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Shape optimization of structural parts in dynamic mechanical
systems based on fatigue calculations

P. Häußler, A. Albers

Abstract In this paper a new method for an automated
shape optimization of dynamically loaded components in
mechanical systems is presented. The optimization is car-
ried out by means of the results of a durability analy-
sis based on finite elements. Load time histories, which
are necessary for durability analyses, are derived from
a multibody simulation. The whole optimization loop,
which is an iterative procedure, incorporates all these
gradual analysis steps and is implemented by the authors
in a straightforward, batch-oriented manner using well-
known standard software. Since the whole process in-
volves several different analysis types, such as multibody
system simulation and durability analysis, the resulting
setup is rather complex. Furthermore, the reader may not
be familiar with all the terms arising within the context
of every single analysis domain. Therefore, some essen-
tial aspects of each of the stages involved in the process
are explained to provide the reader with the necessary
background. In the following, the required software setup
as well as the implementation are described. Finally, an
academic example is discussed to illustrate and clearly
outline the potential of this method.

Key words shape optimization, multibody systems,
durability analysis, fatigue, lightweight construction, vir-
tual prototyping

1
Introduction

In the past years the significance of computer aided engin-
eering (CAE) methods in the development processes of
various products has increased considerably. The strong
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demand for shorter development processes induces the
need to reduce physical prototyping and testing by re-
placing it with virtual prototyping by means of CAE
methods.
Finite element methods (FEM) andmultibody system

simulation (MBS), for example, play a major role in many
fields of industrial production, research and development.
Especially in the field of structural mechanics, these tech-
niques are established and used extensively.
Although computer-based optimization methods for

an application in structural mechanics have been avail-
able for several years, they are not very popular. There
are several reasons for this:

1. Modelling for computer-based optimization is often
complex and time-consuming

2. Optimization results and quality strongly depend on
boundary conditions and load cases

3. Optimized models are sometimes difficult to interpret
and/or produce in reality

In this paper, points one and two, with regard to
the special case of dynamically loaded structural com-
ponents, which are critical in terms of durability, are
addressed. Components in dynamic mechanical sys-
tems such as parts of a gear are sometimes subject to
time-varying loads, which are often stochastic. When
lightweight construction is desired, normally questions
concerning durability arise. This is especially true for
components where failure of these components leads to
safety issues. Therefore, the design process of such com-
ponents always implies durability investigations such as
testing, analytical calculations and/or computer-based
durability analysis (DA).
In the research project “Entwicklung und Konstruk-

tion von innovativen Leichtbauprodukten unter konse-
quenter Verwendung adaptierter Analyse- und Optimier-
ungsmethoden”1 (ELAnO) a straightforward methodol-
ogy for the effective shape optimization of parts for which
the issues introduced above are crucial was developed.
The first approaches to consider fatigue behaviour in

component design issues were typically based on the fa-

1 Development and Design of Innovative Lightweight Struc-
tures Applying Adapted Analysis and Optimization Methods
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tigue notch factor. Optimization was then carried out in
the sense of sizing optimization, i.e., by changing cer-
tain geometrical properties such as a bore hole radius.
Fanni introduced a concept for the shape optimization
of dynamically loaded components in Fanni (1993). Here,
a shape optimization scheme directly related to fatigue
was developed based on Neuber’s theory on fatigue notch
factors. Grunwald (Grunwald 1996) and the group of
Schnack2 developed a new approach for shape optimi-
zation based on continuum damage mechanics. For this
project, stress redistribution and different cost functions
for the mathematical optimization algorithm have been
considered.
The authors have contributed to the field of opti-

mization of dynamically loaded components since 1998.
In several publications new methods based on coupled
simulation processes were presented (Häußler et al. 2001;
Müller et al. 1999b,c). A coupled approach for the shape
optimization of dynamically loaded components based
on results of durability analyses was first presented
by Ilzhöfer et al. (2000). Further enhancements of the
method and feasibility studies were outlined in Ilzhöfer
et al. (2001).
The aim of the researchwork presented in this paper is

to provide a methodology for durability-based shape opti-
mization that is feasible for large real-world applications.
The prior investigations mentioned above were limited
to small models because of high computational cost due
to the usage of mathematical, gradient-based optimiza-
tion algorithms such as sequential quadratic program-
ming (SQP), for example. Additionally, the identification
of suitable design parameters for complex 3D geometries
is rather difficult and time-consuming – if possible at all.
The research presented here combines an optimality cri-
teria approach with results from durability analyses. Fur-
thermore, this new method takes into account complex
load scenarios and load time histories as well as effects on
the overall dynamic behaviour of the mechanical system.
By incorporating multibody system simulation a com-
plete virtual design optimization process is presented.
Moreover, the use of robust standard software packages
for the implementation of the new optimization scheme
encourages the application by the industry.

1.1
The research project ELAnO

The ELAnO3 project is funded by the Bundesminis-
terium für Bildung und Forschung and was created by
a research group consisting of partners from various
fields of industry and research dealing with structural
optimization.
Nine partners form the following fields take part in

ELAnO:

2 Prof. Dr.-Ing. habil. E. Schnack, Institut für Technische
Mechanik, Universität Karlsruhe
3 See www.elano.org

– Research (university):

– IPEK – Institute of Product Development,4 Uni-
versity of Karlsruhe
– Institute of Machine Tools and Production Sci-
ence, University of Karlsruhe
– Chair of Structural Analysis, University of Munich

– Software development (industry):

– FE-Design GmbH
– LMS International

– Application (industry):

– Freudenberg Forschungsdienste
– INDEX-Werke GmbH & Co. KG Hahn & Tessky
– TRWAutomotive - Global R&D
– ZF Friedrichshafen AG

The objective of the project is to establish a continu-
ous process chain for the development of lighter, stiffer
and more durable products, which can nevertheless be
produced at reasonable costs. This will be achieved by
the consequent application of numerical methods and in-
terdisciplinary structural optimization and will be eval-
uated by the development and construction of several
lightweight products.

2
Outline of the optimization process

The shape optimization of components in dynamic me-
chanical systems requires several quantities. These quan-
tities are to be derived in every iteration of the optimiza-
tion process. They result from various types of analyses
and the optimization process is obtained by a combina-
tion of these analyses. Figure 1 outlines the stages with
respect to the order in which they are carried out dur-
ing the batch process. In the following section some ba-
sic aspects of each step of the process shown above are
described in more detail in order to provide the reader
with the necessary background for all analysis domains
involved.

4 Formerly known as “Institute of Machine Design”

Fig. 1 Stages of the optimization process
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Table 1 Process outline

Type Quantity Software

FEM Component modes MSC.Nastran
(vectors and stress tensors)

MBS Load time histories MSC.ADAMS

DA Stress time histories, FALANCS
damage distribution

3
Stages and types of analysis

3.1
Flexible multibody systems

Taking a look at the history of multibody system simula-
tion it becomes evident that the origin of multibody sys-
tems were systems of interconnected rigid bodies. Flexi-
bility in those days typically referred to springs and later
to linear elastic beams with certain cross sections. The
elastic properties of these beams were calculated with the
aid of analytical models. As multibody system simula-
tion became more widespread and was applied in a rising
number of fields, the need for a more general method for
modelling flexible parts – or bodies – arose. The rapidly
increasing capabilities of computers formed the basis for
dynamic simulations of complex mechanical systems of
which flexible parts became more and more crucial.
A very popular approach to meet these demands is

well known as the floating frame of reference formulation.
The interested reader may consult Shabana (1998) for
a comprehensive description.

3.1.1
Floating frame of reference formulation

The idea of this approach is to represent a flexible com-
ponent in an approximated way by means of a superposi-
tion of constant shape functions:

ū(t)≈

NM∑

i=1

ci(t)φ̄i . (1)

Here, the shape ū(t) of the component at a time instant t
is calculated by a weighted sum of time-independent
shape functions φ̄i. The time dependence is contained
entirely in the scalar weighting factors ci(t). The bene-
fit of this approach is a significant reduction of the de-
grees of freedom necessary to describe the flexibility of the
component.5

In order to justify the approach mentioned in (1),
a fundamental assumption is required. The deformations

5 All quantities expressed in a local, body-fixed coordinate
system are marked with a bar.

of the flexible components are considered to be small with
regard to a local, i.e., a body-fixed system of coordinates,
which means that geometric non-linearity must be negli-
gible. Moreover, they are not to exceed the elastic limit of
the material used.
In this method, elastic deformations are expressed

within the body-fixed system of coordinates. The gross
body motion within space is captured by six rigid body
degrees of freedom, namely three translational and three
rotational coordinates. The shape functions φ̄i are also
expressed in the body fixed coordinate system.
By means of the finite element method a very effective

and straightforward implementation of the floating frame
of reference formulation can be achieved.

3.1.2
Component mode synthesis

In the previous section an approximation for the compon-
ent deformation was introduced by means of a weighted
sum of constant shape functions. When dealing with the
task of deriving these functions the finite element method
can be very effective. Here, a well-known and widely used
concept known as component mode synthesis (CMS) can
be used. One of the most common approaches (Craig and
Bampton 1968) is based on the idea of using normal mode
analysis techniques to calculate eigenvectors for use as
shape functions, or shape vectors, respectively.While em-
ploying eigenvectors for approximation was already very
widespread, Craig and Bampton among others (Hurty
1965) enhanced the method by taking into account addi-
tional types of vectors. In the following, Craig and Bamp-
ton’s method is dealt with in more detail since it is also
implemented in MSC.ADAMS/Flex. Here, the following
types of vectors, ormodes are utilized:

1. Fixed boundary normal modes
2. Static correction modes

Fixed boundary normal modes are eigenvectors that re-
sult from a finite element normal mode analysis. They are
connected with the boundary condition implying that all
nodes of the finite element model are fixed at which forces
and joints that are applied within the multibody system.
In the following sections, these nodes are referred to as
interface nodes.
Static correction modes are deformation vectors that

result from static load cases with which loads are ap-
plied to interface points. Typically, a unit load is ap-
plied to every nodal coordinate, whereas all other inter-
face nodes are fixed. This leads to six static correction
modes for each interface node. Figure 2 illustrates some
mode shapes for a one-dimensional bar. The shapes (a)
and (b) are fixed-boundary normal modes, shapes (c) and
(d) are static correction modes resulting from a unit dis-
placement (c) and a unit rotation (d), respectively. The
use of static correction modes ensures a good approxi-
mation of the deformation when forces and moments are
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Fig. 2 Mode shape examples for a one-dimentional bar

applied to interface points. The fixed boundary normal
modes are important as soon as high frequency excita-
tion is expected, i.e., if the loading may not be considered
“quasi-static”.
Note: In the following, the flexible component is al-

ways assumed to be represented by a finite element
model.

3.1.3
Dynamic equation of motion and modal coordinates

The dynamic equation of motion for a linear elastic struc-
tural component is as follows:

M̄¨̄u(t)+ D̄ ˙̄u(t)+ K̄ū(t) = F̄(t) . (2)

Here ū(t) denotes the time-dependent vector of displace-
ments of nodal coordinates. M̄ is the finite element mass
matrix, D̄ a damping matrix and K̄ the stiffness matrix,
respectively.
Inserting the approximation approach (1) leads to:

M̄

NM∑

i=1

c̈i(t)φ̄i+ D̄

NM∑

i=1

ċi(t)φ̄i+ K̄

NM∑

i=1

ci(t)φ̄i = F̄(t) . (3)

Equation (3) represents a coupled system ofNM differen-
tial equations. The whole time dependence is contained in
the weighting factors ormodal amplitudes ci(t). Note that
the mode shapes φ̄i are constant.
The equations in (3) are generally coupled for two rea-

sons:

1. Static correction mode shapes and eigenvectors are
generally not perpendicular in pairs, i.e., φ̄i · φ̄j �= 0

2. The matrices M̄, K̄, D̄ typically have no diagonal
structure

Concerning the first point mentioned above, an eigen-
value analysis on the system of equations described in (3)
is to be carried out. In order to deal with the second point,
modal damping can be employed. In this context, it is
very convenient to first neglect damping and introduce
modal damping sometime later.
The eigenvalue analysis for the undamped system is

obtained by solving the well-known equation:
(
K̄−M̄ω2

)
= 0 . (4)

This leads to a new set of eigenvectors φ̄∗i with associated
eigenvalues λ∗i = ω

2:

φ̄∗i , λ
∗
i i ∈ [1 · · ·NM ] . (5)

Due to the very nature of eigenvectors this new set of vec-
tors is indeed an orthogonal basis, which implies that the
following conditions hold:

φ̄∗i · φ̄
∗
j = 0 : i �= j ,

φ̄∗i · φ̄
∗
j �= 0 : i= j . (6)

The vectors φ̄∗i form an orthogonal basis of the same space
like the vectors φ̄i. With this new set of shape vectors the
dynamic equation of motion (3) can now be written in the
following form (damping neglected):

M̄c̈∗(t)Φ̄∗+ K̄c∗(t)Φ̄∗ = F̄(t) . (7)

Here the sums in (3) are replaced by introducing the
modal shape matrix Φ̄∗ and a vector of new modal coor-
dinates c∗i :

Φ̄∗ =
[
φ̄∗1, φ̄

∗
2, · · · , φ̄

∗
NM

]
,

c∗ =
[
c∗1, c

∗
2, · · · , c

∗
NM

]T
. (8)

Multiplying (7) with the transpose of the modal shape
matrix results in:

c̈∗(t)Φ̄∗
T
M̄Φ̄∗+c∗(t)Φ̄∗

T
K̄Φ̄∗ = Φ̄∗

T
F̄(t) . (9)

In (9) one can clearly see that the single equations in the
system are now decoupled due to the orthogonality prop-
erty of the shape vectors. Thus (9) can be written as a set
ofNM independent differential equations in the modal co-
ordinates c∗i :

c̈∗1(t)m̄1+ c
∗
1(t)k̄1 = f̄1(t)

c̈∗2(t)m̄2+ c
∗
2(t)k̄2 = f̄2(t)

... =
...

c̈∗NM (t)m̄NM + c
∗
NM
(t)k̄NM = f̄NM (t) (10)

Here, the right side of the equation contains the general-
ized modal forces f̄i, which are defined as follows:

f̄ = Φ̄∗
T
F̄ . (11)

On the left side, the generalized modal mass and stiffness
can be recognized:

m̄i = φ̄
∗T

i M̄φ̄
∗
i = 1 k̄i = φ̄

∗T

i K̄φ̄
∗
i (12)

The fact that the generalized modal mass equals one is
due to the fact that vectors are expected to be normalized
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with respect to their generalized mass since this is com-
mon in finite element analysis. With the approximation
approach outlined above, the degrees of freedom of the fi-
nite element model representing the flexible part are con-
siderably reduced based on component mode synthesis. In
fact, the number of degrees of freedom does not depend
on the finite element mesh, i.e., the number of nodes, at
all. It is rather the number of modes within the modal ba-
sis that defines the number of dynamic equations. Here,
it becomes evident that the number of interface nodes is
critical since every additional interface node causes six
additional modes.
Damping can be included in the equations mentioned

in (10) by means of modal damping in every single equa-
tion by a modal damping coefficient d̄∗i :

c̈∗i (t)m̄i+ ċ
∗
i (t)d̄

∗
i + c

∗
i (t)k̄i = f̄i(t) . (13)

The deformation of the flexible component at a time
instant t can now be calculated from the values of the
modal coordinates c∗i (t) together with the constant pre-
computed shape vectors φ̄∗i . In the following, it will be
demonstrated that by means of modal coordinates and
pre-computed modal stress tensors stress distributions
can also be calculated.

3.2
Durability analysis

In computer-aided, finite-element-based durability or fa-
tigue analysis there are two major approaches6 (Bannan-
tine et al. 1990):

– Stress-life or S-N approach
– Strain-life approach

Due to the assumption that the deformations of the flex-
ible part are small and do not exceed the elastic limit of
the material, the stress-life approach is employed in the
following. Local plastic strain components are assumed
not to be of importance or, in other words, even local
stresses do not exceed the elastic limit of the material.

3.2.1
Stress-life approach

The stress-life approach is well suited for problems that
fall into a category known as high-cycle fatigue (HCF).
Failure should not occur until 104 load cycles are com-
pleted (Bishop and Sherratt 2000).
The basic concept of the stress-life approach is the

material-related S-N curve or “Wöhler’s curve”, which
relates stresses to the number of cycles until crack initi-
ation. In the stress-life approach crack initiation is typic-
ally treated as failure.

6 Concepts dealing with crack propagation are not taken
into account

The basic procedure to determine a damage distribu-
tion consists of the following steps:

1. Generate local stress time histories
2. Classify local stress time histories, typically by
methods such as rain flow cycle counting

3. Accumulate partial damages of each class for every
point (node) on the surface of the component consid-
ered

The durability analysis code FALANCS of LMS Interna-
tional used for the work described in this paper enhances
this basic procedure substantially and includes sophisti-
cated methodologies for state-of-the-art fatigue predic-
tion such as load time histories, filtering and a powerful
critical plane approach. For a detailed description of the
theory and capabilities the FALANCS theory manual is
to be consulted (LMS International 2002).

3.2.2
Stress approximation by modal superposition

Stress time histories needed for the damage calculation
can be easily and efficiently calculated from modal coor-
dinate time series and modal stress tensors. During the
finite element analysis required for the component mode
synthesis, stress tensors can be calculated in a straight-
forward manner and stored in an output database. Every
single one of these stress tensors is associated with one of
the final mode vectors.
During the dynamic multibody system simulation

time series for modal coordinates c∗i are computed. With
these two quantities, stress time histories can be calcu-
lated as follows:

σ̄(t) =

NM∑

i=1

c∗i (t) · S̄i = c̄
∗(t) · S̄ . (14)

Here, the matrix S̄ contains all modal stress tensors.
The use of this method for all time steps may result
in a huge amount of data. In state-of-the-art software
packages such as FALANCS sophisticated signal pro-
cessing procedures are carried out on the modal coor-
dinate time series prior to calculating stress time histo-
ries as formulated in (14) in order to significantly reduce
both the amount of data and computation time (LMS
International 2002).
Since a durability analysis is to be carried out based on

the calculated stresses the quality of the latter is crucial.
An error in local stress results of, e.g., 10% can lead to an
error in the durability results of about 100%! The source
of this effect is obviously a material property, namely the
non-linear S-N curve. Therefore, the choice of a sufficient
modal basis is highly significant, especially when high fre-
quency loading is expected.
In the methodology described in this paper all stress-

time history and damage calculations are carried out by
means of FALANCS.
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3.3
Parameter-free shape optimization

3.3.1
Optimality criteria methods

In contrast to the mathematical programming methods,
the optimality criteria methods take advantage of the
knowledge about the physics andmechanics of the respec-
tive problem set. Theses will be postulated describing the
optimum.
A well-known and ascertained physical law relating

to structural mechanics is, e.g., the fully stressed design,
which can only be applied to statically determined struc-
tures. An important mathematical optimality criterion is
the Karush–Kuhn–Tucker condition (Karush 1939; Kuhn
and Tucker 1951) normally designed for convex optimiza-
tion purposes.
The theses on stress homogenization and stress min-

imization can also be considered as optimality crite-
ria (Schnack 1978). Regarding the optimality criteria
methods, these criteria and the response behaviour of
modifications of the physical model are implemented into
the algorithm. With suitable redesign rules, a conver-
gence behaviour is achieved that cannot be attained with
mathematical optimizers. Applying this particular phys-
ical and mechanical knowledge, the optimality criteria
methods remain limited to the certain application areas.
The optimality criteria are particularly well proven for

shape and topology optimization where a large number of
design variables is required. It is important to note that
the convergence speed is independent of the number of
design variables.

3.3.2
TOSCA.shape

The optimization program TOSCA used in the method
described in this paper is based on the code computer-
aided optimization system Sauter (CAOSS), which is also
the basis of MSC.Construct (Allinger et al. 1996; Sauter
1992; Müller et al. 1999a). The software was developed by
FE-Design7, a spin-off company of the Institute of Prod-
uct Development (IPEK) at the University of Karlsruhe.
The authors contribute to the further development of this
code that has proven feasibility and efficiency in various
industrial applications throughout the past years.
TOSCA.shape implements an optimality criteria ap-

proach. A distribution of scalar values within a design
area, the so-called design response are basically processed
by the optimization algorithm. Depending on the user-
defined objective function these values are minimized or
maximized by means of a homogenization within the de-
sign area. The shape change induced by the optimizer,
i.e., the variation of the finite element mesh is managed by

7 www.fe-design.de

displacing nodes. This leads to a decrease of the local sur-
face curvature in highly stressed regions. Typically such
scalar quantities are von Mises stresses obtained from
a static finite element analysis. The nodal displacement
∆U that is applied to a certain node by the optimizer is
then calculated by means of the following formula:

∆Un = α ·F (a, b, · · ·) . (15)

Here α denotes a scalar calibration factor and F (a, b, · · ·)
is a function of the scalar nodal design response a used for
optimization such as von Mises stress, a reference value b
and other parameters.
In the following sections, a method for nodal dis-

placement based on quantities from durability analyses is
presented.

3.4
Optimization based on damage distribution

3.4.1
Review of the concept

Initial IPEK research on shape optimization with regard
to durability resulted in two types of quantities that were
obtained from a durability analysis (MSC.Fatigue) for
the use as design response (Ilzhöfer et al. 2000):

1. Number of cycles to failureDResp. =N
2. Logarithmic damage valuesDResp. = log10 (D)

The use of logarithmic values instead of real damage
values is common practice due to the logarithmic na-
ture of fatigue. In order to avoid changes to the algo-
rithm implemented in TOSCA.shape, 8 these values were
used directly as input to the controller of TOSCA.shape
that is at the same place where stresses are usually used
(see (15)). This was done in order to keep the code of
TOSCA.shape as simple as possible (one algorithm for
both, stress- and damage-based shape optimization).
This early research has demonstrated the potential of

the method, but it has also shown that the algorithm
in TOSCA.shape was not suitable for both chosen types
of quantities, cycles to failure and logarithmic damage
values. The reason for this is the difference in the gra-
dients that can be observed when comparing the latter
of typical stress and cycles to failure/logarithmic dam-
age distributions. Compared to stress gradients, cycles to
failure distributions show a very high gradient where the
gradient of logarithmic damage values is typically very
small.
To avoid modifications to the algorithm of the opti-

mizer a new approach was developed in order to overcome

8 In the past the optimization software was distributed by
MSC.Software and labeled “MSC.Construct”. The code is ba-
sically the same as TOSCA.shape. To avoid confusion in this
paper, the term “TOSCA” will also be used if referring to past
research that was actually carried out with MSC.Construct.
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the issues related to the gradients. The basic concept
is to calculate a related damage equivalent stress ampli-
tude from nodal damage values (Ilzhöfer et al. 2001). This
results in gradients that can be compared to those of
stresses resulting from regular finite element calculations.
It is important to keep in mind that this distribution cal-
culated from a damage distribution may in general be
something completely different from the stress distribu-
tions resulting from finite element analyses with certain
load cases. High stress values will occur at locations of
high damage. These locations may differ from the loca-
tions of the highest stresses observed when looking at
finite element results from single load cases. The reasons
for this are certainly the load time histories and the fa-
tigue behaviour of the material.
In early investigations (Ilzhöfer et al. 2001) the related

stress distribution was calculated from durability analysis
results (namely cycles to failure Nf ) using the Manson-
Coffin-Morrow relationship:

εt =
σ
′

f

E
(2Nf)

b

︸ ︷︷ ︸
elastic strain

+ ε
′

f (2Nf )
c

︸ ︷︷ ︸
plastic strain

. (16)

In this equation the total strain is expressed as the sum of
elastic and plastic strain components, σ

′

f denotes the fa-

tigue strength coefficient, ε
′

f is the fatigue ductility coef-
ficient and E the elastic modulus of the material, respec-
tively. The fatigue strength exponent b is also a material
dependent parameter and usually varies between −0.05
and −0.12 (Bannantine et al. 1990).
By only assuming elastic stresses and strains, the sec-

ond term in (16) can be neglected. Therefore, a damage-
related stress amplitude can be defined as follows:

σeq = σ
′

f (2Nf)
b
. (17)

Using the damage-related stress distribution as input
for TOSCA.shape, it leads to a feasible method for the
shape optimization of parts with respect to durability.
The problems related to gradients are solved and the de-
sign response now used – the damage related equivalent
stress – still contains all effects of load time histories and
material properties. Especially the spatial properties of
the damage distribution are retained in the distribution
of the damage related equivalent stress.

3.4.2
TOSCA.shape and FALANCS interfacing

The example presented in this paper is based on an in-
terfacing of TOSCA.shape and the durability analysis
code FALANCS from LMS International. In the scope
of the ELAnO project, an interface has been developed
that is based on the concepts of the approach described
above using damage related stress distributions as a de-
sign response.

First a design lifeNDesign is specified by the user. This
value represents the intended number of successively en-
dured repetitions of the respective load time histories.
During the durability analysis, the actual life N , or the
actual number of endured repetitions, is calculated by
FALANCS. Related stress amplitudes σ and σDesign are
derived for both values by using the S-N curve. When
a strain life approach is used in FALANCS, a syntheti-
cally generated S-N curve is used in this procedure. This
S-N curve is derived when using the well-known laws of
Manson-Coffin-Morrow and Ramberg-Osgood, as well as
Neuber’s formula.
As input for the optimizer of TOSCA.shape – i.e., as a

design response – the quotient of the related stress ampli-
tudes is used as follows:

DResp. =
σ

σDesign
. (18)

Optimizing the component’s life means to minimize the
design response defined in (18). This is achieved by the
well approved homogenization technique that is imple-
mented in TOSCA.shape. This technique is also used
for shape optimization based on usual stress distribu-
tions that are derived from static finite element analy-
sis. Figure 3 summarizes the TOSCA.shape-FALANCS
interfacing. The damage calculation in FALANCS re-
quires stresses and load time histories. Due to the modal
superposition technique used here, modal stress ten-
sors from the component mode synthesis analysis with
MSC.Nastran are used. Therefore, the respective load
time histories are modal coordinate time histories. These
may be exported directly from a multibody system code
like MSC.ADAMS.

Fig. 3 TOSCA.shape-FALANCS interfacing

Table 2 Material properties

Property Value

Endurance limit σE 4×107 [Pa]
Tensile strength σmax 5×108 [Pa]
Pressure resistance σP 1×109 [Pa]
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In addition to modal stress information and modal co-
ordinate time series, a material model (S-N curve) has to
be selected from a database or explicitly specified by the
user. Table 2 summarizes the values used in the example
discussed below.
It is important to keep in mind that there are several

major differences in the new process described in this pa-
per to the earlier research mentioned above:

– There is no need for measured load time histories due
to the use of modal coordinate time series from MBS
simulation. Arbitrary complex time histories and load
scenarios may be used
– It is not limited to pure elastic damage models as
shown in (17)
– It is a feasible process for large models of real world
applications due to efficient parameter-free optimiza-
tion algorithms and the use of robust standard soft-
ware packages
– Updates of modal coordinate time series in every it-
eration of the optimization process. Full coverage of
effects on the mechanical system as a whole
– The design optimization process is completely covered
by means of simulation

4
The optimization process

The important aspects of all analysis techniques involved
in the optimization process were discussed in the previ-
ous sections. In this section a brief summary and overview
of the process as a whole is presented. Figure 4 illustrates
the subsequent steps and dataflow within one single iter-
ation of the optimization.
If the component mode synthesis is carried out with

MSC.Nastran the mode shape vectors φiModal and modal

Fig. 4 Overview of the optimization process

stress tensors σiModal are obtained. The index i refers to
the mode number. Using the mode shape vectors a dy-
namic multibody system simulation is performed using
MSC.ADAMS. Modal coordinate time series qi(t) are ex-
ported from this analysis. Together with modal stress
tensors, these time series are transferred to FALANCS
for a durability analysis that is based on a previously
user-defined material model and method parameters. Fi-
nally, the intended design responseDResp.(x), i.e., a stress
quotient distribution on the component’s surface as de-
fined in (18) is derived and provided to the optimizer
TOSCA.shape. Following the optimization the modi-
fied finite element mesh is then again transferred to
MSC.Nastran for a new component-mode synthesis.
The handling of data files and the initialization of

every individual analysis step is carried out completely by
the control program of TOSCA.shape. Once the process
has been started, no further user action is required.

5
Example: plate with hole

The newmethod will be demonstrated using a simple aca-
demic example in this section. Figure 5 shows a square
plate with a hole in its centre. The plate will be used
as flexible part within a multibody system where it will
be subject to certain loading conditions. The shape opti-
mization will be carried out on the border of the hole, i.e.,
the optimization code will change the shape of the hole to
increase the overall lifetime of the plate.

5.1
Finite element model

The plate is meshed with 4031 elements of typeMSC.Nas-
tran CQUAD4 (quadrilateral plate element: isoparamet-
ric membrane-bending or plane strain (Schaeffer 2001)).
In this example the shell properties for the elements
(MSC.Nastran PSHELL) have been defined to support
membrane, bending and transverse shear behaviour.

Fig. 5 Plate with hole
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Moreover, there are two additional nodes at the centre
of two opposite borders of the plate with a 10mm offset.
These nodes are used as interface nodes, i.e., as nodes to
which forces or joints are applied in the multibody sys-
tem. The plate itself is connected to these interface nodes
by rigid body elements of type MSC.Nastran RBE2.
The nodes on each border next to an interface node are
connected with these RBE2 elements via the associated
interface node as illustrated in Fig. 6. In this example, the
circle refers to the position of the interface node. This way
it is possible to fix the plate border by constraining all
degrees of freedom of the respective interface point.
The component mode synthesis was carried out with

MSC.Nastran. Tables 3 and 4 contain information on the
modal basis. The first six modes (highlighted in Table 3)
can be easily identified as rigid body modes by consid-
ering the associated eigenfrequencies, which are below
1×10−3Hz. These modes are removed from the set of ba-
sis vectors within MSC.ADAMS. Rigid body motion is –

Fig. 6 Finite element mesh and RBE2 element

Table 3 Mode types and mode count

Number of eigenmodes 20
Number of static correction modes 12

Total number of modes in basis 32

Table 4 Eigenfrequencies of the orthogonal modes

No. Freq. [Hz] No. Freq. [Hz]

1 1.83×10−3 17 1.51×103

2 1.59×10−3 18 1.80×103

3 1.22×10−3 19 1.85×103

4 5.71×10−4 20 2.01×103

5 6.77×10−4 21 2.25×103

6 8.67×10−4 22 2.39×103

7 1.58×102 23 2.65×103

8 2.07×102 24 2.74×103

9 4.89×102 25 2.88×103

10 5.67×102 26 2.91×103

11 5.93×102 27 3.00×103

12 7.87×102 28 5.95×103

13 9.33×102 29 8.18×103

14 1.01×103 30 8.90×103

15 1.25×103 31 1.27×104

16 1.27×103 32 1.70×104

as pointed out earlier – then realized by adding six de-
grees of freedom to the local body coordinate system.

5.2
Multibody system

After the plate finite element model and a MSC.Nastran
component mode synthesis is prepared the plate can be
imported into MSC.ADAMS. Figure 7 shows a schematic
drawing of the multibody system that was used for the re-
search presented here. In Fig. 8 the MSC.ADAMS model
is depicted. The system consists of four bodies (plate, two
links and ground) and therefore is simple but completely
fulfils its purpose. The plate is connected to the ground by
a fixed joint at one of its interface nodes. The fixed joint
(symbolized by the lock-icon) therefore locks all degrees
of freedom of that point.
Motion is introduced by a time-variable enforced dis-

placement that is applied to the translational joint of the
upper link. The two links are connected by a revolute
joint as is the lower link and the plate at the opposite in-
terface point. They act as a type of crank mechanism and
result in an enforced displacement in a direction along the
plate normal. Two links are necessary, since applying an
enforced displacement to only one link or directly to the
plate led to high stresses within the plate’s xy-plane. The
translational joint applied to the upper link ensures pure
motion of this link along the global z-axis.

Fig. 7 Multibody system – schematic

Fig. 8 Multibody system – MSC.ADAMS
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Table 5 Enforced displacements

No. dz(t) Values

1 A1 · sin(ω1t) A1 = 4mm
ω1 = 2π

2 A2 · sin(ω2t) A2 = 0.5 mm
ω2 = 1468

3 A3 · sin(ω1t)+A4 · sin(ω2t) A3 = 3.5 mm
A4 = 0.25 mm

Fig. 9 Von Mises stress distribution

Three different dynamic simulations have been carried
out, each with different enforced displacements dz of the
upper link. Details about the excitation are presented in
Table 5).
Simulation one is based on a 1 Hz sinusoidal enforced

displacement. The excitation frequency is well below the
first eigenfrequency of the one-sided fixed plate. The dis-
placement result for the plate can be seen as quasi-static.
Simulation two is based on a 233 Hz sinusoidal excita-
tion. In this simulation, the third eigenmode of the one-
sided fixed plate is excited. Finally the third simulation
uses a linear combination of the two excitations described
before.
The frequencies were chosen after looking at vonMises

stress distributions for a static deflection of the plate
and the stress distributions of the eigenmodes. The goal
was to select two stress distributions wherein the loca-
tion of the highest stress level on the border of the hole
differs. Figure 9 shows von Mises stresses for a static de-
flection (a) and the stress distribution associated with
the 233 Hz eigenmode (b). The different locations of the
highest stresses can be observed clearly. The maximum
Amplitudes Ai used in the simulations were adjusted in
such a way that resulting damages in all three cases were
within the same order of magnitude.

5.3
Optimization model

The biggest possible advantage of a parameter-free shape
optimization is the simple and straightforward procedure
to set up everything that is necessary to define the opti-
mization problem. Since everything is carried out on the

Fig. 10 Design nodes on the border of the hole

finite element mesh, no parameterized geometry is neces-
sary. Furthermore, shape basis vectors commonly used for
shape optimization are not needed with TOSCA.shape.
Nodal degrees of freedom are directly used as design vari-
ables instead.
In the problem presented here, the aim is to find an

optimal shape for the hole in the plate’s centre. There-
fore, only the nodes on the border of the hole as depicted
in Fig. 10 are used as design variables. The objective func-
tion can be simply stated as:

“Minimize the damage related stress distribution
within the design area.”

In TOSCA.shape this is achieved by a homogenization of
the design response throughout the design area, that is on
the border of the hole. It is important to note that during
the iterations the shape of the hole will change and may
no longer be a circle.9

The iterative process ends when a user defined stop
condition is fulfilled. This may be a maximum allowed
equivalent stress value or simply a maximum number of
iterations.

5.4
Results

5.4.1
Shape of the hole

Figure 11 shows the location of the maximum damage
Dmax for the starting design with respect to all three dif-
ferent excitations. As expected, the maximum is always
on the border of the hole. The actual position varies in
all of the three models due to the different dynamic ex-
citations which in turn lead to a different dynamic stress
tensor in the plate. When the two excitations (1 Hz and
233Hz) are superposed, the maximum is between the
maxima of the single frequency models.
Optimization results for the three models are shown

in Fig. 12. The resulting optimum shape for the hole, i.e.,

9 By using nodal constraints within TOSCA.shape it would
be possible to preserve the circular shape of the hole if desired,
for example, for manufacturing purposes
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Fig. 11 Location of maximum damage, start design

the shape that minimizes damage to the hole’s border,
differs significantly among the three models. Geometry
(a) is the result from the dynamic simulation with a 1 Hz
excitation. The maximum damage appears at the same
position as the maximum equivalent stress of a static de-
flection (see Fig. 9). As a consequence, the local surface
curvature is lowered in this area by the optimizer.
Similar observations can be made for the second

model, namely the 233-Hz excitation. Here the max-
imum damage appears in the vicinity of the maximum
equivalent stress of the modal stress tensor associated to
eigenmode three. Therefore, the resulting shape of the
hole (b) differs substantially from the prior example.
The resulting geometry of model three (c) with a su-

perposition of the two excitations can be interpreted as
a compromise between the two preceding shape results.
Again, the location of the maximum damage shifts, this
time in between the locations of the two other cases.

Fig. 12 Optimization results (shape) and location of max-
imum damage

5.4.2
Damage distribution

For a quantitative analysis of the resulting damage dis-
tribution on the border of the hole, an analysis path of
nodes along this border has been defined. In the following,
nodal damage results for these nodes have been assessed.
Figures 13–15 show the nodal damage distribution along
the analysis path. For each of the three cases discussed
above, the results are presented for the start design (cir-
cular hole) and the optimized design. In all three cases,
the maximum occurring damage value has been reduced
significantly by the optimization. Furthermore, it can be
observed that the spatial extent of the damaged area in-
creases. The appearance of two separate damaged areas in
all three optimized designs can be explained by the fact
that the border curvature of each of the optimized hole-
designs is no longer concave. This effect would possibly
have vanished if further iterations had been carried out.
Table 6 presents the values for the reduction of the

maximumdamage. Values are expressed in relative terms,

Fig. 13 Damage along the hole border – 1 Hz excitation

Fig. 14 Damage along the hole border – 233 Hz excitation
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Fig. 15 Damage along the hole border – mixed excitation

Table 6 Reduction of the maximum damage

Model Damage reduction [%]

1 Hz excitation 56
233 Hz excitation 39
Mixed excitation 45

i.e., as a percentage of the damage value of the respective
start design. All achieved damage reductions are in the
same order of magnitude.
As termination criterion, a limited number of itera-

tions (eight) was defined to reduce computation times.
This was justified because earlier investigations showed
that the major damage reduction typically occurs within
the first few iterations. Nevertheless, it is possible that
an even better result could have been obtained with
further iterations. The optimization process was stable
and no convergence difficulties could be observed. How-
ever, convergence in the optimality criteria approach in
TOSCA.shape does not mean convergence in a mathe-
matical sense. In order to avoid a specified number of it-
erations, alternative termination criteria could have been
used, for example, based on the relative change of the de-
sign response:

“Terminate the optimization process if ∆D̂Resp. ≤ ε
within the design area,”

where ∆D̂Resp. is the difference of the design response
maxima of two successive iterations and ε is a given
threshold.

6
Concluding remarks

The process for the durability-based shape optimization
of dynamically loaded structural components as pre-
sented in this paper has proven feasible and applicable

in the example discussed above. The importance of con-
sidering fatigue issues in the design process of such com-
ponents can be clearly deduced from the plate example.
A simple load scenario with a constant uniaxial load di-
rection leads to significant differences in the optimum
design. This is due to the different excitation frequencies
that give rise to different excitation states of the plate.
Summarizing, it can be stated that the optimum shape
of a randomly loaded structural component depends on
the frequency content of the emerging excitations. Shape
optimization based on static stress results may not be
sufficient in such cases since it is the accumulated local
damage that determines the optimum shape rather than
peak stresses of single load cases.
The basic approach and the implementation of the

process allow its application for large models with com-
plex mechanical systems and multi-axial random load
scenarios. Many stand alone models for MSC.ADAMS,
FALANCS or even TOSCA.shape are already available at
many companies in the industry. Therefore, it is possible
to directly apply the coupled process in a straightforward
manner. Within the framework of ELAnO the authors,
together with TRW Automotive Global R&D, are cur-
rently working on the optimization of a suspension arm
that is embedded in a full vehicle model. First applica-
tions in the industry have been reported and are gaining
momentum.
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ciplinary shape and topology optimization and its integration

in the product development process for the effective develop-
ment of competetive products. ICED 99 12th International
Conference on Engineering Design, Munich, 2(26). Munich:
U. Lindemann, pp. 655–660
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