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Abstract  
First, we will provide a short introduction to the impulse-based method for dynamic 
simulation. Till now, impulses were frequently used to resolve collisions between rigid 
bodies. In the last years, we have extended these techniques to simulate constraint forces. 
Important properties of the new impulse method are: (1) Simulation in Cartesian 
coordinates, (2) complete elimination of the constraint drift known from Lagrange 
multiplier methods, (3) simple integration of collision and friction and (4) real-time 
performance even for complex multibody systems like six-legged walking machines. In 
order to demonstrate the potential of the impulse-based method, we report on numerical 
experiments. We compare the following dynamic simulation methods: (1) Generalized (or 
reduced) coordinates, (2) the Lagrange multiplier method with and without several 
stabilization methods like Baumgarte, the velocity correction and a projection method, 
(3) impulse-based methods of integration order 2, 4, 6, 8, and 10. We have simulated the 
mathematical pendulum, the double and the triple pendulum with all of these dynamic 
simulation methods and report on the attainable accuracy. It turned out that the impulse 
methods of higher integration order are all of 3( )O h  but have very small factors and are 
therefore relatively accurate. A Lagrange multiplier method fully stabilized by impulse-
based techniques turned out to be the best of the Lagrange multiplier methods tested. 
 
Keywords: dynamic simulation, multibody systems, impulse-based dynamic simulation, 
higher order methods, numerical experiments, Lagrange multiplier methods, generalized 
coordinates, accuracy 
 
                                                           
1  Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) 
2  This report is an extended version of [Schmitt and Bender 2005b] 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197563244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

2

1. Introduction and overview 
Impulse-based dynamic simulation of multibody systems was introduced in [Schmitt 
2003] and [Bender et al. 2003], an English language introduction was given in [Bender et 
al. 2005]. From the results achieved experimentally it could be demonstrated that the 
impulse-based dynamic simulation method is competitive with other methods known 
from literature. The most important advantages are the comparatively simple program 
structure, the real-time capability even for the simulation of complex models (e.g., six-
legged walking machines), and the input specification and internal simulation in 
Cartesian coordinates as preferably used in computer graphics and also in almost all 
engineering applications. A further advantage of the impulse-based method is the simple 
handling of collision and Coulomb friction. Impulse-based dynamic simulation of 
collision events involving two or more non-linked rigid bodies is nowadays well 
understood due to the frequently cited work of [Mirtich and Canny 1995] whereas our 
extended method which also covers linked rigid body systems is more or less unknown to 
the community of dynamics researchers till now. 
In [Schmitt et al. 2005], some open theoretical questions were answered. Now we know 
that the iterative procedure for velocity correction as well as for the computation of the 
impulses for the joint correction can generally be replaced by the solution of a linear 
systems of equations. These sets of equations are always solvable if the respective 
equations for the Lagrange multiplier method have solutions. In critical situations, the 
time step size h must be chosen sufficiently small. Thus it is unnecessary to set up exact 
conditions for convergence and the speed of convergence of the iterative procedure 
because it can be substituted by solutions of linear systems. However, since the iterative 
method is very attractive because of the extremely simple and easy to implement 
algorithm, it is advisable to reduce the time step size h if convergence problems are 
encountered. One recognizes convergence problems very easily by the fact that, in the 
course of iterations, joint distance errors do not decrease monotonously as is usually the 
case.  
Furthermore, it was proven that the impulse-based simulation method converges to the 
mathematically correct solution of the dynamics problem if 0h → . The error is of order 

3( )O h  which is sufficiently small for most applications in computer graphics, virtual 
reality scenarios and computer animation.  
In [Schmitt 2003], it was already shown that one can define impulse-based procedures of 
higher integration order. So far it has been completely unclear whether a gain in accuracy 
can be expected from these procedures. To answer this open question we will provide a 
detailed overview of impulse-based procedures of higher integration order and will 
discuss the method of their derivation in detail.  
Since the impulse-based procedures are not directly related to the dynamic simulation 
methods based on the solution of differential equation systems, one cannot compare the 
truncation error orders directly. In the sequel, we shall see that it is not possible to 
compare our integration orders obtained for the impulse method with the orders of the 
truncation error as discussed in numerics when solving differential equations.  
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To gain an insight into the numerical performance of the impulse-based procedures of 
higher order, we perform test simulations. We simultaneously use ten different dynamic 
simulation methods, which are described in detail in Section 5. Five impulse-based 
procedures of different integration orders are among them as well as five standard 
methods on the basis of the solution of differential equations. Four of the procedures 
work with the Lagrange multiplier method with and without different stabilization 
techniques and one procedure uses the reduced coordinates approach. To generate 
comparable results, we use the standard Runge-Kutta method of fourth order for the 
solution of differential equations. For numeric simulations we define four different 
relatively simple mechanical models. Among them, there are two mathematical 
pendulums, a chaotic double pendulum and an even more chaotic triple pendulum. They 
are described in more detail in Section 4. 
We are only interested in experimentally obtained accuracy levels and not in speed and 
accuracy tradeoffs which play a prominent role in numerics. We believe that the results 
presented here are not only of interest to the computer graphics community (computer 
animation, virtual reality) [Bender et al. 2005], but also to mechanical engineering since 
well-established comparative evaluations of different dynamic simulation methods are 
hardly found in the literature. 
2. Impulse-based dynamic simulation of higher integration orders 
The procedures of higher integration order can be deduced without a detailed look at the 
impulse-based dynamic simulation method. Essentially, these formulae are integration 
formulae and are not directly related to the impulse-based dynamic simulation method.  

Impulses are the result of the integration of forces 3( )F t ∈R :     

   
2

1

: ( )
t

t

I F t dt= ∫ . 

Whereas a force ( )F t  continuously accelerates a point mass ( )p t  with mass m  
according to ( ) (1/ ) ( )= ⋅&&p t m F t , impulses or impulsive forces do not have a continuous 
effect on a point mass but at discrete times only. An impulse I  then provides the point 
mass with an instantaneous increment in velocity with the direction and magnitude 
(1/ )m I⋅ . The impulse-based dynamic simulation method utilizes impulses to achieve 
the same effects as when applying continuous forces. The discrete nature of impulses 
results in significant simplification of the dynamic simulation method because it is 
possible to largely avoid the solution of differential equations. Discrete application of 
impulses is certainly comparable with the discretization used when differential equations 
are solved numerically.  
In the following, we develop a methodology for the derivation of formulae of higher 
order. To calculate an error estimation for the impulse-based simulation method, we 
solve the very simple differential equation (Newton's second law)    

(2.1)   
1( ) ( )p t F t
m

=&&  
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for a mass point of mass m accelerated by a force F(t) and for initial values p(0) and 
(0)p&  in the time interval [0, ]t h∈ . We assume that F(t) is known and is given as a 

power series  

(2.2)   2 3
0 1 2 3

0

( ) ...i
i

i

F t a t a a t a t a t
∞

=

= = + + + +∑  . 

We first solve (2.1) by an impulse-based method for the time interval [0, ]t h∈ . For the 
impulse we obtain the integration result     

  2 31 2
0

0

(0, ) ( ) ...
2 3

h
a aI h F t dt a h h h= = + + +∫  . 

An impulse (0, )I h  computed for a time interval [0, ]t h∈  is an average value, which 
must be applied at time / 2t h=  - in the center of the time interval - in order to obtain a 
good approximation 1( )p h  at time h to the correct solution of (2.1). Using this method, 
we arrive at 

  
1

2 3 40 1 2

( ) (0) (0) (0, )
2

1(0) (0) ( ...).
2 4 6

hp h p hp I h
m

a a ap hp h h h
m

= + + =

= + + + + +

&

&

 

If we integrate (2.1) directly, we get the exact solution  

(2.3) 2 3 40 1 21( ) (0) (0) ( ...)
2 6 12exact
a a ap h p hp h h h

m
= + + + + +& . 

Now, if one compares the coefficients to the powers of h, agreement up to terms of order 

2 is evident and the difference starts with terms of 3h  ( 31
4
a h
m
⋅  compared to 31

6
a h
m
⋅ ). 

This can be stated as 3
1( ) ( ) ( )exactp h p h O h= + . We have observed this error behavior 

in numerous test simulations. The error term of 3( )O h  was also proven in [Schmitt et al. 
2005] using a completely different method.   
A more accurate result can be obtained by first computing an impulse (0, / 2)I h  for the 
subinterval [0, h/2], afterwards the impulse ( / 2, )I h h  for the subinterval [h/2, h], and 
application of these impulses at time h/4 (for 1I ) and 3h/4 (for 2I ). With this two-step 
method, we obtain 

  
/ 2

2 30 1 2

0

(0, / 2) ( ) ...
2 8 24

h
a a aI h F t dt h h h= = + + +∫     
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as well as     2 30 1 2

/ 2

3 7( / 2, ) ( ) ...
2 8 24

h

h

a a aI h h F t dt h h h= = + + +∫  .  Thus      

 
2

2 3 40 1 2

1 3( ) (0) (0) ( (0, / 2) ( / 2, ))
4 4

1 3 5(0) (0) ( ...).
2 16 48

h hp h p hp I h I h h
m

a a ap hp h h h
m

= + + +

= + + + + +

&

&

 

A comparison with ( )exactp h  still shows an error term of order 3( )O h . A substantially 
better approximation for ( )exactp h  can be computed by  

  
1 2 1 2

2 3 4 50 1 2

( ) ( 1/3) ( ) (4 /3) ( )
1(0) (0) ( ( )).

2 6 12

p h p h p h
a a ap hp h h h O h

m

+ = − +

= + + + + +&
 

A comparison with (2.3) confirms equality with the exact solution up to terms of 4( )O h , 

i.e., 5
1 2( ) ( ) ( )exactp h p h O h+= + . The weights (- 1/3) and (4/3) used above can be 

determined quite simply by solving a small system of linear equations.  

The method just used can be continued for higher orders. With ( , ) ( )I F t dt
β

α

α β = ∫ , we 

can define the three-step solution:  

3
1 5 3( ) (0) (0) ( (0, /3) ( /3,2 /3) (2 /3, ))

6 6 6
h h hp h p hp I h I h h I h h

m
= + + + +&  .  

With suitably determined weights, we define  
1 2 3 1 2 3( ) (5/120) ( ) (128/120) ( ) (243/120) ( )p h p h p h p h+ + = − + .  

Comparison with the exact solution delivers 7
1 2 3( ) ( ) ( )exactp h p h O h+ += +  . With   

 
4

1 7 5( ) (0) (0) ( (0, / 4) ( / 4, / 2)
8 8

3 ( / 2,3 / 4) (3 / 4, ))
8 8

h hp h p hp I h I h h
m

h hI h h I h h

= + + +

+ +

&

   

and 

 
5

1 9 7( ) (0) (0) ( (0, /5) ( /5,2 /5)
10 10

5 3(2 /5,3 /5) (3 /5,4 /5) (4 /5, )),
10 10 10

= + + +

+ + +

&
h hp h p hp I h I h h

m
h h hI h h I h h I h h

    

we can define  
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   1 2 3 4 1 2

3 4

( ) (1/360) ( ) (16 / 45) ( )
(729/ 280) ( ) (1024/315) ( )

p h p h p h
p h p h

+ + + = − +

− +
    

where 9
1 2 3 4( ) ( ) ( )exactp h p h O h+ + += + ,   and 

 
1 2 3 4 5 1 2

3 4

5

( ) (1/8640) ( ) (64 /945) ( )
(6561/ 4480) ( ) (16384/ 2835) ( )
(390625/ 72576) ( )

p h p h p h
p h p h

p h

+ + + + = −

+ −

+

  

where 11
1 2 3 4 5( ) ( ) ( )exactp h p h O h+ + + += +  respectively. 

The weight coefficients occurring in the formulae are easily derived by simple linear 
systems. We assume that the method can be continued further on. For practical 
applications, formulae with truncation errors less than 11( )O h  are not of interest.  

These results are only valid for mass points accelerated by known forces. This is different 
from the situation we have with the impulse-based simulation because impulses are 
determined in such a way that the joint conditions are fulfilled again after a time step. 
Nevertheless, one can combine the integration formulae with the impulse-based dynamic 
simulation of mass point systems and analyze the gain in accuracy. In addition one has to 
switch to the middle step procedure. It is defined as follows: With the middle step 
procedure, the mass point system is in a consistent condition at the beginning of a time 
step. Then a ballistic motion takes place for a time interval of / 2h . At this point, 
impulses are calculated and applied in order to satisfy all constraints at time h with the 
help of a look ahead procedure. After sufficient correction of constraint errors, a further 
ballistic motion takes place for a time interval of / 2h  and is then finished by a velocity 
correction. This brings the mechanical system back into a consistent condition finally.   

The mass point positions 1p , 2p , 3p , 4p  as well as 5p  introduced above are then 
exchanged by: 

1( )(p h  with one middle step of step size h ,      

2 ( )(p h  with two consecutive middle steps of size / 2h ,      

3( )(p h  with three middle steps of /3h  etc.    

After inserting these mass point positions into the formulae derived above, we arrive at 
formulae like 

1 2 3 1 2 3( ) (5/120) ( ) (128/120) ( ) (243/120) ( )+ + = − +( ( ( (p h p h p h p h , 

where 1 2 3( )+ +
(p h  should be more accurate than 1( )(p h  since we can expect a truncation 

error of 7( )O h , while the truncation error of 1( )(p h  is only of order 3.  

Our numerical simulation results presented in Section 6 do not confirm this. One cannot 
compare our formulae of higher integration order with the truncation orders given for 
numerical procedures when solving differential equations.  
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It is obvious that the impulse-based methods of higher order can be implemented in a 
straightforward manner. If the function ( ( ), ) ( )Integrate p t h p t h→ +  defines a middle 
step of the dynamic simulation, then  

1

2

3

( ) : ( (0), ),
( ) : ( ( (0), / 2), / 2),
( ) : ( ( ( (0), /3), / 3), /3)
.

=
=

=

(

(

(

p h Integrate p h
p h Integrate Integrate p h h
p h Integrate Integrate Integrate p h h h
etc

 

and this considerably simplifies an implementation of the higher order codes. 
 
3. Higher order formulae for angular velocities ω  
The impulse-based procedures of higher integration order deduced above are applicable 
for mass point systems. Their implementation is rather simple. However, we also want to 
use the formulae of higher order for the impulse-based simulation of multi-body systems. 
Since we are working with the Newton-Euler formalism, we can split the motion of a 
rigid body into the motion of its center of mass and the change of the angular velocity ω . 
The formulae of higher order are clearly applicable to the centers of mass. The same 
applies to the orientation matrix R , whose column vectors are the axes of the body's 
coordinate system.  
Yet, the question "How to proceed with the 'sω ?" remains. We call it the "omega 
problem". We studied and compared numerical simulations of multi-body systems with 
equivalent point mass systems. It turned out that spin vectors ω  are transformed to 
higher order by exactly the same formulae and weights as derived for point masses in 
Section 2. In order to confirm this, we must solve Euler's differential equation  

(3.1)  1 1( ) (( ( )) ( )) ( )− −= ⋅ ⋅ × + ⋅& t J J t t J D tω ω ω    

by the power series method. Here ( )D t  is the total torque acting on the rigid body. It 
replaces ( )F t  appearing in (2.1). It is sufficient to carry out the calculation in body space 
coordinates with a constant and diagonalized inertia tensor J . For the nth derivative  

( ) (0)nω  of ω (t) at t=0, we obtain the following recursive formula:   
1

( ) 1 ( ) ( 1) 1 ( 1)

0

1(0) ( (0)) (0) (0)
n

n i n i n

i

nJ J J D
i

ω ω ω
−

− − − − −

=

⎛ ⎞−⎛ ⎞⎜ ⎟= ⋅ ⋅ × + ⋅⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑  . 

Without torque we obtain 
1

( ) 1 ( ) ( 1)

0

1(0) ( (0)) (0)
n

n i n i

i

nJ J
i

ω ω ω
−

− − −

=

⎛ ⎞−⎛ ⎞⎜ ⎟= ⋅ ⋅ ×⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ . 

The exact solution includes torque and is given by the power series 
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1 ( )

0

(0)( ) ( )!

−

=
= +∑

n i i n
exact

i
h h O hi

ωω . 

The torque-free ballistic motion of the rigid body in a time interval h  leads to 

 
1 ( )

0
0 0

0

( )( ( ), ) ( ) ( )
!

n i
i n

i

tBall t h t h h O h
i

ωω ω
−

=

= + = +∑  .   

Note the 'sω  inside the formula. The torque impulse is calculated by   

1( , ) : ( )DI J D t dt
β

α

α β −= ⋅∫ . 

The new 1ω  after a time step h in the impulse-based dynamic simulation is computed by 
the middle step procedure as follows:   

1

1 1

1 1

: ( (0), / 2);
: (0, );

: ( , / 2).

=

= +

=

a

b a D

b

Ball h
I h

Ball h

ω ω
ω ω
ω ω

 

Two consecutive steps of size h/2 lead to:     

2 2 2

2 2 2 2

2 2

( (0), / 4); (0, / 2);
( , / 2); ( / 2, );

( , / 4).

= = +

= = +

=

a b a D

c b d c D

d

Ball h I h
Ball h I h h

Ball h

ω ω ω ω
ω ω ω ω
ω ω

 

With efficient formula manipulators like Mathematica™, we can prove that 

  5
1 2( ) ( ) ( )exact h h O hω ω += + , 

where we treat the starting parameters (0)ω , J  and ( )D t  as variables and compare the 
terms 1 2 1 2( ) ( 1/3) ( ) (4 /3) ( )h h hω ω ω+ = − +  and ( )exact hω . 

Thus we have the same integration formulae for the angular velocity vectors ω  as for 
point masses, which we have shown up to order 9( )O h  with Mathematica™.  

It is very amazing to learn that the formulae derived in Section 2 are also applicable to 
spin vectors. A possible reason for this may be that the angular momentum and the linear 
momentum have exactly the same structure. For the impulse ( ) ( )= ⋅p t m v t  of a mass 
point with mass m and velocity ( )v t , we have ( ) ( )=&p t K t , where ( )K t  is the force 
applied. For the angular momentum ( ) ( )L t J tω= ⋅ , we have ( ) ( )L t D t=& ,where D(t) is 
the torque affecting the rigid body. We conjecture that the complete analogy of these 
formulae for both motion quantities is the reason for the validity of the integration 
formulae of higher order deduced above.  
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4. The dynamically simulated mechanical models and accuracy measurements 
Methodically, our course of action is that we simulate relatively simple mechanical 
models, e.g., the mathematical pendulum, the double pendulum and the triple pendulum, 
see Figures 1a, 1b and 1c. The last two are chaotic systems. Dynamic simulations for 
these chaotic models with high accuracy over a longer period of time are practically 
impossible (lack of a Lipschitz condition). All our models are point mass systems, but it 
should be noted that, for dynamic simulations, point mass systems are equivalent to rigid 
body systems, see [Schmitt et al. 2005a]. The parameter values of the models are: 
Pendulum10: Mathematical pendulum with a length of 1 m, a mass of 1 kg and a 
maximum amplitude of 10° , planar motion, 
Pendulum90: Like Pendulum10, but maximum amplitude of 90 degrees, planar motion, 
Double Pendulum: Distance of the masses 1 m, masses 1 kg, starting configuration 
horizontally stretched to the right, leading to a planar motion, 
Triple Pendulum: Distance of the 3 masses 1 m each, masses 1 kg, starting configuration 
horizontally stretched to the right, planar motion. 

Pendulum10

ϕ
ϕ=10

Pendulum90

ϕ=90

  
Figure 1a 

Double Pendulum

 
Figure 1b 
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Triple Pendulum

 
 

Figure 1c 
If these models are simulated dynamically without friction or other external forces except 
gravity, the total energy consisting of kinetic and potential energy should remain 
constant. Thus, if the total energy is 0E  at the start of the simulation and the total energy 
of the simulated model after the ith time step is iE , then we define the quantity “energy 
drift” as  

0
1...

: : (1/ ) i
i n

Energy Drift ED n E E
=

= = −∑  , 

where n is the total number of time steps recorded. To test the stability of the numerical 
simulation methods, we always simulate over a time interval of 60 seconds. A completely 
accurate dynamic simulation must result in ED=0. With the Pendulum10 and 
Pendulum90 models, ED is a good indicator for the accuracy of the simulation. 
Nevertheless, it is well known that an energy drift of ED=0 does not guarantee a 
perfectly accurate simulation. 
For the Pendulum10 and Pendulum90 models, we can also determine the deviations from 
the correct oscillation time. With formulae from theoretical physics, the oscillation time 
for Pendulum10 is given as 10 2.00989262729860T =  s and for Pendulum90 as 

90 2.36784194757623T =  s, where we used g=9.81, which is also used during the 
numerical computations. By the choice of time steps /h T kϕ=  for integers k and 

10ϕ =  and 90 respectively, one can measure very small deviations from the theoretical 
oscillation time by observing the perpendicular crossover of the simulated pendulum: 
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1...

: (1/ ) ( )
=

= = = ⋅∑
i m

Oscillation Time Drift OTD m x t i Tϕ  

Here, x(t) is the x coordinate of the respective pendulum at time t and we start the 
numerical simulation in a perpendicular position with x(0)=0. A numerical simulation 
with the theoretically computed oscillation period thus results in OTD=0 and deviations 
result in OTD>0. 
With the chaotic models Double Pendulum and Triple Pendulum, the measure ED is not 
really useful because it is often observed with these models that energy errors 
compensate each other later on due to chaotic influences. For these models, we therefore 
use the measure  

1
1...

: : (1/ ) −
=

= = −∑ i i
i n

Energy Increment Drift EID n E E , 

where we sum up the absolute values of energy changes at time steps 1...=i n . 
5. The dynamic simulation methods used 
The models described above are simulated with a total of ten different simulation 
methods or codes:  
GC4: Generalized coordinates, which is the method of reduced or minimal coordinates 
simulated with the standard Runge-Kutta method of order 4. We did not use adaptive 
time steps, but always used constant step sizes h. Whenever it is possible to write down 
the differential equations of the dynamic motion of a multibody system in a minimal set 
of generalized coordinates, i.e., in such a way that for each degree of freedom these 
equations contain only one parameter, then this should lead to the most accurate 
simulation results because the computation of constraint forces is completely eliminated. 
For a mathematical pendulum of length 1 m, a respective equation reads sin( )gϕ ϕ= − ⋅&& , 
where the generalized coordinate ϕ  is the angle between the pendulum and the 
perpendicular axis. For more complex models, e.g., the triple pendulum, the formulae are 
already so complex that they should be generated with a system like Mathematica™, e.g., 
using Lagrange’s equation of the second kind. Our results for the double pendulum are 

2 2
1 1 2 1 2 1 1 2 2

1
1 2

2 2
1 2 1 1 1 2 2

2
1 2

(g (3 Sin( )+Sin( -2 ))+Sin(2 ( - )) +2 Sin( - ) )
=

(-3+Cos(2 ( - )))

(-2 Sin( - ) (2 g Cos( )+2  +Cos( - ) ))
=

(-3+Cos(2 ( - )))

,

.

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅

& &
&&

& &
&&

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ

ϕ ϕ

 

For the triple pendulum, we obtained 
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1

2
2 3 1 1 2 1 2 1

2 2
1 2 2 2 3 3

1 2 2 3

=

(-(g (-5+Cos(2 ( - ))) Sin( ))+2 g Sin( -2 )+2 Sin(2 ( - )) +

2 Sin( - ) (2 +Cos( ) ))/

(-5+2 Cos(2 ( - ))+Cos(2 ( - ))),

ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ − ⋅

⋅ ⋅ ⋅

&&

&

& &
 

2

2
1 1 2 1 2 3 1 2 1 2 3 1

2 2
1 2 2 3 2 1 2 3 2 3 3

1 2 2 3

=

(g Cos( ) (-7 Sin( - )+Sin( + -2 ))+(-7 Sin( - )+Sin( + -2 )) +

(-2 Sin(2 ( - ))+Sin(2 ( - ))) +(-Sin(2 - - )+3 Sin( )) )/

(-5+2 Cos(2 ( - ))+Cos(2 ( - ))),

ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅

⋅ ⋅ ⋅

&&

&

& &
 

3

2 2 2
2 3 1 2 1 1 2 2 3 3

1 2 2 3

=

(-2 Sin( - ) (2 (Cos( - ) (g Cos( )+ )+ )+Cos( ) ))/

(-5+2 Cos(2 ( - ))+Cos(2 ( - ))),

ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

⋅ ⋅ ⋅ ⋅ ⋅ − ⋅

⋅ ⋅ ⋅

&&

& & &  

 

where the angles 1 2 3, ,ϕ ϕ ϕ  of the rods form the minimal set of generalized coordinates. 

In cases of larger systems to be analyzed dynamically, the method of minimal 
coordinates generates very large expressions for the differential equations, and 
simulations on this basis can be laborious.  
LM4: Lagrange multiplier method numerically solved with the standard Runge-Kutta 
method of order 4. This well-known and widely used simulation method is scalable and 
can be automated. That means one only has to describe the inertia tensors and the joints 
of mechanical models in Cartesian coordinates, and there is no limit to the complexity of 
the mechanical models. All further steps, e.g., the generation of the differential equations 
and their numerical solution, are easily implemented. These properties permit the 
integration of this dynamic simulation method as a sub-module in computer animation 
and virtual reality systems, where larger models, e.g., walking machines, have to be 
simulated frequently. Our calculation of the Lagrange multipliers for point mass systems 
is based on the Taylor expansion method as described in [Schmitt et al. 2005a].  
The only serious disadvantage of this method is the constraint drift problem. During the 
simulation, small numerical inaccuracies with respect to constraint conditions grow 
steadily and cannot be corrected by the basic LM algorithm. This is due to the fact that 
neither the consistency of the mechanical system with respect to distance constraints nor 
the velocity constraints are maintained in the course of the simulation. More details are 
given in papers and books on the numeric solution of differential algebraic equations 
related to dynamic simulations and also in [Schmitt et al. 2005a]. 
LMBS4: Similar to LM4, but with the well known and often cited stabilization method of 
[Baumgarte 1972]. We exactly used the stabilization terms given in Baumgarte's 
"Example 1" and also his parameter settings 10, 10α β= = . 
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LMV4: Similar to LM4, but the velocity errors across constant distance joints are 
corrected at the end of each integration step. To do this, we exactly use the impulse-based 
algorithm which we also use in the implementations of our impulse-based dynamic 
simulation methods, for details see [Schmitt et al. 2005a].  
LMVD4: Similar to LMV4, but not only a correction of velocity errors is done at the end 
of each integration step, but also an impulse-based projection method correcting distance 
errors. In order to cope with the drift phenomenon, projection methods and other 
regularization methods like Baumgarte's stabilization are frequently discussed in the 
literature, see e.g. [Ascher et al. 1994], [Eich-Soellner and Führer 1998],[Schwerin 1999] 
and many others. Here we use a new and very promising technique that is totally based 
on impulse methods. An integration step is composed of the following phases: 
(a) Standard integration step with the LM4 method resulting in mass point positions and 
velocities ( ), ( )P t h P t h+ +& . 

(b) Save ( ) : ( )saveP t h P t h+ = +& &  and set the velocities temporarily to zero: 
( ) : (0,0,0)P t h+ =& . 

(c) Switch off gravity and carry out an impulse-based integration step as described in 
[Schmitt et al. 2005b]. After this, all constraint errors are eliminated. All constraint 
distances are free of drift. The time parameter is reset to t+h. 

(d) Reconstitute the old velocities ( ) : ( )saveP t h P t h+ = +& &  and finally apply the impulse-
based velocity correction. The dynamic system is now in a consistent state. 
The procedure LMVD4 derived from LM4 has the best stability and accuracy behavior in 
the family of our LM methods. It is relatively efficient because only one system of linear 
equations needs to be solved for each step (c) and (d). On the other hand, LM4 needs to 
solve four linear systems to compute the Lagrange multipliers with the standard Runge-
Kutta method. 
Imp2, Imp4, Imp6, Imp8, Imp10: Impulse-based dynamic simulation methods of 
integration orders 2 4 6 8 10( ), ( ), ( ), ( ), ( ).O h O h O h O h O h  A detailed derivation of these 
methods is given in Section 2. These higher integration orders cannot be compared with 
the respective orders of the truncation error as is known from numerical analysis. It will 
turn out that the higher integration orders only have a minor influence on the order of the 
asymptotic truncation error, but they have a significant influence on the magnitude of the 
error functions.  
6. Simulation results and discussion 
The numerical simulations were carried out with double precision reals (64 bit) for a total 
time of 60 seconds and with 12 different time step sizes in the range from about 
h=0.00125 s to h=0.08 s. A procedure is marked by "fail" in a diagram if the maximal 
constraint distance error has grown in the course of the 60 seconds to values greater than 
1 m which is by far too large for a realistic dynamic simulation. 

We approximate the error curves simply by a function ( ) := ⋅ af h c h . If f is given by the 
two distinct values h1=0.005, h2=0.04 and w1=f(h1), w2=f(h2), then the order a is given 
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by 
  ( ) ( )log( 1) log( 2) / log( 1) log( 2)a w w h h= − −   

and the factor c by ( )2/ 2 ac w h= . In the sequel, we will simply use the terms "order" 
and "factor" when the growth characteristics of functions are discussed. 
Pendulum10: This model has a calm dynamic behavior. In contrast to Pendulum90, 
there are no fail events, not even with LM4. Here and in all the other diagrams, the 
impulse-based methods perform in accordance with their integration orders. Note that, 
theoretically, Imp2 is of order 2( )O h  whereas GC4 and all the LM methods are of order 

4( )O h . 
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Figure 2 :  Model Pendulum10 Time Step h

Energy Drift

 
Energy drift, Fig. 2: The methods GC4, LMV4 and LMVD4 have about the same 
characteristics whereas LM4 and LMBS4 have a larger energy drift. Since the impulse-
based methods Imp4, Imp6, Imp8 and Imp10 have the same inclination, they should have 
nearly the same order, but different factors. This is confirmed by the following table: 

 Model: Pendulum10   Function: Energy Drift 

GC4    Order: 5.00  Factor:     57.489726 
LM4    Order: 4.00  Factor:    133.908765 
LMV4   Order: 4.57  Factor:      9.375275 
LMVD4  Order: 4.99  Factor:     59.295039 
LMBS4  Order: 4.00  Factor:      7.266698 
Imp2   Order: 2.10  Factor:      0.160045 
Imp4   Order: 2.97  Factor:      0.086561 
Imp6   Order: 3.00  Factor:      0.010339 
Imp8   Order: 3.00  Factor:      0.002436 
Imp10  Order: 3.00  Factor:      0.000831 
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Since the energy drift is not directly proportional to the truncation error, the orders differ 
slightly from the theoretical numbers. All the methods Imp4 up to Imp10 have the same 
order 3( )O h , but their factors shrink substantially for the higher integration orders. Note 
also the differences between the LM methods, where LMVD4 is finally equivalent to 
GC4. 
Oscillation Time Drift, Fig. 3: The impulse-based methods show a very good 
performance even for small values of h. The oscillation time drift should be proportional 
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Figure 3 :  Model Pendulum10 Time Step h

Oscillation Time Drift

 
to the truncation error. This is confirmed by the following table, where all methods using 
Runge-Kutta are of 4( )O h . We do not know why the order of Imp4 is higher than those 
of the methods with higher integration order. 
 

Model: Pendulum10   Function: Location Drift 

GC4    Order: 3.99  Factor:     12.105792 
LM4    Order: 4.02  Factor:     47.245186 
LMV4   Order: 3.96  Factor:     10.994672 
LMVD4  Order: 3.99  Factor:     12.362825 
LMBS4  Order: 4.07  Factor:     31.294747 
Imp2   Order: 2.00  Factor:      3.423206 
Imp4   Order: 3.65  Factor:      0.790714 
Imp6   Order: 3.00  Factor:      0.001450 
Imp8   Order: 3.00  Factor:      0.000341 
Imp10  Order: 3.00  Factor:      0.000116 

 

Pendulum90: This model has greater velocities and accelerations than Pendulum10. 
Therefore, the errors are generally larger than with Pendulum10, see Figures 4 and 5. 
Here GC4 is the most accurate dynamic simulation method since all other procedures 
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Figure 4 :  Model Pendulum90 Time Step h
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Figure 5 :  Model Pendulum90 Time Step h

Oscillation Time Drift

 
have to deal with greater constraint forces. LM4 and LMBS4 fail for larger time steps, 
whereas the LM methods stabilized with impulse techniques (LMV4, LMVD4) have, for 
small time steps, a better performance than even the best impulse method. However, note 
that these Lagrange multiplier methods are stabilized by impulse methods. 

Model: Pendulum90   Function: Location Drift 
GC4    Order: 5.16  Factor:   5960.114141 
 LMV4   Order: 5.25  Factor:  268724.937027 
 LMVD4  Order: 5.36  Factor:  270707.968280 
LMBS4  Order: 4.04  Factor:  69444.354991 
Imp2   Order: 3.08  Factor:   3480.824040 
Imp4   Order: 3.00  Factor:    678.967591 
Imp6   Order: 3.00  Factor:     68.549409 
Imp8   Order: 3.00  Factor:     16.013713 
Imp10  Order: 3.00  Factor:      5.433129 
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The table with the order numbers shows some differences with model Pendulum10. 
Whereas the impulse methods show exactly the same orders with the exception of Imp2, 
GC4 as well as the stabilized LM methods show orders higher than 5. We do not have an 
explanation for this.  
Constraint drift Fig. 6, 7: Only the three procedures LM4, LMBS4 and LMV4 are 
burdened with a constraint drift. The numbers given in the figures are mean values for the 
whole 60 seconds of simulation time. For this reason, they are relatively small. A fail 
event is detected if the constraint error is greater than 1 m. Note that LMVD4 is free of 
drift due to the impulse-based projection method. 
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Double and Triple Pendulum: The chaotic nature of these models leads to curves 
(Figures 8, 9) which are a little bit wavy and not as smooth as for the mathematical 
pendulum although the measure EID=Energy Increment Drift is a sort of smoothing of 
ED. The fail events clearly document the ranking LM4, LMBS4, LMV4 with respect to 
instability. It is also of interest that the other methods of order 4 have very similar curves.  
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Figure 8 :  Model Double Pendulum Time Step h

Energy Increment Drift

 

0.00125 0.0025 0.005 0.01 0.02 0.04 0.08
10-12

10-10

10-8

10-6

10-4

10-2

100

 GC4  

fail: LM4  

fail: LMV4 
 LMVD4

fail: LMBS4

 Imp2 
 Imp4 

 Imp6 
 Imp8 
 Imp10

Figure 9 :  Model Tripel Pendulum Time Step h

Energy Increment Drift

 
 
7. Conclusion 
The most important results of the comparative test simulations concern the impulse-based 
procedures of higher integration order. We derived these formulae of higher order by 
computing impulses through integration of a known force function. In the genuine 
impulse-based simulation, the force functions are unknown and impulses are determined 
by a look-ahead function and by constraint checking. The simulation results show that the 
procedures Imp4,…, Imp10 are all of order 3, whereas the standard Runge-Kutta code is 
of order 4. Nevertheless, a substantial increase in accuracy results due to the very small 
constant factors of the asymptotic truncation error functions. This shows up clearly in 
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Fig. 3, where Imp6, Imp8 and Imp10 have a very high accuracy. A further characteristic 
of the impulse-based procedures is their high stability, which is documented by the linear 
shape of the error functions. A further advantage is the simple and straightforward 
implementation of the impulse methods of higher integration order, which was 
demonstrated briefly at the end of Section 2.  
The non-scalable procedure GC4 with minimal coordinates is certainly not a candidate 
for a general dynamic simulation module in computer graphics applications. This method 
is not really applicable in scenarios where collision and friction have to be modeled, and 
it cannot be automated in a straightforward manner as is the case for the impulse and LM 
methods. When compared to the other methods, the gain in accuracy is not very 
significant. Even with model Pendulum90, where GC4 performs very well, it is possible 
to obtain a comparable accuracy if one uses LMVD4 with a step size of about h/2. 
A comparison between the procedures that are scalable and can be automated, i.e., the 
LM methods and the impulse methods, shows clear advantages with respect to the 
impulse methods, since the competitive methods LMV4 and LMVD4 are also stabilized 
using impulse methods. This statement is based on accuracy and energy drift statistics 
and not on a comparison of computing time.  
Application of the standard Lagrange multiplier method (LM4) cannot be recommended 
because the simulations are unstable and can be highly inaccurate. The same is true to a 
certain extent for the LM method with Baumgarte stabilization. Only the fully stabilized 
method LMVD4 is a serious candidate for stable and accurate dynamic simulations. 
However, it should be noted that in order to implement LMVD4, one also has to 
implement the impulse method as part of the stabilization. From an implementer's point 
of view, it turned out to be much easier to first implement the impulse method because 
the LM method uses the same matrices for the linear systems as the impulse method.  
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