence, d has a well-defined state transition sequence. �

When programs do not terminate, then they have in general more than one derivation tree,
cf. Example 4.2. Nevertheless, their state transition sequences are always the same. To prove
this, we first define the effective part eff part(d) of a derivation tree which includes only those
parts which can be reached, if one spends enough time, during computation. As illustration,
Figure 4.2 shows the effective part of the non-terminating derivation tree of Example 4.2.

Definition 4.3 (Effective Part of Derivation Tree) The effective part of a derivation tree
d, eff part(d), is the tree defined as follows:

• eff part(d) = d if d has finite height, and

• eff part(Rj(d1, . . . , drj , prog , s, s′)) = Rj(d1, . . . , dl−1, eff part(dl), prog , s,⊥) where
l ∈ {1, . . . , rj}, and d1, . . . , dl−1 have finite height. �

Theorem 4.2 (Unique Effective Parts) Let Spec be a deterministic natural semantics speci-
fication, prog a program and s the initial state of program execution. Let spec be the corre-
sponding specification function and d, d′ ∈ gfp(spec) derivation trees for prog and s. Then
eff part(d) = eff part(d′). �
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4 Case Study: A Coinductive Interpretation of Natural Semantics

<i:=1,[ ],[i=1]>

<i:=i+1,[i=1],[i=2]>

<while true do

<while true do

  

<while true do

  

  

<i:=i+1,[i=3],[i=4]>

<i:=5, ... , ...>

<i:=i+1,[i=2],[i=3]>

   i:=i+1 od,[i=1],    >

<prog,[ ],    >

   i:=i+1 od,[i=2],    >

   i:=i+1 od,[i=3],    >

Figure 4.2: Effective Part of a Non-Terminating Derivation Tree

Proof: If d and d′ both have finite height, then its follows directly from Theorem 4.1. Hence,
assume that d or d′ have infinite height and use the binary coinduction principle to prove that
eff part(d) = eff part(d′). Therefore we prove the two conditions stated in Theorem 3.3 for
eff part(d) and eff part(d′).

First condition: The case that d = Ai(prog , s, s′) or d′ = Ai(prog , s, s′), i ∈ {1, . . . , p},
does not exist because then, both d and d′ are equal to Ai(prog , s, s′) (and finite) because
Spec is deterministic. Hence, d = Rj(d1, . . . , drj , prog , s, s′) and d′ = Rl(d′1, . . . , d

′
rl
, prog , s, s′′),

j, l ∈ {1, . . . , q}. Because Spec is deterministic, it follows that Rj = Rl. Hence, without loss
of generality, assume d′ = Rj(d′1, . . . , d

′
rl
, prog , s, s′′). Hence, we conclude that eff part(d) =

Rj(eff part(d1), . . . , eff part(drl
), prog , s,⊥) and eff part(d′) = Rj(eff part(d′1), . . . , eff part

(d′rl
), prog , s,⊥) which shows that the first condition of Theorem 3.3 is fulfilled.

Second condition: We need to show that those markings of the direct subtrees of eff part(d)
and eff part(d′) which do not denote trees are the same. These markings are the constructor
symbols (i.e. the applied inference rules), the program annotations (element of Prog), and the
initial states in the markings of the direct subtrees of eff part(d) and eff part(d′).
d has at least one infinite subtree dl, 1 ≤ l ≤ rj . The subtrees d1, . . . , dl−1 have finite height. d1

has the same initial state as d′1, so it follows that d1 = d′1. (For a proof by contradiction, assume
that d1 6= d′1. Then assume that there is a first position when traversing d1 and d′1 in left-to-
right order at which d1 and d′1 differ. But this is a contradiction to Spec being deterministic).
In particular, we conclude that mark(d1 ) = mark(d1

′). With the same reasoning repeated, we
prove that dk = d′k for 2 ≤ k ≤ l − 1. The markings of dl and d′l do not need to be equal as
the final state of a non-terminating computation is not uniquely determined. Nevertheless, the
parts of their markings which influence their effective parts are the same: The final state of
dl−1 and d′l−1 are the same so that also the initial states of dl and d′l are equal; the programs
∈ Prog in the marking of dl and d′l are the same because the same inference rule is applied
at d and d′ (Spec is deterministic); and because Spec is deterministic, there is exactly one
inference rule Rl which is applicable at dl and d′l. Hence, we have dl = (Rl(. . .), prog , sl, s

′
l)

and dl = Rl(. . .), prog , sl, s
′′
l ). From this, it follows that eff part(dl) = (Rl(. . .), prog , sl,⊥)

and eff part(d′l) = (Rl(. . .), prog , sl,⊥) which completes the proof of the second condition of
Theorem 3.3. Hence, we conclude that eff part(d) = eff part(d′). �

Corollary 4.1 (Unique State Transition Sequence) Let Spec be a deterministic natural
semantics, prog a program, and s0 the initial state of program execution. Let spec be the
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corresponding specification function and d, d′ ∈ gfp(spec) be derivation trees for prog and s0.
Then state sequence(d, prog, s0) = state sequence(d′, prog, s0). �

Proof: This follows directly from Theorem 4.2 and the construction used in the proof of Lemma
4.1. �

Definition 4.4 (Semantics of a Program) Let Spec be a natural semantics, spec the corres-
ponding specification function, and prog be a program. The semantics Sem(prog) of prog is
defined as the set of all derivation trees in gfp(spec) whose root is marked with prog:

Sem(prog) = {d ∈ gfp(spec) | ∃s, s′ ∈ S, P ∈ {A1, . . . , Ap, R1, . . . , Rq} .
mark(root(d)) = (P, prog , s, s′)}

The semantics of prog for the initial state s0 is the set

Sem(prog , s0) = {d ∈ Sem(prog) | ∃s′ ∈ S, P ∈ {A1, . . . , Ap, R1, . . . , Rq} .
mark(root(d)) = (P, prog , s0, s

′)} �

The set Sem(prog , s0) might contain more than one derivation tree. In this case, the com-
putation does not terminate. Subtrees of the derivation tree coming after (with respect to
a depth-first left-to-right order) the non-terminating subtree do not contribute to the infinite
state transition sequence since they will never be reached. Nevertheless, the effective parts of all
derivation trees in Sem(prog , s0) are the same and contain exactly those parts of the derivation
trees which contribute to the state transition sequence of the program.

4.4 Applications of the Proof Calculus

Natural semantics, if interpreted coinductively, combines both aspects of programming language
semantics in a very elegant and theoretically simple way. It defines a unique effective part for
each program and each initial state. For all terminating executions, it also defines a unique
final state. For all non-terminating executions, it describes uniquely the infinite state transition
sequence of program execution. In this section, we show how the unary and binary coinduction
principles can be applied for natural semantics and its coinductive interpretation.

4.4.1 Properties of Programming Languages

Assume that the semantics of a programming language is defined by a natural semantics speci-
fication. Assume furthermore that we want to prove a certain property Q for the states reached
during execution of each program of that programming language. Such a property could e.g.
be the type-safety of the language. We claim the following: To prove that Q holds in all states
reached during execution of an arbitrary program, we need to verify the conditions stated in
the proof rule in Figure 4.3.

Theorem 4.3 Let Spec be a natural semantics specification and Q be a property such that the
three requirements of the proof rule in Figure 4.3 hold. Then Q holds for all states reached
during the execution of each – terminating and non-terminating – program of the programming
language defined by Spec. �

Proof: Let p be an arbitrary program of the programming language defined by Spec, let d be a
derivation tree for p for an arbitrary but fixed initial state σ such that Q(σ) holds, and consider
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4 Case Study: A Coinductive Interpretation of Natural Semantics

Unary Proof Rule for Natural Semantics Specifications

To verify that a property Q holds for all states reached during execution of an arbitrary,
potentially non-terminating program, prove these requirements:

• Show that Q(σ) holds for all states σ in which program execution might start.

• Show for each axiom < X,σ >→ σ′: If Q(σ), then Q(σ′).

• Show for each inference rule

Eval(Xl1 , σ0) = value1, . . . ,Eval(Xlm , σ0) = valuem,
< Xi1 , σ0 > → σ1, · · · , < Xir , σr−1 > → σr

< X0, σ0 > → σr
:

If Q(σ0) → Q(σ1) ∧ · · · ∧ Q(σr−1 → Q(σr), then Q(σ0) → Q(σr).

Figure 4.3: Proof Rule for Properties of Programming Languages

the effective part eff part(d) of d. Then we need to verify that Q holds for all states contained
in eff part(d). Therefore we need an interleaved inductive and coinductive reasoning.

We use the unary coinduction principle (theorem 3.2) to verify that Q holds for the coin-
ductively defined states (i.e. the initial states) in all markings in the effective part of d (by
assuming that Q holds trivially for the state ⊥). Therefore we need to verify the two condi-
tions of the unary coinduction principle (Theorem 3.2) for eff part(d) and the therein contained
initial states. The first condition requires us to verify that Q holds in arbitrary initial states
which is true because of the first requirement of the proof rule in Figure 4.3. To verify the sec-
ond condition, we need an interleaved inductive and coinductive reasoning because the initial
states are defined coinductively but the final states (which are also initial states in neighboured
derivation subtrees) are specified inductively depending on the initial states. Consider the first
l subtrees of d which have finite height. To prove that Q holds for all their initial and their
final states requires an inductive proof along the axioms and inference rules of the specification
(along the lines of the second and third requirement of the proof rule in Figure 4.3). If d has only
l subtrees, then we are done at this point. Otherwise, consider the l + 1-st subtree which is the
last subtree contributing to the effective part of d. Its initial state is the uniquely determined
final state of dl, for which we have already shown that Q holds. Since eff part(d) has no more
subtrees, we have verified that the second condition of Theorem 3.2 holds which completes the
proof. �

As in case of the Hoare calculus rule for recursive procedures (cf. Section 2.1), the proof rule
in Figure 4.3 is an overlay of two different proof rules: If the derivation tree is finite, i.e., if
program execution terminates, then the proof rule describes an inductive proof showing that
all initial and final states in the derivation tree fulfill property Q. If program execution does
not terminate, i.e., if the derivation tree has an infinite subtree, then the proof obligations of
the proof rule imply two facts: First, by an inductive argument they imply that the initial and
final states in all finite subtrees coming “before” the infinite one fulfill Q. Furthermore, they
imply coinductively that Q also holds for the initial states in the infinite subtree (structural
argument along the third requirement of the proof rule in Figure 4.3).
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4.5 Related Work

4.4.2 Compiler Correctness

A correct compiler should preserve the observable behavior of the translated programs. This
requirement is essential. In many practical applications, programs do not terminate and are
not even intended to terminate (e.g. data bases, operating systems, software in embedded
systems, reactive systems in general). If one wants to verify that software for such systems
is translated correctly, the proof cannot be done by induction. The corresponding derivation
trees and state transition sequences are not finite. Instead one needs a coinductive proof that
the observable behavior, i.e. the state transition sequence is the same in the original and the
translated program. The basis for coinductive reasoning is greatest fixed point semantics.

Example 4.3 (Verification of an Optimization) Consider the non-terminating program
from Example 4.2. An optimizing compiler might recognize that the while-loop does not termi-
nate. Since the compiler is required to preserve the observable behavior, it cannot modify the
while-loop. Nevertheless, the assignment i:=5 will never be reached during any execution and
can be eliminated. If the inference rules for the while-loop (cf. Section 1.5) are interpreted
inductively with the least fixed point, then such a transformation cannot be verified as being
semantics-preserving. �

Proof Sketch: In the greatest fixed point interpretation, we can first show that the while-
loop does not terminate and then do a coinductive proof showing that the state transition
sequences in the original and in the optimized program are the same. The first part, proving
non-termination, can be done by a simple contradiction argument.

For the second proof, the coinductive one, we need to use the binary coinduction principle to
prove that the effective parts of the derivation trees d and d′ of the original and the optimized
program are the same. The reasoning is completely analogous to the one in the proof of
Theorem 4.2. First we consider the case that d and d′ are both finite (which does not hold since
the original program does not terminate). Hence at least d or d′ are of infinite height and we
use the binary coinduction principle to prove that the effective parts of d and d′ are the same.
Therefore we need to verify the two conditions of Theorem 3.3: According to the first condition,
we need to show that the markings (i.e. the applied inference rules, the initial states, and the
annotated programs) at the root nodes of the derivation trees are the same. This holds trivially
(assuming that the natural semantics specification is deterministic). According to the second
condition we need to show that the markings of the direct subtrees of d and d′ which contribute
to their effective parts are marked with the same initial state, the same program, and the same
applied inference rule or axiom. Therefore we first consider the first l finite subtrees of d and
show that d′ has the same first l finite subtrees (by induction). Then we finish the proof by
showing that the first subtrees of infinite height in d and d′ contribute with the same applied
inference rule, the same initial state, and the same annotated program to the effective parts of
d and d′ which completes the proof of the two conditions in the binary coinduction principle.
Therefore we conclude that the effective parts of the original loop-program and the optimized
loop-program are the same and, hence, their state transition sequences are also the same. �

4.5 Related Work

The results of this chapter contradict the common understanding that natural semantics can
only describe terminating computations (cf. [NN99, Sch96] or any other textbook or lecture
notes of your choice) while structural operational semantics, also called small-step semantics, is
additionally suited to describe non-terminating programs. Rather it is the common least fixed
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point interpretation of natural semantics that defines semantics only for terminating programs.
Usually a greatest fixed point semantics is assumed implicitly for structural operational seman-
tics but without drawing the conclusion that coinductive proof rules are necessary. For both
specification formalisms, both interpretations are possible, cf. also Section 6.2. A least fixed
point interpretation of structural operational semantics defines semantics only for terminating
programs by assigning them a finite state transition sequence and an “undefined” to all non-
terminating programs. The only related research attempting to widen the interpretations of
natural semantics is described in [IS98]. It defines a coinductive interpretation of natural se-
mantics by translating it into a small-step format. Induction is used to reason about the thereby
defined finite and infinite state transition sequences. This is only a half-hearted approach as it
does not separate between the coinductive character of the state transitions and the inductive
nature of the final result defined on top of them. We want to emphasize that induction is not
the appropriate proof method to reason about the state transition behavior of programs, see
also our explanations about induction and coinduction for lists at the end of this section.

This insight has severe consequences as it reveals that most equivalence proofs for programs
based on structural induction do hold only if the programs terminate. In particular, this holds
for the research efforts in proving the static type safety of Java [DE99, Sym99, NvO98, vO01].
All proofs are based on inductive arguments and, hence, do only hold for terminating programs.
Therefore, one would assume that the machine-checking approach needs extra assumptions when
applying the inductive proof principle. Indeed, the inductive proofs did not work without further
assumptions: In the machine-checking approach documented in detail in [vO01], the maximal
recursive depth of evaluation is restricted to a finite number, cp. paragraphs 5.3.2 and 5.7.2 of
[vO01]. The same assumption has been applied in the mechanical verification of the correctness
of a compiling specification [DV01] using the PVS system [ORS92], cp. section 4 of [DV01].

Finally a remark about lists as degenerated trees: When we reason about state transition
sequences, we start at the root node of the lists and infer properties for a child node from its
parent node. This is coinduction. It is different from induction where we start at the leaf of the
list and construct (finite) lists by using already constructed smaller lists. The inductive view is
used for defining results of computations. Thereby we assume that the list-degenerated state
transition tree has a leaf as base case. Since these dual definition and proof principles look so
similar for lists, there is often no clear distinction between them. Nevertheless, in other areas
this distinction is well-known and accepted. E.g. in functional programming languages, it can
be found as the distinction between strict (inductive) and lazy (coinductive) evaluation. When
dealing with formal semantics of programming languages, it is the difference between state
transition sequences of unbounded but always finite length and sequences of infinite length.
In the first case, one can deal with all finite sequences, no matter how large they are. In the
second case, one can also deal with infinite sequences. To capture also the infinite sequences,
one needs to use coinduction. Induction can only deal with finite state transition sequences of
unbounded length but is not appropriate for infinite state transition sequences. This difference
is strikingly documented in the machine-checking approaches discussed above which need extra
assumptions restricting proofs to terminating computations only.

4.6 Conclusions of the Case Study

Our investigations are based on the observation that programming language semantics has two
dual aspects, the state transition behavior and the computation of the final result. In conse-
quence, programming language semantics needs to be defined by a two-layer hierarchy: First
the potentially infinite state transition behavior is defined coinductively. On top of this coin-
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ductive structure, an inductive definition specifies the final result of computation. It is unique
only if the state transition sequence is finite. This connection between the coinductive and the
inductive structure of program semantics seems to be essential and not only a characteristics
of natural semantics, whereupon its greatest fixed point interpretation demonstrates it particu-
larly clearly. In this sense, we have established natural semantics as a well-balanced formalism
for the semantics of programming languages as it models both aspects sufficiently and evenly.
Axiomatic semantics, in particular the Hoare calculus [Hoa69] is an equally balanced formal-
ism. It defines the preconditions coinductively and the postconditions inductively. This implies
that the postconditions do only hold if execution terminates. Especially the rule for recursive
procedures demonstrates this interleaved coinductive/inductive reasoning (cf. Section 2.1).

Our developments in this chapter follow the insight that a combination of algebraic and
coalgebraic methods can be used successfully in the specification of and reasoning about pro-
gramming languages, especially for potentially non-terminating processes. We have shown that
the state transition behavior of programs must be defined coinductively and that the final re-
sult is to be defined inductively on top of it. While automated theorem provers, e.g. Isabelle
[Pau02], have the potential to reason coinductively, the standard practice does not use it. All
automated as well as “paper and pencil” proofs based on natural semantics exploit induction
and, hence, do only hold for terminating computations. The results of this chapter demonstrate
that this is not sufficient and should be replaced by coinductive reasoning.
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5 A Categorical Formulation of Coalgebras and
Coinduction

Induction and coinduction are completely dual definition and proof principles. It is the aim of
this chapter to expose this duality which can be demonstrated best when formalizing induc-
tion and coinduction in category-theoretical notions. As a motivation, we start with typical
coalgebras in computer science in Section 5.1 and with a comparison between inductive and
coinductive definitions which are widespread in many areas of computer science in Section 5.2.
Then we proceed in Section 5.3 by introducing basic category theory, especially the concept of
functors and in particular polynomial functors. In Section 5.4, we show that functors can be
used to describe abstract data types. Based on this formalization, we explain the concept of al-
gebras and induction in Section 5.5 and the concept of coalgebras and coinduction in Section 5.6.
Finally we formalize bisimulation and the coinductive proof principle in Section 5.7.

Most of the material in this chapter can be found in existing literature as for example [JR97]
which is a well-written introduction to the field and which can be highly recommended as a
sequel to this chapter. In contrast to the presentation of coalgebras and coinduction in [JR97]
(and basically all publications on coinduction), our exposition in this report strives to offer
intuitive “pictures” in form of finite and infinite trees and to show their connection to the
category-theoretical account of the topic via a relatively simple set-theoretic setting (which is
given in Chapter 3). Therefore, at the end of this chapter, we come back to the pictures of
finite and infinite trees and provide an intuitive understanding of coinduction which carries on
where the gentle introduction in Section 2.2 left off.

5.1 Typical Coalgebras in Computer Science

Coalgebras are generally used to describe state-based computations in state transition systems.
Formally coalgebras are functions which take a state as input and return one or several even-
tually modified successor states together with observations. Returning several successor states
can serve different purposes. For example, they can express non-determinism or, as in the case
of natural semantics derivation trees, cf. Chapter 4, sequential composition. The idea when
using coalgebras and coinduction is to classify a system completely by its observable behavior.
The description of this observable behavior is expressed by the unique homomorphism from
an arbitrary coalgebra into the final coalgebra of the same signature. Remember that we have
mentioned this unique mapping already in Section 2.2. In the course of this chapter, especially
in the sections following the current one, we give a formal existence and uniqueness proof of
this homomorphism. In this section, we discuss a series of typical examples and start by con-
sidering one of the most important coalgebras, namely that of non-terminating deterministic
state transition systems:

Non-Terminating Deterministic State Transition Systems

Consider a system with two buttons, i.e. functions, value and next. When pressing the button
value, we get some observation from a set A of possible observations of the system. The internal
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state of the system is not modified by the function value. In contrast, the function next modifies
the internal state and returns the new internal state of the system. Such a system can be
described by the coalgebra consisting of the pair of functions value and next where X denotes
the state space of the system:

〈value, next〉 : X −→ A×X

From this system, we can observe the following behavior: By pressing the button value, i.e.
by applying the function value to the current state, we observe some value val. Furthermore,
we can pass over to the next state by the function next to the current state. And we can
repeat this as often as we want. Hence, by doing so, we observe an eventually infinite list of
observations (val1, val2, val3, . . .) ∈ AIN. AIN denotes the set of functions from IN to A, and vali is
the observation after applying the function next i times. The behavior function beh : X −→ AIN

captures exactly these possible observations.

Possibly Non-Terminating Deterministic State Transition Systems

In practical situations, we often deal with systems for which we do not know whether they will
terminate or not. If these systems are deterministic, then they can be described by the following
coalgebra where A denotes the set of possible observations and A the state space of the system:

〈value, next〉 : X −→ (A × X) ∪ {∗}

Let x ∈ X be the current state. Then next(x) denotes the succeeding state. If next(x) = ∗, then
computation stops and the state transition system terminates. No observation can be obtained
any more since value cannot be applied to ∗ but only to states in X. If next(x) 6= ∗, then the
computation can go on by applying the function next again.

As in the case of non-terminating deterministic state transition systems we get observations
which can be described by elements from AIN. Additionally, if the system terminates, the
observations can be described by finite lists of elements of A, (val1, val2, val3, . . . , valn) ∈ A∗

where A∗ denotes the set of all finite lists of elements of A. The behavior function for such
state transition systems is defined as a function beh : X −→ AIN ∪A∗.

In Section 6.1, we formalize the operational semantics of deterministic programming languages
by defining such a function behprog : X −→ AIN∪A∗ for each program prog. Given an initial state
x ∈ X, behprog(x) returns either a finite list of observations in case the program terminates when
started in state x, or, if program execution does not terminate, behprog(x) returns an infinite
list of observations.

Possibly Non-Terminating Non-Deterministic State Transition Systems

Now consider a state transition system which in every state might non-deterministically pass
over to one of two possible successor states. Such a system can be described by the following
coalgebra where A denotes again the set of possible oberservations, first the first of the two
non-deterministic successor states, and second the second non-deterministic successor:

〈value, first, second〉 : X −→ A × (X ∪ {∗}) × (X ∪ {∗})

For such a coalgebra, we get observations which can be described by finite and infinite trees
whose nodes are marked with observations from A such that each node has either exactly two
subtrees or is a leaf. Hence, if T (A) denotes the set of these trees, the behavior function is a
function beh : X −→ T (A).

Also, general non-deterministic state transition systems can be described by coalgebras. As-
sume that a state might have arbitrarily many possible successor states.
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Figure 5.1: Behavior of Deterministic Finite Automata

Coalgebras for Deterministic Finite Automata

Finite automata are often used to describe state transition systems with only finitely many
states. Given a current state, the successor state is determined depending on some input s ∈ S
for a finite input alphabet S. Assume furthermore that each state x ∈ X, X being the state
space of the automaton, allows for an observation val(x) ∈ A. A coalgebra describing such a
deterministic finite automaton can be defined as a function as follows:

〈value, next〉 : X −→ A × (X ∪ {∗})S

The behavior of these deterministic finite automata can be defined by trees whose nodes are
each marked with a pair consisting of an observation and an input. To see this, let us argue
first that the behavior can be described by trees whose nodes and edges are marked: The root
node of such a tree is labeled with the observation in the current state. If a node n is labeled
with the observation of a state x ∈ X, then n has S outgoing edges which are marked with the
elements s1, . . . , sh of S. Each such edge represents a possible input for the automaton. If an
outgoing edge e of a node n, n representing state x ∈ X, is marked with s ∈ S and if s is an
admissible input for x, i.e., there exists a successor state for x and s, then the root node of the
subtree of n reached via the edge e is marked with the observation in the successor state of x
and s. If s is not an admissible input, then the root node of the subtree of n reached via edge
e is marked with ∗ and is a leaf. Instead of having markings s ∈ S at the edges and markings
a ∈ A at the nodes, we can equivalently push the edge markings into the markings of the nodes
to which the corresponding edges are pointing. Note that this tree transformation corresponds
to the set-theoretic equivalence of SA and A × S. Figure 5.1 illustrates the trees. Hence, the
behavior of deterministic finite automata can be described by ordered S ×A-labeled trees.

This description can be generalized for non-deterministic finite automata as follows:

〈value, next〉 : X −→ A × P(X ∪ {∗})S

The function value describes the observable behavior of the automaton depending on its current
state. The function next maps the current state to a subset of (X ∪ {∗}), depending on the
current input s ∈ S. This resulting subset represents the set of non-deterministic choices of the
automaton with respect to the current state and the current input s.

In the above coalgebraic formulation of deterministic and non-deterministic automata, we
have not used the fact that the state space is finite. Hence, the same kind of coalgebras can be
used to describe general deterministic and non-deterministic state transition systems.

Coalgebras for Classes in Object-Oriented Programming Languages

Coalgebras have been successfully applied to describe the behavior of classes in object-oriented
programming languages, cf. for example [Hui01]. Typically, one does not want to describe
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the complete state space of the objects of a class but only those aspects that can be observed.
Assume for example that we have a class Student which captures all the features of a student
enrolled at a university. Then we have observer functions which return the relevant information
for a given student in a specific state, his address, the courses he has taken so far, and so on.
Furthermore we have functions which modify this state, for example a function change address
which updates the student’s address information. The behavior of such a class can be con-
strained by equations, for example address(change address(stud, addr)) = addr. In this example,
stud is the student and represents the state to which we have access via the function address
which returns the student’s address. We can modify this address, and thereby also modify the
current state stud, by the function change address. This function takes a state and returns the
modified state in which the address is set to the value of the second parameter.

Concludingly we see that in a coalgebraic description of object-oriented classes, we only
specify their observable behavior by coalgebras, by possibly restricting it by constraints. The
actual state space of a class is hidden and can only be observed and modified by those functions
that are visible for the user of that class.

5.2 Inductive versus Coinductive Definitions

In the previous section, we have shown that many systems in computer science can be described
by coalgebras. In particular, the behavior of such coalgebras is captured by a behavior function
which maps each initial state to the complete observable behavior which is defined in terms of
finite and infinite lists, trees, or abstract data types in general. In this section, we explain how
such behavior functions can be given systematically. Therefore we introduce the coinductive
way of defining functions and contrast it with its dual definition method which is induction.

For this purpose, it is helpful to recall the intuition for induction and coinduction given in
Section 2.2 and Chapter 3: Assume that we have an abstract data type with its base and
constructor functions. In the inductive view, we interpret this abstract data type with all fi-
nite trees constructed from the base and constructor symbols. We can then define a function
inductively on these trees by specifying its values for the base functions, i.e. for the leaves in
the trees of the abstract data type, and, furthermore, by specifying how the value of an inner
node in these trees is constructed from the values of its direct successor nodes. Conversely in
the coinductive view, we interpret the abstract data type with all finite as well as infinite trees
consisting of the base and constructor symbols. A function is defined coinductively on these
trees by specifying how the value of a successor node in the tree is derived from the value of its
direct predecessor. These two dual definition directions are demonstrated in Figure 3.1.

Nomenclature: Up to now, we have called finite and infinite trees summarizingly abstract
data types. From now on, to keep our presentation in line with the existing literature, we dis-
tinguish between them and call finite trees abstract data types and (potentially) infinite trees
process types. In the same way, we call the base and constructor symbols which are used to
build the trees constructors or constructor functions in case of abstract data types (i.e. for finite
trees) and destructor or observer (function) in case of process types.

Constructor functions describe how elements are constructed by describing how larger trees
are constructed from smaller ones while destructors tell us how trees are taken into pieces by
specifying how a tree is disassembled into its direct subtrees. This duality is directly reflected
in the difference between inductive and coinductive definitions:
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Induction: An inductive definition of a function f defines the values on f on all constructors.
Thereby, the result of f is defined for all trees in the abstract data type which can be con-
structed by the constructor functions.

Coinduction: A coinductive definition of a function f defines the values of all destructor func-
tions on each possible result f(x). Thereby, the observable behavior is defined for all possible
f(x).

To demonstrate these two principles, we consider inductive and coinductive function defini-
tions for the abstract data type of finite lists, denoted by A∗, and for the process type of infinite
lists, denoted by AIN, whereby A is the type of the list entries. Finite lists are defined with the
constructors nil and cons, infinite lists are defined with the destructors head and tail:

List Constructors

nil: −→ A∗

cons: A×A∗ −→ A∗

List Destructors

head: AIN −→ A
tail: AIN −→ AIN

One can think of these functions in the intuitive way: nil returns an empty list, cons takes a
list and an element and puts that element as additional entry to the list, head takes a list and
returns its first element, and tail takes a non-empty list and returns the list which is the result
of chopping off the first element.

Now we are ready to define functions inductively on finite lists and coinductively on infinite
lists: For example, the function len which determines the length of each finite list is defined
inductively as usual by these two equations:

len(nil) = 0
len(cons(a, l)) = 1 + len(l)

As always in the case of inductive definitions, we see that the constructors of the abstract data
type appear “inside” the function to be defined.

This is a typical example of a coinductive function definition: Assume that we have a function
f which is defined for elements in A, f : a −→ A. This can be an arbitrary function. Then we
can define its extension on lists of elements of A, ext(f) : AIN −→ AIN, in the following way:

head(ext(f)(l)) = f(head(l))
tail(ext(f)(l)) = ext(f)(tail(l))

It should be intuitively clear that ext(f) is the function that applies f to all elements in a
given list. In the rest of this chapter, we show that functions defined in this way exist and are
uniquely defined by such equations. Therefore we need some basic category theory, especially
the notion of functors, which we introduce in the next section.

5.3 Basic Category Theory and Polynomial Functors

Definition 5.1 (Category) A category C is specified by:

• A collection of objects,

• A collection of morphisms, also called arrows,
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• Two operations that assign to each morphism f an object dom(f), also called its domain,
and an object cod(f), also called its codomain. The notation f : A −→ B is used to
express that f is a morphism with domain A, dom(f) = A, and codomain B, cod(f) = B.

• A composition operator ◦ for morphisms that assigns to each pair of morphisms f and g
with cod(f) = dom(g) a composite morphism g ◦ f : dom(f) −→ cod(g) such that ◦ is
associative. That is, for all morphisms f : A −→ B, g : B −→ C, and h : C −→ D, it
holds that h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• For each object A, an identity morphism idA : A −→ A such that for any arrow f : A −→
B, idB ◦ f = f and f ◦ idA = f . �

There are many examples for categories in computer science, cf. for example [Pie91] for an
overview. We work mainly in the category SET whose collection of objects is the collection
of all sets and whose morphisms are the total functions between sets.1 It is easy to verify
that SET is indeed a category: ◦ is the usual function composition, and idA is the identity
function on set A. Note that each morphism is also contained as an object in the category
SET since in set theory, each function f : X −→ Y from X to Y is itself a set, namely
f = {(x, y) | x ∈ X ∧ y ∈ Y ∧ y = f(x)}.

An important concept in category theory are functors. These are functions that transform
categories. Therefore a functor is applied to all objects as well as to all morphisms. Intuitively,
a functor preserves the structure of a category. Formally, a functor is defined as follows [Pie91]:

Definition 5.2 (Functor) Let C and D be categories. A functor F : C −→ D is a mapping
that maps each object A from C to an object F (A) in D and each morphism f : A −→ B from
C to a morphism F (f) : F (A) −→ F (B) such that for all objects A in C and all morphisms
f, g with cod(f) = dom(g), the following equations hold:

1. F (idA) = idF (A)

2. F (g ◦ f) = F (g) ◦ F (f) �

The requirements in this definition make sure that whenever a functor is applied to a category,
identities and composites are preserved and that the result is again a category. If we are
working in the category SET, then functors are functions that can be applied to sets as well as
to functions between sets. For our development concerning induction and coinduction, we need
in particular the functors product, coproduct, powerset, and constants, which are introduced
in the following. The definitions given here are tailored to the category SET by considering
set-theoretical products, coproducts, and powersets.

The Product Functor

Given two sets X and Y , their Cartesian product is defined as X×Y = {(x, y) | x ∈ X∧y ∈ Y }.
There are the usual projection functions π : X × Y −→ X and π′ : X × Y −→ Y defined by
π(x, y) = x and π′(x, y) = y. This definition can be lifted to functions: Given two functions
f : Z −→ X and g : Z −→ Y , there is a unique product function 〈f, g〉 : Z −→ X × Y with
π ◦ 〈f, g〉 = f and π′ ◦ 〈f, g〉 = g, namely 〈f, g〉(z) = (f(z), g(z)) for all z ∈ Z. It is easy to see
that 〈π, π′〉 = id : X × Y −→ X × Y and that 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 : W −→ X × Y for
functions h : W −→ Z.

1Most of the theory applies to general categories as well.
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The product operator can also be applied to functions. Given two functions f : X −→ X ′ and
g : Y −→ Y ′, we define their product by f×g : X×Y −→ X ′×Y ′ and f×g(x, y) = (f(x), g(y)).
It is easy to see that idX × idY = idX×Y and that (f ◦h)× (g ◦k) = (f ×g)◦ (h×k). From these
equations, it is easy to show that the Cartesian product operator is a functor on the category
SET and subcategories thereof. (A category B is a subcategory of category A if each object
and each morphism in B is also an object and a morphism, resp., in A, and if, furthermore,
composite and identity arrows in B are the same as in A.)

The Coproduct Functor

The coproduct X + Y (also called disjoint sum) of two sets X and Y is defined as X + Y =
{〈0, x〉 | x ∈ X} ∪ {〈1, y〉 | y ∈ Y }. X + Y is kind of a unification of X and Y with the
additional property that the 0s and 1s in the defined pairs allow for a unique identification
from which original set, X or Y , the respective element is stemming. There are coprojections
κ : X −→ X + Y and κ′ : Y −→ X + Y . Note that in contrast to the projection functions for
Cartesian products, the coprojections do not take elements from the coproduct as arguments
but instead map into the coproduct. They are defined by κ(x) = 〈0, x〉 and κ′(y) = 〈1, y〉.
As in case of products, the coproduct mapping can also be lifted to functions. For functions
f : X −→ Z and g : Y −→ Z, there is a unique function f + g : X + Y −→ Z with [f, g] ◦κ = f
and [f, g] ◦ κ′ = g.
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It is easy to see that the following definition of [f, g] fulfills these properties:

[f, g](w) =
{

f(x) if w = 〈0, x〉
g(y) if w = 〈1, y〉

From these properties it follows directly that [κ, κ′] = id and h ◦ [f, g] = [h ◦ f, h ◦ g].
This definition of coproducts can be lifted to functions as follows: Given two functions f :

X −→ X ′ and g : Y −→ Y ′, their coproduct f + g : X + Y −→ X ′ + Y ′ is defined by

(f + g)(w) =
{
〈0, f(x)〉 if w = 〈0, x〉
〈1, g(y)〉 if w = 〈1, y〉

The coproduct f + g could equivalently be defined as f + g = [κ ◦ f, κ′ ◦ g]. It is easy to
verify that the operation + is a functor because it preserves identities and composition, namely
idX + idY = idX+Y and (f ◦ h) + (g ◦ k) = (f + g) ◦ (h + k).
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5 A Categorical Formulation of Coalgebras and Coinduction

The Powerset Functor

Given a set X, there exists the operation that maps it to its power set: X 7→ P(X). This
operation is also a functor as it can be lifted to operate on functions f : X −→ Y as follows:
We define P(f) : P(X) −→ P(Y ) by U 7→ {f(x) | x ∈ U} for all U ⊆ X.

From this definition, it follows easily that P(idX) = idP(X) and P(f ◦g) = P(f)◦P(g) which
shows that the powerset operation is indeed a functor.

For many practical applications, it suffices to consider the powerset functor Pfin(−) that maps
a set to all its finite subsets. In contrast to the full powerset functor, it has nicer theoretical
properties, as we discuss in Section 5.6.

Identity and Constant Functors

There are some trivial functors. For example, the identity map X 7→ X is a functor. It maps
each function to itself: f 7→ f . Furthermore, for a set C, there is the constant map X 7→ C.
It can be liftet to functions by mapping each function f : X −→ Y to the identity function
idC : C −→ C. It is easy to verify that the identity and the constant map are functors.

Polynomial Functors

As already mentioned at the beginning of this section, we are only interested in the category
SET and its subcategories. Therefore it suffices for us to consider only functors between these
categories. These set-theoretical functors can be described by specifying their effect on sets. To
illustrate this, consider the following functor, an example taken from [JR97]:

T (X) = X + (C ×X)

This functor maps each set X to the set X+(C×X) and each function f : X −→ Y to a function
T (f) : T (X) −→ T (Y ). T (f) is the function f + (idC × f) : X + (C × X) −→ Y + (C × Y )
defined by:

w 7→
{
〈0, f(x)〉 if w = 〈0, x〉
〈1, (c, f(x))〉 if w = 〈1, (c, x)〉

In the rest of this chapter and this entire report, we are only considering polynomial functors:

Definition 5.3 (Polynomial Functors) A polynomial functor is built from constants, the
identity functor, products, coproducts, and finite powersets. �

There are two kinds of objects in categories which can be characterized by the uniqueness of
ingoing and outgoing arrows:

Definition 5.4 (Initial and Final Objects) Let C be a category. An object o in C is called
initial if there is exactly one morphism from o to each other object o′ in C. An object o in C is
called final if there is exactly one morphism from each object o′ in C to o. �

We denote a singleton set {∗} with 1, ∗ being its typical element. Since we abstract from
concrete elements, the element’s name does not matter here. For all sets X, there is exactly
one function X −→ 1. This means that 1 is final in the category SET. Conversely, the empty
set ∅ is initial in the category SET since for all sets X, there is exactly one function ∅ −→ X
from ∅ into X. ∅ is also denoted by 0.

For polynomial functors, certain isomorphisms exist which involve the initial and final ele-
ments 0 and 1 and which can be easily verified using basic set theory:
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X × Y ∼= Y ×X X + Y ∼= Y + X
1×X ∼= X 0 + X ∼= X
X × (Y × Z) ∼= (X × Y )× Z X + (Y + Z) ∼= (X + Y ) + Z
X × 0 ∼= 0 X × (Y + Z) ∼= (X × Y ) + (X × Z)

With these identities, especially the last one describing disjunctivity of products over copro-
ducts, we can transform each polynomial functor into a disjunctive normal form. In the following
section, we use this fact to describe abstract data types as polynomial functors.

5.4 Abstract Data Types as Polynomial Functors

In this section we show that abstract data types can be described by polynomial functors in the
sense that each abstract data type corresponds to a polynomial functor. Thereby we use the
fact that abstract data types are characterized by the signatures of their operations whereas the
names of these operations as well as the names of the carrier sets of the abstract data types do
not matter. Given an operation f : X × · · · ×X −→ X of an abstract data type, we represent
it by the functor T with T (X) = X × · · · × X, for all sets X. If an abstract data type has
more than one operation, we combine these operations into a single one using the coproduct
mapping:

Definition 5.5 (Functor of an Abstract Data Type) Assume that an abstract data type
has the operations f1, f2, . . . , fn with the arities arf1 , arf2 , . . . , arfn. Then we represent this
abstract data type by the functor T defined by T (X) = Xarf1 + · · · + Xarfn where Xn denotes
the n-fold product X × · · · ×X. Constant operations are represented by the functor T (X) = 1.
Operations involving elements from another set A (for example the sort of elements in a list)
are represented for example by T (X) = A×X for the cons-operation for lists. �

Example 5.1 (Natural Numbers and Lists) The natural numbers IN are defined as the
term algebra built from the constructor functions 0 : IN (or equivalently 0 : 1 −→ IN) and
succ : IN −→ IN. These two functions are represented by the functor T (X) = 1 + X. The
abstract data type list is an algebra [nil, cons] : 1 + A×X. �

From these examples, it becomes clear that each abstract data type can be characterized by
a polynomial functor. This functor is unique modulo the isomorphisms stated at the end of the
preceeding section. In the following two sections, we show how algebras and induction as well
as coalgebras and coinduction can be classified using functors.

5.5 Algebras and Induction

In the classical definition, an algebra consists of a carrier set together with operations on this
set. Here, we define an algebra equivalently as a carrier set together with one single function.
This function corresponds to the coproduct of all the operations in the classical definition and
is described by a functor.

Definition 5.6 (Algebra) Let T be a functor. An algebra of T , or a T -algebra, is a pair
(U, a) consisting of a set U and a function a : T (U) −→ U . U is called the carrier of the
algebra, and the function a the algebra structure or the operation of the algebra. �

In classical and universal algebra, homomorphisms between algebras are defined as structure-
preserving functions between algebras of the same signature. This definition is not changed
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5 A Categorical Formulation of Coalgebras and Coinduction

in principle here but looks somewhat different because it involves the functor that defines the
structure of the algebras which are related by the homomorphism.

As an example, assume that we have a functor T with T (X) = 1 + A×X (the list functor,
cf. Example 5.1) and two algebras defined by a : T (U) −→ U and b : T (V ) −→ V of functor T
with operations f1 : 1 −→ U and g1 : a×U −→ U as well as f2 : 1 −→ V and g2 : a×V −→ V .
A homomorphism h between the two algebras is a function h : U −→ V such that these two
requirements are fulfilled:

h ◦ f1 = f2 and h ◦ g1 = g2 ◦ (id × h)

These equations are expressed with commuting diagrams, a notation commonly used in category
theory (Diagrams like the two below are said to commute if for every pair of nodes U and V ,
all paths from U to V are equal. Thereby each path in the diagram denotes an arrow.):

1

f1

��

1

f2

��
U

h
// V

A× U

g1

��

id×h // A× V

g2

��
U

h
// V

By using the coproduct operation, these two diagrams can be combined into one:

1 + (A× U)

[f1,g1]

��

id+id×h // 1 + (A× V )

[f2,g2]

��
U

h
// V

By employing the list functor T with T (X) = 1 + A×X, we can write this diagram equiva-
lently as follows, a characterization which is given completely in terms of the involved functor T :

T (U)

[f1,g1]

��

T (h) // T (V )

[f2,g2]

��
U

h
// V

This characterization of algebra homomorphisms in terms of the functor describing the un-
derlying algebra structure is captured in the following definition:

Definition 5.7 (Algebra Homomorphism) Let T be a functor with algebras a : T (U) −→ U
and b : T (V ) −→ V . h : U −→ V is an algebra homomorphism from (U, a) to (V, b) if
h ◦ a = b ◦ T (h), i.e., if the following diagram commutes:

T (U)

a

��

T (h) // T (V )

b

��
U

h
// V �

Based on this definition, we can show that the concatenation of two algebra homomorphisms is
again an algebra homomorphism.

Lemma 5.1 (Concatenation of Algebra Homomorphisms) Let T be a functor with alge-
bras a : T (U) −→ U , b : T (V ) −→ V , and c : T (W ) −→ W . Furthermore, let h : U −→ V be an
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5.5 Algebras and Induction

algebra homomorphism from (U, a) to (V, b), and let k : V −→ W be an algebra homomorphism
from (V, b) to (W, c). Then the concatenation of h and k, k ◦ h : U −→ W , is again an algebra
homomorphism. �

Proof: Consider this diagram:

T (U)
T (h)

//

a

��

T (k◦h)

**
T (V )

T (k)
//

b

��

T (W )

c

��
U

h //

k◦h

55V
k // W

in which these equations hold by Definition 5.7 and by the defining property of functors to
preserve composition, cf. Definition 5.2:

k ◦ h ◦ a = k ◦ b ◦ T (h) = c ◦ T (k) ◦ T (h) = c ◦ T (k ◦ h)

Hence, this completes the proof that k◦h is an algebra homomorphism from algebra a : T (U) −→
U to algebra c : T (W ) −→ W . �

Initial algebras are a common concept in the theory of abstract data types. Here we define
them not as usual as a term algebra but instead by their characterizing property that there
exists a unique homomorphism from the initial algebra into each other algebra with the same
algebra structure.

Definition 5.8 (Initial Algebra) An algebra a : T (U) −→ U is initial if for each algebra
b : T (V ) −→ V , there exists a unique algebra homomorphism from a to b, expressed with the
following diagram:

T (U)

a

��

T (h) //______ T (V )

b

��
U

h
//________ V �

This uniqueness property can be used to define homomorphic functions from one algebra
to another as well as to prove existence of them. Existence corresponds to the inductive proof
principle while uniqueness corresponds to the inductive definition principle. Even though initial
algebras are often defined as the set of closed terms (= ground terms) that can be formed with
the constructors, i.e. functions of the algebras, we do not need to know how the elements of
the initial algebra look like. It completely suffices to know that the initial algebra with the
properties stated in Definition 5.8 exists. Before looking at an illustrating example, let us state
an important property of initial algebras:

Theorem 5.1 (Properties of Initial Algebras) Let T be a functor.

1. Initial T -algebras, if they exist, are unique up to isomorphism of algebras. That means
that if there are two initial algebras a : T (U) −→ U and b : T (V ) −→ V , then there exists
a unique isomorphism of algebras h : U

∼=−→ V :
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T (U)

a

��

T (h)

∼=
// T (V )

b

��
U

h
∼=

// V

2. The operation of an initial algebra is an isomorphism: If a : T (U) −→ U is an initial
algebra, then a has an inverse a−1 : U −→ T (U). �

The first property states that functors have essentially at most one initial algebra since all
initial algebras of a given functor are isomorphic to each other. Therefore we can speak of
the initial algebra by identifying isomorphic ones. The second property states that an initial
algebra a : T (U) −→ U is a fixed point T (U) ∼= U of the functor T .

The characterization of initial algebras in Theorem 5.1 is different than the one which we gave
in Chapter 3 where we described an initial algebra as the algebra whose carrier set contains
all finite trees constructed with the constructor functions of the algebra, i.e. the carrier set
containing all ground terms. The characterization here is purely in terms of the homomorphic
properties of the initial algebra, no matter how its elements look like.

Proof: First we prove that initial algebras are unique up to isomorphism. Therefore, assume
that there are two initial algebras a : T (U) −→ U and b : T (V ) −→ V . This implies, due to the
initiality of the two algebras, that there exist unique algebra homomorphisms f : U −→ V and
g : V −→ U , represented in this diagram:

T (U)
T (f) //______

a

��

T (V )
T (g) //______

b

��

T (U)

a

��
U

f
//________ V g

//________ U

From this diagram, especially from the uniqueness of the functions f and g, it follows that the
concatenation of f and g exists and is a homomorphism from (U, a) to (U, a). Also the identity
function on U is a homomorphism from (U, a) to (U, a). Since (U, a) is an initial algebra, the
homomorphism (U, a) to itself is uniquely determined and, hence, equals the identity map:
g ◦ f = id . Analogously we can show that the concatenation f ◦ g equals the identity map
on V and is also the unique homomorphism from (V, b) to (V, b). Since f ◦ g = id = g ◦ f , it
follows that f is an isomorphism of algebras and the initial algebra is uniquely determined up
to isomorphism.

For the second part of Theorem 5.1, we need to show that the function a : T (U) −→ U of the
algebra (U, a) is an isomorphism. We show this by defining an inverse function U −→ T (U).
Thereby we use the initiality of (U, a) which allows us to define functions out of U into arbitrary
algebras. In our case, we need a function into T (U) (a function U −→ T (U)) so we put an
algebra structure on the set T (U). To complete the proof, we only need a suitable definition
for it. The algebra with the operation T (a) : T (T (U)) −→ T (U), which arises by applying T
to the function a, will do this job for us as we demonstrate in the rest of this proof.

Due to the initiality of a : T (U) −→ U , there exists a function a′ : U −→ T (U) with
T (a) ◦ T (a′) = a′ ◦ a, cf. the following diagram:

T (U)
T (a′) //______

a

��

T (T (U))

T (a)

��
U

a′ //________ T (U)
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The function a ◦ a′ : U −→ U is an algebra map (U, a) −→ (U, a):

T (U)
T (a′) //

a

��

T (T (U))

T (a)
��

T (a) // T (U)

a

��
U

a′
// T (U) a

// U

Because algebra maps (U, a) −→ (U, a) are unique, a ◦ a′ = id . Moreover, a′ ◦ a = T (a) ◦
T (a′) (by definition of a’) = T (a◦a′) (since functors preserve composition) = T (id) (as shown
just above) = id . Hence, a : T (U) −→ U is an isomorphism with a′ being its inverse. The
notation a : T (U)

∼=−→ U is used to express this isomorphism. �

The preceeding proof has shown that initiality can be exploited by putting a suitable algebra
structure on some set (in the proof, the set T (U) and the structure T (A) : T (T (U)) −→ T (U)).
This technique is also used in the following example which considers the natural numbers. In
particular, we show in this example that the natural numbers are an initial algebra of the
functor T with T (X) = 1 + X and that functions can be defined inductively on other sets by
defining a suitable mapping from such a set into the natural numbers.

Example 5.2 (Initiality of the Natural Numbers) Consider the set of natural numbers
IN with its zero and successor function 0 : 1 −→ IN and s : IN −→ IN. These two functions
can be combined into one, giving us the algebra [0, s] : T (IN) −→ IN of the functor T with
T (X) = 1+X. In the following, we show that the map [0, s] : T (IN) −→ IN is the initial algebra
of the functor T , a fact that characterizes the natural numbers uniquely up to isomorphism, cf.
Theorem 5.1. Moreover, we show how this fact can be used to define inductively functions from
IN to any other set.

To prove initiality, we assume an arbitrary algebra [u, h] : T (U) −→ U and define a homo-
morphism (also called mediating homomorphism) f : IN −→ U . We do this in the intuitive way
and show afterwards that this definition has the desired properties. So the intuitive way goes
like this where we write u instead of u(∗), ∗ being the typical inhabitant of set 1: f(n) = hn(u).
In other words, we define

f(0) = u

f(n + 1) = h(f(n))

These equations express that the diagram below commutes and that f is a homomorphism:

1 + IN
id+f //

[0,s]

��

1 + U

[u,h]

��
IN

f
// U

Now we need to show that it indeed holds that f is a homomorphism. Therefore we distinguish
whether for an arbitrary element x ∈ 1 + IN, x = (0, ∗) = κ(∗) or x = (1, n) = κ′(n), n ∈ IN,
holds. For the first case x = (0, ∗) = κ(∗), the following holds:

f([0, s](κ(∗))) = f(0) = u = [u, h](κ(∗)) = [u, h]((id + f)(κ(∗)))

In the second case x = (1, n) = κ′(n), n ∈ IN, we get this:

f([0, s](κ′(n))) = f(s(n)) = h(f(n)) = [u, h](κ′(f(n))) = [u, h]((id + f)(κ′(n)))
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From these two cases, we conclude that f([0, s](x)) = [u, h]((id + f)(x)) for all x ∈ 1+ IN which
makes the above diagram commute, i.e., f ◦ [0, s] = [u, h] ◦ (id + f). This completes the proof
that f is a homomorphism but we still need to show that it is the only one from IN to U :

To show that f is the unique homomorphism between (IN, [0, s]) and (U, [u, h]), we assume
that there is another homomorphism g : IN −→ U that also satisfies g ◦ [0, s] = [u, h] ◦ (id + g).
From this assumption, it follows directly that g(0) = u and g(n + 1) = h(g(n)). Hence, we
conclude that g(n) = f(n) by induction on n and, hence, that g = f : IN −→ U . (To avoid this
argument “by induction on n” in order to prove uniqueness completely from the properties of
the involved functions, the same kind of reasoning can be used as in the proof of Theorem 5.1.
Here we simplify the proof for sake of brevity and because this proof is a special instance of the
proof for Theorem 5.1).

Up to now we have shown how to define a function from IN to some other algebra of the same
structure inductively. This technique can be used to define functions from IN into arbitrary other
sets by putting a suitable algebraic structure on this set. Consider for example the definition of
the function f : IN −→ Q with f(n) = 2−n. This function can be defined inductively with

f(0) = 1 and f(n + 1) = 1
2f(n)

To define this function f by using the initiality of [0, s] : 1 + IN −→ IN, we put an appropriate
algebra structure 1 + Q −→ Q on the set Q. This algebra on Q is basically defined by the two
above defining equations for f , namely:

1 1−→ Q Q
1
2
(−)
−→ Q

∗ 7→ 1 x 7→ 1
2x

As usual, we combine these two functions into a single one:

1 + Q
[1, 1

2
(−)]

// Q

This function is an algebra on Q. In this setting, the function f(n) = 2−n is uniquely
determined by initiality of IN. This implies that the diagram below commutes:

1 + IN

[0,s]

��

id+f // 1 + Q

[1, 1
2
(−)]

��
IN

f
// Q

This example has demonstrated that initiality of (IN, [0, s]) can be used to define functions
inductively into any other set U . Therefore one needs to put an algebra structure on the set
U which corresponds to the induction clauses of the desired function. It should be clear that
this does not only work for the natural numbers and the functor T with T (X) = 1 + X but for
arbitrary functors and their initial algebras. �

5.6 Coalgebras and Coinduction

In the previous section, we have defined algebras as functions that take an input from a struc-
tured domain (the set T (X) for a given functor T ) and return an unstructured output. Coal-
gebras are exactly the dual notion of an algebra: they take an unstructured element as input
and return a structured one, i.e., they are functions X −→ T (X) for some functor T .

To fill this dual view on algebras and coalgebras with some intuition, recall the gentle moti-
vation for initial algebras and final coalgebras and their set-theoretic foundation in Chapters 2
and 3: Initial algebras are the least fixed point of an abstract data type while final coalgebras
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are the greatest fixed point of the abstract data type. Remember that we have described ab-
stract data types by appropriate functors. We can think of the elements in the least fixed point
as consisting of finite trees which are built with the constructors of the abstract data type and
whose nodes carry labels (the observations). In contrast, elements in the greatest fixed point
are all finite and infinite trees which are described with the constructors of the abstract data
type and whose nodes also carry labels. Applying the function of a coalgebra to an element, i.e.
a tree, of its domain corresponds to the destruction of this tree; we get all its direct subtrees
as well as the labels of its root node (the observations). In contrast, the algebra function is
an overlay of the constructor functions (defined by the coproduct operator) that can be used
to build trees in the least fixed point. In the algebra case, a constructor function takes direct
subtrees and uses them to construct an assembled tree.

While it is helpful to have the intuition of finite and infinite trees in mind, it is not necessary
for the development in this and the previous section where we describe algebras and coalge-
bras completely in terms of their homomorphic mapping properties. Algebras are defined by
functions going into the carrier set. These functions tell us how to construct elements. Dually,
coalgebras are functions going out of the carrier set. They tell us some but not necessarily all
information about the elements of the carrier set which means that we have only limited access
to the elements of a coalgebra.

Definition 5.9 (Coalgebra) Let T be a functor. A coalgebra of T , or a T -coalgebra, is a pair
(U, a) consisting of a set U and a function a : U −→ T (U). U is called the carrier. The function
a is called the structure or the operation of the coalgebra. Since coalgebras are often used to
describe state transition systems, U is also called the state space of the coalgebra. �

Example 5.3 (Infinite Lists) Consider the coalgebras of non-terminating deterministic state
transition systems in Section 5.1. We have described them by a function

〈value, next〉 : X −→ A×X

The operation value gives us an observation, an element of some set A, while the function next
produces a next element in the state space X. We can apply the functions value and next as often
as we want. This defines an infinite list (val1, val2, val3, . . .) ∈ AIN consisting of the observations
which have been made by applying the functions value and next. Note that this list is also a
tree, namely a degenerate infinite tree. This infinite sequence is all that we can observe about
an element of this coalgebra. �

It is important to notice that two coalgebras can behave identically without actually being
equal. We call two coalgebras observationally indistinguishable or bisimilar if their behavior is
identical. In Section 5.7 we show that final coalgebras are equal if they are bisimilar. This fact
makes up the essence of coinduction.

Example 5.4 (Bisimilarity) Consider the set of coalgebras of deterministic state transition
systems with no final states and in particular the two automata c1 and c2 from this domain
depicted with the following two diagrams:

c1: start // ?>=<89:;0 // ?>=<89:;1 // ?>=<89:;2 // ?>=<89:;3
aa

c2: start // ?>=<89:;0 // ?>=<89:;1
XX

These two diagrams show two coalgebras of the functor T with T (X) = {0, 1} ×X which we
define as follows:
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c1 = 〈value, next〉 : {0, 1, 2, 3} −→ {0, 1} × {0, 1, 2, 3} with
value(x) = (x mod 2) and next(x) = ((x + 1) mod 4), and

c2 = 〈value, next〉 : {0, 1} −→ {0, 1} × {0, 1} with
value(x) = x and next(x) = ((x + 1) mod 2).

Both coalgebras have the same behavior, namely the infinite sequence (0, 1, 0, 1, 0, 1, . . .) of al-
ternating 0s and 1s. Nevertheless, they are not equal. �

Before proceeding with theoretical results concerning coalgebras, let us look at one more
common kind of coalgebras, namely those which describe possibly non-terminating deterministic
state transition systems, cf. also Section 5.1.

Example 5.5 (Possibly Non-Terminating Deterministic State Transition Systems)
The behavior of possibly non-terminating deterministic state transition systems consists of finite
(in case of termination) and infinite (in case of non-termination) lists of observations. Such sys-
tems can be described as coalgebras c : X −→ 1+A×X of the functor T with T (X) = 1+A×X.
For each element x ∈ X, c(x) = κ(∗) or c(x) = κ′(a, x′) with (a, x′) ∈ A × X. The first case
represents the situation that the state transition system stops because there is no succeeding
state. In this case, the behavior of the system is described by a finite list of observations. In the
second case, which represents the situation that the system does not hold, we get an observation
a ∈ A and a successor state x′ ∈ X in which the system can proceed. The observable behaviors
are elements from the set A∗ ∪ AIN, the union of finite and infinite lists over A, the set of
observations. �

Up to now, we have seen observations which are lists. In general, observations are elements of
the final coalgebra of the involved functors. In our examples, the final coalgebra of the functor
T with T (X) = A × X consists of the infinite lists over A, AIN. The final coalgebra of the
functor T with T (X) = 1 + A×X contains in addition the finite lists over A, A∗ ∪AIN.

To define and prove these ideas and facts formally, we need the notion of a coalgebra
homomorphism. A coalgebra homomorphism behaves analogously as an algebra homomor-
phism in the sense that it commutes with the coalgebra functions. For example, consider
the functor T (X) = A × T (X) defining coalgebraically infinite lists and two T -coalgebras
〈f1, t1〉 : X −→ A × X and 〈f2, t2〉 : Y −→ A × Y . A function h : X −→ Y is a homo-
morphism of coalgebras if f2 ◦h = f1 and t2 ◦h = h ◦ t1, i.e., the following two diagrams (which
can be summarized as in the case of algebra homomorphisms into a single diagram, cf. Section
5.5) commute:

U
h //

f1

��

V

f2

��
A A

and
U

h //

t1
��

V

t2
��

U
h

// V

which are
combined

into:

U
h //

〈f1,t1〉
��

V

〈f2,t2〉
��

A× U
id×h

// A× V

Definition 5.10 (Coalgebra Homomorphism) Let T be a functor with coalgebras c : X −→
T (X) and d : Y −→ T (Y ). h : X −→ Y is a coalgebra homomorphism (or a coalgebra map)
from (X, c) to (Y, d) if T (h) ◦ c = d ◦ h, i.e., if the following diagram commutes:
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X
h //

c
��

Y

d
��

T (X)
T (h)

// T (Y )

A final coalgebra d : W → T (W ) is a coalgebra such that for every other coalgebra c : X −→
T (X), there is a unique map of coalgebras (X, c) −→ (W,d). �

It is easy to verify that the identity map is a coalgebra homomorphism. As in the case
of algebra homomorphisms, the concatenation of two coalgebra homomorphisms is again a
coalgebra homomorphism:

Lemma 5.2 (Concatenation of Coalgebra Homomorphisms) Let T be a functor with
coalgebras c : X −→ T (X), d : Y −→ T (Y ), and e : Z −→ T (Z). Furthermore, let h : X −→ Y
be a coalgebra homomorphism from (X, c) to (Y, d), and let k : Y −→ Z be a coalgebra homo-
morphism from (Y, d) to (Z, e). Then the concatenation of h and k, k ◦ h : X −→ Z, is again
a coalgebra homomorphism. �

The proof is completely analogous to the proof of the analogous property for algebra homomor-
phisms, cf. proof of Lemma 5.1.

Proof: Consider this diagram:

X
h

//

c
��

k◦h

))
Y

k
//

d
��

Z

e
��

T (X)
T (h) //

T (k◦h)

55T (Y )
T (k) // T (Z)

in which the following equations hold by Definition 5.10 and by the defining property of
functors to preserve composition, cf. Definition 5.2:

e ◦ k ◦ h = T (k) ◦ d ◦ h = T (k) ◦ T (h) ◦ c = T (k ◦ h) ◦ c

This completes the proof that k◦h is a coalgebra homomorphism from coalgebra c : X −→ T (X)
to coalgebra e : Z −→ T (Z). �

Dually to the concept of initial algebras, we define final coalgebras in the definition below.
Initial algebras are characterized by the fact that there exists a unique algebra homomorphism
from the initial algebra of a given functor into any other algebra of the same functor. In the
case of coalgebras, we have an exactly dual characterization which defines a final coalgebra
of a given functor by the property that there exists a unique homomorphism from any other
coalgebra of the same functor into the final coalgebra.

Definition 5.11 (Final Coalgebra) A coalgebra c : X −→ T (X) is final if for each coalgebra
d : Y −→ T (Y ), there exists a unique coalgebra homomorphism h : Y −→ X from (Y, d) to
(X, c), expressed with the following commuting diagram:
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X

c
��

Y

d
��

h
oo_ _ _ _ _ _ _ _

T (X) T (Y )
T (h)oo_ _ _ _ _ _ �

We can use the finality property of coalgebras to define functions that go into a final coalgebra.
This is dual to the possibility that arises from the initiality property of algebras which allows us
to define functions going out of the initial algebra into an arbitrary algebra of the same functor.
Before looking at examples of final coalgebras and coinductive function definitions, let us state
some important properties of final coalgebras which are completely dual to the properties of
initial algebras stated in Theorem 5.1. Also the proof is completely analogous so that it is not
really necessary to state it here, which we do nevertheless as a demonstration of that duality.

Theorem 5.2 (Properties of Final Coalgebras) Let T be a functor.

1. Final T -coalgebras, if they exist, are unique up to isomorphism of coalgebras. That means
that if there are two final coalgebras c : X −→ T (X) and d : Y −→ T (Y ), then there exists
a unique isomorphism of coalgebras h : X

∼=−→ Y :

X

c
��

h
∼=

// Y

d
��

T (X)
T (h)

∼=
// T (Y )

2. The operation of a final coalgebra is an isomorphism: If c : X −→ T (X) is a final
coalgebra, then c has an inverse c−1 : T (X) −→ X. In particular, the final coalgebra
X −→ T (X) is a fixed point X ∼= T (X) of the functor T . �

As in the case of initial algebras, this theorem says that all final coalgebras of a given functor
are isomorphic to each other which is why we speak of the final coalgebra. The preceeding
theorem characterizes final coalgebras not by their elements but instead entirely by their ho-
momorphic properties. The proof is completely dual to the proof of its dual (Theorem 5.1).

Proof: First we prove that final coalgebras are unique up to isomorphism. Therefore, assume
that there are two final coalgebras c : X −→ T (X) and d : Y −→ T (Y ). This implies, due to the
finality of the two coalgebras, that there exist unique coalgebra homomorphisms f : X −→ Y
and g : Y −→ X, represented in this diagram:

X
f //________

c
��

Y
g //________

d
��

X

c
��

T (X)
T (f)

//______ T (Y )
T (g)

//______ T (X)

From this diagram, especially from the uniqueness of the functions f and g, it follows that the
concatenation of f and g exists and is a homomorphism from (X, c) to (Y, d). Also the identity
function on X is a homomorphism from (X, c) to (X, c). Since (X, c) is a final coalgebra, the
homomorphism (X, c) to itself is uniquely determined and, hence, equals the identity map:
g ◦ f = id . Analogously we can show that the concatenation f ◦ g equals the identity map on Y
and is also the unique homomorphism from (Y, d) to (Y, d). Since f ◦ g = id = g ◦ f , it follows
that f is an isomorphism of coalgebras and the final coalgebra is uniquely determined up to
isomorphism.
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For the second part of Theorem 5.2, we need to show that the function c : X −→ T (X) of the
coalgebra (X, c) is an isomorphism. We show this by defining an inverse function T (X) −→ X.
Thereby we use the finality of (X, c) which allows us to define functions into X out of arbitrary
coalgebras. In our case, we need a function out of T (X) (a function T (X) −→ X) so we put a
coalgebra structure on the set T (X). To complete the proof, we only need a suitable definition
for it. The coalgebra with the operation T (c) : T (X) −→ T (T (X)), which arises by applying T
to the function c, will do this job for us as we demonstrate in the rest of this proof.

Due to the finality of c : X −→ T (X), there exists a unique function c′ : T (X) −→ X with
T (c′) ◦ T (c) = c ◦ c′, cf. the following diagram:

X

c

��

T (X)
c′

oo_ _ _ _ _ _ _ _

T (c)

��
T (X) T (T (X))

T (c′)
oo_ _ _ _ _ _

The function c′ ◦ c : X −→ X is a coalgebra map (X, c) −→ (X, c):

X

c

��

T (X)c′oo

T (c)
��

X

c

��

coo

T (X) T (T (X))
T (c′)

oo T (X)
T (c)

oo

Because coalgebra maps (X, c) −→ (X, c) are unique, c′ ◦ c = id . Moreover, c ◦ c′ = T (c′) ◦
T (c) (by definition of c’) = T (c′ ◦ c) (since functors preserve composition) = T (id) (as shown
just above) = id . Hence, c : X −→ T (X) is an isomorphism with c′ being its inverse. The
notation c : X

∼=−→ T (X) is used to express this isomorphism. �

The following two examples show how finality of coalgebras can be used to define finite and
infinite lists consisting of elements from a set A. In Example 5.6, we prove first that the set
of finite and infinite lists together with the operations empty, head, and tail is indeed the final
coalgebra of the functor T (X) = 1 + A × X. Secondly, in Example 5.7, we show that this
finality can be exploited to define potentially infinite lists. We use this definition schema also in
Chapter 6 where we define the operational semantics of programming languages coalgebraically
by assigning each program and each initial state a potentially infinite state transition list, i.e.,
the set A represents the set of states that can be reached during computation.

Example 5.6 (Finality of Potentially Infinite Lists) We claim that the coalgebra

[empty, 〈head, tail〉] : A∞ −→ 1 + A×A∞

where A∞ denotes A∗∪AIN, the set of finite and infinite lists over A, with the coalgebra operation
[empty, 〈head, tail〉] defined by

α 7→
{

κ(∗) if α = ()
κ′(〈a, β〉) if α = cons(a, β)

is the final coalgebra of the functor T (X) = 1 + A ×X. To prove this claim, we need to show
that there exists a unique homomorphism from any other coalgebra [stop, 〈value, next〉] : U −→
1+A×U into [empty, 〈head, tail〉] : A∞ −→ 1+A×A∞. To prove this, we first define a function
h : U −→ A∞, then we show that it is a coalgebra homomorphism and finally that it is unique.
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Throughout this example, we denote the empty list with () and non-empty lists with cons(a, β)
whereby a ∈ A, β ∈ A∞. Moreover, we describe lists as functions IN −→ A which map natural
numbers representing list indices to elements in A.

To define the desired function h : U −→ A∞, recall that intuitively all we can observe about
the system [stop, 〈value, next〉] can be represented by a potentially infinite list of individual ob-
servations which are the results of value in a given state u ∈ U . So the idea is to define the
function h going into A∞ by defining exactly this list of observations, in a step-by-step manner
which turns out to be typical for coinductive definitions. In this definition, we distinguish two
cases for a given u ∈ U , namely [stop, 〈value, next〉](u) = κ(∗) and [stop, 〈value, next〉](u) 6= κ(∗).
In the first case, the system halts, in the second case, it goes on with state transitions.

h(u) =
{

λn.value(nextn(u)) if [stop, 〈value, next〉](u) 6= κ(∗)
() if [stop, 〈value, next〉](u) = κ(∗)

To prove that h is a homomorphism, we need to show the following:

1. If [stop, 〈value, next〉](u) 6= κ(∗), we need to show that

a) head ◦ h = value and

b) tail ◦ h = h ◦ next.

2. If [stop, 〈value, next〉](u) = κ(∗), we need to show that empty ◦ h = stop.

Proof for Case 1.a): (head ◦ h)(u) = head(λn.value(nextn(u))) = value(u) for all u ∈ U with
[stop, 〈value, next〉](u) 6= κ(∗).
Proof for Case 1.b): (tail ◦ h)(u) = tail(λn.value(nextn(u))) = λn.value(nextn+1(u)) = λn.
value (nextn(nextn(u))) = h ◦ next(u) for all u ∈ U with [stop, 〈value, next〉](u) 6= κ(∗).
Proof for Case 2: For all u ∈ U with [stop, 〈value, next〉](u) = κ(∗) it holds that h(u) = ()
and empty(h(u)) = κ(∗) = stop(u).

These case distinctions complete the proof that h is a coalgebra homomorphism, i.e., the
following diagram commutes:

U
h //

[stop,〈value,next〉]
��

A∞

[empty,〈head,tail〉]
��

1 + A× U
id+id×h

// 1 + A×A∞

It remains to show that h is unique. Assume that there is another coalgebra homomorphism
h′ : U −→ A∞. We show that h = h′. In this proof, we do the same case distinction as before:

First case: [stop, 〈value, next〉](u) 6= κ(∗). It holds that (head ◦ h′)(u) = value(u) and (tail ◦
h′)(u) = (h′ ◦ next)(u) because h′ is a homomorphism. An easy induction over n ∈ IN shows
that h′(u) = λn.value(nextn(u)). As a direct consequence, we conclude that h = h′.
Second case: [stop, 〈value, next〉](u) = κ(∗). It follows that ([empty, 〈head, tail〉]◦h′)(u) = κ(∗).
According to the definition of the coalgebra [empty, 〈head, tail〉] : A∞ −→ 1 + A×A∞, this hap-
pens only if h′(u) = (). It follows that h(u) = h′(u).

This completes the proof that the coalgebra [empty, 〈head, tail〉] : A∞ −→ 1 + A × A∞ is the
final coalgebra of the functor T (X) = 1 + A ×X because there exists a unique homomorphism
from any other coalgebra of the same functor into [empty, 〈head, tail〉] : A∞ −→ 1 + A×A∞. �
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The preceeding example shows that potentially infinite lists are the final coalgebra of the
functor T (X) = 1 + A×X for an arbitrary set A. We can use this finality to define potentially
infinite lists. The definition principle is analogous to the one used in the above example for the
definition of the unique homomorphism into the final coalgebra: Define potentially infinite lists
in a step-by-step manner, one element after the other. Whenever we define lists in this manner
by exploiting the finality of an underlying coalgebra, we say that the definition is coinductive.

Example 5.7 (Defining Potentially Infinite Lists) Consider the final coalgebra [empty,
〈head, tail〉] : A∞ −→ 1 + A × A∞ of the functor T (X) = 1 + A × X from Example 5.6. By
exploiting the finality of this coalgebra, we can define potentially infinite lists. Whenever such a
definition relies on the finality of some coalgebra, we also say that the definition is coinductive.

As a simple example, consider the empty list nil : 1 −→ A∞. It is defined as the unique
coalgebra homomorphism in this diagram where we have put a suitable coalgebra structure on
the set 1:

1 nil //

κ

��

A∞

[empty,〈head,tail〉]
��

1 + A× 1
id+(id×nil)

// 1 + A×A∞

As a more complex example, let us consider the concatenation function conc : A∞ ×A∞ −→
A∞ on lists. Given two lists a : IN −→ A and b : IN −→ A, their concatenation is the list which
contains first all the elements from a, followed by the elements of b. To define this function
coinductively, we consider the coalgebra [conc struct] : A∞ ×A∞ −→ 1 + A∞ ×A∞ defined by:

(α, β) 7→


κ(∗) if [empty, 〈head, tail〉](α) = [empty, 〈head, tail〉](β) = κ(∗)
κ′(a, (α′, β)) if [empty, 〈head, tail〉](α) = κ′(a, α′)
κ′(b, (α, β′)) if [empty, 〈head, tail〉](α) = κ(∗) and [empty, 〈head, tail〉](β) = κ′(b, β′)

The function conc : A∞ × A∞ −→ A∞ that we wish to define arises as the unique coalgebra
homomorphism in this diagram:

A∞ ×A∞ conc //

conc struct
��

A∞

[empty,〈head,tail〉]
��

1 + A×A∞ ×A∞
id+(id×conc)

// 1 + A×A∞

This homomorphism conc can equivalently be defined as follows, as can be easily verified:

• If [empty, 〈head, tail〉](α) = [empty, 〈head, tail〉](β) = κ(∗):
conc(α, β) = ().

• If [empty, 〈head, tail〉](α) = κ′(a, α′):
head(conc(α, β)) = a and tail(conc(α, β)) = conc(α′, β).

• If [empty, 〈head, tail〉](α) = κ(∗) and [empty, 〈head, tail〉](β) = κ′(b, β′):
head(conc(α, β)) = b and tail(conc(α, β)) = conc(α, β′). �

The definition of the homomorphism conc in the preceeding example is analogous to the homo-
morphism h : U −→ A∞ in Example 5.6: In case that there is no next state (conc struct(α, β) =
κ(∗)), h maps the current state to the empty list (). Otherwise, the resulting list is character-
ized by defining its head and tail which is the typical pattern in coinductive definitions, cf. also
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Section 5.2. The function to be defined appears “inside” the definition while the destructor
operations (head and tail in this case) are “outside”. In contrast, in inductive definitions as in
Example 5.2, we find the function to be defined “outside” while the operations of the algebra
are “inside”. Recall the situations from Examples 5.2 and 5.7:

1 + IN
id+f //

[0,s]

��

1 + U

[u,h]

��

A∞ ×A∞ conc //

conc struct
��

A∞

[empty,〈head,tail〉]
��

IN
f

// U 1 + A∞ ×A∞
id+(id×conc)

// 1 + A∞

The opposite directions in inductive versus coinductive definitions are stemming from the op-
posite directions of the homomorphisms between the initial algebra and an arbitrary algebra of
the same functor as well as between an arbitrary coalgebra and the final coalgebra of the same
functor. In case of algebras, the unique homomorphism f is going out of the initial algebra.
In particular, f is applied after the operation of the initial algebra ([0, s] in the above example)
which causes f to be outside in the inductive definition. In case of coalgebras, the unique homo-
morphism conc is going into the final coalgebra. This requires the homomorphism conc to be
applied before the operation of the coalgebra ([empty, 〈head, tail〉] in our example). Hence, the
coalgebra homomorphism conc appears inside the coinductive definition. The “inside” versus
“outside” definitions are the result of making the appropriate diagrams commute.

Finally a remark on the existence of final coalgebras: Theorem 5.2 states that final T -
coalgebras, if they exist, are a fixed point of the functor T , i.e., there exists an isomorphism
between X and T (X). Clearly this is only possible if X and T (X) have the same set-theoretic
cardinality. For polynomial functors Tpoly which we introduced in Section 5.3, in particular in
Definition 5.3, it can be easily verified using basic set theory that X and Tpoly(X) have indeed
the same cardinality. As a negative example, consider the power set functor which maps each
set to its power set. For this functor, no final coalgebra exists because each set has a strictly
smaller cardinality than its power set. Nevertheless, for the finite power set functor Pfinite with
Pfinite(X) = {X ′ | X ′ ⊆ X ∧ X is finite} the final coalgebra does exist [Bar93]. Pfinite suffices
to describe all finitely branching transition systems. These are all transition systems with the
property that for each state, there is only a finite number of successor states. For practical
reasons, this descriptive power is sufficient.

Coinduction is, as induction, a definition and a proof principle. The existence of homo-
morphisms allows us to define functions from arbitrary coalgebras into the final coalgebra.
By exploiting the uniqueness of these homomorphisms, we can prove equality of functions,
i.e. equality of observations of systems: Two systems are observationally equivalent if their
observable behavior, i.e. their image in the final coalgebra obtained by applying the unique
homomorphism into the final coalgebra, is the same. In the following section, we introduce
bisimulations and the coinductive proof principle which is based on bisimulations. The coin-
ductive proof principle does not mention the uniqueness aspect of finality explicitly but the
proof for its correctness is based on it.

5.7 Bisimulations and the Coinductive Proof Principle

In this section, we introduce bisimulations and show that bisimulations on final coalgebras
contain the equality relation. This important result, which is also known as the coinductive
proof principle, can be used to prove observational equivalence of systems. We start this section

56



5.7 Bisimulations and the Coinductive Proof Principle

by introducing bisimulation on lists as introductory example. Then we proceed by giving a
general definition for bisimulations. Finally we prove the coinductive proof principle and show
its application for a typical example.

Definition 5.12 (Bisimulations on Lists) Let T be the functor T (X) = 1 + X with the
final coalgebra [empty, 〈head, tail〉] : A∞ −→ 1 + A × A∞ defined and discussed in detail in
Example 5.6. A bisimulation on this carrier set A∞ is a relation R ⊆ A∞×A∞ satisfying these
requirements:

R(α, β) ⇒
{

α = β = () or
α 6= () and β 6= () and head(α) = head(β) and R(tail(α), tail(β)) �

This definition expresses that the relation R is closed under the operations of the final coal-
gebra. It requires that two lists in relation R are either both empty or both non-empty. In the
first case, the two lists are mapped to κ(∗) by the coalgebra operation [empty, 〈head, tail〉], and
the system halts. In the second case, the operations head and tail can be applied. Thereby it is
required that the lists obtained by applying tail are again in relation R. The coinductive proof
principle for lists states the following:

Lemma 5.3 (Coinduction for Lists) Let R be a bisimulation on A∞, the set of finite and
infinite lists. If R(α, β), then α = β. �

The proof of the coinduction principle for lists exploits the finality of A∞ by putting a suitable
coalgebra structure on R:
Proof: Consider R as a set of pairs and define a coalgebra structure on it:

γ : R −→ 1 + A×R with (α, β) 7→
{

κ(∗) if α = β = ()
κ′(head(α), (tail(α), tail(β))) otherwise

γ is well-defined because either α and β are both empty or both non-empty. Moreover, in the
second case, (tail(α), tail(β)) is again contained in R because R is a bisimulation. Now consider
the two projection functions π1 and π2 on R (for a definition of π1 and π2, cf. Section 5.3):

π1 : R −→ A∞ and π2 : R −→ A∞

It is easy to verify that π1 and π2 are coalgebra homomorphisms from (R, γ) to (A∞, [empty,
〈head, tail〉]), displayed in the following commuting diagram:

A∞

[empty,〈head,tail〉]
��

R
π1oo π2 //

γ

��

A∞

[empty,〈head,tail〉]
��

1 + A×A∞ 1 + A×R
id+id×π1

oo
id+id×π2

// 1 + A×A∞

Therefore, it follows from the uniqueness aspect of the finality of A∞ that π1 = π2. �

The following example illustrates how the coinduction principle can be applied to prove the
equality of potentially infinite lists.

Example 5.8 (Coinduction on Lists) Consider the set A∞ of finite and infinite lists. The
function odd takes such a list as input and outputs the list which contains all the elements
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occurring in oddly numbered places of the original list in the same order. odd : A∞ −→ A∞ is
coinductively defined as follows:

odd(α) =
{

() if α = ()
(head(α), odd(tail(tail(α)))) otherwise

The function even behaves analogous to the function odd but keeps only the list elements in
evenly numbered places:

even(α) =
{

() if α = ()
odd(tail(α)) otherwise

Moreover, consider the function merge which takes two lists and merges them by taking alter-
nately elements from both of the lists:

merge(α, β) =


() if α = () and β = ()
α if β = ()
β if α = ()
(head(α),merge(β, tail(α))) otherwise

Using the coinduction principle for potentially infinite lists, we can prove that merge(odd(α),
even(α)) = α. Therefore we need to define a suitable bisimulation relation R. We choose

R = {(merge(odd(α), even(α)), α) | α ∈ A∞}

Now it remains to show that R is indeed a bisimulation, i.e., it is closed under the operations
of the coalgebra A∞. Therefore we distinguish four cases whereby only the fourth considers the
coinductively relevant case:

First case: α = (). In this case, odd(α) = even(α) = merge(odd(α), even(α)) = () = α.
Second case: α = (a). In this case, odd(α) = (a), even(α) = (), and merge(odd(α), even(α)) =
(a) = α.
Third case: α = (a, a′). In this case, odd(α) = (a), even(α) = (a′), and merge(odd(α),
even(α)) = α.
Fourth case: α 6= (), α 6= (a), and α 6= (a, a′). In this case, we need to show that whenever we
have a pair (merge(odd(α), even(α)), α) ∈ R, then applying the coalgebra operation tail on both
elements yields again an element in R, i.e. that (tail(merge(odd(α), even(α))), tail(α)) ∈ R.
This holds due to these rewrite transformations:

tail(merge(odd(α), even(α))) = merge(even(α), tail(odd(α)))
= merge(odd(tail(α)), odd(tail(tail(α))))
= merge(odd(tail(α)), even(tail(α)))

Hence, (tail(merge(odd(α), even(α))), tail(α)) ∈ R which shows that R is a bisimulation which
completes the proof that merge(odd(α), even(α)) = α for all α ∈ A∞. �

Now we are ready to generalize the notions which we have introduced for lists to the general
case considering polynomial functors, i.e. functors T whose final T -coalgebra exist. We start
with a general definition for bisimulations as relations which are closed under the operation of
the underlying coalgebra:
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Definition 5.13 (Bisimulation) Let T be a functor and c : U −→ T (U) be a T -coalgebra.
A bisimulation on U is a relation R ⊆ U × U such that there exists a T -coalgebra structure
γ : R −→ T (R) such that the two projection functions π1 : R −→ U and π2 : R −→ U are
homomorphisms of T -coalgebras:

U

c
��

R
π1oo π2 //

γ

��

U

c
��

T (U) T (R)
T (π1)

oo
T (π2)

// T (U) �

Theorem 5.3 (Coinduction Principle) Let c : X
∼=−→ T (X) be the final coalgebra of the

functor T . Let R be a bisimulation on X. For all x, x′ ∈ X, R(x, x′) implies that x = x′. �

Proof: The proof is completely analogous to the proof of Lemma 5.3. We take the coalgebra
structure on R, γ : R −→ T (R) (which exists by definition of bisimulations), and consider the
projection functions π1 : R −→ X and π2 :−→ X which are homomorphisms into the final
coalgebra (X, c):

X

c
��

R
π1oo π2 //

γ

��

X

c
��

T (X) T (R)
T (π1)

oo
T (π2)

// T (X)

Because of the finality of (X, c), π1 = π2 and, hence, x = x′ for all (x, x′) ∈ R. �

5.8 Conclusions

This chapter has introduced the dual notions of algebras and coalgebras as well as their dual
definition and proof principles induction and coinduction in terms of category theory. In this
setting, coalgebras are functions that take an input, representing the state of a system, and
output a structured result which typically contains one or several successor states together
with observations of the system. In contrast, algebras are represented as functions that take a
structured input (the parameters for their construction functions) and return a single output
which is the newly constructed element. Functors are used to uniformly represent the signatures
of these coalgebra and algebra operations.

There are special algebras and coalgebras, namely initial algebras and final coalgebras. Initial
algebras are characterized by the existence of a unique homomorphism from the initial algebra
into an arbitrary algebra of the same functor (i.e. of the same signature). We can think of this
homomorphism as a function which calculates values: The elements of the initial algebra can
be regarded as finite trees (cf. also Chapter 2 and 3), and the homomorphism tells us how to
map such a tree to an element of an arbitrary algebra by calculating this element inductively
along the tree. This has been demonstrated particularly clearly in Example 5.2 in which we
defined the function F : IN −→ Q with f(sn(0)) = 2−n by induction, i.e. by defining how to
map a tree s(s(· · · (0))) defining a natural number to a number in Q.

Dually, final coalgebras are defined by the existence of a unique homomorphism from an
arbitrary coalgebra into the final coalgebra of the same functor. If we regard coalgebras as state
transition systems, we can think of this homomorphism as a function that unfolds the observable
behavior of a system in a normalized form by representing it in form of finite or infinite trees.
Each node in such a tree corresponds to a state and is decorated with the observations of that
state. Successor nodes represent successor states. We have seen an example of two different
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coalgebras with the same observable behavior in Example 5.4 where we considered two different,
yet bisimilar automata with the same observable behavior. Mapping these two automata into
the final coalgebra corresponds to defining the (infinite) sequence of observations occurring
during their state transitions. This mapping into the final coalgebra unfolds the observable
behavior in a normalized form.

Bisimulations are binary relations on coalgebras which are closed under the operations of
the coalgebra and which contain those pairs of elements, i.e. states, which show the same
observable behavior. The coinductive proof principle states that for final coalgebras, bisimula-
tions are contained in the equality relation. So if we want to prove that two systems have the
same observable behavior, we define their behavior by suitable coalgebras and, furthermore, by
mapping these coalgebras into the final coalgebra of the same functor. Then we need to show
that two systems which we want to prove observationally equivalent are mapped to the same
element in the final coalgebra. Therefore we need to define a relation which contains those
pairs of elements that we want to prove to be equivalent and need to verify that this relation is
indeed a bisimulation.

In the following chapter, we apply this principle to define the operational semantics of pro-
gramming languages coalgebraically by assigning each program an element of a suitable final
coalgebra.

60



6 Programming Language Semantics in a
Coalgebraic Setting

Operational approaches to programming language semantics (cf. Chapter 1) define for each
program a state transition system. Hence, it is a natural consequence to regard programs as
coalgebras, i.e. as functions that take a state as input and output a new state. We develop this
idea in Section 6.1. Thereby we also argue that this view is completely in line with the intention
of the three approaches to operational semantics, namely with abstract state machines (ASMs)
and with the two incarnations of inference rule-based specifications which are natural (or big-
step) semantics and structural operational (or small-step) semantics. In Section 6.2, we compare
these three specification frameworks for the operational semantics of programming languages
with respect to two criteria: the range of imperative programming languages to which they are
applicable and the way the program is used in the specifications and treated during the thereby
defined executions. To reveal the fundamental differences between these three mechanisms, we
investigate if there are automatic transformations between them. As a side effect, this leads to
new insights concerning the classification of big-step and small-step semantics. A preversion of
the results of Section 6.2 have been published in [Gle03].

6.1 Programs as Coalgebras

Coalgebras model state-based systems. Since operational approaches for the semantics of pro-
gramming languages define the semantics of programs as state transition systems, coalgebras are
a natural way to express operational semantics. In this chapter we consider deterministic pro-
gramming languages to keep notation as clear as possible but the extension to non-deterministic
semantics can be expressed as well. Deterministic programming languages are characterized by
the fact that, for each state reached during program execution which is not a final state in
which computation terminates, there exists exactly one successor state. We define semantics
of such programming languages by a function that maps each program together with an ini-
tial state into the final coalgebra of the functor T (X) = 1 + A × X where A is the set of
data structures used to define the states reached during computation. The carrier set of this
coalgebra is A∞, the set of all finite and infinite lists with elements of A. This means that
the semantics of a program is described by a finite state transition list if program execution
terminates and by an infinite state transition list in case of non-termination. In this section, we
describe this mapping separately for each of the three formalisms for the operational semantics
of programming languages which are abstract state machines, structural operational semantics,
and natural semantics. In the succeeding section, we compare the three formalisms to reveal
the fundamental differences between them, i.e. those differences which do not stem from only
notational differences.

6.1.1 Coalgebraic Semantics for Abstract State Machines (ASMs)

Abstract state machines are a general formalism to describe state transition systems. In Section
1.2 we have introduced ASMs and shown how they are used in the definition of the operational
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semantics of programming languages. In this section, we show that each such ASM also defines
an element in a suitable final coalgebra.

Abstract state machines define state transition systems by defining each state as an algebra
over a given signature. During a state transition, the interpretation of some of the function
symbols might change, cf. Section 1.2. Initial states are defined by a set of equations which
hold in the initial states. This implies that each ASM defines a state transition system with
several valid runs, namely all those that start with an initial state. In the context of program-
ming language semantics, a state is given by the program being executed and by the current
state which contains also the pointer CT , current task, which indicates which program part is
currently being executed.

Each ASM defines directly a coalgebra with the coalgebra operation [stop, 〈value, next〉]: If
the run of the ASM terminates, then its current state is mapped to κ(∗); otherwise we can
observe the current state denoted by the operation value and the succeeding state is given by
applying the function next to the current state.

Given an ASM, we define coinductively a function

[[ASM ]] : A× P −→ A∞.

This function takes a state a in A, initially one from the initial states of the ASM, and a pro-
gram p in the programming language P and maps them to an element in A∞. A∞ contains
all finite and infinite lists with elements of A and is the carrier set of the final coalgebra of the
functor T (X) = 1 + A × X. To define this function [[ASM ]] coinductively, we put a suitable
coalgebra structure on its domain A× P :

A× P
[[ASM ]]

//

[stop,〈value,next〉]
��

A∞

[empty,〈head,tail〉]
��

1 + A× (A× P )
id+(id×[[ASM ]])

// 1 + A×A∞

As in Example 5.7, the function [[ASM ]] arises as the unique coalgebra homomorphism in the
above diagram. [[ASM ]] is defined by a case distinction, as has been shown in Examples 5.6
and 5.7:

[[ASM ]](a, p) =


cons(value(a, p), next(a, p)) if [stop, 〈value, next〉](a, p) 6= κ(∗)

i.e. there is a successor state in the run of the ASM
() if [stop, 〈value, next〉](a, p) = κ(∗)

i.e. there is no successor state in the run of the ASM

This definition expresses the following: If there is no successor state, i.e. [stop, 〈value, next〉](a,
p) = κ(∗), then [[ASM ]](a, p) = (a) which means that no further state transition sequence can be
observed. Otherwise, if [stop, 〈value, next〉](a, p) 6= κ(∗), then [[ASM ]](a, p) = cons(value(a, p),
next(a, p)) which is the state transition sequence consisting of the current state a concate-
nated with the state transition sequence encountered afterwards. Note that in this context,
value(a, p) = a holds for all a ∈ A and p ∈ P .

With this definition, we assign each program and each initial state an element of the final
coalgebra A∞ which is the final coalgebra of the functor T (X) = 1 + A×X. Hence, we define
the operational semantics of a program as the finite or infinite state transition sequence which
is run through during program execution.
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6.1.2 Coalgebraic Semantics for Structural Operational Semantics (SOS)

Structural operational semantics defines semantics of programming languages as a function that
maps tuples < p, a > to tuples < p′, a′ >, thereby denoting that the execution of p in state
a yields a new program p′ to be executed in the succeeding state a′, or, in case that program
execution terminates, as a mapping of < p, a > to a′ which is a final state (cf. Section 1.4).
Hence, each structural operational semantics is a function that takes a program p and an initial
state a as input and iteratively defines a finite or infinite list with elements of A where A is as
in Subsection 6.1.1 the set of states that can be reached during program execution.

As in the case of ASMs, each structural operational semantics corresponds to a coalgebra
with the coalgebra operation [stop, 〈value, next〉]. If program execution terminates, then the
coalgebra operation returns κ(∗). Otherwise the current state is observable and denoted by the
function value, and the rest of the observable state transition sequence is obtained by applying
the function next to the current state. Given a structural operational semantics, we define a
function [[SOS ]] : A × P → A∞ coinductively as the unique coalgebra homomorphism in the
diagram below:

A× P
[[SOS ]]

//

[stop,〈value,next〉]
��

A∞

[empty,〈head,tail〉]
��

1 + A× (A× P )
id+(id×[[SOS ]])

// 1 + A×A∞

As in the case of ASMs, we define the function [[SOS ]] by a case distinction:

[[SOS ]](a, p) =


cons(value(a, p), next(a, p)) if [stop, 〈value, next〉](a) 6= κ(∗)

i.e. if < p, a > → < p′, a′ > or < p, a > → a′

() if [stop, 〈value, next〉](a) = κ(∗)
i.e. if no successor state exists

As in the case of ASMs, with this definition, we assign each program and each initial state an
element of the final coalgebra A∞ which is the final coalgebra of the functor T (X) = 1+A×X.
Hence, we define the operational semantics of a program as the finite or infinite state transition
sequence which is run through during program execution.

6.1.3 Coalgebraic Semantics for Natural Semantics

In Chapter 4, we have shown that natural semantics specifications can be interpreted coinduc-
tively. In particular, in Definition 4.4, we have defined the semantics of a program as the set of
all derivation trees whose root nodes are marked with the initial state. Moreover, in Corollary
4.1, we have shown that assuming a deterministic semantics, each program semantics defines a
unique finite or infinite state transition sequence. Hence, in Chapter 4, we have already defined
the semantics coinductively based on natural semantics by a unique mapping into the final
coalgebra of the functor T (X) = 1 + A×X.

Now that we have seen that all three formalisms for the operational semantics of programming
languages describe semantics as finite and infinite state transition sequences which can be
defined by the unique coalgebra homomorphism into the final coalgebra, we turn to the question
which, if any, differences exist between these three formalisms. We answer this question in the
succeeding section.
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6.2 Semantic Equivalence of Program Coalgebras

Abstract state machines (ASMs) and inference rule-based semantics with its two incarnations
big-step and small-step semantics are competing specification frameworks for the operational
semantics of programming languages. In the ASM as well as in the inference rule community,
there exists an extensive engineering knowledge of how to use these specification mechanisms
appropriately. This raises the widely debated question if there are fundamental differences
between them. We compare ASMs and inference rule-based semantics according to two main
criteria: First, we characterize them regarding the structure of imperative programming lan-
guages whose semantics can be defined with them. Secondly, we evaluate them with respect to
the way the programs are treated in the specifications and during their thus defined execution.
While both criteria are certainly coupled, it turns out that the second criterion really shows
where the fundamental differences are.

To accomplish the desired comparison between ASMs and inference rule-based semantics, we
define, if possible, automatic semantics-preserving transformations from one mechanism into
the other. This proceeding is particularly helpful as it separates non-relevant discrepancies in
notation from essential differences. Since semantics is defined operationally in these frame-
works, each program is regarded as a coalgebra. Hence, semantic equivalence means in our
context that for each program, the state transitions with the respective observable behavior
during execution are the same. If all specification mechanisms, ASMs as well as big-step and
small-step semantics, could be applied for arbitrary programming languages, then we could
hope to find transformations in any desired direction. This is not the case and leads us directly
to our classification of imperative programming languages. We distinguish between strictly
compositional and non-strictly compositional programming languages. In a strictly composi-
tional programming language, the semantics of each part of the program, which we regard in
form of its abstract syntax tree, can be defined solely in terms of the semantics of its direct
parts, i.e. subtrees. Big-step semantics defines semantics of programs recursively in terms of
the semantics of their direct subtrees. This implies that big-step semantics can only define the
semantics of strictly compositional programming languages. This does not hold for small-step
semantics and ASMs.

Concerning the second criterion, treatment of programs, there are more similarities between
big-step semantics and ASMs while small-step semantics is the outsider. Both big-step semantics
and ASMs use the abstract syntax trees of programs in their specifications but do not modify
it during program execution. In contrast, small-step semantics explicitly rewrites the abstract
syntax trees during execution. In general, a small-step semantics defines a term-rewriting
system. Starting with the original program as initial continuation, during each state transition,
the current continuation program is rewritten until the empty program is reached. In each
state, the continuation represents the computation which still needs to be done. In contrast,
ASMs represent the remaining computation in a given state as a pointer to the node in the
abstract syntax tree which is executed next. In each state transition, this pointer is updated.

In this section, we show that each small-step semantics can be transformed automatically
into an equivalent ASM semantics and vice versa. We also prove that each big-step semantics
can be transformed automatically into an equivalent ASM.

6.2.1 Transformations between ASMs and Inference Rule-Based Semantics

Since big-step semantics can only define strictly compositional semantics, we cannot hope for
an automatic transformation from ASMs or small-step semantics to big-step semantics. The
reverse direction is possible. We prove that we can transform each big-step semantics into an
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ij Xij+1 Xih
Xik

...

X0 continue at
continuation
of X

X

0

Figure 6.1: Dynamic Continuations

equivalent ASM. Furthermore, we show that each ASM can be transformed automatically into
an equivalent small-step semantics and vice versa. This implies that each big-step semantics
can also be transformed into an equivalent small-step semantics.

Data Structures in the Specifications

ASMs as well as big-step and small-step semantics define state transitions by exploiting (more
or less strictly) the structure of abstract syntax trees. Thereby data structures are defined to
represent the states and values which are computed during program execution. In the ASM case,
these data structures are defined by the signatures Σ ∪∆ of the static and dynamic functions,
the set Init of equations defining the initial states, and implicitly by the transition rules which
specify how to change their interpretation from one state to another. The signatures define a
Herbrand universe. The set Init maps all terms into the same equivalence class which are equal
under these equations. The transition rules define how to modify this Herbrand structure, i.e.
the interpretation, from one state to the next. In natural semantics, the data structures are
defined also as a term algebra based on constructor functions. Additional defined functions
can be introduced by stating inductively how they operate on constructor terms. These data
structures correspond directly to the states of an ASM and vice versa as they can be interpreted
also by the same Herbrand structures.

From Big-Step Semantics to ASMs

A big-step semantics defines execution of programs top-down: the state transitions of an entire
abstract syntax tree are composed from the state transitions of its direct subtrees and, in re-
cursive definitions, also from its own state transitions. When transforming a big-step semantics
into an ASM specification, we need to explicitly define the continuation attributes which are
specified only implicitly by the top-down style of the big-step semantics. Therefore we define
a continuation attribute cont for each node in the abstract syntax tree. Since a node X0 may
be called recursively, these continuation attributes must also contain the continuations of all
active calls of this node X0. We organize the continuations in a stack (with the usual stack
operations). We attach a dynamic stack attribute to each node in the abstract syntax tree. Its
value during program execution is part of the current state.

It is important to observe that a big-step semantics defines individual state transitions only
at the leaves of an abstract syntax tree. For all inner nodes, the inference rules specify how
to compose the overall state transition sequence in the conclusion from the state transitions
of the assumptions. When defining an equivalent ASM, the idea is to define rules modifying
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the state for the leaves of the abstract syntax tree. Thereby we use the function update taking
two arguments σ and σ′. It maps the current ASM state σ to the new state σ′ and can be
defined easily (cf. remarks in Subsection 6.2.1). Moreover, the rules for the inner nodes of the
abstract syntax tree adjust the continuations. The idea is that the most right leaves (wrt. to
the ordering of the nodes in the assumptions of the applied inference rules) of each subtree
contain the continuation of the root of this subtree, cf. Figure 6.1. We need to update the
continuations sequentially from “right to left” wrt. the ordering of the assumptions. Since the
ASM rules allow only for the specification of updates to be executed in parallel, we need to
introduce several ASM rules per inference rule. The current task CT is a pair (X, n) where X
is a pointer to the current node in the AST and n denotes the n-th update rule which needs to
be executed next.

Definition 6.1 Let Spec be a big-step semantics as defined in Section 1.5 consisting of a set of
axioms and inference rules. Then the corresponding ASM ASMSpec is defined by the following
transition rules:

• For each axiom < X,σ > → σ′, the corresponding transition rule is defined as:

if CT ∈ (X, 0) then
update(σ, σ′); CT := (cont(X).top, 0); cont(X) := cont(X).pop fi

• For each inference rule of the general form

Eval(Xl1 , σ0) = value1, . . . ,Eval(Xlm , σ0) = valuem,
< Xi1 , σ0 > → σ1, < Xi2 , σ1 > → σ2, · · · , < Xik

, σk−1 > → σk

< X0, σ0 > → σk

the corresponding transition rules are defined as:

if CT ∈ (X0, 0) then
if Eval(Xl1) = value1 and . . . and Eval(Xlm) = valuem then

cont(Xik
) := cont(Xik

).push(cont(X0).top); cont(X0) := cont(X0).pop;
CT := (X0, k − 1) fi fi

if CT ∈ (X0, k − 1) then
cont(Xik−1) := cont(Xik−1).push(Xik

);CT := (X0, k − 2) fi
· · ·
if CT ∈ (X0, 2) then

cont(Xi1) := cont(Xi1).push(Xi2);CT := (X0.Xi1 , 0) fi �

To prove that the semantics of the ASM ASMSpec defines the same semantics as the big-step
semantics Spec, we need to show that for each program, the state transitions are the same in
both specifications ASMSpec and Spec.

Theorem 6.1 Let Spec be a big-step semantics and ASMSpec the corresponding ASM. The
state transitions are the same for each program in both specifications.

Proof: State transitions happen only at the leaves of the AST. The continuation of a node
X is a reference to the node where the computation is to be continued after the computation
of X is finished. The computation of a node and subtree X is finished when all its leaves are
computed. Therefore the leaf processed at last has a continuation pointing to the continuation
of X. Since a node might call itself recursively, the different calls and their continuations are
superimposed recursively in the abstract syntax tree. Since the continuations are organized in a
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stack, they represent the nested recursive structure properly. To prove that the state transitions
of Spec and ASMSpec are the same, we distinguish between terminating and non-terminating
programs. For the terminating case, we do induction on the height of the abstract syntax tree
X and its run-time expansion.

Base case: X is a leaf described by axiom < X,σ > → σ′. Clearly the state transition
update(σ, σ′) gives us the same new state σ′. The deletion of the top continuation reference
removes the current recursive frame.

Induction step: For the computation of X0, Xi1 , . . . , Xik need to be computed. We can as-
sume that for Xi1 , . . . , Xik , the state transitions are the same in the big-step semantics Spec
and in ASMSpec (induction hypotheses). It remains to show that the continuations are cor-
rect. Due to the updates cont(Xij ) := cont(Xij ).push(Xij+1) for 1 ≤ j ≤ k − 1, Xij+1 is
computed directly after Xij , 1 ≤ j ≤ k − 1. The adjustment of the continuations from “right
to left” makes sure that the stacking of the continuations is correct for the case that there
exists j ≤ h, j, h ∈ {1, . . . , k} such that Xij = Xih . When processing the subtree marked with
XiJ (which equals Xih), first the continuation of the ij-th subtree needs to be taken, then the
continuation of the ih-th subtree. Finally, after Xik , cont(X0) is executed so that computation
either stops if X0 is the root of the program or continues at the continuation of X0. The deletion
of the continuation of X0, cont(X0).pop, removes the current recursive frame at X0. Since the
continuation of X0 is stored in the right most leaf of the subtree located at X0, this continuation
cont(X0) is not needed any more. Whenever this right-most leaf is reached, the execution will
continue directly at cont(X0).

Coinduction Step for Non-Terminating Programs: The above proof is only valid if the
programs terminate. Only then the expansions of Xi1 , . . . , Xik are truly smaller than the ex-
pansion of X0. If the program does not terminate, then there is one l, 1 ≤ l ≤ k, such that
Xi1 , . . . , Xil−1

are truly smaller than X0 and such that Xil is the first subtree with infinite
height. The computation will get stuck in Xil . To prove that both specifications Spec and
ASMSpec show the same state transition behavior, we need to show that the execution at the
root of Xil starts with the same state. This state is σl−1. The state at the root of Xil is the
same for both specifications. Hence, we can conclude that both specifications enforce the same
state transition behavior. If this were not the case, then there would be a smallest number of
state transitions after which they are different. In the state before they would be the same.
But then they must also be the same in the proceeding state. �

From Small-Step Semantics to ASMs

Small-step semantics define the execution of programs by recursively defining how to transform
an initial state as well as a given program itself stepwise into a new state and a new program.
This means that a small-step semantics does not define execution by a (eventually recursive)
walk through the abstract syntax tree as it is the case in a big-step semantics. Rather the
program is treated as a term which is rewritten during execution until it is reduced to the
empty tree. This term to be reduced is also called continuation.

The axioms and inference rules in a specification define a recursive rewriting procedure. An
axiom < X, σ > → σ′ or < X, σ > → < X ′, σ′ >, resp., states that the current continuation
X is to be replaced by the empty tree or the new program X ′, resp. An inference rule of the
general form, cf. Section 1.4, calls the rewriting procedure recursively on one of the direct
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proc eval AST (Cur AST , state) : (New AST ,new state);
if Cur AST = nil then

(New AST ,new state) := (nil , state);
fi;
if Cur AST ∈ X and < X,σ > → σ′ ∈ Spec then

new state := update(σ, σ′)[σ/state];
New AST := nil ;

fi;
if Cur AST ∈ X and < X,σ > → < X ′, σ′ > ∈ Spec then

new state := update(σ, σ′)[σ/state];
New AST := X ′[X /Cur AST ];

fi;
if Cur AST ∈ X0

and

Eval(Xl1 , σ) = value1, . . . ,Eval(Xlm , σ) = valuem,
< Xi, σ > → < X ′

i, σ
′ >

< X0, σ > → < X ′
0, σ

′ >
∈ Spec

and ∃ direct subtree Xi(Cur AST ) of Cur AST such that Xi(Cur AST ) ∈ Xi

and Eval(Xl1 (Cur AST , state)) = value1 and · · ·
and Eval(Xlm (Cur AST , state)) = valuem then

(Cur AST ′, state ′) := eval AST (Xi(Cur AST ), state);
(New AST ,new state) := eval AST (X ′

0 [X0/Cur AST ,X ′
i /Cur AST ′], state ′);

fi;
return (New AST ,new state);

end proc

(AST stands for abstract syntax tree.)

Figure 6.2: Meaning of a Small-Step Semantics

subtrees Xi of the current program. After its completion, the rewriting procedure modifies its
continuation and state by possibly integrating the results of the recursive call. The detailed
recursive algorithm is stated in Figure 6.2 in a pseudo-Pascal notation.

In general, this is not a pure term rewriting procedure since nodes may have static contin-
uation attributes, cf. the goto-definition in Section 1.4, which might point to arbitrary nodes
in the original program tree. So whenever we talk about a subtree of the original program, we
do not only mean the subtree itself but the transitive closure of all subtrees to which static
continuations point.

The algorithm in Figure 6.2 can easily be transformed into an ASM definition. The recursion
is eliminated by transforming the recursive procedure into a while-loop which runs until the
program is reduced to the empty tree. In the usual way, the nested recursive calls at run-time
are modelled by a stack whose entries are tuples of the current continuation (i.e. program)
and the current state, carrying the state of computation of the individual recursive calls. This
is a trivial standard proceeding to eliminate recursion. The resulting while-loop can easily be
restated as an ASM: The while-loop still contains the four if-statements as the original recursive
procedure. It is straightforward to transform these if-statements into four corresponding ASM
transition rules. The content of the stack of the while-loop during execution becomes the state
of the ASM.

This resulting ASM is different from the ASMs typically defined when specifying the semantics
of programming languages, cf. Section 1.2. It does not define how to traverse the abstract syntax
tree, e.g. by using a current task CT . Even though in many practical cases, given a small-step
semantics, a human might easily be able to define walks through abstract syntax trees and
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a corresponding ASM, in general we cannot hope to find such an automatic transformation.
This is because a small-step semantics has many degrees of freedom in transforming a given
program. It might duplicate subtrees, move subtrees from one part of the program to others
by using the static continuation attributes, etc. This demonstrates the fundamental difference
between small-step semantics on one hand and big-step semantics and ASM semantics on the
other hand: While in big-step and ASM semantics, the abstract syntax tree is a constant during
program execution, it is modified during the execution defined by a small-step semantics.

From ASMs to Small-Step Semantics

An ASM specification defines the semantics of a programming language operationally based
on the abstract syntax trees of the programs. The state of the ASM contains a reference CT
to some node in the abstract syntax tree, pointing to the current task to be executed. ASM
semantics specifications are able to describe not strictly compositional semantics. Therefore we
cannot expect to find a transformation from ASM semantics specifications to big-step semantics
because big-step semantics can only define strictly compositional semantics. But we can define
a transformation from ASM semantics to small-step semantics.

The idea is to take the abstract syntax tree as (constant) dynamic continuation. The current
task CT becomes part of the state: If σ is a state of the ASM and CT the current task during
some point of program execution, then (CT , σ) is the state at the same point of program
execution wrt. to the corresponding small-step semantics. Formally, for each transition rule in
an ASM semantics,

if CT ∈ X then
if applicability conditions then

CT := new CT ; further updates
else CT := new CT ′; further updates ′ fi fi

the corresponding inference rules are defined as follows:

applicability conditions(AST , (σ,CT ))
< AST , (σ,CT ) > → < AST , (further updates(σ),new CT ) >

¬applicability conditions(AST , (σ,CT ))
< AST , (σ,CT ) > → < AST , (further updates ′(σ),new CT ′) >

Again, as in the preceeding transformations, we assume that the data structures of the ASM
specification can be transformed easily into corresponding data structures of a small-step se-
mantics. To prove that the defined transformation is correct, we need to show that for each
program, the state transitions are the same wrt. to both specifications. Since the inference
rules are not recursive, i.e., there are no state transitions specified in their assumptions, each
execution will directly undertake the state transition of the conclusion of some inference rule
whose assumptions are valid. This is the same as saying that some transition rule whose con-
ditions (which are equivalent to the assumptions of the matching inference rule) are fulfilled
will be executed. Therefore it follows immediately that the original ASM specification and the
defined small-step semantics are equivalent.

6.2.2 Related Work

Again, as already discussed in Chapter 4, in particular in Section 4.5, our results here are in
contrast to the common understanding (cf. [NN99] or any other textbook or lecture notes of
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your choice) that big-step semantics can only describe terminating programs while small-step
semantics is also suited for the description of non-terminating computations. This view is
not adequate as our investigations show. Rather, it is the common interpretation of big-step
semantics which fits only for terminating computations. In the traditional interpretation of
big-step semantics, the assumptions must be true (terminating) in order to infer the conclusion.
In our view, we ask if a (terminating or non-terminating) state transition sequence is consistent
with the rules of the big-step semantics, allowing us to deal with non-terminating computations
as well. This seems to be more appropriate anyway. Otherwise one could not determine whether
a program has a semantics at all because this would be equivalent to solve the halting problem.

There are no other works comparing ASMs and big-step and small-step semantics wrt. the
“applicability to imperative programming languages” and “treatment of the AST”. In partic-
ular, no transformations between the three mechanisms have been proposed. Only [MCK+00]
proposes a mechanism to generate action notation environments from montages descriptions.

6.2.3 Conclusions of the Comparison

The three specification frameworks ASMs and small-step and big-step semantics vary signifi-
cantly wrt. our two criteria “applicability to imperative programming languages” and “treat-
ment of the abstract syntax tree”. While big-step semantics can only define strictly compo-
sitional programming languages, ASMs and small-step semantics can also specify non-strictly
compositional program constructs. Furthermore, big-step and most ASM semantics do not
modify the abstract syntax tree during computation, in contrast to small-step semantics which
explicitly defines a term-rewriting system that rewrites the program during execution until
the empty program is reached. These differences are reflected in the transformations between
them. We have shown that each ASM semantics can be transformed into an equivalent small-
step semantics and vice versa. Furthermore we have proved that each big-step semantics can be
transformed into an equivalent ASM semantics while the reverse direction cannot be expected.

From a theoretical point of view, these transformations are interesting as they reveal the unex-
pressed interpretations of the specification frameworks. ASMs and small-step semantics follow
the idea that a program defines a state transition system whose execution can be observed.
In contrast, the usual interpretation of big-step semantics defines how to construct finite state
transition sequences. Our transformations indicate that for each specification mechanism, both
interpretations are possible. The traditional classification – big-step only for terminating pro-
grams, small-step also for non-terminating programs – is not a classification of the specification
frameworks but rather of their usual interpretations.

These transformations are also interesting from a practical point of view. In the ASM as
well as in the natural semantics community, a remarkable engineering knowledge has emerged
concerning the way in which specifications should be written to be useful for the purpose of
semantics specification and translation verification. Having the transformations between these
mechanisms in mind, we can transfer engineering knowledge from one community to another.

In practice, most small-step semantics do not have the intention to define a term-rewriting
system but rather incorporate the idea of defining a current task as in the ASM semantics.
Therefore it would be interesting to define a simplified small-step semantics which allows for
recursive semantic definitions on the tree structure of the program but does not permit to rewrite
it. This seems to be sufficient for the usual applications. Moreover, it should be investigated if
the three specification mechanisms ASMs and small-step and big-step semantics deal differently
with multi-threaded and parallel programming languages.
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