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NEWTON REGULARIZATIONS FORIMPEDANCE TOMOGRAPHY: A NUMERICAL STUDY.ARMIN LECHLEITER∗† AND ANDREAS RIEDER‡Abstrat. The inexat Newton iteration reginn for regularizing nonlinear ill-posedproblems onsists of two omponents: the (outer) Newton iteration, stopped by a disrep-any priniple, and the inner iteration, whih omputes the Newton update by solvingapproximately a linearized system. The seond author proved onvergene of reginn fur-nished with the onjugate gradients method as inner iteration [Numer. Anal., 43 (2005),pp. 604-622℄. Amongst others the following feature distinguishes reginn from otherNewton-like regularization shemes: The regularization level for the loally linearizedsystems an be adapted dynamially inorporating information on the loal degree of ill-posedness gained during the iteration. Of ourse, the potential of this feature an befully explored only by meaningful numerial experiments in a realisti setting. Therefore,we apply reginn to the 2D-eletrial impedane tomography problem with the ompleteeletrode model. This inverse problem is known to be severely ill-posed. The ahievedreonstrutions are ompared qualitatively and quantitatively with reonstrutions from aone-step method whih is losely related to the noser algorithm [Int. J. Imag. Syst. Teh-nol., 2 (1990), pp. 66-75℄, an often used solver in impedane tomography. Our detailednumerial omparison reveals reginn to be a ompetitive solver outperforming the one-step method when noise orrupts the data and/or a moderately large number of eletrodesis used.Key words. Impedane tomography, omplete eletrode model, inexat Newtoniteration, onjugate gradients, disrepany prinipleAMS subjet lassi�ations. 35R30, 47A52, 65J201. Introdution. Eletrial Impedane Tomography (eit) entails thedetermination of the eletri ondutivity distribution of an objet by ap-plying eletri urrents at the boundary through eletrodes and measuringthe resulting voltages at the boundary as well. Potential appliations are,for instane, medial imaging and non-destrutive testing.Beause of its promising appliations and its hallenging mathematiseit attrated a vast amount of researh during the last two deades, both,theoretially and pratially; all starting out from the pioneering work ofCaldéron [9℄. The nonlinearity and the severe ill-posedness of eit remain
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2 A. Lehleiter and A. Riedera hallenge for reonstrution algorithms nontheless. Algorithms known tous an be ategorized as1. noniterative algorithms based on global linearization,2. iterative solvers takling the full nonlinear problem, and3. diret methods.Noniterative algorithms based on global linearization an be build by stop-ping any iterative algorithm after the �rst step, a prominent example isthe noser algorithm [11℄. For the iterative inverse solvers one usually ex-ploits Fréhet di�erentiability of the forward operator and uses a regularizedNewton-type method. A somewhat di�erent approah is propagated in [3℄where a nonlinear multigrid method solves a Tikhonov-regularized �rst or-der optimality ondition of an output least-squares formulation. The lassof diret methods splits into two sublasses: a) fatorization methods usespeial singular testfuntions to haraterize inlusions in a homogeneousbakground medium [5, 6, 8, 7℄ and b) diret methods that implement aonstrutive existene and uniqueness proof [30, 31, 23, 1℄. As far as weknow both diret methods are not able to deal with �nite eletrode mod-els but need to apply urrents and measure the voltages along the wholeboundary of the objet (in mathematial terms: they need to observe theDirihlet-to-Neumann mapping). Their use for a realisti setting is thereforelimited.Our work at hand ontributes to the seond lass: We apply the nonlinearregularization method reginn (REGularization based on INexat Newtoniterations), developed and analyzed by the seond author [26, 27, 29℄, to the2D-eit problem with the omplete eletrode model. The most deliate partof any Newton-like regularization is the stable omputation of the Newtonstep from the loally linearized system. As the degree of ill-posedness ofthe loally linearized system may hange dramatially during the Newtoniteration, a areful seletion of the level of regularization of the linear systemis indispensable. Surprisingly, this is not the ase for most Newton methods,see, e.g., [2, 21℄. Also the nonlinear multigrid method from [3℄ works witha-priori regularization parameters on the intermediate grids. In ontrast,reginn selets the level of regularization of the loally linearized systeminorporating information on the loal degree of ill-posedness gained duringthe iteration. This unique selling proposition designates reginn to solveseverely ill-posed problems, as we are onvined. Indeed, it is the purpose ofour work to substantiate our opinion and to promote reginn as a helpful toolnot only for the eit-ommunity but also for all needing to solve nonlinearill-posed problems.To put reginn in perspetive we ompared it with a one-step solverbeing akin to the noser algorithm. In spite of its simpliity the one-step



Newton regularizations for impedane tomography 3solver delivers reonstrutions of an astonishing quality. In partiular, whenonly a small number of eletrodes is used, that is, the data ontain onlylittle information on the ondutivity, the one-step solver is hard to beat.Nevertheless, the reginn-reonstrutions ontain less noise and appear morefoused with a higher ontrast. They are also quantitatively better than thereonstrutions by the one-step solver.We start our paper in the next setion by introduing the mathematialmodel for eit we work with. For the disretization of the governing elliptiequation we rely on �nite elements as we show in Setion 3. Setion 4 isdevoted to the Fréhet di�erentiability of the eit operator allowing us totakle the inverse problem by Newton-like solvers in Setion 5. Here we alsoreport the numerial experiments with the noser-like one-step solver (Se-tion 5.1). Next we present reginn with the onjugate gradients method asinner iteration (Setion 6) followed by numerial experiments and a qual-itative omparison of both solvers. The quantitative omparison togetherwith our onlusions is ontent of the �nal setion. The paper ends with anappendix where we explain how to ompute e�iently the Fréhet derivativeof the disretized eit operator.2. The omplete eletrode model. In this setion we give a briefaount on the mathematial model for eit.PSfrag replaements
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−Figure 2.1. The experimental setup of an eit tomography system with seven ele-trodes. The body B ontains two inlusions.Assume that p eletrodes have been �xed around the surfae of the objet,for instane around a human hest (see Figure 2.1). Current is applied tosome subset of these eletrodes and the resulting voltages at all p eletrodesare measured. This proedure, alled the eit experiment, is repeated severaltimes with di�erent eletrodes until a su�ient amount of data has beengained. The inverse problem of eit is then to reonstrut the inner strutureof the investigated objet using this data set. Clearly, the eit problem an besolved only if the inner struture onsists of areas with substantially di�erent



4 A. Lehleiter and A. Riederondutivities. In medial imaging this prerequisite is often ful�lled, seeCheney, Isaason and Newell [11, 10℄.In the orresponding forward problem one wants to �nd the eletri po-tential in the interior of the objet and at the eletrodes, given some appliedurrent. If we assume that the objet under onsideration does not ontainany urrent soure in its interior and that the frequeny of the urrent issmall enough then a saling analysis [10℄ shows that Maxwell's equationsdesribing the eletromagneti �elds inside the objet redue to the elliptiequation
∇.

(
σ∇u

)
= 0 in B, (2.1)where σ denotes the eletri ondutivity in the objet B and u denotes thevoltage potential. We assume in the following that σ is a bounded positivesalar funtion in the losure B of B. Moreover, σ is assumed to be Lipshitzontinuous in B with possible jump disontinuities in B. Thus, a trae σ|∂Bis meaningfully de�ned. We denote the lass of admissible ondutivies by

A :=
{
σ ∈ L

∞(B)
∣∣ σ ≥ σ0 > 0,there are (Bj)

m
j=1 : Bj ⋐ B,Bj open, σ|Bj

∈ W 0,1(Bj),∪jBj = B
}
.In the ase of real ondutivities several uniqueness results for the inverseproblem have been proved under stronger regularity assumptions, see forinstane [32, 33, 34, 24℄.A areful modeling of the eletrodes turns out to be of highest importanewhen omparing the preditions of the resulting mathematial models withexperimental data [13, 12℄. The omplete eletrode model [12, 10℄, nowadaysthe standard model for medial appliations, takes into aount the followingthree physial properties of the EIT experiment.First, the eletrodes are a disrete set. Let us denote by E1, . . . , Ep the

p eletrodes, eah Ej is onsidered to be an open subset of the boundary
∂B with positive surfae measure. We assume furthermore that the Ej areonneted and separated, i.e., dist(Ek, Ej) > 0 for k 6= j. Let Ij ∈ R bethe urrent applied to Ej and de�ne I = (I1, . . . , Ip)

⊤. Due to the prinipleof onservation of harge we require that ∑
Ij = 0. The vetor I is alledurrent pattern or urrent vetor. For onveniene, let us denote the spaeof urrent patterns of length p by

R
p
♦ :=

{
I ∈ R

p
∣∣∣
∑

j
Ij = 0

}
.Seond, we model the eletrode Ej to be a perfet ondutor, that is, weassume that the potential along this eletrode is onstant: u|Ej

= onst.This is the so-alled shunting e�et. To ease the notational burden, let
u|Ej

=: Uj for j = 1, . . . , p.



Newton regularizations for impedane tomography 5Note that U := (U1, . . . , Up)
⊤ is measured in the eit experiment. To endup with a well-posed problem we need an additional boundary ondition.As we model the eletrodes as perfet ondutors, the urrent sent to theseeletrodes is applied ompletely to B. This implies that the total �ux over

Ej equals Ij:
∫

Ej

BνudS = Ij for j = 1, . . . , p, where Bνu := σ∇u.νis the onormal derivative and ν denotes the outer unit normal to B.Third, the omplete eletrode model inludes the e�et of ontat im-pedane at the eletrodes: When eit is used in a medial ontext, a thinlayer with high resistivity forms at the boundary between the eletrodes andthe skin due to dermal moisture. We inorporate this e�et by introduingonstants zj, j = 1, . . . , p, whih denote the positive resistivity of the ontatlayer at eletrode Ej. Aording to Ohm's law the potential u at Ej dropsby zjBνu.Hene, the omplete eletrode model gives rise to the following (weak)formulation of the forward problem: Given a urrent vetor I = (I1, . . . , Ip) ∈
R

p
♦, a ondutivity σ ∈ A, and positive ontat impedanes z1, . . . , zp �nd apotential u ∈ H1(B) and a set of eletrode voltages U ∈ R

p
♦ that satisfy

∇.
(
σ∇u

)
= 0 in B, (2.2)

u + zjBνu = Uj on Ej , (2.3)∫

Ej

BνudS = Ij for j = 1, . . . p, (2.4)
Bνu = 0 on ∂B r ∪p

j=1Ej . (2.5)The ondition U ∈ R
p
♦, i.e., ∑p

j=1 Uj = 0, an be interpreted as a groundingof the potential. Indeed, without this ondition the above problem wouldnot be unique. Aording to [12℄, the auray of the model mathes themeasurement preision of the experiment. Note that we assume in the sequelof this work that the ontat impedanes zj are known and not part of theinverse problem.Existene and uniqueness of a solution (u,U) ∈ H1(B) ⊕ R
p
♦ an beenshown using the Lax-Milgram Lemma. Indeed, in [12℄ it is shown that (u,U)ful�lls (2.2)-(2.5) if and only if

b
(
(u,U), (v, V )

)
= f(v, V ) (2.6)for all (v, V ) ∈ H1(B) ⊕ R

p
♦ where the stritly ellipti bilinear form b isde�ned by

b
(
(u,U), (v, V )

)
:=

∫

B

σ∇u∇v dx +

p∑

j=1

1

zj

∫

Ej

(u − Uj)(v − Vj) dS,and f(v, V ) :=
∑p

j=1 IjVj for (v, V ) ∈ H1(B) ⊕ R
p
♦.



6 A. Lehleiter and A. Rieder3. Disretization by fem. Sine the solution (u,U) of the forwardproblem annot be omputed analytially we use the Finite Element Method(fem) to �nd an approximate solution. Following the usual proedure offem we use a triangulation T = {T1, . . . , T|T|} of the domain B and de�nethe �nite-dimensional subspae Hh of H1(B) to be the set of ontinuousfuntions in H1(B) that are pieewise linear on eah triangle of T. Supposethat the triangulation T onsists of ℓ nodes. Then we denote by φk the hatfuntion that takes the value 1 at node k and vanishes at all the other nodes.Any element uh in Hh is represented by
uh =

ℓ∑

k=1

αk φk for αk ∈ R.For notational reasons we identify uh with its oordinates in the basis {φk}and write uh = (α1, . . . , αℓ). Finally, we still denote the voltages at the peletrodes by U = (U1, . . . , Up) ∈ R
p
♦.Testing uh and U in (2.6) against v = φi and V = 0 yields

ℓ∑

k=1

αk

∫

B

σ∇φk∇φi dx +

p∑

j=1

1

zj

∫

Ej

( ℓ∑

k=1

αk φk − Uj

)
φi dS = 0, (3.1)for i = 1, . . . , ℓ. The disrete system (3.1) gives rise to a matrix-vetorequation in the following way: Let A ∈ R

ℓ×ℓ be the admittane matrix withentries
Ai,k =

∫

B

σ∇φk∇φi dx +

p∑

j=1

1

zj

∫

Ej

φk φi dS.Furthermore, let B ∈ R
ℓ×p be the matrix de�ned by

Bi,j = −
1

zj

∫

Ej

φi dS.With these de�nitions equation (3.1) an be rewritten as Auh + BU = 0.Until now we have ignored the boundary onditions for uh arising from theomplete model. Testing uh and U in (2.6) now against v = 0 and V i =
(δi,k)

p
k=1 we �nd that

1

zi

∫

Ei

(
Ui −

ℓ∑

k=1

αk φk

)
dS = Ii (3.2)or equivalently that

Ui
|Ei|

zi
−

ℓ∑

k=1

αk

zi

∫

Ei

φk dS = Ii, for i = 1, . . . , ℓ.



Newton regularizations for impedane tomography 7Introduing the diagonal matrix D ∈ R
p×p,

Di,i =
1

zi

∫

Ei

dS =
|Ei|

zi
,we may write (3.2) as B⊤uh + DU = I. Finally, we end up with the linearsystem (

A B
B⊤ D

)(
uh

U

)
=

(
0
I

) (3.3)for omputing the fem solution of the forward problem. The above systemhas to be augmented to guarantee the grounding ondition ∑
j Uj = 0. Aneasy way to inlude this onstraint is to solve




A B
B⊤ D
0 1




(
uh

U

)
=




0
I
0


 (3.4)where 1 ∈ R

1×p is the row vetor (1, . . . , 1). This straightforward approah,however, destroys symmetry and positive de�niteness of (3.3). Kaipio etal. [18℄ suggest a more sophistiated way how to augment system (3.3) re-speting its favorable struture.A-priori error estimates for the fem solution uh are di�ult to obtainsine the solution u of the omplete model does not belong to H2(B). Thisis due to the possible jumps of σ ∈ A and beause the Neumann boundaryvalues Bνu do only belong to Hs(∂B) for s < 1/2. We do not want toomment further on the onvergene of uh but refer to the paper ofMolariniet al. [22℄.4. Fréhet Di�erentiability of the eit Operator. The inverse prob-lem of impedane tomography under the omplete eletrode model is to esti-mate the ondutivity distribution σ from all pairs of urrent vetors I ∈ R
p
♦and resulting voltage vetors U ∈ R

p
♦. As U depends linearly on I for a �xedondutivity σ there is a resistivity matrix R ∈ R

p×p suh that U = RI.This is again Ohm's law. Moreover, R is symmetri for salar real σ [12℄whih we assume in the remainder of the paper. Now, we de�ne for a �xedurrent vetor I and �xed positive ontat impedanes (zj)
p
j=1

F : A ⊂ L∞(B) → H1(B) ⊕ R
p
♦, σ 7→ (u,U),to be the forward operator that maps the ondutivity σ to the solution ofthe forward problem. Later we solve the inverse problem by Newton-likeiterations. A neessary ingredient is the Fréhet di�erentiability of F. Reallthat Fréhet di�erentiability of F in σ means that

lim
‖η‖∞→0

‖F(σ + η) − F(σ) − F′(σ)η‖H1(B)⊕R
p

♦

‖η‖∞
= 0.



8 A. Lehleiter and A. RiederTheorem 4.1. Let I be a �xed urrent vetor and z1, . . . , zp be �xedpositive ontat impedanes. The operator F whih maps σ ∈ int(A) to thesolution (u,U) ∈ H1(B) ⊕ R
p
♦ of the forward problem with urrent vetor

I is Fréhet di�erentiable. If η ∈ L∞(B) is suh that σ + η ∈ A, then thederivative F′(σ)η =: (w,W ) satis�es the following variational problem:
−bσ

(
(w,W ), (v, V )

)
=

∫

B

η∇u0∇v dx (4.1)for all (v, V ) ∈ H1(B) ⊕ R
p
♦, where (u0, U0) := F(σ).Proof. Kaipio et al. [18℄ give a proof in the ase of the quotient spae

H̃ := (H1(B) ⊕ R
p
♦)/R. However, the spaes H̃ and H1(B) ⊕ R

p
♦ are normequivalent. Sine

‖(u,U)‖2
eH

= ‖∇u‖2
L2(B) + inf

c∈R

{
‖u + c‖2

L2(B) + |U + c|22

}

≤ ‖∇u‖2
L2(B) + ‖u‖2

L2(B) + |U |22 = ‖(u,U)‖2
H1(B)⊕Rpthe embedding H1(B) ⊕ R

p
♦ →֒ H̃ is ontinuous and bijetive. Hene, theopen mapping theorem yields norm equivalene.Theorem 4.1 shows espeially that σ 7→ U is Fréhet di�erentiable asseond argument of a di�erentiable mapping and the derivative is given byformula (4.1). The nie part of this formula is that the derivative an beomputed using the variational formulation of the forward problem. On theother hand, solving this variational problem means to ompute one dire-tional derivative. Unfortunately, Newton-like methods require to omputelots of diretional derivatives and this is usually the bottlenek of these al-gorithms.5. Newton-type methods for the inverse eit problem. In thissetion we onsider iterative methods of Newton-type for the inverse eitproblem. These methods work by loal linearization of the nonlinear oper-ator F and by regularization of the Newton step. The well-known noseralgorithm of the Rensselaer group is one example, see Cheney et al. [10, 11℄.Assume that we apply l urrent vetors Ij ∈ R

p
♦, j = 1, . . . , l, in theeit experiment and measure the orresponding voltage vetors U j ∈ R

p
♦.The set {I1, . . . , I l} is alled a urrent frame. For notational onveniene wede�ne a vetor

I := (I1, . . . , I l) = (I1
1 , . . . , I1

p , . . . , I l
1, . . . , I

l
p) ∈ R

lp,suh that all the Ij's are stored in one single olumn vetor. Let further
U ∈ R

lp be the olumn vetor that arranges all the voltage vetors U j in thesame way. For simpliity, we write U = RI for I ∈ R
lp, where R is now a

lp × lp matrix suh that every Ij is mapped on the orresponding U j. Forthe remainder of this work we �x I, having in mind that we use always thesame urrent frame.



Newton regularizations for impedane tomography 9In the next step we transform the ontinuous setting in a disrete one.Suppose we are given a triangulation T = {T1, . . . , T|T|} of the domain B.Then we denote by S the spae of step funtions spanned by the indiatorfuntions 1Tt
and de�ne Ad = A ∩ S, i.e., any s ∈ Ad takes the form

s(x) =

|T|∑

t=1

ct1Tt
(x) for x ∈ B and ct > 0.We always identify s with its oordinate representation: s = (st)t=1,...,|T|.Let us de�ne the disrete forward operator Fd by

Fd : Ad → R
lp, s 7→ U =

(
RsI

1, . . . , RsI
l
)
∈ R

lp, (5.1)where I = (I1, . . . , I l) is a �xed urrent frame in R
lp and Rs is the resis-tivity matrix assoiated to s ∈ Ad. Note that Fd an be seen as a non-linear vetor �eld from R

|T| → R
lp. Sine F : Ad → R

p is Fréhet di�er-entiable, F′
d is a matrix, alled the Jaobian of Fd. As a onsequene, if

F′
d(s)ηd = (W 1, . . . ,W p) ∈ R

lp then W j ∈ R
p
♦ an be omputed by solvingthe variational problem (4.1). For the implementation of the Newton-likeiterations below we need to evaluate the matrix-vetor produt F′

d(s)η andthe matrix F′
d. How this an be realized e�iently we explain in Appendix A.The natural norm on S is a weighted Eulidean norm. For s = (st) ∈ Swe set

|s|22,a =

|T|∑

t=1

at|st|
2, (5.2)where a = (at) is the vetor ontaining the areas of the triangles of thetriangulation T. Please observe that |s|2,a = ‖s‖L2(B) for any s ∈ S.Assume now we are given measured data U ∈ R

lp. In order to �nd anestimate for the orresponding ondutivity distribution σ we seek σ⋆ ∈ Athat �ts our data U , that is, F(σ⋆) = U . Note that U is �nite-dimensionaland hene there may exist lots of suh σ⋆. In an iterative method we try toimprove our atual guess σj ∈ Ad, j ∈ N, by adding a orretion step hj .We wish to have hj suh that σj +hj = σ⋆. Sine Fd is di�erentiable we anwrite
F
′
d(σj) (σ⋆ − σj) = U − Fd(σj) − E(σ⋆;σj)with the linearization error E(σ⋆;σj). As the linearization error is unknownwe try to solve

F
′
d(σj)hj

!
= U − Fd(σj) (5.3)in the spae of step funtions S. All Newton-like solvers start in solving theabove equation some way or other.Due to the ill-posedness of the inverse eit problem [4, 5℄ we expet insta-bilities in solving (5.3). To ompensate the instabilities we apply a regular-ization sheme to (5.3). The regularization of ill-posed problems is addressed



10 A. Lehleiter and A. Riederby, e.g., Engl et al. [14℄ or Rieder [28℄. Probably the most often used ap-proah is Tikhonov regularization where
hj =

(
F

′⊤
d (σj)F

′
d(σj)+θj diag(a)

)−1
F

′⊤
d (σj)

(
U−Fd(σj)

) for θj > 0. (5.4)Note that the perturbation term is hosen to respet the norm | · |2,a. Thestep hj serves as Newton update for our guess σj by
σj+1 = σj + hj . (5.5)The iterative sheme (5.4) and (5.5) is alled the Levenberg-Marquardtmethod, see Lionheart and Polydorides [25℄ and Hanke [15℄. A similarmethod is due to Bakushinskii [2℄,

hj =
(
F

′⊤
d (σj)F

′
d(σj) + θjdiag(a)

)−1(
F

′⊤
d (σj)(U − Fd(σj))

+ θj(σ0 − σj)
)
,

(5.6)where the right most term, whih prevents the iterates σj to diverge toofar from the initial guess σ0, brings in additional stability. The methoddesribed in equation (5.6), together with (5.5), is known as the iterativelyregularized Gauÿ-Newton method, see, e.g., Kaltenbaher [20, 21℄. Allpresented regularization shemes for (5.3) are linear so far.We have not yet mentioned how to stop the iterative shemes (5.4) or(5.6). The reason is that inverse solvers of Newton-type applied to eit usu-ally stop after one step, at least in the two dimensional ase. Therefore theeit problem is not loally but globally linearized about the initial guess σ0.For the appliations reported in [11, 10, 18℄ global linearization yields su�-ient auray while allowing real-time reonstrutions. Our numerial ex-periments in the next subsetion are based on the following one-step solver:Initial guess σ0;Regularization parameter θ;
σ1 = σ0 +

(
F

′⊤
d (σ0)F

′
d(σ0) + θ diag(a)

)−1
F

′⊤
d (σ0)

(
U − Fd(σ0)

)return σ1;The noser∗ algorithm uses the diagonal of the matrix F
′⊤
d (σ0)F

′
d(σ0) insteadof the diagonal matrix diag(a) as in (5.4), see [11℄.5.1. Numerial experiments with noser-like regularization. Theexperimental protool for the numerial experiments with the Tikhonov one-step solver is the following. The data for the reonstrution algorithms areobtained synthetially. In our data retrieval we try to avoid the most obviousinverse rime and use di�erent meshes for the forward data omputation of

Fd and the inverse omputations (i.e., the reonstrution of a ondutivity).
∗Newton One-Step solvER
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Figure 5.1. On the left: mesh for the reonstrution when 16 eletrodes are used.On the right: adaptively re�ned mesh for the omputation of the Jaobian F
′.Moreover, to alulate the Newton step in (5.4) one also needs to omputethe Jaobian F′

d whih is de�ned by a variational problem and approximatedusing a FEM, see Appendix A. For the omputation of the Jaobian, a thirdmesh is employed. In Figure 5.1 we show the reonstrution mesh that isused in ase of 16 eletrodes together with the re�ned mesh to ompute theJaobian. The forward omputations are done on an even more re�ned gridto guarantee quality of the data. The meshes for the omputation of theforward operator and the Jaobian are re�ned towards the eletrodes usingthe adaptive mesh re�nement proedure provided by MATLAB's† partialdi�erential equation toolbox. Of ourse, the omputation of these meshes isperformed independently of and before the inverse omputations. Espeially,these meshes are the same for all our examples under the same number ofeletrodes.Reall that the data set for the inverse solver is the urrent frame I ∈ R
lpand the resulting voltage vetor U ∈ R

lp. In our experiments we set l = p anduse urrent vetors of the form (0, . . . , 0, 1,−1, 0, . . . , 0) whih are the mostsimple ones and easy to implement. The question of the hoie of urrentpatterns is nontrivial and there exist onepts of optimal urrent patternsand distinguishability, see Isaason [16℄ or Kaipio et al. [19℄ for details.We do not are on these questions but remark that, in view of pratialexperiments, we only inorporate voltages from eletrodes in the forwarddata set where no urrent is fed.Newton shemes always need some initial guess as starting point for theiteration. We always use the bakground ondutivity σ ≡ 1 as initial guessfor the one-step solver (as well as later for the reginn algorithm). This isan appropriate hoie sine it mathes the bakground ondutivity of ourexamples. Reall that the omplete eletrode model, whih is our model
†MATLAB is a trademark of The MathWorks, In.



12 A. Lehleiter and A. Riederof hoie, inludes a ontat impedane e�et at the eletrodes. In ouromputations the ontat impedane is set to 0.25 for all eletrodes. Wefound this numerial value from [18, Figure 4℄.Some of the subsequent reonstrutions are omputed from synthetidata in the presene of arti�ial noise. Our input data for the inversionalgorithm are the urrent patterns I1, . . . , I l and the orresponding voltagevetors U1, . . . , U l whih we store for algorithmi reasons in p × l-matries.Therefore, the noise is measured in the Frobenius norm and the relative errorbetween omputed and perturbed data is given in perent.All �gures presenting our di�erent results are organized in the same fash-ion: In the upper left orner the reader �nds the projetion of the originalondutivity distribution on a �ne grid whih is only used for plotting. Be-ause of the projetion the boundaries of the inhomogeneities are frayed out.Next, we plot �ve reonstrutions where the regularization parameter θ isdivided by 3 suessively. All reonstrutions are omputed simulating an neletrodes system. By this term we mean a regular polygonal domain with
2n orners suh that every seond side of the polygon is used as eletrode.We reonstrut salar real ondutivities and emphasize that the same ol-ors (grey values) in di�erent reonstrutions do usually not refer to the sameondutivity, i.e., the olormaps of the plots are in general di�erent.Figure 5.2 shows the reonstrution of a non-onvex inlusion in form oftwo overlapping irles whih are plaed inside the domain. The reonstru-tion has been obtained simulating a 32 eletrodes system without arti�ialnoise. We used θ = 0.35 as initial regularization parameter. The bestreonstrution seems to be the one in the middle of the bottom row. Thisreonstrution shows the orret plae but fails to distinguish the two irles.Nevertheless, the reonstrution seems to respet the onvex hull of the non-onvex inlusion. The numerial value of the ondutivity of the inlusion is
1.4 and underestimated by 1.2. Morever, the disontinuity of the inlusionis strongly smoothed by Tikhonov regularization and the eletrodes lose tothe inlusion a�et the reonstrution when the regularization parameter issmall, see right plot on the bottom. Note that our reonstrution algorithmdoes not use penalty terms involving di�erential operators whih might opewith this e�et. Also the quasistati imaging tehnique [17℄ designed toorret errors in the eletrode model does not improve the reonstrutions.Figure 5.3 shows reonstrutions of an L-shaped inlusion. We simulatedagain an 32 eletrodes system with 0.5 perent arti�al noise and started with
θ = 0.35. The best reonstrution seems to be the left most of the bottomrow. The loation of the inlusion is found while its size is too large and thenon-onvexity is only slightly visible. As before, the numerial value of theondutivity is underestimated and eletrodes being next to the inlusionspoil the reonstrution as the regularization parameter gets smaller.The reonstrutions up to now have been omputed simulating a 32 ele-trodes system. The plots in Figure 5.4 are now omputed simulating a 64



Newton regularizations for impedane tomography 13

Figure 5.2. One step reonstrution of a non-onvex inlusion (32 eletrodes, initialparameter θ = 0.35, no arti�ial noise).

Figure 5.3. One step reonstrution of an L-shaped inlusion (32 eletrodes, initialparameter θ = 0.35, 0.5 perent arti�ial noise).
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Figure 5.4. One step reonstrution of two opposite inlusions (64 eletrodes, initialparameter θ = 0.48, 1 perent arti�ial noise).eletrodes system. We added 1 perent arti�ial noise to the data and hose
θ = 0.48 for the �rst reonstrution. As an additional di�ulty the ondu-tivities of the two inlusions are above and below the bakground ondu-tivity. Again the loations of the two inlusions are roughly found but theirsizes are overestimated. Using a small regularization parameter we are ableto reover the shape satisfatorily but instabilities from the eletrodes spoilthe reonstrution near the boundary. On the other hand, large parameterssmooth the ondutivity strongly.We have performed more numerial experiments than reported here. Allour experiments showed that the Tikhonov one-step solver is able to �ndsome main harateristis of the inlusions as, for instane, their loations.The approximate shapes an usually be guessed but ompliated shapes arehard to reover, even if lots of eletrodes are used. An experiened usermight be able to guess the orret shape by playing with the parameters.The one-step approah o�ers only little ontrol over the magnitude of theregularization and instability problems, espeially near to the boundary, o-ur even if the information in the interior of the domain has not yet beenfully exploited.6. The reginn algorithm. A very e�ient iterative sheme for regu-larizing equation (5.3) is the method of onjugate gradients (g-method), see,e.g., Engl et al. [14, Chap. 7℄ or Rieder [28, Chap. 5.3℄. It starts from aninitial guess ξ0 ∈ S and omputes iteratively a sequene (ξk)k∈N satisfying
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ξk = argmin

{
|(U − Fd(σj)) − F

′
d(σj)ξ|2

∣∣ ξ ∈ S and ξ − ξ0 ∈ Uk

}
, (6.1)where

Uk = span
{
F

′⊤
d (σj)r0,

(
F

′⊤
d (σj)F

′
d(σj)

)
F

′⊤
d (σj)r0, . . .

. . . ,
(
F

′⊤
d (σj)F

′
d(σj)

)k−1
F

′⊤
d (σj)r0

}
.is the kth Krylov subspae with respet to the initial residual r0 := U −

Fd(σj) − F′
d(σj)ξ0. Therefore, the kth iterate has the representation

ξk = ξ0 + pk−1

[
F

′⊤
d (σj)F

′
d(σj)

]
F

′⊤
d (σj)r0 (6.2)with a suitable polynomial pk−1 of degree k − 1. Note that pk−1 depends on

U − Fd(σj) making the g-method a nonlinear regularization sheme.In starting the g-method with ξ0 = 0 and in setting hj := ξN(j) theNewton iteration (5.5) beomes
σj+1 = σj + pN(j)

[
F

′⊤
d (σj)F

′
d(σj)

]
F

′⊤
d (σj)[U − Fd(σj)] (6.3)where N(j) is determined as the smallest number at whih the relative (lin-ear) residual is smaller than a given tolerane µj ∈ (0, 1], that is,

|F′
d(σj)ξN(j) + Fd(σj) − U |2 < µj|Fd(σj) − U |2 ≤ |F′

d(σj)ξk + Fd(σj) − U |2for all k = 1, . . . , N(j)− 1. A meaningful strategy to adapt the µj 's dynam-ially is presented in (6.4) below.Finally, iteration (6.3), alled reginn (REGularization based on INexatNewton iterations), has to be stopped in time to avoid noise ampli�ation.Here we rely on a disrepany priniple: Choose R > 0 and aept thatiterate σn as approximation to the ondutivity s whih ful�lls
|U − Fd(σn)|2 ≤ R < |U − Fd(σj)|2 for all j = 0, . . . , n − 1.For the the sake of larity we give an algorithmi realization of reginn inpseudo ode:Initial guess σ0;Regularization parameters {µj}, R;

j = 0;while |U − Fd(σj)|2 > R{
i = 0;repeat

i = i + 1;
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ξj,i = pi

(
F

′⊤
d (σj)F

′
d(σj)

)
F

′⊤
d (σj)

(
U − Fd(σj)

);until |F′
d(σj)ξj,i + Fd(σj) − U |2 < µj |Fd(σj) − U |2

σj+1 = σj + ξj,i;
j = j + 1;}return σj.In the inner repeat-loop the Newton update is alulated using the g-method and the outer while-loop implements the Newton iteration stoppedby the disrepany priniple.reginn was propagated by the seond author and analyzed in a seriesof papers [26, 27, 29℄. Termination of the inner and outer loop as wellas stability and onvergene results have been obtained for a large lass ofnonlinear inverse problems. At the present we do not know whether theonvergene analysis applies to impedane tomography as well. Therefore,our present work is mainly experimental and numerial.One of the big advantages of reginn is that the toleranes {µj} ⊂ (0, 1)an be adapted dynamially inorporating information on the loal degree ofill-posedness gained during the iteration. The following strategy (6.4) from[26, Se. 6℄ for hoosing the toleranes omplies with the onvergene analy-sis: The smaller the toleranes are the less Newton steps (passes through thewhile-loop) are required to terminate reginn ([26, Cor. 4.7℄). On the otherhand the toleranes must not be too small to avoid noise ampli�ation whilesolving (5.3) ([26, Lem. 3.2 and (3.6)℄). In the starting phase of reginnthe repeat-loop terminates even for small toleranes ([26, (3.6)℄). Aord-ingly we start with a small tolerane and inrease it during the iteration.An inrease of the tolerane is needed if the number of passes through therepeat-loop of two onseutive Newton steps inreases. The toleranes shallbe dereased whenever suessive numbers of passes through the repeat-loop drop. Moreover, we apply a safeguarding tehnique: If the nonlineardefet |U −Fd(σj)|2 is already lose to R, then it is unneessary to hoose asmall tolerane µj sine then |U −Fd(σj+1)|2 might be onsiderably smallerthan R.The above onsiderations a realized in (6.4): Initialize µstart ∈ (0, 1),

µmax ∈ (µstart, 1), ζ ∈ (0, 1) and de�ne auxiliary parameters µ̃0 = µ̃1 =
µstart. Then,

µj := µmax max
{
R/|U − Fd(σj)|2, µ̃j

}
, j = 0, 1, . . . ,N(j) − 1, (6.4)wherẽ

µj :=

{
1 − N(j−2)

N(j−1) (1 − µj−1) : N(j − 1) ≥ N(j − 2),

ζ µj−1 : otherwise, j ≥ 2.



Newton regularizations for impedane tomography 17In our numerial experiments for impedane tomography we worked withthe parameter setup µstart = 0.8, µmax = 0.99 and ζ = 0.97.6.1. Numerial experiments with the reginn algorithm. The ex-perimental protool for the experiments with the reginn algorithm is thesame as for the Tikhonov one step solver in Setion 5.1. More preisely, weompute the synthetial data and the Jaobian of the forward operator withthe omplete model on two di�erent meshes whih are both very �ne nearthe eletrodes, whereas the inverse solver works on a oarse mesh.In experimenting with reginn the residual error |U − Fd(σj)|2 of theiterates σj does sometimes inrease during the outer iteration proess. Usu-ally, this happens when the iteration reahes the saturation point. Possibleinterpretations are twofold. On one hand the regularization parameter Rould be too small. On the other hand, the residual error may not dereasemonotonially for the eit problem sine eit does not belong to the lassof problems where we an prove monotone derease. Our implementationsolves this problem from the numerial point of view. If the residual errorinreases, then we have no hope that the error itself dereases and we stopthe iteration.With the initial tolerane µ0 = 0.8 we found that the toleranes inreaseround about monotonially during the reonstrution proess and thereforewe believe that these values are adapted to the problem (ompare Table 6.1below). When we perturb the data with arti�ial noise we measure theperturbation of the data in the Frobenius norm as mentioned in Setion 5.1and indiate the relative error between omputed and perturbed data inperent. As for the one-step solver we always use a onstant ondutivity(with value one) as initial guess for the inverse solver.The reginn reonstrutions are presented together with the original on-dutivity and the evolution of the relative error during the (outer) iteration.In Figure 6.1 we observe that reginn is able to �nd the approximate shapeof the L-shaped inlusion from Figure 5.3. We used 32 eletrodes in thisexample and added 0.5 perent arti�ial noise. The size of the reonstrutedinlusion is moderately larger than the original. Only little noise omesfrom the eletrodes and the onvex orners of the inlusion are quite welldetermined ompared to Figure 5.3.The stability of the reginn reonstrutions is ontrolled by the adap-tively hosen toleranes µj. Table 6.1 shows this adaption proess for theexample of Figure 6.1. The tolerane seletion sheme (6.4) works as pre-dited: For instane, from step 3 to step 4 the number of inner iterationsinreases from 3 to 6 and reginn aordingly hooses µ5 larger than µ4. Onthe other hand, the number of inner iterations drops from 6 to 2 from step4 to step 5 and reginn selets a µ6 smaller than µ5. During the ompleteiteration proess the toleranes inrease from 0.799 to 0.991.The ondutivity distribution in Figure 6.2 is the same as in Figure 5.4 as
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Figure 6.1. reginn reonstrution of an L-shaped inlusion (32 eletrodes, R = 1,
µ0 = 0.8, 0.5 perent arti�ial noise). Table 6.1Parameter adaption of reginn during the reonstrution proess. The orrespondingreonstrution is shown in Figure 6.1. Entries in olumn j denote the outer iterationounter, N(j) is the number of inner iterations in the jth step and µj is the hosentolerane for the jth step. The relative error is given in perent.

j N(j) µj error0 0 � 34.721 2 0.799 29.922 4 0.799 27.353 3 0.899 27.204 6 0.871 25.885 2 0.935 25.846 6 0.906 25.017 1 0.968 25.008 6 0.938 24.529 1 0.989 24.5210 2 0.958 24.5011 1 0.978 24.5012 5 0.948 24.3013 1 0.989 24.2914 5 0.958 24.1515 1 0.991 24.15are the number of eletrodes (p = 64) and the noise level (1 perent). reginnloates the inlusions orretly and also shows that their ondutivities areabove and below the referene ondutivity. The reginn reonstrutions aremore onentrated and less smoothed than the noser-like reonstrutionsin Figure 5.4.
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Figure 6.2. reginn reonstrution of a two irles with di�erent ondutivity (64eletrodes, R = 2.5, µ0 = 0.8 , 1 perent arti�ial noise).The searhed-for ondutivity of Figure 6.3 is smooth and attains valuesabove and below the bakground medium. The reonstrution is omputedwith simulated data of a 64 eletrodes with 1 perent arti�ial noise andparameters R = 2.5, µ0 = 0.8. The loation of the two inhomogeneities isfound, their size is slightly overestimated. The iteration dereases the reon-strution error from round about 20 to 10 perent, however, the redutionof the error during the last iterations is small.

Figure 6.3. reginn reonstrution of two smooth inlusions (64 eletrodes, R = 2.5,
µ0 = 0.8, 1 perent arti�ial noise).In Figure 6.4 we investigate the reonstrution of a jump ondutivitydistribution being not an inlusion in a homogenous bakground medium,that is, we have a disontinuity also on the boundary of the domain. Weorrupted the 64 eletrodes data by 2 perent arti�ial noise and hose R =
3.6 and µ0 = 0.8. reginn �nds the boundary between the two onstantparts of the ondutivity aurately. The two values of the ondutivity arewell approximated in both parts of the domain, however, in the upper halfof the domain the eletrodes are learly visible.Figure 6.5 presents the reonstrution of two lose irular disks that are



20 A. Lehleiter and A. Rieder

Figure 6.4. reginn reonstrution of pieewise onstant ondutivity (64 eletrodes,
R = 3.6, µ0 = 0.8, 2 perent arti�ial noise).plaed lose to the boundary of the domain. We worked with 64 eletrodes, 5perent arti�ial noise and hose µ0 = 0.8 and R = 8. The two inlusions areloated but the numerial value of the ondutivity is dramatially underes-timated. reginn fails to reonstrut the two separated disks but indiatesat least slightly the non-ononvexity of the inlusion. Noise appears nearto the boundary of the domain but this is to be expeted under a noise levelof 5 perent.

Figure 6.5. reginn reonstrution of two lose irles (64 eletrodes, µ0 = 0.8,
R = 8, 5 perent arti�ial noise).reginn applied to the inverse eit problem takes full advantage of thedynami adaption of the level of regularization to the loal degree of ill-posedness. Therefore, reginn outperforms the Tikhonov one-step method ingeneral with respet to image quality sine less noise ease the interpretationof the reonstrutions, espeially near to the boundary. The images are morefoused and have a higher ontrast.7. Quantitative Comparison. In the last setion we ompared thelassial Tikhonov one-step solver with reginn in a qualitative way andfound that reginn produes reonstrutions of at least the same quality



Newton regularizations for impedane tomography 21as Tikhonov one-step reonstrution while avoiding some of its drawbaks.Now we will substantiate this observation with a quantitative study. Weonsider the relative error of both reonstrution methods with respet tothe original resistivity distribution in the disrete L2(B) norm (5.2). Pleasenote that our results presented in this setion are stable under small hangesin the parameters µ0, R and θ of the algorithms.Table 7.1Relative errors in perent for di�erent ondutivity distributions (32 eletrodes, 0.5perent arti�ial noise, R = 1.5).
p = 32 reginn TikhonovFigure µ0 = 0.8 θ = 0.04 θ = 0.135.2 10.3 11.0 9.85.3 24.1 27.5 25.95.4 20.0 20.4 19.86.4 23.9 29.3 32.46.5 21.6 21.6 20.76.3 12.0 14.5 12.5Table 7.1 ompares the inverse solvers for a 32 eletrodes system and 0.5perent arti�ial noise. We see that reginn produes smaller or omparableerrors than Tikhonov regularization, but does never perform signi�antlyworse. This observation agrees with our experiene and with our examplespresented in Setions 5 and 6. Table 7.2Relative errors in perent for di�erent resistivity distributions (64 eletrodes, 1 perentarti�ial noise, R = 2.5).

p = 32 reginn TikhonovFigure µ0 = 0.8 θ = 0.053 θ = 0.0175.2 9.59 10.95 9.955.3 22.6 27.5 26.15.4 20.2 21.6 20.86.4 22.8 31.1 33.86.5 18.6 21.8 21.16.3 8.91 14.3 12.7Table 7.2 ontains results for a 64 eletrodes system with 1 perent ar-ti�ial noise. reginn now outperforms the Tikhonov one-step solver as thedi�erenes between the two algorithms are more pronouned than for the 32eletrodes system. This indiates, as we think, that reginn extrats moreinformation from perturbed data, ompare, e.g., the performane of reginn



22 A. Lehleiter and A. Riederwhen reonstruting the ondutivity of Figure 6.4.Finally, we on�rm our observations one again: Table 7.3 ompares thetwo algorithms for a 64 eletrodes system under 5 perent relative noise.Table 7.3Relative errors in perent for di�erent resistivity distributions (64 eletrodes, 5 perentarti�ial noise, R = 8).
p = 64 reginn TikhonovFigure µ0 = 0.8 θ = 0.078 θ = 0.0255.2 9.74 11.9 11.65.3 25.2 28.4 27.05.4 20.0 22.1 21.76.4 22.3 30.5 32.96.5 19.8 22.4 21.96.3 10.2 15.3 14.4Let us summarize our experimental �ndings for the inverse eit-problem:Compared to the simple Tikhonov one-step solver reginn is able to ex-trat more strutural information from noisy data. Additionally, it pro�tsmore strongly from inreasing the number of eletrodes. All these advan-tages of reginn originate, as we think, from the adaptive hoie of thetoleranes (6.4) allowing a �ne-tuned regularization of the loally linearizedproblems (5.3).Of ourse the Tikhonov one-step solver has its advantages: Only onelinear problem has to be solved (if the regularization parameter θ is deter-mined a priori!) making it a relatively fast algorithm. It is therefore hardto beat if the measured data ontain little information on the searhed-forondutivity as in the ase of few eletrodes.Nevertheless our experiments reveal reginn to be a ompetitive solverfor the inverse eit-problem. Its proven potential deserves further explorationunder real-life onditions.Appendix A. Computing the Jaobian. In this appendix we explainhow to ompute the Jaobian F′

d(s) e�iently as we learned from [25℄. Let usdenote by ∇tFd(s) the gradient of Fd(s) with respet to the tth omponentof s ∈ Ad. Then F′
d has the form

F
′
d(s) =




∇1Fd(s)
⊤

∇2Fd(s)
⊤...

∇|T|Fd(s)⊤


 ∈ R

|T|×lp. (A.1)Reall that Theorem 4.1 shows how to ompute the partial derivatives ap-
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∇tFd(s) =: Wt = (W 1

t , . . . ,W l
t ) ∈ R

lp,then we an ompute the vetor W m
t ∈ R

p
♦ as part of the solution (wm

t ,W m
t ) ∈

H1(B) ⊕ R
p
♦ of the variational problem

bs

(
(wm

t ,W m
t ), (v, V )

)
= −

∫

B

1Tt
∇um∇v dx (A.2)for all (v, V ) ∈ H1(B)⊕R

p
♦, where um ∈ H1(B) is the solution of the forwardproblem with respet to the urrent pattern Im and the ontat impedanevetor z; see Theorem 4.1.The reader might feel as this way of omputing the Jaobian is highlyexpensive. One omputes indeed not only the needed vetors W1, . . . ,W|T|+pbut also all the potentials wm ∈ H1(B) whih are not needed a priori. Infat, using this method, one has to ompute l · |T| forward problems.Fortunately, we are able to simplify substantially the omputation of theJaobian by the following trik: We introdue the auxiliary �urrent frame�

J = (J1, . . . , Jp), Jk being the Kroneker symbol
Jk := (δj,k)

p
j=1 for k = 1, . . . p,and let (vk, V k) ∈ H1 ⊕ R

p
♦ be the (grounded) solution of the variationalproblem

bs

(
(vk, V k), (y, Y )

)
= 〈Jm, Y 〉 = Ym for all (y, Y ) ∈ H1(B) ⊕ R

p
♦for k = 1, . . . , p. Even if the Jk are no urrent patterns in the usual sense(∑j Jk

j 6= 0), this problem is well-posed, beause the linear form on theright-hand side is bounded and the bilinear form on the left is an elliptiform on H1 ⊕ R
p
♦ [12℄. Then we ompute

∇tF (s) =
(
W 1

t , . . . ,W l
t

)
=

(
〈W m

t , Jk〉pk=1

)l

m=1

=
(
bs

(
(vk, V k), (wm

t ,W m
t )

))
l,m(A.2)

=

(∫

B

1Tt
∇um

t ∇vk dx

)

l,m

=

(∫

Tt

∇um
t ∇vk dx

)

l,m

.

(A.3)
Hene, all we have to do to obtain the Jaobian is to ompute the p forwardproblems for the (vk, V k), the l forward problems for the (um, Um), and toassemble the obtained solution in the way indiated by (A.3). This makes
p + l forward problems to solve. As p ≪ |T| in general, the redution of thenumerial e�ort is tremendous. Moreover, the omputation of the forward



24 A. Lehleiter and A. Riedersolutions uses always the same bilinear form and this fat provides additionalspeedup for the implementation.An experiened reader might objet to ompute the Jaobian at all:reginn, as in iterative solver, only requires the ation of the Jaobian andits adjoint on a vetor. Both matrix-vetor produts an indeed be realizedby solving variational problems, see (4.1) for F′
d(σ)η. However, observe theappearane of F(σ) in the right-hand side of (4.1). To set up the right-handside for omputing F′

d(σ)η one aordingly needs to evaluate the forwardoperator Fd whih means solving an additional ellipti problem. Moreover,(4.1) addresses the ase of one single urrent vetor only. Our setting dealswith urrent frames of size l. So we need to solve 2l ellipti problems allin all to evaluate F′
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