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ON TAYLOR MODEL BASED INTEGRATION OF ODES

M. NEHER∗, K. R. JACKSON† , AND N. S. NEDIALKOV‡

Abstract. Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for
more than 40 years. For many classes of IVPs, these methods are able to compute guaranteed error bounds for the flow,
where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of
verified methods. For some problems, the computed error bounds become overly pessimistic, or the integration even breaks
down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations.

Berz and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic compu-
tations. The latter is an effective tool for reducing both the dependency problem and the wrapping effect. By construction,
Taylor model methods appear particularly suitable for integrating nonlinear ODEs. We analyze Taylor model based
integration of ODEs and compare Taylor model methods with traditional enclosure methods for IVPs for ODEs.

AMS subject classifications. 65G40, 65L05, 65L70.
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1. Introduction. The numerical solution of initial value problems (IVPs) for ODEs is one of the
fundamental problems in computation. Today, there are many well-established algorithms for solving
IVPs. However, traditional integration methods usually provide only approximate values for the solution.
Precise error bounds are rarely available. The error estimates, which are sometimes delivered, are not
guaranteed to be accurate and are sometimes unreliable.

In contrast, verified integration aims at computing guaranteed bounds for the flow of an ODE,
including all discretization and roundoff errors in the computation. Originated by Moore in the 1960s
[34], interval computations have become a particularly useful tool for this purpose. There is a vast
literature on interval methods for verified integration [6, 8, 9, 12, 19, 21, 23, 25, 30, 33, 34, 36, 37, 38,
39, 40, 41, 45, 46, 47, 48], but unfortunately, there are still many open questions. The results of interval
arithmetic computations are often impaired by overestimation caused by the dependency problem and
by the wrapping effect. In verified integration, overestimation may degrade the computed enclosure of
the flow, enforce miniscule step sizes, or even bring about premature abortion of an integration.

Berz and his co-workers have developed Taylor model methods, which combine interval arithmetic
with symbolic computations [2, 5, 26, 28, 29]. In Taylor model methods, the basic data type is not a
single interval, but a Taylor model,

U := pn(x) + i

consisting of a multivariate polynomial pn(x) of order n in m variables, and a remainder interval i (see
Section 2.3). In computations that involve U , the polynomial part is propagated by symbolic calculations
wherever possible, and thus hardly affected by the dependency problem or the wrapping effect. Only
the interval remainder term and polynomial terms of order higher than n, which are usually small, are
bounded using interval arithmetic.

Taylor model arithmetic is an extension of interval arithmetic with a comprehensive variety of appli-
cable enclosure sets. Nevertheless, there has been some debate about the usefulness and the limitations
of Taylor model methods [43]. To some extent, this may be due to the sometimes cursory description of
technical details of Taylor model arithmetic, which may be obvious to the experts of Taylor models, but
which are less trivial to others.

The motivation of this paper is to analyze Taylor model methods for the verified integration of
ODEs and to compare these methods with existing interval methods. Taylor models are better suited
for integrating ODEs than interval methods, whenever richness in available enclosure sets and reduction
of the dependency problem is an advantage. This is usually the case for IVPs for nonlinear ODEs,
especially in combination with large initial sets or with large integration domains. This advantage is less
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obvious for linear ODEs, where interval methods should perform equally well. Nevertheless, we include
a discussion of Taylor model methods for linear ODEs in this paper for two reasons.

First, the discussion is simpler for linear ODEs than for nonlinear ones. Second, if Taylor model
methods failed on linear ODEs, they would likely fail on nonlinear ODEs as well. Some of the most
advantageous properties of Taylor models, however, only take effect on nonlinear problems. We use a
simple nonlinear model problem to illustrate these advantages.

The paper is structured as follows. In the next section, basic concepts such as interval arithmetic
and Taylor models are reviewed. In Section 3, interval IVPs are introduced. We then review Moore’s
classical integration method for ODEs and some other well-known interval methods for IVPs, which are
discussed for the special case of linear autonomous ODEs. The so-called naive Taylor model method
is presented in Section 6, which is followed by discussion of Taylor model methods for linear ODEs. A
nonlinear model problem is used to explain preconditioned Taylor model methods for ODEs in Section
8. In the last section, numerical examples for linear ODEs are given.

2. Preliminaries.

2.1. Interval Arithmetic. Interval arithmetic as described in [1, 14, 34, 42] is a powerful tool
for verified computations. In interval arithmetic, operations between intervals are employed to calculate
guaranteed bounds for continuous problems with a finite number of basic arithmetic operations.

2.1.1. Real Interval Arithmetic. The set of compact real intervals is defined by

IR = {x = [x, x] | x, x ∈ R, x ≤ x }.

A real number x is identified with a point interval x = [x, x]. Throughout this paper, intervals are
denoted by boldface. The midpoint and the width of an interval x are denoted by

m(x) :=
1
2
(x + x)

and

w(x) := x− x,

respectively.

The basic arithmetic operations between real intervals are defined by

a • b := {a • b | a ∈ a, b ∈ b}, • ∈ {+,−, ·, /},

provided that 0 6∈ b in the case of division. For • ∈ {+,−, ·, /}, c := a • b is an interval, which may be
calculated as [1, p. 2]

a + b = [a + b, a + b],
a− b = [a− b, a− b],
a · b = [min{ab, ab, ab, ab, },max{ab, ab, ab, ab, }],
a / b = a · [1 / b, 1 / b].

Addition and multiplication are commutative and associative operations, but instead of distributivity
there is only subdistributivity [1, p. 3], that is

a · (b + c) ⊆ a · b + a · c for a, b, c ∈ IR. (2.1)

An interval vector is a vector with interval components. Interval matrices are defined similarly. Basic
arithmetic operations between interval vectors and interval matrices are defined in the usual sense, with
the general rule that all operations between components are performed according to the rules of interval
arithmetic. The set of all m-dimensional interval vectors is denoted by IRm. In this paper, lower case
letters are used for denoting scalars and vectors. Matrices are denoted by upper case.
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2.1.2. Floating-Point Interval Arithmetic. Interval arithmetic has been implemented in soft-
ware (for example, see [3, 17, 18]). On a digital computer, however, instead of real numbers only a screen
of floating-point numbers is available. Rigor of a computation is achieved by enclosing real numbers by
floating-point intervals (that is, intervals with floating-point upper and lower bounds), and by performing
all calculations with directed rounding according to the rules of interval arithmetic [20].

2.2. Dependency Problem and Wrapping Effect. Interval methods are sometimes affected by
overestimation, whence the computed error bounds may be overly pessimistic. Overestimation is often
caused by the dependency problem, that is the lack of interval arithmetic to identify different occurrences
of the same variable. For example, the range of f(x) := x/(1 + x) on x = [1, 2] is [1/2, 2/3], but
interval-arithmetic evaluation yields

x

1 + x
=

[1, 2]
[2, 3]

= [
1
3
, 1].

In this example, the range of f can be computed by the interval arithmetic evaluation of g(x) :=
1− 1/(1 + x):

1− 1
1 + x

= 1− 1
[2, 3]

= 1− [
1
3
,
1
2
] = [

1
2
,
2
3
].

We have f(x) = g(x) for all x ∈ x, but the interval-arithmetic evaluation of the respective expressions
is different.

In general, the dependency problem is not easily removed. To diminish overestimation, alternative
evaluation schemes, such as centered forms [34], have been developed. A discussion of computer methods
for the range of functions is given in [44].

A second source of overestimation is the wrapping effect, which appears when intermediate results
of a computation are enclosed by intervals. The wrapping effect was first observed by Moore in 1965
[33]; a recent analysis has been given by Lohner [24].

Example 2.1. Wrapping effect. Consider the function

f : (x, y) →
√

2
2

(x + y, y − x).

The image of the square x := [0,
√

2] × [0,
√

2] is the rotated square with corners (0, 0), (1,−1), (2, 0),
(1, 1). However, interval evaluation of f(x) yields a superset of the range of f over x, namely

f([0,
√

2], [0,
√

2]) = ([0, 2], [−1, 1]).

Note that the observed overestimation in Example 2.1 (the area of the interval enclosure is twice the
area of the range) is not a result of dependency, but of the enclosure of a non-interval shaped range by
an interval. Overestimations of this kind are one of the major problems in interval methods for ODEs.

2.3. Taylor Model Arithmetic. For reducing both the dependency problem and the wrapping
effect, interval arithmetic has been extended with symbolic computations. Symbolic-numeric computa-
tions have been proposed under various names since the 1980s [11, 16, 26]. Early implementations in
software were also given [11, 15], but to the authors’ knowledge, these packages have not been widely
distributed and are not available today.

Starting in the 1990s, Berz and his group developed a rigorous multivariate Taylor arithmetic [2, 26,
29]. The basic data type is a Taylor model

U := pn(x) + i, x ∈ x,

where x ∈ IRm, i ∈ IR are intervals and pn is an m-variate polynomial of order n. x is called the domain
interval of U , and i is its remainder interval. Evaluating U for all x ∈ x, we obtain the range of U :

Rg (U) := {z = p(x) + a | x ∈ x, a ∈ i}.
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A Taylor model is usually associated with a smooth function

f : x ⊆ Rm → R.

For some x0 ∈ x, let pn(x − x0) denote the Taylor polynomial of order n of f with respect to x0.
Furthermore, let i contain the approximation error f(x)− pn(x− x0) for all x ∈ x. Then

Uf := pn(x− x0) + i

is called a Taylor model of f .

Example 2.2. Taylor models of ex and cos x. Let x := [− ln 2, ln 2] and x0 := 0. Then Taylor’s
theorem gives

ex = 1 + x + 1
2x2 + 1

6x3eξ,

cos x = 1− 1
2x2 + 1

6x3 sin ξ,

}
x, ξ ∈ x,

from which we derive the Taylor models

U1(x) := 1 + x + 1
2x2 + [−0.112, 0.112], U2(x) := 1− 1

2x2 + [0, 0.010]

for

f1(x) := ex, f2(x) := cos x, x ∈ x,

respectively.

In computations that involve a Taylor model U , the polynomial part is propagated by symbolic cal-
culations wherever possible, and thus hardly affected by the dependency problem or the wrapping effect.
Only the interval remainder term and polynomial terms of order higher than n (which in applications are
usually small) are processed according to the rules of interval arithmetic. All truncation and roundoff
errors in intermediate operations are also enclosed by the remainder interval of the final result.

Example 2.3. Multiplication of two univariate Taylor models of order 2. Let x := [− ln 2, ln 2] and

U1(x) := 1 + x + 1
2x2 + [−0.112, 0.112], U2(x) := 1− 1

2x2 + [0, 0.010], where x ∈ x.

For all x ∈ x, it holds that

U1(x) · U2(x) ⊆ (1 + x + 1
2x2)(1− 1

2x2) +
(

1
2 + 1

2 (1 + x)2
)
[0, 0.010]

+ (1− 1
2x2)[−0.112, 0.112] + [−0.112, 0.112] · [0, 0.010]

⊆ (1 + x)− 1
2x3 − 1

4x4 + [0.547, 1.934] · [0, 0.010]

+ [0.759, 1] · [−0.112, 0.112] + [−0.112, 0.112] · [0, 0.010]

⊆ 1 + x + [−0.167, 0.167] + [−0.058, 0] + [0.054, 0.194] + [−0.112, 0.112] + [−0.012, 0.012]

= 1 + x + [−0.295, 0.485],

so we may define

U1(x) · U2(x) := 1 + x + [−0.295, 0.485].

This product is a Taylor model for the function ex cos x, x ∈ x:

ex cos x ∈ 1 + x + [−0.295, 0.485], x ∈ x.

In Example 2.3, direct interval evaluation for computing the remainder interval of the product has
been used for simplicity. Due to the dependency problem, this does not yield optimal bounds. More
accurate estimation schemes have been proposed in [31].

Compositions U1 ◦ U2 of Taylor models are evaluated in a similar way as products; ◦ denotes the
composition operator for functions, namely

(f ◦ g)(x) = f
(
g(x)

)
.
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Example 2.4. Composition of two univariate Taylor models of order 2. Let x := [− ln 2, ln 2] and

U1(x) := 1 + x + 1
2x2 + [−0.112, 0.112], U2(x) := 1− 1

2x2 + [0, 0.010], where x ∈ x.

It is tempting to compute the composition U1 ◦ U2 in the following manner.

U1(x) ◦ U2(x) ⊆ 1 + (1− 1
2x2 + [0, 0.010]) + 1

2 (1− 1
2x2 + [0, 0.010])2 + [−0.112, 0.112]

⊆ 2− 1
2x2 + [0, 0.010] + 1

2 (1− x2 + 1
4x4 + [0, 0.020]− x2[0, 0.010] + [0, 0.0001]) + [−0.112, 0.112]

⊆ 5
2 − x2 + 1

8x4 − x2[0, 0.010] + [−0.112, 0.133]

⊆ 5
2 − x2 + [0, 0.029]− [0, 0.049] + [−0.112, 0.133] = 5

2 − x2 + [−0.161, 0.162],

so that we may define

U1(x) ◦ U2(x) :=
5
2
− x2 + [−0.161, 0.162]. (2.2)

Nevertheless, the above computation is invalid. Evaluating (2.2) at x = 0, we obtain

U1(0) ◦ U2(0) = [2.339, 2.662] 63 e = ecos 0,

so that (2.2) is not a valid enclosure of ecos x, x ∈ x. The reason for this failure lies in the range of U2,
which is not contained in x. Compositions of Taylor models are indeed computed as above, but it is
required that the domain of U1 contains the range of U2. This condition is a severe restriction for any
implementation of Taylor model compositions.

In our example, it suffices to compute the remainder term for the exponential function on the interval
[−1, 1]. Using Lagrange’s representation of the remainder term, we have

eξ

3!
x3 ∈ [−e

6
,
e

6
] ⊆ [−0.454, 0.454] for all ξ ∈ [−1, 1] and all x ∈ [−1, 1].

Using [−0.454, 0.454] instead of [−0.112, 0.112] in the derivation of (2.2) yields

U1(x) ◦ U2(x) :=
5
2
− x2 + [−0.503, 0.504],

which is a verified enclosure of U1(x) ◦ U2(x) for x ∈ x. Note that it is still not a verified enclosure for
x ∈ [−1, 1]. The latter requires that the interval term of U2 is also computed for x ∈ [−1, 1].

A Taylor model vector is a vector with Taylor model components. When no ambiguity arises, we
call a Taylor model vector simply a Taylor model. Arithmetic operations for Taylor model vectors are
defined componentwise.

2.3.1. Floating-Point Taylor Model Arithmetic. On a computer with floating-point arith-
metic, a Taylor model is defined by a polynomial with machine representable coefficients and a suitable
remainder interval, that takes account for the roundoff errors. These roundoff errors can occur

• when a function is represented by a Taylor model, or
• when operations between Taylor models are executed.

Example 2.5. Addition of two univariate floating-point Taylor models. For simplicity, we use Taylor
models of order 1 and a floating-point number system with a mantissa of four decimal digits.

Let

x := [−1, 1], f1(x) := 1 + x +
1
8
x2, x ∈ x, f2(x) := 1 +

1
3
x, x ∈ x.

Then linear Taylor models for f and g are for example given by

U1(x) := 1 + x + [0, 0.125], U2(x) := 1 + 0.3333x + [−0.0001, 0.0001], x ∈ x.

Note that for j = 1, 2, the inclusion condition

fj(x) ∈ Uj(x) for all x ∈ x
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does not define U1 and U2 uniquely. For example,

Ũ1(x) := 1 + x + [−0.125, 0.125], x ∈ x

is also a valid, but less accurate, Taylor model for f1.

A Taylor model for f1 + f2 is obtained by performing U1 + U2 with suitable outward rounding. The
interval bound for the roundoff error in x + 0.3333x depends of the domain x.

U1(x) + U2(x) ⊆ 2 + (x + 0.3333x) + [−0.0001, 0.1251]

⊆ 2 + (1.333x + [−0.0003, 0.0003]) + [−0.0001, 0.1251] = 2 + 1.333x + [−0.0004, 0.1254].

A software implementation of Taylor model arithmetic has been developed by Berz and Makino [3, 27]
in the COSY Infinity package. The software is available free of charge to non-commercial users [4]. Using
COSY Infinity, Taylor models have been applied with success to a variety of problems, including global
optimization [35], verified multidimensional integration [7], and the verified solution of ODEs and DAEs
[6, 13].

2.4. Representation of Intervals by Taylor Models. For a given vector c ∈ Rm and a given
diagonal matrix C ∈ Rm×m with nonnegative diagonal elements, the range of the Taylor model vector

U := c + Cx, x ∈ x (2.3)

is an m-dimensional interval vector. Vice versa, each interval vector z ∈ IRm can be represented by a
Taylor model vector of the form (2.3). There is freedom of choice in selecting c, C, and x. A convenient
choice is

c = m(z), C = diag
(

1
2
w(z)

)
, x = [−1, 1]m,

where [−1, 1]m denotes an interval vector with [−1, 1] in each component.

Example 2.6. Let z = ([1, 2], [−2, 2])T . Then we have

z = Rg
((

3
2
0

)
+
(

1
2 0
0 2

)(
x
y

))
,

(
x
y

)
∈ [−1, 1]2.

3. Interval Initial Value Problems. We consider the smooth interval IVP

u′ = f(t, u), u(t0) ∈ u0, t ∈ t = [t0, tend], (3.1)

where f : R × Rm → Rm is a sufficiently smooth function, u0 ∈ IRm is a given interval vector in the
space variables, and tend > t0 is a given endpoint of the time interval. (The case tend < t0 is handled in
the same way).

While the ODE is defined in the traditional way, the initial value is allowed to vary in the interval
u0. In applications, this variability is used for modeling uncertainties in initial conditions. For each
u0 ∈ u0, the point IVP

u′ = f(t, u), u(t0) = u0

has a classical solution, which is denoted by u(t; t0, u0). In the following, we assume that u(t; t0, u0)
exists and is bounded for all t ∈ t and for all u0 ∈ u0.

Our goal when solving (3.1) is to calculate bounds on the flow of the interval IVP. For each t ∈ t,
we wish to calculate an interval u(t) such that

u(t; t0, u0) ∈ u(t)

holds for all u0 ∈ u0. The tube u(t), t ∈ t, then contains all solutions of u′ = f(t, u) that emerge from
u0.
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4. Moore’s Direct Enclosure Method for ODEs. For the smooth interval IVP (3.1)

u′ = f(t, u), u(t0) ∈ u0,

the direct enclosure method developed by Moore [32, 33, 34] is based on the automatic computation of
Taylor coefficients and on interval iteration. The time interval t is subdivided into jmax sufficiently small
subintervals tj = [tj , tj+1], j = 0, 1, . . . , jmax − 1, where tjmax = tend. On each tj , Moore’s enclosure
method consists of two stages. Starting from a bound uj of the flow of the interval IVP (3.1) at the
point t = tj , we compute, a rigorous, but potentially highly overestimating bound ûj ∈ IRm on the flow

Lj := {u(t) | u′ = f(t, u), u(tj) = uj ∈ uj , t ∈ tj}

of the interval IVP

u′ = f(t, u), u(tj) ∈ uj

satisfying

u(t; tj , uj) ∈ ûj for all t ∈ tj and for all uj ∈ uj . (4.1)

ûj is frequently called a coarse enclosure in the literature.

In the second stage of Moore’s method, often referred to as the refinement step, ûj is used to compute
an interval bound uj+1 for the flow at t = tj+1 satisfying

u(tj+1; tj , uj) ∈ uj+1 for all uj ∈ uj .

Letting h = tj+1 − tj , for arbitrary uj ∈ uj and n ∈ IN, Taylor’s theorem yields

u(tj+1; tj , uj) = uj +
n∑

k=1

hk

k!
f (k−1)(tj , uj) +

hn+1

(n + 1)!
ũj ,

where

f (0) = f, f (k) =
(

∂f (k−1)

∂t
+

∂f (k−1)

∂u
f

)
, k = 1, 2, . . . , n− 1,

and

ũj(i) = f
(n)
(i)

(
τij , u(τij ; tj , uj)

)
(4.2)

for some τij ∈ tj , i = 1, 2, . . . ,m (the subscript (i) denotes the ith component of a vector). Interval-
arithmetic evaluation of (4.2) yields a bound zj+1 on the local error:

zj+1 :=
hn+1

(n + 1)!
f (n)(tj , ûj). (4.3)

The bound for the flow at tj+1 is finally calculated as

uj+1 := uj +
n∑

k=1

hk

k!
f (k−1)(tj ,uj) + zj+1. (4.4)

An immediate consequence of (4.4) is that the widths of the enclosures uj+1 are always increasing during
the iteration. This unpleasant property is expunged in the more sophisticated interval methods described
in the next section. The direct enclosure method is illustrated in Figure 4.1.

Fixed point iteration can be used for computing a constant coarse enclosure ûj . For some h > 0
and û

(0)
j := uj , the interval iteration

û
(k+1)
j := uj + [0, h] · f(tj , û

(k)
j ), k = 0, 1, . . . , (4.5)

is performed until û
(k+1)
j ⊆ û

(k)
j is fulfilled. The inclusion (4.1) then holds for

ûj := û
(k+1)
j .

For sufficiently small values of h, iteration (4.5) terminates after finitely many steps (if real interval
arithmetic is used in the computation). However, (4.5) usually imposes a severe restriction on the
step size of the whole method, namely the step size of the explicit Euler method, irrespective of the
order of the Taylor polynomial used in the refinement step. A detailed justification for our summarized
presentation is given in [21]. Alternative methods for calculating coarse enclosures have been discussed
in [10, 22, 39, 40].
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j+1tjt

j+1u^
ju

ju
jL

Fig. 4.1. Moore’s enclosure method. The flow at tj+1 is generally overestimated by uj+1.

5. Interval Methods for Linear Autonomous ODEs. The major problem with interval meth-
ods for IVPs is the wrapping effect. We describe the wrapping effect and methods to deal with it for the
special case of a linear interval IVP

u′ = B u

u(0) ∈ u0,
(5.1)

where B is an m×m matrix. In this case, the direct method of Moore simplifies to the interval iteration

Algorithm 4.1 (direct method)

For j := 0, 1 . . . , jmax − 1:

zj+1 :=
(hB)n+1

(n + 1)!
ûj

uj+1 := T uj + zj+1

where

T :=
n∑

k=0

(hB)k

k!

and ûj is a coarse enclosure of the flow of the IVP on [tj , tj+1].

5.1. Wrapping Effect. All enclosure methods for ODEs that we are aware of subdivide the domain
of integration into subintervals. At each grid point, the flow of the given ODE is enclosed by a set with
a certain geometric structure, for example an m-dimensional rectangle. In the general case, the shape
of the flow has a different geometry, so that the flow is wrapped by some larger set, which serves as
the initial set for the next time step. To maintain the validity of the method, all solutions of the ODE
emerging from the increased initial set must be enclosed in subsequent time steps. The method thus
picks up additional solutions of the ODE (that is, solutions not emerging from the original initial set)
during the integration process. If the accumulated flow becomes too large, the method may break down
because it can no longer compute a sufficiently tight enclosure. It is essential for any verified integration
method to minimize the excess introduced by the wrapping of intermediate enclosures of the flow.

Moore’s classical example for the wrapping effect is the two-dimensional ODE [34, Chap. 13]

u′ =

(
0 1

−1 0

)
u

with some interval initial set, say u0 = ([0, 0.1], [1, 1.1])T , at t0 = 0 (Figure 5.1). The flow of the ODE
is given by

u(t; 0, u0) =

(
cos t sin t

− sin t cos t

)
u0,
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a rotating rectangle. For any step size h, the interval enclosures at the grid points must be at least
as large as the optimal interval enclosure of the accumulated flow (Figure 5.1). In this example, the
rotation of the initial set provokes exponential growth of the widths of the computed interval enclosures.

2u

1u

0u

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

–1 –0.5 0.5 1 1.5

Fig. 5.1. Example of the wrapping effect in Moore’s enclosure method (h = π
4
).

Various methods have been proposed to fight the wrapping effect [12, 19, 21, 33, 34]. A thorough
discussion on the wrapping effect is found in [37].

5.2. Parallelepiped Method. The idea behind the parallelepiped method is to enclose the flow
of the ODE at intermediate time steps by parallelepipeds instead of rectangular boxes. This choice is
motivated by the shape of the flow of an autonomous linear ODE with interval initial values, which
is a parallelepiped at any time. For this problem, the only source of overestimation is the remainder
interval accounting for the discretization error and the accumulated roundoff errors, if the computation
is performed in floating-point arithmetic. These quantities must be enclosed by the final parallelepiped
enclosure, but the wrapping only affects small quantities.

Parallelepipeds are represented as matrix-vector products. For the linear IVP (5.1), the idea behind
the parallelepiped method is to store {Ty | y ∈ uj} instead of Tuj .

Pep. enclosure

Excess area

juT

}ju{ Ty | y in

Fig. 5.2. Parallelepiped method for an autonomous linear ODE. The innermost parallelepiped describes the flow of
the given ODE; the squares in the corners depict the interval remainder bound. The resulting parallelepiped enclosure
is given by the outer parallelepiped. The circumscribed rectangle represents the interval enclosure computed by the direct
method.

The parallelepiped method for (5.1) is given by the following iteration. The identity matrix is
denoted by I. zj+1 is defined as in (4.3).
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Algorithm 4.2
(parallelepiped method)

Set A0 := I, ũ0 := m(u0), r0 := u0 − ũ0

For j := 0, 1 . . . , jmax − 1:

sj+1 := m(zj+1)

ũj+1 := T ũj + sj+1

uj+1 := T ũj + (TAj)rj + zj+1

Aj+1 := TAj

rj+1 := rj + A−1
j+1(zj+1 − sj+1)

Instead of the large global errors rj , only the small local errors zj+1 − sj+1 are multiplied by A−1
j+1,

which diminishes the wrapping effect significantly in Moore’s example (Figure 5.1).

For well-conditioned matrices Aj , the parallelepiped method is effective in reducing the wrapping
effect. However, for ill-conditioned matrices, wrapping can be as detrimental as in the direct method.
The excess area in the parallelepiped method is the area of the spikes in the corners of the wrapping
parallelepiped. It becomes large for an ill-conditioned matrix Aj . The algebraic crux of the parallelepiped
method is the verified inversion of Aj . In [37] it is shown that the parallelepiped method only works well
if all eigenvalues of T have the same magnitude. Otherwise, the matrices Aj tend to become singular
after some time steps, so that the method breaks down either due to excessive wrapping or because the
verified inversion of Aj is no longer feasible. Hence, breakdown of the parallelepiped method is a rule
rather than an exception.

5.3. QR Method. To preserve good condition numbers in the matrices Aj , Lohner [21] developed
the QR method. His idea was to stabilize the iteration by orthogonalization. Each parallelepiped is
wrapped by a rotated m-dimensional rectangle such that the longest edge of the rectangle coincides with
the longest edge of the parallelepiped. Orthogonalization is then performed in the order of decreasing
lengths of the edges of the parallelepiped [21] (Figure 5.3). The geometric argument for the success
of this method is shown in Figure 5.3, where the excess area in the QR method is shaded in grey. If
ill-conditioned matrices Aj arise in the parallelepiped method, then the excess area in the QR method
is smaller than the excess area in acute spikes of the parallelepiped enclosure. The algebraic problem of
inverting the matrix Aj+1 is reduced to taking its transpose when, in Algorithm 4.2, Aj+1 is replaced
by the orthogonal matrix Qj obtained from a QR decomposition of TAj .

Excess area

QR enclosure

juT

}ju{ Ty | y in

Fig. 5.3. QR method for an autonomous linear ODE. The parallelepiped-shaped flow and the interval remainder
bound are enclosed by a rectangle.

The interval iteration is modified as follows:
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Algorithm 4.3 (QR method)

Set A0 := I, ũ0 := m(u0), r0 := u0 − ũ0

For j := 0, 1 . . . , jmax − 1:

sj+1 := m(zj+1)

ũj+1 := T ũj + sj+1

uj+1 := T ũj + (TAj)rj + zj+1

Aj+1 := Qj , where TAjPj = QjRj

rj+1 := (A−1
j+1TAj)rj + A−1

j+1(zj+1 − sj+1),

where Pj is a permutation matrix for sorting the
columns of Aj [21].

Various other interval methods have been proposed to fight the wrapping effect, and there are
several techniques which are effective in reducing overestimation of the flow for some problem classes
[12, 19, 21, 33, 34]. Nevertheless, the ability of interval methods in minimizing wrapping is limited by
the fact that interval based enclosure sets are convex. If the flow is a non-convex set, as may arise for
nonlinear ODEs, any interval wrap must be at least as large as the convex hull of the flow.

6. Taylor Model Methods for ODEs. Taylor model methods use multivariate polynomials in
the initial values plus a small interval remainder term to represent the flow of an IVP. Thus it is possible
to work with nonlinear boundary curves, including non-convex enclosure sets for crescent-shaped or
twisted flows. For nonlinear ODEs, this increased flexibility in admissible boundary curves is an intrinsic
advantage of Taylor model methods over traditional interval methods, making Taylor model methods
very effective in some cases in reducing the wrapping effect.

We refer to the recent paper of Makino and Berz [30] for the general description of Taylor model
methods for ODEs. Our intention here is to explain the fundamental difference between interval methods
and Taylor model methods with a simple, but illuminating, nonlinear example.

6.1. Quadratic Model Problem. We consider the quadratic model problem

u′ = v, u(0) ∈ [0.95, 1.05],

v′ = u2, v(0) ∈ [−1.05,−0.95],
(6.1)

where the differentiation is with respect to t. In an interval method, one would use interval initial values
u0 = [0.95, 1.05] and v0 = [−1.05,−0.95]. In the Taylor model method, the initial set is described
by parameters, which we call a and b and which we choose in the interval [−0.05, 0.05]. The initial
conditions of the IVP (6.1) at t = t0 are thus given by

u0(a, b) := 1 + a, a ∈ a := [−0.05, 0.05],
v0(a, b) :=−1 + b, b ∈ b := [−0.05, 0.05].

For illustration, we use order n = 3 and step size h = 0.1 in the Taylor model integration of (6.1).
All numbers are displayed here rounded to six decimal digits. In each integration step, the multivariate
Taylor series (with respect to t, a and b) of the solution of (6.1) is employed. The third order Taylor
polynomial serves as an approximate solution. The truncation error of the series is enclosed by a
suitable remainder interval.

The first integration step consists of integrating the IVP

u′ = v, u(0) = 1 + a,

v′ = u2, v(0) = −1 + b
(6.2)
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for 0 ≤ t ≤ h. We use the Picard iteration to calculate a multivariate Taylor polynomial approximation
of the solution to (6.2). Using the initial approximations

u(0)(τ, a, b) = 1 + a,

v(0)(τ, a, b) = −1 + b

(τ is time), the first step of the Picard iteration yields

u(1)(τ, a, b) = u0(a, b) +
∫ τ

0

v(0)(s, a, b) ds = 1 + a− τ + bτ,

v(1)(τ, a, b) = v0(a, b) +
∫ τ

0

(
u(0)(s, a, b)

)2

ds = −1 + b + τ + 2aτ + a2τ.

After two more Picard iterations (and omitting the higher order terms), we obtain the third order Taylor
polynomials

u(3)(τ, a, b) = 1 + a− τ + bτ +
1
2
τ2 + aτ2 − 1

3
τ3,

v(3)(τ, a, b) = −1 + b + τ + 2aτ − τ2 + a2τ − aτ2 + bτ2 +
2
3
τ3,

as multivariate approximations to the solution of (6.2). For a verified enclosure of the flow, the Taylor
polynomials have to be furnished with suitable remainder bounds. Their derivation is based on a fixed
point iteration [25]. Intervals i0 and j0 are sought such that the inclusions

u0 +
∫ τ

0

(
v(3)(s, a, b) + j0

)
ds ⊆ u(3)(τ, a, b) + i0,

v0 +
∫ τ

0

(
u(3)(s, a, b) + i0

)2

ds ⊆ v(3)(τ, a, b) + j0

simultaneously hold for all a ∈ a, for all b ∈ b, and for all τ ∈ [0, 0.1]. For the details of the computation
of the remainder interval, we refer to [25]. In our example these inclusions are fulfilled for

i0 = [−5.09307E-5, 7.86167E-5] and j0 = [−1.75707E-4, 1.60933E-4].

An enclosure of the flow of the IVP (6.2) for t ∈ [0, 0.1] is given by the Taylor models

Ũ1(τ, a, b) := 1 + a− τ + bτ +
1
2
τ2 + aτ2 − 1

3
τ3 + i0,

Ṽ1(τ, a, b) := −1 + b + τ + 2aτ − τ2 + a2τ − aτ2 + bτ2 +
2
3
τ3 + j0,

where a, b ∈ [−0.05, 0.05], τ ∈ [0, 0.1], and t = τ .

Evaluating Ũ1 and Ṽ1 at τ = h = 0.1, we obtain the enclosure of the flow at t1 = 0.1 (Taylor models
of order at most 2 in the space variables):

U1(a, b) := Ũ1(0.1, a, b) = 0.904667 + 1.01a + 0.1b + i0,

V1(a, b) := Ṽ1(0.1, a, b) = −0.909333 + 0.19a + 1.01b + 0.1a2 + j0,
(6.3)

which is the initial set for the second integration step. The latter is performed with a slight modification.
We do not use the interval remainder terms in U1 and V1 when computing the polynomial part of the
Taylor model in the space and time variables. The Picard iteration is again performed for τ ∈ [0, 0.1],
with initial approximations

u(0)(τ, a, b) = 0.904667 + 1.01a + 0.1b,

v(0)(τ, a, b) = −0.909333 + 0.19a + 1.01b + 0.1a2.
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After three iterations (and again omitting higher order terms), we obtain

u(3)(τ, a, b) = 0.904667 + 1.01a + 0.1b− 0.909333τ + 0.19aτ + 1.01bτ + 0.409211τ2

+0.1a2τ + 0.913713aτ2 + 0.0904667bτ2 − 0.274215τ3,

v(3)(τ, a, b) = −0.909333 + 0.19a + 1.01b + 0.818422τ + 0.1a2 + 1.82743aτ + 0.180933bτ − 0.822644τ2

+1.0201a2τ + 0.202abτ + 0.01b2τ − 0.74654aτ2 + 0.82278bτ2 + 0.522429τ3.

To compute the interval remainder term, we must find intervals i1 and j1 fulfilling the inclusions

U1(a, b) +
∫ τ

0

(
v(3)(s, a, b) + j1

)
ds⊆ u(3)(τ, a, b) + i1,

V1(a, b) +
∫ τ

0

(
u(3)(s, a, b) + i1

)2
ds⊆ v(3)(τ, a, b) + j1

(6.4)

for all a, b ∈ [−0.05, 0.05] and for all τ ∈ [0, 0.1]. (Note that i0 and j0 are contained in U1 and V1,
respectively, from (6.3)). Suitable remainder intervals are

i1 = [−1.12850E-4, 1.65751E-4], j1 = [−3.31917E-4, 3.24724E-4].

Thus, the flow of the IVP (6.2) for t ∈ [0.1, 0.2] is contained in the Taylor models

Ũ2(τ, a, b) = u(3)(τ, a, b) + i1,

Ṽ2(τ, a, b) = v(3)(τ, a, b) + j1

where a, b ∈ [−0.05, 0.05], τ ∈ [0, 0.1], t = τ + 0.1.

Evaluating at τ = 0.1, we obtain the enclosure of the flow at t2 = 0.2 (Taylor models of order at
most 2 in the space variables):

U2(a, b) := Ũ2(0.1, a, b) = 0.817551 + 1.03814a + 0.201905b + 0.01a2 + i1,

V2(a, b) := Ṽ2(0.1, a, b) = −0.835195 + 0.365277a + 1.03632b

+0.20201a2 + 0.0202ab + 0.001b2 + j1.

For larger values of t, the integration can be continued as in the second integration step described above.

Remark 6.1.

1. The sets (Uj ,Vj) containing the flow of the IVP (6.2) generally become more and more irregular
for increasing j. Integration over a larger domain is shown in Figure 8.1.

2. In the above calculations, the polynomial parts of the Taylor models are independent of the
initial domain intervals for a and b and independent of the step size h, but the interval remainder
bounds are not.

3. The order of the method refers to the order of the multivariate Taylor polynomials with respect
to space and time variables that are calculated in the integration step. When the initial sets are
defined by linear functions in a and b, then it follows by induction that the maximum order of
the polynomials representing the flow at the grid points (obtained after evaluating t) is always
at least one less than the order of the method.

In the above example, we have used the so-called naive Taylor model integration method, to
illustrate the qualitative difference of interval methods and Taylor model methods for solving IVPs.
For practical computations, the naive Taylor model method is not very useful. The interval remainder
terms are propagated as in the direct interval method. The inclusion (6.4) implies that the diameters
of the interval remainder terms are nondecreasing. Often, these diameters grow exponentially, and the
method breaks down early. More advanced Taylor model integration methods are discussed in the next
section. For clarity, we summarize the major steps of the naive Taylor model method as Algorithm 6.1.
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Algorithm 6.1 (naive Taylor model method)

Let the initial set be given as a Taylor model vector in the m space variables.

For j := 0, 1 . . . , jmax − 1:

1. Compute the Taylor polynomial pn (of dimension m in m + 1 variables) of the
solution of the j + 1st time step, using Picard iteration.

2. Compute a remainder interval vector i, using Schauder’s fixed point theorem
(via interval iteration based on Picard iteration).

3. Evaluate Ũ = pn + i at tj+1. The resulting m-dimensional Taylor model U
contains the flow of the IVP and serves as initial set for the next time step.

6.2. Shrink Wrapping and Preconditioning. For successful integration over long time spans,
sophisticated treatment of the interval terms is required. For this purpose, Berz and Makino invented two
schemes which they call shrink wrapping and preconditioning. Shrink wrapping is a method to absorb
the interval remainder term into the symbolic part of the Taylor model. From a geometric viewpoint, it
resembles the parallelepiped method. Shrink wrapping uses the same linear map as the parallelepiped
method, so that it has the same limitations when this map becomes ill-conditioned. Preconditioning aims
at maintaining a small condition number for the shrink wrapping map. Thus it stabilizes the integration
process, like the QR method does.

We describe shrink wrapping and preconditioning for the special case of linear autonomous ODEs.
This enables a direct comparison with the interval methods presented in Section 5. The generalization
of shrink wrapping and preconditioning to nonlinear ODEs is straightforward. We refer to [30] for the
details.

7. Taylor Model Methods for Linear ODEs. For a linear autonomous ODE, the flow of an
interval IVP is a parallelepiped for all time, so Taylor models seem to have no obvious advantage over
interval methods. On the other hand, if Taylor model methods failed on linear ODEs, they would
probably also not be effective for nonlinear ODEs. The purpose of this section is to show that they can
be as good as interval methods for linear ODEs.

We consider the linear autonomous ODE

u′ = B u
u(0) = U0,

(7.1)

where B is a given real matrix, x is a given interval vector, and U0 = pn(x), x ∈ x, is a Taylor model
vector with zero remainder interval describing the initial set. x is used to denote the vector of the space
variables. We assume that the enclosure step in the Taylor model method is feasible with some constant
step size h > 0 and some order n ∈ IN.

7.1. Naive Taylor Model Method. In the first integration step, Picard iteration of order n is
used to compute the multivariate Taylor polynomial

u1,n := Pn(tB) pn(x),

where

Pn(tB) :=
n∑

k=0

(tB)k

k!
.

Introducing T := Pn(hB), the verification step consists of finding an interval vector i1 such that

pn(x) +
∫ h

0

B
(
Pn(τB) pn(x) + i1

)
dτ ⊆ Pn(hB) pn(x) + i1 = Tpn(x) + i1

holds for all x ∈ x (see for example [25, Ch. 6]). At t1 = h, the flow of the IVP (7.1) is then enclosed by
the Taylor model

U1 := T pn(x) + i1.
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Subsequent integration steps are performed in the same manner, but with a slight modification in the
verification step. In the jth integration step, j ≥ 2, ij is sought such that the inclusion

T j−1pn(x) + ij−1 +
∫ h

0

B
(
Pn(τB) T j−1pn(x) + ij

)
dτ ⊆ T jpn(x) + ij

is fulfilled for all x ∈ x. Letting

Uj := T Uj−1 + ij , j = 1, 2, . . . ,

the naive Taylor model method for (7.1) consists of the iteration

Uj = T j U0 +
j∑

k=1

(T◦)j−kik, j = 1, 2, . . . , (7.2)

where

(T◦)0x := x, (T◦)kx := T ·
(
(T◦)k−1x

)
, k ∈ IN.

Apart from the different computation of the remainder intervals zj and ij , respectively, the naive
Taylor model method (7.2) coincides with the direct interval method described in Algorithm 4.1. Hence,
the naive Taylor model method (7.2) has the same divergence property as the direct method, for which
it was shown in [37] that after j steps we have

w
(
(T◦)j−1i1

)
= |T | j−1 w(i1)

(for A = (aij), we denote by |A| the matrix with components |aij | ). The key point here is that the
spectral radius of |T | j−1 may be much larger than the spectral radius of T j−1, which describes the
natural error growth of the problem. If this is the case, the error bounds for the naive Taylor model
method may be much larger than the true error.

7.2. Naive Taylor Model Method with Shrink Wrapping. Berz and Makino [30] defined
shrink wrapping as a method for absorbing the interval part of the Taylor model into the polynomial
part by modifying the polynomial coefficients. The set defined by the sum of the given polynomial and
interval is wrapped by a set defined by a pure polynomial. The new set may be larger than the initial
set, but it is less prone to the dependency problem and to the wrapping effect in succeeding calculations.
In the verified integration of ODEs, shrink wrapping is usually applied to the Taylor model enclosures
of the flow at the grid points, before continuing the integration. Thus, the initial set of each integration
step is purely symbolic, which removes the dependency problem and simplifies the verification step. The
success of the Taylor model based integration method depends on the successful minimization of the
excess introduced in the shrink wrapping process.

The process of applying shrink wrapping to a Taylor model vector

U := p(x) + i, x ∈ x,

is described in [30]. Here, we only outline its four basic steps. First, let Ũ denote the Taylor model that
is obtained when the constant part of p is removed. Second, multiply Ũ by the inverse of the matrix
associated with its linear part and obtain the Taylor model Û . Third, estimate the nonlinear part of Û ,
its Jacobian, and the interval term of Û , to obtain the shrink wrap factor q ≥ 1. Fourth, multiply the
polynomial part of Ũ with q and add the constant part of U .

We illustrate shrink wrapping with the following nonlinear example. For clarity, we use two scalar
Taylor models U and V instead of a Taylor model vector. The symbolic variables are denoted by a and
b (instead of the vector x).

Example 7.1. Absorption of the interval part into the symbolic part of a Taylor model. We consider
the Taylor model vector (U ,V)T , where

U(a, b) := 2 + 4a + 1
2a2 + [−0.2, 0.2],

V(a, b) := 1 + 3b + ab + [−0.1, 0.1]
(7.3)
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and a, b ∈ [−1, 1]. The set defined by (7.3) is shown in Figure 7.1. Following the above outline, we
obtain

Ũ(a, b) = 4a + 1
2a2 + [−0.2, 0.2],

Ṽ(a, b) = 3b + ab + [−0.1, 0.1].
(7.4)

The matrix associated with the linear part of the Taylor model (7.4) is

C :=
(

4 0
0 3

)
.

Multiplying (7.4) with C−1, we have

Û(a, b) = a + 1
8a2 + [−0.05, 0.05],

V̂(a, b) = b + 1
3ab + [−0.034, 0.034].

Estimating the nonlinear part and the interval terms as described in [30], we compute numbers s, t, and
d satisfying

s ≥ |1
8
a2| , s ≥ |1

3
ab| for all a, b ∈ [−1, 1],

t ≥ |1
4
a| , t ≥ |1

3
b| , t ≥ |1

3
a| for all a, b ∈ [−1, 1],

d ≥ 0.05, d ≥ 0.034.

These conditions are fulfilled for s = t = 1
3 and d = 0.05, from which we deduce the shrink wrap factor

[30]

q = 1 + d · 1
(1− t)(1− s)

=
89
80

.

The final Taylor model after shrink wrapping is

Usw(a, b) := 2 + 89
20a + 89

160a2,

Vsw(a, b) := 1 + 287
80 b + 89

80ab.
(7.5)

As Figure 7.1 shows, the set defined by (7.3) is contained in the set defined by (7.5).

Applying shrink wrapping in the linear model problem (7.1) is rather simple. We must compute [30]
qj := 1 + dj/2, where

dj := ‖w
(
(T j)−1ij

)
‖∞ .

If T is sufficiently well-conditioned and if the interval terms are sufficiently small, then the factors dj are
almost zero and shrink wrapping is feasible for many integration steps.

The naive Taylor model method with shrink wrapping resembles the parallelepiped method. By
multiplying the non-constant coefficients of the Taylor polynomial, for autonomous linear ODEs the
interval term is absorbed as in the parallelepiped method (Figure 5.2). While T j is well-conditioned, dj

is small, and so is the excess area. On the other hand, qj (and the excess area) gets large if T j becomes
ill-conditioned, which is eventually the case if T has eigenvalues of different magnitude. In this case the
integration breaks down due to the growth of the Taylor polynomial coefficients.

The naive TM method with shrink wrapping is outlined as Algorithm 6.2.
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Fig. 7.1. Sets of the Taylor models before (Eq. (7.3)) and after shrink wrapping (Eq. (7.5)). The dotted line is the
boundary of the set that is described by the polynomial of the original Taylor model. The white area is the set described by
the original Taylor model, including the interval term. The excess area introduced by shrink wrapping is shaded in grey.

Algorithm 6.2 (naive TM method with shrink wrapping)

Let the initial set be given as a Taylor model vector in the m space variables.

For j := 0, 1 . . . , jmax − 1:

1. Compute the m-dimensional Taylor model U = pn + i (containing the flow of
the IVP at tj+1) as in the naive Taylor model method.

2. Absorb i into pn by shrink wrapping.

3. Continue the integration with the modified polynomial as the initial set for the
next time step.

7.3. Preconditioned Taylor Models. It has been shown in the previous section that shrink
wrapping has the same limitations as the parallelepiped method in traditional interval arithmetic. To
make Taylor model based integration successful for a larger class of IVPs, some stabilization process
similar to the QR interval method is required. For restoring good condition numbers of the maps
defined by the linear parts of the Taylor models in the integration process, Berz and Makino developed
preconditioned Taylor models [30].

In the naive Taylor model method with or without shrink wrapping, the flow of the ODE u′ = f(t, u)
is represented by a single Taylor model at each grid point. In the preconditioned Taylor model method,
the flow of the ODE at t = tj is represented by a composition of a left and a right Taylor model

Ul ◦ Ur = (pl,j + il,j) ◦ (pr,j + ir,j).

Definition 7.2. The composition

U(z) :=
(
pl(x) + il

)
◦
(
pr(z) + ir

)
(7.6)

of two Taylor models

Ul(x) := pl(x) + il, x ∈ x,

Ur(z) := pr(z) + ir, z ∈ z,
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is called a preconditioned Taylor model, if

Rg (Ur) ⊆ x (7.7)

holds.

Remark 7.3.

1. The range enclosure condition (7.7) is essential in verified integration with preconditioned Taylor
models (see discussion below).

2. The factorization into a left and a right Taylor model is not unique. Two preconditioned Tay-
lor models of the form (7.6) can have the same domain z and the same range, but different
polynomials and remainder intervals.

In verified integration, preconditioning is used to replace some representation of the flow at an inter-
mediate grid point by a different set of initial values that is more suitable for continuing the integration.
Here preconditioning is essentially a substitution in space variables. In the continuation of the inte-
gration, the right Taylor model is not involved at all. The following theorem is a reformulation of a
proposition given by Makino and Berz [30].

Theorem 7.4. If the initial set of an IVP is given by a preconditioned Taylor model, then integrating
the flow of the ODE only acts on the left Taylor model.

The authors of [30] seemingly found their proposition so obvious that they gave no proof for it. For
better understanding of this theorem, which is the key point of the preconditioned integration method,
we present first a formal proof, then an example with symbolic integration, and finally a numerical
example.

Proof. The space variables are parameters in the integration with respect to time. If F (x, t) is a
primitive of f(x, t), that is if ∫

f(x, t) dt = F (x, t),

then substituting x = g(u) does not affect F :∫
f(g(u), t) dt = F (g(u), t).

Preconditioned integration uses x = (pl,j + il,j) and g(u) = (pr,j + ir,j).

Example 7.5. Preconditioned symbolic integration over two time steps. We consider the IVP

ẋ = x(x + y), x(0) = 1 + a,

ẏ =−x(x + y), y(0) = −1 + b.

Its unique solution is

x(t) = (1 + a)e(a+b)t,

y(t) = a + b− (1 + a)e(a+b)t,

so that at t = 1,

x(1) = (1 + a)ea+b, y(1) = a + b− (1 + a)ea+b.

To continue the integration, we use the IVP

u̇ = u(u + v), u(0) = α,

v̇ =−u(u + v), v(0) = β

and obtain

u(1) = αeα+β , v(1) = α + β − αeα+β .
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Due to the substitution rule, u(1) = x(2) and v(1) = y(2) must hold. Indeed, letting

α = (1 + a)ea+b,

β = a + b− (1 + a)ea+b

we obtain

u(1) = (1 + a)e2(a+b) = x(2),

v(1) = (a + b)− (1 + a)e2(a+b) = y(2).

The same variable substitution as in Example 7.5 is applied, when the initial set for an ODE is given
by some preconditioned Taylor model Ul ◦Ur. To compute an enclosure of the flow, it suffices to integrate
the given ODE for the initial values defined by Rg (Ul), and to compose the integrated Taylor model
with Ur. If higher order terms appear in the composition process, they are included in the remainder
interval of the result, as in Example 2.3.

In practice, preconditioning is used to replace the integrated preconditioned flow at the end of the
j-th integration step, (∮

Ul,j

)
◦ Ur,j ,

(where
∮
U denotes integrated flow with respect to the given ODE) by a different preconditioned Taylor

model

Ul,j+1 ◦ Ur,j+1.

The initial set for the (j +1)-st integration step is then defined by Rg (Ul,j+1). The method is successful,
if

• the amount of overestimation in the wrapping of
(∮
Ul,j

)
◦ Ur,j by Ul,j+1 ◦ Ur,j+1 is sufficiently

small, and if

• Rg (Ul,j+1) is better suited for continuing the integration than
∮
Ul,j .

In Lohner’s QR-method, an ill-conditioned parallelepiped is wrapped by some well-conditioned m-
dimensional rectangle. For preconditioning Taylor models, a large variety of well-conditioned wraps
are conceivable. The optimal choice is still an open question for future research.

One important aspect of preconditioned integration is the computation of the remainder bounds in
the Picard iteration. If the initial set is given by (7.6), then the validity of the enclosure is already
guaranteed if the remainder intervals hold for z ∈ Rg (Ur). In practice, the remainder bounds are
calculated for x ∈ x, a larger set and a potential source of overestimation. In practical computations,
overestimation (loss of accuracy) is usually converted to costs (increase of computation time). A common
strategy is to limit the admissible size of the remainder intervals by some prescribed bound. Using a
larger initial set then has the effect of reducing step sizes and increasing overall computation time.

A simple choice for the left Taylor model (i.e., the initial set) in each integration step is a well-
conditioned linear map (i.e, a parallelepiped). The following description of preconditioned integration is
a simplified version of the presentation in [30]. We consider the linear autonomous IVP

u′ = B u

u(0) = u0 = c0 + C0x,
(7.8)

where B is a real matrix, c0 is a real vector, C0 is a diagonal matrix, and x is contained in [−1, 1]m. The
initial set is given by a Taylor model vector of the form (2.3). We assume that the flow at tj is given by
the preconditioned Taylor model

Uj := (pl,j + il,j) ◦ (pr,j + ir,j) = (cl,j + Cl,j x + il,j) ◦ (cr,j + Cr,j x + ir,j),

where cl,j , cr,j are real vectors, Cl,j , Cr,j are real matrices and (pr,0 + ir,0) is the identity map, that is
pr,0(x) = x and ir,0 = 0. Using the matrix T from Section 7.1, the flow after integration is given by

Uj+1 := (Tcl,j + TCl,j x + il,j+1) ◦ (pr,j + ir,j)
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For cl,j+1 := Tcl,j and any nonsingular matrix Cl,j+1, the preconditioned Taylor model Uj+1 can be
rewritten as

Uj+1 = (Tcl,j + Cl,j+1 x + [0, 0]) ◦
{[

C−1
l,j+1TCl,j x + C−1

l,j+1il,j+1

]
◦ (pr,j + ir,j)

}
= (cl,j+1 + Cl,j+1 x + [0, 0]) ◦

{[
C−1

l,j+1TCl,j x + C−1
l,j+1il,j+1

]
◦ (cr,j + Cr,j x + ir,j)

}
= (cl,j+1 + Cl,j+1 x + [0, 0]) ◦

{
C−1

l,j+1TCl,j (cr,j + Cr,j x + ir,j) + C−1
l,j+1il,j+1

}
= (cl,j+1 + Cl,j+1 x + [0, 0])

◦
{

C−1
l,j+1TCl,j cr,j + C−1

l,j+1TCl,jCr,j x + C−1
l,j+1TCl,j ir,j + C−1

l,j+1il,j+1

}
=: (cl,j+1 + Cl,j+1 x + [0, 0]) ◦ (cr,j+1 + Cr,j+1 x + ir,j+1)

The interval term ir,j in the preconditioned Taylor model integration of (7.8) is propagated as the interval
term in the parallelepiped and QR interval iteration, if Cl,j+1 is chosen as in those methods. For Cl,j+1 =
TCl,j , the parallelepiped method is obtained, for TCl,jPj = QjRj (where Pj is a permutation matrix for
sorting the columns of TCl,j) and Cl,j+1 = Qj , the QR method. Numerical examples confirming these
relations are presented in Section 9.

For nonlinear ODEs, the nonlinear terms in the left Taylor model can be shifted to the right Taylor
model in the same manner [30]. However, the resulting Taylor model methods then differ from the
corresponding interval methods. First, the symbolic parts of the composed Taylor models describe
nonlinear enclosures sets of the flow, which need not be convex, in contrast to interval methods. Second,
the nonlinear terms in the left Taylor models then also act on the interval terms in the right Taylor
models. An analysis of the resulting interval propagation will be the subject of future research.

8. Preconditioned Quadratic Example. We now demonstrate QR preconditioned Taylor model
integration for the quadratic model problem of Section 6.1, namely

u′ = v, u(0) ∈ [0.95, 1.05],

v′ = u2, v(0) ∈ [−1.05,−0.95].

In each integration step, the left Taylor models are constructed via a QR factorization of the linear parts
of the integrated Taylor models of the previous integration step. As in the naive integration of this IVP
in Section 6.1, order n = 3 and step size h = 0.1 are used and all numbers are displayed rounded to six
decimal digits.

In the first integration step, the initial set is described by the left Taylor model in space variables
at t0. The right Taylor model at t0 is the identity map in space variables. Hence, the first integration
step is performed as in the naive Taylor model method (cf. Section 6.1), and we obtain the integrated
left Taylor models (6.3), namely

Ũl,1(a, b) := 0.904667 + 1.01a + 0.1b + ĩ0,

Ṽl,1(a, b) :=−0.909333 + 0.19a + 1.01b + 0.1a2 + j̃0,

}
a, b ∈ [−0.05, 0.05],

where

ĩ0 = [−5.09307E-5, 7.86167E-5], j̃0 = [−1.75707E-4, 1.60933E-4].

For reasons that will soon become clear, we normalize the domain such that a and b are contained in
[−1, 1]. Doing so (without changing the names of the variables), we have

Ũl,1(a, b) := 0.904667 + 0.0505a + 0.005b + ĩ0,

Ṽl,1(a, b) :=−0.909333 + 0.0095a + 0.0505b + 0.00025a2 + j̃0,

}
a, b ∈ [−1, 1].

So far, the right Taylor models have been unaffected by the integration process. Before continuing
the integration, however, we precondition the left Taylor models. We extract the linear parts of Ũl,1 and
Ṽl,1, and obtain the matrix Cl,1, from which we compute a QR factorization.

Cl,1 :=

(
0.0505 0.005

0.0095 0.0505

)
=

(
0.982762 −0.184876

0.184876 0.982762

)
·

(
0.0513858 0.0142500

0 0.0487051

)
=: QR.



Taylor Model Based Integration of ODEs 21

The left Taylor models in the second integration step are built from the constant terms of Ũl,1 and
Ṽl,1 and from Q. Thus we get

U l,1(a, b) := 0.904667 + 0.982762a− 0.184876b,

V l,1(a, b) := −0.909333 + 0.184876a + 0.982762b.

The nonlinear term 0.00025a2 in Ṽl,1 and the interval terms ĩ0, j̃0 are collected in the right Taylor
models, which are multiplied by QT . We obtain

QT ·

(
0

0.00025a2

)
=

(
0.0000462190a2

0.000245691a2

)
and (

i0

j0

)
:= QT ·

(
ĩ0

j̃0

)
=

(
[−8.25368E-5, 1.07014E-4]

[−1.87213E-4, 1.67575E-4]

)
,

which yields

Ur,1(a, b) := 0.0513858a + 0.0142500b + 0.0000462190a2 + i0,

Vr,1(a, b) := 0.0487051b + 0.000245691a2 + j0,

}
a, b ∈ [−1, 1].

Indeed, composition gives

U1(a, b) := U l,1(Ur,1,Vr,1) = 0.904667 + 0.0505a + 0.005b + i1,

V1(a, b) := V l,1(Ur,1,Vr,1) = −0.909333 + 0.0095a + 0.0505b + 0.00025a2 + j1,
(8.1)

(a, b ∈ [−1, 1]) with increased remainder bounds(
i1
j1

)
:= Q ·

[
QT ·

(
ĩ0
j̃0

)]
,

that is

i1 = [−1.12095E-4, 1.39780E-4] ⊇ ĩ0, j1 = [−1.99245E-4, 1.84471E-4] ⊇ j̃0.

Remark 8.1. The composition (8.1) has been computed to show its validity. It is not part of the
integration process.

Before we can continue the integration, we must further modify the preconditioned Taylor models.
This is probably the most surprising part of the algorithm. On the other hand, it is also crucial for the
validity of the method. After the first time step, the flow of the IVP is contained in the composition
of the left and right Taylor models. For continuing the integration, we want to drop the right Taylor
model. On one hand, this is only feasible if the left Taylor model contains the flow of the IVP. On the
other hand, the set defined by the left Taylor model should not be much larger than the current flow,
because that would mean large overestimation. There are two potential solutions for ensuring the desired
inclusion property. We can either modify the domain of the independent variables, or we may modify
the left Taylor model by an additional transformation. We describe both alternatives in the following.

The starting point of the transformation is the range of the right Taylor model. We have

Rg
(
Ur,1

)
⊆ 0.0513858 · [−1, 1] + 0.0142500 · [−1, 1] + 0.0000462190 · [0, 1] + [−8.25368E-5, 1.07014E-4]

= [−0.0657183368, 0.065789033] ⊆ [−0.0657183, 0.0657890],

Rg
(
Vr,1

)
⊆ 0.0487051 · [−1, 1] + 0.000245691 · [0, 1] + [−1.87213E-4, 1.67575E-4]

= [−0.048892151, 0.049118366] ⊆ [−0.0488922, 0.0491184].

Thus we may continue the integration with the initial set for the second time step given by

Ûl,1(a, b) := 0.904667 + 0.982762a− 0.184876b,

V̂l,1(a, b) :=−0.909333 + 0.184876a + 0.982762b,

}
a ∈ [−0.0657183, 0.0657890],
b ∈ [−0.0488922, 0.0491184]
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(unchanged polynomials, but modified domain).

Alternatively, we can apply a linear transformation on the left and the right Taylor models by a
so-called scaling matrix [30]. It is convenient here to denote the linear map (that is, a linear Taylor
model S with zero constant part and zero interval remainder term) associated with a matrix S by the
matrix itself. First note that for any nonsingular matrix S, it holds that

(U l,1,V l,1) ◦ (Ur,1,Vr,1) = (U l,1,V l,1) ◦ (S ◦ S−1) ◦ (Ur,1,Vr,1) ⊆ ((U l,1,V l,1) ◦ S) ◦ (S−1 ◦ (Ur,1,Vr,1)),

where the subset property is induced by the subdistributivity law of interval arithmetic (2.1). Letting

S :=
(

0.0657890 0
0 0.0491184

)
,

we obtain

(U l,1,V l,1) ◦ S =
(

0.904667
−0.909333

)
+
(

0.982762 −0.184876
0.184876 0.982762

)(
0.0657890 0

0 0.0491184

)(
a
b

)

=
(

0.904667
−0.909333

)
+
(

0.0646550 −0.00908081
0.0121628 0.0482716

)(
a
b

)
.

Since S has been determined such that the range of each component of S−1 ◦ (Ur,1,Vr,1) is contained in
[−1, 1], it is feasible to continue the integration with the left Taylor models

Ul,1(a, b) := 0.904667 + 0.0646550a− 0.00908081b,

Vl,1(a, b) :=−0.909333 + 0.0121628a + 0.0482716b,

}
a, b ∈ [−1, 1]

as initial set for the second time step (modified polynomials, but original domain). The corresponding
right Taylor models are(

Ur,1

Vr,1

)
:= S−1 ◦ (Ur,1,Vr,1) =

(
15.2001 0

0 20.3590

)(
0.0513858a + 0.01425b + 0.000046219a2 + i0

0.0487051b + 0.000245691a2 + j0

)

=
(

0.781070a + 0.216602b + 0.000702534a2 + [−0.00125457, 0.00162662]
0.991586b + 0.00500202a2 + [−0.00381146, 0.00341165]

)
.

Remark 8.2. From a mathematical viewpoint, modification of the domain or of the polynomials
are equivalent approaches for factorizing preconditioned Taylor models, but maintaining the integration
domain via the scaling matrices is advantageous for the software implementation of the method, because
it simplifies the estimation of the higher order terms in the integration step.

In the second integration step, we use the initial set defined by Ul,1 and Vl,1. Proceeding as before,
we obtain the integrated left Taylor models (for a, b ∈ [−1, 1])

Ũl,2(a, b) := 0.817551 + 0.0664561a− 0.00433580b + ĩ1,

Ṽl,2(a, b) := −0.835195 + 0.0233831a + 0.0471479b

+0.000418026a2 − 0.000117424ab + 0.00000824612b2 + j̃1,

where

ĩ1 = [−5.72276E-5, 9.15947E-5], j̃1 = [−1.80914E-4, 1.80850E-4].

Finally, the flow at t2 is made up by the composition of the integrated left Taylor models and the previous
right Taylor models. We have

U2(a, b) := Ũl,2(Ur,1(a, b),Vr,1(a, b)) = 0.817551 + 0.0519069a + 0.0100952b + 0.000025a2

+ [−3.48708E-4, 4.09534E-4],

V2(a, b) := Ṽl,2(Ur,1(a, b),Vr,1(a, b)) = −0.835195 + 0.0182638a + 0.0518160b + 0.000507287a2

−0.0000505ab− 0.0000025b2 + [−4.38606E-4, 4.28392E-4],
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where a, b ∈ [−1, 1].

Compared to the naive Taylor model integration performed in Section 6.1, the polynomial coef-
ficients are identical except for roundoff errors. This does not invalidate the computations, since all
roundoff errors are rigorously bounded by the interval terms. Even though preconditioned integration is
the superior method with respect to accuracy in the long run, the interval terms after two integration
steps are larger here. The advantage of preconditioning becomes only apparent after several integration
steps (see Section 8.1). Algorithm 6.3 summarizes the preconditioned Taylor model method with
domain normalization.

Algorithm 6.3 (QR preconditioned Taylor model method)

Let the initial set be given as a preconditioned Taylor model vector Ul,0 ◦ Ur,0 in
the m space variables, with Ur,0 the identity map and symbolic variables in [−1, 1].

For j := 0, 1 . . . , jmax − 1:

1. Integrate Ul,j (containing the flow of the IVP at tj) as in the naive Taylor
model method. Denote the integrated left Taylor model (containing the flow
of the IVP at tj+1) by Ũl,j+1. The flow is also contained in Ũl,l+1 ◦ Ur,j .

2. Replace Ũl,j+1 ◦ Ur,j by Ul,j+1 ◦ Ur,j+1:

(i) Compute the QR factorization of the linear part of Ũl,j+1.

(ii) Shift all but the constant part of Ũl,j+1 to Ur,j . Make Q the linear
part of Ũl,j+1. Apply Q−1 on Ur,j .

(iii) Bound the range of the new Ur,j .

(iv) Apply a scaling matrix Sj+1 on Ur,j such that each component of the
range of Ur,j+1 := S−1

j+1 ◦ Ur,j is contained in [−1, 1] and spans [−1, 1]
approximately.

(v) Set Ul,j+1 := Ũl,j+1 ◦ Sj+1.

8.1. Numerical Comparison with the QR Interval Method. Finally, we compare the perfor-
mance of Lohner’s software AWA [21] with the COSY Infinity integrator written by Makino. We use the
quadratic model IVP (6.1) for the comparison. For the computation, Taylor expansions of order 18 were
used in both programs. In both programs, the QR method (QR preconditioning) is used. The computed
enclosure sets are shown in Figure 8.1.
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Fig. 8.1. Integration of quadratic model IVP with AWA and COSY Infinity for t ∈ [0, 2.8] (left), and with COSY
Infinity for t ∈ [0, 6] (right). Enclosures of the flow are shown for tk = 0.4k, k = 0, 1, . . . . The solid line in each picture
belongs to the approximate solution that was computed with a Runge-Kutta method (for the model ODE with point initial
values).
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In the left picture, integration is performed in the time interval [0, 2.8]. In the beginning, the
enclosures from AWA (rectangular boxes) and COSY Infinity (nonlinear sets) are of similar quality.
Near the end of the integration domain, the enclosures from AWA start exploding. While AWA aborts
integration at t = 3.75, COSY Infinity is able to continue the integration much longer (right picture;
enclosures of AWA are not shown). We attribute this to the ability of Taylor model methods to use
non-convex enclosure sets of the flow.

This example shows that Taylor model methods may perform much better than interval methods
on some problems, but this is not always the case. For some problems, interval methods can be as
effective. Moreover, if they succeed, interval methods are often faster than Taylor model methods,
because symbolic computations with multivariate polynomials are expensive.

9. Linear Numerical Examples. We compare interval methods and Taylor model methods for
the linear autonomous ODE

u′ = B u,

where B is a real 3 × 3 matrix. Numerical results are displayed for three different choices of B. In all
examples, the initial values

u0 =

 [0.999, 1.001]
[0.999, 1.001]
[0.999, 1.001]

 .

were used. The computations were performed with AWA and with the COSY Infinity integrator. In all
examples, order 12 was chosen for the Taylor polynomial. Using lower orders (6 and 9 were tested) gave
less accurate results, using higher orders (15 was tested) increased the computation times, but not the
accuracy of the results.

In the tables, the following notation is used.

• AWA iv/AWA pe/AWA QR denote the direct method, the parallelepiped method and the QR
method, respectively.

• TM na/TM sw/TM QR denote the naive Taylor model method without shrink wrapping, the
naive Taylor model method with shrink wrapping and the Taylor model method with QR pre-
conditioning, respectively.

The observed performance of the methods is in agreement with the theoretical considerations in this
paper. Naive Taylor model integration without shrink wrapping performs as the direct interval method
(except for Example 1), naive Taylor model integration with shrink wrapping like the parallelepiped
method, and QR preconditioned Taylor model integration similar to the QR method.

We call two matrices A and B floating-point similar, if A is obtained from B by a similarity transform
executed in floating-point arithmetic. Floating-point similar matrices are denoted by A ≈ B. Intervals
are sometimes displayed using a short notation with upper and lower indexes. For example, 1.47301

5593E-001
denotes the interval [0.145593,0.147301].

Linear Example 1: Pure Contraction.

B =

 −0.4375 0.0625 −0.2651650429
0.0625 −0.4375 −0.2651650429

−0.2651650429 −0.2651650429 −0.375

 ≈

− 1
2 0 0

0 − 3
4 0

0 0 0



B has three distinct real eigenvalues, so that B describes a contraction without rotation. For
such problems, the parallelepiped method is not well suited, because the matrices Aj in Algorithm 4.2
become singular. The interval method breaks down and the corresponding naive Taylor model method
with shrinks wrapping computes a practically useless enclosure of the solution.
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method tend Steps y1(tend)

AWA iv 100 216 1.47301
5593E-001

AWA pe 52.6 131 aborted

AWA QR 100 216 1.47301
5593E-001

TM na 100 9384 [-3.686E+22, 3.686E+22]

TM sw 100 5274 [-1.508E+111, 1.508E+111]

TM QR 100 122 1.47301
5593E-001

Table 9.1. Numerical results for Example 1.

The direct interval method succeeds here. We also would have expected the naive Taylor model
method without shrink wrapping to succeed. While the reason for its failure is not clear, it provides
further evidence for our judgement that this method is not very effective. Both the QR interval method
and the QR preconditioned Taylor model method succeed here. In contrast to the following two examples,
the Taylor model method even needs fewer steps than the interval method.

Linear Example 2: Pure Rotation.

B =

 0 −0.7071067810 −0.5
0.7071067810 0 0.5

0.5 −0.5 0

 ≈

0 −1 0
1 0 0
0 0 0


B has eigenvalues ±i and 0. The flow of this IVP is a rotating interval box. As expected, the direct

method and the naive Taylor model method fail, whereas the parallelepiped method and the naive Taylor
model method with shrink wrapping (and also the QR based methods) succeed.

method t Steps y1(tend)

AWA iv 76.5 393 aborted

AWA pe 100 449 1.49522
222E+000

AWA QR 100 449 1.49522
222E+000

TM na 100 9566 [-7.894E+36, 7.894E+36]

TM sw 100 3546 1.49522
222E+000

TM QR 100 3546 1.49522
222E+000

Table 9.2. Numerical results for Example 2.

Nevertheless, the Taylor model methods need many more steps than the interval methods. This
may in part be due to our poor choice of certain parameter values that control the step size in the
COSY Infinity integrator. To some extent, we attribute it to the different ways that are used to compute
the first enclosure of the solution in each integration step. For linear ODEs with constant coefficients,
the rather simple iteration used in AWA works with large step sizes, whereas the more sophisticated
technique that is implemented in the COSY Infinity integrator cannot benefit from the simplicity of the
ODE.

Linear Example 3: Contraction and Rotation.

B =

 −0.125 −0.8321067810 −0.3232233048
0.5821067810 −0.125 0.6767766952
0.6767766952 −0.3232233048 −0.25

 ≈

0 −1 0
1 0 0
0 0 − 1

2


In our last example, B has eigenvalues ±i and −1/2. So, contraction and rotation are combined.

Here, the direct interval method and the naive Taylor model method are bound to fail because of the
rotation, whereas the contraction causes the parallelepiped method and the Taylor model method with
shrink wrapping to fail.
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method t Steps y1(tend)

AWA iv 85.5 507 aborted

AWA pe 75.2 404 aborted

AWA QR 100 516 1.34862
592E+000

TM na 100 9624 [-9.229E+43, 9.229E+43]

TM sw 100 4721 [-1.612E+107, 1.612E+107]

TM QR 100 3757 1.34862
592E+000

Table 9.3. Numerical results for Example 3.

Only the QR based methods can successfully deal with both contraction and rotation of the initial
set. For these methods, the overestimation of the final flow is hardly noticeable. This agrees with the
general observation that the QR decomposition is a very effective tool in fighting the wrapping effect,
both for the interval method and for the preconditioned Taylor model method.

Conclusion. We have compared traditional enclosure methods with Taylor model based integration.
For the verified solution of initial value problems for ODEs, we have shown how Taylor model methods
benefit from symbolic computations. Increased flexibility in admissible boundary curves of enclosures is
an intrinsic advantage over traditional interval methods, not only for the solution of ODEs. In future
research, we hope to contribute to the further development and increased use of Taylor model methods.
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