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1

Introduction

Computer models have become an essential tool in areas where simulations prior to real life ex-
periments save time, resources and do not conflict with ethical objections in contrast to certain
in-vivo experiments. Furthermore, simulations can be performed, which are beyond the capability
of physical experiments.
In the medical environment, computer models support medical doctors in diagnostics, surgery
planning and serve educational purposes. The simulation of soft and hard tissue is a key interest
in modern medicine. In craniofacial surgery, a computer model of the skull is created by medical
imaging techniques and a soft tissue model represents the patients skin, muscle and fat layer.
Virtual bone surgery is performed and computer programs allow to estimate the deformation of
facial expression of the patient. Hence, the surgeon can conduct a thorough operational planing
and may present estimated results to the patient [1, 2].
In the field of cardiology until now only imaging techniques that result in 2D visualization (including
temporal change) support medical doctors for surgery planning. This work contributes a step
towards 4D modeling of the heart by proposing a mechanical model representing the behavior
of myocardial tissue. It was applied to compute the deformation of ventricular models including
intraventricular pressure.
Acquiring information about anatomy and physiology is one part in mechanically modeling the
heart. The other part consists in modeling blood pressure, valve function, and blood flow.
The initiation of mechanical contraction of the heart is the result of a series of biological processes.
The heart consists of cells, which inhibit specialized functions. These functions can be differentiated
into three main categories: excitation initiation, excitation propagation, and contraction. The sinus
node is a self exciting region of cells, where a rhythmic electrical stimulus is created. This stimulus
is propagated to neighboring tissue at a certain rate. An excited contractile cell, contracts upon
this stimulus. The cells forming the conduction system propagate the stimulus to far regions of the
heart and allow a temporally and spatially differentiated excitation and thus contraction of the
whole heart. Only the interaction of these processes and the anatomical setup result in a pumping
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action. Any disturbance of this interaction or of the underlying physiological function leads to a
reduced supply of blood to the body and hence reduced oxygen and nutrients.
The heart’s pumping function is dependent on the vitality of the heart muscle, which is mostly
composed of contractile cells, so-called myocytes. The orientation of these myocytes throughout
the muscle results in a unique profile of contraction allowing the pumping process to be possi-
ble. Knowledge about arrangement and physiological properties of the myocyte lead to a better
understanding of diseases and pathologies of the heart.
The heart consists of cavities, which enclose an incompressible fluid, blood. Due to the contraction,
a pressure change inside the cavities arises. This pressure change also results from opened and
closed valves, which regulate the flow of blood. Furthermore, the blood dynamics play a role in the
mechanical modeling of the heart.
In this work myocardial structure as well as lamination and orientation of myocytes were consid-
ered as anatomical model. Electrophysiology and excitation propagation were applied to achieve
a temporal and spatial excitation pattern, which represents experimental results. The contraction
modeling reproduces myocardial properties and results in a deformation of the geometry. Blood
pressure inside the cavity was modeled depending on contraction phases and parameters were used
to describe the opening and closing of valves. Fluid dynamics was not applied in this work, however
the pressure due to blood dynamics was considered during the ejection phase.

1.1 Objectives of the Thesis

The objectives of this thesis lay in the creation, implementation, and application of an elasto-
mechanical model to describe biologically active contracting muscle tissue of the heart. An investi-
gation of anatomy and physiology has been conducted to understand the basic biological processes
leading to a heart beat. Models of electrophysiology, excitation propagation and force development
were chosen to reproduce biologically behavior. These models were coupled and applied to geomet-
rical models representing muscular tissue. The resulting temporal and spatial force distributions
were input to the created elasto-mechanical model.
Various approaches can be found in the literature for mechanical modeling. Anisotropy, non-
linearity, and isovolumic behavior are the main issues to be addressed, when modeling muscular
tissue. Only a few models meet all of these requirements and are either computationally expensive
or allow only to model muscles as macroscopic patches.
In this work a spring-mass system, based upon the proposals of Bourguignon et al. [3], was created
discretizing a geometrical model in regular cubic elements. Various methods were used to adapt the
model to anisotropy, non-linearity and isovolumic behavior with a major focus on computational
efficiency. Furthermore, intraventricular pressure was implemented yielding realistic boundary con-
ditions found in the heart.
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Simulations with varying geometrical models are presented. Pathological tissue behavior with and
without pressure load were examined. Deformation of a ventricular model created from measured
data were compared with a 4D MRI sequence of a patient.

1.2 Organization of the Thesis

The thesis consists of four parts. In the first part the anatomy and physiology of the heart and cor-
responding modeling techniques are described. In chapter 2 the macroscopic anatomical structures
of the heart are introduced and an explanation of structures e. g. cavities, valves, vessels and the
conduction system is given. The anatomy of the heart wall as the main tension generating element
of the cavity is presented down to the cellular level. A brief introduction with respect to imaging
techniques used to acquire data for modeling anatomical structures including basic preprocessing
steps prior to model generation is given. Furthermore, some analytical ventricle models are pre-
sented. In chapter 3 the macroscopic and microscopic functionality of structural components of the
heart and their interaction resulting in a heart beat are explained. The cardiac cycle (contraction
and relaxation of the heart) and the resulting intraventricular pressure are presented, whose model-
ing is subject of this work. A brief introduction on electrical activity, its initiation and propagation
throughout the hearts tissue as initiation of contraction is presented. The sliding filament theory
as mechanism of microscopic mechanical contraction is discussed. The process of modeling electro-
physiology, excitation propagation and force development is explained. For each step, one model
is described, which was applied in this thesis. Furthermore, models of intraventricular pressure are
introduced representing boundary conditions for mechanical modeling.
In the second part a brief overview of mechanical modeling techniques is given. In chapter 4 different
models using physical and non physical principles are presented. Mechanical models applied for
tissue and muscle simulation are outlined.
In the third part the hybrid deformation model created and the methodology of simulation is pre-
sented. In chapter 5 the hybrid deformation model, which is based on a spring-mass system in con-
junction with continuum mechanical methods is described. The applied springs, their setup, model
creation and continuum mechanical enhancements are presented and explained. Furthermore, the
applied numerical method for mechanical deformation is described and numerical problems are
addressed. In chapter 6 the methodology used for deformation simulation of a ventricular model is
explained. Details of model creation, implementation of contraction initiation forces, and boundary
conditions e. g. intraventricular pressure are given.
In the fourth part the application of the hybrid deformation model for various setups is addressed,
chronologically. In chapter 7 deformation simulations of varying geometrical models, starting from
basic study models, via ventricular models, and biventricular models , and a comparison with a
real patient model created from MRI data are presented. In chapter 8 a discussion and suggestions
for future work in the field of mechanical modeling of the heart are provided.





2

Anatomy of the Heart

For modeling the contraction of the heart a profound knowledge about the anatomy is necessary.
The location and connection to surrounding tissue and structural components lead to boundary
conditions relevant for modeling realistic contraction. Furthermore, the muscles structural proper-
ties as e. g. fiber orientation must be examined.
The following sections give an introduction into the anatomy of the heart, describing relevant
structures for electrophysiological, mechano-electrical and contraction modeling down to the cellu-
lar level. Analytical ventricular models are presented derived from anatomical models.

2.1 Introduction

The heart is one of the vital organs in the human body. It is responsible for providing blood and
hence oxygen and nutrients to the body and itself. This hollow muscular organ acts as a rhythmic
working pump causing the blood to circulate through arteries and veins. Its weight ranges from
230 g to 350 g and it is approximately the size of a persons fist. The heart lies underneath the
sternum (breastbone) and is surrounded by the lungs. The orientation of its apex is tilted to the
left (fig. 2.1).
The heart consists of two atria, two ventricles, vessels and valves. The vessels split into two cate-
gories, one feeding blood to the cavities of the heart, the so called veins and the other transporting
blood away from the heart, the so called arteries. The atria collect blood coming from the body
and the lung circuit and are separated by the atrial septum to prevent blood passing between
them. The valves control the flow of blood from the atria to the ventricles and furthermore restrict
the backward flow from arteries into the ventricles. The ventricles are separated by the ventricular
septum and pump the blood into the lung and body circuit. The anatomical proportion of the
cavities closely resemble their functionality.



6 Chapter 2. Anatomy of the Heart

Figure 2.1. Historical drawing of anterior view of heart in thoracal position with lungs, cavities and
vessels (fig. from [4]).

2.2 Macroscopic Structures

2.2.1 Cavity Structure

The heart lies inside a sac, the so called pericardium, which loosely connects to the epicardium
(outer surface) of the atria and ventricles. The mid-wall tissue is called atrial or ventricular my-
ocardium. The atria myocardium is a thin wall of up to 2 mm, whereas the ventricles have a thicker
wall diameter. The left ventricle wall (diameter approx. 20 mm) is approximately three times the
mass and twice the thickness of the right ventricle. Thus, the myocardium diameter resembles the
force to be generated by the cavities. The endocardium (inside surface) of atria and ventricles
consist of connective tissue.
The atrioventricular valves separate the atrial myocardium completely from the ventricles by the
cardiac skeleton. The cardiac skeleton is a fibrous network formed by the rings of the four valves
and connective tissue (fig. 2.2). It resembles an electrical insulation between atrial and ventric-
ular myocardium. The only connective tissue penetrating the skeleton in a healthy heart is the
atrioventricular bundle. The valve plane is also called the base of the ventricles.
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Figure 2.2. Schematic diagram of the fibrous skeleton of the heart, viewed from above with the atria
removed (fig. from [5]).

2.2.2 Anatomical Trace of Blood-flow

The flow of blood through the anatomical landmarks of the heart is described below (fig. 2.3).
Deoxygenated blood flows from the body circuit via the inferior and superior vena cava into the
right atrium. The blood passes the tricuspid valve on its way to the right ventricle. The right
ventricle pumps the blood via the pulmonary valve into the pulmonary artery, which commences
the lung circuit. The blood is oxygenated in the lungs and returns via the pulmonary veins into
the left atrium. The blood is then pumped into the left ventricle via the bicuspid valve. The left
ventricle ejects the blood into the aorta and hence into the body circuit passing the aortic valve.

2.2.3 Conduction System

The conduction system consists of specialized tissues allowing for temporal and spatial differen-
tiated activation of muscle cells and hence contraction of the myocardium. Involved specialized
tissue structures are: The sinus atrial node, located between the vena cava superior and the right
atrium; right atrial conduction pathway structures (e. g. crista terminalis, pectinate muscles and
the Bachmann bundle); the atrioventricular (AV) node, which lays above the cardiac skeleton; the
AV bundle or bundle of His, which penetrates the cardiac skeleton and splits into the Tawara bundle
branches; the Purkinje fibers, which pursue the branches and reach further into the subendocardial
myocardium. (fig. 2.4)
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Figure 2.3. Schematic of cross-section of the heart with cavities, valves, and vessels. White arrows indicate
normal blood flow (fig. from [6]).

2.3 Microscopic Structure

2.3.1 Anatomy of Myocardial Wall

The ventricular myocardium resides between endo- and epicardium and is the primary structural
component of the wall. It consists of muscle bundles organized in overlapping sheets (fig. 2.5).
The sheets are oriented into a spiral when followed from base to apex of the heart. The muscle
fiber orientation in the ventricles is oriented and laminated [8, 9, 10, 11, 12]. In the human left
ventricular myocardium the muscle fiber orientation varies from endo-(55◦) to epicardium(−75◦).
The change of angle from endo- to epicardium is nearly linear, with 0◦ in the mid-myocardium.
A similar structure can be found in canine myocardium (fig. 2.6). Apart from containing muscle
fibers, the ventricular myocardium consists of fibroblasts, nerve cells, connective tissue, etc., which
build up the muscular structure. The muscle bundles are composed of myocytes enclosed by a
membrane.
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Figure 2.4. Outline of basic components of the conduction system. Black arrows show the way of excitation
conduction (fig. from [7]).

2.3.2 Myocytes

2.3.2.1 Overview

Myocytes mainly fulfill either of two different functions depending on their structure and situation
in the heart. Assigned to the working myocardium, they are responsible for development of tension
and contraction. Assigned to the conduction system, they fulfill the task of fast excitation prop-
agation. These cells vary in shape and cellular structure from those myocytes generating tension.
The shape of a tension generating myocyte can be described as a cylinder. However, branching
occurs (fig. 2.7). The size of a myocyte ranges from 50 to 120 µm with a diameter of approximately
5 to 25 µm.

2.3.2.2 Myocyte Ultra-structure

The myocyte is a specialized cell, whose structural layout will be described below. Details are given
for the primary cell components.
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Figure 2.5. Schematic of ventricular wall with sheet and fiber orientation (fig. from [13]).

Figure 2.6. Reconstruction of fiber orientation of a canine left ventricular wall, prepared from a series of
microphotographs, showing changing fiber angels at different depths (fig. from [5]).

Figure 2.7. Microscopic picture of myocytes. The branching of myocytes is distinguishable (fig. from [13]).

The myofibrils examined with a light microscope reveal light and dark structures (fig. 2.8). These
structures are differentiated into I-band, A-band, H-band, Z-disc, and M-line (fig. 2.9). The struc-
tures enclosed by two Z-discs are called sarcomere (fig. 2.10(a)). The myocyte is surrounded by the
sarcolemma (cell membrane), which acts as a barrier between intra- and extracellular space.
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Figure 2.8. Longitudinal section of a myofibril of cat myocardium, showing the characteristic cross-
striations (fig. from [5]).

Figure 2.9. Schematic structure of a skeletal myocyte. Structure differs to myocardial myocyte by the
triad, where only a diad is present. Cell organelles and band structure is illustrated (fig. from [7]).

The myofibril can be differentiated into the myofilaments, which is the term for the thin filament
consisting of actin chains and for the thick filament consisting of myosin molecules (fig. 2.10(b)).
These are the force generating structures.
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(a) (b)

Figure 2.10. Schematic diagram of myofibril and myofibril ultra structure. (a) myofibril with band struc-
ture. (b) myofibril ultra structure with actin chains and myosin molecules (fig. adapted from [14]).

Sarcolemma

The myocytes consist of a semi permeable membrane the sarcolemma. It encloses the nucleus,
the mitochondria, the myofibrils, the sarcoplasmic reticulum and the cytoskeleton. Furthermore,
it is filled with sarcoplasm, which contains water, lipids, carbon-hydrates, salts and proteins. The
sarcolemma consists of a phospholipid bilayer with embedded proteins on both, inside and outside
surface, some of which tunnel the sarcolemma (fig. 2.11). Surface proteins are mainly responsible
e. g. for signaling and cell bonding. The tunneling proteins serve as ion channels, exchangers and
pumps. Specialized structures of the sarcolemma are the transversal tubuli, intercalated discs, and
gap-junctions.

Transversal tubuli A specialization of the sacrolemma are the transversal tubuli or “T sys-
tem” (fig. 2.9). They enter into the myocyte at the proximity of Z-discs and open freely to ex-
tracellular fluid. The “T system” wraps around the myofibrils and ends close to the sarcoplasmic
reticulum, where they play a significant role for calcium handling.

Intercalated disc. The intercalated discs represent the part of the sarcolemma where a coupling
of myocytes is achieved (fig. 2.12). These special regions enclose intercellular channels, so-called
gap junctions, which are important for intercellular signaling. Desmosomes link the myocytes and
stabilize their relative position and maintain a three dimensional structure of the tissue. The
structure of the intercalated disc allows a direct electrical connection and a strong bond between
two myocytes.
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Figure 2.11. Schematic of a cross-section of a cell membrane consisting of a phospholipid layer. Cholesterol
forms part of the membrane, proteins are embedded in the lipid bilayer, and the carbohydrate chains of
glycoproteins and glycolipids extend into the extracellular space, where they act as receptors. Integral
proteins form channels to the outside of the cell and also participate in transporting large molecules across
the membrane (fig. from [15]).

(a) (b)

Figure 2.12. Schematic (a) and microscopy (b) of intercalated disc, with desmosomes and gap junction (fig.
from [16] and [17]).
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Gap Junctions The gap junctions are a means to connect intercellular space of myocytes. They
are mainly located at the intercalated discs (fig. 2.12(a)). The gap junction has a cylindrical shape
with a length of approx. 2− 12 nm and a diameter of 1.5− 2.0 nm. It allows the passage of
nutrients, metabolites and ions etc. from one cell to another. This allows the electrical intercellular
conductivity.

Mitochondria

The shape of a mitochondrion is formed like a rod, with a length of 0.3− 1.7 µm and a diameter
of 0.2− 1 µm. Mitochondria are the generator of energy of a cell, converting nutrients and oxygen
into adenosine triphosphate (ATP). ATP is the chemical energy form a cell can use to power its
metabolic activities.

Myofibril

The myofibril is the contractile apparatus which consists of bundles of myofilaments. When viewed
through a light microscope a characteristic repeating pattern of dark and light regions can be
examined. The distinction of I, A, and H-band as well as Z-disc and M-line was based on the
microscopic pattern (fig. 2.8). The sarcomere is defined as the region between two Z-discs. The Z
discs are dense protein discs and are the anchoring area for actin filaments. The Z stands for the
German word “zwischen” meaning “between”.
The actin or thin filaments are build of actin, tropomyosin (Tm) and troponin (Tn) (fig. 2.13(a),(b)).
The myosin or thick filament consists of mainly myosin II molecules, which can be differentiated
into head, hinge and tail region (fig. 2.13(c),(d)) . The heads of myosin II molecule embeds an ATP
and an actin binding site.
Myosin and actin are arranged in a parallel array. The examination with polarized light microscopy
reveals optical properties of isotropy for actin (I-band) and anisotropy for myosin (A-band). The
I- and A-bands overlap where actin and myosin filaments bind together. The unbound part of
the A-band describes the H-band. The name of the H-bands resembles the German word “hell”
meaning “light” as can be examined with light microscopy. During contraction the actin filament
is pulled along the myosin toward the middle of the sarcomere. The I- and H-band is reduced as
the filaments slide past each other. When the muscle is fully contracted the H-Band is no longer
visible. Nevertheless neither actin nor myosin filaments are shortened in size. This is called the
Sliding Filament theory (section 3.3.2).

Sarcoplasmic reticulum

The sarcoplasmic reticulum (SR) is a specialized form of the endoplasmic reticulum. It is completely
separated from the myocytes intracellular space by its own membrane and acts as a calcium reser-
voir. The membrane encloses various ionic channels. Predominantly calcium release channels and
calcium pumps are present. The SR can be differentiated into a network of intracellular tubules
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Figure 2.13. Schematic of actin and myosin filaments. The figure in the center shows a schematic of a
myofibril with sarcomeres, H-zone, M zone and Z line. The subfigures show (a) the thin filament, which
is connected by connectin. (b) a magnification of the thin filament with actin, troponin, tropomyosin and
active binding site. Furthermore, (c) shows the thick filament and (d) a myosin molecule with myosin head,
myosin tail, and the hinge (fig. from [17]).

(sarcotubular network) and into the terminal (subsarcolemmal) cisternae. The longitudinal tubes
form a net between the Z-discs and reside in close proximity to the myofibrils. The terminal cis-
ternae are located at the t-tubuli but do not fuse or establish intimate contact. The composite
structure formed by terminal cisternae and the “T system” is called dyad for a myocardial cell and
a triad for skeletal muscle. The narrow space remaining between the membranes is called the dyadic
space. Ryanodine receptors enclosed in the terminal cisternae and the specialized Ca2+ channel
(dihydropyridine receptor) of the “T system” bridge the dyadic space. This bridge constitutes the
excitation-contraction coupling by releasing calcium into the myoplasm as result of an arriving
action potential.

Cytoskeleton

Beside the contractile apparatus the myocyte consists of a structure called cytoskeleton. It is needed
for structural integrity of the sarcomere and provides mechanical linkage to convey developed
tension of the sarcomere to the surrounding structures and finally to the end of the muscle. The
main proteins are nebulin and titin. Titin is a protein, which is associated with myosin. It is
connected at the Z-discs and follows myosin towards the M-line. Titin controls the assembly of



muscle thick filaments, plays a role in muscle elasticity and generates passive tension on muscle
strain.
Nebulin accompanies actin filaments and is also connected to the Z-disc. It is understood to form
a molecular ruler to control the length of the thin filament, since the length of expressed nebulin
corresponds to the length of the sarcomere.
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2.4 Medical Image Acquisition

2.4.1 Overview

The macroscopic model of the anatomy of the heart is created from 3D/4D image data taken
in a clinical environment. The images are filtered, segmented and classified into tissue classes
describing different tissue types and properties. Thus, a suitable model for simulation is gained.
Several medical imageing modalities exist, which can be used to capture in-vivo images of the
heart. Imaging systems in medical environments are ultrasonography (US), magnetic resonance
tomography (MRT), and computed tomography (CT). Furthermore, all imaging techniques can
also be used for in vitro investigations. An example for an in vitro imaging technique is cryosection.

2.4.2 Imaging Techniques

Ultrasonography

The ultrasonography relies on the fact, that acoustic waves from a transmitter are reflected or
scattered depending on acoustic impedance of traversed tissue. The time a wave travels from a
transducer into the material and back is measured and utilized to compute the penetration depth.
The strength of the echo depends on the difference between acoustic impedances of the structures.
When the transducer is mechanically or electrically swiveled, the received data can be used to
reconstruct 2D or even 3D images [18] (fig. 2.14(a)). The advantage of this method is its ability to
produce 2D images in real time and its small size and hence mobility.

(a) (b) (c)

Figure 2.14. Images of the heart acquired by medical imaging techniques. (a) Ultrasonographic image of
pig heart with EnSite catheter. Courtesy of Matthias Reumann, Karlsruhe. (b) Computed tomography of
human heart with ECG-Based cardiac CT imaging (fig. from [19]). (c) Magnetic resonance tomography
image of a human heart. Courtesy of Bernd Jung, Freiburg
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Magnetic resonance tomography

The MRT is based on the relaxation properties of excited hydrogen nuclei of organic molecules. The
object of interest is placed in a powerful uniform magnetic field B0 with equilibrium magnetization
M0. Inside the tissue, the spins of the atomic nuclei align with an offset angle from the static
field in parallel and anti-parallel direction. The percentage of parallel oriented nuclei outbalances
those of anti-parallel direction [20]. In this configuration the spins are aligned in the longitudinal
magnetization Mz equal to M0. The tissue is then exposed to electromagnetic pulses (RF). As
a result all hydrogen nuclei temporary leave their equilibrium state and a saturation of the spin
system is possible resulting in Mz = 0. The spin lattice relaxation time (T1) describes the time
constant how the spins magnetization Mz returns to the equilibrium value.

Mz = M0(1− e
−t
T1 ) (2.1)

T1 is defined as the time required for the Z magnetization to change by the factor e. A time
constant T2 can be defined for the spin-spin relaxation, which describes time needed to reduce the
transverse magnetization due to dephasing by a factor of e. A localization of a voxel (3D-pixel) of
the tissue is achieved by applying three orthogonal magnetic gradients.
In order to visualize tissue in a magnetic resonance image a contrast or difference in signal intensity
must exist between adjacent tissue. The signal intensity depends on T1, T2, and ρ (spin density)
which vary depending on tissue and pathology.
Further detail of MRT imaging technique is beyond the scope of this work and can be found in
various publications e. g. [18, 20, 21].

Computed tomography

The computed tomography (CT) principles rely on an X-ray source that rotates around the ob-
ject [18]. X-ray sensors are aligned at the opposite side of the circle. Progressively taken data
scans of the object are needed to reconstruct a 2D image. The data acquired represents the radio-
graphic intensity sensed by the detectors. Computers process this data to compute cross-sectional
estimations of radiographic density (fig. 2.14(b)).

Cryosection

The cryosection is an imaging technique, where the object or sample is destroyed after taking the
image. The sample is frozen in a block and a few micrometers are milled off. Then the slice is
photographed and digitized (fig. 2.15). The milling and photographing is repeated until the sample
is fully processed. This method was applied to acquire data for the Visible Human Project. It
provides data of cross-sectional slices of the human body of a man and a woman corps [22]. This
image data was processed at the Institute for Biomedical Engineering creating a 3D voxel data set
of human corps [23].
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Figure 2.15. Cryosection slice of Visible Human Male - thorax, including heart (with muscular left
ventricle), lungs, spinal column, major vessels, musculature (from thorax subset) (fig. from [24])

2.5 Modeling of Anatomy

Images taken in clinical environments have to be pre-processed prior to creating a virtual anatomical
model. The following sections describe briefly the pre-processional steps.

2.5.1 Image Processing

Depending on image quality further processing steps precede model creation [25]. A 3D anatomical
model can be obtained by sequentially stacking 2D images acquired from any discussed source. The
pre-processing of images starts with coordinate transformation, translation or scaling of images and
filtering 2D images depending on the desired application and raw data. To enhance data, image
filters can be applied e. g. to enhance borders, eliminate noise and artifacts. Furthermore, the
stacking of pictures for a 3D model needs to be examined to eliminate misalignment of images.
This is especially needed, when integrating e. g. CT and MTI images into a single model.

2.5.2 Segmentation

The next step in modeling is the segmentation of images. Starting out from a plane image, pixels
belonging to a broader structure e. g. muscle tissue or blood, are grouped together into regions
with common properties. A segmentation can also be done on 3D data sets represented e. g. by a
stack of 2D images.
Manual as well as semi-automatic segmentation is widely used. An example for semi-automatic
segmentation is the region growing algorithm [26] (fig. 2.16). For this method a seed point is set
inside an image, which defined a starting gray value and a position inside the image. The automatic
algorithm compares the surrounding pixels gray value and decides upon a threshold value (gray
value) whether to incorporate the pixel to the region or not. The result of this very simple algorithm
depends on the quality of the image data.
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(a) (b)

(c) (d)

Figure 2.16. Illustration of semi-automatic 3D region growing segmentation on thorax image. Exemplary
extraction of the human heart from a thoracal image by region growing. The red dot marks the seed point.
(a) original image, (b) threshold value 5, (c) threshold value 10, (d) threshold value 15. It becomes obvious,
that more sophisticated methods of semi-automatic segmentation or better pre-processing must be applied
for extracting anatomical objects.

2.5.3 Classification

The segmented 3D data can be processed further by assigning specific properties to the regions
which resulted from the segmentation process [26]. A classification can be done by e. g. color,
texture or geometry (fig. 2.17). Physical properties can then be assigned to classified objects like
elastic mmodules or electrical impedance.
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Figure 2.17. The heart with cavities, vessels and coronary arteries reconstructed from the Visible Man
Dataset. The colors describe different classified tissues of the heart.

2.5.4 Fiber Orientation

The fiber orientation cannot yet be extracted directly from images acquired by medical imaging
systems. However the diffusion tensor imaging (DTI) technique (a special MRT technique) provides
means to examine fibrous structures such as e. g. brain, heart [27, 28, 29]. DTI is used to acquire
the anisotropic diffusion properties of water in a tissue at a spatial position within the probe. The
mapping of fiber orientation is based on the presumption that diffusion of water along the cells is
larger than transversal to it. The fibers can be reconstructed by examining the sum of the linear
and planar tensor anisotropies of the diffusion tensor and then trace the fibers along the principal
eigenvector direction [30, 27]. Zhukov et al. [27] extracted the fiber orientation of an extra corporal
canine heart, which rested in a contracted state (fig. 2.18).
Furthermore, manual assignment of fiber orientation of myocytes can be performed using e. g. point-
wise definition of restrictions with manual and rule-based methods, interpolation of orientation and
lamination by iterative averaging, assignment and validation by human experts [31].
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(a)

(b)

Figure 2.18. Reconstructed fiber orientation of a canine heart from MRI data (fig. from [27]).
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2.6 Analytical Model

2.6.1 Model of the Left Ventricle

An analytical description of a left ventricle is achieved by cropping of two con-focal truncated
ellipsoids (fig. 2.19). The length d of the ellipsoid’s focus is defined as d =

√
a2 − b2 with the

ellipsoid’s minor radius b and major radius a [32]. The truncation factor fb specifies the truncation
of an ellipsoid. It is defined by fb = lbe

lea
with the basal to equator plane distance lbe and from

equator plane to apex lea. A truncation factor of 0.5 is commonly chosen. Sachse applied this
analytical approach to create a model of the left ventricle in a voxel based data environment [31].
Furthermore, a corresponding data set was provided, where fiber orientation and lamination for
each voxel are stored. The direction of fibers were adapted from anatomical studies [10, 12, 33, 34,
35, 36], however only pursuing a macroscopic averaged perspective (fig. 2.20).

Figure 2.19. Schematic of truncated ellipsoid representation of ventricular geometry, showing major left
ventricular radius a, minor radius b focal length d, and spherical coordinates (λ, µ, Θ) (fig. adapted from
[32]).
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(a)

(b)

Figure 2.20. Analytical model of a ventricle represented by truncated half ellipsoids including rule based
fiber orientation. (a) lateral cut of truncated half ellipsoid with fiber orientation. (b) close up of fiber
orientation, displays fiber twist from epi- to endocardium.
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2.6.2 Model of an Analytical Biventricle by Sachse

The biventricular model of Sachse was created by attaching a part of smaller half ellipsoids to the
side of the single ventricular model to represent the right ventricle (fig. 2.21).

(a)

(b)

Figure 2.21. Analytical biventricular model of Sachse. (a) lateral cut of biventricular model. (b) view
from apex to valve plane.
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2.6.3 Biventricular Model of a Dog Heart by Nielsen

The ventricular anatomy model bases on a regular grid of rectangular Cartesian vector fields rep-
resenting local myofiber orientations. The vectors were interpolated at a resolution of 0.25×0.25×
0.25 mm from finite elements using the Continuity software to detailed anatomic measurements
from dogs left and right ventricle [37]. The data set was created from finite element models [38, 39]
and is publicly available from [37]. 24 bicubic elements were applied to fit the model to the geometry
of a dog heart.

(a) (b)

(c) (d)

Figure 2.22. Biventricular model of a dog heart by Nielsen. The ventricular geometry consists of a cubic
grid structure. In addition, fiber orientation is provided. 24 bicubic elements were applied to fit the model
to the geometry of a dog heart.
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Physiology of the Heart

The physiological functionality of the described anatomy of the heart is relevant for modeling the
contraction of the heart. The initiation of contraction, starting out from an electrical stimulus, the
propagation along specialized cell structures, and the contraction itself must be examined in the
biological field prior to creating mathematical models. In addition the effect of contraction of the
heart on the blood pressure is physiologically relevant and has to be incorporated in the modeling
process.
The following sections provide an introduction into the physiological relevance of the basic anatom-
ical structures, to explain the electrical stimulation and propagation on the heart, and to show the
contraction cycle of the heart. A microscopic view is given onto the cellular electrophysiology, from
stimulus to contraction. Furthermore, the functional modeling of the heart is described by mathe-
matical models of electrophysiology, excitation propagation, force development, and blood pressure
characteristics.

3.1 Introduction

The heart is the organ which pumps blood through the body. It functions as a rhythmic working
pump, whose frequency alters, depending on innervation by the nervous system, on hormones, and
the automacy of the sinoatrial node. It supplies oxygen and nutrients to the body via the blood.
The pumping function of the heart relies on the rhythmic alternation of atony (diastole) and
contraction (systole) of the ventricles. During the diastole the ventricles fill with blood, whereas
during systole the blood is ejected into the aorta and pulmonary artery. The back flow of blood
is rejected by the pulmonary and aortic valves. Two atria collect the blood from the veins before
passing into the ventricles. The systole of the atria occur prior to the ventricle systoles and support
the filling of the ventricles.
The varying activity of the body and hence the demand of the circulatory system forces the heart
to be extremely flexible. The cardiac output of an human adult ranges from 6.5 l/min during
rest up to 20 l/min and more during strong muscular activity. The optimal adaptation can only
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be reached, when all functional parts of the heart interact properly e. g. excitation propagation,
contractility of the myocardium, valve activity and blood circulation.

3.1.1 Structural and Functional Differentiation

The heart and connecting organs can be differentiated in two ways. One is the differentiation in
body and lung circuit, where the body circuit can be furthermore subdivided into upper and lower
body circuit (fig. 3.1) and the other in high and low pressure system.

Body circuit

The body circuit starts at the left ventricle, which pumps oxygenated blood into the aorta. Its func-
tion is to transport oxygen and nutrients to the body organs and tissues and return deoxygenated
blood back to the heart. From the aorta, the blood follows the artery pathways: from arteries to
arterioles to capillaries, where the main exchange of nutrients and oxygen with surrounding tissue
takes place. The blood follows the capillaries into the venules, veins into vena cava superior coming
from the lower part of the body and vena cava inferior coming from the upper part of the body
and finally flow into the right atrium.

Lung circuit

The lung circuit commences at the right ventricle, which pumps the blood into the pulmonal arteries
towards the lung. The lung is responsible for oxygenating blood and exhalation of carbon dioxide.
The oxygenated blood then follows the pulmonal vein to the left atrium, where it is collected and
passed through the mitral valve into the left ventricle and hence, the body circuit.
Furthermore, a differentiation into high and low pressure system can be performed.

Low pressure system

The low pressure system includes all body veins, the right atrium, the right ventricle, the lung
vessels, the left atrium and during diastole also the left ventricle. This is due to the fact that in
these parts of the system the mid blood pressure does not exceed 20 mmHg [41].

High pressure system

The high pressure system incorporates the left ventricle during systole as well as all arterial vessels
up to the arterioles. Its mid blood pressure ranges between 60 and 100 mmHg.
The anatomical structure of left and right ventricle resembles the force generating needs accounted
by the pressure difference (section 2.2.1).
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Figure 3.1. Schematic of the heart showing the flow of blood into body and lung circuit (fig. adapted
from [40]).
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Figure 3.2. Schematic of aortal expansion due to ejection volume (fig. from [42]). During ventricular
systole, the stroke volume ejected by the ventricle results in some forward capillary flow, but most of the
ejected volume is stored in the elastic arteries. During ventricular diastole, the elastic recoil of the arterial
walls maintains capillary flow throughout the remainder of the cardiac cycle.

Figure 3.3. Heart lung preparation of Starling (fig. adapted from [43]).
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3.2 Macroscopic View of Heart Functions

3.2.1 Valves and Vessels

The valves serve as a regulator for unidirectional blood flow in the cardiac system. The atrioven-
tricular valves (mitral and tricuspid valve) prohibit the backflow of blood from the ventricles into
the atria during systole. During diastole the pulmonary and aortic valve prevent the backflow of
blood in the ventricles.
The vessels carry the blood to the peripheral tissues. Vessels are distinguished between arteries
transporting blood from the heart to tissues and organs and veins transporting blood back to
the heart. High flow rates, irregular surfaces, and sudden changes in vessel diameter disturb the
smooth flow of blood, creating turbulences. The vessels show a distinct three layer structure, which
include e. g. elastic fibers, smooth muscle, and collagen fibers [17]. Therefore, the vessels show an
elastic and contractile behavior. The artery vessels feature a thicker muscular layer compared to
the veins. The aorta as the connection between the heart and the vessel system possesses a special
functionality:
The rhythmic ejection of blood into the aorta is transformed into a pulsating flow. The ejection
volume enlarges the aortal vessel and stores temporarily a part of the ejected volume. The valves
prevent the blood from flowing back into the ventricle. At the same time the aortal vessels slightly
contract towards their regular size and push the blood further into the arterial system (fig. 3.2).
This blood storage in the aorta, the delayed contraction and release as well as the resistance of
the peripheral system result in a regular blood flow. This functionality is named Windkessel in
conjunction with the technical term for a Windkessel, which buffers the pressure stroke of a pump.
Following a heart-lung preparation of Starling [44, 45], the ventricular volume and the aortal
pressure can be measured. The body circuit is replaced by a mechanical system. The main part is
accomplished by the Windkessel, which simulates the elasticity of vessels. The windkessel absorbs
the ejected volume. A modal resistance element replaces the total peripheral resistance. This results
in a slow blood current. In the Starling preparation the lung circuit remains intact (fig. 3.3).

3.2.2 Excitation

The contraction of a myocyte is initiated by an external electrical stimulus. This excitation stimulus
is generated by specialized myocytes. The myocardium consists of different types of myocytes. The
main part of myocytes can be designated to the working myocardium, whose main functionality
lies in contraction and tension development. However, all myocytes are capable of propagating elec-
trical stimuli (section 2.3.2.2). Specialized myocytes are responsible for the generation of electrical
stimuli as well as fast electrical excitation propagation. These specialized myocytes are assigned
to the conduction system (section 2.2.3). The conduction system is responsible for initializing and
conduction of an electrical stimulus throughout the heart. This results in a temporal and spatial
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differentiated activation of myocyte contraction leading to the characteristic contraction of the
heart.

3.2.2.1 Excitation Initialization and Conduction

The components of the conduction system are explained in more detail: The initial electrical stimu-
lus in a normal heart is generated inside the sinoatrial node (SAN), the so called primary pacemaker
cells. The cells have the ability to automatically depolarize and generate an action potential, which
then propagates along the crista terminalis, pectinate muscles and to surrounding right atrial my-
ocytes. Moreover, the Bachmann bundle transmits the activation to the left atria. The electrical
stimulus reaches the atrioventricular node, whose slow conductive tissue delays the excitation to
the ventricles to account for temporal synchronization of contraction. In a healthy heart, this tissue
structure is the only electrical connection between atria and ventricles, due to the insulation of the
cardiac skeleton. The pursuing structures are the atrioventricular bundle or bundle of His followed
by the Tawara bundle, which splits into three branches. Two of the tree branches conduct the
excitation to the left, the third to the right ventricle. They split into a subendocardial network of
Purkinje fibers, which connects to myocytes and activates muscle contraction. The ventricles are
excited from endo- to epicardium and apex to base.
Furthermore, the atrioventricular node acts as the secondary pacemaker. It also has the ability
to self depolarize, but with a lower frequency than the sinoatrial node. In the normal conduction
rhythm the excitation from the sinus node overrides the secondary pacemaker. However, this back
up system is vitally important should the propagation of the SAN not exceed the atria. The
pumping function of the heart would still be triggered.

Figure 3.4. The heart with specialized excitation propagation tissues and the corresponding action po-
tential curves in their temporal progression are displayed (fig. adapted from [46]).
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The action potential curve for each tissue type following the conduction system to the myocardium
varies in length and shape (fig. 3.4). This is due to the cell structure, i.e. amount of channels, pumps,
exchangers. The variation of conduction velocities results in a temporal and spatial excitation
pattern and hence, the most effective spatial and temporal contraction of myocytes for an optimal
pumping functionality.

3.2.3 Contraction

The excited myocytes contract upon excitation. Due to the spatial and temporal activation, the
properties of blood, valve functionality, and pressure gradient the typical pumping functionality of
the myocardium is achieved.
For a cardiac cycle the walls pass through a series of changes in tension and length. The mechanical
state changes and can be best described by a skeletal muscle and a load. Four phases can be
differentiated (fig. 3.5):
At rest the muscle is attached to a load, which is supported by a surface. During phase one the
muscle builds up tension but not enough to lift the load of the surface, hence the muscle does
not shorten, substantially. This is called the isometric contraction (A). The second phase, the so
called isotonic contraction, starts, when the developed tension is big enough to lift the load from
the surface. A substantial shortening of the muscle takes place (B).
During isotonic relaxation, the third phase, the length of the muscle increases, still bearing the
load (C).
After the load is returned to the surface the muscle dissipates the tension without considerable
further lengthening. This is called isometric relaxation (D).
These phases can be adopted to the heart walls muscle tissue, where the load resembles the blood
volume and intraventricular pressure.

Figure 3.5. Phases of skeletal muscle contraction (fig. from [5]).
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Figure 3.6. Schematic of cardiac cycle (fig. adapted from [47]).
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3.2.4 Cardiac Cycle

The opening and closing of valves is dominated by the pressure change in the adjacent cavities
and vessels. Therefore, the systole and diastole may be further subdivided into contraction and
relaxation phases. These phases can be differentiated according to pressure and volume change.
The phases are:

• during systole: isovolumic and isotonic contraction
• during diastole: isometric and isovolumic relaxation.

These phases are marked by the opening and closing of valves (fig. 3.6) and are furthermore
explained for the left ventricle.

Isovolumic contraction

Starting with the development of tension in the systole the rising of intraventricular pressure leads
to a closure of the mitral valve. At this time the aortic valve is still closed (Fig. 3.6, I). The ventricle
performs an isometric contraction surrounding the incompressible fluid blood and adapts towards a
spherical shape. The spherical geometry is adapted since a sphere has a smaller surface surrounding
a constant volume. Furthermore, the valve plane of the heart consisting of cytoskeleton and valves
is pulled towards the apex.
This isovolumic contraction results in a steep pressure increase without volume change. During a
regular heart cycle this phase takes approx. 60 ms.

Isotonic contraction

The aortic valve opens as soon as the intraventricular pressure rises above the aortal diastolic
pressure and blood is ejected into the arteries (Fig. 3.6, IIa). The intraventricular pressure rises
until it reaches a peak and decreases with the end of the systolic phase (Fig. 3.6, IIb). From the
blood volume of approx. 140 ml for a normal heart beat only 90 ml are ejected, which is the so
called stroke volume. A blood volume of 50 ml remains in the ventricle as end-systolic volume. The
fraction of stroke volume to filling volume (end-diastolic) is called ejection fraction, here 0.64.
The closure of the aortic valve marks the end of the systole. However, compared to the pressure
curve it is slightly delayed. This is due to the kinetic energy of the blood flowing against the
pressure gradient inside the aortic system for a short period of time.

Isometric relaxation

The isometric relaxation commences after the end of the ejection, where the aortic valve closes
(Fig. 3.6, III). The cavity relaxes to its regular shape and the pressure drops. As soon as the
intraventricular pressure drops below the atrial pressure, the mitral valve opens and the filling
phase starts.
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Isotonic relaxation

During the passive filling phase a quick (Fig. 3.6, IVa) and a slow filling phase (Fig. 3.6, IVb) can
be differentiated. The blood from the atria generates the preload for the next contraction. During a
normal heart cycle, the filling of the ventricle is mostly complete, when the atria systole commences
(Fig. 3.6, IVc). The additional volume increase is only about 10%. During higher heart frequencies
however, the atrial fraction of the filling volume increases since the diastolic phase decreases more
than the systolic phase.
The outline of a pressure volume curve can also be detected in the right ventricle. However, the
lower resistance of the lung circuit results in a lower systolic pressure. In addition, the contraction
phase of the right ventricle is slightly delayed, its duration is shorter following in an earlier ejection
phase. The end of systole however is about 10− 30 ms delayed compared to the left ventricle.

3.2.5 Ventricular Pressure

The pressure characteristics of a ventricle depends on the contraction of the cavity and the opening
and closing of valves. For the left ventricle a pressure cycle conducts as follows:
At the start of the left ventricular systole all valves are closed. The ventricle is pre-loaded with
blood. The contraction commences and a steep rise in pressure can be measured (Fig. 3.6, I).

Figure 3.7. Work diagram of the left ventricle. A small preload of the resting heart determines the
point along the end-diastolic pressure-volume (PV). This is where the systole begins. After the mitral
valve closes the isovolumic contraction (A) proceeds until the ventricle encounters its afterload, the aortic
pressure. After the aortic valve opens pressure first rises and then drops during ejection (B). When the
systole ends, the ventricular pressure and volume come to lie on the end-systolic pressure-volume (PV)
relationship. After the aortic valve closure removes the load (aortic pressure) from the ventricle, relaxation
begins under isovolumic conditions (C) because blood can neither enter nor leave the ventricle. When the
left ventricular pressure drops below that in the left atrium, the mitral valve opens and the atrium empties
into the ventricle during the phase of filling (D). The cycle is completed when ventricular relaxation is
completed and ventricular pressure and volume again lie on the end-diastolic PV relationship (from [5]).
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When the intraventricular pressure reaches the aortal pressure at approx. 80 mmHg, the aortic
valve opens and the blood is ejected into the aorta (Fig. 3.6, II). The pressure keeps on rising
to a maximum of approx. 120 mmHg (person at rest). The following relaxation phases result in
a gradual reduction of pressure. As soon as the pressure drops below 80 mmHg the aortal valve
closes (Fig. 3.6, III). During the relaxation and filling phase the pressure returns to its end-diastolic
state with a pre-load of approx. 5− 10 mmHg.
In fig. 3.7 the pressure-volume relationship of the left ventricle during a cardiac cycle is shown.

3.3 Microscopic View of Heart Function

3.3.1 Excitation

The sinoatrial node initiates the heart beat by slowly depolarizing above a certain threshold, where
an action potential is created. This action potential is propagated from cell to cell and results in a
stereotype reaction of the cell, depending on its excitation history. Ions are interchanged with the
extracellular space, and the myocyte contracts. The microscopy description below represents the
basic cellular activities without going into detail, as it is beyond the scope of this work.

3.3.1.1 Resting Potential of a Cell

The membrane of the cell with its ion channels, exchangers, ion pumps and gap junctions presents
a barrier between intra- and extracellular space. In the resting state specific ion concentrations
form at the inside as well as at the outside of the membrane, due to a chemical and electrical
gradient as well as open ion channels and ion pumps.
The potential difference between intracellular Φi and extracellular Φe potential across the mem-
brane is called transmembrane voltage Vm with

Vm = Φi − Φe.

The equilibrium voltage over a membrane can be described using the Nernst equation for single
ions [48].

Vion =
R T

z F
ln

[Ion]e
[Ion]i

. (3.1)

It describes the membrane voltage Vion of the ion due to the intra [Ion]i and extracellular [Ion]e ion
concentration, the gas constant R, the absolute temperature T , the ion valence z and the Faraday’s
constant F = 9.65 · 104 As

mol . The Goldman-Hodgkin-Katz equation resembles an extension of the
Nernst equation and allows the consideration of several ions at the same time [49, 50].
The resting potential across the cell membrane forms due to concentration and permeability differ-
ences of intra- and extracellular space. The permeability P describes the ability of ions to diffuse
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through the membrane

P =
Dβ

x
.

with the diffusion coefficient D and the water-membrane partition coefficient β for the ion, and
the thickness of the membrane x.
The resting potential voltage of approx. −90 mV is almost identical with the Nernst voltage of
K+ [51]. This is due to the fact that K+ permeability of the membrane is relatively high during
rest state.
If the transmembrane voltage is disturbed by an electrical stimulus or a drain of ions an action
potential can be initiated.

3.3.1.2 Action Potential

In excitable cells a resting potential is established across the membrane. An arriving electrical
stimulus may change the permeability of the cell membrane and the transmembrane voltage varies.
If the transmembrane voltage exceeds a threshold an action potential is created (fig. 3.8). Once an
action potential is initiated it cannot be stopped (all or nothing principle) [53].
The start of the action potential is characterized by the avalanche-like opening of Na+ channels.
The positive ion current flowing into the cell creates an even higher depolarization, exceeding
0 mV towards positive values of approx. 30 mV . The depolarization is called upstroke and the
positive transmembrane voltage the overshoot. After approx. 3 ms the Na+ channels close [54]
and Ca2+ and early K+ channels open. However, the time constants of Ca2+ and K+ gates are
much slower compared to Na+ (fig. 3.8). Therefore, the action potential shows a long plateau. The
opening of delayed K+ channels and the outflow of K+ marks the beginning of the repolarization
phase.
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Figure 3.8. Schematic of action potential and underlying ionic currents. The left figure shows the basic
ionic currents in their temporal behavior as result of crossing of the transmembrane voltage threshold. The
left figure describes the resulting action potential that can be measured (fig. adapted from [52]).
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During the course of an action potential, the cell is not excitable until Vm drops below −50 mV [55].
This is due to the inactivation state of Na+ channels. During this absolute refractory period, no
avalanche-like opening of Na+ channels can occur and thus the cell is not subject to re-excitation.
The relative refractory phase marks the interval, where the cell is not yet fully repolarized but a
strong stimulus is able to create another action potential. However, action potentials started in the
relative refractory phase show a different shape due to the missing equilibrium of ion concentra-
tions (fig. 3.9).

(a)

(b)

Figure 3.9. The course of transmembrane voltage in normal ventricular myocardium for different frequen-
cies of excitation (a). The course of transmembrane voltage changes if stimulus is applied in the relative
refractory period (b) (fig. adapted from [56]).
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3.3.1.3 Propagation of Action Potential

The myocardium is constructed of bundles of myocytes. The myocytes share a common extracellu-
lar space and adjacent myocytes are coupled via gap junctions (section 2.3.2.2). The cell structure
influences the continuous and discontinuous propagation [57, 58]. An action potential happening
at a myocardial cell influences the extracellular ion concentrations and hence the electric field,
influencing neighboring cells. This causes an ion as well as an electrical gradient in the extracel-
lular space. Furthermore, ions flow directly through the connective gap junctions into neighboring
myocardial cells. This causes an action potential in the neighboring resting cell. Gap junctions link
the intracellular space of myocytes and allow for passive passage of ions, anions, and molecules.
The conductivity depends on the trans-junctional voltage [59, 60] and on intracellular H+ concen-
tration [61]. Furthermore, the density of gap junctions influences the electrical conductivity.
The intercellular coupling resembles a functional electrical syncytium. The effect of intercellular
currents dominates the characteristics of the spread of activation.

3.3.1.4 Excitation Contraction Coupling - Ca2+

The excitation contraction coupling describes the process of an electrical stimulus igniting a me-
chanical contraction. It is conducted by the delayed inward Ca2+ current during the plateau phase
of the action potential. The amount of calcium that enters the cell from the extracellular space
however is not sufficient to activate a myocardial contraction. It serves as trigger for the release of
much larger amounts of Ca2+ from stores in the sarcoplasmic reticulum(SR). This effect is called
the Ca2+ induced Ca2+ release. The t-tubules provide the close proximity of extracellular activator
Ca2+ to the SR. The intracellular Ca2+ released from the SR binds to the filament proteins and
enables the contraction of sarcomeres. Calcium is considered the most important ion involved in
the cardiac excitation contraction coupling [62].

3.3.2 Contraction

Sliding filament theory

Examination of sarcomeres during contraction showed that H-bands and I-bands get smaller,
whereas the A-band retains a constant width. As a result the Z-discs move closer together. The
contraction stops when the I-band vanishes. These observations led to the sliding filament theory
which constitutes, that the thin filaments slide towards the center of the sarcomere alongside the
thick filaments (fig. 3.10). The contraction cycle depends on the intracellular Ca2+ released by
the SR and the presence of adenosine triphosphate (ATP). It consists of five phases: active-site
exposure at the thin filaments, cross-bridge binding, pivoting of the myosin head, cross-bridge
detachment and myosin reactivation.
The details of molecular events during the contraction cycle are outlined in fig. (fig. 3.11) and
described below: During the resting state of a sarcomere thin and thick filaments are not attached.
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Figure 3.10. Schematic of sliding filament theory. The pivoting myosin heads pull the actin filaments
towards the M-line (fig. adapted from [14]).

Each cross-bridge (myosin head) is energized - charged with energy needed to power contraction. It
functions as an ATPase, which breaks down ATP into adenosine diphosphate (ADP) and phosphate
(P) and stores the released energy. Both breakdown products remain attached to the cross-bridge.
The contraction cycle commences with the following steps:

Active-site exposure: The intracellular Ca2+ ions bind to troponin. This causes a weakening of
the troponin complex and actin. Therefore, the troponin molecule changes position pulling the
tropomyosin molecule. This exposes the active-sites and allows for cross-bridge binding.

Cross-bridge attachment: As soon as the active-sites are exposed, the myosin cross-bridge binds to
it.

Pivoting: The cross-bridge points away from the M-line during resting state. The myosin head is
cocked, which required the energy from the prior splitting of ATP. After the cross-bridge attachment
the head pivots towards the M-line releasing ADP and P. This is called the power stroke.
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Figure 3.11. Schematic of sliding filament theory on molecular level. The sliding filament theory is
described in five steps. The resting myofibril is constructed of the thin filament consisting of an actin
chain and attached troponin and tropomyosin. The thick filament is build up from myosin molecules and
specialized myosin heads. The myosin heads are loaded and adenosine diphosphate (ADP) and phosphate
(P) are attached. In step 1 Ca2+ binds to troponin and exposes the active binding site for myosin. Step
2 displays the binding of myosin to the exposed binding sites the so called cross-bridge attachment. In
step 3 the energy stored in the myosin head is applied for the pivoting of the head and the actin chain
is pulled alongside. During this power stroke the ADP and P are released. Step 4 shows the cross-bridge
detachment, where an adenosine triphosphate (ATP) binds to the myosin head and results in a detachment
from the binding site. The myosin head is reactivated in step 5 by the splitting of ATP into ADP and P.
The released energy is used to recock the myosin head. The entire cycle can now be repeated (fig. adapted
from [17]).
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Cross-bridge detachment: The ATP binding site at the myosin head is again available. A rebind of
ATP to the myosin head breaks the link to the active-site of actin. The cross-bridge detaches and
the active-site is capable to interact with another cross-bridge.

Myosin reactivation: The myosin reactivation occurs, when the bound ATP is split into ADP and
P. The released energy is used to recock the head. The head may now form another cross-bridge
provided that the Ca2+ concentration remains elevated and the ATP reserves are sufficient.

3.3.2.1 Mechanical Properties of Myocardium

For the mechanical modeling the mechanical properties of myocardial cells are of significant im-
portance. These properties can only be extracted by experimental studies. Most studies to acquire
mechanical properties of myocardium were performed with trabecular and papillary muscles of
animals [63], as well as tissue from atrial and ventricular wall [64, 65]. Single and small groups of
myocytes were used to quantify cellular mechanical properties [66]. Due to the size of the examined
tissue, specialized measurement setups were created. The measurement device described by Dokos
et al. [67, 68] allows a triaxial-measurement shear-test of soft tissue. Tab. 3.1 shows publications
of researchers with examined tissue types and species.
The myocardial tissue proved to be nonlinear, anisotropic and viscoelastic [69], which is common for
most biological tissues. The change in volume due to deformation is small and therefore an approx-
imate incompressibility can be postulated. Furthermore, significant residual stresses are present
inside the tissue [70]. The dependence of material properties on intracellular calcium concentration
and the state of active contraction have also been reported [71, 66].
The properties based on experimental results are used to parameterize mathematical models to
describe mechanical behavior of myocardial tissue.
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Year Author Tissue Species
1964 Sonnenblick [72] papillary muscle cat
1973 Pinto, Fung [73, 63] papillary muscle rabbit
1973/74 Janz, Kubert, Moriarty, papillary muscle rat

Grimm [74, 75]
1974 Alpert, Hamrell, Halpern [76] ventricular muscle rabbit
1975 Kane, McMahon, Wagner, ventricular muscle hamster

Abelmann [77]
1976 Rankin, Arentzen, McHale, ventricular muscle canine

Ling, Anderson [69]
1988 Hunter, Smaill [78, 79] ventricular muscle canine
1991 Guccione, McCulloch, ventricular muscle canine,

Waldman [80] rat
1994 Novak, Yin, Humphrey [81] ventricular muscle canine
1995 Hunter, Nash, Sands [82, 83] ventricular muscle canine
1995 Moulton, Creswell, Actis, ventricular muscle canine

Myers, Vannier, Szabó,
Pasque [84]

1997 Miller, Vanni, Keller [85] ventricular muscle chicken
1998 Omens, Vaplon, Fazeli, ventricular muscle rat

McCulloch [86]
1998 Zile, Cowles, Buckley, ventricular cat

Richardson, Cowles, Baicu, myocytes
Cooper, Gharpuray [66]

2000 Dokos, LeGrice, Smaill, septal muscle rat
Kar, Young [67]

2000 Okamoto, Moulton, ventricular muscle canine
Pasque, Peterson, Li,
Guccione [65]

2003 Dokos, Smaill, Young, ventricular muscle pig
LeGrice [68]

Table 3.1. Measurements of mechanical properties of myocardium(Tab. from [31]).
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3.4 Functional Modeling of the Heart

The modeling of cells requires knowledge about anatomical and physiological properties. Fur-
thermore, the action, reaction, and interaction of cells need to be investigated. In recent years
mathematical models have been created with increasing detail, which represent the corresponding
behavior and properties of cells.

3.4.1 Electrophysiological Modeling of Cell Properties

The modeling of the electrophysiology of a cell commences by describing the cell and its proximity in
a steady state. The lipid layer forms a barrier between intra- and extracellular space. Gap junctions,
channels, exchangers, and pumps allow ions to cross this barrier. In a resting cell a resting potential
of approx. −80 mV is established between the inside and the outside of the cell. The reason for
this behavior are the varying ion concentrations in combination with different conductances for the
ions. The factors driving this behavior are the electrical field created by the ion concentration, the
concentration gradient itself and the permeability of the membrane. Furthermore, the cell length
is a factor in the electrophysiological behavior.
The modeling of transmembrane voltage, the transmembrane currents, membrane conductivity as
well as intra- and extracellular ion concentration is accomplished by coupled differential equations.
The cell membrane without its conducting proteins can be modeled as a capacitor. Furthermore,
the ion conductivity can be modeled as time and voltage dependent resistors, and the Nernst
voltages by voltage sources (fig. 3.12).
A large amount of electrophysiological cell models base upon the equations of Hodgkin and Huxley,
who described the electrophysiological behavior of a giant squid axon [88]. Modern cell models are
derived from those equations but have become more complex and more detailed. Experiments are
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Figure 3.12. Electrical equivalent circuit of the cell membrane of the Hodgkin-Huxley model describing
the electrophysiology of a giant squid axon. The resistors RX describe the conductivity of the channels of
type X and VX are the voltage sources given by EX (fig. from [87]).
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Year Author Specimen Species
1962 Noble [89] Purkinje fiber -
1975 McAllister, Noble, Tsien [90] Purkinje fiber -
1977 Beeler, Reuter [91] Ventricular myocardium Mammalian
1985 DiFrancesco, Noble [92] Purkinje fiber Mammalian
1987 Hilgemann, Noble [93] Atrial working myocardium Rabbit
1990 Earm, Noble [94] Atrial working myocardium Rabbit
1991 Luo, Rudy [95] Ventricular myocardium Mammalian
1994 Luo, Rudy [96] [97] Ventricular myocardium Guinea-pig
1994 Demir, Clark, Murphey, Giles [98] Sinoatrial node Mammalian
1996 Dokos, Celler, Lovell [99] Sinoatrial node Mammalian
1996 Demir, O’Rourke, Tomaselli, Ventricular myocardium Dog

Marban, Winslow [100]
1998 Courtemanche, Ramirez, Nattel [101] Atrial working myocardium Human
1998 Jafri, Rice, Winslow [102] Ventricular myocardium Guinea-pig
1998 Noble, Varghese, Kohl, Noble [103] Ventricular myocardium Guinea-pig
1998 Nygren, Fiset, Firek, Clark, Atrial working myocardium Human

Lindblad [104]
1998 Priebe, Beuckelmann [105] Ventricular myocardium Human
1999 Winslow, Rice, Jafri, Marban, Ventricular myocardium Dog

O’Rourke [106] [107]
2000 Zhang, Holden, Kodama, Sinoatrial node Rabbit

Honjo, Lei, Varghese, Boyett [108]
2001 Pandit,Clark, Giles, Demir [109] Ventricular myocardium Rat
2001 Puglisi, Bers [110] Ventricular myocardium Rabbit
2002 Bernus, Wilders, Zemlin, Ventricular myocardium Human

Verschelde, Panfilov [111]
2004 Ten Tusscher, Noble, Ventricular myocardium Human

Noble, Panfilov [112]
2004 Iyer, Mazhari, Winslow [113] Ventricular myocardium Human

Table 3.2. Electrophysiological models of cardiac cells.

conducted to determine parameters for the models. In tab. 3.2 some electrophysiological models of
myocardial cells are listed in chronological order.

3.4.1.1 Mathematical Description of Cell Models

The mathematical description of a cell model is based on nonlinear coupled differential equations,
which have been parameterized by experimental data. The main components are transmembrane
voltage, transmembrane currents, gating variables, ion concentration, intracellular components,
and mechanoelectrical feedback.

Transmembrane voltage

The cell membrane acts as a capacitor. The electrical description results in
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Q = CmVm

with Q the electrical charge accumulated at the membrane, the capacity of the membrane Cm, and
the transmembrane voltage Vm.
The ion passage and transport through the membrane results in ion currents. The sum of trans-
membrane currents can be described as Isum. Furthermore, a stimulus current Istim can be defined,
which may evoke an action potential. Therefore, the time derivative of the transmembrane voltage
Vm of an isolated cell can be described by :

dVm

dt
= − 1

Cm
(Isum + Istim)

Transmembrane currents

The transmembrane current of an ion Iion passing the membrane depends on the transmembrane
voltage Vm, the equilibrium voltage Vion (eq. 3.1), the intra- and extracellular ion concentrations
[Ion]i, [Ion]e, and one or more gating variables n.

Iion = f(Vm, Vion, [Ion]i, [Ion]e, n)

Gating variables

Hodgkin and Huxley first introduced the use of gating variables [88]. The cell membrane consists
of many channel proteins for one type of ion. Each of these channel proteins can be either opened
or closed. The accumulation of opened or closed channels for one type of ion can be described by
a gating variable. It ranges between 0 and 1. In case of one gate the fraction of channels in opened
state is n and in closed state is 1 − n. The transition from opened to closed state is described by
the voltage dependent rate constants αn, whereas the opposite direction is described by βn.

αn

1− n 
 n

closed βn opened

In case of the Hodgkin and Huxley model and the exemplary Na+ ion channel, two gating variables
are defined. One describes the activation (gating variable m) and the other the inactivation (gating
variable h). The voltage dependent rate constants αm, βm, αh, and βh control the activation and
inactivation process:

dm

dt
= αm(1−m)− βmm

and

dh

dt
= αh(1− h)− βhh
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Figure 3.13. Voltage dependent rate constants in the Hodgkin-Huxley model for sodium channels. (a)
The rate constant αm and βm for the activation variable m. (b) The rate constant αh and βh for the
inactivation variable h.

Fig. 3.13 shows the rate constants dependance on Vm. The sodium conductivity gNa can then be
computed by:

gNa = m3hgNa (3.2)

with the maximal conductance for sodium ions gNa. The sodium current INa results to:

INa = gNa(Vm − ENa) (3.3)

with Vm the transmembrane voltage and ENa the equilibrium voltage for Na+ .

Ion concentration

Varying ion concentrations exist in the intra- and extracellular space. These ion concentrations are
controlled by opening and closing of passive channels, active exchangers, and pumps. The transport
of ions through the membrane results in specific ion currents Iion. Therefore, the temporal variation
of the ion concentration depends on the ion currents and the ion concentration [Ion] itself:

d[Ion]
dt

= f(Iion, [Ion])

Mechano-electrical feedback

The mechano-electrical feedback describes the dependence of stretch of a cell to its electrophysiol-
ogy. The deformation influences the conductivity of ion channels. Therefore, a stretch dependent
current can be defined as Istretch. This current is dependent on the sarcomere length SL, the
conductivity of the ion channel gIon, the transmembrane voltage Vm, and the equilibrium voltage
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Figure 3.14. Schematic description of ionic model of Priebe Beuckelmann [105], with currents, pumps,
exchangers and other components. It contains detailed description of ion currents, intracellular ion dynamics
([Ion]i), sarcoplasmic reticulum (SR) with network SR (NSR) and junctional SR (JSR), and calcium buffers
like troponin (trpn), calmodulin (cmdn), and calsequestrin (csqn) (fig. from [87]).

Uion. Thus:

Istretch = f(SL, Vm, gIon, Uion)

The total current induced by the stretch of a sarcomere depends on the used electrophysiological
model and it’s applied ion channels.
Several of these basic equations are used in the cell models listed in tab. 3.2. Furthermore, the
models are extended by coupled differential equations for a more explicit and precise description.

3.4.1.2 Electrophysiological Cell Modeling

Various models exist to describe electrophysiological behavior (tab. 3.2, [31], [87]). The electrophys-
iological model used in this work is the Priebe and Beuckelmann model (PBM), which describes the
electrophysiology of a human ventricular myocyte [105] (fig. 3.14). It is derived from the phase-2
model of Luo-Rudy, which was parameterized by measurement data from a human myocyte [96, 97].
The enhancement of the PBM was achieved by considering more recent measurements of ventricu-
lar myocytes and two sets of parameters, one for a normal and one for a failing myocyte. The sum
of the transmembrane currents Imem of the Priebe Beuckelmann model is given by:

Imem = INa + IK1 + Ito + IKr + IKs + ICa + INaK + INaCa + Ib,Na + Ib,Ca (3.4)
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with

INa fast sodium current
IK1 outward rectifier potassium current
Ito transient outward potassium current
IKr rapid delayed potassium current
IKs slow delayed potassium current
ICa L-type calcium current
INaK Na+/K+ pump current
INaCa Na+/Ca2+ exchanger current
Ib,Na background sodium current
Ib,Ca background calcium current

The model was furthermore adapted allowing integration with tension development models, im-
plementing the binding of Ca2+ to Troponin (trpn in fig. 3.14). However, its functionality was
substituted by applying the model of Glänzel, Sachse, Seemann (section 3.4.3).

3.4.2 Excitation Propagation

The excitation propagation in myocardial tissue can be differentiated into microscopic and macro-
scopic modeling.
Microscopic models include ion currents, intra- and extracellular ion concentration, and base upon
the intercellular currents through gap-junctions. This discrete modeling results in a high degree of
mathematical abstraction, and hence complex models. Simulations with such models result in the
need of large computational power but allow to reconstruct experimental studies with a very high
degree of precision.
Macroscopic models combine several cells and describe the averaged behavior. The complexity of
the model and the computational power is reduced at the cost of an averaged result. However,
depending on the application, the reduced computational expense is preferred over the precision
of the results.
For the excitation propagation two main approaches are used:

• cellular automata
• reaction diffusion system

Cellular automata apply rule-based techniques and allow for efficient simulation of electrical exci-
tation propagation [114, 115, 116, 117]. A reaction diffusion system allows to describe the electrical
properties of tissue, using a special type of diffusion equation. The reaction equation reconstructs
the ion current across the cell membrane. For further details on modeling with reaction diffusion
systems see [118, 119, 120].
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(a) (b) (c)

(d) (e) (f)

Figure 3.15. Neighbor propagation of a cellular automaton on a surface. Empty squares represent resting
cells. Each excited cell (green), communicates the excitation to its eight neighbors (green arrow)(a,b). After
an explicit time interval the cell switches to an unexcitable state (red)(c,d). Finally, the cell returns back
to an excitable cell (e,f). This process proceeds along the given geometry.

3.4.2.1 Cellular Automata

Cellular automata are applied to model various natural processes, where a domino like effect
can be applied. A cellular automaton can be discretized into two components [121, 122]. First,
a regular, discrete, infinite network, which represents the underlying structure of the automaton.
Second, a finite automaton, which will run at each individual cell (so-called node) during simulation.
Furthermore, each cell is connected and can communicate to a finite number of neighbor cells
depending on the geometric outline. This communication allows a global evolution of the system
during discrete time steps (fig. 3.15).
In this work the cellular automaton of Werner, Sachse and Dössel [123, 124] was used. The automa-
ton works on a geometrical structure including fiber orientation, the excitation initiation, and an
excitation conduction system. Physiological parameters for electrical properties of myocytes e.g.
refractory periods, up to 9× 4 curves to model Vm(t), three excitation velocities in fiber, sheet and
sheet normal, and an auto rhythmic mechanism can be implemented for any kind of tissue. Upon
a given geometry the automaton provides a spatial and temporal distribution of Vm.
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Year Author Specimen Species
1938 Hill [125] skeletal muscle frog
1957 Huxley [126] skeletal muscle –
1980 Panerai [127] papillary muscle mammalian
1991 Peterson, Hunter, Berman [128] papillary muscle New Zealand white rabbit
1994 Landesberg, Sideman [129] skinned cardiomyocyte –
1994 Landesberg, Sideman [130, 131] cardiac muscle –
1997 Hunter, Nash, Sands [83] cardiac muscle mammalian
1998 Hunter, McCulloch, ter Keurs [132] cardiac myocyte –
1998 Guccione, Motabar-Zadeh, Zahalak [133] cardiac myocyte –
1999 Rice, Winslow, Hunter [134] papillary muscle New Zealand white rabbit
2000 Rice, Jafri, Winslow [135] cardiac muscle ferret
2001 Mlcek, Neumann, Kittnar, Novak [136] cardiac myocyte –
2001 Nickerson, Smith, Hunter [137] cardiac myocyte –
2002 Glänzel, Sachse, Seemann [138, 139] cardiac myocyte –

Table 3.3. Mathematical models of tension development.

However, due to its parameter set, the cellular automaton is not restricted to the computation
of transmembrane voltages, only. Depending on the application, the automaton can provide a
spatial and temporal distribution of Vm, Ca2+ or force, depending on the parameterization. The
parameter curves can be acquired with microscopic cell models using a cluster of cells. Exemplary
curves for Vm, Ca2+ and force are displayed in (fig. 3.16).
In this work, the parameterization of the automaton was set to force curves yielding a spatial and
temporal distribution of forces for the given geometries (section 6.1).

3.4.3 Force Development Models

The first description of a mathematical tension development model was published by Hill [125]. He
described the tension-velocity relationship of a tetanized skeletal muscle of a frog. Tab. 3.3 shows
various models describing tension development in the cardiac myocyte. Some apply continuous-
time Markov chains [140, 141], which can describe a stochastic process in probability theory. In
these processes the knowledge of the present state is used to predict the future state, without the
need of past information. Each process can take a state of a discrete set of elements connected by
transition probabilities. In case of tension development in the myocyte the discrete states are the
bonds of myosin, actin, tropomyosin, and troponin during contraction.
In this work the hybrid tension development model (HTD) of Glänzel, Sachse, Seemann et al. was
used [138, 139]. It consists of 14 state variables, which are coupled in three Markov chains (fig. 3.17).
The first Markov chain resembles the binding of Ca2+ to troponin T (fig. 3.17(a)). Two states are
used, which are T for free troponin and TCa for Calcium bound to troponin. The sum of the state
variables equals one:
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Figure 3.16. Parameterization curves of the cellular automaton. Figures show the parameter curves
created with a microscopic cell model of Noble et al. [89] and Rice et al. [134] (a),(c), and (e), and
microscopic cell models of Priebe et al. [105] and Glänzle et al. [138, 142] (b),(d), and (f). (a/b) show the
transmembrane voltage of an action potential, (c/d) the calcium concentration, and (e/f) the normalized
force slope. In this work the curves (b) and (d) were applied for microscopic simulation, whereas (f) was
applied for parameterization of the cellular automaton.
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T + TCa = 1 (3.5)

The transition probability from one state to the other is described by kon and koff . The transition
rate kon depends on intracellular calcium concentration, the amount of cross-bridges (XB), and of
the sarcomere length λ. A coupled differential equation can be applied to model the variation of
the binding process:

d
dt

(
T

TCa

)
=
(
−kon

kon

koff

−koff

)(
T

TCa

)
(3.6)

The second Markov chain models the configuration of tropomyosin TM (fig. 3.17(b)). The binding
of Ca2+ to troponin shifts the TM , so that the binding site for myosin on the actin filament is
available. This is modeled by the TMon state the so-called permissive state. TMoff resembles the
state, where the binding site for myosin is unavailable. The states are described by:

TMon + TMoff = 1 (3.7)

The change of states can also be described by a differential equation with the transition rates tmon

and tmoff :

d
dt

(
TMon

TMoff

)
=
(
−tmon

tmon

tmoff

−tmoff

)(
TMon

TMoff

)
(3.8)

tmon depends on the fraction of bound TCa and on the sarcomere length λ.
The third Markov chain consists of 10 states, which model the interaction of myosin and
actin (fig. 3.17(c)). The process describing the cross-bridge cycle is given by:

M + A ∼ M •ATP + M •ATP + M •ADP • Pi + A ∼ M •ADP • Pi+ (3.9)

A •M •ADP • Pi + A •M∗ •ADP + A •M •ADP + A •M + M •ADP = 1 (3.10)

with actin A, myosin M , strong bonds •, and weak bonds ∼. Furthermore, the system includes the
hydrolysis of ATP into ADP and phosphate Pi. The coupled differential equation describing the
system is given by:



3.4. Functional Modeling of the Heart 55

(a) (b) (c)

Figure 3.17. Markov chains of the Glänzel, Sachse, Seemann model. The first Markov chain resembles
the binding of Ca2+ to troponin T and the dependent transition rates kon, koff . The second Markov chain
models the configuration of tropomyosin TM , representing permissive and non permissive states for binding
of myosin to actin. The third Markov chain represents the interaction of myosin M and actin A, which
is also known as cross-bridge cycle. Furthermore, the hydrolysis of ATP in ADP and Pi is included. The
symbol • marks strong, whereas ∼ marks weak bonds. Transition rates depend on the sarcomere length
λ, the stretch velocity ν, the amount of ATP, the amount of cross-bridges XB, the fraction of shifted
tropomyosin TMon, the amount of calcium bound to troponin TCa, the intracellular Ca2+ concentration
Cai, and the normalized tension Tn itself (fig. from [87]).

d
dt



A ∼ M •ATP

M •ATP

M •ADP • Pi

A ∼ M •ADP • Pi

A •M •ADP • Pi

A •M∗ •ADP

A •M •ADP

A •M

M •ADP

M



= M



A ∼ M •ATP

M •ATP

M •ADP • Pi

A ∼ M •ADP • Pi

A •M •ADP • Pi

A •M∗ •ADP

A •M •ADP

A •M

M •ADP

M



(3.11)

with the matrix M formed by the transition coefficients, depending on sarcomere length λ, the
stretch velocity ν, the amount of ATP , the amount of cross-bridges XB, and the fraction of shifted
tropomyosin TMon [87]. The tension is developed only in three of the states above, summarized to
TAM :

TAM = A •M∗ •ADP + A •M •ADP + A •M (3.12)
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The resulting normalized tension Tn is given by

Tn =
αTAM

Tmax
(3.13)

with the sarcomere overlap function of the Peterson, Hunter, and Berman model [128]

α =


1− 0.7333(2− λ) λ ≤ 2
1 2 < λ ≤ 2.2
1− 0.7333(λ− 2.2) 2.2 < λ

(3.14)

and the maximum tension Tmax during resting stretch.
Further details of this model are given in [87, 138, 143, 139, 144].

3.4.4 Elasto-mechanical Models

Elasto-mechanical models are used to model tissue or muscle behavior under deformation, stress
and strain. During this work a hybrid deformation model was developed, based on a spring-mass
system to model contraction of myocardium and deformation of left ventricular models. Further
details on deformable models, elasto-mechanical models and the developed hybrid deformation
model are given in chapter 4 and 5.
The data acquired from experimental studies (section 3.3.2.1) were used to create mathematical
models describing the relationship between stress and strain. A widely used model is the strain
energy density function in conjunction with parameter fitting procedures. Tab. 3.4 shows a selection
of models in chronological order.
A survey and summary of models based on strain energy density functions is given in [31].
In this work the model of Guccione et al. [64] is applied (section 5.3.2.1).

3.4.5 Pressure Models

The ventricular contraction in a normal heart cycle follows four phases: isovolumic contraction,
isotonic contraction, isometric relaxation, and isotonic relaxation (section 3.2.4). Methods modeling
the intraventricular pressure corresponding to contraction phases and opening and closing of valves
can be applied to implement pressure characteristics into a mechanical model (section 6.5.2).
The intraventricular pressure during the isometric contraction is closely related to the contraction
of the ventricle surrounding an incompressible fluid. Hence, a pressure-volume relation can be
measured (fig. 3.7).
The intraventricular pressure during the ventricular ejection of blood into the aorta can be modeled
following the proposals of Wang et al. [161].
The pressure during the relaxation phase resembles a decay function, which is modeled in general
by an exponential decay.
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Year Author Tissue Species
1972 Demiray [145] papillary muscle cat
1973/74 Janz, Kubert, Moriarty, papillary muscle rat

Grimm [74, 75]
1974 Glantz [146] papillary muscle cat
1976 Rankin, Arentzen, ventricular muscle canine

McHale, Ling, Anderson [69]
1983 Needleman, Rabinowitz, ventricular muscle canine

Bogen, McMahon [147]
1987 Humphrey, Yin [148] ventricular and canine

papillary muscle
1988 Horowitz, Lanir, Yin, ventricular muscle canine

Perl, Sheinman, Strumpf [149, 150]
1989 Nevo, Lanir [151] ventricular muscle -
1990 Humphrey, Strumpf, Yin [152, 153] ventricular muscle canine
1991 Huyghe, van Campen, divers divers

Arts, Heethaar [154]
1991 Yang, Tabber [155] papillary muscle rabbit,

frog, turtle
1991 Guccione, McCulloch, ventricular muscle canine,

Waldman [80, 64] rat
1993 Sacks, Chuong [156] ventricular muscle canine
1994 Nevo, Lanir [157] ventricular muscle -
1994 Novak, Yin, Humphrey [81] ventricular muscle canine
1995 Guccione, Costa, ventricular muscle canine

McCulloch [158]
1995 Hunter, Nash, Sands [82, 83] ventricular muscle canine
1998 May-Newman, McCulloch [159] ventricular muscle canine
2000 Okamoto, Moulton, ventricular muscle canine

Pasque, Peterson, Li,
Guccione [65]

2000 Usyk, Mazhari, McCulloch [160] left ventricle canine

Table 3.4. Models of mechanical properties of myocardium(from [31]).

3.4.5.1 Windkessel and Wave System of Wang et al.

Wang et al. [161] addressed the problem of the difference in shape between central aortic pressure
and flow waveforms. They postulated a time domain representation of the ventricular-arterial
coupling as a windkessel and wave system. They measured the aortic pressure PA0, the blood
ejected into the aorta Qin, the compliance of the aortal tree C and the effective resistance R of
the peripheral systemic circulation of 15 healthy mongrel dogs weighing between 18 and 29 kg.
Furthermore, they assumed that the aortal behavior can be expressed as a windkessel, which
acts as a hydraulic integrator, where the variation of pressure is directly related to the change
in volume and inversely to its compliance. So it was possible to compute the windkessel pressure
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PWk. Lighthill et al. [162] proposed that, when considering wave propagation in a reservoir, the
measured pressure must be the sum of the reservoir pressure PWk and the pressure due to wave
motion (excess pressure Pex).
Thus:

PA0(t) = PWk(t) + Pex(t) (3.15)

Windkessel pressure PWk

In the case of Wang et al. [161] the aortic Windkessel pressure PWk depends on the inflow of ejected
blood into the aorta Qin, the outflow into the aortal tree Qout and the compliance C of the aortal
tree.

dPWK(t)
dt

=
Qin(t)−Qout(t)

C
(3.16)

The outflow can be described as a simple resistive relationship

Qout(t) =
PWK(t)− P∞

R
(3.17)

representing the asymptotic pressure of the diastolic exponential pressure decay P∞, at which the
flow from the arteries to the veins ceases and R, the effective resistance of the peripheral systemic
circulation. Substituting eq. 3.17 into eq. 3.16 results in:

dPWK(t)
dt

+
PWK(t)− P∞

RC
=

Qin(t)
C

(3.18)

with the general solution proposed by Wang et al. of

PWK(t)− P∞ = (P0 − P∞)e
−1
RC + e

−t
RC

∫ t

t0

Qin(t′)
C

e
t′

RC dt′ (3.19)

where t0 and P0 are the time and pressure at the onset of ejection.
However, a part of eq. 3.19: (P0 − P∞)e

−1
RC seems to incorporate a typing error. The units of the

exponent of the exponential function do not match. Since the term specifies a constant offset of
the Windkessel pressure, eq. 3.19 was modified to:

PWK(t)− P∞ = (P0 − P∞)e
−t0
RC + e

−t
RC

∫ t

t0

Qin(t′)
C

e
t′

RC dt′ (3.20)

and was used further on for modeling the Windkessel pressure.

Pressure due to wave motion Pex

When measuring and applying Lighthills equation (eq. 3.15) Wang et al. found that the excess
pressure Pex was directly and quite precisely proportional to the aortic inflow Qin. Therefore, the
proximal resistance Rprox was embedded, which resembles the characteristic impedance determined
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by Westerhof et al. [163].
Pex(t) = Qin(t)Rprox (3.21)

Hence, eq. 3.15 can be written as:

PA0(t, Qin(t)) = PWk(t, Qin(t)) + Pex(Qin(t)) (3.22)

Since the pressure of the aorta with opened aortic valves resembles that of the ventricle, eq. 3.22
can be applied during the ejection phase. The only variable is the ejection volume Qin(t), which
can be easily obtained during deformation simulation. The constants (P∞,P0,R,C) can be acquired
prior to simulation by measurement.

3.4.5.2 Pressure of Relaxation Phase

Verdonck et al. [164] describe the passive diastolic pressure-volume relationship by the volume and
the material properties of the ventricular wall. An exponential function is used including curve
fitting parameters:

p = bekcV (3.23)

with p the left ventricular cavity pressure, V the cavity volume, b and kC curve fitting parameters
of Gaasch et al. [165].
Weiss et al. [166] described the left ventricular pressure decay by:

p(t) = (p0 − p∞)e
−t
τ + p∞ (3.24)

with p the left ventricular cavity pressure, p0 pressure at peak negative dp/dt, p∞ atrial pressure,
t the time, and τ the time period needed by the pressure to drop to 37% of its starting value.





4

Mechanical Modeling

Various mechanical models can be found in the literature, describing technical objects and biological
systems. In computer graphics and simulation the term deformable model describes the sum of all
models related to structural change of virtual objects. In the following sections the mainly applied
deformable models are briefly described with a distinction between models based on physical and
non-physical principles. In addition, approaches and application of deformable models for tissue
and muscle simulations are presented.

4.1 Deformable Models

The application of deformable models has become an indispensable tool in industry, research, and
medicine. Models are used for e. g. crash tests of vehicles, to model fabric draping and folding for
the textile industry, realistic animation of computer games, modeling tissue and muscle behavior,
as well as surgical simulators. The demand of increased realism by users can only partly be met by
an increase of computer power. This trend is not only apparent in computer games but also in the
medical environment. The need to model sophisticated geometrical shapes and physical objects in
a complex environment resulted in various approaches for object modeling.
So called deformable object modeling has its roots in computer drawing applications, where it
was used e. g. for fitting of complex curves or to create surfaces and solids. In the field of image
analysis deformable models are created with a priory knowledge of the objects shape to fit the
model to noisy data. Furthermore, the animation and visualization of facial tissue change due to
head surgery can be estimated prior to interventions.
Thus, approaches for modeling deformable objects range from non-physical models to continuum
mechanical models based on finite elements or boundary elements techniques.
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4.1.1 Non-physical Models

Most deformable models are based upon a physical principle. However, in design, often geometrical
principles are applied. The later techniques are computationally efficient, but rely on the skill of
the user and have no physical concept.

Splines

In CAD, users required to approximate curves and surfaces with numerical methods. Furthermore,
they needed to intuitively modify and refine objects. This resulted in the development of Bezier
curves, and many other methods to describe curves with only a small amount of vectors e.g.
double quadratic curves, various B-splines, and β-splines. A comprehensive coverage of modeling
with splines can be found in the literature [167, 168].

Free-form deformation

The method of free-form deformation provides a more powerful control than editing individual
control points. The shape of the object can be altered by deforming the space in which the object
resides (fig. 4.1). This method can be applied to many different objects like e. g. point sets, polygons,
parametric patches, and implicit surfaces. The geometrical mapping of three dimensional space is
described in Barr’s early work [169]. For example, consider the map f : <3 → <3 given by:

f(p) =

 cos zc − sin zc 0
sin zc cos zc 0

0 0 1


xc

yc

zc

 (4.1)

with the control point p and its components xc,yc, and zc twisting the objects about the z-axis.
Related maps can be used to model movement or deformation such as rigid motion, tapering,
bending. Furthermore, more complex deformations can be obtained by assembling various maps.
This technique was extended by Coquillart [170], Hsu et al. [171], MacCracken et al. [172], and
many others.

4.1.2 Physical Models

In contrast to non-physical models, where “deformation modeling” is simply based on geometrical
priciples, physical models allow for a realistic approach. A physically based system consists of basic
physical laws and material properties and mathematical consistency.

Spring-mass models

One widely and effectively applied physically based model is the spring-mass systems. An object
is e. g. modeled by mass points interconnected by springs, forming a lattice structure (fig. 4.2).
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(a) (b)

Figure 4.1. Example of free form deformation in virtual space. Manipulators can be used to achieve an
overall deformation. The figures show an undeformed sphere (a) and the deformed object after manipulation
(b).

Figure 4.2. Spring mass system in a three dimensional environment. The red spheres indicate masses and
the yellow cylinders the connective springs.

The spring properties can be chosen to be linear (Hookean) as e.g. a steel spring, or nonlinear as a
simple model for soft tissue and its inelastic behavior. Each mass in the system follows Newton’s
Law of motion:

miẍi = −ciẋi +
∑

kij + fi (4.2)
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with mi the mass of point i, ẍi its acceleration, c a damping factor, ẋi its absolute velocity, kij the
in general nonlinear force acting on mass i from linear springs between masses i and j, and fi the
sum of external forces.
The deformation of the whole system can be implicitly described by assembling the motion of each
mass into a matrix equation in linear or linearized form:

Mẍ + Cẋ + Kx = f (4.3)

with M the mass, C the damping, K the stiffness matrix, and f the sum of forces - in the linear
case - acting on the system.
In contrast to the implicit scheme an explicit scheme can be used e. g. explicit Euler or central
difference method. In these methods a summation of all forces per mass is performed. The resulting
acceleration as well as velocity is computed, and the mass displaced accordingly. The explicit
methods are used for the numerical solution in this work (chapter 5.5).
The dynamics of spring-mass systems is based on simple physical laws that are well understood
and easily constructed, compared to continuum mechanical methods. Interactive and real time
simulations are possible on recent computer hardware in combination with an explicit time inte-
gration. The model is suitable for parallel computation, as no matrix triangulation is involved. A
spring-mass system model is widely used in medical applications.
The drawbacks of spring-mass systems are the approximation caused by the discretization of a
continuous body into mass points. The spring properties and stiffnesses have to be derived from
measurement data, which are not always easy to acquire. Furthermore, some constraints are not
naturally expressed in the model as e.g. incompressibility of volumetric objects as well as anisotropy
needed for muscle modeling. In theses cases additional springs need to be applied, which increase
data storage and computational cost.

Continuum models and finite element methods

The spring-mass system approximates a deformable object by a discrete object model usually
reducing the real physical connections by a simple model. A more consistent physical description
is achieved by treating a deformable body as a continuum. The continuum describes a solid body
with mass and energy distributions. A continuum model considers the equilibrium of a body with
external and internal forces acting on it. The deformation of the object is a function of the acting
forces and the material properties. The object reaches equilibrium when its energy reaches the
minimum. The total energy Π can be described by:

Π = Ω −W (4.4)

with Ω the total strain energy, stored as material deformation and W the work done by external
loads. External loads can be distinguished into point loads, body loads such as gravitational loading,
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and surface loading such as pressure. Both Ω and W are functions of the material deformation.
This leads in general to nonlinear differential equilibrium equations for the continuum, which can
be solved for e. g. material displacements [31, 173].
A closed-form analytical solution cannot always be found in particular for general bodies and
boundary conditions, therefore numerical methods are used to approximate the deformation be-
havior. A spring-mass system approximates the object as a finite lattice structure with simplified
node-to-node connectivities and equilibrium is computed at the node points. Finite Element Meth-
ods (FEM) divide the object into sets of elements and approximate the behavior with functions
defined for each element. Equilibrium is found via a weak term or a variational principle e. g. via
minimization of the total energy or via weighted residuals or principles of virtual displacements.
For the global solution constraints at element borders and node points are needed to allow for
continuity between elements and to represent the real geometrical boundary conditions. The ele-
ment solution is therefore represented by a finite sum of element-specific interpolations, or shape
functions. In case of a scalar function Φ(x, y, z), the value of Φ at the point (x, y, z) is approximated
by:

Φ(x, y, z) ≈
∑

i

hi(x, y, z)Φi (4.5)

with hi the interpolation functions for the element containing (x, y, z) and Φi the values of Φ(x, y, z)
at the element’s nodal points.
Finite elements resemble a more complete physical approach, compared to spring-mass systems.
Applied forces are typically interpolated from node-wise specified vectorial forces, which results in
numerically integrating forces over the volume and surfaces at each time step and iteration. Mass,
stiffness matrices (for implicit schemes) and internal forces have to be computed by numerical
integration over the elements, which involves a significant amount of numerical computation. For
nonlinear problems, the stiffness matrix and the internal forces have to be re-evaluated in the
nonlinear case in each iteration and in each time step. In case of tissue or muscle modeling large
deformations of elements are possible.

4.2 Approaches of Modeling Tissue

The geometric representation of an object in a virtual environment may consist of surfaces or
volumes. Depending on the application the representation is chosen either for computational ef-
ficiency or for physical accuracy. The term “surface model” representing tissue is misleading. A
“surface model” can be anything between a real 2D model, where connected elements span a sur-
face, to a 3D model with a specific thickness, modeling e. g. a skin, fat, and muscle layer. These
3D models may also contain holes.
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In terms of computation, surface models (or shell/membrane models) are more efficient compared
to volume models, due to a smaller amount of vertices surrounding the same geometrical space.
However, surface models applied for tissue modeling tend to result in physically invalid deforma-
tions, because they are restricted to linear problems.
Both, Finite Element models and spring-mass systems require a mesh structure, which is mostly
set up by hexahedral or tetrahedral elements. The amount of vertices in a volume model is much
larger and therefore the computational requirements increase. However, this representation allows
a fully 3D reaction of the model.
The modeling of muscular tissue differs from regular tissue by the fact that an active change of shape
is possible. Muscles have the ability to contract by biochemical reactions. Modeling approaches
range from using simple action lines [174, 175] to applying rule based methods to an ellipsoid
object [176] to spring-mass systems or finite element models by applying force development models
for contraction initiation. Regular tissue only reacts to external forces by changing its shape.
In the following sections current approaches to model tissue and muscle tissue with spring-mass
systems are discussed. Many variations of the presented techniques exist. Here, only the most
common techniques will be described.

4.2.1 Spring-mass System

4.2.1.1 Surface Models

The main application for spring-mass systems in surface modeling is to model the draping of cloth
or facial animation on top of rigid scull.
Desbrun et al. [177] applied a spring-mass system to model a silk scarf being moved interactively
in a virtual environment. The behavior of the scarf being subject to gravitation and colliding with
objects was modeled. They used nonlinear springs in the plane of surface. The method was designed
for real-time interaction and visual realism. However, the model cannot be used for more accurate
simulations.
Kang et al. [178, 179] presented a fast animation technique for animating soft objects based on
spring-mass models. The main concern was realtime animation of draping of cloth.
Zhang et al. [180] approximated facial skin by a spring-mass system with nonlinear springs. Muscle
modeling was performed to deform a facial model to expressions such as sadness, anger, and
surprise. They applied an adaptive mesh and refinement method to model facial muscle action.

4.2.1.2 Tissue Models

Spring-mass systems applied for tissue modeling are mainly used in craniofacial surgery planning.
Prior to bone surgery, the change in facial expression and facial appearance needs to be examined.
Keeve et al. [1, 2] applied a spring-mass system as well as a finite element model (FEM) to model
a patient’s skin on top of the skull acquired by CT. The pre-operational planing was done on
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a virtual system. The spring-mass system consisted of two tissue and one bone layer. The FEM
only consisted of a rigid bone layer and one tissue layer. Simulation results compared to the
post-operational results showed that both models were suitable for the application. However, the
spring-mass system yielded the results faster compared to the FEM.
Spring parameterization of tissue models is a key factor in realistic modeling. Mazzella [181] pro-
posed a method to estimate spring parameters from scanning the outer surface of an object in two
different positions. The scan of the resting position is used to create a virtual model at rest. A
second scan is carried out under a known acting force. The force is applied to the model and an
auto extraction algorithm assigns the elastic constants to the model. However, this model was only
applied on homogeneous tissue.

4.2.1.3 Muscle Models

Modeling muscle with action lines is based on a surface model describing the anatomy of a muscle.
The action line indicates the direction of muscle contraction. Nedel et al. [174] applied this model
to animate human motion. Therefore, a brachialis muscle attached to the humerus and the ulna
allowed the flexion of a virtual skeleton forearm model. The muscle was modeled as spring-mass
system changing shape according to the shortening along the action line.
Chen et al. [182] and Zhu et al. [183] applied a 3D spring-mass system as well as a 3D FEM to
model an anconeus muscle. As template an anconeus muscle from the Visible Man dataset was
applied (Visible Human Project [24]). Mechanical and physiological parameters were taken from
Stern et al. [184].
Bourguignon et al. [3] proposed an anisotropic 3D spring-mass system modeling muscle tissue,
which will be discussed in detail in chapter 5.
Spring-mass systems are commonly applied, when focussing on quick simulation and accepting
low quality of the deformation. For more accurate deformation, FEM models based on continuum
mechanics are used resulting in more computational effort.

4.2.2 Continuum Mechanics and Finite Element Method

4.2.2.1 Muscle Models

Sachse [31] used a model based on the finite deformations using the strain energy density function
of Guccione et al. [64] for passive ventricular myocardium of canine. The analysis of the nonlinear
deformation was performed in an incremental total Lagrangian formulation with displacement-
based isoparametric finite elements [185].
Hunter et al. [78, 186, 82, 83, 132, 187] established a biventricular model, based on 3D contin-
uum mechanical methods. The theory of finite deformation elasticity is described by continuum
mechanical equations. A combination of Galerkin and collocation techniques is used. Further work
on this model was performed by McCulloch et al. [188], Costa et al. [189], and Vetter et al. [39].
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In both models a realistic deformation depending on the applied boundary conditions and the
parameters used was achieved. Sachse provided a deformation data set of a biventricular model
including computation of Vm , Ca2+ , and force.



5

Hybrid Deformation Model

In this chapter, the basics of the hybrid deformation model developed in this work are presented.
In addition the merging of continuum mechanical methods and the spring-mass system is explained
and occurring numerical problems are discussed.

5.1 Overview

The deformation of myocardium takes a vital part in the pumping function of the heart muscle.
Knowledge of myocardium anatomy and physiology makes it possible to create models of cardiac
behavior. These models can be used for surgery planning, educational and research purposes.
Simulations can be performed, which are beyond the capability of physical experiments. Volume
models of myocardium are necessary for realistic simulations.
The target of this work was to create an elastomechanical deformation model based on a spring-
mass system to describe myocardial behavior during various states of contraction. The hybrid
model created, is based on a spring-mass system enhanced by continuum mechanical methods.
In the following sections the basis of the model, the enhancements, and the methods applied are
described.

5.2 Spring-mass Model

The basis of the presented spring-mass system was derived from Bourguignon et al. [3]. They
presented a deformable model to control isotropy and anisotropy of elastic material.
The modeling of a geometric object with a spring-mass system as with finite element method
(FEM) implies a discretization of space. Tetrahedral or hexahedral elements are mainly used in
FEM technology to form discrete meshes. The tetrahedral mesh has the advantage to model more
easily the geometric object compared to hexahedral elements, when straight lines are used to
connect vertices. However, medical data acquired in a clinical environment are stored as voxel data
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(a) (b) (c)

(d) (e) (f)

Figure 5.1. A cubic voxel of biological tissue is modeled by masses and springs. Masses are denoted as
spheres at the vertices of a voxel (a). Anisotropy is modeled by three springs (displayed as cylinders),
which are centered in the voxel. The spring end points (blue spheres) are fixed to the voxel surface planes.
They describe fiber (white), sheet (yellow) and sheet normal (yellow) orientation (b). Isovolumetry can
be modeled by 8 springs connecting vertices with the barycenter (c), or four cross-element springs run-
ning diagonally through the volume connecting opposite vertices (d). The classical structural springs are
displayed in (e) and the classical surface springs in (f).

and hence a conversion into hexahedral elements is rather straightforward. Therefore, in this work
a hexahedral element based representation was chosen.
A given geometry was represented as a 3D mesh of cubic voxel, which were modeled by masses
and springs. For simplicity the conversion of one cubic voxel to a spring-mass system structure is
described below (fig. 5.1).

5.2.1 Masses

The mass of a single voxel is evenly split and assigned to the voxel vertices (fig. 5.1(a)). However,
adjacent voxel also provide a mass contribution to the vertices. The total mass of a voxel vertex
can be computed by applying the Voronoi cell. For a discrete set of vertices S in Euclidean space,
the Voronoi cell is defined by all voxel being closer to one vertex than to another, including those
being at an equal distance of two vertices. Therefore, the volume of the Voronoi cell Vi for a single
vertex i is

Vi =
Vvoxel

8
Nvoxel,i (5.1)
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Figure 5.2. Figure displays the vertex i (black circle) and its Voronoi cell (red), which consists of two
hexahedral elements (fig. from [190])

with Vvoxel the volume of a voxel and Nvoxel,i the number of voxel with vertex i.
An example of a two voxel Voronoi cell is described in fig. 5.2.
In a homogeneous voxel, its density ρ and its volume Vi define the voxel mass mi to:

mi = ρVi (5.2)

If Vi is given by eq. 5.1, mi can be computed using:

mi = ρ
Vvoxel

8
Nvoxel,i (5.3)

If the geometry consists of regional differing densities and therefore differing voxel densities, the
mass mi of vertex i can be described by

mi =
Vvoxel

8

N−1∑
k=0

ρk (5.4)

with ρk the density of voxel k and k = 0, .., N − 1. This method is the so-called mass lumping
method in FEM literature for regular meshes and eight node elements.

5.2.2 Spring Types

The hybrid deformation model consists of two basic spring types. One type is the active spring,
where forces are applied along the spring orientation and the other type is a passive spring reacting
solemnly to length change.
The active springs are the anisotropy springs (section 5.2.4) and explicitly the spring along the
fiber of the myocardium. The contraction initiation is started by applying a force at the spring ends
inward (fig. 5.3). This force is relayed as described in (section 5.2.4) to the corresponding masses.
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In case of active volume springs (section 5.2.6.3) all anisotropy springs become active springs, as
the volume conservation force is applied.
All other applied springs are categorized passive springs, which react to length change depending
on their property. Many properties were implemented e. g. linear, quadratic, uniaxial exponen-
tials (section 5.3.2.2) but mainly linear springs were applied during simulation.

5.2.3 Linear Spring Damper

A spring connected between two vertices x1 and x2 exerts the following force on each vertex:

f1l = −

(
k (‖l21‖ − r) + c

l̇21 · l21
‖l21‖

)
l21
‖l21‖

, f2l = −f1l, (5.5)

with l21 = x1 − x2, r the initial length of the spring, l̇21 = v1 − v2 the relative velocity of end
point vertices, k the stiffness, and c the damping constant of the damper (fig. 5.4(a)).
These types of springs were applied to construct a discrete spring-mass-damper system (furthermore
addressed as spring-mass system) of a given geometry. Furthermore, these classical springs retain
the continuity of a voxel (fig. 5.1(e) and 5.1(f)) and constitute with the masses the discretization
of the geometry of the object to model.

5.2.4 Anisotropic Springs

The integration of anisotropy is not built into a spring-mass system by default. Therefore, the
approach of Bourguignon et al. [3] was followed.

Figure 5.3. Contraction force (green) implementation into one cubic element represented by masses and
springs.
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Figure 5.4. Force orientation of compressed spring damper with masses mi, offset vectors xi from the
origin O, and the acting forces fi (a). Illustration of force integration for angular springs with an angle
changed from ϕ0 to ϕ between l21 and l43 (b). The offset vectors are not displayed (fig. from [190]).

A

fC

fA fB

fD

fP

P
B

C

P

D

O

A x
x

(a)

P

C

BA

D

!

"

(b)

Figure 5.5. Cubic myocardium element with 8 vertices. The directions of fiber, sheet and sheet normal
are centered inside the voxel and intersect the voxel planes (a). The position of one exemplary intersection
P is described by the bilinear form factors ζ and η (b).

An additional set of three springs denote fiber, sheet and sheet normal direction (fig. 5.1(b)). The
fiber springs are oriented parallel to the anatomical fiber direction. Their intersection points with
the voxel planes xP (Fig. 5.5) are computed with the bilinear form function:

xP = ζη xA + (1− ζ) η xB + (1− ζ) (1− η)xC + ζ (1− η)xD
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Here, xA, xB, xC and xD denote the vectors describing the position of the vertices of a given voxel
and ζ and η the form factors. The force fP acting on an intersection point consists of the contraction
initiation force implemented by the system and the reaction of the fiber spring to elongation. This
force is distributed to the neighboring masses by the following equations:

fA = ζη fP (5.6)

fB = (1− ζ) η fP (5.7)

fC = (1− ζ) (1− η) fP (5.8)

fD = ζ (1− η) fP. (5.9)

The forces fA, fB, fC and fD are forces distributed to the vertices A, B, C, and D, respec-
tively (fig. 5.5).
The anisotropic spring behavior can be modeled by linear springs (section 5.2.3) as well as by
uniaxial stress strain relations as described by Hunter et al. (section 5.3.2.2).

5.2.5 Angular Springs

The springs for fiber, sheet and sheet normal are directed in three perpendicular directions. The
angles between these springs must be kept constant during simulation, to prevent misalignment.
Therefore, angular springs are implemented [3].
Two springs attached to the vertices (x1,x2) and (x3,x4) representing fiber and sheet orientation
form an angle of 90◦ (fig. 5.4(b)). The pair of forces needed to counteract a small relative rotation
of an angle ϕ0 can be modeled by:

f1a = −ks

[
l21 · l43

‖l21‖ ‖l43‖
− cos(ϕ0)

]
l43
‖l43‖

, f2a = −f1a,

f3a = −ks

[
l21 · l43

‖l21‖ ‖l43‖
− cos(ϕ0)

]
l21
‖l21‖

, f4a = −f3a,

with vectors l21 = x1 − x2, l43 = x3 − x4, and ks the spring stiffness. Angular springs have no
parallel damper.
This method can be applied assuming, that only small relative rotations occur. Therefore, the
variation of angle can be replaced by the cosine function of the angle. Furthermore, for the inte-
gration of the counteracting force, the unit vector of the interacting direction was applied. This is
an approximation to the correct direction of the vector normal.

5.2.6 Incompressibility

In classical spring-mass systems, the option of incompressibility of a modeled element is not di-
rectly included. Forces are applied along springs, which are mostly located at edges or across the
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elements surfaces. Various methods however, have been proposed to model isovolumetry of tissue.
All methods described below have been implemented into the developed hybrid deformation model
and can be exclusively chosen for mechanical simulations.

5.2.6.1 Barycenter Spring

Maintaining a constant volume can be basically achieved by radial force as proposed by Promayon
et al. [191]. Bourguignon et al. [3] adapted a soft volume-preservation constraint of Lee et al. [192].
The barycenter of an element is computed by

xB =
1
8

7∑
i=0

xi, (5.10)

with xB the barycenter position, and xi the positions of the eight vertices belonging to the element.
Between the barycenter and each vertices linear springs are established (fig. 5.1(c)), exerting the
following force on the vertices

fi = −

(
ks (‖li‖ − r) + kd

l̇i · li
‖li‖

)
li
‖li‖

, (5.11)

with li =xi−xB, l̇i =vi−vB, the springs rest length r, the velocity vi of vertex i, the velocity of the
barycenter vB, the stiffness ks and the damping factor kd of the spring. This method applies only
passive springs without taking the effective volume change into account. Furthermore, the update
of barycenter velocity and position has to be computed at each time step.

5.2.6.2 Cross-Element Springs

A simplified model of the barycenter spring model is the cross-element spring model. The conser-
vation of volume is also achieved by passive springs being spanned from opposite vertices across
the element volume (fig. 5.1(d)). The calculation of barycenter velocity and position is omitted and
a reduction of springs is achieved. The volume conservation does not differ to a great extent from
the method above.

5.2.6.3 Active Volume Springs

An active spring model was created in the course of this work [193]. The active spring is mod-
eled using continuum mechanical methods. The volume of the deformed voxel is computed by
establishing the deformation gradient tensor F.

F =
∂x
∂X
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It describes the transformation of a line element ∂X from the reference X(t) to a line element ∂x

in the current configuration x(t) [173]1. The tensor F can be set up by knowing the initial and the
current displacement of the eight vertices of a voxel. The current volume V and the initial volume
V0 is computed.

V = V0 detF, ∆V = V − V0 = V0 (detF−1) .

The change in volume ∆V is scaled with the active spring factor ka and issued as additional volume
preserving forces fi to the vertices xi.

fi = −ka∆V
li
‖li‖

,
li
‖li‖

=
xi − xB

‖xi − xB‖

The vector xB describes the position of the barycenter. A positive change in volume results in a
scaled volume force fi towards the barycenter. A negative change in volume results in forces radial
from the barycenter. The scaling factor ka was estimated by numerical experiments.

5.3 Continuum Mechanical Enhancements

Many mathematical models of myocardial tissue use continuum mechanical methods to describe
mechanical properties. Three procedures were implemented in this work. One to model the in-
compressibility or isovolumetry of hyperelastic material, and two to model passive mechanical
properties of myocardial tissue.

5.3.1 Mooney-Rivlin Incompressibility

The methods of incompressibility or isovolumetry described above yield an acceptable volume
preservation ratio for small and thin models. However, modeling ventricular tissue requires a more
accurate conservation of volume. Ventricular tissue is described to be a hyperelastic material, which
refers to the property, that finite elastic deformations are completely recoverable [194]. These
materials are mainly described by continuum mechanical methods applying an energy density
function W.
The isovolumetric springs can be replaced by isovolumetric constraints adopted from a Mooney-
Rivlin model. Therefore, only the isovolumetric component of the Mooney-Rivlin strain energy
density function WM is applied:

WM = κ

(
detF− 1

detF

)2

The factor κ was chosen by numerical experiments.
This energy density function W was used to compute stresses resulting from a change in volume.
1 For an introduction into continuum mechanics see appendix A.
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5.3.2 Passive Material Properties

The spring-mass system, applying linear springs, is not capable to model the passive mechanical
properties of the myocardium to a great extent. Models based on continuum mechanical foundations
were derived from experimental studies. Most models are based on a strain energy density function
to model the behavior of myocardial tissue (section 3.4.4).
In this work, the models of Guccione et al. [80] and Hunter et al. [83] were implemented.

5.3.2.1 Energy Density Function of Guccione et al.

An exponential strain energy density function W describes the passive mechanical properties by

W =
C

2
(
eQ − 1

)
with a constant C chosen as described by Sachse [195] and the function Q, depending on the
Green-Lagrange strain tensor E. This strain energy function is based upon the constitutive laws
for arteries assuming orthotropic material properties [196]. The function Q is the representation
of the three-dimensional transverse isotropy with respect to fiber orientation dependent on the
Green-Lagrange strain tensor E and can be described by

Q = 2b1 (ERR + EFF + ECC)
+ b2E2

FF + b3

(
E2

CC + E2
RR + E2

CR + E2
RC

)
+ b4

(
E2

RF + E2
FR + E2

FC + E2
CF

)
with constants bi chosen as described by Sachse [195]. The indices F , C and R describe the
components of the Green-Lagrange strain tensor E and indicate fiber axis, cross-fiber in plane axis
and radial axis, respectively.

5.3.2.2 Energy Density Function of Hunter et al.

Hunter et al. [83] proposed the following energy density function:

W = k1
E2

11
(a1−|E11|)β1

+ k2
E2

22
(a2−|E22|)β2

+ k3
E2

33
(a3−|E33|)β3

+k4
E2

12
(a4−|E12|)β4

+ k5
E2

23
(a5−|E23|)β5

+ k6
E2

31
(a6−|E31|)β6

,
(5.12)

to describe the anisotropy and inhomogeneity of the myocardium, with ki the relative contribution
of each strain energy term, ai the limiting strain for a particular type of deformation, βi expressing
the curvature of the uniaxial stress-strain curves, and Eij the components of the Green-Lagrange
finite strain tensor.
The extraction of only diagonal elements of eq. 5.12 - neglecting all shear terms - results in uniaxial
stress strain relationships (fig. 5.6):
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W = k1
E2

11

(a1 − |E11|)β1
+ k2

E2
22

(a2 − |E22|)β2
+ k3

E2
33

(a3 − |E33|)β3
(5.13)

Figure 5.6. Uniaxial stress strain relationship of Hunter et al. [83]. This figure shows the stress strain
relationship in fiber, sheet, and sheet normal direction. The limiting strains for axial deformation are
marked by ai.

5.4 Application of Continuum Mechanics in a Spring-mass System

Various models describe mechanical properties of the heart by energy density functions W, de-
pending on the Green-Lagrange finite strain tensor E.
The following mathematical method describes the application of the energy density function W in
the hybrid deformation model.
The hybrid deformation model results in a step wise deformation of cubic elements. The dis-
placement of the cubic vertices is used to compute the deformation gradient tensor F (ap-
pendix A, eq. A.10). The Green-Lagrange finite strain tensor E can be computed by:

E =
1
2
(
FT F− I

)
(5.14)

with FT the transpose of the deformation gradient tensor F and I the identity tensor.
The differentiation of the energy density function W by E

S =
∂W
∂E

(5.15)

results in the second Piola-Kirchoff stress tensor S.
The second Piola-Kirchoff stress tensor S can also be derived from the first Piola-Kirchoff stress
tensor T and the inverse FT of the deformation gradient tensor F.

S = T(F−1)T (5.16)
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The tensor T can be described by :

T = JF−1σ (5.17)

with J the Jacobian of F and σ the Cauchy stress tensor. Substituting eq. 5.17 in eq. 5.16 results
in

S = JF−1σ(F−1)T (5.18)

For the extraction of σ from eq. 5.18 the following steps need to be applied:

S = JF−1σ(F−1)T (5.19)
1
J

S = F−1σ(F−1)T (5.20)

with

FF−1 = I (5.21)

follows

F
1
J

S = FF−1σ(F−1)T (5.22)

F
1
J

S = σ(F−1)T (5.23)

and multiplying eq. 5.23 by FT results in

F
1
J

SFT = σ(F−1)T FT (5.24)

Furthermore, applying

(F−1)T (F)T = I (5.25)

to eq. 5.24 results in

F
1
J

SFT = σ (5.26)

Rearranging eq. 5.26 to:

σ =
1
J

FSFT (5.27)

results in the Cauchy stress tensor σ.
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The deformation gradient tensor F can be understood as material gradient of deformation. Since
any deformation can always be reversed, the Jacobian determinant J must be J 6= 0. Therefore,
the inverse gradient tensor F−1 exists (eq. 5.21)(see section A.5).
The transpose FT of the deformation gradient tensor is constructed by interchanging rows and
columns of the deformation gradient tensor F following the condition eq. 5.25 (appendix A.5).
The components of the Cauchy stress tensor σij can be used to compile a stress vector for each
plane (fig. 5.7) e. g. :

σW1 =

σ11

σ12

σ13

 ,σW2 =

σ21

σ22

σ23

 ,σW3 =

σ31

σ32

σ33

 (5.28)

Stresses are defined as a force f divided by a surface area A:

σWi =
f i

A
(5.29)

Thus, the forces can be described by

f i = AσWi (5.30)

e2

e3

!

!

!

W1

W2

e

W3

1

Figure 5.7. Schematic of stress vectors on voxel surfaces. Vectors indicate the acting stresses upon the
voxel surface derived from the Cauchy stress tensor.
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Thus, a force vector for each voxel plane derived from the energy density function W can be
obtained. This force vector can be applied to the spring-mass system to model stresses depending
on the material deformation.

5.5 Numerical Solution

Various ways of handling deformable models are presented in the literature. The numerical pro-
cedures for spring-mass systems can be categorized into two main branches. One is the setting
up of mass, damping and stiffness matrices (section 4.1.2) and applying a solver for differential
equations the so-called implicit methods. The other are explicit methods e. g. Euler forward or
difference integration method where all occurring forces are collected per mass, the acceleration as
well as the velocity computed, and the masses displaced.
In this work an explicit Euler integration scheme as well as an explicit difference method was
applied, which is explained in the following sections.

5.5.1 Internal Forces

The anisotropic springs of the hybrid deformation model are loaded with a set of forces describing
the force generated by myocytes (fig. 5.3). This force distribution resembles the connective element
between tension and elasto-mechanical modeling (section 3.4.3). Even though this force is fed from
external sources, it is considered as internal force generated by the active spring representing the
behavior of myocardial cells.
The deformation gradient tensor is computed on the given displacements of the voxel and the
continuum mechanical methods for passive tissue are evaluated (section 5.3).
The resulting stress is converted in a surface force and applied at the intersection points of fiber,
sheet, and sheet normal springs with the surfaces (section 5.4) (fig. 5.8).
The force is distributed to the corresponding masses (section 5.2.4).

5.5.2 External Forces

In contrast to internal forces, which are generated by the active properties of the muscle, external
forces can be loaded upon the system, modeling a variety of external manipulations of the system.
Manipulations can be e. g. intraventricular pressure, boundary conditions, and instrument inter-
action. Since the system relies on forces for manipulation, this section is called external forces.
However, manipulations can also be realized by changing properties or mass of a vertex during the
explicit integration scheme. Two examples of applying forces and manipulating mass properties
are described below.
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Figure 5.8. Deformed voxel from different perspectives with force vectors (green) at the intersection points
and velocity vectors (blue) at vertices. The gray spheres denote masses at rest position.
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5.5.2.1 Boundary Conditions

Boundary conditions are position, velocity (Dirichlet boundary condition), and force (Neumann
bounary condition) acting on a mass. Furthermore, additional boundary conditions can be estab-
lished. A simple implementation of a boundary condition is the possibility to fix a mass to its
current position completely by applying x = const and v = 0. Other boundary conditions allow
the motion in only one or two specified directions. With such conditions the ventricular apex can
be strongly bonded to the pericardial sac (section 6.5).

5.5.2.2 Pressure Forces

A specific boundary condition are forces acting directly on the masses. In the case of pressure, a
force vector can be computed for each mass and the modeling of intraventricular pressure can be
achieved. Therefore, the masses of the inner wall of a ventricle are loaded by force vectors pointing
from the inside to the outside (section 6.5.2.1).

5.5.3 Dynamics Governing Equations

5.5.3.1 Basics

The motion of each vertex with mass m in time is governed by Newton’s law of motion:

a(t) =
1
m

N∑
k=0

fk(t) (5.31)

with k the number of linear and nonlinear forces fk acting on the mass, including spring and
continuum effects as well as pressure and other boundary conditions. For the solution the continuous
motion is discretized in time by so-called time integration schemes.
The proposed scheme is as follows: the internal time step is defined by ∆ti = ti − ti−1. Then a
constant acceleration during the time step is assumed:

a(t) = ati
= const for t ∈ (ti−1, ti]. (5.32)

computed by

ati =
1
m

(f ci + fsp + fW + fv + fp + f bc) (5.33)

with m the mass, the internal forces (section 5.5.1) acting on the mass including e. g. contraction
initiation forces f ci, spring forces fsp, forces derived from energy density functions fW , viscosity
forces fv and the external forces (section 5.5.2) acting on the mass including e. g. pressure forces
fp and boundary conditions f bc.
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The velocity becomes then:

vti
= vti−1 + ati

∆t (5.34)

which is constructed of the velocity of the prior time sub-step vti−1 in addition with the constant
acceleration ati and the internal time step ∆t. This velocity vti is used to compute the viscosity
force for each mass for the next time step.
The new position of a mass xti

is computed by

xti = xti−1 + vti∆t. (5.35)

This results in a new configuration of the nodal positions, nodal velocities, and spring elongations,
which must be updated prior to a new time step. This is the so-called classical Euler forward
marching scheme.

5.5.3.2 Addressing Numerical Problems

This method of displacement update yields some computational problems. Depending on the time
step as well as on generated forces of springs and continuum mechanical methods, an increase of
velocity of masses at the end points of springs can occur, which might lead to the exchange of place
of masses and therefore to the destruction of the lattice structure. Another reason for divergence
can be the delay in propagation of force within a body. Forces applied to a surface are delayed
in a spring-mass system, whereas it is instantaneous in the real world. The divergence grows with
lattice size and simulation time step ∆t. This is widely known for the Euler forward marching
scheme.

Miyazaki fusion model

Miyazaki et al. [197] proposed a constraint to take care of nodal velocities creating numerical
instabilities. In addition, the propagation of momentum from mass to mass is increased. They
applied a ratio of rigidity to each spring, disallowing relative velocity of end masses to grow beyond
a threshold.
The difference between rigid and elastic models is, that the force acting on a certain point of the rigid
body is instantaneously distributed to all connected elements, whereas in an elastic continuum, the
force is propagated with some delay. Therefore, when excessive forces act on a point of the spring-
mass model, springs can be extended or contracted, beyond the physical principles (fig. 5.9(a)). In
case of springs, rigidity can be modeled by applying the force acting on one end point with the
same magnitude to the other end point connected by the spring (fig. 5.9(b)).
The fusion model of Miyazaki et al. is based on the sum of kinetic and potential energy, which may
not exceed the maximum possible potential energy generated by the spring:
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1
2
m |v2 − v1|2 +

1
2
k |l − L|2 <

1
2
kL2 (5.36)

with v2 and v1 the velocities of the connected masses, the mass m, the spring constant k, the
actual length of the spring l, and the rest length of the spring L. The relative velocity |v2 − v1|
must be below a threshold Θ which depends on the actual spring length. Miyazaki proposes that
eq. 5.36 simplifies to:

|v2 − v1| < Θ
(
= k

m

√
l(2L− l)

)
(5.37)

However, the units do not match for eq. 5.37, therefore, in this work the implementation was carried
out as follows:

|v2 − v1|2 < Θ
(
= k

m l(2L− l)
)

(5.38)

|v2 − v1| < Θ

(
=
√

k
m l(2L− l)

)
(5.39)

The fusion model applies an elastic model. In addition an external force acting on one of the
endpoints is partly propagated directly to the other end, modeling rigidity of the object (fig. 5.9(c)).
It is realized by reducing or increasing the velocity of the end points by ∆v:

∆v =
1
2

(|v2 − v1| −Θ) (5.40)

Therefore, the relative velocity of end points can be regulated to an acceptable value.
The implementation includes:

• computation of velocities with eq. 5.34 with completely elastic springs
• velocities are increased or decreased by eq. 5.40 to reduce the relative velocity if eq. 5.39 is not

satisfied.

These steps are repeated until the inequality equation (eq. 5.39) is satisfied.
This method increases stability and decreases the sensitivity for large external forces. However, the
computational cost increases due to the additional computational complexity.

Jakobsen model

Another method for fast and stable physically based simulation was proposed by Jakobsen [198].
Jakobsen applies for his modeling the Verlet integration for particle systems [199]. The Verlet
method for particle systems was adapted to the hybrid deformation system. The method uses a
”velocity-less” representation to compute the displacement. The implementation of mass dynamics
(section 5.5.3) applies the acceleration computed by Newton’s law and stores the current position
xi and the corresponding velocity vi for each mass. In the time-stepping loop, the new velocity
vti+1 (eq. 5.34) and position xti+1 (eq. 5.35) is computed.
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rigid 
component

elastic 
component

(a) elastic (c) fusion(b) rigid

Figure 5.9. Elasticity, rigidity, and fusion model for a spring by Miyazaki et al. [197]. (a) shows the
elasticity component acting on only one of the elements. (b) shows the instantaneous propagation of rigid
components. (c) shows the fusion model where the elasticity component is split partly in an rigid component,
which is propagated to the other element. The adaptation is realized with a rigidity ratio (fig. adapted
from [197]).

The “velocity-less” representation depends only on the storage of the previous nodal position xi−1

and current position xi. The integration step becomes then:

xi+1 = 2xi − xi−1 + ai∆t2 (5.41)

xi−1 = xi (5.42)

which is widely used in simulating molecular dynamics. The implicitly given velocity results in a
more stable system.
The implicit velocity derives from applying a difference scheme:

vi− 1
2

=
xi − xi−1

∆t
(5.43)

and

xi+1 = xi + vi− 1
2
∆t + ai∆t2 (5.44)

and results in the Verlet integration method eq. 5.41.
Therefore, the real physical velocity is approximated by the distance travelled in the last internal
time step, divided by the internal time step. This method is also known as the central difference
scheme.



5.5. Numerical Solution 87

5.5.4 Times of the forward marching scheme

Various times and time intervals are used during simulations (fig. 5.10). The times are:

• simulation time: the time during which a simulation is performed. In case of mechanical sim-
ulation an interval of 1s is assumed during which a complete cardiac cycle (section 3.2.4) is
simulated.

• simulation time step: the time interval that the simulation time is divided into. In case of the
hybrid deformation model the simulation time is divided into 100 steps of 0.01s length.

• internal time sub-step ∆t: the time step used for a position update of masses in the basic
loop (section 5.5.5).

• computation time: the total real time a computer needs to perform all calculations needed for
the simulation time of 1s.

5.5.5 Basic Loop

The basic loop starts with the collection of internal (section 5.5.1) and external forces (section
5.5.2), then the displacement of masses (section 5.5.3) is updated followed by the update of spring
geometries (fig. 5.11).
The basic loop is performed with several sub-steps during a simulation time step. The amount of
sub-steps per simulation time step can be varied by a constant parameter or by the definition of
a loop terminating condition e. g. a velocity limit. The constant parameter must be big enough to
allow for the system to get close to an energetic minimum. The loop terminating condition can be
defined by setting a velocity threshold. The loop is continued until all mass velocities drop below
this threshold. Therefore, a small kinetic energy of the system results in the loop termination.

sub!step

simulation time

simulation time step

internal
time t

0.02s0.01s0.00s 0.03s 0.99s

!

Figure 5.10. Schematic of forward marching times applied during simulation.
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Figure 5.11. Schematic of basic loop of the spring-mass system.
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Methodology of Simulation

In this section, the methodology of the performed simulations is explained. Two differing analysis
of contraction initiation force are described. The setup of the hybrid deformation model with the
confocal truncated ellipsoids is presented from the spring-mass system to the implementation of
pressure.
The various steps in the simulation of a complete heart cycle can be distinguished into:

• modeling electrophysiology (section 3.4.1),
• excitation propagation (section 3.4.2),
• force development (section 3.4.3),
• pressure characteristics (section 3.4.5), and
• deformation via elastomechanical models (chapter 4).

Therefore, a coupling of models is required. Various models exist known as either microscopic or
macroscopic models. Microscopic models allow for direct comparison with measurements on the
cellular level, but are computationally more expensive. Macroscopic models approximate reality in
a more coarse manner and lead mostly to an averaged result, but with less computational effort.
The individual selection of models depends on the desired results.
A contraction is initiated by an action potential stimulating a myocardial cell, which generates ten-
sion and deforms along the fiber orientation. In the modeling process this reaction was represented
by a force acting along the given fiber orientation. Two methods of calculating force initiation were
performed. One is based on coupled microscopic cell models (fig. 6.1). This computationally fairly
expensive technique was applied for spring parameter estimation and basic deformation modeling
but was later dropped for more complex geometries like truncated ellipsoids. The second method
applied a cellular automaton parameterized by microscopic cell models (fig. 6.2). This method is
computationally more efficient and yielded sufficient temporal and spatial force distribution for
mechanical modeling.
In the following section the methodology of elasto-mechanical modeling in this work is presented.
The modeling of contraction initiation force is described as well as the creation of the hybrid de-
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formation model based on a geometrical ventricle model (section 6.1). The deformation simulation
started with the creation of the spring-mass system (section 6.3) and the implementation of bound-
ary conditions (section 6.5). In each simulation time step, a new force vector field (section 6.4) was

Electrophysiology
Cellular

Mechanics

Anatomical Model

Excitation Propagation Bidomain Model

Electrophysical Cell Model

Sarcomere Contraction Model

Coupled Differential Equations

Coupled Differential Equations

Hybrid Deformation System

Force Development

Diffusion & Poisson Equations

Figure 6.1. The figure shows the interconnection of cellular electrophysiology, excitation propagation,
force development, and mechanics. Solid arrows show the coupling of models, dashed arrows show the
possibility of deformation feedback. In addition, the basic underlying mathematical equations are named.
The bidomain model describes the behavior of excitation propagation for intra- and extracellular compo-
nents [200].

Sarcomere Contraction Model

Mechanics Hybrid Deformation System

Cellular Automaton

Force Development

Force Development

Electrophysical Cell Model
Coupled Differential Equations

Cellular
Electrophysiology

Single Cell

Anatomical Model

param
eterize

Coupled Differential Equations

Figure 6.2. The figure shows the coupling of cellular electrophysiology, excitation propagation, and force
development for a myocardial patch. The resulting curves are used to parameterize the cellular automa-
ton (fig. 6.3), which provides the mechanical model with temporal and spatial force vector fields.
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introduced into the system and the pressure was added to the inner wall (section 6.5.2). Then, the
basic loop (section 5.5.5) was performed deforming the geometry until the velocities of all masses
fell below a limit representing an approximation of an energetic minimum. If the velocities did not
decline below the limit, parameters were adapted. The deformation was saved and the simulation
proceeded with the next simulation time step.

6.1 Contraction Initiation Force

The focus of this work is set on the creation, implementation, and application of a deformation
model. Therefore, the coupling of models was used to acquire spring parameters at the creation
state of this work (section 7.1), only. The deformation simulations presented in Chapter 7 have
been gained by creating the contraction initiating forces as follows:
A microscopic electrophysiological model of Priebe et al. [105] (section 3.4.1.2) was coupled with the
hybrid tension model of Glänzel et al. [138, 142] (section 3.4.3) and applied on a single cell model.
In a steady state, the models produce three curves: transmembrane potential Vm, intracellular
calcium concentration Ca2+ , and force (fig. 6.3).
The resulting force curve was used to parameterize a cellular automaton (section 3.4.2.1). A com-
putation of spatial and temporal force distribution throughout the geometrical model was achieved
with the cellular automaton. The simulation of one cardiac cycle of 1 s was divided into 100 steps
of 10 ms, resulting in 100 pre-calculated force vector fields (fig. 6.4).

6.2 Spring-mass Parameters

The spring-mass parameters are stored in an additional file, where stiffness, damping and spring
property values can be chosen for each type of spring e. g. anisotropic, angular, barycenter-mass,
and cross-element springs. The spring property value allows to switch between different spring
behavior e. g. linear, quadratic, or uniaxial exponentials (section 5.3.2.2). Spring parameters for
four different tissue classes can be set, allowing the modeling of left and right ventricle as well as
left and right atrium. However, mainly left ventricular experiments with and without pathologies
were conducted.
Further values define e. g. mass density, continuum mechanical constants and their integration into
the computation, forward marching time sub-step, maximum of forward marching time sup-steps,
and velocity threshold.

6.3 Creation of Spring-mass Damper

The spring-mass system bases upon a geometry rendered in a cubic lattice (fig. 6.5). Each voxel
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that is marked as myocardial tissue is split into eight corner masses and integrated into the sys-
tem (fig. 5.1(a)). The fiber orientation stored in corresponding lattices is used to create springs
in fiber, sheet, and sheet normal direction (section 5.2.4) (fig. 6.6). Any set of structural springs
and volume springs are created, set up and integrated into the system resulting in a spring-mass
system (fig. 6.7). During the setup of the spring-mass system only non existing masses are created,
while an additional mass contribution is added to existing masses (section 5.2.1). As neighboring
voxel share springs, only non existing springs between masses are created.

6.4 Introduction of Internal Forces

Once the model creation is complete, the contraction driving forces need to be introduced. There-
fore, in each simulation time step, a force vector field (section 6.1) is loaded upon the fiber springs
of the hybrid deformation model (fig. 5.3).
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Figure 6.3. Transmembrane voltage, intracellular calcium concentration, and force curve for simulation.
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Figure 6.4. Pre-calculated normalized force distribution. Colors denote no force (blue) and maximum
force (yellow). The force curve in the lower left hand corner shows the force in a voxel at the apex of the
model.
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Figure 6.5. Ventricle geometry from different angles. Wireframe denotes the lattice boundaries.

Figure 6.6. Fiber orientation inside the ventricle model. Fiber orientation was linearly interpolated from
epicardium −70◦ to endocardium 70◦ with an angle of 0◦ in the mid-wall.
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Figure 6.7. Ventricle geometry discretized with spring-mass system. Red spheres denote masses, blue
spheres intersection points of anisotropy springs with voxel surface. White springs indicate springs oriented
in fiber direction. Red and orange cylinders form the structural spring network.
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6.5 Application of Boundary Conditions

6.5.1 Apex Fixation

The deformation simulations in virtual space need a reference point. In case of simulating a ventricle
deformation, the apex was chosen to be fixed horizontally. This behavior is consistent with reality,
as the heart apex is fixed to the pericardial sac, whereas the heart base with cytoskeleton and
valves is pulled towards the apex.
Thus, the nodal masses of the spring-mass system forming the apex of the model were restricted
concerning the vertical motion. Motion in the horizontal plane were allowed. This resulted in the
apex ability to rotate and deform (fig. 6.8).

Figure 6.8. Figure shows the simulation model with masses (red spheres) at voxel vertices. The apex
was fixed in one plane, allowing tangential but not normal motion (bottom). Fixed masses are denoted by
turquoise color.
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6.5.2 Pressure Forces

6.5.2.1 Introduction of Pressure

The intraventricular pressure was modeled as a force vector field acting on the masses forming
the inner wall of the ventricle. The pressure p was split into a vector of normals n and a scalar s

describing the force on a voxel surface (fig. 6.9 and 6.10).

p = sn (6.1)

The higher density of force vectors at the apex result in the choice of cubic voxel elements. An
interpolation of the surface was not applied as the effect for the deformation simulation are expected
to be neglectable. Both, normalized vector field and scalar value can be manipulated at any time
of the discrete internal simulation but were changed only at simulation time steps.
The vector field was set up by a virtual vertical line coinciding with the main axis of the ellipsoid
and ending at a focus point. Vectors were directed perpendicular from the vertical line to each
mass point at the inside surface and furthermore from the focus of the ellipsoid to the masses at
the apex (fig. 6.9). Various stages of pressure modeling are applied during simulation of a cardiac
cycle.

Figure 6.9. Slice of ventricular model with virtual axis (center) and normalized pressure vectors onto
endocardial wall.
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Figure 6.10. Normalized pressure vector field of ventricular model (Ventricular model was cut for visual-
ization).
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6.5.2.2 Pressure Modeling

In the scope of this work, models of the left ventricle were used to model the mechanical behavior.
Therefore, a main focus was on pressure models describing intraventricular pressure.
The contraction cycle is divided into four major phases, the isovolumic contraction, the ejection
phase, isovolumic relaxation and the filling phase (section 3.2.4).
The first three phases mentioned above were modeled using different approaches. The filling phase
was not modeled since only a minimal change of pressure occurs.

Isovolumic phase

During the isovolumic phase, the myocardium tightens around the incompressible fluid, pushing
it towards the aortic valve. The valve is closed resulting in a rise of the pressure value inside the
ventricle until the level of the aortal pressure is reached. Then the valve opens.
This phase was modeled by applying as much pressure to the inside of the ventricular walls as was
needed to retain a constant volume. In the modeling process a change of volume was accepted dur-
ing an internal time sub-step. Then the pressure needed to keep a constant volume was computed.
The model was set back to the deformation of the previous time step and the new pressure was
applied.

A scheme was developed to increase or decrease the pressure depending on the relative change
of volume and the pressure from the previous simulation step [201]. The following mathematical
description was applied:

pi = pi−1 + (1− Vi

V0
)kfmax (6.2)

with fmax the maximum introduced force used for contraction initiation, k a scaling factor, Vi the
intraventricular volume at sub-step i, V0 the initial intraventricular volume, pi−1 the pressure at
the preceding time step, and pi the resulting pressure.
In case of

• Vi < 1, the intraventricular volume decreased and the pressure needs to be increased.
• Vi > 1 the intraventricular volume increased and the pressure needs to be decreased.

The application of fmax allows to create a dependency of the pressure to the introduced force. The
factor k is used to scale fmax and allows for force to pressure transfer with unit 1

m2 .
The pressure oscillates depending on the volume change. A volume oscillation during the isovolumic
phase remains below 5%. An optimization of pressure values can be accomplished by successively
repeating the method above, applying the values achieved from the previous cycle. Four optimiza-
tion cycles were applied and showed, that the oscillation can be reduced from 5% to 2% (fig. 6.11).
Further optimization can be accomplished by decreasing the sub-time step.
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Figure 6.11. The volume during the isovolumic phase was restricted by applying intraventricular pressure.
The pressure correction yielded a 5% volume variation in the first cycle and a 2% volume variation in the
fourth cycle.

The step over to the ejection phase modeling was performed when a pre-defined pressure value was
reached. In the physiological case valves open and the ejection phase begins, when the intraven-
tricular pressure reaches the aortal pressure.

Ejection phase

The displaced volume of the cavity can be computed during the ejection phase. The proposals of
Wang et al. [161] were applied (section 3.4.5.1), however in the opposite direction.
Wang et al. measured the aortic pressure PA0, the blood ejected into the aorta Qin, the compliance
of the aortal tree, and the resistance Rprox of the peripheral systemic circulation and created
an equation to describe the interdependence of static and dynamic pressure and ejected volume
(eq. 3.15):

PA0(t) = PWk(t) + Pex(t) (6.3)

with eq. 3.20

PWK(t) = P∞ + (P0 − P∞)e
−t0
RC + e

−t
RC

∫ t

t0

Qin(t′)
C

e
t′

RC dt′ (6.4)
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and eq. 3.21
Pex(t) = Qin(t)Rprox (6.5)

In the course of this work, a scheme was implemented to model eq. 6.3 [201]. The hybrid deformation
model provides the ejected volume Qin into the aorta given by the change of intraventricular
volume. Parameters P∞, P0, R, C, and Rprox (section 3.4.5.1) were adapted from the measurements
of Wang et al. [161] and Westerhof et al. [163]. Thus, the aortic pressure could be computed from the
given Qin of the deformation. Since the pressure inside the aorta and the ventricle is almost identical
during the ejection phase (Fig. 3.6 IIa, IIb), the computed pressure was taken as intraventricular
pressure during the simulation.
During the simulation of the ejection phase the ejected volume Qin decreases after the maximal
contraction of the ventricle occurred. When the intraventricular volume reaches the minimum and
hence Qin = 0 the isovolumic relaxation phase begins.

Isovolumic relaxation

The aortic and bicuspid valve are closed and the myocardium relaxes during the isovolumic relax-
ation phase. The pressure decays to the left atrial pressure within approx. 60 ms. In the literature,
the pressure decay is described by an exponential decay (section 3.4.5.2). At first an approximation
of the pressure decay in Fig. 3.6 was applied. Thus, the diastolic pressure PD(t) was introduced
into the system by:

PD(t) = (PA0(tD)− Pa)
(

tD
t

)n

+ Pa t ≥ tD (6.6)

with tD the point in time where the relaxation begins, PA0(tD) the pressure computed by eq. 6.3
at time tD, and Pa the atrial pressure to which PD(t) decreases. The exponent was chosen to n = 8
to achieve a close approximation of Fig. 3.6 [201].
Furthermore, studies with exponential functions were conducted. The alternatively applied function
derived from eq. 3.23 resulted in:

PD(t) = (PA0(tD)− Pa) e
V (tD)−V (t)

C + Pa t ≥ tD (6.7)

with V (t) the intraventricular volume at time t, V (tD) the intraventricular volume at the beginning
of relaxation, and C the compliance of the aortal tree.

Application in the model

The application of the presented phases in the model was achieved as follows:
The simulation was started with the isovolumic phase. For each sub-time step deformations were ac-
cepted and the change of volume computed. Applying eq. 6.2 the resulting pressure was computed,
introduced into the system, and the deformation reverted. Then another forward marching step
was initiated. This procedure was repeated until the computed pressure reached the pre-defined
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pressure value for the opening of the valves.
With the opening of the valves, the ejection phase began and the pressure value was computed
by eq. 6.3 and the ejected volume Qin. Then the value was introduced into the simulation at the
sub-time step and a forward marching step was performed. The ejection phase ended when the
computed ejected volume Qin decreased to zero.
The pressure value computed at Qin = 0 was used as starting value for the isovolumic relaxation
phase. In this phase the pressure was modeled by eq. 6.6 and later by eq. 6.7 and introduced into
the system.
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Results

In the following chapter the chronological development and the performance on varying geomet-
rical models of the hybrid deformation model is described. It started out as a simple spring-mass
system, where spring parameters were adapted to a continuum mechanical deformation model by
Sachse [31]. Simulations were conducted, testing the systems stability with anisotropic fiber orien-
tation. The modeled geometries evolved from a patch of myocardium to hollow tube like structures
and further to ventricular models, represented by confocal truncated ellipsoids. Moreover, patho-
logic regions were introduced into the ventricular model and the effects on the deformations were
examined.
The switch to different computer hardware decreased calculation time. Methods for stable numerical
integration were implemented into the hybrid deformation model and allowed for broader parameter
range. The introduction of pressure into the model advanced the possibility to reproduce close-
to-reality deformations. Especially, simulations with pathologies revealed that tissue behavior was
achieved as reported in literature. Deformation simulations were conducted with biventricular
geometrical models. A 4D data set of a ventricle acquired from MRI measurements was used to
estimate the realistic behavior of the hybrid deformation model.
The following sections describe which methods were applied for simulation and visualization of the
deformation results. The methodology of simulation is explained in chapter 6 and will only briefly
be mentioned.
The deformation model created first is addressed as pure spring-mass system. With the implemen-
tation of continuum mechanical methods, the term hybrid deformation model is used. The hybrid
deformation model is therefore a spring-mass system enhanced by continuum mechanical methods.
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Figure 7.1. The figure shows the coupling of cellular electrophysiology, excitation propagation, force
development, and mechanics. Solid arrows show coupling of models, dashed arrows show the possibility of
deformation feedback. In addition the basic underlying mathematical equations are named. In this setup
the models of Noble et al. [103] and Rice et al. [134] were applied. The bidomain model describes the
behavior of excitation propagation for intra and extra cellular components [200]. The left side shows the
modeling with a continuum mechanical model by Sachse, and the right side shows the modeling with the
spring-mass system.

7.1 Spring Parameter Estimation

The estimation of spring parameters was first accomplished by the author [202] in collaboration
with L.G. Blümcke [190] prior to this work. A cube of 4 × 4 × 4 voxel with voxel edge length of
0.1 mm was used to study the interaction of microscopic electrophysiology and mechanics. Fiber
orientation was implemented by alignment of all fibers into one direction for all elements.
Models of cellular electrophysiology and excitation propagation were coupled with a force devel-
opment model (fig. 7.1). Electrophysiological simulations were carried out using a model by Noble
et al. [103]. The excitation propagation was carried out by taking the bidomain model into ac-
count [200]. Electromechanical coupling was implemented via the exchange of intracellular calcium
concentration [126]. The resulting force distribution was applied to a continuum mechanical model
by Sachse [31] as well as to a simple spring-mass model. For the deformation simulation, one outer
plane of the cube was fixed in virtual space. Gravity was not implemented. The deformation results
were compared and spring parameters were adapted. At this stage, the spring-mass system consisted
of only linear springs as described by Bourguignon et al. [3] and of active volume springs (section
5.2.6.3). Deformation results of surface based rendering including color coded force distribution
of the continuum model (fig. 7.2) and the deformation of the spring-mass system (fig. 7.3) are
displayed. Spring parameters of the spring-mass system were adapted to achieve a deformation
that was only differing by a few percent from the continuum mechanical model.
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Figure 7.2. Development of deformation of cubic geometry determined with the continuum mechanical
model of Sachse [31] at specific point in time. Curves at the left side of each figure show in gray the outline
of the estimation of transmembrane voltage Vm, calcium concentration Ca2+, force development f , and
displacement dZ in Z-direction throughout simulation time. The red coloring of these curves indicate the
progression of the curve until the given time instance. The color coding of the voxel resemble the acting
force in each voxel, with the scale on the right indicating force intensity (blue, no force and yellow maximum
force). The wireframe denotes the undeformed model.
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Figure 7.3. Development of deformation of the cubic geometry at specific points in time computed with
an early state spring-mass system [202]. The red spheres indicate masses at the actual position and gray
spheres the masses at the initial position. The turquoise spheres indicate masses fixed to their position.
The white and yellow cylinders represent the fiber, sheet and sheet normal springs. Structural springs were
applied but not visualized. The blue spheres mark the intersection of anisotropy springs with the voxel
surfaces. Curves at the left side of each figure are equivalent to fig. 7.2.
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7.2 Anisotropic Fiber Orientation

In the work of Blümcke [190] performed in close cooperation with Mohr [202] an anisotropic fiber
orientation was applied to the simple model. The anisotropy was assumed to represent a ventricular
wall patch by defining a fiber twist from inside (top) to outside (bottom of Fig. 7.4) from −50◦

to 50◦. The simulation set up was equivalent to the one in the previous section. By then, no
anisotropic deformation simulation was possible with the continuum model. The focus was set
on testing the ability of the spring-mass system to simulate stable deformations with anisotropic
tissue. Deformation simulations resulted in a twist of the cubic model following the applied fiber
orientation (fig. 7.4).
Following the successful anisotropic deformation, another study model was created [203]. The effects
of a circular fiber orientation on a tissue block were examined. Therefore, a 5× 5× 5 cubic volume
was created and the fiber orientation was arranged to resemble concentric circles (fig. 7.5(a)). The
same fiber orientation was applied to all layers of the cube. The top plane of the cube was fixed in
virtual space for the deformation simulation. Gravity was not applied.
Deformation simulations showed an in-plane contraction and an elongation perpendicular to the
circular plane (fig. 7.5(c)). An elongation was obtained due to the incompressibility model of the
volume by barycenter-mass springs. While the fiber springs shortened, the sheet and sheet normal
springs were allowed to expand to compensate the reduced volume.
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Figure 7.4. Development of the deformation of a cubic geometry with anisotropic fiber orientation com-
puted with an early state spring-mass system [190]. The red spheres indicate masses at the actual position.
The white and yellow cylinders represent the fiber, sheet and sheet normal springs. Structural springs
were applied but not visualized (fig. from [190]). Figures show the deformation at 0, 1600, 2000, and 2400
forward steps with a constant time step.
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(a) (b)

(c) (d)

Figure 7.5. Development of the deformation of a cubic geometry with circular fiber orientation computed
with an early state spring-mass system [202]. The red spheres indicate masses at the actual position and
gray spheres the masses at the initial position. The turquoise spheres are masses fixed to their position. The
white cylinders represent the fiber orientation springs and green indicates the amount of compression. The
red springs resemble structural springs. (a) shows a view from the top where the in-plane fiber orientation
is indicated by the white lines. (b) shows the study model in the initial position. (c) and (d) display the
model at maximum contraction from different perspectives. No gravity force is applied to the system.
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7.3 Modeling Objects with Holes

As the ventricle is a hollow organ with a specific wall thickness, further study models were created
to examine performance of the spring-mass system with more sophisticated models

7.3.1 Cubic Tube Structure with Circular Fiber Orientation

A myocardial structure of 15×15×15 cubic voxel with a voxel edge length of 1 mm was created [193].
A free space of 5×5×5 voxel was introduced in the center to examine deformation effects with a
tube like structure (fig. 7.6). The fibers show a circular orientation in each z plane (fig. 7.6(a)). The
top plane was fixed. A linear ramp function from 0 to 370 kPa was used for the contraction initiating
force and all voxel were subject to this force at the same time. Hereby, models of electrophysiology
were not applied. The spring-mass system was created with all springs (section 5.2). Energy density
functions were not implemented.
Simulations were conducted with this setup and deformation results are displayed (fig. 7.6). A vol-
ume preservation was achieved with an average of 75% by applying the active volume springs (sec-
tion 5.2.6.3) .
The deformation shows a uniform inward motion of the walls (fig. 7.6(c) and 7.6(d)). The decrease
of volume inside the tube is visible. Thus, a virtual blood volume inside the tube would be displaced,
as happens e. g. in vessels and cavities. Due to the steep descent of the ramp function the spring-
mass system returned to the initial position by swaying (fig. 7.6(e) and 7.6(f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6. Simulations with a tube like structure. A circular fiber orientation was introduced into each
plane to test anisotropic behavior. The black lines indicate fiber orientation (a). A lateral cut of the model is
shown in a relaxed state with no force acting on the tissue (b). The following figures display the deformation
for an increasing force (c), at maximum force peak (d), (e) and (f) for a fading force. Figures were taken
at time (b) 0, (c) 40, (d) 70, (e) 110, and (f) 140 ms.
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7.3.2 Cylinder Model with Realistic Fiber Orientation

The geometrical model with hole was extended towards a simplified ventricular model [193]. A
cylinder was rendered in a lattice of 21× 21 × 21 voxel with a wall thickness of 3 voxel (fig. 7.8).
The fiber orientation was set according to anatomical studies at the subepicardium to −75◦, at
mid-myocardium to 0◦, and at endocardium to 75◦. The cylinder was fixed at the upper rim and
an excitation was initiated at the lower rim. This behavior can be found in the left ventricle, as the
excitation of myocardial tissue commences from apex to base and from the inside to the outside
wall (section 3.2.2.1).
In contrast to section 7.3.1, the force was generated by coupling of the microscopic electrophysio-
logical, the excitation, and the force generating models (fig. 7.7). The resulting force was used as
input for the spring-mass model to determine the deformation (fig. 7.9 and 7.10).
The simulation shows, that the contraction follows the excitation propagation allowing for spatially
differentiated contraction (fig. 7.9). Thus, an upward transport of intraventricular volume can
be recorded. Furthermore, a torsion of the cylinder can be recognized, while the force already
decreases (fig. 7.10). The right side of the cylinder advances to the front, which can be determined
by the surface rendering exceeding the wireframe. At the same time, the left side is drawn back
behind the wireframe mesh. This indicates a clockwise torsion, which is solemnly induced by the
fiber orientation. The change in fiber orientation compared to the cubic tube model (section 7.3.1)
results in a torsion, but a smaller inward deformation. Thus, less volume is displaced inside. This
indicates that the wall thickness should be increased.
The spring-mass system slowly vibrates towards its initial position while the acting force decreases.
The examination of tissue isovolumetry showed that only an accuracy of approx. 75% was achieved.
When real myocardial tissue contracts and deforms, however, the tissue volume should be close
to 99%. The ability of the spring-mass system to maintain the voxel volume showed to be limited
depending on geometry and fiber orientation of the used model.

Electrophysiology
Cellular

Mechanics

Anatomical Model

Excitation Propagation Bidomain Model

Electrophysical Cell Model

Sarcomere Contraction Model

Coupled Differential Equations

Coupled Differential Equations

Hybrid Deformation System

Force Development

Diffusion & Poisson Equations

Figure 7.7. The figure shows the coupling of cellular electrophysiology, excitation propagation, force
development, and mechanics. Solid arrows show the coupling of models; dashed arrows show the possibility
of deformation feedback.
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(a) (b)

(c)

Figure 7.8. A cylinder used as a simple ventricle model (a). The white wireframe denotes the undeformed
cylinder. A cut through the cylinder is displayed to visualize the fiber orientation (b). A close up of the
cylinder wall shows the fiber orientation varying from endocardium (75◦) to mid-myocardium (0◦) and
subepicardium (−75◦) denoted by blue cylinders.
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Figure 7.9. Deformation simulation with a cylindrical model. The left side shows the force propagation
over the cylinder. The color scale ranges from no force (dark blue) to maximum force (yellow). The right
side shows the corresponding deformation with the spring-mass system. Figures from top to bottom are
captured at 20, 30, 40, and 60 ms. The white wireframe shows the relaxed model.(for continuation see
fig. 7.10)
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Figure 7.10. Deformation simulation with a cylindrical model (continued from fig. 7.9). The left side shows
the force propagation over the cylinder. The color scale ranges from no force (dark blue) to maximum force
(yellow). The right side shows the corresponding deformation with the spring-mass system. Figures from
top to bottom are captured at 80, 115, 135, and 230 ms.
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7.3.3 Cylinder Model Including the Energy Density Function of Guccione

The non-linear behavior of myocardial tissue was first modeled by linear springs. The parameteriza-
tion of spring constants depending on length was implemented by applying the proposals of Hunter
et al. (section 5.3.2.2). However, the poles limiting the uniaxial stress strain relationship resulted
in numerical difficulties due to stepping beyond the limit. Therefore, the model was extended using
continuum mechanical methods to model the non-linearity of the myocardium [204]. The strain
energy density function of Guccione et al. [80] was adopted (section 5.3.2.1). This energy density
function W was used to compute material stress initiated by material strain. For each voxel the
deformation gradient tensor F and the Green-Lagrange strain tensor E were determined at each
time step. The second Piola-Kirchhoff stress tensor S was derived and the Cauchy stress tensor σ

computed.
The tensor σ was applied to the voxel surfaces, which led to a force acting on the voxel vertices.
The masses were displaced and a new strain setup was achieved (section 5.4).
The contraction initiation force was determined as described in the previous section.
Simulating 500 ms took approximately 6 hours on a SGI Octane Mips R12000 400 MHz using the
deformation model. The deformation results did not vary visibly from the results given in fig. 7.9
and fig. 7.10. However, isovolumetry per voxel was sustained by approx. 90%.
The implementation of the strain energy function resulted in a more accurate deformation in the
vector space spanned by fiber, sheet and sheet normal. However, implementing continuum mechan-
ical methods increased the number of computations considerably and the according simulation time
by more than 20%.
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7.4 Ventricular Model

The cylindrical model with realistic fiber orientation did not sufficiently represent a ventricle. There-
fore, an analytical ventricular model was created in the form of an half ellipsoid (fig. 7.11) [205].
The half ellipsoid was rendered in a 20 × 20 × 20 voxel lattice with edge length of 0.2 mm. The
wall thickness was set to 5 voxel due to the results of previous sections. The force development was
computed by coupled microscopic models (fig. 7.7).
In addition, isovolumetric springs were replaced by isovolumic constraints adopted from a Mooney-
Rivlin model (section 5.3.1). This newly implemented method resulted in additional computational
effort.
The computer power to perform simulations was limited to a single processor SGI Mips R12000
400 MHz. Therefore, only a patch of 6×5×4 voxel of the ventricular wall was used for deformation
simulations (fig. 7.12, 7.13, and 7.14). The simulation time of 600 ms was divided into steps
of 20 ms. For each 20 ms time step the deformation was computed with 10, 000 sub-steps to
ensure relaxation towards an energetic minimum. The patch was fixed at the top layer and no
further boundary conditions were considered for the sides. The following table shows the relative
simulation times and the average voxel volume during deformation by the spring-mass system with
linear springs, and by the hybrid deformation model with energy density functions, respectively.

model type time in % average vol %

spring model 100 91

hybrid model 120 98

The increase in average tissue volume showed that the applied isovolumic constraints were able
to sustain the volume to a greater extent compared to linear springs. An increase of computation
time of 20% was required for the additional numerical effort. The deformation of the tissue
patch compared to the spring-mass system showed that the contraction as well as the torsion was
reduced. This can be accounted to the fact, that the patch was small compared to the fixed area
as well as the stricter enforcement of the constraints forced by the Mooney-Rivlin model. As an
concluding remark it must be noted that including sophisticated mathematical models into the
hybrid deformation model resulted in more realistic deformation, however the computation time
increased.
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Figure 7.11. A half ellipsoid was discretized into a 20× 20× 20 voxel lattice with edge length of 0.2 mm.
A patch of 6×5×4 voxel was extracted (shown in dark gray), to conduct deformation simulations.

(a) (b)

Figure 7.12. Myocardial patch built of 6×5×4 voxel. The wireframe denotes voxel edges (a). The patch
is displayed as a stairway to show fiber twist from endo- to epicardium (+75◦ to −75◦) in red cylinders
(b).
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Figure 7.13. Deformation simulation with the 6×5×4 voxel patch. The left column shows a frontal view
of the patch. The right column the view from the bottom. The patch was fixed at the top layer. The white
wireframe indicates the undeformed state (for continuation see fig. 7.14).
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Figure 7.14. Deformation simulation with the 6×5×4 voxel patch. (fig. 7.13 continued)
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7.5 Ventricular Model Including Pathologies

A more sophisticated anatomical model and new simulation strategies allowed the modeling of not
only a patch of ventricular wall but the complete left ventricle. The application of the ventricular
geometry resulted in the following spring-mass setup:

type quantity

voxel 8 224

masses 10 748

anisotropic springs 24 672

structural springs (edges) 29 671

structural springs (diagonal surface) 54 312

volume springs (diagonal through voxel) 32 896

sum of all springs 141 551

The application of new computer hardware (namely Apple PowerPC G5 2GHz), running with the
MacOS X system and the software adaptation to this system resulted in a reduction of computation
time. The mechanical deformation was computed in approx. 2 hours (1 s simulation time, 10 ms

simulation time step).
This enhancement allowed to investigate the capabilities of the deformation model to represent
tissue behavior with varying mechanical properties [206].
Simulations with regional changes of tissue characteristics were performed to model the behavior
of healthy, necrotic, and dilated tissue.
The elasto-mechanical ventricular model was enhanced by applying the truncation close to the
upper focus of the ellipsoids yielding a more realistic model of a left ventricle (fig. 7.15). The ellipsoid
was discretized into a 26×26×33 cubic voxel lattice with a voxel edge length of 0.2 mm. A rule
based fiber orientation varying from epi- to endocardium from −75◦ to 75◦ was used (fig. 7.15(b)).
Propagation of deformation forces inside an elastic model is delayed to surrounding elements,
therefore the fusion model of Miyazaki et al. [197] was applied for partial spring rigidity (section
5.5.3.2).
A simulation with the truncated ellipsoids was performed and used as reference deformation, rep-
resenting non pathologic (healthy) tissue. The tissue was set up with linear springs, Gucciones
strain energy density function, and Mooney-Rivlin material with incompressibility. The Green-
Lagrange finite strain tensor E was computed for each sub-step and the Cauchy stress tensors
σG (Guccione energy density function) and σMR (Mooney-Rivlin energy density function) were
computed (section 5.4). The resulting forces were applied to the voxel surfaces.
A region of the wall with the size of 8×9×10 voxel was set to either necrotic or dilated tissue
for the pathologic set ups (fig. 7.16). Due to missing comparable data, all parameters described
below were found empirically. Pathologic tissue was assumed to be unexcitable and not complying
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(a) (b)

Figure 7.15. A truncated ellipsoid was discretized into a 26×26×33 cubic voxel lattice with edge length
of 0.2 mm. The left figure shows a lateral cut with fiber orientation for each voxel. The right figure displays
the upper left corner, where the twist of fiber orientation from endo- to epicardium is visualized by white
cylinders.

Figure 7.16. Lateral view of open truncated half ellipsoid. The darker region displays the 8×9×10 voxel
patch with pathologic tissue properties. The wireframe denotes undeformed position.
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to so-called passive properties of healthy tissue. Necrotic tissue was assumed to be rigid. Dilated
tissue was assumed to be viscose.

Necrotic Region

The necrotic region was simulated by setting the parameters for the 8×9×10 voxel region as
follows:
The strain energy density function of Guccione et al. and Mooney-Rivlin was deactivated. Spring
parameters for stiffness and damping were increased by approximately 10% and 40%, respectively
as demonstration values. The tissue density was slightly raised to simulate increased inertia. The
parameter for the implemented fusion model of Miyazaki was increased to enhance the rigidity of
springs.

Dilated Region

The dilated region was simulated by setting the parameters for the 8×9×10 voxel region as follows:
The exponential strain energy density function of Guccione et al. and Mooney-Rivlin was deacti-
vated. Spring stiffness parameters were reduced to approx. 5% and damping was turned off, which
did not result in oscillations. The tissue density was held constant. The rigidity of the fusion model
was turned off.

Deformation Simulations

Deformation simulations with the described scenarios were conducted. The deformation results are
displayed (fig. 7.17, 7.18, and 7.19). The movement of the apex of the half ellipsoid is similar for
all three systems (fig. 7.17). The simulation with necrotic tissue shows less contraction in the lower
half of the ventricle compared to simulations performed with healthy tissue (fig. 7.17(c)).
For healthy tissue, the wall at the patch shows a slight curvature towards the inside of the ventricle,
whereas the necrotic patch forms a straight line, and the dilated wall bends slightly towards the
outside of the ventricle.
The view from apex to base allows a better observation of the torsion for each simulation. Both
simulations of pathological conditions show a reduced torsion (fig. 7.18). A comparison between
maximum deformation of healthy and pathologic tissue is visualized in fig. 7.19. The figures in
the left column depict necrotic tissue and the figures in the right column represent dilated tis-
sue. Simulations of necrotic tissue revealed a reduced torsion within the healthy tissue below
the pathologic area compared to simulations of healthy tissue as the surface exceeds the wire-
frame (fig. 7.19(a)). The symmetry of deformation of the necrotic model is sustained. This is
visualized by fig. 7.19(c) and fig. 7.19(e), where the left side of the apex exceeds the wireframe and
the right side remains behind it.
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(a) (b)

(c) (d)

Figure 7.17. Lateral view of truncated half ellipsoid. The top row shows healthy tissue (a) at the initial
position and (b) at maximum deformation. The lower row depicts pathologic tissue simulations at maximum
deformation after 0.210 s. The patch of necrotic tissue is displayed in dark shade (c) and the patch of dilated
tissue in light shade (d). The white wireframe denotes the half ellipsoid without deformation.
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(a) (b)

(c) (d)

Figure 7.18. Apex view of truncated half ellipsoid. The top row figures show the healthy tissue a) at
initial position and b) at full deformation. The lower row figures depict pathologic tissue simulation at
maximum deformation ( c) necrotic, d) dilated).

In contrast, fig. 7.19(d) and fig. 7.19(f) show that the symmetry is lost with the dilated model, as the
deformed apex remains behind the wireframe at both sides. The necrotic patch keeps its width com-
pared to a thickened wall of the healthy tissue, which is found looking at the wireframe (fig. 7.19(a)
and 7.19(e)). The apex upward movement is reduced (fig. 7.19(c)). The torsion of the dilated model
is stronger on the side of the pathologic area compared to healthy tissue. However, symmetry is lost
as the opposite side of the patch does not exceed the healthy tissue (wireframe in front of surface
rendering) (fig. 7.19(b) and 7.19(f)). Again, the apex upward movement is reduced (fig. 7.19(d)).
The tissue at the patch is deformed in outward direction (fig. 7.19(f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.19. Lateral and apical view of truncated half ellipsoid at maximum deformation for pathologic
scenarios. The wireframe in all pictures denotes the deformation with healthy tissue, whereas the colored
surface shows pathologic simulations at 0.210 s. The left and right column display the deformation with a
necrotic patch (a,c,e) and a dilated patch (b,d,f), respectively.
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Figure 7.20. Variation of intraventricular volume change depending on the assumed all healthy, or partially
necrotic, or dilated tissue.

For each simulation the cavity volume and tissue volume was computed and plotted at each time
step (fig. 7.20). The graph of the normalized cavity volume shows the normalized filling volume of
the ventricle model throughout the progression of a simulation sequence (fig. 7.20). The simulations
of pathological conditions showed a reduced volume displacement by 7% for necrotic tissue and
by 3% for dilated tissue compared to healthy conditions. The overall tissue volume decreased for
healthy tissue to 91% at maximum contraction.

Conclusions

Simulations with the hybrid deformation model were conducted to evaluate the capabilities for
pathologic tissue simulation. Three scenarios were investigated. The parameters were empirically
chosen, as the applied ventricular geometry only approximates a real ventricle. The use of tissue
properties found in literature was postponed until a measured geometry of a ventricle will be
applied.
The results for the deformation show, that especially for dilated tissue, only a minor bend towards
the outside is recorded. In a real pathologic case, a dilation causes a bleb (small bubble), into which
blood is pressed, reducing the ejection fraction considerably. Thus, the focus is set upon adding
intraventricular pressure to extend the realistic behavior of the hybrid deformation model.
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7.6 Enhancing Numerical Stability

The hybrid deformation model created, proved to be stable in only a parameter range of a few
percent. The range of applicable maximum force for contraction initiation was also limited to a small
range. A standard sub time step included the computation of the velocity and the displacement
of each mass by solving Newtons law of motion with the applied force vector field (section 5.5.3).
Depending on the choice of parameters the accumulated velocities grew sometimes beyond values,
which could not be compensated by reactional forces of springs, isovolumic or material constraints.
This leads to an unstable system. Such a behavior is well know for conditionally stable time
integration.
The system was enhanced by applying the central difference scheme, known in molecular dynamics
as Verlet method, originally proposed for particle systems [199]. Jakobson [198] (section 5.5.3.2)
proposed this method to improve stability of numerical integration. The method uses a velocity-less
representation to compute the displacement:

xi+1 = 2xi − xi−1 + ai∆t2 (7.1)

The new position xi+1 is computed from the current position xi, the previous position xi−1 and the
acceleration ai, derived from the induced forces divided by the mass. Thus, the real physical velocity
is approximated by the intermediate velocity vi− 1

2
in the last internal time step ∆t assuming:

vi− 1
2

=
xi − xi−1

∆t
(7.2)

The truncated half ellipsoid model representing a ventricle described in the previous section was
used as geometrical model. However, in contrast to the previous simulations, the apex was fixed
and not the valve plane. This was done due to the fact that the valve plane is pulled towards
the apex during contraction (section 3.2.4). The deformation simulation of one virtual ventricular
beat of 1 s duration was divided into 100 steps of 10 ms. For each step a pre-calculated force
vector field was introduced to the system computed by the cellular automaton (section 6.1). The
model was deformed in sub-steps until the velocity threshold was reached. Due to neglecting the
preceding velocities the velocity threshold was reached with less sub-steps. This resulted instantly
in a simulation time decrease to approx. 40 min, which describes the “Reference” simulation in
tab. 7.1.
Numerical stability investigations with the hybrid deformation model applying the central dif-
ference scheme were conducted with varied parameters for spring stiffness, internal time sub-step,
maximum of time sub-steps, and introduced force [207]. The varied parameters are given in tab. 7.1.
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In addition, the approximated total amount of computation time on an Apple PowerPC G5 2GHz
is listed.

Force Spring k Time step Iteration step Simulation time
Reference 1 1 1 1 40 min

Simulation 1 10 1 1 1 40 min
Simulation 2 1 0.01 1 1 40 min
Simulation 3 1 1 1 0.1 6 min
Simulation 4 20 1 1 0.1 6 min
Simulation 5 1 0.01 1 0.1 6 min
Simulation 6 5 1 2 0.1 6 min
Simulation 7 1 1 1 0.5 26 min
Simulation 8 10 1 1 0.5 26 min
Simulation 9 1 1 2 0.5 26 min

Table 7.1. Varied parameters for stability simulations with the hybrid deformation model applying the
central difference scheme. Numbers indicate factors applied to the reference simulation

The deformation of the ventricular model at the maximum induced force with the parameters
from tab. 7.1 are shown (fig. 7.21 and 7.22). The fact that an increase of induced force by a factor
of up to 20 led to a stable simulation shows the advantage of the method (Simulations 1, 4, 8).
The reduction of spring stiffness parameter k (Simulations 2, 5) and even the decreased number
of sub steps (Simulations 3 - 9) did not influence the stability of the simulations. Furthermore,
the possibility to advance simulations with an internal sub time step of twice the size was tested
(Simulations 6, 9). A reduction of total simulation time was achieved by varying the internal time
step and the sub-time steps without apparently destabilizing the system.

Conclusions

The central difference scheme allows a greater range for parameters and is stable within limits. It
is capable of stabilizing numerical simulation and reducing total simulation time, compared to the
previously used Euler forward marching scheme.
The modification of the resulting deformation due to the application of the central difference scheme
was not examined.
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Figure 7.21. Deformation simulation with the central difference scheme. The wireframe denotes reference
deformation.
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Figure 7.22. Deformation simulation with the central difference scheme. The wireframe denotes reference
deformation.
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7.7 Introducing Pressure Load

One part in mechanically modeling the heart consists in acquiring information about anatomy and
physiology. Furthermore, the microscopic properties and behavior of myocardial tissue needs to
be described by mathematical models. The other part consists of modeling blood pressure, valve
functionality, and blood flow.
In the course of this work, the incorporation of blood pressure characteristics into the elastome-
chanical ventricular model was performed [208, 201]. The windkessel and wave pressure model from
Wang et al. [161] was adapted and the relationship of pressure and intraventricular volume change
was applied (section 3.4.5.1).
Confocal truncated ellipsoids provided the anatomical model of a left ventricle. The temporal and
spatial force distribution was provided from simulations with the cellular automaton. A mechanical
parameter set as well as a spatial force distribution was used for simulations, which resulted from
previous simulations. Settings for parameters and force were not varied during pressure simulations.
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Figure 7.23. Normalized intraventricular volume. The curves describe the change of volume during de-
formation simulation. Vertical lines indicate the opening at t = 0.15 s and closing at t = 0.3 s of the
aortic valve. The curve with applied pressure shows an oscillation of volume due to the regularization of
the applied pressure depending on the volume change during phase I. A steeper decent during phase II,
and a slight drop after closing of the valve, compared to the curve without pressure, is visible.
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Figure 7.24. Pressure progression and intraventricular volume change. The upper graph displays the
changing of intraventricular volume. The lower graph shows the three phases and the corresponding pressure
time behavior. Vertical lines indicate the opening at t = 0.15 s and closing at t = 0.3 s of the aortic valve.

The pressure inside the ventricle was modeled during three of the four phases of a cardiac cy-
cle (section 6.5.2.2). Deformation simulations were performed with the mechanical model. The
difference of the intraventricular volume change in simulations with and without pressure load was
recorded (fig. 7.23). The volume change in the simulation without pressure resulted in a smooth
curve. The volume decreased from the beginning and fairly rapidly drops between approx. t = 0.10 s

to t = 0.20 s. It reached its minimum at t = 0.25 s with ∆Vmax ≈ 0.5, then gradually increased
again to approx. 91% of the original volume.
In contrast, the intraventricular volume curve computed with pressure load showed a horizontal
line with some oscillations until t = 0.16 s (isovolumic contraction) (fig. 7.23). Furthermore, a
steeper descent was visible until t = 0.3 s reaching ∆Vmax ≈ 0.4. Following was a small descent
until t = 0.35 s then increasing parallel to the curve computed without pressure to approx. 97%
of the volume.
The pressure progression during the first three phases and the intraventricular volume are plotted
together in fig. 7.24. The pressure curve during phase one was used modeling isovolumic contraction.
It depended on the pre-determined displacement due to the contraction force (section 6.5.2.2). In
phase two the pressure was reset to zero (see conclusions) and only the pressure due to the ejected
volume as described by eq. 3.22 was applied. This resulted in a jump passing from phase one to
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Figure 7.25. Pressure curves determined with the model of Wang and Lighthill. Model was applied during
open valves only.

phase two. Starting from the offset of phase two, a rational function (eq. 6.6) described the decay
in phase three (relaxation phase).
The adaptation of the model of Wang et al. was used for phase two (fig. 7.25), which marks the
opening of valves and the ejection of blood into the aorta (fig. 7.26). This model was only applied
during this time period, as a change in volume is needed to derive pressure. The displaced volume
Qin was used to compute Pex, PWk, and PA0 (section 6.5.2.2). The displacements during the
deformation simulation were recorded and are displayed for a sequence of timesteps (fig. 7.27).
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Figure 7.26. Lateral view of deformed truncated half ellipsoids at valve opening. The white wireframe
denotes an undeformed ellipsoid. The figures show the deformation before ( top ) and after the valve
opening ( bottom ). After the valves opened, the wireframe at the inner wall is not visible. This is due to
a quick inward motion, resulting from the release of pressure in the ventricular cavity.
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Figure 7.27. Lateral view of a deformed truncated half ellipsoids at successive timesteps. The white
wireframe denotes an undeformed ellipsoid. The deformation shows the isovolumic phase, where only small
deformations towards the inside occur (t = 0 s to 0.16 s), until the valves open. The curves in each figure
from top to bottom show the pressure in the isovolumic phase, the pressure during ejection and relaxation
phase, and the intraventricular volume (for continuation see fig. 7.28).
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Figure 7.28. Lateral view of deformed truncated half ellipsoids at successive timesteps (continued from
fig. 7.27) with ejection phase (t = 0.18 s to 0.30 s) and relaxation phase (t = 0.30 s to 0.99 s).
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Conclusions

Phase one (fig. 7.24) shows a steep raise in pressure until t = 0.15 s, which resembles recordings
in the literature [17]. Oscillations in the pressure and volume curves during this phase are caused
by an unprecise approximation of the pressure to volume relationship. This can be enhanced by
using smaller timesteps and eventually using more sophisticated mathematical methods to derive
adapted pressure values.
During phase two, the proposals of Wang et al. were followed. The ejection volume was acquired
and resulted in a pressure curve. The oscillating peaks shortly after valve opening are due to the
size of timestep, the passover from phase one, and the fast ejection. This phase describes the
atrial pressure curve and should start with the offset pressure of the atrial base pressure. Hence,
the pressure curve should commence with the offset pressure given by the peak of phase one.
However, the forces driving the contraction in phase two were not able to sustain the pressure
offset given by phase one. It is shown that the pressure peak of phase one is almost twice the size
of the pressure generated by the model of Wang et al.. Therefore, further investigations need to be
conducted, focusing on the crossover from pressure phases. Furthermore, the applied forces need to
be reevaluated, since electrophysiological and force development models were used, based on fully
relaxed muscle fibers.
Phase three resembles the isovolumic relaxation, where the pressure was modeled by a simple
rational function. This decay was chosen to approximate the decay found in fig. 3.6, III. Although
modeling of phase four has only a minor impact on the deformation model, it should be taken into
account to complete the model for a full cardiac cycle.
The normalized intraventricular volume with and without applied pressure was plotted in fig. 7.23.
In the isovolumic contraction phase the curves show an explicit difference between simulations
with and without pressure. The curve with pressure shows slight oscillations during t = 0 s and
t = 0.15 s. The steeper decent in the pressure simulations during opened aortic valve indicates a
faster ejection of blood into the aorta. At the border from phase two to three, another descent of
the volume curve is visible. An investigation revealed that the intraventricular pressure in phase
three decays faster than the contraction initiating force. Therefore, another slight contraction takes
place in phase three. However, this issue can be addressed by applying force development models
with different shape or contraction dependent force generation models instead of static models.
Furthermore, phase III resembles the phase of isovolumic relaxation, where all valves are closed
and hence the volume does not change. Thus, the delayed start of volume increase resulting from
the pressure model appears more realistic than the steep increase of the volume curve of the model
without pressure.
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7.8 Parameter Improvement of the Pressure Model

The modeling of a measured pressure can be achieved by the means presented in the previous sec-
tion. The realistic adaptation of the consisting pressure model for the confocal truncated ellipsoids
was done by scaling the introduced pressure values during phase one to the corresponding value
in mmHg, which is a common unit used, when measuring pressure inside the human body [201].
Conversion factors for mmHg are:

1.00 atm = 760.0 mmHg = 101.325 kPa = 101 325 Pa = 101 325 N
m2

with atm the unit atmosphere, mmHg millimeters of mercury, Pa Pascal, kPa kilo Pascal, N

Newton, and m meter.
Wang et al. [161] also used mmHg as unit for their computations. Thus, a uniform pressure curve
was established applying phase dependent models (fig. 7.29). The end-diastolic atrial pressure was
applied as lower limit for the simulation. This means that the pressure calculation was started and
finished with an offset, set by the end-diastolic atrial pressure.
Deformation simulations with the presented pressure models were conducted and parameters and
pressure values were given by Wang et al. (fig. 7.29 and 7.30). The measurements of Wang et
al. were conducted upon dog hearts, thus pressure values resemble those of a dog not a human.
An adaptation to human pressure values must be carried out, when applying a measured data
set of a human left ventricle. In contrast to the previous pressure computations (section 7.7) the
pressure in fig. 7.29 resembles in close detail data in the literature (fig. 3.6). The proportion of
the isovolumic phase of 50 ms as well as the ejection phase of approx. 200 ms were met. However,
the intraventricular volume change shows still the extra descent when passing from phase II to
III (fig. 7.30).
Therefore, the mmHg scaling factor was reduced, resulting in an almost doubled intraventricular
pressure for the model (fig. 7.31). Due to this reduction, the pressure in the isovolumic phase
increased, resulting in a later opening of the valve and a pressure peak at the passover from phase
I to II. The sudden pressure peak cannot be damped out by the model of Wang et al. and results in
a strong oscillation during phase II. The ejection volume depends on the intraventricular pressure,
hence it oscillates in phase II. Only about 25% of the volume is ejected (fig. 7.32) compared to 40%
in the previous simulation (fig. 7.30). In addition, the pressure decay during the relaxation phase
was reduced to avoid an extra descent of the volume curve. This measure resulted in a smooth
curve, but led to an expansion of the ventricle beyond the initial volume.

Conclusions

In summary, intraventricular pressure heavily influences the contraction of the ventricle. An
adapted pressure must be used depending on the ventricle geometry and on the amplitude of the
contraction initiation force. The hybrid deformation model is capable of interacting with boundary
conditions namely intraventricular pressure. Further pressure adaptation to the truncated ellipsoids
were postponed for simulations with measured data of human ventricles.
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Figure 7.29. Total computed pressure during deformation simulation. The ventricular pressure consists of
three curves for the different cardiac phases. Phase I describes the pressure during isovolumic contraction,
phase II the pressure during the ejection of blood into the aorta following the model of Wang et al., and
phase III and IV the relaxation phases modeled by a rational function.
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Figure 7.30. Pressure and volume change during deformation simulation. The aortic pressure PA0 consists
of the Windkessel pressure PWk and the pressure due to wave motion Pex. The Windkessel pressure as well
as the wave motion pressure are displayed for phases II to IV but applied only for phase II. In addition,
the change in volume is displayed.
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Figure 7.31. Total modeled pressure during deformation simulation with varied parameters. Due to the
reduction of the scaling factor, the pressure during the isovolumic phase increases, resulting in a delayed
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Figure 7.32. Pressure and volume change during deformation simulation. The aortic pressure PA0 consists
of the Windkessel pressure PWk and the pressure due to wave motion Pex. The Windkessel pressure as well
as the wave motion pressure are displayed for phases II to IV but applied only for phase II. In addition,
the change in volume is displayed. An oscillation occurred during phase II. A reduced pressure decay in the
relaxation phase caused an unrealistic expansion of the ventricle at t = 0.5 s to more than 100% volume.
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7.9 Pathologic Tissue and Pressure Load

One indication of a malfunctioning heart is the ejected volume. Pathologies of the tissue reduce
the hearts ability to eject as much blood into the aorta as needed by the body. As a result the
patients physical abilities are reduced.
As an example of heart pathologies, a patch of tissue was altered in its contractility. Deformation
simulations showed that pathologic tissue can be modeled with the hybrid deformation model (sec-
tion 7.5). However, proper tissue behavior can only be examined including intraventricular pressure.
Therefore, in the course of this work, simulations of section 7.5 were repeated including the intra-
ventricular pressure found in section 7.8 [201].
The ejected volume of necrotic and dilated tissue is smaller compared to healthy tissue (fig. 7.33).
The same effect can be seen conducting simulations with pressure (fig. 7.34). The comparison of
ejected volume simulations with and without pressure shows a significant difference of approx. 10%.
The pressure generated by the ventricle with pathologic tissue is reduced by approx. 10% -
12% (fig. 7.35). Visualization of the ventricle at maximum contraction force shows, that the patho-
logic tissue bends to the outside as a result of acting pressure. This causes a so called bleb for
a patch of dilated tissue (fig. 7.36(d)). The necrotic tissue also shows an outward bend, but can
restrain the acting pressure much better (fig. 7.36(c)).
The different material properties of the pathologic patch result in a smaller torsion of the left
upper side of the ventricle (fig. 7.37). The reduced torsion of the pathologic patch and the adjacent
tissue can be differentiated by visualization of healthy tissue deformation vs. pathologic deforma-
tion (fig. 7.38). In this case the wireframe shows deformation of healthy tissue and the rendered
surface the deformation of pathologic tissue. The torsion of the pathological deformation on the
left side of the ventricle is smaller when the rendered surface is positioned in front of the wireframe.

Conclusions

The comparison of deformation results acquired with and without pressure load reveals, that the
pressure is a key factor in modeling pathologies, besides the elasto-mechanical properties of the
tissue itself. Simulations without pressure show a recognizable change in ventricular deformation,
however the pathological consequences can only be received by including intraventricular pressure.
Further analysis of the change of mechanical properties of pathologic tissue must be examined to
parameterize the hybrid deformation model.
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Figure 7.33. Volume change with healthy and pathologic tissue without pressure load during deformation
simulation.
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Figure 7.34. Volume change with healthy and pathologic tissue and pressure load during deformation
simulation. The extra descent is still visible, which is caused by the faster descent of the pressure curve
compared to the contraction initiation force (section 7.7).
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Figure 7.35. Pressure of healthy and pathologic tissue during deformation simulation. During isovolumic
contraction (phase I) the same pressure curve for all simulations was applied. During phase II the reduced
intraventricular pressure resulted from the reduced ejected volume.
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(a) (b)

(c) (d)

Figure 7.36. Lateral view of truncated half ellipsoid including pressure load. The top row figures show
healthy tissue (a) at initial position and (b) at maximum deformation. The lower row figures depict sim-
ulation results with pathologic tissue at maximum deformation (0.290 s). The patch of necrotic tissue is
displayed in dark shade (c) and the patch of dilated tissue in light shade (d). The white wireframe denotes
an half ellipsoid without deformation.
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(a) (b)

(c) (d)

Figure 7.37. Apex view of the truncated half ellipsoid including pressure load. The top row figures show
healthy tissue and the lower row figures depict pathologic tissue simulation at maximum deformation ( c)
necrotic, d) dilated).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.38. Lateral and apex view of truncated half ellipsoids at maximum deformation for pathologic
scenarios including pressure load. In all pictures, the wireframe denotes the deformation with healthy tissue,
whereas the rendered surface shows pathologic simulations at 0.290 s. The left and right column display
deformations with a necrotic patch (a,c,e) and a dilated patch (b,d,f).
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7.10 Pressure with Different Force Model

The plots of intracellular volume from the previous sections indicate, that the pressure during
relaxation decays faster than the contraction force declines. This results in an additional contraction
in the relaxation phase.
Thus, simulation series were conducted applying the force development model of Rice et al. [134].
The force curve has a quicker upstroke as well as a steeper descent (fig. 7.39). Deformation sim-
ulations were conducted with the same geometry and pressure setup of section 7.9 and healthy
tissue. The tissue deformation did not differ visibly, however, the intraventricular volume shows
a significant deviation (fig. 7.40). More volume is ejected with the Rice model indicated by the
minimum of the volume at approx. 50% compared to the Glänzel model of only 60%. Furthermore,
the relaxation phase shows a negligible descent only at the crossover from phase II. The cardiac
phases are time shifted due to the fact that the pressure marking the opening of valves is reached
earlier by the Rice model. This results in a reduced isovolumic phase, too.

Conclusions

The force model is one factor leading to the extra descent of the intraventricular volume. The notch
at the passover from phase II to phase III could be partly compensated by applying a different
force model. Another factor influencing the behavior might be found in the application of the decay
function during phase III.
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Figure 7.39. Force curve for models of Rice et al. and Glänzel et al.. The force curve of Rice shows a
steeper increase and a steeper descent of the force compared to the model of Glänzel. The model of Glänzel
starts and declines to an offset of approx. 0.98.
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Figure 7.40. Intraventricular volume change for force model of Rice et al. and Glänzel et al.. The curve
determined with the Rice model shows a shorter isovolumic phase, a steeper descent, a higher displaced
volume, and a smaller extra descent compared to the volume change of the model of Glänzel et al.

7.11 Pressure Adaption for Phase III

The results of the previous section indicate that the contraction initiation force is not the only
factor responsible for the edge at the passover.
Therefore, the simulations were repeated applying the model of Glänzel, since pressure components
were optimized for this model. However, for modeling phase III+IV the exponential decay (eq. 6.7)
was applied (fig. 7.41). This function takes the actual intraventricular volume into account, too.
Simulations depicted that the edge at the passover could be smoothed, however slight oscillations
were introduced during phase III (fig. 7.42). These oscillations result in the volume factor V given
by the exponent in eq. 6.7, where the coupling of the pressure with the volume change is described.

Conclusions

Pressure adaptation with a changed force model (section 7.10) results in a better approximation
of volume ejection during simulations. However, the application of the exponential function for
modeling the pressure decay during phase III resulted in a realistic volume ejection curve of the
heart.
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Figure 7.41. Pressure and volume change determined with an exponential pressure decay for phase III.
At the beginning of phase III oscillations occur due to the incorporation of volume dependent pressure.
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Figure 7.42. Volume computed with an exponential pressure decay function for phase III.
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7.12 Importance of Fiber Orientation

The orientation of fibers and, thus the contraction direction, influences the mechanical behavior
of a model. This was demonstrated on simple geometries in section 7.2 and section 7.3. The fiber
orientation of a human left ventricle is approx. −75◦ (epi-) to 55◦ (endocardium) (fig. 7.43(a)).
In a further experiment, the fiber orientation of the truncated ellipsoids from epi- to endocardium
was modified (fig. 7.43(b)). The orientation was inverted starting from 55◦ (epi-) to −75◦ (endo-
cardium). In addition, a slight rotation around the vertical axis was performed. The anatomical
and the model fiber orientation are displayed in fig. 7.44 and fig. 7.45. Deformation simulations
with intraventricular pressure and the setup of healthy tissue were performed as in section 7.9. The
deformation simulation with correct anatomical fiber orientation was used as reference.
Deformation simulation results given by the model fiber orientation show a significant effect on the
pumping function of the ventricle (fig. 7.47(b)). Even though, the ventricle slightly contracted, a
shear of geometry can be distinguished, revealing that almost no volume is displaced. The latter is
supported by the examination of the ejected volume over time (fig. 7.46). The ejected volume was
computed by summation of each element inside the ventricular geometry. Thus, the deformation of
the upper wall towards the top produced an extreme elongation of the attached elements, resulting
in a volume increase during the first 15 ms. With increasing force the ventricle slightly contracts,
which can be seen by the ejected volume of approx. 5%. The simulation with anatomical fiber
orientation shows a volume ejection as already presented.

Conclusions

The fiber orientation has significant influence on the contraction of the myocardium. This was
already presented in previous sections. However, the effect on the efficiency of the pumping of the
heart was revealed by this experiment. A modification of the fiber orientation has an enormous
effect on the displacement of intraventricular volume and results in this case in hardly any ejected
volume.
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Figure 7.43. Anatomical (green) and model (red) setup of fiber orientation. The upper figure shows the
anatomical fiber orientation from epi- ( −75◦) to endocardium (55◦). The lower figure displays the modified
fiber orientation.
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(a)

(b)

Figure 7.44. Combined visualization of anatomical (green) and model (red) fiber orientation setup. (a)
shows both fiber orientations at the upper rim of the ventricular model. (b) shows the perspective from
epi- to endocardium. The linear fiber twist is visible (green).
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Figure 7.45. Combined visualization of anatomical and model fiber orientation setup. The perspective
from valve plane to apex is shown.

model fiber orientation

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  0.2  0.4  0.6  0.8  1

vo
lu

m
e 

[%
]

time [s]

anatomical fiber orientation

 0.4

Figure 7.46. Intraventricular volume change with anatomical and model fiber orientation setup. The sim-
ulation with anatomical fiber orientation shows the expected volume displacement (green). The simulation
with model fiber orientation demonstrates, that almost no volume is ejected (red).
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Figure 7.47. Deformation of truncated half ellipsoids with anatomical and model fiber orientation. The
anatomical fiber orientation results in a contraction similar to simulations presented in previous sections
(top). The model fiber orientation results in a torsion of the ventricular model similar to the anatomical
fiber orientation, however no contraction is achieved. The geometry is sheared with only little displacement
of intraventricular volume (bottom).



156 Chapter 7. Results

7.13 Deformation of a Biventricular Model

Sachse provided the geometrical data set of a biventricular model including fiber orientation as well
as a deformation data set derived by his model [31]. The biventricular model was fixed at the valve
plane for vertical movement; the electrophysiology, excitation propagation and force development
were computed by microscopic cell models as shown in fig. 7.1 (left side). The result of deformation
simulations are displayed in fig. 7.49. The simulation time required for the complete cycle took one
week on a SGI Origin 3800 with 32 Mips 14 k 600 MHz processors, upon which 90% was used for
deformation simulation. No intraventricular pressure was considered.
The application of the biventricular geometry resulted in the following spring-mass setup:

type quantity

voxel 18 684

masses 23 062

anisotropic springs 56 052

structural springs (edges) 66 113

structural springs (diagonal surface) 122 394

volume springs (diagonal through voxel) 74 736

sum of all springs 319 295

The deformation simulation with the hybrid deformation model (HDM) and pre-calculated forces
required approx. 53 min, on a PowerPC G5 2 GHz, running MacOS X. For the simulation with
this model the stiffness of structural springs was increased by 30% and the maximum force by 20%.
The adaptations were necessary as the wall thickness in the given geometry increased.
A deformation simulation with the HDM was performed with the forces provided by Sachse. Al-
though physiologically incorrect, the valve plane was fixed in vertical direction to allow compari-
son (fig. 7.50). Intraventricular pressure was modeled as described in the previous sections for the
left ventricle, only.
The deformation with the model by Sachse (SM) shows a homogenous counter-clockwise torsion
from apex to valve plane (fig. 7.49, bottom). The right side of the ventricle exceeds the wireframe,
whereas the left side stands behind. The upward movement of both ventricles is almost one voxel.
The left ventricle contracts inward only about 2 voxel from both sides. This results in an ejected
volume of approx. 25%.
The simulation with the HDM was performed with the temporal and spatial force values provided
by Sachse. The amplitude was scaled to the maximum value to correlate with the spring parameter
setup. In contrast to the deformation by the SM, the HDM does not show a homogenous torsion.
The lower half of the left ventricle deforms counter-clockwise, however the upper part shows a
clockwise rotation (fig. 7.50, bottom). The inward movement shows a displacement of more than 3
voxel at each side, which results in a larger ejection volume of approx. 50% (fig. 7.48). The upward
movement of the apex compared to the SM is larger, too.
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Another simulation was performed with the HDM applying a force generated by the cellular au-
tomaton. In addition, the apex was fixed vertically yielding a more realistic boundary condition.
Deformation simulations show similar behavior of the displacement compared to the previous sim-
ulation, however, with a reduced torsion and a reduced inward movement. The lowering of the
valve plane is clearly visible. The model of Sachse led to numerical instabilities when the geometry
was fixed at the apex. This did not occur using the HDM for simulation.

Conclusions

The hybrid deformation model was applied successfully to a more complex anatomical model with-
out many changes in parameters. The torsion generated by the HDM was smaller and asymmetrical
compared to the model by Sachse. The asymmetrical movement is supported measurements of e. g.
Jung [209], Nagel et al. [210], and Masood et al. [211], who stated a wringing movement of the
ventricle. This fact must be further investigated and compared to ventricle measurements. The
ejected volume of the HDM is larger compared to the SM. This might be due to the scaling factor
of the contraction initiation forces. However, an ejected volume of 25% is pathologic. In contrast
to the model by Sachse, the hybrid deformation model is not numerically influenced by the change
in the spatial boundary conditions.
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Figure 7.48. Intraventricular volume change of the biventricular model determined by the model of Sachse
as well as by the hybrid deformation model (HDM).
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Figure 7.49. Deformation simulation with a biventricular model determined by the model by Sachse. The
valve plane was fixed vertically.
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Figure 7.50. Deformation simulation with a biventricular model determined by the hybrid deformation
model, the temporal and the spatial forces provided by Sachse. The valve plane was fixed vertically.
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Figure 7.51. Deformation simulation with a biventricular model determined by the hybrid deformation
model. Spatial and temporal force distributions were computed with the cellular automaton. In addition,
the apex was fixed vertically.
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7.14 Deformation Simulation with the Dog Heart Model of Nielsen

The anatomical model of a dog heart created by Nielsen et al. [38] formed the geometrical basis
of the following simulation. The data set was created from finite element models [38, 39] and is
publicly available from A. McCulloch at the University of California, San Diego, U.S.A.. The model
of Nielsen consists of 129 927 cubic elements describing the anatomical geometry. In addition,
the fiber orientation for each cubic element is given. The geometry is divided into 24 bicubic
elements (fig. 2.22), which were used to fit the geometry to the left and right ventricle of dogs [38].
The model of the dog ventricles shows a hole at the apex, but no further specifications were given
upon this fact. However, the experimental setup described by Nielsen et al. [38] indicates that it
was the point of fixation for the measurement. The geometry was converted into a spring-mass
system by the hybrid deformation model resulting in the following amount of masses and springs:

type quantity

voxel 129 927

masses 148 930

anisotropic springs 389 781

structural springs (edges) 427 873

structural springs (diagonal surface) 818 504

volume springs (diagonal through voxel) 519 708

sum of all springs 2 155 866

The deformation simulation with the hybrid deformation model and pre-calculated forces required
approx. 237 min, on a PowerPC G5 2 GHz, running MacOS X. The contraction initiating force was
computed with the cellular automaton, as no such data were otherwise provided. The stiffness of the
structural springs was increased by a factor of 10 compared to the single ventricular model (section
7.5), due to the increase in wall diameter. No pressure load was applied. The undeformed dogs
biventricle and its deformation at maximum contraction are displayed (fig. 7.52, 7.53, and 7.54).
The lateral cut (fig. 7.52) and the view from the apex in upward direction (fig. 7.54) show a small
torsion. The left side of the left ventricle deforms in counter-clockwise rotation and the upper right
side as well as the right ventricle a rotation in clockwise direction (fig. 7.54). The valve plane moves
downward by approx. 3 voxel. The intraventricular volume is displaced by approx. 25%.

Conclusions

A simple parameter adaptation allows to simulate deformation with the geometry created by
Nielsen. The wall thickness slows the deformation down, as the propagation of momentum is
slower in more complex geometries. One part of the energy is used for oscillation of masses and
not for propagation of displacement. The application of rigidity proposed by Miyazaki et al. [197]
was adapted for wall thicknesses of up to 10 voxel, only. A deformation comparison to the model
of Nielsen was not possible as only the geometrical data were available.
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Figure 7.52. Deformation of biventricular model of dog (lateral view)
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Figure 7.53. Deformation of biventricular model of dog (valve plane view)
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Figure 7.54. Deformation of biventricular model of dog (apex view)
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7.15 Comparison of Measured and Simulated Ventricular Deformation

The hybrid deformation model was applied on models representing singular and biventricular ge-
ometries. Deformations were achieved which comply with anatomical and physiological findings.
Further investigations were performed on a measured left ventricle data set.
Dr. Bernd Jung provided a segmented 4D geometrical data set of a left ventricle acquired of a
healthy volunteer by MRI. The data set consisted of 57 3D data sets. The acquisition started at
14 ms after the R peak of the ECG and slices were measured at successive intervals of 14 ms until
approx. 800 ms. At each time instant 9 slices were recorded with a resolution of 64× 64 voxel with
edge length of 1.4 mm. The images were recorded at a vertical distance of 8 mm resulting in the
thickness of a slice. Successive images were used to interpolate to a slice thickness of 4 mm.
The slices at each time step were stacked to create a single 3D data set, consisting of a lattice of
64×64×17 with a cuboid voxel size of 1.4×1.4×4 mm. The slices were acquired during a sequence
of heart beats. Vertical movement was not tracked. Respiratory movement was suppressed during
image acquisition by breath holding.
The phase contrast sequence (a specialized MRI sequence) developed by Jung [209] allowed the
reconstruction of velocity vectors of the heart wall. This new method has several advantages com-
pared to tagging methods that are also used to track the motion of landmarks over time.
This clinical data were used to test the hybrid deformation model on a human left ventricular
data set. The segmented left ventricle at time 0.014 s was applied to represent the anatomical
ventricle at the beginning of the systole. The 1.4 × 1.4 × 4 mm data set was transfered to cubic
voxel by splitting the z-slice into three 1.4 mm slices. Thus, the geometry was slightly stretched
to a 64× 64× 51 lattice with cubic elements of 1.4 mm. The transfer was necessary as the hybrid
deformation model requires the geometry to consist of isotropic voxel.
The geometry was converted into a spring-mass system by the hybrid deformation model resulting
in the following amount of masses and springs:

type quantity

voxel 39 012

masses 50 208

anisotropic springs 117 036

structural springs (edges) 139 287

structural springs (diagonal surface) 256 182

volume springs (diagonal through voxel) 156 048

sum of all springs 668 553
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Extension of Geometrical Model

The medical data set only provided geometrical data of anatomy and velocity vectors for each
voxel. Therefore, the fiber orientation was introduced as follows: The epi- and endocardium were
automatically extracted and marked as boundary limits. The transmural direction was determined
starting from each epicardial voxel pointing towards the center of the slice. The fiber orientation was
created along the transmural direction by applying the proposals of Streeter et al. [12] (fig. 7.55).
The contraction initiation force was calculated. As the apex is not fully available from the image
data set, 4 stimulation points were set in the lowest slice of the model. A cellular automaton was
applied to compute spatial and temporal force distributions as described in previous sections.

Figure 7.55. Fiber orientation for measured ventricular data set.
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Deformation Simulation

The deformation simulations were carried out with the hybrid deformation model. The mechanical
parameters resulted from previous simulations with the truncated half ellipsoids were applied.
The only adaptation was done by reducing the mass of each voxel by 25% to receive similar
circumferential deformation compared to measurement data. In contrast to the acquired slices and
the resulting 2D deformation of Jung, not only circumferential but also vertical movement was
achieved. The deformation of the model is displayed at specific times steps as a view from valve
plane to apex (fig. 7.56 and 7.57) and as lateral cut of the ventricle (fig. 7.58 and 7.59).
Both figures contain the measured deformation in the left column and the simulated deformation in
the right column. The comparison of the valve plane to apex view shows a successive contraction for
both results, measurement and simulation, in circumferential direction until a maximal contraction
at 0.280 s is reached (fig. 7.56). The simulation result shows regular symmetric contraction, in
contrast to the measured deformation of the ventricle that is slightly distorted (fig. 7.56, left
column). During the relaxation phase, similar results are obtained as the left and right walls of the
measured ventricle relax more quickly compared to the top and bottom wall at 0.462 s (fig. 7.57,
left column). The simulated deformation shows a slower but symmetric restoration to the initial
position in contrast to the measured deformation (fig. 7.57, right column).
The lateral cut of the measured ventricle reveals also a distorted contraction (fig. 7.58, left column).
The right wall only moves slightly to the vertical center of the ventricle, whereas the left side
deforms in a strong inward bend until 0.280 s (fig. 7.58, left column). In comparison, the simulated
deformation shows an almost symmetrical contraction, which is only distorted by the geometry of
the model itself (fig. 7.58, right column). The top left side rim slightly tilts towards the outside at
maximum contraction 0.28000 s (fig. 7.58, right column). In the simulation, the restoration to the
initial position of the geometry is delayed at 0.80000 s (fig. 7.59, right column).
All four pictures at time step 0.2800 s (fig. 7.56 and 7.58) indicate that the thickening of the wall
of the simulated model is not as extensive as found from the measured data.
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Figure 7.56. Comparison of measured and simulated ventricular deformation. The left column contains
figures of the deformation according to measured data and the right column figures of the deformation
achieved with the hybrid deformation model (view from valve plane to apex) (for continuation see fig. 7.57).
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Figure 7.57. Comparison of measured and simulated ventricular deformation. The left column contains
figures of the deformation according to measured data and the right column figures of the deformation
achieved with the hybrid deformation model (view from valve plane to apex) (continued from fig. 7.56).
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Figure 7.58. Comparison of measured and simulated ventricular deformation. The left column contains
figures of the deformation according to measured data and the right column figures of the deformation
achieved with the hybrid deformation model (lateral cut) (for continuation see fig. 7.57).



7.15. Comparison of Measured and Simulated Ventricular Deformation 171

Figure 7.59. Comparison of measured and simulated ventricular deformation. The left column contains
figures of the deformation according to measured data and the right column figures of the deformation
achieved with the hybrid deformation model (lateral cut) (continued from fig. 7.58).
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Figure 7.60. Comparison of displaced volume of measured and simulated ventricle contraction.

Change of Intraventricular Volume

The displaced volume is given in fig. 7.60. During the first few milliseconds the volume of the
measured data does not decrease as quickly as in the simulation. This can be accounted for by the
missing pressure and therefore, the missing isovolumic phase during the simulation. Thereafter,
a similar reduction of volume can be obtained, reaching different maximum displaced volumes
varying approx. by 4 − 5%. The ascent of the intraventricular volume for the measured data is
larger compared to the simulation.

Measures Velocity Vectors

The velocity vectors (displayed as green vectors) acquired by Jung show a locally different velocity
distribution throughout the contraction cycle (fig. 7.61). The velocity vectors were extracted for
the slice at the valve plane and near the apex, normalized, and projected onto the slice plane. The
slices are displayed in the same picture for different time steps (fig. 7.62 and 7.63). Velocity vectors
vary throughout the progression of time.
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Figure 7.61. Velocity vector distribution at specific time steps for three slices acquired from phase contrast
MRI images extracted by Dr. Jung [209]. Green Arrows indicate velocity orientation and amplitude for
each voxel. Locally differing orientation and magnitudes can be distinguished.
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Figure 7.62. Normalized velocity vectors projected into the slice plane. The green arrows indicate the
measured velocity vectors provided by Dr. Jung. The figures in the left column show the slice near the
apex and the figures in the right column the slice at the valve plane. Figures shows slices seen from apex
to valve plane (for continuation see fig. 7.63).
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Figure 7.63. Normalized velocity vectors projected into the slice plane. The green arrows indicate the
measured velocity vectors provided by Dr. Jung. The figures in the left column show the slice near the
apex and the figures in the right column the slice at the valve plane. Figures shows slices seen from apex
to valve plane (continued from fig. 7.62).
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Conclusions

The comparison of a measured ventricle compared to a deformation simulation with the hybrid
deformation model showed the capability of the models simulating the ventricular deformation of a
patient even without considering pressure. However, pressure should be modeled to achieve a closer
match during the relaxation phase and to allow for more realistic modeling. In addition, a larger
range of healthy persons has to be examined to find mechanical parameters for wall thickening.
Due to data available from Jung, the comparison of ventricular deformation along the vertical axis
of the ventricle was not possible. Therefore, additional clinical data have to be examined to verify
and evaluate vertical ventricular movement.
The changing orientation of velocity vectors at the valve plane and at the apex of the measured
data supports the clock- and counter-clockwise rotation of the ventricle at valve plane and apex,
respectively, which is also reported by Nagel et al. [210] and Masood et al. [211]. The velocities
measured show extremely rapid and asymmetric variations of amplitude and direction, which is
hard to model applying physical laws, where each mass has its momentum and hence an inertia
without further boundary conditions. Nevertheless, the hybrid deformation model reproduced the
wringing motion of the ventricle. Further focus has to be set on the measurement of vertical motion
of the ventricle to match vertical velocity vectors with tissue movement.
In addition, more intensive studies of the boundaries of the ventricles such as movement of the
septum, fixation of the epicardium at the pericardial sac, connection with the right ventricle, as
well as apex fixation have to be performed and considered in the model. Furthermore, the blood
flow is expected to influence an asymmetrical contraction of the left ventricle.
As the slices were acquired at a size of 8 mm and interpolated twice, a deviation from the real
ventricular movement must be assumed. However, this experiment showed that the application of
patient specific data is straight forward and proves the capability of the hybrid deformation model
for future application in a clinical environment.
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Discussion and Future Work

In this work an elasto-mechanical model was created representing the mechanical behavior of heart
tissue. By combining a spring-mass system with continuum mechanical methods, a hybrid defor-
mation model was developed. A good representation of non-linear, anisotropic, and incompressible
characteristics of myocardial tissue was achieved. Deformation simulations were performed with
various geometrical models. The importance of fiber orientation for the cardiac output, as well as
the significance of intraventricular pressure on mechanical deformation was outlined. The tissue
properties of anisotropy, non-linearity, and incompressibility were modeled and maintained to a
certain percentage. The intraventricular volume of a ventricle modeled by truncated half ellipsoids
was reproduced as found in literature. With slight modifications of parameters, the model was
adapted to more complex geometries.
The simulation time of 53 min (PowerPC 2 GHz, single CPU) using the hybrid deformation model
on a biventricular model (section 7.13) compared with approx. one week (SGI Origin 3800 with 32
Mips 14k 600 MHz CPUs) using a close to finite element model with dominantly continuum me-
chanical basis the main advantage of the hybrid deformation model: While the hybrid deformation
model might be considered in clinical applications in the near future, the computation time of the
continuum mechanical model in the current form is unacceptable for clinical use.

However, the hybrid deformation model has to be categorized as a macroscopic model. This means,
the results have to be understood as averaged results. The explicit comparison with microscopic
experiments will certainly show differences. This is due to the fact, that even though continuum
mechanical methods were applied to model microscopic findings, the time step used for time inte-
gration was too large for comparison with microscopic experiments. This is apparent e. g. in the
application of pressure. Here, oscillations can occur at pass over stages of cardiac phases (section
7.7). They also appear if volume dependent pressure algorithms are implemented (sections 7.8 and
7.11). A reduction of the time step length is easily possible, but at the cost of increasing overall
simulation time.
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Measurements revealed a clockwise rotation of the myocardium close to the valve plane and a
counter-clockwise rotation at the apex [209, 210, 211]. This behavior was reproduced by simula-
tions with ventricular models using the hybrid deformation model. As the setup of fiber orientation
plays a significant role in contraction and hence ventricular rotation, the simulation results indicate
a close match of myocardial and modeled fiber orientation.
Further focus must be set on the exact boundary conditions inherent in the heart. Fixation of
the ventricle to the pericardial sac, the influence of the cytoskeleton forming the valve plane, the
movement of the septum, and the influence of the right ventricle must be examined and considered
in the model. In addition, the blood flow and its influence on mechanical deformation must be
examined.

The numerical solution of the equation of motion was performed first by an Euler forward marching
scheme. In addition, the central difference method was applied resulting in more stable simulations
and the possibility to advance in larger time steps. However, as a constant time step was applied,
occurring oscillations could not always be fully damped. Therefore, more sophisticated algorithms
for time incrementation and time step control should be implemented.

In this thesis a mechanical simulation model is proposed which allows to reproduce macroscopic my-
ocardial deformations. It provides a solid basis for future application in the field of cardiology and
cardiac surgery. The comparison of measured and simulated deformation in section 7.15 revealed
that patient specific data can be successfully processed by the hybrid deformation model. With
additional knowledge of boundary conditions of ventricular connection to peripheral tissue a realis-
tic simulation of ventricular deformation can be achieved. Further studies have to be conducted to
compare and to reproduce measured ventricular deformation. The knowledge of pathologic regions
of a patients ventricle can be introduced into the model (section 7.5), providing an additional step
towards clinical application. Thus, virtual operation planing can be performed and resulting effects
on heart contraction can be estimated for patients prior to an intervention.
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Continuum Mechanics

A.1 Introduction

Continuum mechanics is a branch of mathematics dealing with continuous matter, including solids
and fluids and its deformation. Even though matter is in the microscopic limit based on atoms
aligned in a heterogeneous microstructure with certain interaction laws, this is simplified to so-
called macroscopic or microscopic material laws. Further, energy and momentum conservation can
be described in each level of abstraction. Differential equations associated with proper boundary
conditions can be developed for the solution of problems in continuum mechanics.
For mechanical modeling of the myocardium a subsection of continuum mechanics is applied. This
subregion is called solid mechanics and implies the elasticity and plasticity of the material. This
allows for a quantitative description of finite deformations of inhomogeneous, anisotropic tissue
due to acting internal and external forces.
The following sections introduce the basic continuum mechanical configurations and tensors needed
for stress strain analysis in this thesis.

A.2 Configurations

The continuous medium B can be assumed to be a coherent and compact amount of particles or
material points P filling a volume in space. The configuration κ of B describes the continuous
mapping of points in B into a three dimensional space R3. The reference configuration κr is named
Lagrange configuration and describes the matter at time t = 0 in an undeformed state.

κr : B → R3

P → X = X(P )

The deformed configuration κt, also known as Euler configuration describes the configuration of B

at time t by:
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Figure A.1. Schematic of continuum mechanical configurations. The object to the left shows the contin-
uum in the Lagrangian configuration κr at time t = 0, with the origin 0, the coordiante system Êi. The
left object displays the same continuum at a later time t = t in the Eulerian configuration κt, with the
coordiante system êi. The position of a material point in Lagrangian configuration Pt can be described
by the vector X and the corresponding point in Eulerian configuration Pr by vector x. The displacement
vector u joins the points Pr and Pt. Vector X0 describes the displacement vector of the origin. The function
χ maps the Lagrangian into the Euler configuration.

κt : X0 → R3

P → x = x(P, t)

In general the configurations κr and κt are not closer defined, however more interest is given to
the function χ, mapping the Lagrangian into the Euler configuration.

χ : R3 → R3

X → x = x(X, t)

Both configurations are shown in fig. A.1.
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A.3 Displacement Vector

The relationship between Lagrangian and Eulerian configuration is accomplished by the displace-
ment vector u (fig. A.1). It joins the positions of the material points Pr and Pt by using X and x

resulting in:
u = x−X + X0 (A.1)

If the coordinate origins of Lagrangian and Eulerian configuration coincide (X0 = 0), eq. A.1
results to:

u = x−X (A.2)

A.4 Deformation Gradient

Partial differentiation of eq. A.1 with respect to Xj produces the tensor ∂xi

∂Xj
, which is called

deformation gradient tensor F:
F = ∇x(X, t)

F =


∂x1
∂X1

∂x2
∂X1

∂x3
∂X1

∂x1
∂X2

∂x2
∂X2

∂x3
∂X2

∂x1
∂X3

∂x2
∂X3

∂x3
∂X3


With the aid of the deformation gradient tensor F a line element dX of the Lagrangian configuration
can be transfered into the corresponding line element in the Eulerian configuration dx.

dx = FdX

Since in case of myocardial tissue the displacement should be reversible, F must be invertible,
which leads to:

|F| 6= 0, (A.3)

With the so-called Jacobian determinant J = |F|. The relationship of surface and volume elements
transfered between configurations can be described by:

ds = J(F−1)T dS

with s and S a surface element in either configuration and

dv = JdV

with v and V a volume element in either configuration [212, 173, 213].
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A.4.1 Polar Decomposition

The deformation gradient tensor F can be decomposed into a rotation tensor R and a right U or
a left V stretch tensor.

F = RU = VR

with R an orthonormal matrix and U and V symmetric, positive semidefinite matrices. The appli-
cation of rotation before stretching and stretching before rotation is described in fig. A.2. A stretch
free deformation can only be accomplished when U = V = I, with I being the matrix description
of the Kronecker delta δ, defined by

δij =

{
1 for i = j

0 for i 6= j

A.5 Tensor Arithmetic

The inverse of a square tensor or reciprocal matrix is defined as

AA−1 = I (A.4)

with A the matrix, A−1 the inverse matrix, and I the identity matrix. The inverse matrix exists
under the condition that the Jacobian of A is J 6= 0.

ds

!1ds
! 1ds

! 1ds

!
2 ds

!
2 ds !
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U R

ds

ds

VR

ds

Figure A.2. Polar decomposition of deformation gradient tensor. The edges of the cube ds are aligned
along the orthogonal principal axis of U. The stretch factors λi represent the positive Eigenvalues of U
and V, respectively. The rotation is described by the tensor R.
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For a 3× 3 matrix :

A =

a b c

d e f

g h i

 (A.5)

the inverse is

A−1 =
1
|A|
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(A.6)

The transposed matrix AT can be obtained by replacing all elements aij with aji. It results to a
exchange of A’s rows and columns. However, it must satisfy the identity:

(
AT
)−1

=
(
A−1

)T
(A.7)

A.6 Strain Tensor

The squared tensors U and V are used to describe the strain:

C = U2 = FT F right Cauchy-Green tensor
B = V2 = FFT left Cauchy-Green tensor

The right Cauchy-Green tensor transfers a squared length dX2 in Lagrangian configuration into
the corresponding squared length dx2 in Eulerian configuration. For the inverse transformation
the left Cauchy-Green tensor is applied.

dx2 = dXCdX

dX2 = dxB−1dx

The difference dx2−dX2 of two neighboring particles is used as the measure of deformation, which
occurs in the vicinity of the particles between the configurations. If the difference is identical to
zero, a rigid displacement occured. The difference can be expressed by:

dx2 − dX2 = dXCdX− dXIdX

= dX(C− I)dX

= 2dXEdX
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resulting in the Green-Lagrangian finite strain tensor E:

E = 1
2 (C− I) Green-Lagrangian strain tensor (A.8)

Furthermore, the differences can be expressed by:

dx2 − dX2 = dxIdx− dxB−1dx

= dx(I−B−1)dx

= 2dxAdx

resulting in the Eulerian (or Almansi’s) finite strain tensor A:

A = 1
2 (I−B−1) Eulerian (or Almansi’s) strain tensor (A.9)

The derivation of the tensors can be found in [212, 173, 213].
The Green-Lagrangian strain tensor E can also be described as a function of displacements u.
Therefore, eq. A.1 is differentiated by X:

∂u
∂X

=
∂x
∂X

− ∂X
∂X

+
∂X0

∂X
= F− I

transformed to

F =
∂u
∂X

+ I

= ∇u + I (A.10)

and substituted into eq. A.8:

E =
1
2
(FT F− I) (A.11)

E =
1
2
(∇u + (∇u)T + (∇u)T∇u)

The strain tensor describes the material independent change of the geometry of the object.

A.7 Stress Tensor

A.7.1 Cauchy Stress Tensor

The Cauchy stress tensor σ is defined for each point in the continuous medium and describes the
forces per unit square. The components of the Cauchy stress tensor can be displayed with reference
to the coordinate planes (fig. A.3). The components perpendicular to the planes σ11,σ22,σ22 are
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called normal stresses, the others acting tangent to the surface are called shear stresses. It is a
symmetric tensor of second order [214].

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


A.7.2 First Piola-Kirchhoff Stress Tensor

The first Piola-Kirchhoff stress tensor T or Lagrangian stress tensor is a non-symmetric second
order tensor. The tensor can be derived from the Cauchy stress tensor σ:

T = J(F−1)σ

with the Jacobian determinant J and the deformation gradient tensor F.

A.7.3 Second Piola-Kirchhoff Stress Tensor

The second Piola-Kirchhoff stress tensor S is a symmetric tensor of second order. It is an extension
of the first Piola-Kirchhoff stress tensor T:

S = T(F−1)T = J(F−1)σ(F−1)T (A.12)
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Figure A.3. Components of the Cauchy stress tensor. Any stress acting on the surface of an infinitesimal
cubic element can be decomposed into the coordinate axes.
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with the Jacobian determinant J , the deformation gradient tensor F, and the Cauchy stress tensor
σ.

A.8 Energy Density Function

The stretch of an object results in material dependent strains. The strain dependent energy of an
object can be described by energy density functions. The mathematical description of mechanical
properties of the myocardium are mainly formulated as energy density functions (section 5.3).
Hunter et al. [83] proposed the following energy density function:

W =
3∑

i=1

kiE2
ii

(ai − |Eii|)βi
(A.13)

The anisotropy and inhomogeneity of the myocardium is modeled, with ki, ai und βi describing
the fiber, sheet, and sheet normal parameters and Eii the components of the Green-Lagrangian
strain tensor.
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Figure A.4. Stress strain relationship of Hunter et al. [83]. This figure shows the stress strain relationship
in fiber (red), sheet (blue), and sheet normal (black) direction.



A.9 Application of Energy Density Function

Various models describe the mechanical properties of the heart by energy density functions, de-
pending on the Green-Lagrangian strain tensor E.
In this work energy density function of Guccione et al. [80] are applied to model passive myocardial
tissue. The following mathematical method describes the application of the energy density function
W.
The hybrid deformation model results in a step wise deformation of a cubic element. The displace-
ment of the cubic vertices is used to calculate the deformation gradient tensor F (eq. A.10).
The differentiation of the energy density function W by E (Green-Lagrangian strain tensor
eq. A.11)

S =
∂W
∂E

(A.14)

results in the second Piola-Kirchoff stress tensor S.
Rearranging eq. A.12 to:

σ =
1
J

FSFT (A.15)

results in the Cauchy strain tensor σ.
The components of the Cauchy stress tensor σij can be used to compile a stress vector for each
plane (fig. A.5) e. g. :

σW1 =

σ11

σ12

σ13

 ,σW2 =

σ21

σ22

σ23

 ,σW3 =

σ31

σ32

σ33

 (A.16)

From the stresses resulting force vectors can be computed by:

f i = AσWi (A.17)

for each voxel plane derived from the energy density function W. This force vector can be used in
the spring-mass system to model material stress depending on material strain.
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Figure A.5. Schematic of stress vectors on voxel surfaces.
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Physical Units

Quantity Symbol
Displacement vector u
Deformation gradient tensor F
Jacobian determinant J
Rotation tensor R
Right stretch tensor U
Left stretch tensor V
Kronecker delta δ
Identity matrix I
Right Cauchy-Green strain tensor C
Left Cauchy-Green strain tensor B
Green-Lagranginan finite strain tensor E
Eulerian (or Almansi’s) finite strain tensor A
Cauchy stress tensor σ
First Piola-Kirchhoff stress tensor T
Second Piola-Kirchhoff stress tensor S
Energy Density Function W
Force f
surface area A

Table B.1. Physical symbols
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