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Abstract  This paper describes the use of overlapping grids for the calculation of flow around single and multiple- 
particle configurations at the micro scale. The basic equations for calculation are those for conservation of mass and 
momentum which are solved using a common Finite-Volume formulation. The hydrodynamic particle-particle and parti-
cle-wall interaction can be calculated by using an overlapping or Chimera grid scheme. With the grid structuring proce-
dure it is possible to use simple and structured grids around the particles and the overall main grid geometry. The particle 
grids are lapped over the main grid such that they can move independently after each time step without remeshing the 
whole geometry. The paper gives results for the validation of the code developed for general test cases, for a rotating el-
lipsoid in simple shear flow, the flow around particles attached to a wall, the motion of a particle in the vicinity of a wall and 
some results for the flow through a packed bed configuration. 
Keywords  particle flows, numerical simulation, overlapping grids, particle-wall interaction, packed beds

1. Introduction 
Particles play an important role in a lot of engineering 

processes. Particle motion in fluidised beds, filtration, 
separation and sedimentation are just a few examples 
where particulate systems are treated for the generation of 
a special product design. The processes depend very 
strongly on the material properties of the particle systems 
which are very hard to implement into a general description 
for the particle motion. But also for simple or test cases, the 
mass and momentum transfer in the dense systems are 
very challenging for simulation. Nowadays the available 
computer resources are, however, still limited to simulate 
the whole process at the micro scale. For the macro scale 
there are methods available but in general they depend on 
empirical coefficients and factors which describe the 
physical properties at the micro scale. The macro schemes 
in general describe the particles as a second phase which 
interacts with the fluid phase. 

The details of the flow can just be resolved at the micro 
scale. Analytic results with simple general equations are 
available for low Reynolds numbers and with limited 
number of particles. Numerical methods are now very 
common to overcome these limitations, but for the difficult 
geometries which can result in particle configurations the 
generation of the grids is very time consuming because of 
remeshing after each time step when the particles have 
changed their locations. 

This limitation can be solved by overlapping meshes 
where each particle has its own spherical grid. For the 
case of a non-spherical particle the grid can also be easily 
readjusted. The single particle grids are then overlapped 
over a main mesh which describes the major geometry. 
The information between the two grids is interchanged at 
the so-called fringe points. The variables at the fringe 
points are interpolated from the main or the minor meshes 
respectively. The disadvantage of this scheme is that the 

number of particles which can be handled is very limited. 
The scheme is available for the calculation of the flow 
around particle configurations where the particle-particle or 
particle-wall interaction can be resolved in detail. 

2. Governing Equations and Grid Scheme 
The flow around particles is calculated by solving the 

continuity and momentum equations in their integral and 
conservative forms: 

d 0v A⋅ =∫∫ , 

1d d d dv V v v V p A v A
t

∂
+ ⋅ ∇ = − + ∇

∂ ∫∫∫ ∫∫∫ ∫∫ ∫∫Re
. 

These equations are formulated in the dimensionless 
form with v  as the velocity vector and p as the dynamic 
pressure. dV is a discrete volume and dA  is the discrete 
area vector in the Finite-Volume formulation. The Reynolds 
number Re is defined as follows: 

UD
υ

=Re , 

where U is the undisturbed fluid velocity, D the character-
istic diameter of the particle and υ the kinematic viscosity. 

The equation of motion was solved according the low 
Mach number approximation with Chorin’s projection 
scheme (Chorin, 1967) where the momentum equation is 
linearized and solved first implicitly for the velocity with the 
old pressure field. In a second step, a Poisson equation, 
derived from the continuity equation, is iterated until con-
vergence is achieved for the continuity (Nirschl et al., 
1995). With this result the pressure can be corrected in the 
momentum formulation. The whole scheme is of sec-
ond-order accuracy in space and time. The disadvantage 
of the scheme is the relatively high number of iterations 
which is necessary to converge the Poisson equation. For 
general test cases, around 20 iterations are necessary. 
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The geometry of the particles is described by a curvilin-
ear coordinate system which is adapted to the particle 
shape. As already mentioned in the introduction, an over-
lapping grid scheme was used for the calculation of parti-
cle-wall or particle-particle interactions. The basic idea of 
the method is that the spherical grid which describes the 
geometry of the particle is overlapped over a major grid 
which is used for the description of the whole overall ge-
ometry (see Fig. 1). Information is interchanged at the 
so-called ‘fringe points’, shown in the figure as filled 
squares. At those points the velocity vector or the pressure 
is interpolated from the minor or major mesh, respectively. 
At the outer points of the minor particle mesh the informa-
tion is interpolated from the major mesh. The points of the 
major mesh close to the surface of the rigid particle are 
interpolated from the minor grid. The hollow points, i.e. the 
points of the major mesh where the rigid particle is located 
are the so called ‘holes’. The points of the minor mesh 
which are outside the major geometry are also treated as 
holes. Those points in the solution matrix are set to zero. 
Care should be taken that the fluxes entering and leaving 
the boundaries of the minor or major mesh be balanced. 
Otherwise the continuity equation at the boundaries would 
not be fulfilled leading to pressure oscillations for the oth-
erwise incompressible flow conditions. For interpolation, a 
linear procedure was chosen. After some testing with 
higher-order schemes, it could been shown that efforts for 
a higher-order accuracy scheme is not necessary for cal-
culations in the low- and medium-Reynolds number range. 

 
Fig. 1  Spherical mesh lapped over a rectangular major geometry: 

holes are marked with hollow squares and fringe points with 
filled squares. 

The major advantage of this overlapping grid scheme is 
that the minor mesh can be easily moved relative to the 
major mesh. This means that particle motion can be cal-
culated without remeshing the whole geometry. Also the 
calculation and the behaviour of a particle which is close to 
a rigid wall can be easily investigated. The points of the 
minor mesh of a particle which are within the rigid wall are 
treated as holes, so that they are eliminated from the flow 

calculation. When the particle moves to another location it 
can retain its mesh, and only the holes and fringe points 
need to be defined again. 

Another advantage of the scheme is the treatment of not 
just one single particle mesh but also multiple meshes 
(Fig. 2), that is, several spherical meshes can be lapped 
over the major mesh. It is also possible to overlap single 
minor meshes and calculate the fringe points in between 
the minor meshes. The particle meshes can be treated 
independently of each other. 

 
Fig. 2  Multiple minor meshes around spherical particles are lapped 

over a rectangular major geometry. 

The whole code and the overlapping grid procedure 
have been verified for different two- and three-dimensional 
test cases to compare pressure and shear stress distribu-
tions of the particle surface as well as drag coefficients. 
Fig. 3 shows the drag coefficient cd as a function of Rey-
nolds number Re for uniform flow around a single sphere in 
the low- and medium-Re range. Comparison with data 
(Clift et al., 1978) from the literature for this test case is 
also excellent. 

 
Reynolds number Re 

Fig. 3  Calculated drag coefficient cd versus Reynolds number Re for 
the simulation of uniform flow around a single sphere with an 
overlapping grid configuration. 

3. Results and Discussion 
The following are problems of fundamental interest in 

particle-laden flows in engineering applications as well as 
in rheology. 

3.1 Motion of a rotating ellipsoid in simple 
shear flow 

It is well known that spherical particles move with con-
stant angular velocity while the motion of non spherical 
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particles is strongly time-dependent. The classical work on 
the analytical description of the motion of an ellipsoidal 
particle in viscous flow by Jeffery (1922/23) will be ex-
tended into the medium Reynolds number range by means 
of numerical methods. The ellipsoidal particle is supposed 
to move without any relative velocity to undisturbed simple 
shear flow which can be characterized by a constant shear 
rate. The particle will then rotate about the y-axis in the 
xz-plane with a time dependent angular velocity (Fig. 4). 

 
Fig. 4  General configuration for calculation of a rotating ellipsoidal 

particle in simple shear flow. 

The major mesh is rectangular and an elliptic minor 
mesh describes the particle shape by means of curvilinear 
coordinates. Calculations in the minor mesh have been 
performed in a rotating frame of reference at the midpoint 
with the angular velocity of the particle. 

Fig. 5 shows the distribution of the torque coefficients 
over the angle of attack β for an ellipsoid with an axis ratio 
of α=2 (quotient of the major to the minor axis) and at a 
Reynolds number of Re=0.1. At β=0°, where the major axis 
of the particle is parallel to the z-coordinate, we find a 
positive shear torque and a negative pressure torque. The 
shear forces tend to move the particle clockwise while 
pressure torque acts counter clockwise thus balancing the 
torques with each other. With increasing angle of attack the 
pressure becomes dominant and speeds up the particle 
until the major axis is parallel with the x-axis of the com-
putational domain. At higher angles of attack the pressure 
torque influence decreases while the shear stress domi-
nates the particle motion. The particle motion is deceler-
ated because of the relatively high shear forces between 
the rotating particle and the fluid until the forces balance 
each other again at β=180°. 

Higher axis ratios lead to a decrease of the angular ve-
locity at β=0° when the major axis is parallel to the z-axis. 
Thus the particle becomes more and more aligned in the 
flow with increasing axis ratio because of the increasing 
moment of inertia. Fig. 6 gives the time T which is neces-
sary for one rotation over the axis ratio α for Re=0.1 and 
Re=1. The analytical solution given by Jeffery shown in 
Fig. 6 for pure viscous particle motion indicates that the 
rotation time T depends almost linearly upon the axis ratio 
α. For small axis ratios the Reynolds number influence is 
negligible while with increasing Reynolds number and axis 
ratio the relationship becomes more and more non linear. 

The numerical solution for Re=0.1 is relatively close to 
Jeffery’s solution. However for Re=1 the differences are 
very significant. This means that the particles remain much 
longer in the region around β=0° where the particle is 
aligned in the flow. The reason for this behaviour is that the 
pressure and shear stress distributions over the particle 
surface have changed so much at higher Reynolds num-
bers that the viscous shear stresses at the particle surface 
are not high enough to rotate the particle away from its 
equilibrium position. 

 
Fig. 5  Shear and pressure torque coefficients cms and cmp versus the 

angle of attack β for an ellipsoid with an axis ratio of 2. 

 
Fig. 6  Rotational time T versus axis ratio α for different Reynolds 

numbers: comparison with analytic results. 

At a Reynolds number of Re=10 we have observed two 
possible behaviours of the particle depending on the initial 
conditions: either (i) the rotation time goes to infinity and no 
periodic motion can be detected with the particle moving to 
a stable position, or (ii) the particle moves with a rotation 
time which is less than the rotation time in solutions for low 
Reynolds number. With further increasing axis ratio, the 
rotation time does not change significantly. Fig. 7 shows 
the two possible configurations of the ellipsoid depending 
on the axis ratio. 
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Fig. 7  Bifurcation for an ellipsoidal particle at Reynolds number 

Re=10. 

It seems that a bifurcation exists where either inclination 
or rotation is possible. The particle motion strongly de-
pends on the way the motion was first started. For low 
Reynolds numbers (Re≈1) the starting conditions have no 
influence and the particle will always go to a stable position. 
For a Reynolds number with sufficient influence of inertia 
(Re≈10) the motion depends on the axis ratio. The area 
where we get the inclination at a special angle of attack 
increases with growing aspect ratio. With increasing axis 
ratio the angle of attack increases until it stays constant. 
From the theory of bifurcations we can conclude that this 
behaviour can be described by the so-called ‘saddle-node 
bifurcation’. 

3.2 Flow around a single particle in a laminar 
boundary layer 

Fig. 8 shows schematically the linear shear flow around a 
rigid particle with diameter D at a fixed distance h from a rigid 
wall. The curvilinear coordinate system (ξ, η, ζ) describes the 
grid for calculating the velocity field in the boundary layer, 
and the curvilinear coordinate system ( 1 1 1, ,ξ η ζ ) the geome-
try of the particle. The Reynolds number is calculated from 
the undisturbed fluid velocity along the particle axis U. As 
an additional parameter for the description we use the 
distance of the particle to the rigid wall h, which is related 
to the particle diameter and has therefore no dimension. 
The shear rate can be calculated from the undisturbed fluid 
velocity and the wall distance. It should be mentioned that 
for this type of calculation some parts of the minor geome-
try are located within the rigid wall. This means that addi-
tional holes and fringe points have to be introduced. All the 
points within the rigid wall are handled as holes. Additional 
fringe points for the minor geometry have to be added to 
interpolate the points close to the wall from the major rec-
tangular geometry. 

This problem can be regarded as a general test case for 
the calculation of particle-wall interaction because experi-
mental values are available (Rubin, 1977). For practical 

cases the particles will move along the rigid wall. This case 
will be regarded further on in this paper. 

 
Fig. 8  Schematic description of the geometry for calculating the flow 

around a spherical particle close to a rigid wall. 

For this discussion we first take a look at the drag and lift 
coefficients. For the drag coefficient cd the whole viscous 
forces and pressures are integrated over the geometry in 
the undisturbed flow direction. For the lift coefficient cl the 
integration is perpendicular to it. Both coefficients consist 
of two parts: a value coming from the pressure (cdp, clp) and 
one coming from the shear stresses (cds, cls). The values 
are calculated in the usual way where the forces are re-
lated to the stagnation pressure and the projection area of 
the particle: 
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where the vector e gives the unit vector in the three direc-
tions of the coordinate system. 

Fig. 9 shows the drag values versus the wall distance 
and the Reynolds number as a parameter. With a constant 
Reynolds number and decreasing wall distance an in-
creasing drag coefficient can be detected. With increasing 

Fig. 9  Drag coefficient cd for flow around a particle close to a rigid wall
for different Reynolds numbers: comparison with Rubin’s ex-
perimental data. 
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Reynolds number this effect is even more pronounced 
because of separation effects in the wake of the particle 
arising from interaction with the wall. The increasing drag 
coefficient is also a direct effect of the wall influence, that is, 
it is not possible for the fluid to move in the gap between 
particle and wall, and the fluid is forced to flow over and 
around the particle. For increased distance to the wall the 
drag values approach more and more those for uniform 
flow. It can be noted that when the distance is larger than 
h>2, the wall loses its influence on the drag. The figure also 
shows that the maximal deviation from the experimental 
values of Rubin (1977) is below 5%. 

Fig. 10 shows the variation of the lift coefficient with the 
above mentioned parameters: increasing, in the same way 
as the drag coefficient, with decreasing Reynolds number. 
For low Reynolds numbers the influence of the close wall is 
more pronounced than that for the drag coefficient. The 
wall influence on the lift coefficient is superimposed by the 
lift coefficient in a linear shear field where the wall is far 
away from the particle surface. For low Reynolds numbers 
it was shown that the lift coefficient is linearly dependent on 
the shear rate. In the curves of the figure the non linear 
part comes therefore directly from the wall influence. 

 
Fig. 10  Lift coefficient cl for flow around a particle close to a rigid wall 

for different Reynolds numbers: comparison with Rubin’s ex-
perimental data. 

In all the calculations the lift forces are always positive, 
meaning that in all real flow a particle always tends to 
move away from the wall. Comparison with measurements 
again shows that deviations between numerical results and 
experimental values are relatively low except for values for 
the Reynolds number of Re=1. There are different reasons 
for this. The experiments were performed in tube flow with 
a parabolic velocity profile with a ratio of the particle di-
ameter to the tube diameter of 1:25. For very low Reynolds 
numbers it is well known that the wall influence is signifi-
cant on such flow over the particle. In the numerical simu-
lations a linear shear field was selected as the initial and 
undisturbed flow. Moreover it should be mentioned that 
with decreasing Reynolds number the ratio between the lift 

to the drag coefficient l dc c  decreases, implying that with 
decreasing Reynolds number the accuracy for both the 
calculation and the experiments diminishes. 

3.3 Flow around a single particle attached to a 
rigid wall 

The flow around a spherical as well as an ellipsoidal 
particle at different angles of attack attached to the rigid 
wall are studied in the following investigation. The ellipsoid 
has again an axis ratio of 2 and is located at the wall at an 
angle of attack of 0° and 90°. For the calculation of the 
Reynolds number the undisturbed fluid velocity at 0.5*D 
distance to the wall was chosen. The undisturbed fluid 
profile has a constant velocity gradient. This approximation 
should be valid for cases, when the particle diameter is 
negligible compared to the characteristic length of the 
major flow. But in principle it is possible to use any laminar 
flow profile as the initial condition. 

For the overlapping grid scheme considered, a part of 
the minor mesh is again located outside the computational 
domain in the rigid wall. Those points are treated as holes. 
The points in the minor mesh which are close to the wall 
are interpolated as fringe points from the major mesh. 

Fig. 11 shows the drag coefficient cd versus the Reynolds 
number Re for both the small and intermediate Reynolds 
number regimes. The curves are linear in the low Reynolds 
number range, becoming non linear with increasing Rey-
nolds number, primarily due to the increasing influence of 
inertia which leads to separation at Reynolds numbers 
higher than Re=20. For the ellipsoid at β=90° and Reynolds 
numbers Re>80 non-stationary separation could be ob-
served. Besides, for both particles, a horseshoe vortex was 
detected in the frontal area where the flow approached the 
surface of the particle. 

 
Fig. 11  Drag coefficient cd versus Reynolds number Re for a sphere 

and an ellipsoid at different angles of attack. 

The drag values for the ellipsoids are always significantly 
higher than those for the spheres, primarily because of the 
larger surface of the ellipsoidal particles. At high angle of 
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attack, separation effects have an additional influence on 
increasing the pressure drop over the surface from the 
front to the rear.  

For this configuration it is also possible to detect lift co-
efficients for the particle due to lift forces which arise 
through amplification of the pressure minimum at the upper 
side. The lift forces have an increasing importance at 
higher Reynolds numbers. 

Fig. 12 shows the variation of the lift coefficient cl with the 
Reynolds number Re, linear for small Re and non linear at 
large Re specially for ellipsoids. The reason for this is 
again the ongoing separation on the particle surface which 
leads to a strong pressure minimum. The ratio between lift 
to drag coefficients l dc c  is app. 0.002 for Re=0.01 and  

0.3 for Re=100. This means that for Stokes flow practically 
no lift can be detected because of the elliptic behaviour of 
the governing equations. 

 
Fig. 12  Lift coefficient cl versus the Reynolds number Re for a sphere 

and an ellipsoid at different angles of attack. 

Rubin (1977) determined the drag and lift coefficients for 
a single sphere in laminar flow close to the wall of a tube 
which fit very well with the calculated values, as are shown 
in Figs. 11 and 12. Slight differences for the lift coefficients 
may again be due to the parabolic profile. The lift forces 
are in general relatively low compared to the calculated 
and measured drag forces. For the calculated values the 
accuracy depending on discretization is between 1% and 
3% (Nirschl & Polzer, 1996). 

3.4 Fluid dynamic behaviour of a moving single 
particle close to a rigid wall 

The behaviour and motion of a single particle close to a 
rigid wall will next be examined. The particle moves with 
the undisturbed fluid at a distance h relative to the rigid wall 
in a linear shear field. The particle rotates in the shear field 
according to the pressure and shear forces acting on the 
particles surface. In undisturbed shear flow without any 

wall influence the particle would rotate for a Reynolds 
number approaching zero with 0.5ω γ= s-1. Due to wall 
influence, the lift coefficient as well as the angular velocity 
depends on the wall distance as well as the Reynolds 
number. The angular velocity was adjusted after each time 
step according to the calculated angular momentum, so 
that the particle could rotate freely in the flow. Fig. 13 
shows the dependence of the lift coefficient on the Rey-
nolds number with the wall distance h as a parameter (for 
h=0.5 the particle is located directly at the wall). Far away 
from the wall there is no detectable lift. At small distances 
to the wall there is detectable lift over the whole Reynolds 
number region investigated. Especially for low Reynolds 
numbers, the influence of the wall on the flow around the 
rotating particle is highly significant because of the strongly 
diffusive character of the flow. In general, the wall plays a 
leading role in influencing the lift coefficient on the particle, 
dropping to insignificance for wall distances h>3, that is, as 
far as the accuracy of the calculations could detect. 

 
Fig. 13  Lift coefficient cl versus the Reynolds number Re for different 

wall distances. 

3.5 Numerical simulation of local momentum 
transfer in packed beds 

As a final example which shows the possibilities for the 
present analysis of flow structures at the micro scale using 
the overlapping grid approach, the local momentum 
transfer in a packed bed will be considered. The literature 
abounds with experimental investigations in progress on 
the distribution of velocities, pressure drop and heat 
transfer at different Reynolds numbers for different con-
figurations of packed beds (e.g., Vortmeyer & Schuster, 
1983; Eigenberger & Bey, 1996). With the proposed nu-
merical scheme it is possible to resolve the structure of 
three-dimensional flow around 300 randomly distributed 
particles in a cylindrical tube. It is of major interest to un-
derstand the transport properties close to the rigid tube 
wall. 

Each sphere of the configuration has again its own 
spherical mesh. All minor meshes overlap each other to 
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form a configuration which is overlapped with the major 
grid to describe the tube geometry. As a further develop-
ment of the program code, the spherical meshes for the 
particles have been modified such that each outer bound-
ary of a minor mesh is adjusted to match the surface of the 
neighbouring particles. This has the advantage that no 
uncalculated holes would be lost in the simulation. The 
points of contact between the particles have thus been 
fixed as rigid ‘connecting points’, meaning that they are 
handled as holes and the equations are not to be solved 
there. The random distribution of the particles in the cylin-
drical tube was designed according to the algorithm of 
Chan & Ng (1986). 

Many correlations are available in the literature for cal-
culating pressure drop in packed beds. The code was 
validated with the classical approximations by Darcy 
(1856), Ergun (1952) and Molerus (1977). The agreement 
between the numerical results and the analytical expres-
sion is quite well (Debus, 1998; Debus et al., 1998). 

Fig. 14 shows the velocity distribution in the packed bed. 
The isolines on the particle surface represent the pressure 
distribution within the bed. The Reynolds number based on 
the diameter of the tube for this calculation is Re=23. In the 
areas close to the tube wall the porosity of the packed bed 
is relatively high as compared to those in the inner regions 
of the tube. The fluid drag along the tubular wall is there-
fore less than in the inner regions, thus leading to relatively 
high axial velocities. An overshooting can be observed 
which has the technical disadvantage that the residence 
time distribution for the fluid may change by as much as 
one order of magnitude in the radial direction. A detailed 
analysis of the data files also shows that wakes and recir-
culating flows can be observed for the Reynolds numbers 
and porosities chosen with additional negative influences 
on the residence time distribution. 

 

 
Fig. 14  Velocity vectors for flow through a packed bed at Re=23 for 

flow coming from the bottom, with particles located on a vir-
tual membrane. 

The stream lines, which are strongly bent around the 
particles, compressing and elongating the fluid elements 
during their passage through the packed bed, provide a 
helpful depiction of the flow physics among the particles. 
For Newtonian fluids this has no effect, but for viscoelastic 
media it will have a significant influence on pressure drop. 

4. Summary and Conclusions 
 An overlapping grid scheme approach is presented for 

calculating particle-laden flows which shows specific 
advantages as compared to other grid generation 
schemes. 

 The code was validated and compared with available 
experimental data from the literature. 

 Specifically, the scheme is very helpful to analyse and 
understand the flow physics of particle motion, parti-
cle-wall and particle-particle interactions. In detail, the 
values for drag, lift and torque can be calculated and 
help to realize approximations for micro scale models 
which are necessary for the development of computer 
codes for the calculation of macro scale flow struc-
tures. 

 The numerical approach presented is however limited 
in the number of particles under calculation, though 
the code can handle as many as hundreds of particles 
as long as they are fixed in location. The method is a 
challenge for the future, not only to depict the me-
chanical particle-particle interactions but also to un-
derstand the dynamic behaviour concerning such in-
teractions. There is still a long way to go, although in-
creasing computer resources and the emerging mas-
sively parallel systems will help us to close the gap 
between the micro and the macro approaches. 

Nomenclature 
dc  drag coefficient 

dpc  drag coefficient, pressure part 

dsc  drag coefficient, shear stress part 

lc  lift coefficient 

lpc  lift coefficient, pressure part 

lsc  lift coefficient, shear stress part 

mpc  torque coefficient, pressure part 

msc  torque coefficient, shear stress part 
D  particle diameter, m 
e  unity vector 
dA  area vector 
dV  discrete volume 
h  wall distance 
p  hydrodynamic pressure 
Re  Reynolds number 
T rotation time, s 
U undisturbed fluid velocity, m⋅s-1 
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v  velocity vector 
α axis ratio of an ellipsoidal particle 
β angle of attack, rad 
γ  shear rate, s-1 

υ kinematic viscosity, m⋅s-2 
ξ, η, ζ curvilinear coordinates 
ω angular velocity, s-1 
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Abstract 
A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary 

particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and 
compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of ex-
periments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate 
to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being 
built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electro-
filter and then they are passed through a furnace at concentrations low enough not to induce coagulation. 

 




