
Reporting Flock Patterns

Marc Benkert1�, Joachim Gudmundsson2, Florian Hübner1, and Thomas Wolle2
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Abstract. Data representing moving objects is rapidly getting more available, especially in
the area of wildlife GPS tracking. It is a central belief that information is hidden in large data
sets in the form of interesting patterns. One of the most common spatio-temporal patterns
sought after is flocks. A flock is a large enough subset of objects moving along paths close
to each other for a certain pre-defined time. We give a new definition that we argue is more
realistic than the previous ones, and by the use of techniques from computational geometry
we present fast algorithms to detect and report flocks. The algorithms are analysed both
theoretically and experimentally.

1 Introduction

Data related to the movement of objects is becoming increasingly available because of substantial
technological advances in position-aware devices such as GPS receivers, navigation systems and
mobile phones. The increasing number of such devices will lead to huge spatio-temporal data
volumes documenting the movement of animals, vehicles or people. One of the objectives of spatio-
temporal data mining [15, 17] is to analyse such data sets for interesting patterns. For example,
a group of 25 moose in Sweden was equipped with GPS-GSM collars. The GPS collar acquires
a position every half hour and then sends the information to a GSM-modem where the positions
are extracted and stored. Analysing this data gives insight into entity behaviour, in particular,
migration patterns. There are many other examples where spatio-temporal data is collected [1,
16]. The analysis of moving objects also has applications in sports (e.g. soccer players [11]), in
socio-economic geography [8] and in defence and surveillance areas.

We will model a set of moving objects by a set P of n moving point objects p1, . . . , pn whose
locations are known at τ consecutive time-steps t1, . . . , tτ that is, the trajectory of each object is
a polygonal line that can self-intersect, see Fig. 1a. For brevity, we will call moving point objects
entities from now on. It is assumed that the velocity of an entity along a line segment of the
trajectory is constant.

There is some research on data mining of moving objects (e.g. [12, 18, 19, 22]) in particular,
on the discovery of similar directions or clusters. Verhein and Chawla [22] used associated data
mining to detect patterns in spatio-temporal sets.

Laube and Imfeld [13] proposed a different approach in 2002 - the REMO framework (RElative
MOtion) which defines similar behaviour in groups of entities. They define a collection of spatio-
temporal patterns based on similar direction of motion or change of direction. Laube et al. [14]
extended the framework by not only including direction of motion, but also location itself. They
defined several spatio-temporal patterns, including flock, leadership, convergence and encounter,
and gave algorithms to compute them efficiently.

Laube et al. [14] developed an algorithm for finding the largest flock pattern (maximum number
of entities) using the higher-order Voronoi diagram with running time O(τ(nm2+n log n)), where m
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Fig. 1. (a) A polygonal line describing the movement of an entity p in the time interval [t1, t6]. (b) A flock
for p1, p2, p3 in the time interval [t7, t9].

is the minimum number of entities that a flock has to contain. They also proved that the detection
problem can be answered in O(τ(nm + n log n)) time. Applying the paper by Aronov and Har-
Peled [5] to the problem gives a (1+ε)-approximation with expected running time O(τn/ε2 log2 n).
Gudmundsson et al. [10] showed that if the disk (i.e. the region in which the entities have to be
in order to form a flock) is (1 + ε)-approximated then the detection problem can be solved in
O(τ(n/ε2 log 1/ε + n log n)) time.

However, the above algorithms only consider each time-step separately, that is, given m ∈ N

and r > 0 a flock is defined by at least m entities within a circular region of radius r and moving
in the same direction at some point in time. We argue that this is not enough for most practical
applications, e.g. a group of animals may need to stay together for days or even weeks before it is
defined as a flock. Therefore we propose the following definition of a flock:

Definition 1. (m, k, r)-flockA - Given a set of n trajectories where each trajectory consists of τ
line segments, a flock in a time interval I = [ti, tj ], where j − i + 1 � k, consists of at least m
entities such that for every point in time within I there is a disk of radius r that contains all the
m entities. Note that m, k ∈ N and r > 0 are given constants.

In this model, Gudmundsson and van Kreveld [9] recently showed that computing the longest
duration flock and the largest subset flock is NP-hard to approximate within a factor of τ1−ε and
n1−ε, respectively. They also give a 2-radius approximation algorithm for the longest duration
flock with running time O(n2τ log n).

We describe efficient approximation algorithms for reporting and detecting flocks, where we let
the size of the region deviate slightly from what is specified. Approximating the size of the circular
region with a factor of Δ > 1 means that a disk with radius between r and Δr that contains at
least m objects may or may not be reported as a flock while a region with a radius of at most r
that contains at least m entities will always be reported.

We present several approximation algorithms, for example, a (2 + ε)-approximation with run-
ning time T (n) = O(τnk2(log n + 1/ε2k−1)) and a (1 + ε)-approximation algorithm with running
time O(1/mε2k) · T (n).

Our aim is to present algorithms that are efficient not only with respect to the size of the input
(which is τn) but also try to keep the dependency on k and m as small as possible. For most of
the practical applications we have seen; m will be between a couple of entities to a few hundreds
or even thousands, and k is expected to be between 5 and 30 for most applications.

Ib this model a set of entities can have many flocks and even one single entity can be involved
in several flocks. For example, a flock involving m + 1 entities trivially contains m + 1 flocks of
cardinality m. We must specify what we want to find and report in a given data set, see [10] for a
discussion. One possibility is simply to detect whether a flock occurs. If so, we may want to report
one example of a flock. Secondly, we may want to find all flocks that occur. Thirdly, we may want
to report the largest size subset of entities that form a flock. In this paper we deal with the variant
of finding all flocks, in Section 4 we will discuss the other variants briefly.

This paper is organised as follows. Next we give a brief description of the skip-quadtree struc-
ture used in this paper together with a description of the computational model used. In Section 2
we give a discrete version of the definition of a flock and prove that it is equivalent to the original
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definition provided that the entities move with constant velocity between consecutive time-steps.
Furthermore, we describe our general approach to detect flocks. Then, in Section 3, we give three
approximation algorithms which are all based on the general approach. In Section 4 we discuss
different ways of pruning the set of flocks reported, and in the final section we discuss the imple-
mentations and the experimental results.

1.1 The computational model

One of the main tools used in this paper is the skip-quadtree presented by Eppstein, Goodrich and
Sun [7] in 2005. The standard practice [6, 7] in computational geometry using quadtrees or octrees
is that certain operations can be done in constant time. In arithmetic terms, the computations
needed to perform point location, range queries or nearest neighbour queries in a quadtree, involve
finding the most significant binary digit at which two coordinates of two points differ. This can be
done using a constant number of machine instructions if we have a most-significant-bit instruction,
or by using floating point or extended precision normalisation.

1.2 Skip-quadtree

We will show that approximation algorithms can be obtained by performing a set of range counting
queries in higher dimensional space. There are several data structures supporting this type of query;
quadtrees, skip-quadtrees, octrees, kd-trees, range trees, BBD-trees, BAR-trees and so on. For our
requirements we could use either skip-quadtrees or BBD-trees, and since the implementation of
the randomised skip-quadtree is very simple we chose to use the skip-quadtree.

The skip-quadtree uses the compressed quadtree as the bottom-level structure. The standard
compressed quadtree uses O(2d · n) space and the worst-case height is O(n). We briefly describe
the structure and show how to modify the structure so that it uses O(dn) space while the query
time will increase with an O(log d)-factor.

First, here is the original description of a compressed quadree taken from [7]. Consider the
standard quadtree T of the input set S. We may assume that the centre of the root square
(containing the set S) is the origin and the half side length for any square in T is a power of 2.

Define an interesting square of a quadtree to be one that is either the root or that has at least
two non-empty quadrants. Any quadtree square p containing at least two points contains a unique
largest interesting square q in T . The compressed quadtree explicitly only stores the interesting
squares, thus removing all the non-interesting squares and deleting their empty children. So for
each interesting square p, they store 2d bi-directed pointers, one for each d-dimensional quadrant.
If the quadrant contains at least two points, the pointer goes to the largest interesting square
inside the quadrant; if the quadrant contains one point, the pointer goes to that point; and if the
quadrant is empty the pointer is null.

The above description of a compressed quadtree implies that the size of the tree is O(2d · n).
Instead of storing information about which children contain points and which children are empty,
we modify the tree such that it contains a list containing only the non-empty children. This
improves the space complexity to O(dn), however this modification will increase the cost of a
search in the tree since deciding if a child exists or not requires O(d) time.

The skip-quadtree supports (1 + δ)-approximate range (counting) queries, i.e. the query range
Q is approximated by an extended query range Qδ. The extended query range Qδ consists of Q
and all points within a distance δ · w from Q, where w is the diameter of Q. The approximate
query counts all points in Q, it either counts or does not count points in Qδ \ Q and it does not
count any point in R

d \ Qδ.
Together with the results of [7], the above discussion can be summarised by the following

lemma.

Lemma 1. Insertion, deletion and search in the modified d-dimensional skip-quadtree using a
total of O(dn) space can be done in O(d log n) time. An (1 + δ)-approximate range counting query
for any fat convex region of complexity O(d) can be answered in time T (n) = O(d2(log n+1/δd−1)),
where δ > 0 is a given constant.
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2 Approximate flocks

The input is a set P of n trajectories p1, . . . , pn, where each trajectory pi is a sequence of τ
coordinates in the plane (xi

1, y
i
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τ , yi

τ ), where (xi
j , y

i
j) is the position of entity pi at

time tj . We will assume that the movement of an entity from its position at time tj to its position
at time tj+1 is described by the straight-line segment between the two coordinates, and that the
entity moves along the segment with constant velocity.

2.1 An equivalent definition of flock

Next we will give an alternative and algorithmically simpler, definition of a flock.

Definition 2. (m, k, r)-flockB - Given a set of n trajectories where each trajectory consists of τ
line segments a flock in a time interval [ti, tj ], where j − i + 1 � k consists of at least m entities
such that for every discrete time-step t�, i � � � j, there is a disk of radius r that contains all the
m entities.

Note that the centre of a disk does not have to coincide with one of the positions of the entities,
see for example the disk D5 in Fig. 2.
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Fig. 2. A flock of four entities in the time interval [t1, t8], according to the definitions of (a) flockA and
(b) flockB .

Lemma 2. If the entities move with constant velocity along the straight line segment between two
consecutive time-steps then flockA and flockB are equivalent.

Proof. Consider a given time interval I = [t1, tk] and assume that FA and FB are the set of all
flocks in I according to Definition 1 and 2 respectively. Obviously every flock fA ∈ FA is also a
flock in FB , thus FA ⊆ FB .

It remains to prove that FB ⊆ FA. Let fB be an arbitrary flock in FB , and let D� and D�+1

be disks of radius r that include the entities of fB at time t� and t�+1 respectively, see Fig. 3a. It
is enough to consider every two discrete time-steps t� and t�+1 in I separately.

Next we prove that at every point in time γ ∈ I ′ = [t�, t�+1] there is a disk Dγ that contains
all the entities {p1, . . . , pm} in fB . Let c� and c�+1 be the centres of D� and D�+1 respectively,
and let h be the straight-line segment with endpoints at c� and c�+1, as illustrated in Fig. 3a. An
entity q that moves with constant velocity on h has a well-defined position at time γ ∈ I ′, we
denote this position by cγ . Next we show that the disk Dγ with centre at cγ and radius r contains
all the entities of fB. Let pi be an arbitrary entity of fB . Since both, the movement of q and the
movement of pi during I ′ follows a straight-line and since both move with constant velocity the
relative trajectory of pi in relation to q is a straight-line as shown in Fig. 3b. Since a disk is convex
and since pi(t�) and pi(t�+1) are points within D� and D�+1, respectively, it holds that pi(γ) must
lie within Dγ . Consequently, fB ∈ FA and therefore FB ⊆ FA which completes the proof of the
lemma. ��
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Fig. 3. Illustration for the proof of Lemma 2.

In the remainder of this paper we refer to Definition 2 whenever we talk about flocks. Def-
inition 2 immediately suggests a new approach; for each time interval [ti, ti+k−1] check whether
there is a set of m entities F = {p1, . . . , pm} that can be covered by a disk of radius r at each
discrete time-step in [ti, ti−1+k]. Next we will show how this observation allows us to develop an
approximation algorithm.

2.2 The general approach

When developing an algorithm for this problem one of the main hurdles that we encountered was
to detect flocks without having to keep track of all the objects in a potential flock. That is, when
we consider a specific time-step; the number of potential flocks can be very large and the number
of objects that one needs to keep track of for each potential flock might be Ω(n). In general this
problem occurs whenever one attempts to develop a method that processes the input time-step
by time-step. In this paper we avoid this problem by transforming the trajectories into higher
dimensional space. Note that the gain is that we only need to count the number of points in a
region, instead of keeping track of the actual objects. This might seem like overkill but both the
theoretical bounds and the experimental bounds support this approach, at least as long as k is
fairly small.

The basic idea builds upon the fact that a polygonal line with d vertices in the plane can be
modelled as a point in 2d dimensions. The trajectory of an entity p in the time interval [ti, tj ] is
described by the polygonal line

p(i, j) = 〈(xi, yi), (xi+1, yi+1), . . . , (xj , yj)〉,
which corresponds to a point

p′(i, j) = (xi, yi, xi+1, yi+1, . . . , xj , yj)

in 2(j − i + 1)-dimensional space.
The first step when checking whether there is a flock in the time interval [ti, ti+k−1] is to map

the polygonal lines of all entities to R
2k. Equivalence 1 gives the key characterisation of flocks.

First, we define an (x, y, i, r)-pipe which is an unbounded region in R
2k. Such a pipe contains all

the points that are only restricted in two of the 2k dimensions (namely in dimensions i and i + 1)
and when projected on those two dimensions lie in a circle of radius r around the point (x, y).
Formally, a (x, y, i, r)-pipe is the following region:

{
(x1, . . . , x2k) ∈ R

2k | (xi − x)2 + (xi+1 − y)2 � r2
}
.

Equivalence 1 Let F = {p1, . . . , pm} be a set of entities and let I = [t1, tk] be a time interval.
Let {p′1, . . . , p′m} be the mappings of F to R

2k w.r.t. I. It holds that:

F is a (m, k, r)-flock ⇐⇒ ∃x1, y1, . . . , xk, yk : ∀p ∈ F : p′ ∈
k⋂

i=1

(xi, yi, 2i − 1, r)-pipe.
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To see that this equivalence holds we observe the following: for each time-step ti ∈ I the disk
with radius r and centre (xi, yi) contains the entity positions pi

1, . . . , p
i
m.

We will show that approximation algorithms can be obtained by performing a set of range
counting queries in higher dimensional space.

3 Approximation algorithms

We now give approximation algorithms where the radius r is approximated. A Δ-approximation
(with Δ > 1) here means that every (m, k, r)-flock will be reported, an (m, k,Δr)-flock may or
may not be reported, while no (m, k, r′)-flock where r′ exceeds Δr will be reported.

3.1 Method 1: A (
√

8 + ε)-approximation algorithm

By Equivalence 1 it is fairly straight-forward to develop a (
√

8 + ε)-approximation algorithm. For
each time interval I = [ti, ti+k−1], where 1 � i � τ − k +1, we will do the following computations.

For each entity p let p′ denote the mapping of p to R
2k with respect to I. We construct a skip-

quadtree T for the point set P ′ = {p′1, . . . , p′n}. Then, for each point p′ ∈ P ′ and an appropriately
chosen δ > 0 we perform a (1 + δ)-approximate range counting query in T where the query range
Q(p′) is a 2k-dimensional cube of side length 4r and centre at p′. That is, we approximate the
2k-dimensional cube which is itself an approximation for the query region. Every counting query
containing at least m entities corresponds to an (m, k,

√
8 + ε)-flock as Lemma 3 will show. Note

that the same flock may be reported several times.

Lemma 3. The algorithm is a (
√

8 + ε)-approximation algorithm.

Proof. First we show that each (m, k, r)-flock f is reported by the algorithm. Let pf be an arbitrary
entity of f and assume that f is a flock in the time interval I = [ti, ti+k−1]. We will prove that
the approximation algorithm returns an (m, k, (

√
8 + ε)r)-flock g such that f ⊆ g.

According to Definition 2 there exists a disk Dl with radius r that contains the entities in f for
each discrete time-step tl in I. The algorithm performs a counting query for each point in P ′ w.r.t.
[ti, ti+k−1], in particular for p′f . The query range Q(p′f ) is a 2k-dimensional cube of side length 4r
and centre at p′f , where p′f is the point in 2k-dimensions corresponding to pf . For a discrete time
l, the query range corresponds to a square Q′ in two dimensions with centre at p and side length
4r, where the dimensions mark the x− and y−positions of the entities at time l. As every entity of
f has distance at most 2r to pf this implies that every entity in f lies within Q(p′f ). Thus, when
pf is queried, the algorithm reports an (m, k, (

√
8 + ε)r)-flock g such that f ⊆ g.

To establish the approximation bound we still have to show that no (m, k, r′)-flock g where r′

exceeds (
√

8+ε)r is reported. Let g be a reported flock w.r.t. the time interval I = [ti, ti+k−1]. We
have to show that for every time-step tl in I there exists a disk of radius (

√
8 + ε)r that contains

the entities in g. This follows trivially by the choice of δ. If we choose δ to be ε/
√

8, the square of
side length 4(1 + δ)r is contained in the disk with radius (

√
8 + ε)r centred at p′f , as illustrated in

Fig. 4a. This completes the proof of the lemma. ��
Lemma 4. The algorithm reports at most τn (m, k, (

√
8 + ε)r)-flocks. It runs in O(τnk2(log n +

1/ε2k−1)) time and requires O(τn) space.

Proof. The number of reported flocks is trivially bounded by n, the number of entities, times
τ , the number of time-steps. At each of the (τ − k + 1) time intervals the algorithm builds a
skip-quadtree of the n elements from scratch. In total this requires O(τkn log n) time, according
to Lemma 1. Next a (1 + δ) counting query is performed for each of the n entities; each query
requires O(k2(log n + 1/ε2k−1)) time as δ = ε√

8
. Hence, the total time needed to perform all the

n(τ − k′) queries is bounded by O(τk2n(log n + 1/ε2k−1)) and thus dominates the running time
as stated in the lemma.

The space needed to build the skip-quadtree for each time interval is O(kn), and since we only
maintain one tree at a time the bound follows. ��
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Fig. 4. Illustration of the query ranges of methods 1,2 and 3 for r = 1. The approximative query ranges
are marked by dashed lines.

3.2 Method 2: A (2 + ε)-approximation algorithm

The algorithm is similar to the above algorithm. The main difference is that we will use the
intersection of k pipes as the query regions instead of the 2k-dimensional box. For each time
interval I = [ti, ti+k−1], where 1 � i � τ − k + 1, we will do the following computations.

For each entity p let p′ denote the mapping of p to R
2k with respect to I. We construct a

skip-quadtree T for the point set P ′ = {p′1, . . . , p′n}. Then, for each point p′ ∈ P ′ we perform a
(1 + ε)-approximate range counting query in T where the query range Q(p′) is the intersection of
the k pipes (xi, yi, 2i − 1, 2r) where (xi, yi) is the position of entity p at time-step ti.

The definition of fatness we use was introduced by Van der Stappen [20]. For convex objects
it is basically equivalent to other definitions [2, 4, 21].

Definition 3. [20] Let α > 1 be a real value. An object s is α-fat if for any d-dimensional ball D
whose centre lies in s and whose boundary intersects s, we have volume(D) � α · volume(s ∩ D).

Lemma 5. The intersection of d pipes (xi, yi, 2i− 1, 2r), 1 � i � k, in 2d-dimensional space is a
bounded convex 4d-fat region whose boundary consists of O(d) surfaces of quadratic complexity.

Proof. W.l.o.g. we assume that the centre of the intersection I of the d pipes is the origin, then I
can be described by the following d inequalities:

x2
1 + x2

2 � r2

x2
3 + x2

4 � r2

. . .

x2
d−1 + x2

d � r2.

The set of inequalities together with the fact that the inequalities are pairwise independent immedi-
ately gives that I is bounded, convex and its boundary consists of O(d) surfaces of quadratic com-
plexity. Thus it remains to prove that I is 4-fat. The definition of α-fat says that a d-dimensional
region R is α-fat if for every d-dimensional ball B with centre within R and whose boundary
intersects R the volume of R within B is at least 1/α of the total volume of B. We place an
arbitrary ball whose centre lies in I and consider the intersection of the ball and I projected onto
two dimensions, say dimension 2i − 1 and 2i. The projection of the ball is a disk whose centres
lies within the projection of I which is also a disk. Thus, it is obvious that at least 1/4 of the
projected ball lies in the projected region of I. Taking all dimensions into account this yields that
I is 4d-fat. ��

Recall that since the query range is convex and fat we can use the result stated in Lemma 1.

Lemma 6. The algorithm is a (2 + ε)-approximation algorithm.
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Proof. The proof follows from the same arguments as used in the proof of Lemma 3. When
approximately evaluating the query range Q(p′) which is the intersection of the k pipes (xi, yi, 2i−
1, 2r), 1 � i � k where (xi, yi) is the position of entity p at time-step ti, we test whether there is an
(m, k, (2+ε)r)-flock which p is part of. If p is part of an (m, k, r)-flock f in the time interval I, the
disk with radius r containing all the entities in f at time-step ti ∈ I is contained in the disk with
radius 2r centred at (xi, yi). Thus, when querying p, the algorithm reports an (m, k, (2+ε)r)-flock
g with f ⊆ g. ��
Lemma 7. The algorithm reports at most τn (m, k, (2 + ε)r)-flocks. It runs in O(τnk2(log n +
1/ε2k−1)) time and requires O(τn) space.

Proof. The number of reported flocks is trivially bounded by n, the number of entities, times τ , the
number of time-steps. At each of the (τ −k+1) time intervals the algorithm builds a skip-quadtree
of the n elements from scratch. In total this requires O(τkn log n) time, according to Lemma 1.
Next a counting query is performed for each point in P ′; each query requires O(k2(log n+1/ε2k−1))
time, thus the total time needed to perform all the n queries is bounded by O(k2n(log n+1/ε2k−1))
time and thus dominates the running time as stated in the lemma.

The space needed to build the skip-quadtree for each time interval is O(kn), and since we only
maintain one tree at a time the bound follows. ��
Remark 1. A quick comparison between Lemmas 4 and 7 reveals that even though the approxima-
tion factor of the second method is smaller the running time is identical. However, this is a theo-
retical bound, in practice we chose to implement the second method using a compressed quadtree.
The reason for this is that the skip-quadtree computes the volume between a d-dimensional cell
(orthogonal box) and Q(p′), where Q(p′) is the intersection of the k pipes, which is possible in the-
ory but hard in practice. The query data structure of a compressed quadtree only checks whether
the intersection is non-empty which is much easier to implement. Consequently, the experiments
performed with methods 1 and 2 use a different query data structure.

3.3 Method 3: A (1 + ε)-approximation algorithm

We use the same approach as above but instead of querying only the input points in R
2k we will

now query O(1/ε2k) sample points for each entity point. For each time interval I = [ti, ti+k′ ],
where 1 � i � τ − k + 1 and k′ = k − 1, we will do the following computations.

For each entity p let p′ denote the mapping of p to R
2k with respect to I. Construct a skip-

quadtree T for the point set P ′ = {p′1, . . . , p′n}. Let Γ be the intersection points of a regular grid
in R

2k of spacing ε ·r/2. Each input point p′i generates the sample set Γ ∩D(p′i) where D(p′i) is the
2k-dimensional ball of radius 2r centred at p′i. Clearly, this gives rise to O(1/ε2k) sample points
for each entity p.

Next, we perform a 1+ ε/(2+ ε)-approximate range counting query in T for each sample point
(x1, y1, . . . , xk, yk) where the query range is the intersection of the k pipes (xi, yi, 2i−1, (1+ε/2)r),
1 � i � k. However, a necessary condition for a sample point q to induce an (m, k, r)-flock is that
there are at least m entities in the disk Dq of radius 2r centred at q. During the processing of the
sample points we can count how many entities indeed lie in Dq for each sample point q. As we
generate at most O(n/ε2k) sample points, this means that we have to check at most O(n/(mε2k))
candidate sample points for inducing a flock. Next we prove the approximation bound.

Lemma 8. The algorithm is a (1 + ε)-approximation algorithm.

Proof. The 1 + ε/(2 + ε)-approximation of the range query ensures that no (m, k, r′)-flock with
r′ > (1 + ε)r is reported: as we query pipes of radius (1 + ε/2)r, the maximum distance from a
grid query point to a counted entity could be (1 + ε/2) · (1 + ε/(2 + ε))r = (1 + ε)r.

Next, we show that each (m, k, r)-flock is reported by the algorithm. Assume that f is an
(m, k, r)-flock in the time interval I. We prove that the approximation algorithm returns an
(m, k, (1 + ε)r)-flock g such that f ⊆ g.
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Let (x1, y1, . . . , xk, yk) ∈ R
2k be a point that induces an (m, k, r)-flock f with respect to I. We

look only at one time-step ti ∈ I. By the cell spacing it is obvious that there are sample points
(. . . , xq

i , y
q
i , . . . ) ∈ Γ such that the Euclidean distance from (xq

i , y
q
i ) to (xi, yi) is less than εr/2.

This means that the disk (in R
2) with radius (1 + ε/2)r centred at q completely contains the

disk with radius r centred at (xi, yi). Thus, when checking the sample points (. . . , xq
i , y

q
i , . . . ) all

entities of f are in range for time-step ti. As this holds analogously for all other time-steps the
algorithm reports an (m, k, (1 + ε)r)-flock g such that f ⊆ g. ��
Lemma 9. The algorithm reports at most τn (m, k, (1 + ε)r)-flocks. It runs in O( τnk2

mε2k (log n +
1/ε2k−1)) time and requires O(τn) space.

Proof. The number of reported flocks is trivially bounded by n, the number of entities, times
τ , the number of time-steps. At each of the (τ − k + 1) time intervals the algorithm builds a
skip-quadtree of the n elements from scratch. In total this requires O(τkn log n) time, according
to Lemma 1. Next a counting query is performed for each of the O(n/(mε2k)) candidate sample
points in Γ ; each query requires O(k2(log n+1/ε2k−1)) time, thus the total time needed to perform
all n(τ − k + 1) queries is as stated in the lemma.

The space needed to build the skip-quadtree for each time interval is O(kn), and since we only
maintain one tree at a time the bound follows. ��

4 Minimise the number of reported flocks

The general (theoretical) approach described in Section 3 has the following disadvantage: As every
entity is tested, a flock consisting of exactly m elements can be reported up to m times. This may
get even worse if a flock is found whose number of entities exceeds m. Below we briefly discuss
three approaches how reporting this redundant information could be avoided. The main idea for
all of them is to prune the number of reported flocks, the last approach abandons the restriction
that a flock defining region always has to be disk.

Each entity is part of at most one flock. In theory one object can be part of many flocks
at the same time which, in practice, this seems unreasonable. Thus, the first method we propose
guarantees that an object belongs to at most one flock at a time.

The strategy for this approach is very simple. If a counting query reports a flock then the
entities involved in the flock are marked and the skip-quadtree is updated so that the marked
entities will not be counted again. The additional time that we have to spend updating the tree
is O(nk log n) per time-step, thus O(τnk log n) in total. The number of reported flocks is trivially
bounded by τn/m.

Each entity is part of at most a constant number of flocks. The above approach minimises
the number of reported flocks; however, it also overlooks a lot of flocks. Therefore we chose to use a
different approach in the experiments which guarantees a higher level of correctness while bounding
the number of flocks that an entity may belong to simultaneously.

The idea is that when a flock is found every input point within the query region will be
marked, so that no query will be performed with those points as centres. Using a simple packing
argument it follows that the maximal number of flocks an entity can be part of during a time-step
is bounded by O(22k). The additional time that we have to spend updating the tree is O(nk log n)
per time-step, thus O(τnk log n) in total.

Extending flocks that have been found. In such an approach we also assume that each
entity can only be part of at most one flock. Once a flock is found, we first check whether we can
reasonably extend it, which means we may manipulate the disk as flock-defining region if it seems
reasonable to join objects closeby. There are many ways to do this that work in practice, however,
guaranteed theoretical bounds are hard to prove.
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5 Experiments

In this section we report on the performed experiments. We describe the experimental setup, i.e.
the hard- and software used for the experiments, we briefly explain the algorithms and we present
and discuss the running times of them with respect to different parameters of the input.

5.1 Setup

We used a Linux operated off-the-shelf PC with an Intel Pentium-4 3.6 GHz processor and 2 GB
of main memory. The data structures and algorithms were implemented in C++ and compiled
with the Gnu C++ compiler. The running times are reported as seconds. All our point sets used
in the experiments were created artificially. The point sets differ in size (10,000 - 160,000 points;
one algorithm was run with more than 1 million points), in length of the time interval (4 - 16
time-steps) and also in the distribution of the points (uniformly random or clustered).

To ensure that our algorithms indeed find flocks, we arranged 10% of the points in each point-
set in such a way that they form randomly positioned flocks. Each of the flocks has m = 50 entities
in a circle of radius r = 50 (hence the number of artificially inserted flocks is 0.002 times the total
number of points). As it is unlikely to have flocks that were generated by accident, we inserted
those artificial flocks to make sure that the methods correctly find them.

The remaining 90% of the points were randomly distributed, either uniformly or in clusters.
The purpose of the clustered point sets is that they are more likely to resemble real data, and
hence it is interesting to compare the impact of different distributed point sets on the running
times of our methods. Each cluster was generated by choosing randomly a cluster centre and then
distributing (with a Gaussian distribution) a number of points around that centre. However, the
number, distribution, radius and density of the clusters was chosen that it is unlikely (although
it can happen) to create flocks by accidents, i.e. a cluster is not dense enough to form a flock
because its radius is much larger than the flock radius. Choosing the clusters in this way makes a
comparison between the results for clustered and uniformly randomly distributed point sets easier,
as the differently distributed points can have a strong effect on the height and width of the created
tree structures.

Each point coordinate of an input point is an integer taken from the interval
[
0, ..., 213

]
or[

0, ..., 216
]
, respectively. Note that each generated data instance contains the coordinates of points

for a certain number of time-steps τ , and in the experiments on that instance, we always looked
for flocks of at least m = 50 entities in a circle with radius r = 50 and of length k with k = τ .

5.2 Methods

We compare the results of four methods called ‘box’, ‘pipe’, ‘no-tree’ and ‘pruning’. All of them
mark points that were found to belong to a flock, and in the further course of the algorithm those
marked points are not used as a potential flock centre, see Section 4 for a discussion. The output
of the algorithms are the centres of the found flocks. The box and pipe method are named after
their query region and are explained in Sections 3.1 and 3.2, respectively.

The no-tree method (which was implemented for the sake of comparison) does not use a
tree as underlying structure. It contains two nested loops, the outer one (running over all input
points) specifying a potential flock centre and the inner one (running again over all input points)
computing the distance between a point and the potential flock centre. If there are enough points
within a ball (around the potential flock centre) of double flock-radius (see the proof of Lemma 3
for an explanation why the radius is doubled) then we found a flock. Hence, the no-tree method
is a 2-approximation.

The pruning method takes advantage of the fact that each flock of a certain length k is also a
flock of length k∗ < k. Therefore all points not involved in flocks of length k∗ cannot be involved
in flocks of length k. The method works as follows. As a first step we compute flocks of length 4
using the box method. Then we build a new tree containing only those points that were contained
in flocks during the first step. This drastically reduces the number of points. We then again apply
the box method on the new tree for the entire length k.
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input uniformly clustered
box pipes no-tree box pipes no-tree

n k flocks time flocks time flocks time flocks time flocks time flocks time

10K 4 20 0 20 0 20 5 20 0 20 1 20 5
10K 8 20 2 20 1 20 5 20 1 20 0 20 5
10K 16 20 2 20 1 20 6 20 1 20 0 20 5

20K 4 40 1 41 0 40 21 40 0 40 1 40 20
20K 8 40 7 40 5 40 21 40 1 40 0 40 22
20K 16 40 13 40 10 40 25 40 3 40 2 40 25

40K 4 80 0 80 1 80 83 80 1 80 0 80 83
40K 8 80 32 80 22 80 87 80 2 80 2 80 87
40K 16 80 62 80 44 80 99 80 8 80 7 80 101

80K 4 160 3 163 3 160 332 160 3 160 2 160 332
80K 8 160 129 160 88 160 347 160 6 160 4 160 346
80K 16 160 244 160 182 160 392 160 30 160 29 160 392

160K 4 320 8 321 10 320 1326 320 8 320 5 320 1327
160K 8 320 441 320 316 320 1391 320 20 320 15 320 1384
160K 16 320 986 320 768 320 1576 320 102 320 93 320 1564

Table 1. Results for ε = 0.05 and point-sets with coordinates from
ˆ
0, ..., 216

˜
.

5.3 Results

We run the experiments with a couple of generated point-sets for each combination of point-set
characteristics, such as number of points, number of time-steps and point distribution. The results
were very similar for fixed characteristics and hence the tables below show the numbers for only
one collection of point-sets with the specified characteristics. The results of the algorithms are
depicted in Table 1, where the coordinates of the points are chosen from the interval

[
0, ..., 216

]
.

The columns below ‘input’ specify the number of points and the number of time-steps, and the
columns below ‘uniformly’ and ‘clustered’ show the number of flocks found and the running times
needed when performing the box-, pipes- and no-tree-algorithm on the corresponding input. We
also performed the same experiments on point-sets where the coordinates where chosen from[
0, ..., 213

]
. Table 2 shows those results. The results for the method with pruning are given in

Table 3. Because of the similarity of the results for a different number of time-steps, we only
report the results for 16 time-steps in that table. Table 4 shows the results of the no-tree method
for a large number of time-steps and a small number of entities. All tables show the results, i.e.
the number of flocks found and the running time in seconds, only for ε = 0.05, because no big
influence of different values of ε could be observed. From our point of view the running times are
much more important than the number of flocks found. Hence, the number of flocks are shown
here only for the sake of completeness. These numbers are indicated in italics in case they deviate
from the number of artificially inserted flocks. (In most cases the methods found exactly as many
flocks as were artificially inserted.)

5.4 Discussion

Flat trees in high dimensions. One general observation is that the running times of our
algorithms are increasing with the number of time-steps (i.e. with the number of dimensions).
Recall that an internal node of an octree has 2d children where d is the number of dimensions.
Using 16 time-steps means 32 dimensions which translates to more than 4 billion quadrants, i.e.
children of an internal node (in our approach we only store non-empty children in a list, which
reduces storage space but increases time complexity). In an experiment with 160,000 points in 32
dimensions it is very unlikely that many of the randomly distributed points (not in flocks) fall into
the same quadrant. Therefore the tree is very flat, i.e. have only a very small depth, which results
in high running times.
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input uniformly clustered
box pipes no-tree box pipes no-tree

n k flocks time flocks time flocks time flocks time flocks time flocks time

10K 4 20 1 20 0 20 5 20 2 20 1 20 4
10K 8 20 8 20 6 20 6 20 2 20 2 20 6
10K 16 20 14 20 11 20 6 20 5 20 11 20 6

20K 4 40 1 40 4 40 20 40 2 40 1 40 20
20K 8 40 52 40 35 40 22 40 6 40 4 40 22
20K 16 40 83 40 58 40 25 40 17 40 44 40 25

40K 4 80 4 80 15 80 83 81 6 80 2 80 83
40K 8 80 237 80 166 80 87 80 16 80 21 80 87
40K 16 80 347 80 244 80 99 80 55 80 177 80 99

80K 4 160 10 160 57 160 333 206 16 160 8 160 332
80K 8 160 932 160 696 160 348 160 45 160 77 160 348
80K 16 160 1411 160 1124 160 394 160 164 160 594 160 395

160K 4 320 29 320 201 320 1326 1317 42 320 27 320 1331
160K 8 320 3179 320 2658 320 1393 320 124 320 238 320 1392
160K 16 320 6015 320 4226 320 1575 320 692 320 2306 320 1576

Table 2. Results for ε = 0.05 and point-sets with coordinates from
ˆ
0, ..., 213

˜
.

Error value ε. When performing a range query, ε influences the approximate region to be queried.
One could expect that a larger value of ε can lead to shorter running times and more flocks that
are found, because the descent in the tree can be stopped earlier and the query region can become
larger. However, apart from very marginal fluctuations, this behaviour could not be observed in
our experiments. Our point sets and therefore our trees in the experiments are rather sparsely
filled. Hence, the squares corresponding to most of the leaves in the tree (which correspond to
single points in a point set) are still quite large compared to the flock radius r and also to (1+ε)r.
Furthermore, it often seems that the point sets are too sparse to find any random flocks. Therefore
we refrained from reporting results for different ε and only used ε = 0.05.

Number of flocks. Most of the times the algorithms found exactly as many flocks as were
artificially put into the point-sets. A few times more flocks were found but only in instances with
a small number of time-steps, which is reasonable since if the points that are not belonging to
an artificially inserted flock, form a flock at all, then it is more likely that this happened for
only a small number of time-steps. In one case (see Table 2, box method on clustered points,
n = 160K, k = 4) more than 1300 flocks were found (where only 320 were artificially inserted)
which indicates that for that instance the distribution of the points and clusters (in combination
with a high number of points and a small coordinate space) reached a limit were the clusters
are dense enough to often create random flocks. In some of our experiments we observed that
the algorithms found less flocks than artificially were inserted. This can happen if two flocks are
close to each other and fall into one query region and hence will be counted as one flock by the
algorithm.

Coordinate space
[
0, ..., 213

]
vs.

[
0, ..., 216

]
. Somewhat surprising might be that the experi-

ments with point-sets with coordinates in
[
0, ..., 216

]
were much faster than those with point-sets

with coordinates in
[
0, ..., 213

]
(all other parameters were the same). One explanation is that in

a bigger underlying space (i.e. where the coordinates are in
[
0, ..., 216

]
) it is more likely that the

query region falls into a single square corresponding to a quadtree node. Due to the sparseness
of the point-sets the algorithms are likely to find just a single point in that square. On the other
hand in a smaller underlying space the query region might intersect more squares, which results
in more subsequent queries, which in turn takes more time.
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Uniformly vs. clustered. When comparing the results of the uniformly distributed point-sets
with the clustered point-sets it becomes evident that our tree-based algorithms always perform
better on the clustered data. This behaviour could be expected because, as we have seen from
the experiments in general, uniformly distributed points result in octrees that are rather flat
(especially for higher dimensions). But it is a ‘good balance’ between height and width of a tree
that allows fast query times. Clustered data sets are more likely to create trees that are deeper on
some branches or subtrees, and therefore the algorithm will descent on those subtrees cutting off
everything not contained in them. The no-tree method (which is not using a tree) is not affected
by the two different types of data.

No-tree vs. box vs. pipe. We observe that the no-tree method’s running times are quadratic in
the number of points and not influenced by the number of time-steps, as expected. On the other
hand the box and pipe algorithms are strongly influenced by the number of time-steps and the
number of points. As discussed above for high dimensions the box and pipe methods operate on an
underlying tree that is very flat. A large query region in combination with a small coordinate space
causes their behaviour to become similar (although with a big overhead) to the no-tree method.
The difference between the box and pipe method is caused by the different data structure they
use. The box method uses the more complex skip-quadtree, while the pipe method incorporates a
compressed quadtree.

Pruning. Table 3 shows the running times of the pruning method for k = 16 and ε = 0.05. The
impressive impact of the pruning step is illustrated in Figure 5 where the running times of the
usual box and the pruning method are shown for point sets with coordinates in

[
0, ..., 213

]
.

Depending on the density and distribution, even some point-sets with more than 1 million
points can be dealt by the pruning method within a couple of minutes. Furthermore, we observed
that the number of time-steps hardly has an influence on the running times. An exception are
the clustered point sets with coordinates in

[
0, ..., 213

]
and a large number of points, where we

experienced much longer running times and a strong correlation between the number of time-
steps and running time. Also the point distribution (uniformly or clustered) does not affect the
running times of the point-sets with coordinates in

[
0, ..., 216

]
. However, for the point-sets with

coordinates in
[
0, ..., 216

]
, we observe much longer running times for the clustered point-sets. This

can be explained by noting that after the pruning step it is likely that the remaining points form a
flock also for more time-steps. Therefore, almost every query to the data structure gives a flock and
hence, the number of queries is drastically decreased. For the clustered point sets with coordinates
in

[
0, ..., 213

]
, however, the probability of random flocks is much higher. The fact that the pruning

method sometimes finds less flocks than the box method can be explained by noting that the
pruning method performs two runs of the box method each of which can handle the points in a
different order. Therefore the second run of the box method can encounter points which will not
belong to any flock.

6 Concluding remarks

This paper is a first step towards practical algorithms for finding spatio-temporal patterns, such
as flocks, encounters and convergences. Future research does not only include more efficient ap-
proaches to compute these patterns but also more complicated patterns, e.g. hierarchical patterns
or repetitive patterns. In this paper we have presented different algorithms for finding flock pat-
terns and analysed them theoretically as well as experimentally. From the experiments we have
seen that our tree-based algorithms can perform very well. Especially for a small number of time-
steps the resulting running times are often very small, however, they depend very much on the
characteristics of the input point-sets, which motivates more research and experiments, preferably
on real-world data.

For a larger number of time-steps the no-tree method can be used. This method’s running
time is mainly influenced by the number of entities and not by the number of dimensions. Table 4
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input coordinates from
ˆ
0, ..., 213

˜
coordinates from

ˆ
0, ..., 216

˜

uniformly clustered uniformly clustered
pruning pruning pruning pruning

n k flocks time flocks time flocks time flocks time

10K 16 20 0 20 1 20 1 20 0
20K 16 40 1 40 2 40 1 40 0
40K 16 80 3 80 6 80 2 80 2
80K 16 160 11 160 15 160 3 160 3

160K 16 320 30 320 45 320 9 320 9
320K 16 639 82 633 303 640 26 640 25
640K 16 1271 194 1268 1796 1280 75 1280 75

1280K 16 2501 533 2507 9213 2560 249 2560 246
Table 3. Results for pruning method, ε = 0.05.

 0

 100

 200

 300

 400

 500

 600

 700

 0  200  400  600  800  1000  1200

ru
nn

in
g 

tim
e 

in
 s

ec
on

ds

number of points in K

Box_uniformly
Box_clustered

Pruning_uniformly
Pruning_clustered
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shows the performance of this algorithm for up to 40000 entities and up to 1000 time-steps. As we
have seen from Tables 1 and 2, the characteristics (such as distribution and coordinate space) of
the point sets has no influence on the running time of the no-tree method and therefore, Table 4
only shows the results for uniformly distributed points with coordinates in [0, ..., 216]. We see that
also point sets with 1000 time-steps can be searched for flocks of length 1000 within a couple of
minutes.

Hence, for a small number n of entities and many time-steps, we can use the no-tree method,
which has a running time quadratic in n. For many entities and few time-steps k our tree based
methods perform very well, which have a running time exponential in the number of dimensions of
the tree, i.e. exponential in k. Thus, we are faced with a trade-off. One approach to tackle the case
of many entities and many time-steps has recently been developed by Al-Naymat et al. [3], where
the data is preprocessed. In this preprocessing step the number of dimensions (i.e. time-steps)
is reduced by random projection. In experiments it was shown [3] that the tree-based methods
perform very well on the data with reduced dimensionality. As a conclusion we see that the idea
of projecting trajectories into points in higher dimensional space is very viable for finding flocks
in spatio-temporal data.
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input uniformly distributed, coordinates from
ˆ
0, ..., 216

˜

k = 32 k = 64 k = 125 k = 250 k = 500 k = 1000
n flocks time flocks time flocks time flocks time flocks time flocks time

10K 20 14 20 16 20 15 20 15 20 18 20 21
20K 40 59 40 67 40 69 40 73 40 85 40 88
40K 80 235 80 265 80 278 80 294 80 332 80 337

Table 4. Results of the no-tree method, ε = 0.05.
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